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Entangled Markov chains (EMC) were so baptized on the basis of the conjecture that
they provide examples of states, on infinite tensor products of matrix algebras, which are
in some sense “entangled”.2 In this paper we introduce the notion of multiple (or “many-
body”) entanglement and extend the two-body criterion of entanglement obtained in
Ref. 17 to this case. We then apply this extension to EMC and prove that “generically”
they satisfy the entanglement conditions.
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1. Introduction and Preparation

In the recent development of quantum information many people have discussed the

problem of finding a satisfactory quantum generalization of the classical random

walks. The relevance of this problem for quantum information has been emphasized

in a large number of papers, e.g. see Refs. 7, 8, 12–14 and 19. However, these

proposals introduce some features which are not completely satisfactory. Motivated

by such situation Accardi and Fidaleo introduced the notion of entangled Markov

chains which includes that of quantum random walk.2 They listed the requirement

that should be fulfilled by any candidate definition of a quantum random walk.
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(1) It should be a quantum Markov chain in the sense of Ref. 1 (locality),

(2) it should be purely generated in the sense of Ref. 9 (pure entanglement),

(3) its restriction on at least one maximal Abelian subalgebra, should be a

classical random walk (quantum extension property),

(4) it should be uniquely determined, up to arbitrary phases, by its classical

restriction (amplitude condition).

In order to give an intuitive idea of the connection of their construction with

entanglement, let us note that the key characteristic of entanglement is the superpo-

sition principle and the corresponding interpretation of the amplitudes as “complex

square roots of probabilities”. This suggests an approach in which, given a homoge-

neous classical Markov chain with finite state space S, determined by a stochastic

matrix T and an initial distribution described by a row vector P , one can construct

such a quantum Markov chain. The construction is as follows.

Let S = {1, 2, . . . , d} be a state space of cardinality |S| = d(< ∞). We consider

a classical Markov chain (Sn) with state space S, initial distribution P = (pj) and

transition probability matrix T = (tij).

Fix the orthonormal basis (ONB for short) {|ei〉}i≤d of C|S| and fix a vector

|e0〉 in this basis. We consider the infinite tensor product Hilbert space

H ≡
N

⊗(|e0〉) C
|S| . (1.1)

Let T = (tij) be any stochastic matrix (i.e. tij ≥ 0,
∑

j tij = 1) and let
√

tij be any

complex square root of tij (i.e. |√tij |2 = tij). Define the vector

|Ψn〉 =
∑

j0,...,jn

√
pj0

n−1
∏

α=0

√

tjαjα+1 |ej0 , . . . , ejn
〉 , (1.2)

where |ej0 , . . . , ejn
〉 ≡ (⊗α∈[0,n]|ejα

〉) ⊗ (⊗α∈[0,n]c |e0〉).
Let M|S| denote the |S| × |S| (i.e. d × d) complex matrix algebra and let A ≡

M|S| ⊗ M|S| ⊗ · · · =
N

⊗ M|S| be the C∗-infinite tensor product of N-copies of M|S|.

Definition 1.1. An element AΛ ∈ A (observable) will be said to be localized in a

finite region Λ ⊆ N if there exists an operator ĀΛ ∈ ⊗ΛM|S| such that

AΛ = ĀΛ ⊗ 1Λc .

We denote AΛ the local algebra at Λ and in the following we will identify AΛ = ĀΛ.

The basic property of |Ψn〉 is that, although the limit limn→∞ |Ψn〉 will not

exist, the following result holds:

Lemma 1.1. For every local observable A ∈ A[0,k], (k ∈ N) one has

〈Ψk+1, AΨk+1〉 = lim
n→∞

〈Ψn, AΨn〉 =: ϕ(A) . (1.3)

Accardi and Fidaleo showed that the state ϕ defined by (1.3) is a quantum

Markov chains in the sense of Ref. 1 and they called “entangled Markov chains” the

family of quantum Markov chains that can be obtained by the above construction.
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Definition 1.2. A state ϕ is a (homogeneous) quantum Markov chain (QMC for

short) with initial state ϕ0 over M|S| and transition expectation E : M|S|⊗M|S| 7→
M|S| if

ϕ(A0 ⊗ A1 ⊗ · · · ⊗ An ⊗ 1 ⊗ 1 ⊗ · · ·)

= ϕ0[E(A0 ⊗ · · · E(An−2 ⊗ E(An−1 ⊗ E(An ⊗ 1))) · · ·)] . (1.4)

For entangled Markov chains the transition expectation E is expressed in terms

of the following linear map:

Definition 1.3. Define the linear map Vn : Hn → Hn ⊗Hn+1 by linear extension

of

Vn|ejn
〉 =

∑

jn+1∈S

√

tjnjn+1 |ejn
〉 ⊗ |ejn+1〉 , (1.5)

where Hn = Hn+1 = C|S| for each n ∈ N.

