
Junior problems

J55. Let a0 = 1 and an+1 = a0 · ... · an + 4, n ≥ 0. Prove that an −
√

an+1 = 2 for all
n ≥ 1.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Andrea Munaro, Italy

Observe that ai > 0,∀i ≥ 0. We know that a0 ·...·an−1+4 = an, after multiplying
both sides by a0 · ... · an−1 and adding 4 to both sides we obtain

(a0 · · · an−1)2 + 4(a0 · · · an−1) + 4 = a0 · · · an + 4.

This simplifies to (a0 · ... · an−1 + 2)2 = an+1, which in turn is equivalent to
(an − 4 + 2)2 = an+1 or an − 2 = √

an+1, and we are done.

Second solution by Jose Hernandez Santiago, UTM Oaxaca, Mexico

By the principle of mathematical induction we show that the equality

an+1 = (an − 2)2 (1)

holds for every n ∈ N. This in turn will settle the original question. The relation
in (1) clearly holds if n = 1. Suppose the statement is true for n, then

an+2 = a0 · . . . · an · an+1 + 4
= (a0 · . . . · an)(an+1) + 4
= (an+1 − 4)(an+1) + 4
= a2

n+1 − 4an+1 + 4
= (an+1 − 2)2,

it follows that (1) remains true for n + 1. Therefore, an+1 = (an − 2)2 for every
n ∈ N and we are done.
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Third solution by Vishal Lama, Southern Utah University, USA

We first note that (an) is an increasing sequence of positive integers with ai > 2
for all i ∈ N . Now for all n ≥ 0, we have

an+1 = a0 · . . . · an + 4

⇒ a2
n+1 − 4an+1 = a0 · . . . · an · an+1

⇒ a2
n+1 − 4an+1 + 4 = a0 · . . . · an · an+1 + 4

⇒ (an+1 − 2)2 = an+2

⇒ an+1 −
√

an+2 = 2

The above statement is equivalent to an −
√

an+1 = 2 for all n ≥ 1, and we are
done. In fact, the above relation is true for any a0 = k, where k ∈ N.

Also solved by Daniel Campos Salas, Costa Rica; Dzianis Pirshtuk, School
No.41, Belarus; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Son
Hong Ta, High School at Ha Noi University of Education, Vietnam
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J56. Two players, A and B, play the following game: player A divides a 9× 9 square
into strips of unit width and various lengths. After that player B picks an
integer k, 1 ≤ k ≤ 9, and removes all strips of length k. Find the largest area
K that B can remove, regardless the way A divides the square into strips.

Proposed by Iurie Boreico, Harvard University, USA

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let us assume that A may force B into obtaining less than 12 area units. Then,
B cannot obtain more than 11 units of area, hence there may be at most 1 strip
of lengths 9, 8, 7 and 6, and at most 2 strips of lengths 5 and 4, at most 3
strips of length 3, at most 5 strips of length 2, and at most 11 strips of length
1, for a total of 9 + 8 + 7 + 6 + 10 + 8 + 9 + 10 + 11 = 78 < 92 area units.
Therefore, B will always obtain no less than 12 area units. But A may force B
into obtaining no more than 12 area units by dividing the 9 × 9 square three
strips of lengths 9, 8 and 7, two strips of lengths 6 and 5, three strips of length
4, four strips of length 3, five strips of length 2 and one strip of length 1, for a
total of 9 + 8 + 7 + 12 + 10 + 12 + 12 + 10 + 1 = 81 = 92 are units, as shown in
the figure:
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J57. Let a, b, c be positive real numbers such that ab + bc + ca = 1. Prove that(
a +

1
b

)2

+
(

b +
1
c

)2

+
(

c +
1
a

)2

≥ 16.

Proposed by Mircea Becheanu, Bucharest, Romania

First solution by Ashwath Rabindranath, Vidya Mandir, India

(
a +

1
b

)2

+
(

b +
1
c

)2

+
(

c +
1
a

)2

= a2 + b2 + c2 +
1
a2

+
1
b2

+
1
c2

+ 2
(

a

b
+

b

c
+

c

a

)
=
∑
cyclic

(
a2 +

1
a2

)
+ 2

(
a

b
+

b

c
+

c

a

)

=
∑
cyclic

(
a2 +

ab + bc + ca

a2

)
+ 2

(
a

b
+

b

c
+

c

a

)

=
∑
cyclic

(
a2 +

b

a
+

bc

a2
+

c

a

)
+ 2

(
a

b
+

b

c
+

c

a

)

=
∑
cyclic

(
a2 +

bc

a2
+ 3

c

a
+

b

a

)
≥ 1 + 3 + 9 + 3 (By the AM-GM inequality)
= 16

Second solution by Daniel Campos Salas, Costa Rica

Let E(a, b, c) be the left-hand side of the inequality. Note that a
b + b

c + c
a ≥ 3,

thus

E(a, b, c) ≥ 6 + (a2 + b2 + c2) +
(

1
a2

+
1
b2

+
1
c2

)
.

From the AM-GM inequality we obtain a2 + 1
9a2 ≥ 2

3 , it follows that

E(a, b, c) ≥ 8 +
8
9

(
1
a2

+
1
b2

+
1
c2

)
.
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In order to prove that E(a, b, c) ≥ 16, it is enough to prove that 1
a2 + 1

b2
+ 1

c2
≥ 9.

From the AM-GM inequality and Cauchy-Schwarz inequality we have

1
a2

+
1
b2

+
1
c2
≥ 1

ab
+

1
bc

+
1
ca

≥ 9
ab + bc + ca

= 9,

and we are done.

Third solution by Perfetti Paolo, Dipartimento di matematica Universita degli
studi di Tor Vergata, Italy

Taking the square root and employing the concavity of the function
√

x, we are
left to prove that (

a +
1
b

)
+
(

b +
1
c

)
+
(

c +
1
a

)
≥ 4

√
3 (1)

Let f(a, b, c) be the LHS of (1) and consider this function on the set D
.=

{a, b, c : ab + ac + bc = 1, α ≤ a ≤ 1/α, α ≤ b ≤ 1/α, α ≤ c ≤ 1/α, α <
1/4

√
3}. The Weierstrass theorem on the continuous functions on compact sets

guarantees the existence of both maximum and minimum of f(a, b, c) on D.
Moreover f(a, b, c) > 4

√
3 on the boundary of D. The function F (a, b, c, λ) =

f(a, b, c)−λ(ab+bc+ac−1) has the only critical point ( 1√
3
, 1√

3
, 1√

3
,−
√

3) which

corresponds to a constrained critical point of f(a, b, c). Being f(a, b, c) > 4
√

3
on the boundary of D, the point (a, b, c) =

(
1√
3
, 1√

3
, 1√

3

)
is a minimum. Al-

ternatively one can study the quadratic form determined by the hessian of F
respect to the variables (a, b, c) and restricted to vectors tangent to the con-
straint ab + bc + ca = 1. The proof is completed.

Also solved by Dzianis Pirshtuk, School No.41, Belarus; Daniel Campos Salas,
Costa Rica; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Son Hong
Ta, High School at Ha Noi University of Education, Vietnam; Vishal Lama,
Southern Utah University, USA
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J58. Let ABC be a triangle and let AA1, BB1, CC1 be the cevians that pass through
point P . Denote by X, Y, Z the midpoints of B1C1, A1C1, A1B1, respectively.
Prove that AX, BY,CZ are concurrent.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

First solution by Son Hong Ta, High School at Ha Noi University of Education,
Vietnam

We will prove the generalization of this problem.

