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1. Introduction

The stochastic golden rules [1, 2], which arise in the stochastic limit
of quantum theory as natural generalizations of the Fermi golden rule,
provide a natural tool to associate a stochastic flow to any discrete
system interacting with a quantum field. In the limit the field looks
like a very chaotic object: a quantum white noise, i.e a δ-correlated
(in time) quantum field also called master field. The new evolution is
an approximation of the original one which preserves much nontrivial
information on the original complex system related to its decay and
shift properties.

In this work we study, from an analytical point of view, the con-
vergence of the rescaled creation and annihilation densities, which lead
to the master fields, and the form of the drift term of the stochastic
Schrödinger equation obtained in such limit, which contains the quan-
tum mechanical fluctuation-dissipation relations. This approach permit
us to dispense with the analytical condition and other restrictions usua-
lly considered –see Section 2– and also to establish the dependence
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of the stochastic golden rules on certain properties of the dispersion
function of the quantum field. To be precise, we shall see that, for the
region where the dispersion function is regular and not constant, say
Γ1, every Bohr frequency of the system in its range gives rise to an
independent master field, which is a quantum white noise concentrated
on the corresponding resonant surface, whereas both the rest of Bohr
frequencies and the open regions where the dispersion function is cons-
tant, say Γαj , give rise to zero master fields, except for the resonant
case, see Theorem 1. In a similar way we will show that the regions Γαj

do not contribute to the drift term whenever the resonant case is not
present, whereas for the region Γ1 we obtain the usual expression with
an expected additional factor, see Theorem 3. The contribution of the
singular regions of dispersion varies in each case and is not completely
understood yet, see Proposition 2 and Remark 7.

The paper is organized as follows. The basic facts about the stochas-
tic limit of quantum theory are introduced in Section 2. Section 3
describes the type of dispersion functions under study. Section 4 con-
tains the results concerning the convergence of the rescaled creation
and annihilation densities leading the master fields. The drift term of
the normally ordered white noise Schrödinger equation derived from the
stochastic limit is obtained in Section 5. Proofs and technical remarks
are collected in Section 6. An Appendix at the end includes some of
the conventions and results used in the paper.

2. Preliminaries

In what follows we shall consider quantum systems describing the
interaction of a discrete spectrum system S with free Hamiltonian

HS :=
∑

r

εrPεr

and Bohr frequencies ω = εr − εr′ , (εr, εr′ ∈ SpecHS), and a bosonic
quantum field as reservoir R with free Hamiltonian (on Fock space)

HR :=
∫
dk ω(k)a+(k)a(k),

where ω(k) is the dispersion function, a±(k) are the creation and anni-
hilation densities, and the reference vector is mean zero Gaussian and
gauge invariant, with covariance of the form

〈
(
a+(k)a(k′) 0

0 a(k′)a+(k)

)
〉 =

(
N(k) 0

0 N(k) + 1

)
δ(k − k′). (1)
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We will assume that the total Hamiltonian has the form

H(λ) := H0 + λHI = HS +HR + λHI ,

where λ is a real coupling parameter and the interaction Hamiltonian
HI is of dipole type, i.e.1

HI =
∑

j

(
D∗

j ⊗A(gj) +Dj ⊗ A∗(gj)
)
,

where Dj are system operators and

A∗(gj) :=
∫
dk gj(k)a+(k), A(gj) :=

∫
dk g∗(k)a(k),

the functions gj being the cutoff or form factors. Often we will simplify
the notations by omitting the symbol ⊗.

In the stochastic limit approach we consider the time rescaling t →
t/λ2 in the solution U

(λ)
t = eitH0e−itH(λ)

of the Schrödinger equation
in interaction picture:

∂

∂t
U

(λ)
t = −iλHI(t) U

(λ)
t , HI(t) = eitH0HIe

−itH0 ,

and study the limits, in a topology to be specified, of the rescaled
interaction Hamiltonian and of the rescaled propagator:

lim
λ→0

1
λ
HI

(
t

λ2

)
=: ht, lim

λ→0
U

(λ)
t/λ2 =: Ut.

In canonical form this reduces to find the limit of the rescaled crea-
tion and annihilation densities

a±λ,ω(t, k) :=
1
λ
e∓i t

λ2 (ω(k)−ω)a±(k), (2)

obtaining the white noise Schrödinger equation ∂
∂tUt = −ihtUt, whose

normally ordered form is the quantum stochastic differential equation

dUt = (−idH(t)− Gdt)Ut, (3)

where dH(t) is called the martingale term and

Gdt := lim
λ→0

1
λ2

∫ t+dt

t
dt1

∫ t1

t
dt2 〈HI

(
t1
λ2

)
HI

(
t2
λ2

)
〉 (4)

is known as the drift term.
Among the assumptions to achieve this program it is usual to con-

sider the following ones:
1 The asterisk ∗ denotes the Hermitian conjugate for operators and the complex

conjugate for scalars. For distributional densities we use the symbol + instead ∗.
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− the cut–off functions gj are Schwartz functions;

− the dispersion function ω(k) and the cut–off functions gj are re-
lated by the following analytical condition:
∫

R
dt|〈gi, e

itω(p)gj〉| =
∫

R
dt

∣∣∣∣
∫

Rd
dk eitω(k)g∗i (k)gj(k)

∣∣∣∣ < +∞;

− the (d − 1)–dimensional Lebesgue measure of the surface {k :
ω(k) = 0} is equal to zero (this implies, in particular δ(ω(k)) = 0).

