
Junior problems

J49. Find the least k such that any k-element subset of {1, 2, . . . , 10} contains num-
bers whose sum is divisible by 11.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Notice that for k = 4 the elements of the set {1,2,3,4} add up to 10. Hence, the
sum of the elements of any subset will be a number between 1 and 10, thus not
divisible by 11. We will prove that k = 5 is the least positive integer satisfying
the condition.

For the sake of contradiction, assume that there is a 5-subset A such that the
sum of any of its elements is not a multiple of 11. Taking everything modulo 11,
the problem is equivalent to considering the set {-5,-4,-3,-2,-1,1,2,3,4,5}. Then,
since the elements of any pair of the form {−n, n} add up to a multiple of 11,
where n = 1, 2, 3, 4, 5, then −n is in A if and only if n is not. Without loss
of generality, assume that 5 is in A, since A is a 5-subset and we can always
multiply the original set by -1, leaving the conditions unchanged.

Suppose 2 is in A. Since 5 + 4 + 2 = 11, 4 is not in A, so −4 is in A. But since
5− 4− 1 = 0, −1 is not in A, so 1 is in A. Finally, since 5 + 3 + 2 + 1 = 11, 3
cannot be in A, so −3 is in A. But 5− 4− 3 + 2 = 0, so 2 cannot be in A.

Hence, 5 and −2 are in A. Since 5− 3− 2 = 0, −3 is not in A, so 3 is in A. But
3− 2− 1 = 0, so −1 is not in A, so 1 is in A. Finally, 5− 4− 2 + 1 = 0, so −4 is
not in A, so 4 is in A. But 5+4+3−2+1 = 11, leading to a contradiction. This
concludes that k is the least positive integer satisfying the required conditions.

Also solved by Daniel Campos Salas, Costa Rica; Vicente Vicario Garca, Huelva,
Spain
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J50. Let abc be a prime. Prove that b2 − 4ac cannot be a perfect square.

Proposed by Ivan Borsenco, University of Texas at Dallas

First solution by Son Hong Ta, High School for Gifted Students, Vietnam

Assume that b2 − 4ac is a perfect square and then let b2 − 4ac = k2, k ∈ N
We have

4a · abc = 4a · (100a + 10b + c) = 400a2 + 40ab + 4ac

= (20a + b)2 −
(
b2 − 4ac

)
= (20a + b + k)(20a + b− k) (∗)

Since, a, b, k ∈ N, then (20a + b + k) ∈ Z and (20a + b− k) ∈ Z. Since, abc is a
prime then according to (∗)

abc|20a + b + k or abc|20a + b− k

It follows that abc ≤ 20a+b+k or abc ≤ 20a+b−k. This leads to a contradiction
since 20a + b + k < abc and 20a + b− k < abc. Hence, abc cannot be a perfect
square. This completes our proof.

Second solution by Vicente Vicario Garca, Huelva, Spain

It is clear that a, b, c ∈ N, a 6= 0 and gcd(a, b, c) = 1. If x1 = u and x2 = v are
the solutions of the equation ax2 + bx + c = 0, then we obtain the factorization
ax2 + bx + c = a(x − u)(x − v). On the other hand, if the discriminant D =
b2−4ac = h2, h ∈ N is a perfect square, the solutions of the equation ax2+bx+c
are rational. The factorization is such that

a

(
x− −b + h

2a

) (
x− −b− h

2a

)
= p,

where p si prime. We have x = 10 and abc = a · 102 + b · 10 + c = p, thus

(2ax + b− h)(2ax + b + h) = 4ap.

As b and h have the same parity we get(
ax +

b− h

2

) (
ax +

b + h

2

)
= ap.

One of the factors on the left hand side should be divisible by p, but clearly(
ax + b−h

2

)
,
(
ax + b+h

2

)
≤ 100, a contradiction. Thus b2 − 4ac cannot be a

perfect square.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain
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J51. Let a, b, c the sides of a triangle. Prove that

(a + b)(b + c)(c + a) + (−a + b + c)(a− b + c)(a + b− c) ≥ 9abc.

Proposed by Virgil Nicula and Cosmin Pohoata, Romania

Solution by Daniel Campos Salas, Costa Rica

Rewrite the inequality as

(a + b)(b + c)(c + a)− 8abc ≥ abc− (−a + b + c)(a− b + c)(a + b− c).

The left-hand side equals ∑
cyc

a(b− c)2,

and the right hand side equals

1
2

∑
cyc

(−a + b + c)(b− c)2.

Perform the substitution a = y + z, b = x + z, c = x + y. The inequality is
equivalent to ∑

cyc

(x + y)(x− y)2 ≥
∑
cyc

z(x− y)2.

After expanding, it can be verified it is equivalent to Schur’s inequality, and
we’re done.

Also solved by Arkady Alt, California, USA; Cristian Baba, University of Bucharest,
Romania; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Son Hong
Ta, High School for Gifted Students, Hanoi, Vietnam; Vicente Vicario Garca,
Huelva, Spain
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J52. In the Cartesian plane, mark the point with coordinates (x, y) if x, y > 0 and
x2 + y2 is a prime number. Let ln be the lines given by x + y = n. Find all
positive integers n such that line ln is fully marked in the first quadrant.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

It is clear that n must be prime. Otherwise, let p be a prime divisor of n. Notice
that the point (p, n− p) is such that x2+y2 = n2−2pn+2p2, which is obviously
divisible by p and different from p, thus it is not prime.

Let us assume that n is a prime number greater than 5. Then, it can be written
as 2m + 1, where m ≥ 3, and hence m − 2 > 0, and m + 3 < 2m + 1 = n. If
m ≡ 1 (mod 5) or m ≡ 3 (mod 5), then point (m,m + 1) on line l2m+1 is such
that x2 + y2 = 2m2 + 2m + 1 ≡ 0 (mod 5). If m ≡ 0 (mod 5) or m ≡ 4 (mod 5),
then point (m− 1,m + 2) on line l2m+1 is such that x2 + y2 = 2m2 + 2m + 5 ≡
0 (mod 5). Finally, if m ≡ 2 (mod 5), then the point (m− 2,m + 3) on the line
l2m+1 is such that x2 + y2 = 2m2 + 2m + 13 ≡ 0 (mod 5). Therefore, n must be
a prime less than or equal to 5.

For n = 5, 12 + 42 = 17 and 22 + 32 = 13 are prime.

For n = 3, 12 + 22 = 5 is prime.

For n = 2, 12 + 12 = 2 is prime.

Hence, the line ln is fully marked in the first quadrant for just n = 2, 3, 5.
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J53. Consider a triangle ABC. Let I be its incenter and let M,N,P be the midpoints
of triangle’s sides. Prove that

IM2 + IN2 + IP 2 ≥ r(R + r),

where R and r are the circumradius and the inradius, respectively.