Let ABC be a triangle and let AA1, BB1, CC1 be the cevians that pass
through point P. Let P1 the point interior triangle A1B1C1 and denote
by A2, B2, C2 the intersections of A1P1, B1P1, C1P1 with B1C1, C1A1

and A1B1, respectively. Then we have AA2, BB2, CC2 are concur-
rent.

Proof. Denote A3 = AA2 ∩ BC, B3 = BB2 ∩ CA and C3 = CC2 ∩ AB. And
denote [XY Z] be the area of triangle XY Z.
We have

A3B

A3C
=

[AA2B]
[AA2C]

=
C1A2
C1B1

· [AB1B]
B1A2
B1C1

· [AC1C]

=
C1A2

B1A2
·

AB1
AC · [ABC]
AC1
AB · [ABC]

=
C1A2

B1A2
· AB1

AC1
· AB

AC

Similarly, we also have two relations

B3C

B3A
=

A1B2

C1B2
· BC1

BA1
· BC

BA

C3A

C3B
=

B1C2

A1C2
· CA1

CB1
· CA

CB

Multiply these equalities and notice that AA1, BB1, CC1 are concurrent and
A1A2, B1B2, C1C2 are concurrent, thus, we get A3B

A3C · B3C
B3A · C3A

C3B = 1, i.e.
AA2, BB2 and CC2 are concurrent. The proof is complete.

Second solution by Francisco Javier Garcia Capitan, Spain

We use barycentric coordinates. The midpoint B1 = (u : 0 : w) with sum u + w
and C1 = (u : v : 0) with sum u + v is X = (u + v)B1 + (u + w)C1 = (u + v)(u :
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0 : w) + (u + w)(u : v : 0) = (u(2u + u + v) : v(u + w) : w(u + v). Then the line
AX is (u + v)wy − v(u + w)z = 0. We make the same calculations for the lines
BY and CZ. Observe that the determinant∣∣∣∣∣∣−

0 (u + v)w −v(u + w)
(u + v)w 0 u(v + w)
(u + w)v −u(v + w) 0

∣∣∣∣∣∣
is zero, and we are done. In addition, if we calculate the intersection points of
AX, BY and CZ, we get the point Q = (u(v + w) : v(w + u) : w(u + v)). We
find a special case when uv + vw + wu = 0 (the sum of coordinates of Q). In
this case, P is on the Steiner circumellipse of ABC and the lines AX, BY and
CZ are parallel and Q is an infinity point.

Third solution by Mihai Miculita, Romania

In a barycentric system of coordinates (x, y, z), having the base triangle ABC
we have: A(1, 0, 0), B(0, 1, 0), C(0, 0, 1). Thus if P (l,m, n), then:

A1

(
0,

m

m + n
,

n

m + n

)
, B1

(
l

l + n
, 0,

n

l + n

)
, C1

(
l

l + m
,

m

m + l
, 0
)
⇒

the points X, Y, and Z will have the coordinates:

X

(
l

2
·
(

l

l + n
+

l

l + m

)
,

m

2 · (l + m)
,

n

2 · (l + n)

)
;

Y

(
l

2 · (l + m)
,
m

2
·
(

l

m + n
+

l

l + m

)
,

n

2 · (m + n)

)
;

Z

(
l

2 · (l + n)
,

m

2 · (m + n)
,
n

2
·
(

l

l + n
+

l

n + m

))
;

and thus the lines AX, BY,CZ will have the equations:

AX :
(l + m)y

m
=

(l + n)z
n

;BY :
(l + m)x

l
=

(m + n)z
n

;CZ :
(l + n)x

l
=

(m + n)u
m

;

⇒ (l + m)(l + n)x
l

=
(l + m)(m + n)y

m
=

(n + m)(l + n)z
n

.

We can conclude that these lines are concurrent at the point:

P0

(
l

(l + m)(l + n)
,

m

(l + m)(m + n)
,

n

(n + m)(l + n)

)
,

and we are done.
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Also solved by Daniel Campos Salas, Costa Rica; Daniel Lasaosa, Universidad
Publica de Navarra, Spain
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J59. Consider an n × n square grid. We color some of the squares in black. Prove
that we can find a connected black figure consisting of three squares if

(a) n2

2 + 1 squares are colored for even n,

(b) n(n+1)
2 squares are colored for odd n.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

(a) Let us assume n is even. Divide the n× n square grid into n2

4 2× 2 squares
and we have n2

2 + 1 unit squares are colored black. By the Pigeonhole Principle
there will be a 2 × 2 square with three black squares. These squares form a
connected black figure, and we are done in this case.

(b) Assume that we may color 6 squares in a 3 × 3 square, so that there are
no three connected black squares. Since no row or column with three colored
squares (they would be connected), each row and each column has exactly two
black squares. Consider the top 2 × 3 rectangle, which contains exactly four
black squares. Then, at least one of the 2× 1 columns is fully colored, and the
columns to its left and right cannot contain any colored square. Thus the only
possiblity is that the left and right columns in the top 2× 3 rectangle are fully
colored. But then we may color only the central square in the bottom row, a
contradiction. So as soon as 6 = 3·4

2 squares are colored in a 3 × 3 square, a
connected black figure with 3 squares appeares.

We will complete the proof for any odd n by induction. Assume that the result
is true for n−2 and for 3. Then, consider the decomposition of the n×n square
as shown in the picture:
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Clearly, there is a total of (n − 3) 2 × 2 squares, one 3 × 3 square, and one
(n− 2)×(n− 2) square (which has one square in common with the 3×3 square).
If the total number of colored squares is

n2 + n

2
= 2 (n− 3) + 5 +

(n− 2) (n− 1)
2

,

then unless there are at least (n−2)(n−1)
2 squares are colored in the (n− 2) ×

(n− 2) square (and hence by hypothesis of induction three connected black
squares would appear in this square), or at least 6 colored squares in the 3 ×
3 square (producing the same result), or there would be more than 2 (n− 3)
colored squares in the n − 3 2 × 2 squares. Therefore from the Pigeonhole
principle, at least one of them would contain a connected black figure with
three squares, and the conclusion follows.

Also solved by Andrea Munaro, Italy
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J60. Let a, b, c be positive real numbers. Prove that

bc

a2 + bc
+

ca

b2 + ca
+

ab

c2 + ab
≤ a

b + c
+

b

c + a
+

c

a + b
.

Proposed by Pham Huu Duc, Ballajura, Australia

First solution by Magkos Athanasios, Kozani, Greece

We have
bc

a2 + bc
= 1− a2

a2 + bc

and analogous expressions for the other fractions. Therefore the given inequality
is equivalent to

∑ a2

a2 + bc
+
∑ a

b + c
≥ 3 ⇔

∑ a2

a2 + bc
+
∑ a2

ab + ca
≥ 3

where the sums are cyclic over a, b, c. At this point we employ the well known
inequality ∑ x2

i

yi
≥ (
∑

xi)2∑
yi

,

where i runs from 1 to n ∈ N and yi > 0. Hence, the left side of the inequality
is greater than or equal to

4(a + b + c)2

a2 + b2 + c2 + 3(ab + bc + ca)

and it suffices to prove that this is at least 3, which is true since

4(a + b + c)2

a2 + b2 + c2 + 3(ab + bc + ca)
≥ 3 ⇔ a2 + b2 + c2 ≥ ab + bc + ca.