It is easy to show that V ∗
n Vn = 1. Moreover, En(·) ≡ V ∗

n · Vn: An ⊗An+1 → An

becomes a transition expectation and its dual E∗
n: A∗

n → (An ⊗An+1)
∗ becomes a

linear lifting in the sense of Ref. 3, where An = An+1 = M|S| for each n ∈ N.

Now let us extend Vn to an isometry still denoted with the same symbol

Vn : ⊗α∈[0,n]Hα → ⊗α∈[0,n+1]Hα (1.6)

by the prescription

Vn ⊗α∈[0,n] |ejα
〉 ≡ (⊗α∈[0,n−1]|ejα

〉) ⊗ Vn|ejn
〉 . (1.7)

It is easily shown that for each j0 ∈ S one has

|Ψn〉 =
∑

j0,...,jn

√
pj0

n−1
∏

α=0

√

tjαjα+1 |ej0 , . . . , ejn
〉 =

∑

j0

√
pj0Vn−1 · · ·V0|ej0〉 . (1.8)

We give an initial pure state ϕ0 as

ϕ0(·) = trH(|Ψ0〉〈Ψ0|·) = 〈Ψ0| · |Ψ0〉 , (1.9)

where |Ψ0〉 =
∑

j0

√
pj0 |ej0〉. Then from (1.7) and (1.8) we define a pure state ϕn

over ⊗j∈[0,n]Aj by using the isometric lifting E∗
n given by

E∗
n(|Ψn〉〈Ψn|) ≡ Vn|Ψn〉〈Ψn|V ∗

n , (1.10)

ϕn(·) ≡ tr(E∗
n−1(E∗

n−2(· · · (E∗
1 (E∗

0 (|Ψ0〉〈Ψ0|))) · · ·))(·)) . (1.11)

Definition 1.4. An entangled Markov chain is a quantum Markov chain ϕ ≡
{ϕ0, E} ≡ {(pj), (tij), {|ej〉}} over A where (i) ϕ0 is a pure state over M|S|, (ii) the

transition expectation E(·) ≡ V ∗ · V is given by (1.5) for some stochastic matrix

T = (tij) and for some fixed ONB {|ej〉}.
Accardi and Fidaleo did not prove that the states given by Lemma 1.1 are

entangled. In this paper we will analyze the entanglement of ϕn and also that of
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ϕ. For our purpose we give the definitions of the entangled compound state in the

following three cases:

Definition 1.5. Let Aj (j ∈ {1, 2}) be C∗-algebra, then ω ∈ S(A1 ⊗ A2) is

separable if

ω ∈ Conv{ω1 ⊗ ω2; ωj ∈ S(Aj), j = 1, 2} .

Definition 1.6. Let Aj (j ∈ {1, 2, . . . , n}) be C∗-algebra, then ω ∈ S(⊗n
j=1Aj) is

separable if

ω ∈ Conv







n
⊗

j=1

ωj ; ωj ∈ S(Aj), j ∈ {1, 2, . . . , n}







.

Definition 1.7. Let Aj (j ∈ {1, 2, . . . ,∞}) be C∗-algebra, then ω ∈ S(⊗∞
j=1Aj) is

separable if

ω ∈ Conv







∞
⊗

j=1

ωj ; ωj ∈ S(Aj), j ∈ {1, 2, . . . ,∞}







.

A non-separable state is called entangled. Notice that a separable pure state

must be a product of pure states. We introduce the notion of multiple entanglement

as follows:

Definition 1.8. Let A = ⊗n
j=1Aj be the finite tensor product of C∗-algebra. A

state ω ∈ S(A) is called 2-separable if

ω ∈ Conv{ωk] ⊗ ω(k; ωk] ∈ S(Ak]), ω(k ∈ S(A(k)}, ∀ k ∈ {1, 2, . . . , n} ,

where A = Ak] ⊗A(k := A[1,k] ⊗A(k,n].