The techniques applied in this work, based on the distributional
theory of Fourier transforms [3, 4, 5], permit us to dispense with the
above conditions and to establish the dependence of the stochastic
golden rules on certain properties of the dispersion function ω(k).

3. The Dispersion Function

In what follows we shall assume that the dispersion function Rd 3 k 7→
ω(k) ∈ R is such that ω(k) ≥ 0 for all k ∈ Rd and we can write

Rd = Γ1 ∪ Γ2 ∪ Γ3,

where:

(i) Γ1 is an open set of Rd in which ω(k) is a C∞-function and
∇ω(k) 6= 0 for every k ∈ Γ1. We shall denote by Γ1

1 the range
of the restriction of ω(k) to Γ1, i.e.

Γ1
1 := Rang(ω|Γ1

),

and assume that the boundary ∂Γ1
1 of Γ1

1 has Lebesgue measure
zero.

(ii) Γ2 = ∪Γαj , being Γαj an open subset of Rd where the dispersion
function ω(k) is constant and equal to αj , i.e.

ω(k) = αj , ∀ k ∈ Γαj .

(iii) Γ3 = Rd\(Γ1 ∪ Γ2), that is Γ3 contains the boundaries of Γ1 and
Γ2 and other possible regions of singular points of the dispersion
function ω(k).
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4. Convergence of the Rescaled Densities

Let us study the convergence, in the sense of correlators, of the rescaled
creation and annihilation densities given in Eq.(2). To simplify the no-
tation we restrict our attention to the vacuum reference vector, so that
N(k) = 0 (see Eq.(1)). The extension of the results to the general case
is immediate. Moreover, because of the mean zero Gaussianity, we have
only to prove the convergence, in the sense of Schwartz distributions
[4], of the covariance

〈aλ,ω(t, k)a+
λ,ω′(t′, k′)〉 =

1
λ2
e−i t−t′

λ2 (ω(k)−ω)+i t′
λ2 (ω−ω′)δ(k− k′),

i.e. we must calculate, for any Schwartz test functions φ, ϕ, f and g,

lim
λ→0

∫
dt dt′ dk dk′ φ(t)ϕ(t′)f(k)g(k′)〈aλ,ω(t, k)a+

λ,ω′(t′, k′)〉.

The following theorem shows that, on Γ1, every Bohr frequency ω in
the open range Γ1

1 of the dispersion function gives rise to an independent
master field, which is a quantum white noise concentrated over the
resonant surface ω(k) − ω = 0, and the rest of Bohr frequencies give
rise to zero master fields –notice the factor χΓ1

1
–, while, on the open

regions Γαj where the dispersion function is constant, the limit does
not exist in the resonant case αj = ω = ω′ and again gives rise to zero
master fields otherwise.

THEOREM 1. Under the conditions for ω(k) given in Section 3, in
the sense of Schwartz distributions, i.e. in S ′(R2d+2):

(a) Over Γ1, if ω doesn’t belong to the boundary ∂Γ1
1 of Γ1

1,

lim
λ→0

〈aλ,ω(t, k)a+
λ,ω′(t′, k′)〉

∣∣∣
Γ1

= δω,ω′2πδ(t−t′)δ(k−k′)δ(ω(k)−ω)χΓ1
1
(ω).

(b) Over each Γαj ,

lim
λ→0

〈aλ,ω(t, k)a+
λ,ω′(t′, k′)〉

∣∣∣
Γαj

=

{
doesn’t exist, if αj = ω = ω′,

0, if αj 6= ω or αj 6= ω′.

The proof of this result (given in Section 6) casts some light on
the resonant case αj = ω = ω′ of item (b): Over each Γαj the final
expression in our calculations is2

lim
λ→0

2π
λ2

φ∨
(
αj − ω

λ2

)
ϕ∧
(
αj − ω′

λ2

)∫

Γαj

dk f(k)g(k) =

2 See Appendix A for notation and conventions.
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= lim
λ→0

2π
λ2

φ∨(0)ϕ∧(0)
∫

Γαj

dk f(k)g(k),

which is equal to zero when φ∨(0) = 0 or ϕ∧(0) = 0, or ±∞ otherwise.
Thus, if we restrict our attention to test functions with zero mean in
time, the limit also exists in this case and is equal to zero.

What happens over Γ3 or when ω ∈ ∂Γ1
1? As Proposition 2 shows

below, the answer depends on the dispersion function. Indeed, let us
consider dispersion functions of the form

ω(k) = |k|µ, µ > 0, (5)

for which Γ1 = Rd\{0}, Γ2 = ∅, Γ3 = {0}, Γ1
1 = (0,∞) and ∂Γ1

1 = {0},
so that the frequency of interest is ω = 0. We obtain in this case:

PROPOSITION 2. For dispersion functions of the form (5),

lim
λ→0

〈aλ,ω(t, k)a+
λ,ω′(t′, k′)〉 =

=
{
δω,ω′2πδ(t− t′)δ(k − k′)δ(ω(k)− ω), if ω > 0,

0, if ω < 0,

(6)

and

lim
λ→0

〈aλ,ω(t, k)a+
λ,ω′(t′, k′)〉

∣∣∣∣
ω=0

=

=





0, if d− µ > 0,

δω,ω′
2πd/2+1

Γ(d/2)
δ(t− t′)δ(k− k′)δ(k), if d− µ = 0.

(7)

(For ω = 0 and d− µ < 0 our techniques do not give an answer.)

