Junior problems

J43. In triangle $A B C$ the median $A M$ intersects the internal bisector $B N$ at P. Denote by Q the point of intersection of lines $C P$ and $A B$. Prove that triangle $B N Q$ is isosceles.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas
Solution by Magkos Athanasios, Kozani, Greece
Applying Ceva Theorem for the cevians $A M, B N, C Q$ we get

$$
\frac{Q A}{Q B} \cdot \frac{M B}{M C} \cdot \frac{N C}{N A}=1 .
$$

Because $M B=M C$ we have $\frac{Q A}{Q B}=\frac{N A}{N C}$, that means $Q N$ is parallel to $B C$. Thus $\angle Q N B=\angle N B C=\angle N B Q$, where the last equation holds because $B N$ is the angle bisector of $\angle A B C$. Therefore triangle $B N Q$ is isosceles.

Also solved by Andrea Munaro, Italy; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Courtis G. Chryssostomos, Larissa, Greece; Vicente Vicario Garcia, Huelva, Spain; Shukurjon Shokirov, Physical-Mathematical Lyceum N1, Samarkand, Uzbekistan

J44. Consider a triangle $A B C$ and let g_{a}, g_{b}, g_{c} and $n_{a} n_{b}, n_{c}$ be the Gergonne cevians and the Nagel cevians, respectively. Prove that

$$
g_{a}+g_{b}+g_{c}+2 \max (a, b, c) \geq n_{a}+n_{b}+n_{c}+2 \min (a, b, c) .
$$

Proposed by Mircea Lascu, Zalau, Romania
Solution by Andrea Munaro, Italy
Let G_{a}, G_{b}, G_{c} and N_{a}, N_{b}, N_{c} be the points of intersection of the Gergonne and Nagel cevians with the triangle's sides. Suppose without loss of generality that $a \geq b \geq c$. Because the Nagel point is an isotomic conjugate of the Gergonne point we have

$$
G_{a} N_{a}=C G_{a}-B G_{a}, G_{b} N_{b}=C G_{b}-A G_{b}, G_{c} N_{c}=B G_{c}-A G_{c} .
$$

Summing these we get $G_{a} N_{a}+G_{b} N_{b}+G_{c} N_{c}=C G_{a}+C G_{b}+B G_{c}-\left(B G_{a}+\right.$ $\left.A G_{b}+A G_{c}\right)=a+C G_{b}-c-A G_{c}=a-c+\left(a-B G_{c}\right)-A G_{c}=2(a-c)$.

By the Triangle Inequality $n_{a} \leq g_{a}+G_{a} N_{a}, n_{b} \leq g_{b}+G_{b} N_{b}, n_{c} \leq g_{c}+G_{c} N_{c}$. Finally we get $n_{a}+n_{b}+n_{c} \leq g_{a}+g_{b}+g_{c}+2(a-c)$.

Also solved by Vicente Vicario Garcia, Huelva, Spain; Daniel Lasaosa, Universidad Publica de Navarra, Spain

J45. Let a and b be real numbers. Find all pairs (x, y) of real numbers solutions to the system

$$
\left\{\begin{array}{c}
x+y=\sqrt[3]{a+b} \\
x^{4}-y^{4}=a x-b y
\end{array}\right.
$$

Proposed by Dr. Titu Andreescu, University of Texas at Dallas.
First solution by Arkady Alt, San Jose, California, USA
First, we will solve the original system with respect to a and b.

$$
\begin{aligned}
& \left\{\begin{array} { c }
{ a + b = (x + y) ^ { 3 } } \\
{ a x - b y = x ^ { 4 } - y ^ { 4 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
a(x+y)=y(x+y)^{3}+x^{4}-y^{4} \\
b(x+y)=x(x+y)^{3}-x^{4}+y^{4}
\end{array} \Longleftrightarrow\right.\right. \\
& \left\{\begin{array}{l}
a(x+y)=x(x+y)\left(x^{2}+3 y^{2}\right) \\
b(x+y)=y(x+y)\left(y^{2}+3 x^{2}\right)
\end{array}\right.
\end{aligned}
$$

$x+y$ can be equal to zero only if $a=-b$ and in this case the original system has infinitely many solutions $(t,-t), t \in \mathbb{R}$. Supposing that $a+b \neq 0$, we have $x+y \neq 0$. Thus, we obtain

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ a = x (x ^ { 2 } + 3 y ^ { 2 }) } \\
{ b = y (y ^ { 2 } + 3 x ^ { 2 }) }
\end{array} \Longleftrightarrow \left\{\begin{array} { l }
{ a + b = (x + y) ^ { 3 } } \\
{ a - b = (x - y) ^ { 3 } }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x+y=\sqrt[3]{a+b} \\
x-y=\sqrt[3]{a-b}
\end{array}\right.\right.\right. \\
& \Longleftrightarrow\left\{\begin{array}{l}
x=\frac{\sqrt[3]{a+b}+\sqrt[3]{a-b}}{2} \\
y=\frac{\sqrt[3]{a+b}-\sqrt[3]{a-b}}{2}
\end{array}\right.
\end{aligned}
$$

Second solution by Daniel Campos Salas, Costa Rica
Using that $x^{4}-y^{4}=(x-y)\left((x+y)^{3}-2 x y(x+y)\right)$, we have

$$
(x-y)(a+b-2 x y(x+y))=a x-b y
$$

This implies that

$$
b x-a y=2 x y(x+y)(x-y)=2 x y\left(x^{2}-y^{2}\right)
$$

Then,

$$
\begin{aligned}
(a-b)(x+y) & =(a x-b y)-(b x-a y)=\left(x^{4}-y^{4}\right)-2 x y\left(x^{2}-y^{2}\right) \\
& =\left(x^{2}-y^{2}\right)(x-y)^{2}=(x+y)(x-y)^{3}
\end{aligned}
$$

If $a+b \neq 0$ then $x+y \neq 0$, so

$$
x-y=\sqrt[3]{a-b}
$$

from where we conclude that

$$
(x, y)=\left(\frac{\sqrt[3]{a+b}+\sqrt[3]{a-b}}{2}, \frac{\sqrt[3]{a+b}-\sqrt[3]{a-b}}{2}\right)
$$

If $a+b=0$, then $x+y=0$, so $x^{4}-y^{4}=0=a(x+y)=a x-b y$. Then, $(x, y)=(k,-k)$ is a solution, but this is a particular case of the pair mentioned above. Thus this case doesn't add new solutions. It's easy to verify that

$$
(x, y)=\left(\frac{\sqrt[3]{a+b}+\sqrt[3]{a-b}}{2}, \frac{\sqrt[3]{a+b}-\sqrt[3]{a-b}}{2}\right)
$$

satisfies the system.