Second solution by Son Hong Ta, High School at Ha Noi University of Education,
Vietnam

Write the inequality as follows∑(
a2

a2 + bc
+

bc

a2 + bc

)
≤
∑(

a2

a2 + bc
+

a

b + c

)

⇐⇒ 3 ≤
∑

a2 ·
(

1
a2 + bc

+
1

ab + ac

)
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Using the inequality 1
x + 1

y ≥
4

x+y , it suffices to show that

a2

(a + b)(a + c)
+

b2

(b + c)(b + a)
+

c2

(c + a)(c + b)
≥ 3

4

⇐⇒ a2(b + c) + b2(c + a) + c2(a + b) ≥ 3
4
· (a + b)(b + c)(c + a)

⇐⇒
(
a2b + bc2

)
+
(
b2c + ca2

)
+
(
c2a + ab2

)
≥ 6 · abc

⇐⇒ a · (b− c)2 + b · (c− a)2 + c · (a− b)2 ≥ 0

Hence the problem is solved and equality occurs if and only if a = b = c

Third solution by Perfetti Paolo, Dipartimento di matematica Universita degli
studi di Tor Vergata, Italy

We employ the result of the problem J38, piblished in this journal

a

b + c
+

b

c + a
+

c

a + b
≥ a2 + bc

(a + b)(a + c)
+

b2 + ac

(b + a)(b + c)
+

c2 + ab

(c + a)(c + b)

and prove that

bc

c2 + bc
+

ca

b2 + ca
+

ab

c2 + ab
≤ a2 + bc

(a + b)(a + c)
+

b2 + ac

(b + a)(b + c)
+

c2 + ab

(c + a)(c + b)

Clearing the denominators we obtain∑
sym

a5b4 +
∑
sym

a5b3c2 + 2
∑
sym

a4b3c2 ≥
∑
sym

a3b3c3 +
∑
sym

a4b4c + 2
∑
sym

a5b2c2.

Now ∑
sym

a5b3c2 +
∑
sym

a4b3c2 ≥ 2
∑
sym

a5b2c2

is a consequence of the Schur’s inequality:∑
sym

x3 +
∑
sym

xyz ≥ 2
∑
sym

x2y

The inequality ∑
sym

a5b4 +
∑
sym

a4b3c2 ≥
∑
sym

a3b3c3 +
∑
sym

a4b4c

is what remains to prove, and it follows by Muirhead’s theorem using [5, 4, 0] �
[4, 4, 1] and [4, 3, 2] � [3, 3, 3]. The proof is completed.

Also solved by Daniel Campos Salas, Costa Rica; Daniel Lasaosa, Universidad
Publica de Navarra, Spain; Dzianis Pirshtuk, School No.41, Belarus
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Senior problems

S55. Let X = {x1, x2, ..., xn} be a set of positive real numbers. Prove that there exist
no more than 2n

√
n

subsets of X, whose sum of elements is equal to 1.

Proposed by Iurie Boreico, Harvard University, USA

Solution by Jose H. Nieto S., Universidad del Zulia, Venezuela

We’ll prove a stronger result, namely that the number of subsets of X, whose

sum of elements is equal to 1, is no more than
√

2
π

2n
√

n
. First note that different

sum 1 subsets are non-comparable with respect to the inclusion order, hence by
a well known result (Sperner’s lemma) its number is at most

(
n
bn

2
c
)
. Now we

recall from the proof of Wallis’ formula that

(2k − 1)!!
(2k)!!

π

2
=
∫ π

2

0
sin2k x dx <

∫ π
2

0
sin2k−1 x dx =

(2k − 2)!!
(2k − 1)!!

,

hence
(2k − 1)!!

(2k)!!
<

1√
kπ

.

Now, if n = 2k we have(
n

bn
2 c

)
=
(

2k

k

)
=

(2k)!2

(k)!2
=

22k(2k − 1)!!
(2k)!!

<
22k

√
kπ

=

√
2
π

2n

√
n

,

while if n = 2k + 1(
n

bn
2 c

)
=
(

2k + 1
k

)
=

2k + 1
k + 1

(
2k

k

)
<

22k+1

√
kπ

=

√
2
π

22k+1

√
2k

<

√
2
π

2n

√
n

.
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S56. Let G be the centroid of triangle ABC. Prove that

sin∠GBC + sin ∠GCA + sin∠GAB ≤ 3
2
.

Proposed by Tran Quang Hung, Ha Noi National University, Vietnam

Solution by Daniel Campos Salas, Costa Rica

Let S be the area of triangle ABC, and let ma,mb,mc and ha, hb, hc be the
medians and altitudes from A,B, C, respectively. We wil prove the following
lemma first.

Lemma. In a triangle ABC the following inequality holds:

(h2
a + h2

b + h2
c) ·
(

1
m2

a

+
1

m2
b

+
1

m2
c

)
≤ 9.

Proof. Let (x, y, z) = (a2, b2, c2). Note that

h2
a + h2

b + h2
c = 4S2 · xy + yz + zx

xyz

=
(2(xy + yz + zx)− x2 − y2 − z2)(xy + yz + zx)

4xyz
,

and that

1
m2

a

+
1

m2
b

+
1

m2
c

=
4(xy + yz + zx)

(2x + 2y − z)(2y + 2z − x)(2z + 2x− y)
.

So we have to prove that

2(xy + yz + zx)3 ≤
9xyz(2x + 2y − z)(2y + 2z − x)(2z + 2x− y) + (x2 + y2 + z2)(xy + yz + zx)2.

After expanding this inequality it follows that it is equivalent to
(x− y)2(y − z)2(z − x)2 ≥ 0, which is clearly true. �

From the lemma and Cauchy-Schwarz it follows that

ha

mb
+

hb

mc
+

hc

ma
≤ 3. (2)

Let D be the foot of the perpendicular from G to BC. Since [AGB] = [BGA] =

[CGA], it follows GD =
ha

3
, and since BG =

2mb

3
, we get sin∠GBC =

ha

2mb
.

Analogously we write for other terms and summing up the terms we obtain the
desired inequality.
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S57. Suppose we have a graph with six vertices. The edges of a graph are colored in
two colors. Prove that one can always find three different monochromatic cycles
in it.

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

It will be shown that there are actually three monochromatic cycles of the same
color. A graph with 6 vertices has 15 edges. By the Pigeonhole Principle there
exist 8 edges of the same color. We prove that this graph has at least three cycles
of that color. Let A,B, C, D, E, F be the vertices of our graph and without loss
of generality

deg(A) ≥ deg(B) ≥ deg(C) ≥ deg(D) ≥ deg(E) ≥ deg(F ).

If deg(F ) ≥ 3, then 3·6
2 > 8, thus deg(F ) ≤ 2. Consider two cases:

1) deg(F ) = 0, 1. Elimination of F , would produce a graph with 5 vertices and
at least 7 edges. Observe that deg(E) ≤ 2, otherwise 3·5

2 > 7. Elimination of
E, would produce a graph with 4 vertices and at least 5 edges. Thus we have
K4\{e} that clearly contains three monochromatic cycles.

2) deg(F ) = 2. Without loss of generality assume that F is joined to A and B.

2a) If AB is not in the graph, we may eliminate vertex F and its corresponding
edges, adding edge AB. We get a graph with 5 vertices and 7 edges, and we are
sure to find at least three cycles (see case 1). In these cycles A and B will be
connected through AF and BF .

