
Junior problems

J43. In triangle ABC the median AM intersects the internal bisector BN
at P . Denote by Q the point of intersection of lines CP and AB. Prove that
triangle BNQ is isosceles.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

Solution by Magkos Athanasios, Kozani, Greece

Applying Ceva Theorem for the cevians AM,BN,CQ we get

QA

QB
· MB

MC
· NC

NA
= 1.

Because MB = MC we have QA
QB = NA

NC , that means QN is parallel to BC.
Thus ∠QNB = ∠NBC = ∠NBQ, where the last equation holds because BN
is the angle bisector of ∠ABC. Therefore triangle BNQ is isosceles.

Also solved by Andrea Munaro, Italy; Daniel Lasaosa, Universidad Pub-
lica de Navarra, Spain; Courtis G. Chryssostomos, Larissa, Greece; Vicente
Vicario Garcia, Huelva, Spain; Shukurjon Shokirov, Physical-Mathematical
Lyceum N1, Samarkand, Uzbekistan
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J44. Consider a triangle ABC and let ga, gb, gc and na nb, nc be the
Gergonne cevians and the Nagel cevians, respectively. Prove that

ga + gb + gc + 2 max(a, b, c) ≥ na + nb + nc + 2 min(a, b, c).

Proposed by Mircea Lascu, Zalau, Romania

Solution by Andrea Munaro, Italy

Let Ga, Gb, Gc and Na, Nb, Nc be the points of intersection of the Gergonne
and Nagel cevians with the triangle’s sides. Suppose without loss of generality
that a ≥ b ≥ c. Because the Nagel point is an isotomic conjugate of the
Gergonne point we have

GaNa = CGa −BGa, GbNb = CGb −AGb, GcNc = BGc −AGc.

Summing these we get GaNa + GbNb + GcNc = CGa + CGb + BGc − (BGa +
AGb + AGc) = a + CGb − c−AGc = a− c + (a−BGc)−AGc = 2(a− c).

By the Triangle Inequality na ≤ ga+GaNa, nb ≤ gb+GbNb, nc ≤ gc+GcNc.
Finally we get na + nb + nc ≤ ga + gb + gc + 2(a− c).

Also solved by Vicente Vicario Garcia, Huelva, Spain; Daniel Lasaosa,
Universidad Publica de Navarra, Spain
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J45. Let a and b be real numbers. Find all pairs (x, y) of real numbers
solutions to the system {

x + y = 3
√

a + b

x4 − y4 = ax− by

Proposed by Dr. Titu Andreescu, University of Texas at Dallas.

First solution by Arkady Alt, San Jose, California, USA

First, we will solve the original system with respect to a and b.{
a + b = (x + y)3

ax− by = x4 − y4 ⇐⇒
{

a (x + y) = y (x + y)3 + x4 − y4

b (x + y) = x (x + y)3 − x4 + y4 ⇐⇒

{
a (x + y) = x (x + y)

(
x2 + 3y2

)
b (x + y) = y (x + y)

(
y2 + 3x2

)
x + y can be equal to zero only if a = −b and in this case the original

system has infinitely many solutions (t,−t) , t ∈ R. Supposing that a + b 6= 0,
we have x + y 6= 0. Thus, we obtain{

a = x
(
x2 + 3y2

)
b = y

(
y2 + 3x2

) ⇐⇒
{

a + b = (x + y)3

a− b = (x− y)3
⇐⇒

{
x + y = 3

√
a + b

x− y = 3
√

a− b

⇐⇒

{
x =

3√a+b+ 3√a−b
2

y =
3√a+b− 3√a−b

2

.

Second solution by Daniel Campos Salas, Costa Rica

Using that x4 − y4 = (x− y)((x + y)3 − 2xy(x + y)), we have

(x− y)(a + b− 2xy(x + y)) = ax− by.

This implies that

bx− ay = 2xy(x + y)(x− y) = 2xy(x2 − y2).

Then,

(a− b)(x + y) = (ax− by)− (bx− ay) = (x4 − y4)− 2xy(x2 − y2)
= (x2 − y2)(x− y)2 = (x + y)(x− y)3.

If a + b 6= 0 then x + y 6= 0, so
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x− y = 3
√

a− b,

from where we conclude that

(x, y) =
(

3
√

a + b + 3
√

a− b

2
,

3
√

a + b− 3
√

a− b

2

)
.

If a + b = 0, then x + y = 0, so x4 − y4 = 0 = a(x + y) = ax− by. Then,
(x, y) = (k,−k) is a solution, but this is a particular case of the pair mentioned
above. Thus this case doesn’t add new solutions. It’s easy to verify that

(x, y) =
(

3
√

a + b + 3
√

a− b

2
,

3
√

a + b− 3
√

a− b

2

)
satisfies the system.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain;
Vicente Vicario Garcia, Huelva, Spain; Courtis G. Chryssostomos, Larissa,
Greece
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J46. A quadrilateral is called bicentric if it can be both inscribed in a circle
and circumscribed to a circle. Construct with a ruler and compass a bicentric
quadrilateral with all of its sidelengths distinct.

Proposed by Ivan Borsenco, University of Texas at Dallas

First solution by Vicente Vicario Garcia, Huelva, Spain

There is a classic result that establishes that if we can construct segments
with lengths a and b, then a + b, a − b, ab, a

b ,
√

a are also constructible. Ac-
cording to the Fuss theorem/Durrande theorem, if a quadrilateral is bicentric
then

d =
√

R2 + r2 − r
√

4R2 + r2,

where d is the distance between the incenter and the circumcenter of quadrilat-
eral ABCD. Construct two circles with d > 0 that satisfy this relation. Using
the famous theorem of Poncelet that says that we can start the construction
choosing whatever point P on the circle of radius R and drawing tangents to
the circle of radius r and will obtain a bicentric quadrilateral. Clearly if d > 0
there are a lot of quadrilaterals with all of their sidelengths distinct.

Second solution by Ivan Borsenco, University of Texas at Dallas

Construct a scalene triangle ABC. Let us construct the angle bisectors
and find the incenter I of the triangle ABC. The projections from I onto
triangle’s sides intersect AB,AC at D and E, respectively. Observe that D
and E are points of tangency of the incircle and AB and AC. Draw a circle
with center I and radius r = ID = IE.

Our desire is to use the triangle’s incircle as the incircle of the future
bicentric quadrilateral. The idea is to construct U ∈ AB and V ∈ AC such
that UV is antiparallel to BC and tangent to the incircle from the other side.
In other words ∠AUV = ∠ACB = γ and ∠AV U = ∠ABC = β. Thus we will
obtain bicentric quadrilateral BUV C.

Let us analyze quadrilateral BUV C. We have that I is the incircle with
radius r. The quadrilateral’s sides are equal to

BC = r cot β + r cot γ, BU = r cot β + r tan γ,

CV = r cot γ + r tanβ, UV = r tan γ + r tanβ

Clearly if β, γ 6= 45◦ then all sides are distinct. To construct U and V ,
construct segments DU and EV equal to r tan γ and r tanβ.
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J47. In triangle ABC let ma and la be the median and the angle bisector
from the vertex A, respectively. Prove that

0 ≤ m2
a − l2a ≤

(b− c)2

2
.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

Solution by Courtis G. Chryssostomos, Larissa, Greece

We know that m2
a = 2b2+2c2−a2

4 and l2a = bc((b+c)2−a2)
(b+c)2

. Thus

m2
a−l2a =

2b2 + 2c2 − a2

4
−bc

(
1− a2

(b + c)2

)
=

2b2 + 2c2 − a2 − 4bc

4
+

a2

(b + c)2
=

=
2(b− c)2 − a2

4
+

a2bc

(b + c)2
=

2(b2 − c2)2 − a2(b + c)2 + 4a2bc

4(b + c)2
=

2(b− c)2(b + c)2 − a2(b− c)2

4(b + c)2
=

(b− c)2(2(b + c)2 − a2)
4(b + c)2

≥ 0, as b + c > a.