Also solved by Daniel Lasaosa, Universidad Publica de Navarra, Spain; Vicente Vicario Garcia, Huelva, Spain; Courtis G. Chryssostomos, Larissa, Greece

J46. A quadrilateral is called bicentric if it can be both inscribed in a circle and circumscribed to a circle. Construct with a ruler and compass a bicentric quadrilateral with all of its sidelengths distinct.

Proposed by Ivan Borsenco, University of Texas at Dallas

First solution by Vicente Vicario Garcia, Huelva, Spain

There is a classic result that establishes that if we can construct segments with lengths a and b, then $a+b, a-b, a b, \frac{a}{b}, \sqrt{a}$ are also constructible. According to the Fuss theorem/Durrande theorem, if a quadrilateral is bicentric then

$$
d=\sqrt{R^{2}+r^{2}-r \sqrt{4 R^{2}+r^{2}}}
$$

where d is the distance between the incenter and the circumcenter of quadrilateral $A B C D$. Construct two circles with $d>0$ that satisfy this relation. Using the famous theorem of Poncelet that says that we can start the construction choosing whatever point P on the circle of radius R and drawing tangents to the circle of radius r and will obtain a bicentric quadrilateral. Clearly if $d>0$ there are a lot of quadrilaterals with all of their sidelengths distinct.

Second solution by Ivan Borsenco, University of Texas at Dallas

Construct a scalene triangle $A B C$. Let us construct the angle bisectors and find the incenter I of the triangle $A B C$. The projections from I onto triangle's sides intersect $A B, A C$ at D and E, respectively. Observe that D and E are points of tangency of the incircle and $A B$ and $A C$. Draw a circle with center I and radius $r=I D=I E$.

Our desire is to use the triangle's incircle as the incircle of the future bicentric quadrilateral. The idea is to construct $U \in A B$ and $V \in A C$ such that $U V$ is antiparallel to $B C$ and tangent to the incircle from the other side. In other words $\angle A U V=\angle A C B=\gamma$ and $\angle A V U=\angle A B C=\beta$. Thus we will obtain bicentric quadrilateral $B U V C$.

Let us analyze quadrilateral $B U V C$. We have that I is the incircle with radius r. The quadrilateral's sides are equal to

$$
\begin{aligned}
& B C=r \cot \beta+r \cot \gamma, B U=r \cot \beta+r \tan \gamma, \\
& C V=r \cot \gamma+r \tan \beta, U V=r \tan \gamma+r \tan \beta
\end{aligned}
$$

Clearly if $\beta, \gamma \neq 45^{\circ}$ then all sides are distinct. To construct U and V, construct segments $D U$ and $E V$ equal to $r \tan \gamma$ and $r \tan \beta$.

J47. In triangle $A B C$ let m_{a} and l_{a} be the median and the angle bisector from the vertex A, respectively. Prove that

$$
0 \leq m_{a}^{2}-l_{a}^{2} \leq \frac{(b-c)^{2}}{2}
$$

Proposed by Dr. Titu Andreescu, University of Texas at Dallas
Solution by Courtis G. Chryssostomos, Larissa, Greece
We know that $m_{a}^{2}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}$ and $l_{a}^{2}=\frac{b c\left((b+c)^{2}-a^{2}\right)}{(b+c)^{2}}$. Thus

$$
\begin{aligned}
& m_{a}^{2}-l_{a}^{2}=\frac{2 b^{2}+2 c^{2}-a^{2}}{4}-b c\left(1-\frac{a^{2}}{(b+c)^{2}}\right)=\frac{2 b^{2}+2 c^{2}-a^{2}-4 b c}{4}+\frac{a^{2}}{(b+c)^{2}}= \\
& \quad=\frac{2(b-c)^{2}-a^{2}}{4}+\frac{a^{2} b c}{(b+c)^{2}}=\frac{2\left(b^{2}-c^{2}\right)^{2}-a^{2}(b+c)^{2}+4 a^{2} b c}{4(b+c)^{2}}= \\
& \frac{2(b-c)^{2}(b+c)^{2}-a^{2}(b-c)^{2}}{4(b+c)^{2}}=\frac{(b-c)^{2}\left(2(b+c)^{2}-a^{2}\right)}{4(b+c)^{2}} \geq 0, \text { as } b+c>a .
\end{aligned}
$$

To prove the right hand side of the inequality it suffices to prove

$$
\frac{(b-c)^{2}\left(2(b+c)^{2}-a^{2}\right)}{4(b+c)^{2}} \leq \frac{(b-c)^{2}}{2}
$$

or

$$
2(b+c)^{2}-a^{2} \leq 2(b+c)^{2},
$$

that is clearly true and we are done.