5. The Drift

As Eq.(4) shows, the drift term Gdt in the stochastic Schrödinger equa-
tion given in Eq.(3) is the limit of the expectation value in the reservoir
state of the second term in the iterated series solution for the rescaled
Shrödinger equation in interaction picture.

In the following theorem we show that the open region Γ2 does not
contribute to the drift term whenever the resonant case αk = ω is
not present, whereas for the region Γ1 we obtain the usual expression
for the drift with a χΓ1

1
factor added. The contribution of the singular

region Γ3 to the drift has not been determined yet.
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THEOREM 3. Under the conditions for ω(k) given in Section 3 we
have:

(i) If Γ2 is not empty and no Bohr frequency ω of the system coin-
cides with one of the values αk, then the contribution of the region Γ2

to the drift term is zero, whereas if any of the Bohr frequencies ω of
the system coincides with one of the values αk, then G does not exist.

(ii) Otherwise

G =
∑

ij

∑

ω

(
(gi|gj)−ωE

∗
ω (Di)Eω (Dj) + (gi|gj)+ω

∗
Eω (Di)E∗

ω (Dj)+

+The part corresponding to the singular region Γ3

)
,

where, for each Bohr frequency ω, the Eω(Dj) are system operators
defined by

Eω(Dj) :=
∑

εr∈Fω

Pεr−ωDjPεr ,

Fω := {εr ∈ SpecHS : εr − ω ∈ Spec HS},
and the explicit forms of the constants (gi|gj)±ω are

(gi|gj)−ω = πχΓ1
1
(ω)

∫

Γ1

dk g∗i (k)gj(k)(N(k) + 1)δ(ω(k)− ω)−

−iP.P.
∫

Γ1

dk g∗i (k)gj(k)
(N(k) + 1)
ω(k) − ω

,

(gi|gj)+ω = πχΓ1
1
(ω)

∫

Γ1

dk g∗i (k)gj(k)N(k)δ(ω(k)− ω)−

−iP.P.
∫

Γ1

dk g∗i (k)gj(k)
N(k)

ω(k)− ω
.

The constants (gi|gj)±ω , known as generalized susceptivities, contain
all the physical information on the original Hamiltonian system and
can be considered as the prototype of quantum mechanical fluctuation-
dissipation relations.

6. Proofs and Remarks

Proof of Theorem 1: For any test functions φ, ϕ, f and g, we must
calculate

I := lim
λ→0

∫
dt dt′ dk dk′ φ(t)ϕ(t′)f(k)g(k′)〈aλ,ω(t, k)a+

λ,ω′(t′, k′)〉 =

= lim
λ→0

∫
dt dt′ dk dk′ φ(t)ϕ(t′)f(k)g(k′)×

× 1
λ2
e−i t−t′

λ2 (ω(k)−ω)+i t′
λ2 (ω−ω′)δ(k − k′) =

= lim
λ→0

∫
dt dt′ dk φ(t)ϕ(t′)f(k)g(k)

1
λ2
e−i t−t′

λ2 (ω(k)−ω)+i t′
λ2 (ω−ω′).
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Making the change of variables (t− t′)/λ2 = σ, t′ = τ , we find

I = lim
λ→0

∫
dσ dτ dk φ(τ + λ2σ)ϕ(τ)f(k)g(k) ei

τ
λ2 (ω−ω′)e−iσ(ω(k)−ω).

(8)
The integrand belongs to L1(Rd+2) for every λ 6= 0 and then, by
Fubini’s theorem, we can integrate in any order. Then, I equals

lim
λ→0

∫
dτ ϕ(τ) ei

τ
λ2 (ω−ω′)

∫
dσ φ(τ + λ2σ) eiσω

∫
dk f(k)g(k) e−iσω(k).

Now, let us put
∫
dk f(k)g(k) e−iσω(k) =

∫

Γ1∪Γ2∪Γ3

dk f(k)g(k) e−iσω(k) =

=
∫

Γ1

dk f(k)g(k) e−iσω(k) +
∑

j

∫

Γαj

dk f(k)g(k) e−iσω(k)+

+
∫

Γ3

dk f(k)g(k) e−iσω(k)

and
I = I1 + I2 + I3,

where Ij , (j = 1, 2, 3), corresponds to the integral over Γj with respect
to k on I .

Over Γ1, using the notation given in Section 3.(i), we have (the
symbol ∧ denotes the Fourier transform and the symbol ∨ the inverse
Fourier transform, see appendix A)

∫

Γ1

dk f(k)g(k) e−iσω(k) =
∫

Γ1
1

du1 e
iτu1Ωfg(u1) =

=
∫
du1 e

−iσu1χΓ1
1
(u1)Ωfg(u1) =

√
2π[χΓ1

1
Ωfg]∨(σ)

and get

I1 = lim
λ→0

√
2π
∫
dτ ϕ(τ) ei

τ
λ2 (ω−ω′)

∫
dσ φ(τ +λ2σ)[χΓ1

1
Ωfg]∨(σ) eiσω =

= lim
λ→0

2π
∫
dτ ϕ(τ) ei

τ
λ2 (ω−ω′)

[
φ(τ + λ2σ)[χΓ1

1
Ωfg]∨(σ)

]∧
(ω). (9)

Since χΓ1
1
Ωfg satisfies the conditions of Jordan’s test (Theorem 9) or

Dini’s test (Theorem 10) for every interior point of Γ1
1 and is equal to

zero outside of Γ1
1, we have

[χΓ1
1
Ωfg]∨∧(ω) = [χΓ1

1
Ωfg](ω), ω ∈ R\∂Γ1

1.
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On the other hand,

[φ(τ + λ2σ)]∧(ω) =
1
λ2
φ∧
(
ω

λ2

)
e−iτ ω

λ2 .