To prove the right hand side of the inequality it suffices to prove

(b− c)2(2(b + c)2 − a2)
4(b + c)2

≤ (b− c)2

2
,

or
2(b + c)2 − a2 ≤ 2(b + c)2,

that is clearly true and we are done.

Also solved by Son Ta Hong, Ha Noi University of Education, Vietnam;
Magkos Athanasios, Kozani, Greece; Arkady Alt, San Jose, California, USA;
Vicente Vicario Garcia, Huelva, Spain; Daniel Lasaosa, Universidad Publica
de Navarra, Spain
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J48. Let a, b, c be positive real numbers. Prove that
a

b(b + c)2
+

b

c(c + a)2
+

c

a(a + b)2
≥ 9

4(ab + bc + ca)
.

Proposed by Ho Phu Thai, Da Nang, Vietnam

First solution by Jingjun Han, High School Affiliated to Fudan University,
China

Using the Cauchy-Schwartz inequality we have

(ab+bc+ca)
(

a

b(b + c)2
+

b

c(c + a)2
+

c

a(a + b)2

)
≥
(

a

b + c
+

b

c + a
+

c

a + b

)2

.

Thus it is enough to prove that(
a

b + c
+

b

c + a
+

c

a + b

)2

≥ 9
4
⇐⇒

a

b + c
+

b

c + a
+

c

a + b
≥ 3

2
,

which is true from Nesbitt’s inequality.

Second solution by Vardan Verdiyan, Yerevan, Armenia

Our inequality is equivalent to∑
c · a2(a + b)2(a + c)2 ≥ 9

4
· abc

ab + bc + ca
· (a + b)2(b + c)2(c + a)2.

Using the Cauchy-Schwartz inequality we get(∑
c · a2(a + b)2(a + c)2

)
· (
∑ 1

c
) ≥ (

∑
a(a + b)(a + c))2.

Thus it is enough to prove(∑
a(a + b)(a + c)

)2
≥ 9

4
(a + b)2(b + c)2(c + a)2

or

2(a(a + b)(a + c) + b(b + c)(b + a) + c(c + a)(c + b)) ≥ 3(a + b)(b + c)(c + a).

The last inequality is equivalent to
∑

(a + b)(a− b)2 ≥ 0 and we are done.

Also solved by Josep Marc Mingot; Hoang Duc Hung, Hanoi, Vietnam;
Paolo Perfetti, Mathematical Department of ”Tor Vergata” University, Roma,
Italy; Daniel Campos Salas, Costa Rica; Courtis G. Chryssostomos, Larissa,
Greece; Magkos Athanasios, Kozani, Greece; Shukurjon Shokirov, Physical-
Mathematical Lyceum N1, Samarkand, Uzbekistan; Orif Ibrogimov, SamSU,
Samarkand, Uzbekistan
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Senior problems

S43. Consider an acute triangle ABC and let Γ be its circumcircle, centered
at O. Denote by D,E, and F the midpoints of the minor arcs BC, CA, and
AB, respectively. Let ΓA be the circle through O which is tangent to Γ at
D. Define analogously ΓB and ΓC . Let OA be the intersection of ΓB and ΓC ,
different from O. Define analogously OB and OC . Prove that triangles ABC
and OAOBOC are similar if and only if ABC is equilateral.

Proposed by Daniel Campos Salas, Costa Rica

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Since ΓA is tangent to Γ at D, then D, O and the center of ΓA are
collinear. It follows that the center of ΓA ∈ OD, therefore OD is a diam-
eter of ΓA. Analogously OE, OF are diameters for ΓB,ΓC , respectively. We
have ∠OOAE = ∠OOAF = π

2 , and OA is on EF . Furthermore, Γ is the
circumcircle of ∆DEF , and OA is the foot of the perpendicular from O to
EF . Thus OA is the midpoint of EF , and similarly OB is the midpoint of FD
and OC is the midpoint of DE. Hence ∆OAOBOC is similar to ∆DEF . The
problem then reduces to proving that ∆DEF and ∆ABC are similar if and
only if ∆ABC is equilateral.

Observe that

∠EOD = ∠EOC + ∠COD =
∠AOC

2
+

∠COB

2
= ∠B + ∠A,

∠F =
∠EOD

2
=

∠A + ∠B

2
,

and similarly ∠E = ∠C+∠A
2 and ∠D = ∠B+∠C

2 . Assume without loss of
generality that ∠A ≥ ∠B ≥ ∠C. Then ∠F ≥ ∠E ≥ ∠D, and ∆DEF and
∆ABC are similar if and only if ∠A = ∠B (for ∠A to be equal to ∠F ) and
∠C = ∠B (for ∠C to be equal to ∠D), or if and only if ∆ABC is equilateral.

Also solved by David E. Narvaez, Universidad Tecnologica de Panama
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S44. Let C(O) be a circle and let P be a point outside of C. Tangents
from P intersect the circle at A and B. Let M be the midpoint of AP and let
N = BM ∩ C(O). Prove that PN = 2MN .

Proposed by Pohoata Cosmin, Bucharest, Romania

First solution by Francisco Javier Garcia Capitan, Cordoba, Spain

Let us calculate the power of point M with respect to the circle C(O), we
have MN ·MB = MA2. Let N ′ be the reflection of N with respect to M .
Because

N ′M ·MB = MN · MA2

MN
= MA2 = MP ·MA,

we get that N ′ABP is a cyclic quadrilateral.

Now, since PM = MA and NM = MN ′, the quadrilateral N ′ANP is a
parallelogram.

Denote by α = ∠NAP and β = ∠NAB. Observe that ∠NAP = ∠N ′PA =
∠N ′BA = α and ∠APN = ∠N ′AP = ∠N ′BP = ∠NAB = β.

Thus in the triangle N ′AB we have ∠AN ′B = π − 2α − 2β, and in the
triangle PN ′N we have ∠N ′NP = π − 2α − 2β and ∠PN ′N = α + β. It
follows that triangle NN ′P is isosceles with NP = NN ′. Therefore NP =
NN ′ = 2MN and we are done.

Second solution by Daniel Campos Salas, Costa Rica

Let α = ∠BAN = ∠PBN and β = ∠ABN = ∠PAN . Then ∠ABP =
∠BAP = α + β, ∠APB = 180− 2(α + β), and ∠AMB = 180− (α + 2β).

Since AreaABM = AreaPBM we have that BP sinα = AB sinβ, which
implies that

sinα =
AB

BP
· sinβ =

sin 2(α + β)
sin(α + β)

· sinβ

= 2 sinβ cos(α + β) = sin(α + 2β)− sinα.

It follows that 2 sin α = sin(α + 2β), or

1
2

=
sinα

sin(α + 2β)
=

sinα

sin β
· sinβ

sin(α + 2β)
=

BN

AN
· MN

AN
.
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Then, AN2 = 2BN ·MN . The power of M with respect to C(O) equals

1
4
PA2 = MA2 = MN ·MB = MN2 + MN ·BN = MN2 +

1
2
AN2. (1)

Because MN is a median, it follows that

MN2 =
1
2
AN2 +

1
2
PN2 − 1

4
PA2. (2)

From (1) and (2) it follows that 2MN2 =
1
2
PN2, so PN = 2MN .