A state ω ∈ S(A) is called 2-entangled if

ω /∈ Conv{ωk] ⊗ ω(k; ωk] ∈ S(Ak]), ω(k ∈ S(A(k)}, ∀ k ∈ {1, 2, . . . , n} .

Lemma 1.2. If ω ∈ S(A) is 2-entangled, then ω is entangled.

Proof. It is clear from the definition.

According to Definition 1.8 we extend the degree of entanglement defined by

Belavkin and Ohya5,6 to entangled Markov chains (EMC for short).

Entanglement degree for mixed states has been studied by some entropic mea-

sures such as quantum relative entropy and quantum mutual entropy. An exam-

ple of such degree was defined in Ref. 10 using the relative entropy S(θ, θ0) ≡
tr θ(log θ − log θ0) for a density operator θ as
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D(θ) = min{S(θ, θ0); θ0 ∈ D} , (1.12)

where D is the set of all separable densities.

Since, to compute this measure, one has to take the minimum over all separable

state, it is difficult to compute it analytically. Thus another degree of entanglement

was introduced by Belavkin and Ohya5,6 using the quantum quasi-mutual entropy

defined in Ref. 16.

Definition 1.9. Let θ be a density matrix on A1 ⊗ A2 with marginal densities

ρ and σ where A1, A2 are arbitrary (not necessarily finite dimensional) matrix

algebras

(1) The quantum quasi-mutual entropy of ρ and σ w.r.t. θ is defined by Iθ(ρ, σ) ≡
tr θ(log θ − log ρ ⊗ σ).

(2) DEN(θ; ρ, σ) ≡ 1
2{S(ρ)+S(σ)}−Iθ(ρ, σ) is called the degree of entanglement

(DEN for short), where S(·) is the von-Neumann entropy.

(3) θ1 has stronger entanglement than θ2 if

DEN(θ1; ρ, σ) < DEN(θ2; ρ, σ) . (1.13)

Using the degree of entanglement DEN Ohya and Matsuoka gave the following

characterization of pure entangled states on A1⊗A2 in Ref. 17 (see the Appendix).

Theorem 1.1. For a pure state θ with marginal states ρ and σ,

(1) ω is separable iff DEN(θ; ρ, σ) = 0,

(2) ω is not separable, i.e. entangled iff DEN(θ; ρ, σ) < 0.

In Sec. 2 it will be shown that the EMC generated by a deterministic stochastic

matrix is 2-separable if and only if it is separable. In Sec. 3 we will prove that

2-entangled EMC generated by stochastic matrix with strictly positive elements is

characterized by the entropy of density matrix associated with its stochastic matrix

and that the EMC of a unitarily implementable matrix has the strongest possible

entanglement.

In Ref. 15 the localized state of EMC was considered by taking a partial trace

and it was shown that the conjecture is established in the case d = 2 by means of

the Horodeckies, Peres entanglement criterion11,18 which is applicable only to the

d = 2 case. In this paper we do not take such a partial trace and will consider a

general state in the Hilbert space with the dimensional d by applying the above

criterion (i.e. Theorem 1.1).

2. Entangled Markov Chains Generated by a Deterministic

Stochastic Matrix

Throughout this paper we analyze the EMC with stochastic matrix T = (tij) and

associated invariant measure P = (pi), i.e.
∑

i pitij = pj is satisfied for each j. If

the EMC with an invariant measure is restricted to Abelian subalgebra, then it

gives a classical stationary Markov chain.
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In this section we consider an invariant measure P = (pi) of the stochastic

matrix T = (tij) with only 0, 1 as entries. Such stochastic matrices are called

deterministic.

Let JS be a set of all maps π from S into S (i.e. π(S) ⊆ S). Note that if

π(S) = S, then π is a permutation. Let us denote π(S) by Sπ. In general there

exists an integer k such that, denoting Sπ ≡ πk(S), the restriction of π on Sπ is a

permutation on Sπ.

Definition 2.1. An orbit of the dynamical system π : S → S is a minimal π-

invariant subset of S. R ⊆ S is called a minimal π-invariant subset of S if:

(i) π(R) = R

(ii) R 6= φ and if Q ⊆ R is such that π(Q) = Q, then Q = R.