2b) If AB is in the graph, we find cycle ABFA. Eliminating F and its corre-
sponding edges, we need to find at least 2 cycles in a graph with 5 vertices and
6 edges. If there is one vertex with a degree less than or equal to 1, then its
elimination would produce a graph with 4 vertices and 5 edges, which we know
contains at least three cycles (see case 1). Because 5·3

2 > 6, there exist a vertex
with degree 2. Call this vertex T and assume T is connected to vertices P and
S, but not to vertices Q and R. If the edge PS is in the graph, we have found
a second cycle PSTP , and eliminating T and its corresponding edges leaves
a graph with 4 vertices and 4 edges, where we are sure to find a third cycle.
Finally, if PS is not in the graph, we eliminate T and edges PT and ST , but
we add edge PT . This produces a graph with 4 vertices and 5 edges, where we
are sure to find three cycles (see case 1), and this completes the proof.
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S58. Let M,N be the midpoints of AB and CD of a cyclic quadrilateral ABCD. The
circumscircles of triangles BAN and CMD intersect CD and AB at points P
and Q, respectively. Prove that PQ passes through the intersection of the
diagonals AC and BD.

Proposed by Ciupan Andrei, Bucharest, Romania

First solution by Son Hong Ta, High School at Ha Noi University of Education,
Vietnam

Denote the points I = AC ∩ BD, E = AB ∩ CD, F = AD ∩ BC and P ′ =
FI ∩ CD.

Observe that (EDP ′C) form a harmonic division. Thus ED·EC = EP ′·EN(1).
Furthermore, the quadrilateral ABCD is cyclic, so ED ·EC = EA ·EB (2).

From (1) and (2) we get EP ′ · EN = EA · EB, it follows that P ′ lies on the
circumcircle of triangle ABN , which implies that P ′ ≡ P , i.e. P ∈ IF (∗).
Similarly, we also have Q lies on the line IF (∗∗)
From (∗) and (∗∗) we have P , Q, and I are collinear, and we are done.

Second solution by Mihai Miculita, Romania

We know that ABCD,ABNP, ABGM are inscribed quadrilaterals, thus
−→
SA ·

−→
SB =

−→
SC ·

−→
SD

−→
SA ·

−→
SB =

−−→
SN ·

−→
SP

−→
SC ·

−→
SD =

−−→
SM ·

−→
SQ,
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which impies that
−→
SA ·

−→
SB =

−→
SC ·

−→
SD =

−−→
SM ·

−→
SQ =

−−→
SN ·

−→
SP , which means that

the line PQ is the polar of the point S with respect to the circle circumscribed
to ABCD. This in turn means that PQ passes through O, the intersection of
the diagonals of ABCD, and through T = AD ∩BC, and we are done.

Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The result is clearly true when AB and CD are parallel, then ABCD is an
isosceles trapezoid. Line MN is its axis of symmetry, and the circumcircles of
BAN and CMD are respectively tangent to CD and AB. Therefore MN = PQ
and diagonals AC and BD meet on this symmetry axis PQ, qed.

If AB and CD are not parallel, let F , E be the points where AB and CD, and
AC and BD, respectively, meet, and let us assume wlog that F is closer to A
and D than to B and C, respectively.

The powers of F with respect to the circumcircles of ABCD, ABNP and
CDQM may be written, respectively, as FA·FB = FC·FD, FA·FB = FN ·FP
and FC · FD = FQ · FM , or

FP

QF
=

FM

FN
.

Trivially, ∆BFP and ∆NFA are similar because BAPN is cyclic. Then,

DP = FP − FD =
FA · FB

FN
− FA · FB

FC
=

FA · FB (FC − FN)
FC · FN

=
FA · FB · CD

2FC · FN
,

since N is the midpoint of CD. Since ∆CFQ and ∆MFD are also similar,

BQ = FB − FQ =
FC · FD

FA
− FC · FD

FM
=

FC · FD ·AB

2FA · FM
,

or
BQ

PD
=

AB · FC · FN

CD · FA · FM
=

AB ·BC · FN

CD ·AD · FM
,

where we have used that ∆AFD and ∆CFB are similar.

Finally, using the theorem of the sine and the fact that ABCD is cyclic, we find

DC sin∠ACD

ED
= sin∠DEC = sin∠AEB =

AB sin∠BAC

EB
,

DE

EB
=

CD sin∠ACD

AB sin ∠BAC
=

AD · CD

AB · CB
.

Thus
FP

PD
· DE

EB
· BQ

QF
= 1,

and due to the reciprocal of Menelaus’ theorem, we get that P , E, Q are
collinear.
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S59. Consider the family of those subsets of {1, 2, ..., 3n} whose sum of the elements
is a multiple of 3. For each subset of this family compute the square of the sum
of its elements. Find the sum of the numbers obtained in this way.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, France

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Fo each k in {0, 1, 2}, let us call

Sk (n) =
∑(

n

3i + k

)
,

where the sum is taken from i = 0 to the largest value of i such that 3i+k ≤ n.
It is clear that Sk (n) is the number of subsets from the set {1, 4, 7, ..., 3n− 2}
whose sum is congruent k modulus 3. Also Sk (n) is equal to the number of sub-
sets out of {2, 5, 8, ..., 3n− 1} whose sum is congruent 2k modulus 3. Now, since
any subset from the set {3, 6, 9, ..., 3n} has sum of elements multiple of 3, then
a subset of {1, 2, ..., 3n} has sum of elements multiple of 3, iff it is the union, for
some k, of a set from Sk (n) subsets from {1, 4, 7, ..., 3n− 2} whose sum is con-
gruent k modulus 3, and a set from Sk (n) subsets of {2, 5, 8, ..., 3n− 1} whose
sum is congruent 2k modulus 3, and one set from 2n subsets of {3, 6, 9, ..., 3n}.
The total number of subsets of {1, 2, ..., 3n} whose sum of the elements is a
multiple of 3 is then given by

2n
(
S2

0(n) + S2
1(n) + S2

2(n)
)
.

Now,

Sk (n) =
(

n

k

)
+
(

n

3 + k

)
+
(

n

6 + k

)
+ ...

=
(

n− 1
k − 1

)
+
(

n− 1
k

)
+
(

n− 1
3 + k − 1

)
+
(

n− 1
3 + k

)
+
(

n− 1
6 + k − 1

)
+
(

n− 1
6 + k

)
+ ...

= 2n−1 − Sk+1 (n) ,

or
2∑

k=0

(Sk (n))2 = 3 · 22n−2 − 2n
2∑

k=0

Sk (n− 1) +
2∑

k=0

(Sk (n− 1))2

= 22n−2 +
2∑

k=0

(Sk (n− 1))2.
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It is not difficult to prove by induction that, since S0 (2) =
(
2
0

)
= 1, S1 (2) =(

2
1

)
= 2, S2 (2) =

(
2
2

)
= 1, then

2∑
k=0

(Sk (2))2 = 6 =
24 + 2

3
,

2∑
k=0

(Sk (n))2 =
22n + 2

3
= 22n−2 +

22n−2 + 2
3

,

and the total number of subsets is then 23n+2n+1

3 .

Since the sum of elements of {1, 2, ..., 3n} is 3n(3n+1)
2 which is a multiple of 3, a

subset has sum of elements multiple of 3 iff its complementary also has sum of
elements multiple of 3. The sum of the squares of the elements of any set and
the elements of its complementary is the sum of the squares of all the elements
of {1, 2, ..., 3n}, i.e.,

3n∑
i=1

i2 =
3n (3n + 1) (6n + 1)

6
=

n (3n + 1) (6n + 1)
2

.