Therefore, using the fact that the Fourier transform of a product is
equal to the convolution of the Fourier transforms of the factors, from
Eq.(9) we obtain

I1 = lim
λ→0

2π
λ2

∫
dτ ϕ(τ) ei

τ
λ2 (ω−ω′)

∫
dt φ∧

(
t

λ2

)
e−iτ t

λ2 [χΓ1
1
Ωfg](ω − t),

since ∂Γ1
1 has Lebesgue measure zero.

Now, interchanging the order of integration (φχΓ1
1
Ωfg belongs to

L1(R) for every test function φ),

I1 = lim
λ→0

2π
λ2

∫
dt φ∧

(
t

λ2

)
[χΓ1

1
Ωfg](ω − t)

∫
dτ ϕ(τ) ei

τ
λ2 (ω−ω′−t) =

= lim
λ→0

(2π)3/2

λ2

∫
dt φ∧

(
t

λ2

)
[χΓ1

1
Ωfg](ω − t)ϕ∧

(
ω − ω′ − t

λ2

)
=

(by the commutativity of the convolution)

= lim
λ→0

(2π)3/2

λ2

∫
dt φ∧

(
ω − t

λ2

)
[χΓ1

1
Ωfg](t)ϕ∧

(
t − ω′

λ2

)
=

(taking the change of variable t = λ2σ)

= lim
λ→0

(2π)3/2
∫
dσ φ∧

(
ω

λ2
− σ

)
[χΓ1

1
Ωfg](λ2σ)ϕ∧

(
σ − ω′

λ2

)
=

(taking the change of variable σ − ω′

λ2
= τ)

= lim
λ→0

(2π)3/2
∫
dτ φ∧

(
ω − ω′

λ2
− τ

)
[χΓ1

1
Ωfg](λ2τ + ω′)ϕ∧(τ).

Since χΓ1
1
Ωfg is a bounded function, we can apply the dominated

convergence theorem and get:

(1) If ω = ω′ ∈ R\∂Γ1
1, since χΓ1

1
Ωfg is continuous at ω and φ, ϕ ∈

S(R),

I1 = (2π)3/2[χΓ1
1
Ωfg](ω)

∫
dτ φ∧(−τ)ϕ∧(τ) =

= (2π)3/2[χΓ1
1
Ωfg](ω)[φ∧ ∗ϕ∧](0) =

= (2π)3/2[χΓ1
1
Ωfg](ω)[φϕ]∧(0) =

= (2π)3/2[χΓ1
1
Ωfg](ω)

1√
2π

∫
dt φ(t)ϕ(t) =

= 〈2πδ(t− t′)δ(k − k′)δ(ω(k)− ω)χΓ1
1
(ω), f(k)g(k′)φ(t)ϕ(t′)〉.
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(2) If ω 6= ω′ ∈ R\∂Γ1
1, by Riemann-Legesgue theorem,

lim
λ→0

φ∧
(
ω − ω′

λ2
− τ

)
= 0

and I1 = 0.

On the other hand, over Γ2 we have

I2 = lim
λ→0

∫
dτ ϕ(τ) ei

τ
λ2 (ω−ω′)

∫
dσ φ(τ + λ2σ) eiσω×

×
∫

Γ2

dk f(k)g(k) e−iσω(k) = lim
λ→0

∫
dτ ϕ(τ) ei

τ
λ2 (ω−ω′)×

×
∫
dσ φ(τ + λ2σ) eiσω

∫
dk
∑

j

χΓαj
(k) f(k)g(k) e−iσαj.

Since f, g ∈ S(Rd) and φ, ϕ ∈ S(R), by the dominated convergence
theorem we can interchange sum and integrals, so that I2 equals

lim
λ→0

∑

j

∫
dτ ϕ(τ) ei

τ
λ2 (ω−ω′)

∫
dσ φ(τ+λ2σ) e−iσ(αj−ω)

∫

Γαj

dk f(k)g(k).

Taking the change of variable λ2σ = u,
∫
dσ φ(τ + λ2σ) e−iσ(αj−ω) =

1
λ2

∫
du φ(τ + u) e−i u

λ2 (αj−ω) =

=
√

2π
λ2

φ∨
(
αj − ω

λ2

)
eiτ

αj−ω

λ2 .

Therefore, I2 equals

lim
λ→0

∑

j

√
2π
λ2

φ∨
(
αj − ω

λ2

)∫
dτ ϕ(τ) ei

τ
λ2 (αj−ω′)

∫

Γαj

dk f(k)g(k) =

= lim
λ→0

∑

j

2π
λ2

φ∨
(
αj − ω

λ2

)
ϕ∧
(
αj − ω′

λ2

)∫

Γαj

dk f(k)g(k).

Term by term we have:

(1) If αj = ω = ω′,

lim
λ→0

2π
λ2

φ∨
(
αj − ω

λ2

)
ϕ∧
(
αj − ω′

λ2

)∫

Γαj

dk f(k)g(k) =

= lim
λ→0

2π
λ2

φ∨(0)ϕ∧(0)
∫

Γαj

dk f(k)g(k),

which is equal to zero when φ∨(0) = 0 or ϕ∧(0) = 0, or ±∞ other-
wise. Thus, the corresponding limit in S ′(R2d+2) doesn’t exist.
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(2) If αj 6= ω or αj 6= ω′, since φ, ϕ ∈ S(R), by Riemann-Lebesgue
theorem,

lim
λ→0

2π
λ2

φ∨
(
αj − ω

λ2

)
ϕ∧
(
αj − ω′

λ2

)∫

Γαj

dk f(k)g(k) = 0.