Proposed by Cosmin Pohoata, Bucharest, Romania

First solution by Magkos Athanasios, Kozani, Greece

First we compute the expression IM2 + IN2 + IP 2. It is a known fact that
triangle ABC and its medial triangle have the same centroid G. Leibniz’s
theorem implies that

IM2 + IN2 + IP 2 = 3IG2 +
MN2 + NP 2 + PM2

3
.

We have 9IG2 = s2 + 5r2 − 16Rr and MN = b
2 , NP = a

2 , PM = c
2 , hence

IM2 + IN2 + IP 2 =
s2 + 3r2 − 12Rr

2
.

Now, what we have to prove is s2+3r2−12Rr
2 ≥ r(R + r), or equivalently s2 ≥

14Rr − r2. But this is clear, recalling well known inequalities:

4R2 + 4Rr + 3r2 ≥ s2 ≥ 16Rr − 5r2.

Second solution by Daniel Campos Salas, Costa Rica

The distance between the tangency points of the incircle with the side and its
midpoint is half the difference of the other two sides. Therefore the inequality
is equivalent to

1
4
((b− c)2 + (c− a)2 + (a− b)2) + 3r2 ≥ r(R + r),

or
s

4
((b− c)2 + (c− a)2 + (a− b)2) ≥ sr(R− 2r),

where a, b, c are the sidelenghts and s the semiperimeter.

We have that

s

4
((b− c)2 + (c− a)2 + (a− b)2) =

a3 + b3 + c3 − 3abc

4
,
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and that

sr(R− 2r) =
abc

4R
(R− 2r) =

abc− 8(s− a)(s− b)(s− c)
4

.

The conclusion follows using Schur’s inequality rewritten as

a3 + b3 + c3 − 3abc ≥ (a + b)(b + c)(c + a)− 8abc,

and the inequality of problem J51,

(a + b)(b + c)(c + a)− 8abc ≥ abc− (−a + b + c)(a− b + c)(a + b− c)
= abc− 8(s− a)(s− b)(s− c),

and we are done.

Third solution by Cristian Baba, University of Bucharest, Romania

Let BC = a, AB = c, AC = b, hence AN = NB =
c

2
, AP = PC =

b

2
,

BM = MC =
a

2
. Also let ma,mb and mc be the medians of the triangle and

2s = a + b + c.

We will prove two useful lemmas:

Lemma 1. In a triangle ABC, where I is the incenter and M is a point in it’s
plane then:

−−→
MI =

a ·
−−→
MA + b ·

−−→
MB + c ·

−−→
MC

a + b + c
.

Proof. Let AD ∩BE = {I}, where AD and BE are bisectors. Hence,

BD

BC
· CE

EA
· AI

ID
= 1. (1)

Because
BD

DC
=

c

b
,

we have
BD

a
=

c

b + c
,

hence, from (1)
AI

ID
=

b + c

a
.

Furthermore,

−−→
MI =

1
b+c
a + 1

·
−−→
MA +

b+c
a

b+c
a + 1

·
−−→
MD =

a

a + b + c
·
−−→
MA +

b + c

a + b + c
·
−−→
MD. (2)
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But,
−−→
MD =

b

b + c
·
−−→
MB +

c

b + c
·
−−→
MC. (3)

From (2) and (3) it follows that:

−−→
MI =

a ·
−−→
MA + b ·

−−→
MB + c ·

−−→
MC

a + b + c
.

Lemma 2. In a triangle ABC, where I is the incenter and M is a point in it’s
plane then:

MI2 =
a ·MA2 + b ·MB2 + c ·MC2 − abc

a + b + c
.

Proof. It is a consequence of lemma 1. From lemma 1, it follows that:

MI2 =

∑
a ·MA2 + 2

∑
ab ·

−−→
MA ·

−−→
MB

(a + b + c)2
.

But
2
−−→
MA ·

−−→
MB = MA2 + MB2 −AB2,

2
−−→
MA ·

−−→
MC = MA2 + MC2 −AC2,

2
−−→
MB ·

−−→
MC = MB2 + MC2 −BC2.

Hence, by simple computation:

MI2 =
a ·MA2 + b ·MB2 + c ·MC2 − abc

a + b + c
.

We will use the following results, which are well-known:

1) a3 + b3 + c3 = 2s(s2 − 3r2 − 6Rr).

2) GI2 =
1
9
(s2 + 5r2 − 16Rr).

Now in lemma 2, we replace M with M , N and P respectively. We sum all
three relations and get:

∑
MI2 =

a ·m2
a + b ·m2

b + c ·m2
c +

∑
a

(
b2

4
+

c2

4

)
− 3abc

a + b + c
.

Using the fact that 4m2
a = 2(b2 + c2) − a2 (and the respective symmetric rela-

tions), hence the above relation is equivalent to
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∑
MI2 =

3a(b2 + c2) + 3b(c2 + a2) + 3c(a2 + b2)− a3 − b3 − c3 − 12abc

4(a + b + c)
=

=
(a + b + c)3 − 2(a3 + b3 + c3)− 18abc

4(a + b + c)
.

Thus we deduce that: ∑
IM2 =

s2 + 3r2 − 12Rr

2
.

Thus, we need to prove that

s2 ≥ 14Rr − r2.

From 2) we obtain that
s2 ≥ 16Rr − 5r2.

But,
s2 ≥ 16Rr − 5r2 ≥ 14Rr − r2,

where the last inequality is equivalent to R ≥ 2r, which is Euler’s result.

Remark. A stronger inequality can be proved:

IM2 + IN2 + IP 2 ≥ r(2R− r).

Also solved by Arkady Alt, San Jose, USA; Son Hong Ta, High School for Gifted
Students, Hanoi, Vietnam; Vicente Vicario Garca, Huelva, Spain
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J54. For each positive integer k, find the exponent of 2 in the prime factorization of
the numerator of

1 +
1
3

+
1
5

+ ... +
1

2k − 1
.