Since this way we count each subset twice (when we count it and we we count its
complementary), the result we are looking for is half the product of the number
of subsets times the sum of squares of the elements of {1, 2, ..., 3n}, i.e., the sum
that we are looking for is

n (3n + 1) (6n + 1)
(
23n−2 + 2n−1

)
3

.
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S60. Consider triangle ABC and let α(Ia), β(Ib), γ(Ic) be the excircles corresponding
to the vertices A,B, C, respectively. Let P a point in the interior of the triangle
ABC and consider its cevian AA1, BB1, CC1. Denote by X, Y, Z the tangents
from A′, B′, C ′ to the excircles α(Ia), β(Ib), γ(Ic), respectively, such that (X /∈
BC, Y /∈ CA, Z /∈ AB). Prove that the lines AX, BY , CZ are concurrent.

Proposed by Cosmin Pohoata, Bucharest, Romania

Solution by Francisco Javier Garcia Capitan, Spain

We use barycentric coordinates. Let P = (u : v : w) an arbitrary point (not
neccesarily an interior point) of the plane of triangle ABC and A1B1C1, with
A1 = (0 : v : w), B1 = (u : 0 : w), C1 = (u : v : 0), its cevian triangle
with respect to ABC. We know that the excenters are Ia = (−a : b : c),
Ib = (a : −b : c) and Ic = (a : b : −c). The excircles α(Ia), β(Ib), γ(Ic) touch
the sides BC, CA, AB at D = (0 : s − b : s − c), E = (s − a : 0 : s − c)
and F = (s − a : s − b : 0), respectively, where s stands, as usual, for the
semiperimeter of ABC. We can get the point X as the reflection of D with
respect to the line IaA1, so we can calculate its coordinates, giving

X =
(
−((s− c)v − (s− b)w)2, s(s− c)v2, s(s− b)w2

)
,

and in a similar way for Y and Z. So, what we that the determinant∣∣∣∣∣∣
0 −(s− b)w2 (s− c)v2

(s− a)w2 0 −(s− c)u2

−(s− a)v2 (s− b)u2 0

∣∣∣∣∣∣
vanishes, and this is clearly true. In addition, we can calculate the coordinates
of the intersection point Q of AX, BY , CZ, being Q =

(
u2

s−a : v2

s−b : w2

s−c

)
, and

we have a particular case when P = Q = (s− a : s− b : s− c), the Nagel point
of triangle ABC.
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Undergraduate problems

U55. Let f : [0, 1] → R be a bijective differentiable function. Prove that there exist
c ∈ (0, 1) such that ∫ f(1)

f(0)
f−1(x)dx =

1
2
· f ′(c).

Proposed by Cezar Lupu, University of Bucharest, Romania

Solution by G.R.A.20 Problem Solving Group, Roma, Italy.

First, let us use the following change of variables: x = f(t). Then by the
mean value theorem for integration applied with respect to the positive measure
µ(A) =

∫
A tdt∫ f(1)

f(0)
f−1(x)dx =

∫ 1

0
td(f(t)) =

∫ 1

0
f ′(t)d

(
t2

2

)
=
∫ 1

0
f ′(t)dµ = f ′(c) · µ([0, 1]) =

1
2
· f ′(c)

for some c ∈ (0, 1).
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U56. Let x, y, z be positive real numbers. Prove that

3
√

3
2

≤
√

x + y + z

( √
x

y + z
+

√
y

x + z
+

√
z

x + y

)
.

Proposed by Byron Schmuland, University of Alberta,Canada

First solution by Pham Huu Duc, Ballajura, Australia

Applying the Holder inequality, we get

(x + y + z)

(∑
cyc

√
x

y + z

)2

≥

∑
cyc

3

√(
x

y + z

)2
3

.

Further, by the AM-GM inequality

2(x + y + z) = 2x + (y + z) + (y + z) ≥ 3 3
√

2x(y + z)2,

thus ∑
cyc

3

√(
x

y + z

)2

≥
∑
(cyc)

3x
3
√

22(x + y + z)
=

3
3
√

22
.

Hence

(x + y + z)

(∑
cyc

√
x

y + z

)2

≥
(

3
3
√

22

)3

=
33

22
.

and by taking the square-root, the desired result follows.

Second solution by Dzianis Pirshtuk, School No.41, Belarus

Denote a =
√

x, b =
√

y, c =
√

z. We have to prove

f (a, b, c) =
√

a2 + b2 + c2

(
a

b2 + c2
+

b

a2 + c2
+

c

a2 + b2

)
≥ 3

√
3

2
.

Without loss of generality assume that a2 + b2 + c2 = 3, because
f (a, b, c) = f (λa, λb, λc) for any positive real λ. Our inequality is equivalent to

a

3− a2
+

b

3− b2
+

c

3− c2
≥ 3

2
.

From a2 + b2 + c2 = 3 we also have a, b, c <
√

3.
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Observe that x
3−x2 ≥ x2

2 for any x ∈
(
0,
√

3
)
, as it is equivalent to (x−1)2(x+2)

3−x2 ≥
0. Thus we get

a

3− a2
+

b

3− b2
+

c

3− c2
≥ a2

2
+

b2

2
+

c2

2
=

a2 + b2 + c2

2
=

3
2
,

and we are done.

Third solution by Magkos Athanasios, Kozani, Greece

Since the inequality is homogeneous, without loss of generality we can assume
that x + y + z = 3. We have to prove∑ √

x

3− x
≥ 3

2
.

The arithmetic-geometric mean inequality gives

(
√

x)3 + 2 = (
√

x)3 + 1 + 1 ≥ 3
√

x

and this is equivalent to
√

x
3−x ≥

1
2x. Hence∑ √

x

3− x
≥ 1

2
(x + y + z) =

3
2
.

Fourth solution by Vardan Verdiyan, Yerevan, Armenia

Since our inequality is homogeneous, without loss of generality we can assume
that x + y + z = 1. Thus it is equivalent to

3
√

3
2

≤
∑ √

x

1− x
.

Let us consider the function f(a) =
√

a

1− a
=

1

a−
1
2 − a

1
2

, where a is a positive

real number ⇒ f ′′(a) =
(

1
a−1 − 2 + a1

)2

≥ 0 . By Jensen’s inequality we have

f(x) + f(y) + f(z) ≥ 3f

(
x + y + z

3

)
= 3f

(
1
3

)
⇒

∑ √
x

1− x
≥ 3

√
1
3

1− 1
3

=
3
√

3
2

,

which completes our proof.

Also solved by Kee-Wai Lau, Hong Kong, China; Daniel Campos Salas, Costa
Rica; Dzianis Pirshtuk; Daniel Lasaosa, Universidad Publica de Navarra, Spain
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U57. Solve in positive integers the following equation: x3 − y2 = 2.

Proposed by Juan Ignacio Restrepo, Columbia

Solution by Ivan Borsenco, University of Texas at Dallas, USA

Let us write this equations as x3 = (y + i
√

2)(y− i
√

2). We claim that gcd(y +
i
√

2, y − i
√

2) = 1 in Z[i
√

2]. If m = gcd(y + i
√

2, y − i
√

2), then m | 2i
√

2.
Thus, if m = a + b

√
2, then the norm of m divides the norm of 2i

√
2. Hence

a2 + 2b2 | 8.

1st case: a = 2, b = 0, m = 2. We have m2 | y2 + 2, we get a contradiction
modulo 4.

2nd case: a = 0, b = 2, m = 2i
√

2. We have m2 | y2 + 2, again a contradiction.

3rd case: a = 0, b = 1, m = i
√

2. We get y = 0, but y > 0.

Therefore we can say y + i
√

2 = (a + bi
√

2)3 and y − i
√

2 = (a− bi
√

2)3.

Hence 1 = 3a2b− 2b3 = b(3a2 − b), and thus b = 1, a = 1. The desired solution
is y = 5, x = 3.
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U58. Let n ∈ N and denote by u(n) the number of ones in the binary representation
of n. Example: u(10) = u(10102) = 2. Let k, m, n ≥ 0 be integers such that
k ≥ mn.