This concludes the proof.

REMARK 4. Let us consider the expression

lim
λ→0

∫
dσ dτ dk βλ(σ, τ, k). (10)

A Vitali theorem says that we can interchange limit and integral in
(10) if for every ε > 0 there exists a compact set Kε ⊂ Rd+2 such that,
for all λ ∈ (0, ε0),

(i)
∫

Kc
ε

dσ dτ dk |βλ(σ, τ, k)|< ε,

(ii) |βλ(σ, τ, k)|< c, ∀ (σ, τ, k) ∈ Kε,
where ε0 and c are two fixed positive constants.

Can we apply this Vitali theorem to study the expression for I given
in Eq.(8), i.e. when

βλ(σ, τ, k) = φ(τ + λ2σ)ϕ(τ)f(k)g(k) ei
τ

λ2 (ω−ω′)e−iσ(ω(k)−ω)?

In this case the condition (ii) is clearly satisfied since

|βλ(σ, τ, k)| ≤ ||φ||∞ ||ϕ||∞ ||fg||∞, ∀ (σ, τ, k)∈ Rd+2.

But the answer to the question is in general negative because, as regards
condition (i), we can assume, without lost of generality, that

Kε = [a, b]× [a′, b′] ×B(0, r) ⊂ R × R × Rd,

so that

Kc
ε = [a, b]c × [a′, b′] ×B(0, r)

⋃
[a, b]× [a′, b′]c × B(0, r)

⋃

⋃
[a, b]× [a′, b′]× B(0, r)c

⋃
[a, b]c × [a′, b′]c ×B(0, r)

⋃

⋃
[a, b]c × [a′, b′] × B(0, r)c

⋃
[a, b]× [a′, b′]c × B(0, r)c

⋃

⋃
[a, b]c × [a′, b′]c ×B(0, r)c

and then
∫

Kc
ε

dσ dτ dk |βλ(σ, τ, k)| =
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12 L. Accardi and F.G. Cubillo

=
∫

([a,b]×[a′,b′]×B(0,r))c
dσ dτ dk |φ(τ + λ2σ)ϕ(τ)f(k)g(k)|=

=
∫

[a,b]c×[a′ ,b′]
dσ dτ |φ(τ + λ2σ)ϕ(τ)|

∫

B(0,r)
dk |f(k)g(k)|+ · · ·

But one cannot find Kε such that this first integral verifies (ii) for every
λ ∈ (0, ε0).

Proof of Proposition 2: Eq.(6) is just Theorem 1.(a) for this
particular case, for which we can take as new variables

u1 = ω(k), u2 = θ1, . . . , ud = θd−1,

where θ1, . . . , θd−1 are the usual angles in spherical coordinates, so that

∫
dk f(k)g(k) e−iσω(k) =

∫ ∞

0
du1 e

−iσu1
u

d/µ−1
1

µ

∫

S
u
1/µ
1

dσS1 f(u)g(u).

being S
u
1/µ
1

the sphere centered at the origin with radius u1/µ
1 and dσS1

the Euclidean element of surface for the sphere S1. That is, with the
notation used in the proof of Theorem 1.(a),

χΓ1
1
(u1)Ωfg(u1) = χ(0,∞)(u1)

u
d/µ−1
1

µ

∫

S
u
1/µ
1

dσS1 f(u)g(u).

What happens for ω = 0? Since

lim
u1→0

∫

S
u
1/µ
1

dσS1 f(u)g(u) = f(0)g(0)
∫

S1

dσS1 ,

the function on χΓ1
1
Ωfg is continuous at u1 = 0 iff

lim
u1→0

u
d/µ−1
1 f(u)g(u) = lim

|k|→0
|k|d−µf(k)g(k) = 0.

This will be the case for every test functions f, g, iff d− µ > 0, so that
[
χΓ1

1
Ωfg

]∨∧
(0) =

[
χΓ1

1
Ωfg

]
(0) = 0.

Then, reasoning as in proof of Theorem 1.(a) we get

lim
λ→0

〈aλ,ω(t, k)a+
λ,ω(t′, k′)〉

∣∣∣∣
ω=0

= 0, if d− µ > 0.
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When d− µ = 0, the function χΓ1
1
Ωfg is not continuous at u1 = 0,

but the lateral limits exist and are finite: 3

lim
u1→0−

[
χΓ1

1
Ωfg

]
(u1) = 0,

lim
u1→0+

[
χΓ1

1
Ωfg

]
(u1) = f(0)g(0)

∫

S1

dσS1 = f(0)g(0)
2πd/2

Γ(d/2)
.

Then, by Jordan’s test (Theorem 9), [χΓ1
1
Ωfg]∨∧(0) is the mean value

of the two lateral limits, so that

lim
λ→0

〈aλ,ω(t, k)a+
λ,ω(t′, k′)〉

∣∣∣∣
ω=0

=
2πd/2+1

Γ(d/2)
δω,ω′δ(t − t′)δ(k − k′)δ(k),

if d− µ = 0.

Proof of Theorem 3: Let us introduce the set of energy differen-
ces (Bohr frequencies)

F := {ω = εr − εr′ : εr, εr′ ∈ SpecHS}

and, for each ω ∈ F , the set

Fω := {εr ∈ SpecHS : εr − ω ∈ Spec HS}
:= {εr ∈ Spec HS : ∃ ε′r ∈ Spec HS , εr − ε′r = ω}.