Third solution by David E. Narvaez, Universidad Tecnologica de Panama

Let Q and R be the points of intersection of PN with AB and C (O)
(R 6= N). Let S be the midpoint of PN and let T be the point of intersection
of AN with PB. We claim that BR is parallel to PA. Then

∠APR = ∠PRB = ∠NAB

and, since ∠NBA = ∠NAP (because PA is tangent to C (O))

∠TNB = ∠NAB + ∠NBA = ∠NPA + ∠PAN = ∠PNT

but ∠TNB = ∠MNA and MS is parallel to AN , so

∠SMN = ∠MNA = ∠PNT = ∠MSN

which proves that MN = SN .
To prove our claim, let X be the point of intersection of BR and PN .

Since AB is the polar line of P with respect to C (O), points P , N , Q and R
are harmonic conjugates. Then P , M , A and X are harmonic conjugates too,
so

PM

MA
=

PX

XA
= 1

whice implies that X is a point at the infinity, as we wanted to prove.

Also solved by Son Ta Hong, Ha Noi University of Education, Vietnam;
Courtis G. Chryssostomos, Larissa, Greece; Vicente Vicario Garcia, Huelva,
Spain; Vardan Verdiyan, Yerevan, Armenia
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S45. Consider two sequences of integers, (an) and (bn) such that
|an+2 − an| ≤ 2 for all n in Z and am + an = bm2+n2 , for all m,n in Z. Prove
that there exist at most 6 distinct numbers in the sequence an.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Iurie Boreico, Moldova

We start with an observation that every number divisible by 4 can be
written as (n + 2)2 − n2. Indeed, 4k = (k + 1)2 − (k − 1)2.

Now let m,n have the same parity. Then m2 − n2 is divisible by 4, thus
can be written as (k + 2)2 − k2. Therefore n2 + (k + 2)2 = m2 + k2 and
an + ak+2 = am + ak or an − am = ak+2 − ak. We deduce that |am − an| ≤ 2.
So any two numbers from the sequence (a2k)k∈Z differ by at most 2. It is not
difficult to conclude that they can take at most three different values (just
take a the smallest value so the possible values can be only (a, a + 1, a + 2).
The same holds for the sequence (a2k+1)k∈Z so there can be also at most three
possible values for the members of odd indices, summing for a total of at most
six values.
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S46. Let ABC be a triangle and let D,E, F be the points of tangency of
the incircle with the sides of the triangle. Prove that the centroid of triangle
DEF and the centroid of triangle ABC are isogonal if and only if triangle
ABC is equilateral.

Proposed by Pohoata Cosmin, Bucharest, Romania

Solution by Daniel Campos Salas, Costa Rica

It is not difficult to conclude that if triangle ABC is equilateral then the
condition holds. Suppose that the condition holds, we will prove that the
triangle is equilateral. Let a, b, c be the lengths of sides BC, CA, AB, and
assume without loss of generality that A is the origin. We have that

BD

CD
=

s− b

s− c
,
AE

AB
=

s− a

c
,
AF

AC
=

s− a

b
,

which implies that

−→
D =

(s− c)
−→
B + (s− b)

−→
C

a
,
−→
E =

(s− a)
−→
B

c
,
−→
F =

(s− a)
−→
C

b
.

Let G′ be the centroid of triangle DEF . Then,

−→
G′ =

(
s− a

c
+

s− c

a

)
−→
B +

(
s− a

b
+

s− b

a

)
−→
C

3
. (1)

On the other hand, let K be the Lemoine point, which is isogonal to the
centroid, and let L,M,N be the intersections of AK, BK,CK with BC, CA, AB,
respectively. It is well-known that

AN

BN
=

b2

a2
,
AM

CM
=

c2

a2
,
BL

CL
=

c2

b2
.

From van Aubel’s theorem applied to K, we deduce that

AK

KL
=

AN

BN
+

AM

CM
=

b2 + c2

a2
.

Then,
−→
L =

b2−→B + c2−→C
b2 + c2

, and
−→
K =

b2−→B + c2−→C
a2 + b2 + c2

. (2)

We have that G′ = K. From (1) and (2) it follows that

s− a

c
+

s− c

a
3

=
b2

a2 + b2 + c2
and

s− a

b
+

s− b

a
3

=
c2

a2 + b2 + c2
.
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After some manipulations it follows that these equations are equivalent to

6ab2c = (a2 + b2 + c2)(ab + 2ac + bc− a2 − c2) and
6abc2 = (a2 + b2 + c2)(2ab + ac + bc− a2 − b2).

Thus
b

c
=

ab + 2ac + bc− a2 − c2

2ab + ac + bc− a2 − b2
,

or

(b− c)(a2 + b2 + c2 − 2a(b + c)) = 0.

Suppose that b 6= c. Then,

a2 + b2 + c2 = 2a(b + c).

We have that
s− a

c
+

s− c

a
3

=
b2

a2 + b2 + c2

is equivalent to

6ab2c = (a2 + b2 + c2)(ab + 2ac + bc− a2 − c2).

Then,

ab + 2ac + bc− a2 − c2 = (ab + bc) + (2ac− a2 − c2)
= b(a + c) + (b2 − 2ab)
= b(b + c− a).

It follows, that

6ab2c = (a2 + b2 + c2)(ab + 2ac + bc− a2 − c2)

⇔ 6ab2c = 2a(b + c) · b(b + c− a) ⇔ 3bc = (b + c)(b + c− a)

⇔ 2a(b + c) = 2(b2 − bc + c2) ⇔ a2 + b2 + c2 = 2b2 − 2bc + 2c2

⇔ a2 = (b− c)2,

which contradicts the triangle inequality. We conclude that b = c. Then,
2b− a

2b
+

a

2a
3

=
b2

a2 + 2b2
,

or

a(a− b)(a− 2b) = 0.

If a = 2b, then a = b + c, which contradicts the triangle inequality. Then,
a = b from where we conclude that the triangle ABC is equilateral, and this
completes the proof.
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S47. Consider an n × n grid filled with ones. A move consists of taking
a square with numbers (a, b, c, d) and rewriting the entries in one of the two
following ways:

Prove that no matter how one makes moves, at one point there is only one
nonzero entry on the table. Also prove that the value of this entry is unique.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Iurie Boreico, Moldova

We correct the problem: we will have a single non-zero entry unless one
makes the same moves for an infinite number of times, thus sticking up the
configuration.

Label the rows and columns from the lower-right corner and assign to
the table the quantity

∑
0≤i,j≤n 2i+j−2ai,j , where ai,j is the element in the

square labeled (i, j). It’s straightforward to check that the allowed operations
preserve this quantity, so it will always be the same. In the beginning it was

A = 1 + 2 · 2 + 4 · 3 + . . . + 2n−1 · n + 2n · (n− 1) + . . . + 22n−2.

This value can actually be computed, but we only need that it is odd.
Next, note that any ”normal” operation increases the sum of squares of

entries of the table (a ”normal” operations is one which actually produces
a change in the table). From the other this sum cannot increase indefinitely
because each entry in the table is at most A. Thus there is a moment when we
cannot perform a ”normal” operation anymore, or we have reached a situation
where there is one non-zero number. Still, we note that if in the 2 × 2 table
considered the ”a” entry is non-zero then the operation is ”normal”. Thus all
entries except the ones on the final row and column are non-zero. It is now
easy to see how we can increase the sum of squares by operations if an entry
except the lower-right one is non-zero.