Proposed by John Selfridge, USA

Solution by D. L. Silverman, USA

We have

k∑
i=1

1
2i− 1

=
M−1∑
i=0

(
1

i · 2r+1 + 1
+

1
i · 2r+1 + 3

+ · · ·+ 1
(i + 1) · 2r+1 − 1

)
where k = 2rM , M odd. If in each of the M bracketed terms, the 2r constituent
terms are collected using as common denominator Pi, the product of the denom-
inators within the ith term, then the resulting numerators will each consist of
2r terms, each of the form Pi over a distinct odd residue of 2r+1. These ratios
must themselves be the odd residues of 2r+1 in some order. Since the sum of
the odd residues of 2N is 22N−2, it follows that each of the M numerators is of
the form 22rMi, Mi odd. The numerator of

∑k
i=1

1
2i−1 is thus of the form 22rQ

where Q is the sum of an odd number of odd terms, hence odd. Hence if 2r

is the highest power of 2 dividing k, 22r is the highest power of 2 dividing the
numerator of

∑k
i=1

1
2i−1 .
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Senior problems

S49. Find all pairs (x, y) of integers such that

xy +
x3 + y3

3
= 2007.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

Solution by Anupa Murali, Derryfield School, USA

Manipulating the given equation we obtain

xy +
x3 + y3

3
= 2007

x3 + y3 + 3xy = 6021
(x + y)3 − 3x2y − 3xy2 + 3xy = 6021

(x + y)3 − 3xy(x + y − 1) = 6021

Subtracting 1 from both sides and factoring out (x + y − 1), we obtain,

(x + y)3 − 1− 3xy(x + y − 1) = 6020
(x + y − 1) ((x + y)(x + y + 1) + 1− 3xy) = 22 · 5 · 7 · 43

Since ((x + y)(x + y + 1) + 1− 3xy) is always greater than (x + y − 1), out of
the 24 factors of 6020, only the first 12 factors from 1 to 70 can be potential
candidates for (x + y − 1). Also since 6020 ≡ 2 (mod 3), we can easily observe
that only when x + y − 1 ≡ 2 (mod 3), we will have integer solutions for xy.
This again reduces the number of possible candidates for x + y − 1 to only
four, namely 2, 5, 14, 20 and 35. Examining each of them, we find that only
x + y− 1 = 20 gives integer solutions for (x, y). Hence using x + y− 1 = 20, we
find the solutions for (x, y) as (3, 18) and (18, 3).

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain
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S50. Let p ≥ 5 be a prime and let qβ1
1 qβ2

2 · ... · qβn
n be the prime factorization of

(p− 1)p + 1.

Prove that
n∑

i=1

qiβi > p2.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Ivan Borsenco, University of Texas at Dallas

First of all we need the following lemma

Lemma. If qβ1
1 qβ2

2 · ... · qβn
n = c and min(qi) ≥ 3 then

n∑
i=1

qiβi ≥
min(qi)

ln(min(qi))
· ln c.

Proof. Consider a strictly increasing function f : [3,+∞) → R, f(x) = x
ln x , we

have
n∑

i=1

qiβi =
n∑

i=1

qi

ln qi
· βi ln qi ≥

min(qi)
ln(min(qi))

· ln(qβ1
1 qβ2

2 ...qβn
n ) =

min(qi)
ln(min(qi))

· ln c.

Observe that q1 = p and β1 = 2. Writing the binomial expansion of (p− 1)p +1
we get

pp −
(

p

1

)
pp−1 + ...−

(
p

p− 2

)
p2 +

(
p

p− 1

)
· p− 1 + 1 ≡ p2(mod p3).

Now consider the primes q2, ..., qn. Notice that n ≥ 2, as (p− 1)p + 1 > p2, for
p ≥ 5 and clearly gcd(p− 1, qi) = 1. Observe that

(p− 1)p = −1(mod qi), (p− 1)2p = 1(modqi).

By Fermat’s Little Theorem we have (p− 1)qi−1 = 1(mod qi).

If (qi − 1, 2p) = 2, then qi|(p − 1)2 − 1, or qi|p(p − 2). As qi 6= p, we have
qi|(p − 2). We obtain (p − 1)p = ((p − 2) + 1)p ≡ 1(mod qi), also we know
(p− 1)p = −1(mod qi), ⇒ qi = 2, contradiction.

Thus (qi − 1, 2p) = 2p and qi = 2pti + 1 for i = 2, ..., n. Therefore

(p− 1)p + 1 = p2 · qb2
2 · ... · qbn

n = p2 ·
n∏

i=2

(2pti + 1)βi .
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Applying our lemma for qβ2
2 · qβ3

3 · ... · qβn
n = (p−1)p+1

p2 we get

n∑
i=2

qiβi ≥
min(qi)

ln(min(qi))
· ln (p− 1)p + 1

p2
>

2p + 1
ln(2p + 1)

· ln (p− 1)p

p2
.

It is not difficult to see that (p− 1)p ≥ p2 · pp−3, because

p− 1 > e >

(
1 +

1
p− 1

)p−1

.

The last step is to observe that ln p
ln(2p+1) ≥

2
3 , because p3 ≥ (2p + 1)2, for p ≥ 5.

Thus we get

2p + 1
ln(2p + 1)

· ln (p− 1)p

p2
≥ (2p + 1)(p− 3)

ln p

ln(2p + 1)
≥ 2

3
(2p + 1)(p− 3).

Therefore,
n∑

i=2

qiβi ≥
2
3
(2p + 1)(p− 3)

and
n∑

i=1

qiβi ≥
2
3
(2p + 1)(p− 3) + 2p =

4p2 − 4p− 6
3

> p2,

for p ≥ 7. For p = 5, we can check that 45 + 1 = 52 · 41 and it satisfies our
condition.
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S51. Consider a quadrilateral ABCD with no two sides parallel. Let O be the in-
tersection of its diagonals and let E ∈ AB ∩ CD and F ∈ AD ∩ BC. Parallels
through O to the sides CD,DA, AB, BC intersect lines AB,BC,CD,DA at
M,N,P, Q, respectively. Prove that M,N,P, Q are collinear and that the line
that contain them is parallel to EF .

Proposed by Mihai Miculita, Oradea, Romania

Solution by Daniel Lasaosa, Universidad Pública de Navarra, Spain

Let us consider the points M,N,Q, on the sides AB,BF, FA of ABF . Since
ON is parallel to DF ,

BN

NF
=

OB

OD
.

Since, OQ is parallel to CF ,
AQ

QF
=

OA

OC
.

Since OM is parallel to CE and DE,

AM

MB
=

AM

ME
· ME

MB
=

OA

OC
· OD

OB
.

Finally, we find
BN

NF
· FQ

QA
· AM

MB
= 1.

Hence, by the reciprocal of the Menelaus theorem, M,N,Q are collinear. In
an analogous way we prove that M,N,P are collinear. Hence, M,N,P, Q are
collinear. Now, since, OP is parallel to BE,

DP

PE
=

OD

OB
.

Since, OQ is parallel to BF ,

DQ

QF
=

OD

OB
=

DP

PE
.

Hence, PQ is parallel to EF and we are done.

Also solved by Son Hong Ta, High School for Gifted Students, Hanoi, Vietnam
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S52. Let a, b, c, d be prime numbers such that a 6= b and 1 < a ≤ c. Suppose that
for all sufficiently large n the numbers an + b and cn + d have the same sum of
digits in all bases 2, 3, ..., a− 1. Prove that a = c and b = d.