Also solved by Son Ta Hong, Ha Noi University of Education, Vietnam; Magkos Athanasios, Kozani, Greece; Arkady Alt, San Jose, California, USA; Vicente Vicario Garcia, Huelva, Spain; Daniel Lasaosa, Universidad Publica de Navarra, Spain

J48. Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{b(b+c)^{2}}+\frac{b}{c(c+a)^{2}}+\frac{c}{a(a+b)^{2}} \geq \frac{9}{4(a b+b c+c a)} .
$$

Proposed by Ho Phu Thai, Da Nang, Vietnam

First solution by Jingjun Han, High School Affiliated to Fudan University, China

Using the Cauchy-Schwartz inequality we have

$$
(a b+b c+c a)\left(\frac{a}{b(b+c)^{2}}+\frac{b}{c(c+a)^{2}}+\frac{c}{a(a+b)^{2}}\right) \geq\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^{2} .
$$

Thus it is enough to prove that

$$
\begin{gathered}
\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^{2} \geq \frac{9}{4} \Longleftrightarrow \\
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{3}{2},
\end{gathered}
$$

which is true from Nesbitt's inequality.
Second solution by Vardan Verdiyan, Yerevan, Armenia
Our inequality is equivalent to

$$
\sum c \cdot a^{2}(a+b)^{2}(a+c)^{2} \geq \frac{9}{4} \cdot \frac{a b c}{a b+b c+c a} \cdot(a+b)^{2}(b+c)^{2}(c+a)^{2} .
$$

Using the Cauchy-Schwartz inequality we get

$$
\left(\sum c \cdot a^{2}(a+b)^{2}(a+c)^{2}\right) \cdot\left(\sum \frac{1}{c}\right) \geq\left(\sum a(a+b)(a+c)\right)^{2} .
$$

Thus it is enough to prove

$$
\left(\sum a(a+b)(a+c)\right)^{2} \geq \frac{9}{4}(a+b)^{2}(b+c)^{2}(c+a)^{2}
$$

or
$2(a(a+b)(a+c)+b(b+c)(b+a)+c(c+a)(c+b)) \geq 3(a+b)(b+c)(c+a)$.
The last inequality is equivalent to $\sum(a+b)(a-b)^{2} \geq 0$ and we are done.
Also solved by Josep Marc Mingot; Hoang Duc Hung, Hanoi, Vietnam; Paolo Perfetti, Mathematical Department of "Tor Vergata" University, Roma, Italy; Daniel Campos Salas, Costa Rica; Courtis G. Chryssostomos, Larissa, Greece; Magkos Athanasios, Kozani, Greece; Shukurjon Shokirov, PhysicalMathematical Lyceum N1, Samarkand, Uzbekistan; Orif Ibrogimov, SamSU, Samarkand, Uzbekistan

Senior problems

S43. Consider an acute triangle $A B C$ and let Γ be its circumcircle, centered at O. Denote by D, E, and F the midpoints of the minor $\operatorname{arcs} B C, C A$, and $A B$, respectively. Let Γ_{A} be the circle through O which is tangent to Γ at D. Define analogously Γ_{B} and Γ_{C}. Let O_{A} be the intersection of Γ_{B} and Γ_{C}, different from O. Define analogously O_{B} and O_{C}. Prove that triangles $A B C$ and $O_{A} O_{B} O_{C}$ are similar if and only if $A B C$ is equilateral.

Proposed by Daniel Campos Salas, Costa Rica

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Since Γ_{A} is tangent to Γ at D, then D, O and the center of Γ_{A} are collinear. It follows that the center of $\Gamma_{A} \in O D$, therefore $O D$ is a diameter of Γ_{A}. Analogously $O E, O F$ are diameters for Γ_{B}, Γ_{C}, respectively. We have $\angle O O_{A} E=\angle O O_{A} F=\frac{\pi}{2}$, and O_{A} is on $E F$. Furthermore, Γ is the circumcircle of $\triangle D E F$, and O_{A} is the foot of the perpendicular from O to $E F$. Thus O_{A} is the midpoint of $E F$, and similarly O_{B} is the midpoint of $F D$ and O_{C} is the midpoint of $D E$. Hence $\Delta O_{A} O_{B} O_{C}$ is similar to $\triangle D E F$. The problem then reduces to proving that $\triangle D E F$ and $\triangle A B C$ are similar if and only if $\triangle A B C$ is equilateral.

Observe that

$$
\begin{gathered}
\angle E O D=\angle E O C+\angle C O D=\frac{\angle A O C}{2}+\frac{\angle C O B}{2}=\angle B+\angle A, \\
\angle F=\frac{\angle E O D}{2}=\frac{\angle A+\angle B}{2},
\end{gathered}
$$

and similarly $\angle E=\frac{\angle C+\angle A}{2}$ and $\angle D=\frac{\angle B+\angle C}{2}$. Assume without loss of generality that $\angle A \geq \angle B \geq \angle C$. Then $\angle F \geq \angle E \geq \angle D$, and $\triangle D E F$ and $\triangle A B C$ are similar if and only if $\angle A=\angle B$ (for $\angle A$ to be equal to $\angle F$) and $\angle C=\angle B$ (for $\angle C$ to be equal to $\angle D$), or if and only if $\triangle A B C$ is equilateral.

Also solved by David E. Narvaez, Universidad Tecnologica de Panama

S44. Let $C(O)$ be a circle and let P be a point outside of C. Tangents from P intersect the circle at A and B. Let M be the midpoint of $A P$ and let $N=B M \cap C(O)$. Prove that $P N=2 M N$.

Proposed by Pohoata Cosmin, Bucharest, Romania
First solution by Francisco Javier Garcia Capitan, Cordoba, Spain
Let us calculate the power of point M with respect to the circle $C(O)$, we have $M N \cdot M B=M A^{2}$. Let N^{\prime} be the reflection of N with respect to M. Because

$$
N^{\prime} M \cdot M B=M N \cdot \frac{M A^{2}}{M N}=M A^{2}=M P \cdot M A
$$

we get that $N^{\prime} A B P$ is a cyclic quadrilateral.
Now, since $P M=M A$ and $N M=M N^{\prime}$, the quadrilateral $N^{\prime} A N P$ is a parallelogram.