Definition 2.2. To every π ∈ JS we associate the stochastic matrix Tπ with

elements tjk ≡ δk,π(j), i.e. Tπ is deterministic.

Remark 2.1. Given Tπ as above, there exists an ONB {|ej〉} in a Hilbert space H
whose dimension is the cardinality of S such that

Tπ|ej〉 =
∑

k

tjk|ek〉 = |eπ(j)〉 . (2.1)

From the following well-known theorem we know that such a matrix Tπ has

many invariant measures.

Theorem 2.1. Let π be in Jπ and let Tπ be the associated stochastic matrix. Then

the set of Tπ-invariant measures is precisely the set of probability measures of the

form:

pk =
1

|Sl|
qSl

, ∀ k ∈ Sl, ∀ l = 1, . . . , m , (2.2)

where {S1, S2, . . . , Sm} is an arbitrary partition of S into π-invariant subsets.

Proof. A Tπ-invariant measure is characterized by the identity:

pj =
∑

i∈S

pitij =
∑

i∈S

piδπ(j),i = pπ(j) (2.3)

which shows that subsets of S where the map j 7→ pj is constant are π-invariant.

Conversely, if {S1, S2, . . . , Sm} is any partition of S into π-invariant sets and Sl 7→
qSl

(l = 1, . . . , m) is any probability measure, then the probability measure on S

defined by pj ≡ qSl

|Sl|
(j ∈ Sl) satisfies (2.3) and therefore it is Tπ-invariant.

We will show that the entanglement of ϕn can be measured by the DEN and

using Theorem 1.1 the 2-separability condition of ϕn is shown. For any k ∈ [1, n]

let Hk] be the tensor product Hilbert space given by Hk] = ⊗j∈[0,k]Hj and H(k be

the tensor product Hilbert space given by H(k = ⊗j∈(k,n]Hj . Then the pure state
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ϕn can be recognized as compound state w.r.t. the composite system Hk] ⊗ H(k.

Theorem 2.1 means that |Ψn〉 is given as

|Ψn〉 =

m
∑

l

∑

i0∈Sl

√
pi0 |ei0 , eπ(i0), . . . , eπn(i0)〉

=

m
∑

l

∑

i0∈Sl

√

qSl

|Sl|
|ei0 , eπ(i0), . . . , eπn(i0)〉 . (2.4)

Then the marginal densities of ϕn are given as

ρk] = trH(k
|Ψn〉〈Ψn|

=

m
∑

l

∑

i0∈Sl

qSl

|Sl|
|ei0 , eπ(i0), . . . , eπk(i0)〉〈ei0 , eπ(i0), . . . , eπk(i0)| , (2.5)

σ(k = trHk]
|Ψn〉〈Ψn|

=

m
∑

l

∑

i0∈Sl

qSl

|Sl|
|eπk+1(i0), . . . , eπn(i0)〉〈eπk+1(i0), . . . , eπn(i0)| . (2.6)

Note that both decompositions (2.5), (2.6) are Schatten decompositions, i.e. the

spectral decompositions of ρk], σ(k into one-dimensional orthogonal projectors.

From the purity of ϕn one can compute its DEN as follows (see the Appendix):

DEN(|Ψn〉〈Ψn| : ρk], σ(k)

= −S(σ(k)(or = −S(ρk]))

=

m
∑

l

∑

i0∈Sl

qSl

|Sl|
log

qSl

|Sl|
=

m
∑

l

qSl
log qSl

−
m

∑

l

qSl
log |Sl| ≤ 0 . (2.7)

DEN(|Ψn〉〈Ψn| : ρk], σ(k) has the same value for any k ∈ [1, m], so that let denote

DEN(|Ψn〉〈Ψn| : ρk], σ(k) by DEN(|Ψn〉〈Ψn|). Then DEN(|Ψn〉〈Ψn|) = 0 if and only

if there exists a number l ∈ [1, m] such that qSl
= |Sl| = 1. Since qSl

log qSl
≤ 0 and

−qSl
log |Sl| ≤ 0 for any l ∈ [1, n]. According to Theorem 1.1 we know that this

condition gives the 2-separability condition of ϕn. In this case the 2-separability

condition of ϕn is equivalent to the separability condition of ϕn, i.e. ϕn can be

represented by

ϕn(·) = tr⊗j∈[1,n]Hj





⊗

j∈[1,n]

|el〉〈el|·



 .