Proposed by Gabriel Dospinescu, ”Louis le Grand” College, Paris

Solution by Gabriel Dospinescu, ”Louis le Grand” College, Paris

Let x be a primitive root modulo a, chosen such that 2 ≤ x ≤ a − 1 (we will
identify integers and their classes modulo a), write b = xu (mod a) for some
nonnegative u. Actually, if u = 0 we may change it into p−1, so we may always
assume u > 0. Now, define the sequence nk = xu(kϕ(a)+1)−b

a , which is a positive
integer for large k. Because ank + b has sum of digits 1 when written in base x,
so does cnk +d, thus cnk +d is a power of x, say xmk . Because nk tends to ∞, so
does mk. On the other hand, cxu(kϕ(a)+1 + ad− bc = xmk and thus ad− bc = 0
because it is divisible by larger and larger powers of x. Thus ad = bc and from
the assumptions on a, b, c, d the conclusion follows.
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S53. Let ABC be a triangle and let E,F be the feet of the angle bisectors of B and
C, respectively. Denote by O the circumcenter of triangle ABC and by Ia the
center of the excircle corresponding to vertex A. Prove that OIa ⊥ EF .

Proposed by Cosmin Pohoata, Bucharest, Romania

Solution by Son Hong Ta, High School for Gifted Students, Hanoi, Vietnam

Let I be the incenter of 4ABC and G, H be the second intersections of BI, CI
with (O), respectively. Define: P, Q be the projections of O on IaB, IaC,
respectively.

We have
OP ⊥ IaB, GB ⊥ IaB ⇒ OP ‖ BG ⇒ OP =

1
2
BG

Similarly,

OQ ⊥ IaC, HC ⊥ IaC ⇒ OQ ‖ CH ⇒ OQ =
1
2
CH

Hence,
OP

OQ
=

BG

CH
(1)

On the otherhand,{
4ICE ∼ 4BGH

4IBF ∼ 4CHG
=⇒

{
IE ·BG = IC ·HB

IF · CH = IB ·GC

And since 4IHB ∼ 4IGC, we get

BG

CH
=

IF

IE
(2)

According to (1), (2) we get

OP

OQ
=

BH

CH
=

IF

IE

But since OP ‖ IE, OQ ‖ IF, we have that 4OPQ ∼ 4IFE =⇒ ÔPQ =
ÎFE =⇒ ÔIaQ = ÎFE =⇒ OIa ⊥ EF , and we are done.

Second solution by Daniel Campos Salas, Costa Rica

We will use the usual triangle notations. ABC: sidelenghts a, b, c, semiperimeter
s, circumradius R, and exradius ra. It is well-known that for four distinct
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points W,X, Y, Z, WX is perpendicular to Y Z if and only if WY 2 + XZ2 =
WZ2 + XY 2, or equivalently

WY 2 −WZ2 = XY 2 −XZ2.

Hence, it’s enough to show that the expression OF 2 − FI2
a is symmetric with

respect to B and C. From the Cosine Law in triangle AOF we have that

OF 2 = AO2 + AF 2 − 2AO ·AF cos
(∣∣∣π

2
− C

∣∣∣)
= R2 + AF 2 − 2R ·AF sinC

= R2 + AF 2 −AF · c.

In addition,

FI2
a = r2

a + (s−AF )2 = r2
a + s2 − (a + b + c)AF + AF 2.

This implies

OF 2 − FI2
a = R2 −AF · c− r2

a − s2 + (a + b + c)AF

= R2 − r2
a − s2 + AF (a + b)

= R2 − r2
a − s2 + bc,

and we’re done.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain
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S54. Let a, b, c be positive real numbers. Prove that

a2 − bc

4a2 + 4b2 + c2
+

b2 − ca

4b2 + 4c2 + a2
+

c2 − ab

4c2 + 4a2 + b2
≥ 0

and find all equality cases.

Proposed by Vasile Cartoaje, University of Ploiesti,Romania

Solution by Cristian Baba, University of Bucharest, Romania

Lemma. If A =
a2 − bc

4a2 + 4b2 + c2
+

b2 − ca

4b2 + 4c2 + a2
+

c2 − ab

4c2 + 4a2 + b2
and

B =
1
2

(
(a2 − bc)2(2b− c)2

(a2 + 2b2)(c2 + 2a2)(4a2 + 4b2 + c2)
+

(b2 − ca)2(2c− a)2

(b2 + 2c2)(a2 + 2b2)(4b2 + 4c2 + a2)
+

(c2 − ab)2(2a− b)2

(c2 + 2a2)(b2 + 2c2)(4c2 + 4a2 + b2)

)
then A = B, for all a, b, c ∈ R, with a2 + b2 6= 0 and a2 + c2 6= 0 and b2 + c2 6= 0.

Proof. By direct computation A and B are both equal to:

A = B =
C

D
,

where
D = (a2 + 4b2 + 4c2)(4a2 + b2 + 4c2)(4a2 + 4b2 + c2)

and

C = 4a6−4a5(b+4c)+a4(33b2−4bc+24c2)−a3(20b3 +20b2c+17bc2 +20c3)+

+a2(24b4−17b3c+60b2c2−20bc3+33c4)−a(16b5+4b4c+20b3c2+17b2c3+4bc4+4c5)+

+4b6 − 4b5c + 33b4c2 − 20b3c3 + 24b2c4 − 16bc5 + 4c6.

By the lemma the inequality becomes trivial. And it is easy to see (from the
lemma) that the equality holds if a = 1, b = 1, c = 1 or a = 1, b = 2, c = 4
or a = 1, b = 4, c = 2 or a = 2, b = 1, c = 4 or a = 2, b = 4, c = 1 or
a = 4, b = 1, c = 2 or a = 4, b = 2, c = 1.

Remark: From the lemma we can see that the condition ”a, b, c positive real
numbers” is extra, we can say that the inequality holds for a, b, c ∈ R, with
a2 + b2 6= 0 and a2 + c2 6= 0 and b2 + c2 6= 0.
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Second solution by Paolo Perfetti, Roma,Italy

a2 − bc

4a2 + 4b2 + c2
+

b2 − ac

4b2 + 4c2 + a2
+

c2 − ab

4c2 + 4a2 + b2
≥ 0

Proof Let 4a2 + 4b2 + c2 = D1, 4b2 + 4c2 + a2 = D2, 4c2 + 4a2 + b2 = D3.
By the Cauchy–Schwarz inequality

(
a2

D1
+

b2

D2
+

c2

D3
)(a2 + b2 + c2) ≥

( a2

√
D1

+
b2

√
D2

+
c2

√
D3

)2

furthermore,( a2

√
D1

+
b2

√
D2

+
c2

√
D3

)2 ≥ (a2 + b2 + c2)(
bc

D1
+

ac

D2
+

ab

D3
)