Denote by $\alpha=\angle N A P$ and $\beta=\angle N A B$. Observe that $\angle N A P=\angle N^{\prime} P A=$ $\angle N^{\prime} B A=\alpha$ and $\angle A P N=\angle N^{\prime} A P=\angle N^{\prime} B P=\angle N A B=\beta$.

Thus in the triangle $N^{\prime} A B$ we have $\angle A N^{\prime} B=\pi-2 \alpha-2 \beta$, and in the triangle $P N^{\prime} N$ we have $\angle N^{\prime} N P=\pi-2 \alpha-2 \beta$ and $\angle P N^{\prime} N=\alpha+\beta$. It follows that triangle $N N^{\prime} P$ is isosceles with $N P=N N^{\prime}$. Therefore $N P=$ $N N^{\prime}=2 M N$ and we are done.

Second solution by Daniel Campos Salas, Costa Rica
Let $\alpha=\angle B A N=\angle P B N$ and $\beta=\angle A B N=\angle P A N$. Then $\angle A B P=$ $\angle B A P=\alpha+\beta, \angle A P B=180-2(\alpha+\beta)$, and $\angle A M B=180-(\alpha+2 \beta)$.

Since Area $A B M=A r e a_{P B M}$ we have that $B P \sin \alpha=A B \sin \beta$, which implies that

$$
\begin{aligned}
\sin \alpha & =\frac{A B}{B P} \cdot \sin \beta=\frac{\sin 2(\alpha+\beta)}{\sin (\alpha+\beta)} \cdot \sin \beta \\
& =2 \sin \beta \cos (\alpha+\beta)=\sin (\alpha+2 \beta)-\sin \alpha
\end{aligned}
$$

It follows that $2 \sin \alpha=\sin (\alpha+2 \beta)$, or

$$
\frac{1}{2}=\frac{\sin \alpha}{\sin (\alpha+2 \beta)}=\frac{\sin \alpha}{\sin \beta} \cdot \frac{\sin \beta}{\sin (\alpha+2 \beta)}=\frac{B N}{A N} \cdot \frac{M N}{A N}
$$

Then, $A N^{2}=2 B N \cdot M N$. The power of M with respect to $C(O)$ equals

$$
\begin{equation*}
\frac{1}{4} P A^{2}=M A^{2}=M N \cdot M B=M N^{2}+M N \cdot B N=M N^{2}+\frac{1}{2} A N^{2} . \tag{1}
\end{equation*}
$$

Because $M N$ is a median, it follows that

$$
\begin{equation*}
M N^{2}=\frac{1}{2} A N^{2}+\frac{1}{2} P N^{2}-\frac{1}{4} P A^{2} . \tag{2}
\end{equation*}
$$

From (1) and (2) it follows that $2 M N^{2}=\frac{1}{2} P N^{2}$, so $P N=2 M N$.

Third solution by David E. Narvaez, Universidad Tecnologica de Panama
Let Q and R be the points of intersection of $P N$ with $A B$ and $C(O)$ ($R \neq N$). Let S be the midpoint of $P N$ and let T be the point of intersection of $A N$ with $P B$. We claim that $B R$ is parallel to $P A$. Then

$$
\angle A P R=\angle P R B=\angle N A B
$$

and, since $\angle N B A=\angle N A P$ (because $P A$ is tangent to $C(O)$)

$$
\angle T N B=\angle N A B+\angle N B A=\angle N P A+\angle P A N=\angle P N T
$$

but $\angle T N B=\angle M N A$ and $M S$ is parallel to $A N$, so

$$
\angle S M N=\angle M N A=\angle P N T=\angle M S N
$$

which proves that $M N=S N$.
To prove our claim, let X be the point of intersection of $B R$ and $P N$. Since $A B$ is the polar line of P with respect to $C(O)$, points P, N, Q and R are harmonic conjugates. Then P, M, A and X are harmonic conjugates too, so

$$
\frac{P M}{M A}=\frac{P X}{X A}=1
$$

whice implies that X is a point at the infinity, as we wanted to prove.
Also solved by Son Ta Hong, Ha Noi University of Education, Vietnam; Courtis G. Chryssostomos, Larissa, Greece; Vicente Vicario Garcia, Huelva, Spain; Vardan Verdiyan, Yerevan, Armenia

S45. Consider two sequences of integers, $\left(a_{n}\right)$ and $\left(b_{n}\right)$ such that $\left|a_{n+2}-a_{n}\right| \leq 2$ for all n in \mathbb{Z} and $a_{m}+a_{n}=b_{m^{2}+n^{2}}$, for all m, n in \mathbb{Z}. Prove that there exist at most 6 distinct numbers in the sequence a_{n}.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Iurie Boreico, Moldova

We start with an observation that every number divisible by 4 can be written as $(n+2)^{2}-n^{2}$. Indeed, $4 k=(k+1)^{2}-(k-1)^{2}$.

Now let m, n have the same parity. Then $m^{2}-n^{2}$ is divisible by 4 , thus can be written as $(k+2)^{2}-k^{2}$. Therefore $n^{2}+(k+2)^{2}=m^{2}+k^{2}$ and $a_{n}+a_{k+2}=a_{m}+a_{k}$ or $a_{n}-a_{m}=a_{k+2}-a_{k}$. We deduce that $\left|a_{m}-a_{n}\right| \leq 2$. So any two numbers from the sequence $\left(a_{2 k}\right)_{k \in \mathbb{Z}}$ differ by at most 2 . It is not difficult to conclude that they can take at most three different values (just take a the smallest value so the possible values can be only ($a, a+1, a+2$). The same holds for the sequence $\left(a_{2 k+1}\right)_{k \in \mathbb{Z}}$ so there can be also at most three possible values for the members of odd indices, summing for a total of at most six values.