With this notation the rescaled interaction Hamiltonian in its canonical
form can be rewritten as

1
λ
HI(t/λ2) :=

∑

j

∑

ω∈F

E∗
ω (Dj)

∫
dk g∗j (k)aλ,ω(t, k) + h.c. , (11)

where we have introduced the operators

Eω(Dj) :=
∑

εr∈Fω

Pεr−ωDjPεr

and the rescaled creation and annihilation densities a±λ,ω(t, k) are given
in Eq.(2). From Eq.(11) and Eq.(1) we obtain

1
λ2

〈HI

(
t1
λ2

)
HI

(
t2
λ2

)
〉 =

1
λ2

∑

ij

∑

ω,ω′∈F

{∫
dk g∗i (k)gj(k)×

×(ei
(

t2−t1
λ2 (ω(k)−ω)+

t1
λ2 (ω−ω′)

)
N(k) + 1)E∗

ω′ (Di)Eω (Dj) +

+
∫
dk gi(k)g∗j (k)e

−i
(

t2−t1
λ2 (ω(k)−ω)+

t1
λ2 (ω−ω′)

)
N(k)Eω′ (Di)E∗

ω (Dj)
}
.

3 The area of the unit sphere in Rd is

∫

S1

dσS1 =
2π

d
2

Γ( d
2
)
. Recall that, for d ∈ N,

one has Γ(d + 1) = d! and Γ
(
d +

1

2

)
=

(2d)!

22d d!

√
π.
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14 L. Accardi and F.G. Cubillo

Making in Eq.(4) the change of variables τ = (t2 − t1)/λ2 we get

lim
λ→0

∑

ij

∑

ω,ω′∈F

{∫ t+dt

t
dt1 e

i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτ

∫
dk g∗i (k)gj(k)×

×eiτ(ω(k)−ω)(N(k) + 1)E∗
ω′ (Di)Eω (Dj) +

+
∫ t+dt

t
dt1 e

−i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτ

∫
dk gi(k)g∗j (k)×

×e−iτ(ω(k)−ω)N(k)Eω′ (Di)E∗
ω (Dj)

}

Now the result comes from Lemmas 5 and 6 below. Some insights about
the contribution of the singular region Γ3 are given in Remark 7.

LEMMA 5. Under the conditions for ω(k) given in Section 3, for every
ω, ω′ ∈ R we have that, in S ′(Rd),4

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτχΓ1(k)e
±iτ(ω(k)−ω) =

= δ(ω − ω′)χΓ1(k)
[
πχΓ1

1
(ω)δ(ω(k)− ω) ∓ iP.P.

1
ω(k) − ω

]
,

that is, for any test function f ∈ S(Rd),

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτ

∫

Γ1

dk e±iτ(ω(k)−ω)f(k) =



πχΓ1

1
(ω)

∫

Γ1

dk δ(ω(k)− ω)f(k)∓ iP.P.
∫

Γ1

dk
f(k)

ω(k) − ω
, if ω = ω′,

0, if ω 6= ω′.

LEMMA 6. Under the conditions for ω(k) given in Section 3, suppose
that the open set Γα, where ω(k) is constant and equal to α, is not
empty. Then, for every ω, ω′ ∈ R, we have that, in S ′(Rd),

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτχΓα(k)e±iτ(ω(k)−ω) = 0,

that is, for any test function f ∈ S(Rd),

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτ

∫

Γα

dk e±iτ(ω(k)−ω)f(k) = 0.

4 These formulas are correct whether if we consider a bilinear dual pair 〈·, ·〉, i.e.
〈f, g〉 =

∫
fg, or if the dual pair 〈·, ·〉 is antilinear on the left and linear on the right,

i.e. 〈f, g〉 =
∫

f∗g.
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Master Fields, Drift and Dispersion in the Stochastic Limit 15

REMARK 7. Under the conditions for ω(k) given in Section 3, assume
that Γ3 is a d− 1 dimensional regular surface which is the boundary of
two open regions Γα1 and Γα2 (subsets of Γ2) and such that

ω(k) = β, ∀ k ∈ Γ3.

For each ε > 0 consider an open region Γε ⊂ Rd such that
(i) Γ3 ⊂ Γε1 ⊂ Γε2 if ε1 < ε2,
(ii) Γ3 = ∩ε>0Γε,

and, on each Γε, replace ω(k) by a regular function ωε(k) in such a way
that, in some sense,

lim
ε→0

ωε = ω.

Now, for ω, ω′ ∈ R, let us study the following limit in S ′(Rd):

F := lim
ε→0

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτχΓε(k)e
±iτ(ωε(k)−ω).

Clearly, if our choice is ωε(k) = c for every k ∈ Γε and ε > 0, then,
by Proposition 6, F = 0 or F doesn’t exist. On the other hand, if the
functions ωε are such that we can apply Proposition 5 on Γε, then

F = δ(ω − ω′) lim
ε→0

χΓε(k)
[
πχΓ1

ε
(ω)δ(ωε(k) − ω) ∓ iP.P.

1
ωε(k) − ω

]
,

but this limit depends on the form of the functions ωε. In particular,
the limit depends on Γ1

ε := Rang(ωε|Γε
).