Now defining a2 = x, b2 = y, c2 = z and taking x + y + z = 1 by homogeneity,
we obtain

x√
4− 3z

+
y√

4− 3x
+

z√
4− 3y

≥

√ √
yz

4− 3z
+

√
xz

4− 3x
+

√
xy

4− 3y

The convexity of the function 1/
√

x and 2ab ≤ a2 + b2 allows us to write

√
6

√
x2

4− 3z
+

y2

4− 3x
+

z2

4− 3y
≥

√
y + z

4− 3z
+

x + z

4− 3x
+

x + y

4− 3y

Squaring and clearing the denominators we get (use repeatedly x + y + z = 1)

24(x2 + y2 + z2) + 72(x2z + y2x + z2y) + 54(x3y + y3z + z3x) ≥

32− 12(x2 + y2 + z2)− 36(xy + xz + yx) + 9(xy2 + yz2 + zx2) + 27abc

or (use x + y + z = 1 again and xyz ≤ x2z+y2x+z2y
3 )

2 + 27(x2z + y2x + z2y) + 27(x3y + y3z + z3x)− 18(xy + xz + yz) ≥ 0 (1)

We study (1) by means of the Lagrange multipliers. Let f(x, y, z) be the l.h.s.
of (1). The only critical point of the function F (x, y, z, λ) = f(x, y, z) − λ(x +
y + z − 1) is (1

3 , 1
3 , 1

3 , 1). On the boundary of the set x + y + z = 1 the function
f(x, y, z) is strictly positive hence the critical point must be a minimum which
exists by the compactness of the set x+y+z = 1 and the Weierstrass theorem on
the continuous functions on the compact sets. Alternatively one can study the
quadratic form determined by the hessian of F respect to the variables (x, y, z)
and restricted to vectors tangent to the constraint x + y + z = 1. f(1

3 , 1
3 , 1

3) = 0
completes the proof.
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Undergraduate problems

U49. Let f : [0, 1] → [0,∞) be an integrable function. Prove that∫ 1

0
f(x)dx ·

∫ 1

0
x3f(x)dx ≥

∫ 1

0
xf(x)dx ·

∫ 1

0
x2f(x)dx.

Proposed by Cezar Lupu, Bucharest and Mihai Piticari, Campulung, Romania

First solution by Arkady Alt, California, USA.

Let

R =
∫ 1

0
f(x)dx·

∫ 1

0
x3f(x)dx =

∫ 1

0

∫ 1

0
f(x)f(y)x3dxdy =

∫ 1

0

∫ 1

0
f(x)f(y)y3dxdy

and

L =
∫ 1

0
xf(x)dx ·

∫ 1

0
x2f(x)dx =

∫ 1

0

∫ 1

0
f(x)f(y)x2ydxdy =∫ 1

0

∫ 1

0
f(x)f(y)y2xdxdy.

Since x3 + y3 ≥ x2y + y2x then

2R =
∫ 1

0

∫ 1

0
f(x)f(y)x3dxdy +

∫ 1

0

∫ 1

0
f(x)f(y)y3dxdy =∫ 1

0

∫ 1

0
f(x)f(y)(x3 + y3)dxdy ≥

∫ 1

0

∫ 1

0
f(x)f(y)(x2y + y2x)dxdy =∫ 1

0

∫ 1

0
f(x)f(y)x2ydxdy +

∫ 1

0

∫ 1

0
f(x)f(y)y2xdxdy = 2L ⇔ R ≥ L.

Second solution by Li Zhou, Polk Community College, Winter Haven

Let

D =
∫ 1

0
f(x)dx ·

∫ 1

0
x3f(x)dx−

∫ 1

0
xf(x)dx ·

∫ 1

0
x2f(x)dx.

Then

D =
∫ 1

0

∫ 1

0
x3f(x)f(y)dxdy −

∫ 1

0

∫ 1

0
x2yf(x)f(y)dxdy

=
∫ 1

0

∫ 1

0
(x− y)x2f(x)f(y)dxdy.
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By symmetry,

D =
∫ 1

0

∫ 1

0
(y − x)y2f(x)f(y)dxdy.

Hence,

D =
1
2

∫ 1

0

∫ 1

0
[(x− y)x2 + (y − x)y2]f(x)f(y)dxdy

=
1
2

∫ 1

0

∫ 1

0
(x− y)2(x + y)f(x)f(y)dxdy ≥ 0,

completing the proof.
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U50. Let A,B, C be n× n matrices such that

A2 = B2 = (AB)2, A2C = C2A,

and A is invertible. Prove that A4 = B4 = In and AC = CA.

Proposed by Magkos Athanasios, Kozani, Greece

Solution by Cristian Baba, University of Bucharest, Romania

We rewrite A2 = (AB)2 as A2 = ABAB. Because A is invertible

A = BAB. (1)

We multiply (1) on the left with B, thus

BA = B2AB. (2)

Since B2 = A2, (2) becomes
BA = A3B. (3)

We multiply (2) on the left with A, hence

ABA = A4B. (4)

Now we multiply (4) on the right with B and because B2 = A2 we have

(AB)2 = A6. (5)

But, A2 = (AB)2 and (5) becomes

A2 = A6 ⇔ A4 = In. (6)

And because A2 = B2, it follows from (6) that

A4 = B4 = In.

For the other equality, we start from the fact that A2C = C2A and multiply it
on the left with A2:

A4C = A2C2A ⇔ C = A2C2A. (7)

Now we multiply (7) on the right with A and on the left with A2, hence

A2CA = A4C2A2. (8)

But because A4 = In, (8) is equivalent to

A2C = C2A.
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U51. Let P (X) = anXn + an−1X
n−1 + · · ·+ a0 ∈ R[X]. Suppose P (x) has only real

zeros. Prove that Q(X) = an
n! X

n + an−1

(n−1)!X
n−1 + · · ·+ a0 has only real zeros.

Proposed by Jean-Charles Mathieux, Dakar University, Sénégal

Solution by Gabriel Dospinescu, Ecole Normale Superieure, Paris

No solution proposed.
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U52. Let m be a positive integer. Prove that

∞∑
k=0

(−1)k

(
2m− 2k

m− k

)(
m− k

k

)
= 2m.

Proposed by Gabriel Alexander Reyes, San Salvador, El Salvador

Solution by G.R.A.20 Problem Solving Group, Roma, Italy

First note that (
2m− 2k

m− k

)(
m− k

k

)
=

(
m

k

)(
2m− 2k

m

)
and

(1− x2)m =
∞∑

k=0

(−1)k

(
m

k

)
x2k

and
xm

(1− x)m+1
=

∞∑
k=0

(
m

k

)
xk.

Therefore
∞∑

k=0

(−1)k

(
2m− 2k

m− k

)(
m− k

k

)
=

∞∑
k=0

(−1)k

(
m

k

)(
2m− 2k

m

)
= [x2m](1− x2)m · xm

(1− x)m+1

= [xm](1 + x)m · 1
1− x

=
∞∑

k=0

(
m

k

)
= 2m
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U53. Let f, g ∈ C[X] be two nonconstant polynomials and suppose for each z ∈ C,
f(z) is a root of a unity and g(z) is also root of a unity, but not necessarily of
the same order. What can we say about f and g?