So we have proven that we have one non-zero entry at a moment. It
remains to prove it is unique. Indeed, it must be placed in the lower-right
square otherwise A would be negative which is wrong. And in this case it
must equal to the fixed value A.
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S48. Consider an equilateral triangle divided into 16 congruent equilateral
triangles. Prove that no matter how we label these triangles with the numbers
1 through 16, there will be two adjacent triangles whose labels differ by at
least 4.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Ivan Borsenco, University of Texas at Dallas

Divide the region in three regions A = {A1, A2, A3}, B = {B1, B2, B3},
and C = {C1, C2, C3, C4, C5, C6, C7, C9, C10. Let us define the length of path
between two triangles to be the number of ”steps” it would take to travel
between them (a step being from one triangle to another with whom it shares
a side). For example, the length of path between A1 and A2 is 6. Observe
that the length of path between any triangles in C is 4.

Assume that there exists a configuration such that the difference between
the labels of some two adjacent triangles is less or equal to 3.

The first step is to prove that in such a configuration, the labels 1 and
16 should lie in A. Suppose 1 lies in C. Observe that there exist two Ai, Aj ,
say A1, A2, with the distance no more than 4 from 1. It follows that only
triangles A3, B3 are at least 5 apart from 1. By the Pigeonhole Principle one
among the numbers 14, 15, 16 will be at most 4 steps from 1. The difference
between numbers is at least 13, hence there will be two adjacent triangles with
difference at least 4. If 1 lies in Bi then observe that we can interchange it
with the number in Ai and the big triangle still satisfies the condition.

Suppose A1 = 1 and A2 = 16. The second step is to prove that A3 contains
either 2 or 15. Clearly the numbers 2, 15 cannot lie both in C, because the
length of path between them is at most 4. Suppose 2 lies outside C.

1st case: 2 lies in B2, which is clearly impossible.
2nd case: 2 lies in B3, then we interchange it with the number in A3 and

we are done.
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3rd case: 2 lies in B1. Then 15 should lie in C5 or C7. If 15 lies in C5, C7,
otherwise 15 lies in A3 and we are done. From here we deduce that 3 lies in
C1 or C2. Observe that 3 cannot lie in C2 because 16 lies in A2 the length is
4 and the difference between them is 13. Therefore 3 lies in C1. The length of
path between C1 and C5 or C7 is 4 and the difference between them is 12. It
follows on this path the difference between every adjacent triangle is 3. Thus
C9 = 6, C10 = 9, C6 = 12.

The next observation is that triangles C2, C3, C4 do not contain numbers
13,14,15, because B1 = 2. They lie in B2, C5 and {A3, B3, C7}. Therefore one
of them lies in one of {A3, B3, C7}. Thus 4,5 cannot lie in C8, A3, B3, C7. Also
4,5 cannot lie in C3, C4, B2, C5. It follows that we have only just one place C1

for 4,5, contradiction. Finally, we proved that either 15 or 2 lie in A3.
Without loss of generality let 2 lie in A3. Numbers in C1, B1, C2, C7, B3, C2

are not greater than 8. As 1,2 are already in places, it follows that 3,4,5,6,7,8
lie in C1, B1, C2, C7, B3, C2. Numbers in C3, C6, C9 are greater than C2, C7, C8, C1

by at most 3. Impossible, because C3, C6, C9 = {9,10,11} and there will exist
a pair with the difference greater than 3.

The problem is solved.
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Undergraduate problems

U43. Let f : [0, 1] → R be a continuous function such that f(0) = f(1).
Prove that for any positive integer n there exists c ∈ [0, 1] such that

f(c) = f(c +
1
n

).

Proposed by Jose Luis Diaz-Barrero, Barcelona, Spain

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The case n = 1 clearly is true taking c = 0.
Let us define, for n ≥ 2, on the interval

[
0, n−1

n

]
, the real-valued function

gn (x) = f

(
x +

1
n

)
− f (x) .

Since f is continuous, so is gn. Note also that whenever gn (c) = 0, f
(
c + 1

n

)
=

f (c). Thus we need to prove that there exists at least one c in
[
0, n−1

n

]
such

that gn (c) = 0.
Now,

n−1∑
i=1

gn

(
i

n

)
= f (1)− f (0) = 0.

This is possible if either all the elements in the sum are 0, or at least one
is positive and at least one is negative. In the first case, gn (x) = 0 for
x = 1

n , 2
n , ..., n−1

n . In the second case, there are at least two values, a and b, in{
1
n , 2

n , ..., n−1
n

}
, and thus in

[
0, n−1

n

]
, such that gn (a) and gn (b) have opposite

signs. By the intermediate value theorem, there is at least one value c in (a, b)
such that gn (c) = 0.

Also solved by Paolo Perfetti, Mathematical Department of ”Tor Vergata”
University, Roma, Italy, Courtis G. Chryssostomos, Larissa, Greece
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U44. Let x, y be positive real numbers such that xy + y = yx + x. Prove
that x + y ≤ 1 + xy.

Proposed by Cezar Lupu, University of Bucharest, Romania

First solution by Vardan Verdiyan, Yerevan, Armenia

Without loss of generality assume x ≥ y and let us assume the contrary
x + y > 1 + xy. Then (1− x)(1− y) < 0,⇒ x > 1 > y > 0. By the Bernoulli’s
inequality, for every a, b ∈ R we have

(1) If a > 1 and b > −1 then (1 + b)a > 1 + ab,⇒

(1 + (y − 1))x > 1 + (y − 1)x.

(2) If 0 < a < 1 and b > 0 then (1 + b)a < 1 + ab,⇒

(1 + (x− 1))y < 1 + (x− 1)y.

Summing up these two inequalities we get

(1 + (y − 1))x + 1 + (x− 1)y > (1 + (x− 1))y + 1 + (y − 1)x,

or
yx + x > xy + y,

contradiction and the conclusion follows.

Second solution by Paolo Perfetti, Mathematical Department of ”Tor Ver-
gata” University, Roma, Italy

Assume the contrary x + y > 1 + xy. We prove that if

x > 0, y > 0, x + y > 1 + xy, then xy + y − yx − x > 0 .

Observe that x+ y > 1+xy is equivalent to (1−x)(1− y) < 0, namely to one
of the two conditions

1) 0 < y < 1, x > 1 2) y > 1, 0 < x < 1

It’s enough to consider case 1), because xy + y − yx − x is symmetric with
respect to the bisector of the first and the third quadrant.

Let 0 < a < 1 and f(y) .= ay − ya + y − a, where y > 1. Note that
limy→1+ f(y) = 0 and f ′(y) = ay ln a − aya−1 + 1 > a ln a − a + 1, because
ln a < 0, ay < a, and ya−1 < 1. Consider g(x) = x lnx− x + 1, x ∈ [0, 1]. We
have g′(x) = lnx + 1 − 1 = lnx < 0, g′(x) is decreasing on [0, 1], it follows
that g(x) ≥ g(1) = 0. Thus f ′(y) > a ln a− a + 1 > 0. It follows that f(y) is
increasing on [1,+∞) and f(y) ≥ f(1) = 0. Hence we get xy + y− yx−x > 0,
contradiction. It follows that x + y ≤ 1 + xy.