Summarizing the above argument we have the following theorem:

Theorem 2.2. (i) For any n < ∞ the state ϕn is a pure separable state if and

only if the Tπ-invariant measure is extreme (i.e. the probabilities are concentrated

on a single point of S).



August 31, 2006 16:13 WSPC/102-IDAQPRT 00244

386 L. Accardi, T. Matsuoka & M. Ohya

(ii) For any n < ∞ the state ϕn is pure entangled state if and only if the

Tπ-invariant measure is not extreme.

In general, we define

DEN(|Ψn〉〈Ψn|) ≡ inf
k∈(0,n]

DEN(|Ψn〉〈Ψn| : ρk], σ(k) (2.8)

and we call it the DEN of the restriction of the EMC ϕ to the interval [0, n]. Then

the following definition introduces to a natural way to measure analytically the

strength of entanglement of an EMC.

Definition 2.3. Let ϕ be the EMC defined by (1.3). The DEN of ϕ is defined by

DEN(ϕ) ≡ lim
n→∞

DEN(|Ψn〉〈Ψn|) . (2.9)

Theorem 2.3. Let |Ψn〉 be given by (2.4). Then DEN(|Ψn〉〈Ψn|) =

DEN(|Ψn〉〈Ψn|). Moreover,

(1) the DEN of ϕ is equal to

DEN(ϕ) =

m
∑

l=1

qSl
log qSl

−
m

∑

l=1

qSl
log |Sl| ≤ 0 . (2.10)

(2) When π acts transitively on S (so that pi = 1
d

for ∀ i ∈ S), the strongest

DEN is given by

Dstrongest
EN (ϕ) = − log d .

3. Entangled Markov Chains Generated by Unitarily

Implementable Matrix

In this section we consider the particular case in which the transition matrix T has

strictly positive elements, i.e. tij > 0 for any i, j ∈ S and is unitarily implementable,

i.e. there exists a unitary matrix U = (uij) such that |uij |2 = tij for any i and

j. We show that, in this case, the associated EMC ϕ has the strongest possible

entanglement. We start from the (unique) measure P = (pi) of the stochastic

matrix T = (tij). Then the following theorem holds.

Theorem 3.1. To the stochastic matrix T we associate the density matrix σT given

as

σT ≡
∑

i

pi|fi〉〈fi| , (3.1)

where |fi〉 =
∑

k

√
tik |ek〉. Then

(1) The state ϕn is a pure 2-separable state for any n < ∞ iff S(σT ) = 0.

(2) The state ϕn is a pure 2-entangled state for any n < ∞ iff S(σT ) > 0.

(3) There always exists the DEN of ϕ such that

−H(P ) ≤ DEN (ϕ) = −S(σT ) ≤ 0 ,

where H(P ) is the Shannon entropy of the probability measure P .
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Before giving the proof of Theorem 3.1 we will show the following lemma.

Lemma 3.1. Put σ(1) ≡ σT and, with E∗
m given by (1.10), define the density matrix

σ(m) as

σ(m) ≡ E∗
m−1(E∗

m−2(· · · (E∗
1 (σ(1))) · · ·)) .

Then

S(σ(1)) = S(σ(m)), ∀ m ∈ [1,∞) .

Proof. It is known that von Neumann entropy of a density matrix ρ is preserved

under isometric transformation (ρ 7→ V ρV ∗, V ∗V = 1) and, from (1.5) we know

that each E∗
m is implemented by an isometry.

Proof. Now ϕn is given by

ϕn(·) = tr(|Ψn〉〈Ψn|·) ,

where |Ψn〉 =
∑

j0,j1,j2,...,jn

√
pj0

∏n−1
α=0

√

tjαjα+1 |ej0 , ej1 , . . . , ejn
〉. From the purity

of ϕn one has

DEN(|Ψn〉〈Ψn| : ρk], σ(k) = −S(σ(k), ∀ k ∈ [1, n] . (3.2)