Express
2k−1∑
i=0

(−1)u(i)

(( i
m

)
n

)
in closed form.

Proposed by Josh Nichols-Barrer, Massachusetts Institute of Technology, USA

First solution by Josh Nichols-Barrer, MIT, USA

The given expression times (−1)k counts the number of sets S of subsets of
{1, . . . , 2k − 1} with the properties that:

• |S| = n,

• Each element of S has size m, and

• For each j with 0 ≤ j < k, there is at least one element N of a set in S
for which 2j ≤ N < 2j+1.

We see this by Inclusion-Exclusion: For any set T ,((|T |
m

)
n

)
is the number of sets of n m-element subsets of T , and so we just use I-E on the
k intervals [2j , 2j+1), j = 0, . . . , k− 1. In the sum, the index i corresponds to a
subset of these intervals (uniquely given by the binary representation of i), and
the sign (−1)k−u(i) is just −1 to the power of the number of missing intervals.

But then if k > mn, the sum is just 0, and if k = mn, then the sum is (−1)mn

times the number of ways to choose one integer from each of the k intervals
above (which can be done in 20 ·21 · · · 2mn−1 = 2(mn

2 ) ways), and then partition
the resulting mn integers into n m-element subsets. The sum is therefore equal
to

(−1)mn2(mn
2 ) (mn)!

n!(m!)n
.

Second solution by Yufei Zhao, Massachusetts Institute of Technology, USA

This is an adapted finite difference method. Suppose that P (x) is a polynomial
of degree d, with leading coefficient a. Then P (x) − P (x + r) is a polynomial
of degree d − 1 with leading coefficient −rda. Let P0(x) be the degree-mn
polynomial ((x

m

)
n

)
,
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and define
Pi+1(x) = Pi(x)− P (x + 2i).

It is straightforward to verify that the desired sum is simply Pk(0). But if
k > mn, Pk(x) = 0 for degree reasons. Moreover, the leading coefficient of
P0(x) is 1

n!(m!)n . Therefore, Pmn(x), which is a constant polynomial, will be
equal to its leading coefficient, and be

1
n!(m!)n

(−1)mn(mn) · 20 · (mn− 1) · 21 · · · 1 · 2mn−1 = (−1)mn2(mn
2 ) (mn)!

n!(m!)n
.
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U59. Let φ be Euler’s totient function, where φ(1) = 1. Prove that for all positive
integers n we have

1 >

n∑
k=1

φ(k)
k

ln
(

2k

2k − 1

)
> 1− 1

2n
.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, France

Solution by G.R.A.20 Problem Solving Group, Roma, Italy

Let F (z) be the generating function associated to some combinatorial objects.
Then the power seris

G(z) =
∞∑

k=1

φ(k)
k

log
(

1
1− F (zk)

)
is the generating function of the number of sequences of these objects which
are not equivalent with respect to the circular shift. Take F (z) = z, that is
the generating function of one object of size one, then the number of cycle
sequences is equal to 1 for all positive sizes:

∞∑
k=1

φ(k)
k

log
(

1
1− zk

)
=

∞∑
j=1

zj =
z

1− z
.

Moreover, since

log
(

1
1− zk

)
=

∞∑
j=1

zjk

j
= zk + o(zk)

then
∞∑

k=1

φ(k)
k

log
(

1
1− zk

)
=

n∑
k=1

φ(k)
k

log
(

1
1− zk

)
+ zn+1h(z)

where h(z) is a power series with positive coefficients, and

n∑
k=1

φ(k)
k

log
(

1
1− zk

)
=

n∑
j=1

zj + zn+1g(z) =
z(1− zn)

1− z
+ zn+1g(z)

where g(z) is a power series with positive coefficients. Hence, if 0 < z < 1 then

z(1− zn)
1− z

<

n∑
k=1

φ(k)
k

log
(

1
1− zk

)
<

∞∑
k=1

φ(k)
k

log
(

1
1− zk

)
=

z

1− z
.

Letting z = 1
2 we find the desired inequalities.
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U60. Let Pn and Qn be the number of connected and disconnected graphs with n
vertices, respectively.

a) Prove that lim
n→∞

Pn

2
n(n−1)

2

= 1, lim
n→∞

Qn

2n · 2
n(n−3)

2

= 1 for labeled graph.

b) Prove that lim
n→∞

n!Pn

2
n(n−1)

2

= 1, lim
n→∞

n!Qn

2n · 2
n(n−3)

2

= 1 for unlabeled graph.

Proposed by Iurie Boreico, Harvard University, USA

Solution by Iurie Boreico, Harvard University, USA
Let us first compute the asymptotic value of the number of unlabeled graphs
with n vertices. We have 2

n(n−1)
2 labeled graphs. Each accounts for the same

unlabeled graph with other n! − 1 graphs obtained by permuting its vertices,
except those with the property that if we permute their vertices, we obtain
the same graph. Let us estimate the number Gn of such graphs compared to
the total number of graphs. Choose π to be a permutation and assume the
graph G is preserved by π, i.e. m(π(i), π(j)) = m(i, j) where m(i, j) = 1 if
and only if i is connected with j by an edge. If π fixes a point, we can remove
it and obtain a graph with n − 1 vertices. Since we can remove a point in
n ways, we get at most nGn−1 such graphs. We are left to look at the case
where π fixes no point. Let us compute the number of graphs preserved by π.
We are better off computing their ratio to the total possible number of labeled
graphs. Let us decompose a permutation into cycles. Look at a cycle i1 . . . ik.
We must have m(ir, is) = m(ir+1, is+1) (the subscripts are modulo k) and from
here we deduce that m(i, i + j) depends only on j. As we can choose j ≤ k

2 ,

we have at most 2[ j
2
] possibilities for the edges within the cycle, whereas for

an unlabeled graph we have 2
k(k−1)

2 . We get a ratio of 1

2
k2−k−2[ k

2 ]

2

. Let us look

at the edges that connect two cycles (i1, i2, . . . , ik) and (j1, j2, . . . , jl). We get
m(ir, js) = m(ir+1, js+1) and from here it is not hard to deduce that m(ir, js)
depends only on the residue of r− s modulo gcd(k, l). So, analogously we get a
ratio of at most 1

2kl−gcd(k,l) . Now if d1, d2, . . . , dk are the cycles, we get the total

ratio of at most 1
AB where A =

∏
2

d2
i−di−2[

di
2 ]

2 , B =
∏

i6=j 2didj−gcd(di,dj). Now if
we multiply A,B we get that the total ratio is at most

1

2
P

i(d
2
i
−2di)+

P
i6=j 2didj−2 gcd(di,dj)

2

.

As
∑

di = n, this rewrites as 2
n+
P

i6=j gcd(di,dj)

2
n(n−1)

2

. Now gcd(di, dj) ≤ di+dj

2 and to

conclude the ratio is at most 2n+
k(k−1)

2
n/2

n(n−1)
2 . However k ≤ n

2 as di ≥ 2 and
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we finally conclude the ratio is at most 2
n(n−4)

4 . Summing this for all permu-
tations and adding the nGn−1 deduced above we get Gn

2
n(n−1)

2

≤ n
2n

Gn−1

2
(n−1)(n−2)

2

+
n!

2
n(n−4)

4

so xn = Gn

2
n(n−1)

2

satisfies xn ≤ n
2n xn−1 + n!