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Iurie Boreico, Harvard University

By continuity, it follows that |g| = 1 whenever |f | = 1. We shall solve this
general problem.

Lemma 1: if a polynomial f satisfies |f(x)| = 1 whenever |x| = 1 then f(x) =
cxn where |c| = 1.

Proof: Let f(x) = xkg(x) where g(0) 6= 0. Then |g(x)| = 1 whenever |x| = 1.
Let g(x) = cmxm + cm−1x

m−1 + . . . + c0, where c0 6= 0. As |g(x)| = 1, for
|x| = 1, g(x)g(x) = 1, for |x| = 1, therefore

(cmxm + cm−1x
m−1 + . . . + c0)(cm

1
xm

+ cm−1
1

xm−1
+ . . . + c0) = 1,

for |x| = 1. As there are infinitely many such x, it must be identically 1.
However it is not identically 1 for m > 0, as the coefficient of 1

xm is c0cm 6= 0.
Thus m = 0, so g(x) is constant. Clearly g(x) = c with |c| = 1, hence f(x) =
cxk.

Lemma 2: Let t1, t2, . . . , tn be the roots of the equation f(x) = t. Then
g(t1)g(t2) . . . g(tn) = ctn for |c| = 1.

Proof: The expression g(t1)g(t2) . . . g(tn) is symmetric thus can be written as
a polynomial in the coefficients of f(x) − t = 0, thus as a polynomial in t. It
suffices to apply lemma 1 to finish the claim. The degree of the polynomial is
clearly n, as seen by the asymptotic of the expression.

Next let the dominant coefficient of f be a and of g be b. The term tn in the
polynomial g(t1)g(t2) . . . g(tn) is bntn1 tn2 . . . tnn (just write g(tk) = btnk + . . . and
open the brackets), so the leading coefficient equals ± bn

an . Thus |b| = |a|.
Finally let’s look at the polynomial g(t1) + g(t2) + . . . + g(tn). It is again a
polynomial in t, being the sum of symmetric terms of form (tk1 + tk2 + . . . + tkn).
Now, by Newton’s formula, we know that t1t2 . . . tn does not appear in the
representation of tk1+. . .+tkn for k < n, and appears with factor n in tn1 +. . .+tnn.
This g(t1) + g(t2) + . . . + g(tn) = n b

a t + p.

Consider now |t| = 1. Then |g(tk)| = 1 hence |g(t1)+g(t2)+ . . .+g(tn)| ≤ n. So
|n b

a t + p| ≤ n whenever |t| = 1. Then |(n b
a t + p)− (n b

a(−t) + p)| ≤ n + n = 2n.
As | ba |, this is actually an equality. Hence equalities hold everywhere, which
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implies g(t1) = g(t2) = . . . = g(tn). Also |t| = 1 implies |n b
a t+ p| = n, so p = 0,

and then g(tk) = b
a t, so g = b

af .

As we assumed that f and g have the same degree, in the general case it is
clear that we have fm = cgn for some c on the unit circle and m,n ∈ N .

It is clear that all polynomials satisfying this relation satisfy the conditions,
provided that c is also a root of unity.
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U54. Find the best constant c such that for all n, if f(x) ∈ R[X] of degree n satisfies∫ 1

0

∫ 1

0
(f(x)− f(y))2dxdy = 1,

then the function g : [0, 1] → R, g(x) = x(1− x)f ′(x) has a Lipschitz constant
at most cn3.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

No solution proposed.
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Olympiad problems

O49. Let A1, B1, C1 be points on the sides BC, CA, AB of a triangle ABC. Lines
AA1, BB1, CC1 intersect again the circumcircle of triangle ABC at A2, B2,
C2, respectively. Prove that

AA1

A1A2
+

BB1

B1B2
+

CC1

C1C2
≥ 3s2

r (4R + r)
,

where s, r, R are the semiperimeter, inradius, and circumradius of triangle
ABC, respectively.

Proposed by Cezar Lupu, Romania and Darij Grinberg, Germany

First solution by Vicente Vicario Garca, Huelva, Spain

Let BA1
A1C = α, CB1

B1A = β, AC1
C1B = γ. By Ceva’s theorem the cevians are concurrent

if and only if αβγ = 1. By Stewart’s theorem we have:

AA2
1 =

1
1 + α

b2 +
1

1 + α
c2 − 1

1 + 2α + α2
a2,

BB2
1 =

1
1 + β

a2 +
1

1 + β
c2 − 1

1 + 2β + β2
b2,

CC2
1 =

1
1 + γ

a2 +
1

1 + γ
b2 − 1

1 + 2γ + γ2
c2.

On the other hand we have A1B · A1C = AA1 · A1A2 and A1B + A1C = a.
Furthermore,

k1 = A1B ·A1C =
1

1 + 2α + α2
a2,

k2 = B1A ·B1C =
1

1 + 2β + β2
b2,

k3 = C1A · C1B =
1

1 + 2γ + γ2
c2.

Thus,

AA1

A1A2
+

BB1

B1B2
+

CC1

C1C2
=

AA2
1

k1
+

BB2
1

k2
+

CC2
1

k3
=

1 + α

α
· b2

a2
+ (1 + α) · c2

a2
− 1 +

1 + β

β
· a2

b2
+ (1 + β) · a2

c2
− 1+

1 + γ

γ
· a2

c2
+ (1 + γ) · b2

c2
− 1 =

1
α
· b2

a2
+ α · c2

a2
+

1
β
· a2

b2
+ β · a2

c2
+

1
γ
· a2

c2
+ γ · b2

c2
− 3.
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By the arithmetic-geometric mean inequality and since t + 1
t ≥ 2, t > 0:

AA1

A1A2
+

BB1

B1B2
+

CC1

C1C2
≥2

[
1 + α√

α
· bc

a2
+

1 + β√
β
· ac

b2
+

1 + γ
√

γ
· ab

c2

]
− 3 ≥

4
[

bc

a2
+

ac

b2
+

ab

c2
− 3

]
.

On the other hand, bc
a2 + ac

b2
+ ab

c2
= b3c3+a3b3+a3c3

a2b2c2
. In the identity x3 + y3 + z3−

3xyz = (x+y+z)(x2 +y2 +z2−xy−yz−zx) substitute x = ab, y = ac, z = bc;
the result is

b3c3 + a3c3 + a3b3 = 3(4Rrs)2 + (s2 + r2 + 4Rr)[(s2 + r2 + 4Rr)2 − 12Rrs · 2s]

since,ab + bc + ca = (s−a)(s−b)(s−c)+abc+s3

s .