Proof of Lemma 5: The factor δ(ω − ω′) comes from

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′) =

=





t1
∣∣∣
t1=t+dt

t1=t
= dt, if ω = ω′,

lim
λ→0

λ2e
±i

t1
λ2 (ω−ω′)

±i(ω − ω′)

∣∣∣
t1=t+dt

t1=t
= 0, if ω 6= ω′,

since

lim
λ→0

λ2e
±i

t1
λ2 (ω−ω′)

±i(ω − ω′)

∣∣∣
t1=t+dt

t1=t
=

= lim
λ→0

e±i t
λ2 (ω−ω′) λ2

±i(ω − ω′)
(e±i dt

λ2 (ω−ω′) − 1) =

= lim
λ→0

e±i t
λ2 (ω−ω′) λ2

±i(ω − ω′)
d

dt
e±i t

λ2 (ω−ω′)
∣∣∣
t=0
dt =

= lim
λ→0

e±i t
λ2 (ω−ω′)dt = 0 (by Lemma 8).
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16 L. Accardi and F.G. Cubillo

Using the notation given in Section 3.(i), we have

∫ 0

−∞
dτ

∫

Γ1

dk eiτ(ω(k)−ω)f(k) =
∫ 0

−∞
dτ

∫

Γ1
1

du1 e
iτ(u1−ω)Ωf(u1) =

=
∫
dτe−iτωθ(−τ)

∫
du1 e

iτu1χΓ1
1
(u1)Ωf(u1),

where θ is the Heaviside function. To analyze the last expression assume
that χΓ1

1
(u1)Ωf(u1) is of bounded support on u1, else we can consider a

convenient partition of the unity for Γ1. Then χΓ1
1
(u1)Ωf(u1) is convo-

lutible with any other tempered distribution and its Fourier transform
is a C∞ function, so that the product θ(−τ)[χΓ1

1
Ωf ]∧(τ) is also well

defined in S ′(R). Thus we can write

∫
dτe−iτωθ(−τ)

∫
du1 e

iτu1χΓ1
1
(u1)Ωf (u1) =

=
∫
dτe−iτωθ(−τ)[χΓ1

1
Ωf ]∧(τ) =

√
2π[θ(−τ)[χΓ1

1
Ωf ]∧(τ)]∨(ω) =

=
√

2π
(
[θ(−τ)]∨(u1) ∗ [[χΓ1

1
Ωf ]∧(τ)]∨(u1)]

)
(ω) =

=
√

2π
1√
2π

(
πδ(u1) + iP.P.

1
u1

)
∗ [χΓ1

1
Ωf ](u1)]

)
(ω) =

=
∫
du1

(
πδ(ω − u1) + iP.P.

1
ω − u1

)
[χΓ1

1
Ωf ](u1) =

= πχΓ1
1
(ω)Ωf(ω) + iP.P.

∫
du1

1
ω − u1

χΓ1
1
(u1)Ωf(u1) =

= πχΓ1
1
(ω)

∫

Su1=ω

dσSu1=ω f(ψ(u))−

−iP.P.
∫

Γ1
1

du1
1

u1 − ω

∫

Su1

dσSu1
f(ψ(u)) =

= πχΓ1
1
(ω)〈δ(ω(k)− ω), f〉 − iP.P.

∫

Γ1

dk
f(k)

ω(k)− ω
=

= πχΓ1
1
(ω)〈δ(ω(k)− ω), f〉+ i〈P.P.

χΓ1(k)
ω(k)− ω

, f(k)〉.

This concludes the proof.
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Proof of Lemma 6: Consider any of the open sets Γα, where ω(k)
is constant and equal to α. There we have

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτ χΓα(k)e±iτ(ω(k)−ω) =

= χΓα(k) lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)

∫ 0

t−t1
λ2

dτ e±iτ(α−ω) =

=





χΓα(k) lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)−t + t1

λ2
, for α = ω;

χΓα(k) lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′) 1

±i(α− ω)

(
1 − e±i

t−t1
λ2 (α−ω)

)
,

for α 6= ω.

For ω = ω′ we have, if α = ω,

lim
λ→0

∫ t+dt

t
dt1

−t + t1
λ2

= lim
λ→0

(dt)2

2λ2
= 0 (since (dt)2 = 0)

and, if α 6= ω,

1
±i(α− ω)

lim
λ→0

∫ t+dt

t
dt1

(
1− e±i

t−t1
λ2 (α−ω)

)
=

=
1

±i(α− ω)
lim
λ→0

(
dt− λ2

∓i(α− ω)
e±i t

λ2 (α−ω)e∓i
t1
λ2 (α−ω)

∣∣∣
t1=t+dt

t1=t

)
=

=
1

±i(α− ω)
lim
λ→0

(
dt− λ2

∓i(α− ω)
(e∓i dt

λ2 (α−ω) − 1)

)
=

=
1

±i(α− ω)
lim
λ→0

(
1 − λ2

∓i(α− ω)
d

dt
e∓i t

λ2 (α−ω)
∣∣∣
t=0

)
dt =

=
1

±i(α− ω)
lim
λ→0

(1 − 1)dt = 0.