S46. Let $A B C$ be a triangle and let D, E, F be the points of tangency of the incircle with the sides of the triangle. Prove that the centroid of triangle $D E F$ and the centroid of triangle $A B C$ are isogonal if and only if triangle $A B C$ is equilateral.

Proposed by Pohoata Cosmin, Bucharest, Romania

Solution by Daniel Campos Salas, Costa Rica

It is not difficult to conclude that if triangle $A B C$ is equilateral then the condition holds. Suppose that the condition holds, we will prove that the triangle is equilateral. Let a, b, c be the lengths of sides $B C, C A, A B$, and assume without loss of generality that A is the origin. We have that

$$
\frac{B D}{C D}=\frac{s-b}{s-c}, \frac{A E}{A B}=\frac{s-a}{c}, \frac{A F}{A C}=\frac{s-a}{b},
$$

which implies that

$$
\vec{D}=\frac{(s-c) \vec{B}+(s-b) \vec{C}}{a}, \vec{E}=\frac{(s-a) \vec{B}}{c}, \vec{F}=\frac{(s-a) \vec{C}}{b}
$$

Let G^{\prime} be the centroid of triangle $D E F$. Then,

$$
\begin{equation*}
\overrightarrow{G^{\prime}}=\frac{\left(\frac{s-a}{c}+\frac{s-c}{a}\right) \vec{B}+\left(\frac{s-a}{b}+\frac{s-b}{a}\right) \vec{C}}{3} \tag{1}
\end{equation*}
$$

On the other hand, let K be the Lemoine point, which is isogonal to the centroid, and let L, M, N be the intersections of $A K, B K, C K$ with $B C, C A, A B$, respectively. It is well-known that

$$
\frac{A N}{B N}=\frac{b^{2}}{a^{2}}, \frac{A M}{C M}=\frac{c^{2}}{a^{2}}, \frac{B L}{C L}=\frac{c^{2}}{b^{2}} .
$$

From van Aubel's theorem applied to K, we deduce that

$$
\frac{A K}{K L}=\frac{A N}{B N}+\frac{A M}{C M}=\frac{b^{2}+c^{2}}{a^{2}} .
$$

Then,

$$
\begin{equation*}
\vec{L}=\frac{b^{2} \vec{B}+c^{2} \vec{C}}{b^{2}+c^{2}}, \text { and } \vec{K}=\frac{b^{2} \vec{B}+c^{2} \vec{C}}{a^{2}+b^{2}+c^{2}} \tag{2}
\end{equation*}
$$

We have that $G^{\prime}=K$. From (1) and (2) it follows that

$$
\frac{\frac{s-a}{c}+\frac{s-c}{a}}{3}=\frac{b^{2}}{a^{2}+b^{2}+c^{2}} \text { and } \frac{\frac{s-a}{b}+\frac{s-b}{a}}{3}=\frac{c^{2}}{a^{2}+b^{2}+c^{2}} .
$$

After some manipulations it follows that these equations are equivalent to

$$
\begin{gathered}
6 a b^{2} c=\left(a^{2}+b^{2}+c^{2}\right)\left(a b+2 a c+b c-a^{2}-c^{2}\right) \text { and } \\
6 a b c^{2}=\left(a^{2}+b^{2}+c^{2}\right)\left(2 a b+a c+b c-a^{2}-b^{2}\right) .
\end{gathered}
$$

Thus

$$
\frac{b}{c}=\frac{a b+2 a c+b c-a^{2}-c^{2}}{2 a b+a c+b c-a^{2}-b^{2}},
$$

or

$$
(b-c)\left(a^{2}+b^{2}+c^{2}-2 a(b+c)\right)=0 .
$$

Suppose that $b \neq c$. Then,

$$
a^{2}+b^{2}+c^{2}=2 a(b+c) .
$$

We have that

$$
\frac{\frac{s-a}{c}+\frac{s-c}{a}}{3}=\frac{b^{2}}{a^{2}+b^{2}+c^{2}}
$$

is equivalent to

$$
6 a b^{2} c=\left(a^{2}+b^{2}+c^{2}\right)\left(a b+2 a c+b c-a^{2}-c^{2}\right) .
$$

Then,

$$
\begin{aligned}
a b+2 a c+b c-a^{2}-c^{2} & =(a b+b c)+\left(2 a c-a^{2}-c^{2}\right) \\
& =b(a+c)+\left(b^{2}-2 a b\right) \\
& =b(b+c-a) .
\end{aligned}
$$

It follows, that

$$
\begin{gathered}
6 a b^{2} c=\left(a^{2}+b^{2}+c^{2}\right)\left(a b+2 a c+b c-a^{2}-c^{2}\right) \\
\Leftrightarrow 6 a b^{2} c=2 a(b+c) \cdot b(b+c-a) \Leftrightarrow 3 b c=(b+c)(b+c-a) \\
\Leftrightarrow 2 a(b+c)=2\left(b^{2}-b c+c^{2}\right) \Leftrightarrow a^{2}+b^{2}+c^{2}=2 b^{2}-2 b c+2 c^{2} \\
\Leftrightarrow a^{2}=(b-c)^{2},
\end{gathered}
$$

which contradicts the triangle inequality. We conclude that $b=c$. Then,

$$
\frac{\frac{2 b-a}{2 b}+\frac{a}{2 a}}{3}=\frac{b^{2}}{a^{2}+2 b^{2}},
$$

or

$$
a(a-b)(a-2 b)=0 .
$$

If $a=2 b$, then $a=b+c$, which contradicts the triangle inequality. Then, $a=b$ from where we conclude that the triangle $A B C$ is equilateral, and this completes the proof.

S47. Consider an $n \times n$ grid filled with ones. A move consists of taking a square with numbers (a, b, c, d) and rewriting the entries in one of the two following ways:

Prove that no matter how one makes moves, at one point there is only one nonzero entry on the table. Also prove that the value of this entry is unique.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Iurie Boreico, Moldova

We correct the problem: we will have a single non-zero entry unless one makes the same moves for an infinite number of times, thus sticking up the configuration.