2
n(n−4)

4

. We can check that

xn → 0, and even 2knn!xn → 0 for any k, so the total number of graphs to
”throw out” when we pass from labeled to unlabeled graphs is negligible, hence

the total number of unlabeled graphs asymptotically tends to 2
n(n−1)

2

n! .

Now let us estimate Pn, Qn. For labeled graphs, we have
Qn =

∑n−1
i=1

(
n−1
i−1

)
Pi2

(n−i)(n−i−1)
2 . This is obtained if we look at the connected

component containing 1 and having i vertices. We find

Qn = 2
(n−1)(n−2)

2 + (n− 1)P2
(n− 2)(n− 3)

2
+ . . . .

Now we have Pi ≤ 2
i(i−1)

2 and dividing by 2n(n−3), we get

Qn

2
n(n−3)

2

= 2 + c + (n− 1)
Pn−1

2
n(n−3)

2

, where 0 < c <
n−2∑
i=2

(
n−1
i−1

)
2i(n−i)−n+1

.

Clearly c tends to 0, so we have limn→∞
Qn

2
n(n−3)

2

= 2 + (n− 1) limn→∞
Pn−1

2
n(n−3)

2

.

Particularly, as Pn−1 ≤ 2
(n−1)(n−2)

2 , we conclude limn→∞
Qn

2
n(n−3)

2

≤ 2n.

Hence limn→∞
Qn

2
n(n−1)

2

= 0 and so limn→∞
Pn

2
n(n−1)

2

= 1 so limn→∞
Pn−1

2
n(n−3)

2

= 2.

Thus we conclude that limn→∞
Qn

2
n(n−3)

2

= 2n.

To compute the values for unlabeled graph, we just need to divide by n! as the
amount of unlabeled graphs that correspond to less than n! other graphs was
proved to be negligible to the values in context. Hence for this case,

lim
n→∞

n!Pn

2
n(n−1)

2

= 1, lim
n→∞

n!Qn

2n2
n(n−3)

2

= 1.
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Olympiad problems

O55. For each positive integer k, let f(k) = 4k+6k+9k. Prove that for all nonnegative
integers m and n, f(2m) divides f(2n) whenever m is less than or equal to n.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

First solution by Jose Hernandez Santiago, UTM Oaxaca, Mexico

We proceed by induction on n. If n = 0 or n = 1 the result clearly holds. Let
us suppose that the claim f(2i) | f(2n) for all i ∈ {0, 1, . . . , n}. Since

f(2n+1) = 42n+1
+ 62n+1

+ 92n+1

= (42n
+ 92n

+ 62n
)(42n

+ 92n − 62n
)

= f(2n)(42n
+ 92n − 62n

),

it follows from the inductive hypothesis that f(2n+1) is divisible by f(2i), for
all i ∈ {0, 1, . . . , n + 1}. The conclusion follows.

Second solution by Vardan Verdiyan, Yerevan, Armenia

Let k be a positive integer. From the condition of the problem we have f(k) =
4k + 6k + 9k = 22k + 2k3k + 32k. Similarly f(2k) = 24k + 22k32k + 34k. Thus

f(2k) = (22k + 32k)2 − 22k32k = (22k + 32k + 2k3k)(22k + 32k − 2k3k) =

f(k)(22k + 32k − 2k3k), ⇔ f(k) | f(2k), for every k ≥ 0.

Hence for every nonnegative integer we have

f(2n−1) | f(2n), f(2n−2) | f(2n−1), . . . f(1) | f(2).

It follows that f(2m) divides f(2n) whenever m is less than or equal to n.

Also solved by Vardan Verdiyan, Yerevan, Armenia; Daniel Campos Salas,
Costa Rica; Dzianis Pirshtuk; Daniel Lasaosa, Universidad Publica de Navarra,
Spain; Andrea Munaro, Italy; G.R.A.20 Problem Solving Group, Roma, Italy
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O56. We have k hedgehogs in the upper-left unit square of a m × n grid. Each of
them moves toward the lower-right unit square of the grid, by moving each
minute either one unit to the right or one unit down. What is the least possible
number of grid squares that are not visited by any of the hedgehogs?

Proposed by Iurie Boreico, Harvard University, USA

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Consider the following labelling of the grid: let (i, j) be the square on the i-th
row and j-th column, where 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the 1st row is the
highest and the mth row the lowest, the 1st column is the leftmost and the nth

column the rightmost.

It is clear that all squares may be visited by a hedgehog if either m ≤ k or n ≤ k.
In the first case, number m of the hedgehogs from 1 to m, and have hedgehog
i move from (1, 1) to (i, 1), then to (i, n), and finally to (m,n). Hedgehog i
has thus visited all squares in row i, and hence all squares are visited by the
m hedgehogs. If n ≤ k, we proceed similarly exchanging rows and columns.
Henceforth, we shall assume that m,n > k.

Since all the moves are either down or to the right, each hedgehog needs to
make m− 1 moves down and n− 1 moves to the right, for a total of m + n− 2
moves, or m + n − 1 squares visited. If each square were visited by only one
hedgehog, the total number of covered squares would be equal to k (m + n− 1).
However, this is not so, because we know all hedgehogs visit both the upper-
left square and the lower-right square. Let us consider the diagonal such that
i+ j = r+1 for 1 ≤ r ≤ k−1. Clearly, there are r squares inside the grid along
this diagonal (squares (s, r + 1− s) for 1 ≤ s ≤ r+1). Each hedgehog needs to
pass through one and only one of the squares of this diagonal, or, though there
are k ”hedgehog visits” to squares in this diagonal, only r squares are visited,
leaving k−r ”unproductive” or ”redundant” visits. The situation is symmetric
around the lower-right corner. So, the total number of grid squares visited is
actually not higher than the total number of ”hedgehog visits” k (m + n− 1)
minus the total number of ”unproductive” visits:

k (m + n− 1)− 2
k−1∑
r=1

(k − r) = k (m + n− 1)− 2k (k − 1) + 2
k (k − 1)

2

= k (m + n− k) .

The number of squares left unvisited is then at least

m · n− k (m + n− k) = (m− k) (n− k) .
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This number is equivalent to having the hedgehogs visit every square in all but
m − k rows and every square in all but n − k columns. But this is perfectly
possible, since we may have hedgehog i travel from square (1, 1) to square
(i, 1), then to square (i, n + 1− i), then to square (m,n + 1− i), then to square
(m,n). This way, all squares (i, j) in the first k rows are visited by at least one
hedgehog (hedgehog i if j ≤ n + 1 − i, hedgehog n + 1 − j otherwise, where
obviously i ≤ k, and in the second case, n + 1 − j < i). Similarly, all squares
(i, j) in the last k columns but not on the first k rows are visited by hedgehog
n + 1− j, completing the visits to all squares in the last k columns.

So the maximum number of squares not visited is (m− k) (n− k) if m, n > k,
and 0 otherwise.
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O57. Consider a triangle ABC with the orthocenter H, incenter I, and circumcenter
O. Denote by D the point of tangency of its circle with the side BC. Suppose
that Ha is the midpoint of AH and M is the midpoint of BC. If I ∈ HaM ,
prove that AO ‖ HD.