Hence,

bc

a2
+

ac

b2
+

ab

c2
=

b3c3 + a3b3 + a3c3

a2b2c2
≥ 4

[
3 +

S4

16R2r2
− 3

]
≥ 3s2

r(4R + r)

because

9 +
S4

16R2r2
≥ 3s2

r(4R + r)
⇔ (4R + r)s4 − 12R62rs2 + 36R2r2(4R + r) ≥ 0 ⇔

(12R2r)2 − 4(4R + r)36R2r2(4R + r) ≤ 0 ⇔ R ≤ 4R + r,

and thus we are done.

Second solution by Daniel Campos Salas, Costa Rica

Let D and E be the feet of the perpendiculars from A and A2 to BC. Then,
AA1
A1A2

= AD
A2E . Since AD is constant, the expression AA1

A1A2
is minimized when

A2E is maximized, this is, when A2 is the midpoint of the arc BC not contain-
ing A, or AA1 is the angle bisector. Analogously for the other terms, so it is
enough to consider the case when AA1, BB1, CC1 are angle bisectors.

The power of A1 with respect to the circumcircle of ABC equals

AA1 ·A1A2 = BA1 · CA1 =
a2bc

(b + c)2
.

Then,

AA1

A1A2
=

AA2
1

AA1 ·A1A2
=

bc
(
1− a2

(b+c)2

)
a2bc

(b+c)2

=
4s(s− a)

a2
,
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and analogously for the other terms. Let (s − a, s − b, s − c) = (x, y, z), with
x, y, z > 0. Then,

AA1

A1A2
=

4x(x + y + z)
(y + z)2

,

and,

r(4R+r) =
abc

s
+

(s− a)(s− b)(s− c)
s

=
(x + y)(x + z)(y + z) + xyz

x + y + z
= xy+xz+yz.

From these relations we obtain that the inequality reduces to prove that for
arbitrary positive real numbers x, y, z the following inequality holds,

∑
cyc

4(x + y + z)x
(y + z)2

≥ 3(x + y + z)2

xy + xz + yz
.

or equivalently,

4
∑
cyc

x

(y + z)2
≥ 3(x + y + z)

xy + xz + yz
.

From Hölder’s inequality and the inequality (x + y + z)2 ≥ 3(xy + xz + yz), we
have that

4
∑
cyc

x

(y + z)2
≥ 4(x + y + z)3(∑

cyc x(y + z)
)2 ≥

3(x + y + z)
xy + xz + yz

,

that is what we wanted to prove.

Also solved by Li Zhou, Polk Community College, Winter Haven
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O50. Find the least k for which there exist integers a1, a2, ..., ak, different from −1,
such that numbers x2 + aiy

2, x, y ∈ Z, i = 1, 2, ..., k, cover the set of prime
numbers.

Proposed by Iurie Boreico, Harvard University and Ivan Borsenco, University
of Texas at Dallas

Solution by Li Zhou, Polk Community College, Winter Haven

We show that the least k is 3, with the minimal set {a1, a2, a3} = {−4,±2},
{1,±2}, or {4,±2}. Indeed, it is well known

1) Every prime p ≡ 1 (mod 4) can be expressed in the form x2+(2y)2, x, y ∈ Z;

2) Every prime p ≡ 3 (mod 8) can be expressed in the form x2 +2y2, x, y ∈ Z;

3) Every prime p ≡ 7 (mod 8) can be expressed in the form x2− 2y2, x, y ∈ Z.

Also, 2 = 12 + 12 = 22 − 2(1)2 and
(

p+1
2

)2
− 4

(
p−1
4

)2
= p if p ≡ 1 (mod 4).

Next, suppose that a1, a2, . . . , ak ∈ Z\{−1,−2}. We claim that there is a prime
p ≡ 7 (mod 8) not covered by

C = {x2 + aiy
2 : x, y ∈ Z, i = 1, 2, . . . , k}.

Considering congruence modulo 8, we see that any prime p ≡ 7 (mod 8) is not
in {x2 +y2, x2 +2y2, x2±2ny2 : n ≥ 2}. Hence we may assume that each ai has
an odd prime factor pi (not necessarily distinct). For each i, let ri be a quadratic
nonresidue modulo pi (ri = rj if pi = pj), and let m = lcm(8, p1, p2, . . . , pk).
By the Chinese remainder theorem, there is a set S = {mt + b : t ∈ Z} such
that ∀x ∈ S, x ≡ 7 (mod 8) and x ≡ ri (mod pi) for each i. By Dirichlet’s
theorem, there is a prime (infinitely many in fact) p ∈ S. Clearly, this p is not
covered by C.

Similarly, if a1, a2, . . . , ak ∈ Z \ {−1, 2}, then there is a prime p ≡ 3 (mod 8)
not covered by C; and if a1, a2, . . . , ak ∈ Z \ {±4,±1}, then there is a prime
p ≡ 5 (mod 8) not covered by C.
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O51. Find a closed form for p(x) =
M∏

a=1

N∏
b=1

(x− e
2πi a

M · e
2πi b

N ),

where M and N are positive integers.

Proposed by Alex Anderson, New Trier High School,Winnetka, IL

Solution by Alex Anderson, New Trier High School,Winnetka, IL

I claim that:
p(x) =

(
xlcm(M,N) − 1

)gcd(M,N)

The expression is a polynomial in x. Consider each root, we have that root
= f(t) = ε2πit where t is in the form a

M + b
M where a ∈ 1, 2, · · · ,M and

b ∈ 1, 2, · · · , N.

Let d = gcd(M,N) and M = dM ′, and N = dN ′. We have that

t =
aN ′ + bM ′

dM ′N ′ .

Evidently, we must consider the numerator mod dM ′N ′ since f(t + 1) = f(t).
We want to find which dM ′N ′th roots of unity are roots of the polynomial.

Equivalently, we want to fund which values of p there are integer solutions (x, y)
for xN ′ + yM ′ ≡ p mod dM ′N ′.

Lemma1:

Suppose N ′ and M ′ are relatively prime positive integers, d is a positive integer,
N = dN ′,M = dM ′, x ∈ 1, 2, · · · , N, and x ∈ 1, 2, · · · , N. Then there are
solutions (x, y) for each integer 1 ≤ p ≤ dM ′N ′ for xN ′+yM ′ ≡ p mod dM ′N ′.

Proof:

In other words, given a fixed p, there exists (x, y, q) such that: xN ′ + yM ′ =
p + qdM ′N ′. This can be rearranged to be: [x]N ′ + [y − qdN ′] = p.

Consider the rems in the brackets. They are the only numbers not fixed. Be
Bezout’s lemma, there are solutions (a, b) = (x, y − qdN ′) for any integer p
because N ′ and M ′ are relatively primes and we are done.