Also solved by Arkady Alt, San Jose, California, USA
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U45. Let A ∈ Mn(R) be a matrix that has zeros on the main diagonal
and all other entries are from the set {−1, 1}. Is it possible that detA = 0 for
n = 2007? What about for n = 2008?

Proposed by Aleksandar Ilic, Serbia

Solution by Vicente Vicario Garcia, Huelva, Spain

a) n is odd.
If A is antisymmetric matrix of odd order, A = −At, then det(A) = 0.

According to the Cauchy-Binet Theorem det(A · B) = det(A) · det(B), and
det A = det(At). We have

A = −At,⇒ det(−A) = det(At),⇒ − det(A) = det(A),⇒ det(A) = 0.

Now, if A is an antisymmetric matrix of odd order, that has zeros on the main
diagonal and all other entries are from the set {−1, 1}, det(A) = 0, and the
answer is true.

b) n is even
We prove that it is not possible that a matrix A of even order that has

zeros on the main diagonal and all other entries are from the set {−1, 1} is
such that det(A) = 0. We really prove more. We prove that it is not possible
that a matrix A of even order with entries {−1, 1} except only one zero for
every different column 2nd,..., nth with only one zero for every row, is such
det(A) = 0. This determinant is an odd number. We use mathematical
induction. For n = 2, if ε = ±1, then∣∣∣∣ε ε

ε 0

∣∣∣∣ = ±1,

∣∣∣∣ε 0
ε ε

∣∣∣∣ = ±1.

We assume that the proposition is true until n = 2k. Then for a matrix
n = 2k + 2 developing the original determinant we get that it is equal to the
sum of 2k + 1 odd non-zero determinants of the anterior form. Developing
its determinants again we obtain the sum of odd numbers, different from zero
and we are done.
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U46. Let k be a positive integer and let

an =
⌊(

k +
√

k2 + 1
)n

+
(

1
2

)n⌋
, n ≥ 0.

Prove that
∞∑

n=1

1
an−1an+1

=
1

8k2
.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

Solution by by Jose Hernandez Santiago, UTM, Oaxaca, Mexico

Let us consider the sequence bn, defined for n ≥ 0 as follows
b0 = 2
b1 = 2k
bn = 2k(bn−1) + bn−2.

Through generating functions we learn that for every n ∈ Z+ the correspond-
ing element of bn satisfies the following explicit formula:

bn = (k +
√

k2 + 1)n + (k −
√

k2 + 1)n.

Now, since the inequalities

bn ≤ (k +
√

k2 + 1)n +
(

1
2

)n

< bn + 1

hold for every n ∈ Z+, we conclude that

an =
⌊
(k +

√
k2 + 1)n +

(
1
2

)n⌋
= bn,

for every nonnegative whole number n. Then,

∞∑
n=1

1
an−1an+1

=
∞∑

n=1

1
bn−1bn+1

(3)

=
∞∑

n=1

(
1
2k

)(
1

bn−1bn
− 1

bnbn+1

)
(4)

=
1
2k

∞∑
n=1

(
1

bn−1bn
− 1

bnbn+1

)
=

1
8k2

. (5)

The last identity follows by telescoping our sum and using the fact that
limn→∞

1
bn

= 0.
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U47. Let P be an arbitrary point inside equilateral triangle ABC. Find
the minimum value of

1
PA

+
1

PB
+

1
PC

.

Proposed by Hung Quang Tran, Ha Noi National University, Vietnam

Solution by Hung Quang Tran, Ha Noi National University, Vietnam

We can assume that triangle ABC is an equilateral with side 1. Suppose
M has barycentric coordinates (x, y, z), x + y + z = 1 and x, y, z ≥ 0, because
M is inside the triangle ABC. Using distance formula we have

MA2 =
y + z

x + y + z
a2 − xy + yz + zx

(x + y + z)2
a2.

Therefore, with a = 1 and x + y + z = 1 we get

MA =
√

y2 + yz + z2, MB =
√

x2 + xz + z2, MC =
√

x2 + xy + y2.

Thus we need to find the minimum of

1√
y2 + yz + z2

+
1√

x2 + xz + z2
+

1√
x2 + xy + y2

,

when x + y + z = 1. We use Lagrange multipliers to find this minimum.
Assume without loss of generality 0 ≤ x ≤ y ≤ z < 1
1st case: x = 0, we want to prove

f(y, z) =
1√

y2 + yz + z2
+

1
y

+
1
z
≥ 4 +

2
√

3
3

.

Indeed

f(y, z) ≥ f(
y + z

2
,
y + z

2
) = 4 +

2
√

3
3

.

2nd case: 0 < x ≤ y ≤ z < 1. Let

F (x, y, z, λ) =
∑ 1√

x2 + xy + y2
+ λ(x + y + z − 1)

dF
dx = 0, dF

dy = 0, dF
dz = 0, then

−1
2

[
2x + y√

(x2 + xy + y2)3
+

2x + z√
(z2 + zx + x2)3

]
+ λ = 0,
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−1
2

[
2y + x√

(x2 + xy + y2)3
+

2y + z√
(y2 + yz + z2)3

]
+ λ = 0,

−1
2

[
2z + x√

(z2 + zx + x2)3
+

2z + y√
(y2 + yz + z2)3

]
+ λ = 0,

Adding them we get

λ
1
2

[
x + y√

(x2 + xy + y2)3
+

y + z√
(y2 + yz + z2)3

+
z + x√

(z2 + zx + x2)3

]
.

Inserting λ in the first equation we obtain

x
∑ 1√

(x2 + xy + y2)3
=

1√
(y2 + yz + z2)3

.

Analogously,

y
∑ 1√

(x2 + xy + y2)3
=

1√
(z2 + zx + x2)3

,

z
∑ 1√

(x2 + xy + y2)3
=

1√
(x2 + xy + y2)3

.

Hence
y2(z2 + zx + x2)3 = z2(x2 + xy + y2)3.

Let y = ax, z = bx, where 1 ≤ a ≤ b, we have

a2(b2 + b + 1)3 = b2(a2 + a + 1)3.

Clearly we get a = b. It follows y = z is a necessary condition for critical
points in the interior of the region 0 < x, y, z < 1. We have to prove

2√
x2 + xy + y2

+
1

y
√

3
≥ 4 +

2
√

3
3

,

where x + 2y = 1. Consider

g(y) =
2

3y2 − 3y + 1
+

1
y
√

3
≥ 4 +

2
√

3
3

,

where 1
3 ≤ y ≤ 1

2 , because x ≤ y ≤ z. Using differentiation it is not difficult
to check that the absolute minimum of g(y) on

[
1
3 , 1

2

]
is g(1

2) = 4 + 2
√

3
3 .

Thus 1
MA + 1

MB + 1
MC attains its minimum value 4+ 2

√
3

3 at M(1
2 , 1

2 , 0) and
other permutations. These points are the midpoints of the triangle’s sides.
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U48. Let n be an integer greater than 1 and let k ≥ 1 be a real num-
ber. For an n dimensional simplex X1X2 . . . Xn+1 define its k-perimeter by∑

1≤i<j≤n+1 |XiXj |k. Take now a regular simplex A1A2 . . . An+1 and consider
all simplexes B1B2 . . . Bn+1 where Bi lies on the face A1 . . . Ai−1Ai+1 . . . An.
Find, in terms of the k-perimeter of A1A2 . . . An+1, the minimal possible k-
perimeter of B1B2 . . . Bn+1.