Label the rows and columns from the lower-right corner and assign to the table the quantity $\sum_{0 \leq i, j \leq n} 2^{i+j-2} a_{i, j}$, where $a_{i, j}$ is the element in the square labeled (i, j). It's straightforward to check that the allowed operations preserve this quantity, so it will always be the same. In the beginning it was

$$
A=1+2 \cdot 2+4 \cdot 3+\ldots+2^{n-1} \cdot n+2^{n} \cdot(n-1)+\ldots+2^{2 n-2} .
$$

This value can actually be computed, but we only need that it is odd.
Next, note that any "normal" operation increases the sum of squares of entries of the table (a "normal" operations is one which actually produces a change in the table). From the other this sum cannot increase indefinitely because each entry in the table is at most A. Thus there is a moment when we cannot perform a "normal" operation anymore, or we have reached a situation where there is one non-zero number. Still, we note that if in the 2×2 table considered the "a" entry is non-zero then the operation is "normal". Thus all entries except the ones on the final row and column are non-zero. It is now easy to see how we can increase the sum of squares by operations if an entry except the lower-right one is non-zero.

So we have proven that we have one non-zero entry at a moment. It remains to prove it is unique. Indeed, it must be placed in the lower-right square otherwise A would be negative which is wrong. And in this case it must equal to the fixed value A.

S48. Consider an equilateral triangle divided into 16 congruent equilateral triangles. Prove that no matter how we label these triangles with the numbers 1 through 16, there will be two adjacent triangles whose labels differ by at least 4.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Ivan Borsenco, University of Texas at Dallas

Divide the region in three regions $A=\left\{A_{1}, A_{2}, A_{3}\right\}, B=\left\{B_{1}, B_{2}, B_{3}\right\}$, and $C=\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{9}, C_{10}\right.$. Let us define the length of path between two triangles to be the number of "steps" it would take to travel between them (a step being from one triangle to another with whom it shares a side). For example, the length of path between A_{1} and A_{2} is 6 . Observe that the length of path between any triangles in C is 4 .

Assume that there exists a configuration such that the difference between the labels of some two adjacent triangles is less or equal to 3 .

The first step is to prove that in such a configuration, the labels 1 and 16 should lie in A. Suppose 1 lies in C. Observe that there exist two A_{i}, A_{j}, say A_{1}, A_{2}, with the distance no more than 4 from 1 . It follows that only triangles A_{3}, B_{3} are at least 5 apart from 1. By the Pigeonhole Principle one among the numbers $14,15,16$ will be at most 4 steps from 1 . The difference between numbers is at least 13 , hence there will be two adjacent triangles with difference at least 4. If 1 lies in B_{i} then observe that we can interchange it with the number in A_{i} and the big triangle still satisfies the condition.

Suppose $A_{1}=1$ and $A_{2}=16$. The second step is to prove that A_{3} contains either 2 or 15 . Clearly the numbers 2, 15 cannot lie both in C, because the length of path between them is at most 4 . Suppose 2 lies outside C.
$1^{\text {st }}$ case: 2 lies in B_{2}, which is clearly impossible.
$2^{\text {nd }}$ case: 2 lies in B_{3}, then we interchange it with the number in A_{3} and we are done.
$3^{r d}$ case: 2 lies in B_{1}. Then 15 should lie in C_{5} or C_{7}. If 15 lies in C_{5}, C_{7}, otherwise 15 lies in A_{3} and we are done. From here we deduce that 3 lies in C_{1} or C_{2}. Observe that 3 cannot lie in C_{2} because 16 lies in A_{2} the length is 4 and the difference between them is 13 . Therefore 3 lies in C_{1}. The length of path between C_{1} and C_{5} or C_{7} is 4 and the difference between them is 12. It follows on this path the difference between every adjacent triangle is 3 . Thus $C_{9}=6, C_{10}=9, C_{6}=12$.

The next observation is that triangles C_{2}, C_{3}, C_{4} do not contain numbers $13,14,15$, because $B_{1}=2$. They lie in B_{2}, C_{5} and $\left\{A_{3}, B_{3}, C_{7}\right\}$. Therefore one of them lies in one of $\left\{A_{3}, B_{3}, C_{7}\right\}$. Thus 4,5 cannot lie in $C_{8}, A_{3}, B_{3}, C_{7}$. Also 4,5 cannot lie in $C_{3}, C_{4}, B_{2}, C_{5}$. It follows that we have only just one place C_{1} for 4,5 , contradiction. Finally, we proved that either 15 or 2 lie in A_{3}.

Without loss of generality let 2 lie in A_{3}. Numbers in $C_{1}, B_{1}, C_{2}, C_{7}, B_{3}, C_{2}$ are not greater than 8 . As 1,2 are already in places, it follows that $3,4,5,6,7,8$ lie in $C_{1}, B_{1}, C_{2}, C_{7}, B_{3}, C_{2}$. Numbers in C_{3}, C_{6}, C_{9} are greater than $C_{2}, C_{7}, C_{8}, C_{1}$ by at most 3 . Impossible, because $C_{3}, C_{6}, C_{9}=\{9,10,11\}$ and there will exist a pair with the difference greater than 3 .

The problem is solved.

Undergraduate problems

U43. Let $f:[0,1] \rightarrow \mathbb{R}$ be a continuous function such that $f(0)=f(1)$. Prove that for any positive integer n there exists $c \in[0,1]$ such that

$$
f(c)=f\left(c+\frac{1}{n}\right) .
$$

Proposed by Jose Luis Diaz-Barrero, Barcelona, Spain
Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain
The case $n=1$ clearly is true taking $c=0$.
Let us define, for $n \geq 2$, on the interval $\left[0, \frac{n-1}{n}\right]$, the real-valued function

$$
g_{n}(x)=f\left(x+\frac{1}{n}\right)-f(x) .
$$

Since f is continuous, so is g_{n}. Note also that whenever $g_{n}(c)=0, f\left(c+\frac{1}{n}\right)=$ $f(c)$. Thus we need to prove that there exists at least one c in $\left[0, \frac{n-1}{n}\right]$ such that $g_{n}(c)=0$.