Proposed by Liubomir Chiriac, Princeton University, USA

First solution by Andrea Munaro, Italy

Consider the nine-point circle of triangle ABC and the midpoint M of BC.
Then the circle passes through both Ha and M and HaM is a diameter. Let N
be its center. Then N is the midpoint of both HaM and HO and so HaOMH
is a parallelogram and HHa = HaA = OM . On the other hand AHa ‖ OM .
Then AOMHa is a parallelogram and so AO ‖ HaM . Since I ∈ HaM , by
the Feuerbach’s Theorem, the point of tangency between the incircle and the
nine-point circle can be Ha or M . Consider the first case. Since O and H are
isogonal conjugates and AI is the angle bisector we have ∠HaIA = ∠IAO =
∠IAHa. Then AHa = HaH = HaI = ID, and since AH ‖ ID, HaIDH is
a parallelogram. Finally HD ‖ HaM ‖ AO. In the second case the point of
tangency between the incircle of ABC and BC must be M and so AB = AC.
Hence A,O,H, D are collinear.

Second solution by Daniel Campos Salas, Costa Rica

The case when ∠B = ∠C is clear. Since the problem is symmetric with respect
B and C we can assume without loss of generality that ∠B > ∠C. Note that
I is in the interior of 4AMC, so, for Ha, I,M to be collinear ∠A cannot be
obtuse.

Let D′ be the reflection of D on I, and let the A-excircle intersect BC at L.
Note that there is a homothety with center A that maps the incircle to the A-
excircle, then it follows that A,D′, L are collinear. Since BD = CL we get M is
also the midpoint of DL, this implies that MI is parallel to D′L, or equivalently
AL. Let the perpendicular to BC through M intersect AL at O′. Note that
O′ ∈ AL, AO′ ‖ HaM and AHa ‖ O′M , then, AO′MHa is a parallelogram.
This implies that O′M = AHa = OM , and since A,O,O′ are on the same side
of BC it follows that O′ = O. Then, AO ‖ HaM , and given that Ha and I
are the midpoints of AH and D′D, it follows that HaM ‖ HD. From this we
conclude that AO ‖ HD, as desired.

Also solved by Son Hong Ta, High School at Ha Noi University of Education,
Vietnam
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O58. Let a, b be positive integers such that gcd(a, b) = 1. Find all pairs (m,n) of
positive integers such that am + bm divides an + bn.

Proposed by Dorin Andrica and Dorian Popa, Cluj-Napoca, Romania

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The solution is any pair of the form (m, (2k + 1) m), where k is any non-negative
integer, i.e., n must be an odd multiple of m.

Call xi = (−1)i a(2k−i)mbim = a2kmri, where k is any non-negative integer, and
r = −

(
b
a

)m
. Clearly, the sum of all xi for i = 0, 1, 2, ..., 2k is an integer, and

2k∑
i=0

xi = a2km
2k∑
i=0

ri = a2km 1− r2k+1

1− r
=

a(2k+1)m + b(2k+1)m

am + bm
.

Thus am+bm divides an+bn for all n = (2k + 1) m, where k is any non-negative
integer. We prove that these are the only possible values of n.

Note that if a and b are relatively prime, then so are am + bm and ab. Let
us assume that, for some integer n such that m < n ≤ 2m, am + bm divides
an + bn. Now,

(am + bm)
(
an−m + bn−m

)
− (an + bn) = (ab)n−m (a2m−n + b2m−n

)
,

so am + bm must divide a2m−n + b2m−n, since it is prime with (ab)n−m. But
this is absurd, since 2m − n < m. So the only n such that 0 ≤ n ≤ 2m − 1
and am + bm divides an + bn is n = m. Let us complete our proof by showing
by induction that, for all non-negative integer k, if n = 2mk + d is such that
0 ≤ d ≤ 2m−1 and am + bm divides an + bn, then d = m. The result is already
proved for k = 0. Let us assume it true for some k − 1. Then,

(am + bm)
(
a(2k−1)m+d + b(2k−1)m+d

)
− (ab)m ·

(
a2(k−1)m+d + b2(k−1)m+d

)
= a2km+d + b2km+d = an + bn.

If am +bm divides an +bn, and since am +bm is prime with (ab)m, then am +bm

must also divide a2(k−1)m+d + b2(k−1)m+d. But by hypothesis of induction,
d = m, qed.
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O59. Let Pn and Qn be the number of connected and disconnected unlabeled graphs
in the graph with n vertices. Prove that

Pn −Qn ≥ 2(Pn−1 −Qn−1).

Proposed by Ivan Borsenco, University of Texas at Dallas, USA

Solution by Ivan Borsenco, University of Texas at Dallas, USA

Let G be a an unlabeled graph with n vertices. Define f(G) = Kn\G to be the
complement graph of G with respect to the n-clique.

Observe the following fact if G ∈ Qn, then f(G) ∈ Pn. Indeed, let U, V ∈ G
be two vertices such that there is no path that joins them. Clearly the edge
UV ∈ f(G). Consider A1, A2 ∈ f(G). Note that either A1U or A1V belongs to
f(G). Similarly for A2U and A2V . Thus we can connect A1 and A2 through
points U and V .

It is not difficult to see that f : Qn → Pn is bijective. Now as Pn ≥ Qn we
have that Pn −Qn is exactly the set of connecting graphs which under f maps
into itself. Let us prove by induction that the cardinality of the set satisfying
this property is increasing at least twice from n − 1 to n. We check the base
case: for n = 2 we have P2 = 1, Q2 = 1; for n = 3, P3 = 2, Q3 = 2, and
the base case is true. Assume that n ≥ 4, to show the induction step we use
the following construction. Observe that if G ∈ Pn−1 −Qn−1, then there is no
vertex in G that is connected to all other vertices. Otherwise f(G) will contain
a vertex that is disconnected from all others. Now let Umax be the vertex with
the greatest degree from G ∈ Pn−1 − Qn−1 (if there are more than one, pick
an arbitrary one). We add the nth vertex Un to G in two ways to obtain two
different graphs G1, G2:

1) G1 - connect Un to Umax

2) G2 - connect Un to all vertices in G except Umax.

Clearly G1, G2 and also f(G1), f(G2) are connected, because Un is connected
to at least one vertex from f(G). It is also clear that if G, G′ ∈ Pn−1 −Qn−1,
then G1 6≡ G′

1 and G2 6≡ G′
2. Therefore if we prove G1 6≡ G′

2 we are done,
because f determines uniquely the complement of the graph.

First of all from the construction, Umax is the vertex in G1 that has the greatest
degree and it is unique, because it has one connection with Un in plus. Also
we know U ′

n ∈ G′
2 has n − 2 connections, and this is the greatest number of

connections possible. Thus if G1 ≡ G′
2, then Umax ≡ U ′

n, and U ′
n is the unique
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vertex with the greatest degree in G′
2. Take any vertex that is connected to U ′

n

it has degree at least two, because it is connected to U ′
n and one of the vertices

from G, as G is connected. But if consider the vertices that are connected to
Umax, there is a vertex, namely Un, that has degree one, a contradiction. Thus
Pn −Qn ≥ 2(Pn−1 −Qn−1), and we are done.
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O60. Let A1, A2, ..., An and B1, B2, ..., Bn be the subsets of the set {1, 2, ..., n}, such
that for all i and j, Ai and Bj have exactly one common element and for all
nonempty subsets T of {1, 2, ..., n}, there exists i such that the intersection of
Ai and T has an odd number of elements. Prove or disprove that B1 = B2 =
... = Bn.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, France

Solution by Gabriel Dospinescu, Ecole Normale Superieure, France

Consider the matrices aij = 1j∈Ai and bij = 1i∈Bj and observe that the hy-
pothesis says precisely that AB = R, where R is the matrix having everywhere
1. On the other hand, the hypothesis says that the system

∑
j aijxj = 0 has

no nontrivial solution on the field F2, thus A is invertible over F2. But then
B = A−1R and so all elements in any line of B are equal. But this means
precisely that B1 = B2 = ... = Bn.
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