Furthermore, suppose that (x0, y0) is a solutions, we also know that all solutions
are in the form (x0 + M ′t, y0 −N ′t) where t is an integer.

Lemma 2:

For the problem described in lemma 1, there are precisely d pairs of integers
(x, y) for each value of p.
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Solution:

We must consider the bounds on the values of x = x0 + M ′t and y − qdN ′ =
y0 −N ′t. We know that 0 ≤ x0 + M ′t ≤ M ⇒ −x0

M ′ ≤ t ≤ M−x0
d . It follows that

there are precisely d solutions for x since there are d values of t that satisfy
that inequality. We have d solutions (a, b) = (x, y) for each values of p; we just
need to assure that for (x, y, q), there is a solution q.

Now for each (x, y), we just need to have that 1 ≤ y−qdN ′ ≤ N. But N ′d = N,
so there is only one q.

By lemma 1, we have p distinct remainders mod dM ′N ′, all if which exist.
Equivalently, we have all of the dM ′N ′th roots of unity. By lemma 2, each of
these roots occurs d times. This gives us a total of (d)(dM ′N ′ = MN) roots,
which is the degree of our polynomial. Hence, we have accounted for all roots.
It follows that our polynomial is:

p(x) =
(
xdM ′N ′ − 1

)d
=

(
xlcm(M,N) − 1

)gcd(M,N)

as desired.
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O52. Suppose n is not a multiple of 3. Find all integer solutions of

(a2 − bc)n + (b2 − ca)n + (c2 − ab)n = 1.

Proposed by H. van der Berg

Solution by Gabriel Dospinescu, ”Louis le Grand” College, Paris

We claim that the polynomial f(a, b, c) = (a2− bc)n + (b2− ac)n + (c2− ab)n is
divisible by a2 + b2 + c2 − ab− bc− ca. It will follow that for any solution the
last quantity equals 1 and thus (a − b)2 + (b − c)2 + (c − a)2 = 2, from where
we can easily find all solutions. COnsider A a circulant matrix of permutation
and define B = xI + yA + zA−1. We can easily verify that we can write
det(B) = xn + yn + zn + x1x

n−2yz + x2x
n−4y2z2 + ... with integers xi and

evaluating this at a = b = c = 1 (and taking into accound that n is not a
multiple of 3, thus det(I +A+A−1) = 3) we deduce that x1 +x2 + ... = 0, thus
det(B) = xn + yn + zn + k(x2 − yz) for an integer k. Also, x + y + z is clearly
an eigenvalue of B. Now, specialize x = a2 − bc, y = b2 − ca, z = c2 − ab and
observe that with this choice x2 − yz is divisible by a2 + b2 + c2 − ab− bc− ca.
This proves the claim and ends the solution.
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O53. Let ABC be a triangle and let w be its incircle. Denote by D,E, F the inter-
sections of w with BC, CA, AB, respectively. Let T ∈ AD ∩ w, M ∈ BT ∩ w,
N ∈ CT ∩ w. Let p1 be a circle tangent to w at T , and p2 a circle tangent to
w at D, so that p1 and p2 intersect on chord (XY ). Prove that X, Y,M,N lie
on the same circle.

Proposed by Cosmin Pohoata, Bucharest, Romania

Solution by Saturnino Campo Ruiz, Instituto de Enseanza Secundaria, Spain

Denote by O the intersection of BC with the tangent line to w at T . This
point is the pole of the line AD with respect to w. Consequently the cross
ratio (ODCB) = −1. For the cevians of T , if O′ = M ′N ′ ∩BC, the Menelaus’
theorem states (O′CB)(N ′BA)(M ′AC)=1, and the Ceva’s theorem
(DCB)(N ′BA)(M ′AC) = −1, (with (QRS) = QR/QS). Combining these
two, we get (O′CB) : (DCB) = −1 and that (BCDO′) is harmonic, then
O′ = O and the points O,M ′, N ′ are collinear. For the Brianchon’s theorem the
cevians AD,BE,CF are also concurrent (the Gergonne’s point of the triangle)
and also E,F, O are concurrent.

Lemma. MN and BC intersect at O.

Proof. The set of all lines through a given point is called a pencil of lines.
The point O define the pencil (of lines) O∗. If o ∈ O∗ and o meets the lines
TB, TC, TD in M,N∗, P ∗, then (OP ∗MN∗) = −1.

o

Figure 1

T

N'

A

M'

M
P*

N*

CDB O

Also we have AD is the polar line of O respect to w, for o ∈ O∗ this line meet
the conic w (a circle) in M,N” and the polar in P ∗, hence (OP ∗MN”) = −1
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If M ∈ BT ∩ w , the line OM ∈ O∗ yield two cross ratios: (OP ∗MN∗) =
(OP ∗MN”) = −1 with N∗ = OM ∩ CT and N” = OM ∩ w . Thus N∗ = N”
and N ∈ CT ∩ w implies N = N∗ = N”.

w

p2

p

axis(p1, p2)

axis(w, p2)
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Figure 3
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Now let p be the circle through X, Y,M . OT is the radical axis of w and
p1, BC is the radical axis of w and p2. Consequently O is the radical center
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of these circles. XY is the radical axis of p1 and p2 (and p) hence X, Y,O are
collinear. The power of the point O with respect to a circle p is OX · OY. We
have O = MN ∩ BC and is a radical Center of (w, p1, p2), thus Pow(O,w) =
OM = OX = Pow(O, p), hence n ∈ p.
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O54. Let p = 2q + 1 be a prime number greater than 3. Prove that p divides the
numerator of ∑

1≤i,j≤q, i+j>q

1
ij

,

where the sum is taken over all ordered pairs (i, j).

Proposed by Iurie Boreico, Harvard University

Solution by G.R.A.20 Problem Solving Group, Roma, Italy

Since q ≥ 2 then

∑
1≤i,j≤q,i+j>q

1
ij

= H2
q −

q∑
k=2

k−i∑
i=1

1
i(k − i)

= H2
q −

q∑
k=2

1
k

k−i∑
i=1

(
1
i

+
1

k − i

)

= H2
q − 2

q∑
k=2

Hk−1

k

= H2
q − 2

q∑
k=2

Hk

k
+ 2

q∑
k=2

1
k2

= H2
q − 2

q∑
k=2

Hk

k
+ 2H2

q

= H2
q −

(
H2

q + H2
q

)
+ 2H2

q

= H2
q .

The numbers 12, 22, · · · , q2 are all invertible squares modulo p and since the
inverse is unique 1−2, 2−2, · · · , q−2 are the same numbers in a different order.
Hence (note that p > 3)

H2
q =

q∑
k=2

k−2 ≡
q∑

k=2

k2 ≡ 6−1q(q + 1)(2q + 1) ≡ 0(mod p).

The denominator of the fraction H2
q is invertible modulo p, therefore p divides

the numerator.
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