Now,

$$
\sum_{i=1}^{n-1} g_{n}\left(\frac{i}{n}\right)=f(1)-f(0)=0
$$

This is possible if either all the elements in the sum are 0 , or at least one is positive and at least one is negative. In the first case, $g_{n}(x)=0$ for $x=\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$. In the second case, there are at least two values, a and b, in $\left\{\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}\right\}^{n}$, and thus in $\left[0, \frac{n-1}{n}\right]$, such that $g_{n}(a)$ and $g_{n}(b)$ have opposite signs. By the intermediate value theorem, there is at least one value c in (a, b) such that $g_{n}(c)=0$.

Also solved by Paolo Perfetti, Mathematical Department of "Tor Vergata" University, Roma, Italy, Courtis G. Chryssostomos, Larissa, Greece

U44. Let x, y be positive real numbers such that $x^{y}+y=y^{x}+x$. Prove that $x+y \leq 1+x y$.

Proposed by Cezar Lupu, University of Bucharest, Romania
First solution by Vardan Verdiyan, Yerevan, Armenia
Without loss of generality assume $x \geq y$ and let us assume the contrary $x+y>1+x y$. Then $(1-x)(1-y)<0, \Rightarrow x>1>y>0$. By the Bernoulli's inequality, for every $a, b \in \mathbb{R}$ we have
(1) If $a>1$ and $b>-1$ then $(1+b)^{a}>1+a b, \Rightarrow$

$$
(1+(y-1))^{x}>1+(y-1) x .
$$

(2) If $0<a<1$ and $b>0$ then $(1+b)^{a}<1+a b, \Rightarrow$

$$
(1+(x-1))^{y}<1+(x-1) y .
$$

Summing up these two inequalities we get

$$
(1+(y-1))^{x}+1+(x-1) y>(1+(x-1))^{y}+1+(y-1) x,
$$

or

$$
y^{x}+x>x^{y}+y
$$

contradiction and the conclusion follows.
Second solution by Paolo Perfetti, Mathematical Department of "Tor Vergata" University, Roma, Italy

Assume the contrary $x+y>1+x y$. We prove that if

$$
x>0, y>0, x+y>1+x y, \text { then } x^{y}+y-y^{x}-x>0 .
$$

Observe that $x+y>1+x y$ is equivalent to $(1-x)(1-y)<0$, namely to one of the two conditions

$$
\text { 1) } 0<y<1, x>1 \quad \text { 2) } y>1,0<x<1
$$

It's enough to consider case 1), because $x^{y}+y-y^{x}-x$ is symmetric with respect to the bisector of the first and the third quadrant.

Let $0<a<1$ and $f(y) \doteq a^{y}-y^{a}+y-a$, where $y>1$. Note that $\lim _{y \rightarrow 1^{+}} f(y)=0$ and $f^{\prime}(y)=a^{y} \ln a-a y^{a-1}+1>a \ln a-a+1$, because $\ln a<0, a^{y}<a$, and $y^{a-1}<1$. Consider $g(x)=x \ln x-x+1, x \in[0,1]$. We have $g^{\prime}(x)=\ln x+1-1=\ln x<0, g^{\prime}(x)$ is decreasing on [0,1$]$, it follows that $g(x) \geq g(1)=0$. Thus $f^{\prime}(y)>a \ln a-a+1>0$. It follows that $f(y)$ is increasing on $[1,+\infty)$ and $f(y) \geq f(1)=0$. Hence we get $x^{y}+y-y^{x}-x>0$, contradiction. It follows that $x+y \leq 1+x y$.

Also solved by Arkady Alt, San Jose, California, USA

U45. Let $A \in M_{n}(R)$ be a matrix that has zeros on the main diagonal and all other entries are from the set $\{-1,1\}$. Is it possible that $\operatorname{det} A=0$ for $n=2007 ?$ What about for $n=2008$?

Proposed by Aleksandar Ilic, Serbia
Solution by Vicente Vicario Garcia, Huelva, Spain
a) n is odd.

If A is antisymmetric matrix of odd order, $A=-A^{t}$, then $\operatorname{det}(A)=0$. According to the Cauchy-Binet Theorem $\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)$, and $\operatorname{det} A=\operatorname{det}\left(A^{t}\right)$. We have

$$
A=-A^{t}, \Rightarrow \operatorname{det}(-A)=\operatorname{det}\left(A^{t}\right) \Rightarrow-\operatorname{det}(A)=\operatorname{det}(A), \Rightarrow \operatorname{det}(A)=0
$$

Now, if A is an antisymmetric matrix of odd order, that has zeros on the main diagonal and all other entries are from the set $\{-1,1\}$, $\operatorname{det}(A)=0$, and the answer is true.
b) n is even

We prove that it is not possible that a matrix A of even order that has zeros on the main diagonal and all other entries are from the set $\{-1,1\}$ is such that $\operatorname{det}(A)=0$. We really prove more. We prove that it is not possible that a matrix A of even order with entries $\{-1,1\}$ except only one zero for every different column $2^{n d}, \ldots, n^{t h}$ with only one zero for every row, is such $\operatorname{det}(A)=0$. This determinant is an odd number. We use mathematical induction. For $n=2$, if $\epsilon= \pm 1$, then

$$
\left|\begin{array}{ll}
\epsilon & \epsilon \\
\epsilon & 0
\end{array}\right|= \pm 1, \quad\left|\begin{array}{ll}
\epsilon & 0 \\
\epsilon & \epsilon
\end{array}\right|= \pm 1
$$

We assume that the proposition is true until $n=2 k$. Then for a matrix $n=2 k+2$ developing the original determinant we get that it is equal to the sum of $2 k+1$ odd non-zero determinants of the anterior form. Developing its determinants again we obtain the sum of odd numbers, different from zero and we are done.