Proposed by Iurie Boreico, Moldova

Solution by Iurie Boreico, Moldova

Let O be the center of our simplex A1A2 . . . An. We may assume OAi = 1.
We will prove the intuitive assertion that the minimal value is obtained

when Bi is the center of the corresponding face A1 . . . Ai−1Ai+1 . . . An+1, i.e.
equals 1

nk of the k-perimeter of A1A2 . . . An+1 (because in this case B1 . . . Bn+1

is obtained from A1A2 . . . An+1 via a homothety through O of magnitude 1
n).

Let us prove that the minimal value actually occurs. Pick up a random sim-
plex B1 . . . Bn and let S be its k-perimeter. OBi can be written as

∑
j 6=i cjOBj

where
∑

j 6=i cj = 1. Now its projection on the face A1 . . . Aj−1Aj+1 . . . An+1

will have length |cj | thus BiBj ≥ |cj | so its k-perimeter will have length at
least |cj |k. So if we want to have its perimeter not greater than S we infer
that |cj | ≤ k

√
S. Therefore cj is bounded and hence so are all of the Bi. Now

Weierstrass Theorem implies that there is a minimal value for the k-perimeter
and it is actually attained.

To proceed further, we define a well-known group of transformations on
Ai. For n = 2 these are the rotations with respect to O by 120 degrees and the
symmetries with respect to the lines OAi. For higher spaces we define them
using linear algebra.

Consider O as the origin of the coordinate system and let vi = OAi. We
know that v1 +v2 + . . .+vn+1 = 0 and any n of these vectors span Rn. For any
permutation π ∈ Sn+1 consider the linear transform Tπ that take vi to vπ(i) for
i = 1, . . . , n. As v1 +v2 + . . .+vn+1 = 0 it also takes vn+1 to vπ(n+1). As AiAj

does not depend on i, j for i 6= j we conclude that vivj =
v2

i +v2
j−(vi−vj)

2

2 =
2−A2

i A2
j

2 does not depend on i 6= j either. It is now also pretty clear to verify
directly that if v =

∑
civi, v

′ =
∑

c′iv
′
i then |v − v′|2 = |Tπ(v) − Tπ(v′)|2. So

Tπ preserves the distance between two points.
To proceed, we need a simple lemma.

If u, v ∈ Rn then (|u|k+|v|k)
2 ≥ |u+v

2 |k. The equality holds if and only if
u = v for k > 1 and if and only if u||v for k = 1.
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Pick now a set B1, . . . , Bn+1 that realize the minimum k-perimeter asked.
If k = 1 among all these sets we can select the one which gives the minimum
possible 2-perimeter.

Pick up a random permutation σ ∈ Sn+1 and let Ci = Tσ(Bi). Clearly
the simplex C1C2 . . . Cn+1 also satisfies our conditions and has the minimal
possible k-perimeter (actually the two simplices are congruent ). Then set
B′

σ(i) be the midpoint of the segment determined by Bσ(i) and Ci. It is clear
that |B′

σ(i)B
′
σ(j)|

k ≤ 1
2(|Bσ(i)Bσ(j)|k + |CiCj |k). We sum all these relations to

conclude that the k-perimeter of B′
1B

′
2 . . . B′

n+1 is not more than the possible
minimum. This implies that we have equalities everywhere. For k > 1 we
conclude that Bσ(i)Bσ(j) = CiCj . We make the same conclusion for k = 1
because otherwise by the same lemma the 2-perimeter of the simplex would
decrease, contradicting the fact that it is also minimal.

We have deduced that Bσ(i)Bσ(j) = Tσ(Bi)Tσ(Bj). Thus these four points
form a parallelogram so we deduce that Bσ(i)Tσ(Bi) = Bσ(j)Tσ(Bj) for any σ.
So all the vectors Bσ(i)Tσ(Bi) equal the same vector vσ. However as Bσ(i) and
Tσ(i) all belong to the sides A1A2 . . . Aσ(i)−1Aσ(i)+1 . . . An+1, vσ is parallel to it
i.e. perpendicular to vσ(i). Letting i run over 1, 2, . . . , n + 1 as v1, v2, . . . , vn+1

span Rn, we conclude vσ = 0 so Bσ(i) = Tσ(Bi)
Choose now σ be a transposition, for example transposing n and n + 1.

Introduce the unique matrix A ∈ Mn+1(R) = (aij) with zeroes on the diagonal
such that OBi =

∑n+1
j=1 aijvj . We see Bσ(1) = B1 so OBσ(1) =

∑n+1
i=2 a1,ivi. At

the same time Tσ(B1) =
∑n−1

i=2 a1,ivi +a1,n+1vn +a1,nvn+1. It implies a1,n+1 =
a1,n. Since n, n + 1 were taken arbitrarily, we conclude a1,2 = a1,3 = . . . =
a1,n+1. As there sum must be 1 for B1 to lie on (A2A3 . . . An+1) we deduce
a1,2 = a1,3 = . . . = a1,n+1 = 1

n so B1 is the center of the face A2A3 . . . An+1.
We reason similarly for B2, B3, . . . , Bn+1 to finish the problem.

Remarks:
1. The above reasoning shows that for k > 1 the only case for equality

occurs when Bi are the corresponding centers of the faces. The reasoning fails
for k = 1, however a more careful analysis of the matrix A can lead us to the
same conclusion. The reader is encouraged to do this himself, if any interested
reader exists.

2. The main idea of this problem is to consider the linear transformations
of the plane that preserve the distance and permute the vertices of the simplex
A1A2 . . . An+1. The same idea could be used to other problems that arise when
defining a k-perimeter in other way. Particularly we could define a (symmetric
but non-transitive) relation ∼ on 1, 2, . . . , n + 1 and define the k-perimeter as∑

i∼j AiA
k
j . For such generalizations the difficulties rise considerably because

we cannot take any permutation σ anymore, but only the ones that maintain
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the relation ∼ unchanged. For example at the Mathematical Competition
for Former Soviet-Union Countries in 2005 the k-perimeter of a tetrahedron
A1A2A3A4 was defined as A1A2 + A2A3 + A3A4 + A4A1. The reader is en-
couraged to tackle this problem using the same method (but this time only
cyclic permutations will work). Note that this problem was the inspiration for
the mine.
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Olympiad problems

O43. Let a, b, c be positive real numbers. Prove that√
b + c

a
+

√
c + a

b
+

√
a + b

c
≥

√
16(a + b + c)3

3(a + b)(b + c)(c + a)
.

Proposed by Vo Quoc Ba Can, Can Tho University, Vietnam

First solution by Arkady Alt, San Jose, California, USA

Let us solve the following inequality√
y + z

x
+
√

z + x

y
+

√
x + y

z
≥

√
16(x + y + z)3

3(x + y)(y + z)(z + x)
.

Let a = y+z, b = z+x, c = x+y, and s = x+y+z = a+b+c
2 . Observe that

a, b, c determine triangle ABC with semiperimeter s, area F , and circumradius
R. Using our notations we can rewrite our inequality√

a

s− a
+

√
b

s− b
+
√

c

s− c
≥
√

16s3

3abc
⇐⇒

∑
cyc

√
(s− b) (s− c)

bc
≥ 4√

3
· Fs

abc
=

1√
3
· s

R
.

We know that s
R = sinA + sinB + sinC = 4 cos A

2 cos B
2 cos C

2 and

sin
A

2
=

√
(s− b) (s− c)

bc
, sin

B

2
=

√
(s− c) (s− a)

ca
, sin

C

2
=

√
(s− a) (s− b)

ab
.