For ω 6= ω′ we have, if α = ω,

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)−t + t1

λ2
=

= lim
λ→0

{(
− t

λ2
− 1

±i(ω − ω′)

)∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′)+

+
t1e

±i
t1
λ2 (ω−ω′)

±i(ω − ω′)

∣∣∣
t1=t+dt

t1=t



 =

= lim
λ→0

{(
− t

λ2
− 1

±i(ω − ω′)

)
e±i t

λ2 (ω−ω′)dt+

+
e±i t

λ2 (ω−ω′)

±i(ω − ω′)

(
1 +

λ2

±i(ω − ω′)
(t+ dt)

)
dt



 =

= lim
λ→0

−t
λ2
e±i t

λ2 (ω−ω′)dt = 0 (by Lemma 8)
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18 L. Accardi and F.G. Cubillo

and, if α 6= ω,

lim
λ→0

∫ t+dt

t
dt1 e

±i
t1
λ2 (ω−ω′) 1

±i(α− ω)

(
1 − e±i

t−t1
λ2 (α−ω)

)
=

1
±i(α− ω)

×

× lim
λ→0

{
e±i t

λ2 (ω−ω′)dt− e±i t
λ2 (α−ω)

∫ t+dt

t
dt1 e

±i
t1
λ2 (2ω−ω′−α)

}
=

=
1

±i(α− ω)
lim
λ→0

{
e±i t

λ2 (ω−ω′)dt− e±i t
λ2 (α−ω)e±i t

λ2 (2ω−ω′−α)dt
}

= 0.

This concludes the proof.

Appendix

The following appendices include some of the conventions and results
used in this paper about the Fourier transform in Schwartz spaces and
the ordinary convergence of Fourier integrals.

A. Fourier Transforms

We shall use the following conventions:5 The dual pair 〈·, ·〉 is anti-
linear on the left and linear on the right, i.e. 〈f, g〉 =

∫
f∗g, where

∗ denotes the complex conjugate. The Fourier transform f∧ and the
inverse Fourier transform f∨ of a test function f ∈ S(Rd) are given by

f∧(s) :=
1

(2π)d/2

∫
dx f(x)eix·s, f∨(s) :=

1
(2π)d/2

∫
dx f(x)e−ix·s,

so that f∧∨ = f∨∧ = f . The Fourier transform F∧ and the inverse
Fourier transform F∨ of a distribution F ∈ S ′(Rd) are defined by the
relations

〈F∧, f∧〉 = 〈F, f〉, 〈F∨, f∨〉 = 〈F, f〉,

so that, if F ∈ L1, then

F∧(s) =
1

(2π)d/2
〈F ∗(x), eix·s〉 =

1
(2π)d/2

∫
dxF (x)eix·s,

F∨(s) =
1

(2π)d/2
〈F ∗(x), e−ix·s〉 =

1
(2π)d/2

∫
dxF (x)e−ix·s.

5 These conventions are the Gelfand-Shilov’s ones [3] except by the factors
(2π)−d/2 in the Fourier transform and its inverse. Our (inverse) Fourier trans-
forms, in S(Rd) and S ′(Rd), are obtained from the Gelfand-Shilov (inverse) Fourier
transforms (multiplying) dividing by (2π)d/2.

AccardiCubillo_MFDD_osid.tex; 26/02/2007; 15:35; p.18



Master Fields, Drift and Dispersion in the Stochastic Limit 19

Thus,
∫ 0

−∞
eitωdt = (2π)d/2[θ(−t)]∧(ω) =

−i
ω − i0

= πδ(ω)− iP.P.
1
ω
,

∫ 0

−∞
e−itωdt = (2π)d/2[θ(−t)]∧(ω)∗ =

i

ω + i0
= πδ(ω) + iP.P.

1
ω
.

We shall need the following result:

LEMMA 8. For every n ∈ N, and ω 6= 0 we have

lim
λ→0

(
t

λ2

)n

e±i t
λ2 ω = 0 in S ′(R).

Proof: Remember that for every m ∈ N there exist a constant
Cm > 0 such that for any test function ϕ ∈ S(R), every n ∈ N and
ω 6= 0 we have (see section V.1.3 of Schwartz [4])

|〈tne±itω , ϕ(t)〉| =
∣∣∣∣
∫
dt e∓itωtnϕ(t)

∣∣∣∣ ≤ Cm

∣∣∣
∣∣∣ dm

dtm [tnϕ(t)]
∣∣∣
∣∣∣
L1

|ω|m .

Then, taking m > n, for every ω 6= 0 we get

lim
λ→0

∣∣∣
〈 ( t

λ2

)n

e±i t
λ2 ω, ϕ(t)

〉∣∣∣ ≤ lim
λ→0

Cmλ
2(m−n)

∣∣∣
∣∣∣ dm

dtm [tnϕ(t)]
∣∣∣
∣∣∣
L1

|ω|m = 0.

This implies the result.

B. Summability of Fourier Integrals

The tests of Jordan and Dini for ordinary convergence of Fourier inte-
grals can be found in [5, Ths.3,4,23].

THEOREM 9 (Jordan’s Test). Let f ∈ L1(R). If f is of bounded vari-
ation in an interval (a, b) including x, then

f(x+ 0) + f(x− 0)
2

=
1
π

lim
λ→∞

∫ λ

0
du

∫ ∞

−∞
f(t) cos(u(x− t)) dt

=
1
2π

lim
λ→∞

∫ λ

−λ
e−ixu du

∫ ∞

−∞
f(t) eixu dt,

(12)

the integral converging uniformly in any interval interior to (a, b).
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THEOREM 10 (Dini’s Test). Let f ∈ L1(R). Then, for a given x,

f(x) =
1
π

lim
λ→∞

∫ λ

0
du

∫ ∞

−∞
f(t) cos(u(x− t)) dt

=
1
2π

lim
λ→∞

∫ λ

−λ
e−ixu du

∫ ∞

−∞
f(t) eixu dt,

(13)

is true if ∫ δ

0

∣∣∣∣
f(x+ y) + f(x− y)− 2f(x)

y

∣∣∣∣ dy (14)

exists for some positive δ; in particular it holds if f is differentiable at
the point x.
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