Since P is the invariant measure of T , the marginal density σ(k is computed as

σ(k = trHk]
|Ψn〉〈Ψn|

=
∑

j0,j1,...,jk−1,

jk,jk+1,...,jn,lk+1,...,ln

pj0

k−1
∏

α=0

tjαjα+1

√

tjklk+1

∗ · · ·
√

tln−1ln

∗

√

tjkjk+1
· · ·

√

tjn−1jn
|ejk+1

, . . . , ejn
〉〈elk+1

, . . . , eln |

=
∑

i,jk+1,...,jn,

lk+1,...,ln

pi

√

tilk+1

∗ · · ·
√

tln−1ln

∗√
tijk+1

· · ·
√

tjn−1jn

|ejk+1
, . . . , ejn

〉〈elk+1
, . . . , eln |

≡
∑

i

pi|fi(n − k)〉〈fi(n − k)| , (3.3)

where |fi(n − k)〉 =
∑

jk+1,...,jn

√

tijk+1
· · ·√tjn−1jn

|ejk+1
, . . . , ejn

〉.
It is easily checked that the norm of |fi(n−k)〉 is equal to 1 but the set {|fi(n−

k)〉} is not orthogonal in general because the set {|fi〉} is not. Therefore an exact

calculation of S(σ(k) is not easy. However, one can estimate the entropy of σ(k as

follows:

0 ≤ S(σ(k) ≤ −
∑

pi log pi = H(P ) , (3.4)

where S(σ(k) = H(P ) holds if {|fi(n−k)〉} is an orthogonal set (i.e. it is an ONB).
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In the case of k = n − 1 one has

σ(n−1 =
∑

i

pi|fi(1)〉〈fi(1)| =
∑

i

pi|fi〉〈fi| = σT . (3.5)

According to the notation of Lemma 3.1 σ(n−m can be represented as

σ(n−m = σ(m) .

Lemma 3.1 means that

DEN(|Ψn〉〈Ψn| : ρk], σ(k) = −S(σT ) .

From Theorem 1.1 and the definition of DEN(ϕ) the statements of this theorem

hold.

In the above theorem if the stochastic matrix T = (tij) is unitarily imple-

mentable and we take
√

tij = uij , then the set {|fi〉} giving the decomposition of

σT by (3.1) becomes an ONB, i.e.

〈fj , fi〉 =
∑

k

u∗
jkuik = (UU∗)ij = δi,j .

Thus the following theorem holds.

Theorem 3.2. If EMC ϕ has an invariant measure P of a unitarily implementable

matrix T, then the DEN of ϕ exists and is equal to:

DEN(ϕ) = −H(P ) . (3.6)

Appendix A

If θ on H ⊗ K is an entangled pure state with marginal states ρ, σ, then von

Neumann entropy S(θ) = 0. Moreover, from the Araki–Lieb inequality4:

|S(ρ) − S(σ)| ≤ S(θ) ≤ S(ρ) + S(σ) , (A.1)

the purity of θ implies that S(ρ) = S(σ). It follows

Iθ(ρ, σ) = tr θ(log θ − log ρ ⊗ σ)

= tr θ log θ − tr θ log ρ ⊗ I − tr θ log I ⊗ σ

= S(ρ) + S(σ) − S(θ)

= 2S(ρ) .

Then the proof of Theorem 1.1 is given by the following:

Proof. In the case of a pure state θ, DEN(θ; ρ, σ) can be computed as

DEN(θ; ρ, σ) ≡ 1

2
{S(ρ) + S(σ)} − Iθ(ρ, σ)

= S(ρ) − 2S(ρ)

= −S(ρ)(or = −S(σ)) . (A.2)
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If DEN(θ; ρ, σ) < 0, then S(ρ) = S(σ) > 0 which means that ρ and σ are mixture

states. Therefore ρ can be written as ρ =
∑

i λi|xi〉〈xi| where {|xi〉} is an ONB in

H and
∑

i λi = 1, 0 ≤ λi ≤ 1 and at least two λi are strictly positive. Then due to

the Schmidt decomposition there exists an ONB {|yi〉} of K such that θ is given by

θ = |Ψ〉〈Ψ| where

|Ψ〉 =
∑

i

√

λi|xi〉 ⊗ |yi〉 .

Since at least two λi are strictly positive, this implies that θ is a pure entangled

state. The converse statement obviously holds.

If DEN(θ; ρ, σ) = 0, then S(ρ) = S(σ) = 0 which means that ρ and σ are pure

states respectively. Thus θ is a pure state whose marginals are pure states. This

implies that ω is a product of pure states. Conversely, if θ is pure and separable,

then it is the product of two pure states, hence DEN(θ; ρ, σ) = 0.
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