Our inequality is equivalent to

sin
A

2
+ sin

B

2
+ sin

C

2
≥ 4√

3
cos

A

2
cos

B

2
cos

C

2
.

Denote by α = π−A
2 , β = π−B

2 , γ = π−C
2 . Observe that α + β + γ = π and

α, β, γ ∈
(
0, π

2

)
. Consider now an acute-angled triangle A′B′C ′ with A′ =

α, B′ = β, C ′ = γ with the same notations a, b, c, s, R, r, for the lengths of
sides, the semiperimeter, the circumradius, and the inradius, respectively. Our
inequality can be rewritten as

cos α + cos β + cos γ ≥ 4√
3

sinα sinβ sin γ.
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Using the identity cos α + cos β + cos γ = R+r
R and Euler’s Inequality R ≥ 2r

we get cos α + cos β + cos γ ≥ 3r
R . Also we know sin α sinβ sin γ = abc

8R3 =
4Rrs
8R3 = rs

2R2 . Thus, it suffices to prove

4√
3
· rs

2R2
≤ 3r

R
or 2s ≤ 3

√
3R,

that is clear from the famous fact 9R2 ≥ a2 + b2 + c2 ≥ (a + b + c)2

3
=

4s2

3
.

Second solution by Kee-Wai Lau, Hong Kong, China

Our inequality is homogeneous, therefore we can assume that a+b+c = 1.
Let us rewrite it in the following form

b + c√
a

√
(c + a)(a + b) +

c + a√
b

√
(a + b)(b + c) +

a + b√
c

√
(b + c)(c + a) ≥ 4

√
3

3
.

We have

b + c√
a

√
(c + a)(a + b) =

(
1√
a
−
√

a

)√
(c + a)(a + b) =

√
1 +

bc

a
−
√

a
√

a + bc.

Using similar expressions for c+a√
b

√
(a + b)(b + c) and a+b√

c

√
(b + c)(c + a) we

see that the left hand side is equal to S1 − S2, where

S1 =

√
1 +

ab

c
+

√
1 +

bc

a
+
√

1 +
ca

b

and
S2 =

√
a
√

a + bc +
√

b
√

b + ac +
√

c
√

c + ab.

From the AM-GM inequality we have

ab + bc + ca ≤ 1
3
, a2 + b2 + c2 ≥ 1

3
,

ab

c
+

bc

a
+

ca

b
≥ 1.

Let us prove that S1 ≥ 2
√

3. Using the AM-GM inequality we have(
S1

3

)6

≥
(

1 +
ab

c

)(
1 +

bc

a

)(
1 +

ca

b

)
= 1+a2+b2+c2+

ab

c
+

bc

a
+

ca

b
+abc =

= 1 +
1
9
(a + b + c)2 +

8
9
(a2 + b2 + c2) +

26
27

(
ab

c
+

bc

a
+

ca

b

)
+

Mathematical Reflections 3 (2007) 27



+ab

(
1

3
√

3c
−
√

c

3

)2

+ bc

(
1

3
√

3a
−
√

a

3

)2

+ ac

(
1

3
√

3b
−
√

b

3

)2

≥

≥ 1 +
1
9

+
(

8
9

)(
1
3

)
+

26
27

=
64
27

.

From the Cauchy-Schwarz inequality we have

S2 ≤
√

a + b + c ·
√

(a + bc) + (b + ca) + (c + ab) =

=
√

1 + ab + bc + ca ≤
√

1 +
1
3

=
2
√

3
3

.

Thus S1 − S2 ≥ 2
√

3− 2
√

3
3 = 4

√
3

3 and we are done.

Third solution by Pham Huu Duc, Ballajura, Australia

Using Holder Inequality we get(∑
cyc

√
b + c

a

)2∑
cyc

a(b + c)2 ≥ 8(a + b + c)3.

It suffices to prove that

3(a + b)(b + c)(c + a) ≥ 2
∑
cyc

a(b + c)2.

The inequality is equivalent to

3

(∑
cyc

a(b2 + c2) + 2abc

)
≥ 2

(∑
cyc

a(b2 + c2) + 6abc

)
or ∑

cyc

a(b2 + c2) ≥ 6abc,

which is true from the AM-GM inequality.

Also solved by Jingjun Han, High School Affiliated to Fudan University,
China; Orif Ibrogimov, SamSU, Samarkand, Uzbekistan; Diyora Salimova,
Lyceum N1, Samarkand, Uzbekistan; Paolo Perfetti, Mathematical Depart-
ment of ”Tor Vergata” University, Roma, Italy; Daniel Campos Salas, Costa
Rica; Magkos Athanasios, Kozani, Greece; Vardan Verdiyan, Yerevan, Arme-
nia; Tigran Sloyan, Yerevan, Armenia
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O44. Let ABCD be a cyclic quadrilateral and let O be the intersection of
its diagonals. Denote by Iab and Icd the centers of incircles of triangles OAB
and OCD, respectively. Prove that the perpendiculars from O, Iab, Icd to lines
AD, BD, AC, respectively, are concurrent.

Proposed by Mihai Miculita, Oradea, Romania

Solution by Vardan Verdiyan, Yerevan, Armenia

Let IcdH1, OH2 and IabH3 be the perpendiculars from Icd, O, Iab to lines
DB, BC, AC, respectively.

Denote by M1 the intersection point of lines OH2 and IcdH1 and by M2

the intersection point of lines OH2 and IabH3.
Note that if OM1 = OM2 then the lines IcdH1, OH2 and IabH3 are con-

current. Since ∠H1OM1 = ∠H2OB and ∆H1OM1,∆H2OB are right-angled
triangles ⇒

∆H1OM1 ∼ ∆H2OB,⇒ OM1 = OB · OH1

OH2
.

Analogously, OM2 = OC · OH3
OH2

. It suffices to prove that

OC · OH3

OH2
= OB · OH1

OH2
or OC ·OH3 = OB ·OH1.

Because IcdH1 ⊥ OD we have H1 is the point of tangency of the incircle of
triangle COD with the line OD. Thus OH1 = CO+DO−CD

2 . Similarly we get
OH3 = AO+BO−AB

2 . It is enough to prove that

OC · AO + BO −AB

2
= OB · CO + DO − CD

2
⇐⇒

OC(AO −AB) = OB(DO − CD).

Because ABCD is cyclic quadrilateral we have ∆AOB ∼ ∆DOC. Therefore

OB

OC
=

AO

DO
=

AB

CD
=

AO −AB

DO − CD
,

which completes the proof.

Also solved by Andrea Munaro, Italy; Tigran Sloyan, Yerevan, Armenia;
David E. Narvaez, Universidad Tecnologica de Panama
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O45. Consider a positive real number t. A grasshopper has a finite number
of pointwise nests. It can add new nests as follows: from two nests A and B

it can jump to point C with
−→
AC
−−→
AB

= t, and make C its nest. Prove that there

are points in the plane that cannot be made nests.
Proposed by Iurie Boreico, Moldova

Solution by Iurie Boreico, Moldova

Let x1, x2, . . . , xn be the affixes of the initial nests of the grasshopper. The
new nest C produced from the nests A,B with affixes a, b has affix b+k(b−a).
It is therefore straightforward by induction to show that each new next may
be represented as P (k, x1, x2, . . . , xn) where P is an integer polynomial in n+1
variables. It is known that the set of integer polynomials in n + 1 variables is
countable. Thus the set of all possible nests is also at most countable. As C
is uncountable, there are infinitely many points that cannot be made nests.
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O46. Let O and I be the circumcenter and the incenter of triangle ABC,
respectively. Denote by D the intersection of the incircle of ABC with BC
and by E and F the intersections of AI and AO with the circumcircle of ABC,
respectively. Let S be the intersection of FI and ED, M the intersection of
SC and BE, and N the intersection of AC and BF . Prove that M, I and N
are collinear.

Proposed by Pohoata Cosmin, Bucharest, Romania

Solution by Son Ta Hong, Ha Noi University of Education, Vietnam

Denote by D′ the intersection of AE and BC. Let R, r be the circumradius
and the inradius of triangle ABC. Without loss of generality suppose AB <
AC, we have

∠ID′D = ∠D′AC+∠D′CA = ∠EAB+∠AEB = 180−∠ABE = ∠EFA.

Thus 90◦ − ∠ID′D = 90◦ − ∠EFA and ∠EID = ∠FAI (1).
On the otherhand, looking at the power of a point I with respect to the

circumcircle and using Euler’s theorem we have

p(I) = IA · IE = 2R · r = AF · ID =⇒ IA

AF
=

ID

IE
(2)

From (1) and (2) we obtain

4AIF ∼ 4IDE, ⇒ ∠AFS = ∠AFI = ∠IED = ∠AES, ⇒ S ∈ (O).

Applying Pascal’s theorem to the hexagon ASCEFB we get M, I and N are
collinear.

Second solution by Tigran Sloyan, Yerevan, Armenia

At first we prove that S lies on the circumcircle of triangle ABC. Let T
be the intersection point of FI with the circumcircle and L,K be the points
of tangency of the incircle with the sides AC and AB, respectively.
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Then we have

∠ITA = ∠FTA = 90◦ = ∠ILA = ∠IKA.

It follows that points T,L,K and A lie on the circle with diameter AI.
Thus ∠TLA = ∠TKA which means that ∠TLC = ∠TKB. Also ∠TCL =
∠TCA = ∠TBA = ∠TBK and therefore triangles TCL and TBK are similar.
Hence

CT

BT
=

CL

BK
=

CD

BD
.

We get that TD is the angle bisector of ∠CTB, and therefore it passes through
E. Thus both ED and FI pass through T , ⇒ S ≡ T .

To complete the proof we consider the self-intersecting inscribed hexagon
AEBFTC. Using Pascal’s theorem we obtain that the intersection points of
the pairs of opposite sides are collinear. That is the intersection point of AE
and FT (point I),the intersection point of EB and TC (point M) and the
intersection point of BF and CA (point N) are collinear, as desired.
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O47. Consider the Fibonacci sequence F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1

for n ≥ 1. Prove that

n∑
i=0

(−1)n−iFi

n + 1− i

(
n

i

)
=


2Fn+1

n + 1
if n is odd

0 otherwise

Proposed by Gabriel Alexander Reyes, San Salvador, El Salvador

First solution by David E. Narvaez, Universidad Tecnologica de Panama

Observe that
1

n + 1− i

(
n

i

)
=

1
n + 1

(
n + 1

i

)
thus

n∑
i=0

(−1)n−i Fi

n + 1− i

(
n

i

)
=

n∑
i=0

(−1)n−i Fi

n + 1

(
n + 1

i

)
=

1
n + 1

n∑
i=0

(−1)n−i Fi

(
n + 1

i

)
and we are left to prove that

n∑
i=0

(−1)n−i Fi

(
n + 1

i

)
=
{

2Fn+1, if n is odd
0, otherwise

But is easy to prove that Fi = φi−(1−φ)i

√
5

, where φ =
√

5+1
2 . Thus

n∑
i=0

(−1)n−i Fi

(
n

i

)
=

n∑
i=0

(−1)n−i φi − (1− φ)i

√
5

(
n

i

)
=

=
1√
5

(
n∑

i=0

(
n + 1

i

)
(−1)n−i φi −

n∑
i=0

(
n + 1

i

)
(−1)n−i (1− φ)i

)
=

=
1√
5

[
− (−1 + φ)n+1 + φn+1 −

(
− (−1 + (1− φ))n+1 + (1− φ)n

)]
n∑

i=0

(−1)n−i Fi

(
n

i

)
=

1√
5

[
−
(
− (1− φ)n+1 + φn+1 + (−φ)n+1 + (1− φ)n

)]
Clearly, this last expression takes values of 0 if n is even and 2Fi if n is

odd, and we are done.
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Second solution by Tigran Sloyan, Yerevan, Armenia

Note that

1
n + 1− i

Ci
n =

1
n + 1− i

· n!
i!(n− i)!

=
1

n + 1
· (n + 1)!
i!((n + 1)− i)!

=
1

n + 1
Ci

n+1.

Then
n∑

i=0

(−1)n−iFi

n + 1− i
Ci

n =
1

n + 1

n∑
i=0

(−1)n−iFiC
i
n+1.

From Binet’s formula for Fibonacci numbers we have that for any positive
integer i

Fi =
1√
5

(
(
√

5 + 1
2

)i − (
1−

√
5

2
)i

)
.

We denote 1+
√

5
2 = x and 1−

√
5

2 = y then Fi = 1√
5
(xi − yi). Thus

1
n + 1

n∑
i=0

(−1)n−iFiC
i
n+1 =

1√
5(n + 1)

(
n∑

i=0

(−1)n−ixiCi
n+1−

n∑
i=0

(−1)n−iyiCi
n+1) =

=
1√

5(n + 1)
(

n∑
i=0

(−1)(n+1)−iyiCi
n+1 −

n∑
i=0

(−1)(n+1)−ixiCi
n+1)

We have that (a + b)m =
∑m

i=0 aibm−iCi
m, therefore

n∑
i=0

(−1)(n+1)−iyiCi
n+1 = (y − 1)n+1 − yn+1 = (−x)n+1 − yn+1

and
n∑

i=0

(−1)(n+1)−ixiCi
n+1 = (x− 1)n+1 − xn+1 = (−y)n+1 − xn+1

therefore

1
n + 1

n∑
i=0

(−1)n−iFiC
i
n+1 =

1
n + 1

(
1√
5
(xn+1−yn+1)+(−1)n+1 1√

5
(xn+1−yn+1)).

Hence
1

n + 1

n∑
i=0

(−1)n−iFiC
i
n+1 =

Fn+1(1 + (−1)n+1)
n + 1

=
2Fn+1

n+1 if n is odd
0 otherwise

Also solved by Jose Hernandez Santiago, UTM, Oaxaca, Mexico; Arkady
Alt, San Jose, California, USA; Daniel Campos Salas, Costa Rica
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O48. Let f ∈ Z[X] be a monic irreducible polynomial of degree n whose
zeros x1, x2, ..., xn are all real numbers. Let Sk = x2k

1 + x2k
2 + ... + x2k

n . Prove
that there exist a universal constant c > 0, such that

S1 · S2 · ... · Sn−1 ≥ c · e2n

n2

holds for all n.
Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Iurie Boreico, Moldova

Let f(x) = xn + a1x
n−1 + ... + an−1x + an = (x − x1)(x − x2)...(x − xn).

Clearly |an| = |x1 · x2 · ... · xn| ≥ 1. Using the AM-GM inequality we get

Sk = x2k
1 + x2k

2 + ... + x2k
n ≥ n|x1 · x2 · ... · xn|

2k
n ≥ n.

Thus we have

S1 · S2 · ... · Sn−1 ·
n2

e2n
≥ nn+1

e2n
≥ 1

e2
,

for n ≥ 1.
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