U46. Let k be a positive integer and let

$$
a_{n}=\left\lfloor\left(k+\sqrt{k^{2}+1}\right)^{n}+\left(\frac{1}{2}\right)^{n}\right\rfloor, n \geq 0 .
$$

Prove that $\sum_{n=1}^{\infty} \frac{1}{a_{n-1} a_{n+1}}=\frac{1}{8 k^{2}}$.
Proposed by Dr. Titu Andreescu, University of Texas at Dallas
Solution by by Jose Hernandez Santiago, UTM, Oaxaca, Mexico
Let us consider the sequence b_{n}, defined for $n \geq 0$ as follows

$$
\left\{\begin{array}{llc}
b_{0} & = & 2 \\
b_{1} & = & 2 k \\
b_{n} & = & 2 k\left(b_{n-1}\right)+b_{n-2} .
\end{array}\right.
$$

Through generating functions we learn that for every $n \in \mathbb{Z}^{+}$the corresponding element of b_{n} satisfies the following explicit formula:

$$
b_{n}=\left(k+\sqrt{k^{2}+1}\right)^{n}+\left(k-\sqrt{k^{2}+1}\right)^{n} .
$$

Now, since the inequalities

$$
b_{n} \leq\left(k+\sqrt{k^{2}+1}\right)^{n}+\left(\frac{1}{2}\right)^{n}<b_{n}+1
$$

hold for every $n \in \mathbb{Z}^{+}$, we conclude that

$$
a_{n}=\left\lfloor\left(k+\sqrt{k^{2}+1}\right)^{n}+\left(\frac{1}{2}\right)^{n}\right\rfloor=b_{n},
$$

for every nonnegative whole number n. Then,

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{1}{a_{n-1} a_{n+1}} & =\sum_{n=1}^{\infty} \frac{1}{b_{n-1} b_{n+1}} \tag{3}\\
& =\sum_{n=1}^{\infty}\left(\frac{1}{2 k}\right)\left(\frac{1}{b_{n-1} b_{n}}-\frac{1}{b_{n} b_{n+1}}\right) \tag{4}\\
& =\frac{1}{2 k} \sum_{n=1}^{\infty}\left(\frac{1}{b_{n-1} b_{n}}-\frac{1}{b_{n} b_{n+1}}\right)=\frac{1}{8 k^{2}} . \tag{5}
\end{align*}
$$

The last identity follows by telescoping our sum and using the fact that $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=0$.

U47. Let P be an arbitrary point inside equilateral triangle $A B C$. Find the minimum value of

$$
\frac{1}{P A}+\frac{1}{P B}+\frac{1}{P C} .
$$

Proposed by Hung Quang Tran, Ha Noi National University, Vietnam
Solution by Hung Quang Tran, Ha Noi National University, Vietnam
We can assume that triangle $A B C$ is an equilateral with side 1 . Suppose M has barycentric coordinates $(x, y, z), x+y+z=1$ and $x, y, z \geq 0$, because M is inside the triangle $A B C$. Using distance formula we have

$$
M A^{2}=\frac{y+z}{x+y+z} a^{2}-\frac{x y+y z+z x}{(x+y+z)^{2}} a^{2} .
$$

Therefore, with $a=1$ and $x+y+z=1$ we get

$$
M A=\sqrt{y^{2}+y z+z^{2}}, M B=\sqrt{x^{2}+x z+z^{2}}, M C=\sqrt{x^{2}+x y+y^{2}} .
$$

Thus we need to find the minimum of

$$
\frac{1}{\sqrt{y^{2}+y z+z^{2}}}+\frac{1}{\sqrt{x^{2}+x z+z^{2}}}+\frac{1}{\sqrt{x^{2}+x y+y^{2}}},
$$

when $x+y+z=1$. We use Lagrange multipliers to find this minimum.
Assume without loss of generality $0 \leq x \leq y \leq z<1$
$1^{\text {st }}$ case: $x=0$, we want to prove

$$
f(y, z)=\frac{1}{\sqrt{y^{2}+y z+z^{2}}}+\frac{1}{y}+\frac{1}{z} \geq 4+\frac{2 \sqrt{3}}{3} .
$$

Indeed

$$
f(y, z) \geq f\left(\frac{y+z}{2}, \frac{y+z}{2}\right)=4+\frac{2 \sqrt{3}}{3} .
$$

$2^{\text {nd }}$ case: $0<x \leq y \leq z<1$. Let

$$
F(x, y, z, \lambda)=\sum \frac{1}{\sqrt{x^{2}+x y+y^{2}}}+\lambda(x+y+z-1)
$$

$\frac{d F}{d x}=0, \frac{d F}{d y}=0, \frac{d F}{d z}=0$, then

$$
-\frac{1}{2}\left[\frac{2 x+y}{\sqrt{\left(x^{2}+x y+y^{2}\right)^{3}}}+\frac{2 x+z}{\sqrt{\left(z^{2}+z x+x^{2}\right)^{3}}}\right]+\lambda=0,
$$

$$
\begin{aligned}
& -\frac{1}{2}\left[\frac{2 y+x}{\sqrt{\left(x^{2}+x y+y^{2}\right)^{3}}}+\frac{2 y+z}{\sqrt{\left(y^{2}+y z+z^{2}\right)^{3}}}\right]+\lambda=0, \\
& -\frac{1}{2}\left[\frac{2 z+x}{\sqrt{\left(z^{2}+z x+x^{2}\right)^{3}}}+\frac{2 z+y}{\sqrt{\left(y^{2}+y z+z^{2}\right)^{3}}}\right]+\lambda=0,
\end{aligned}
$$

Adding them we get

$$
\lambda \frac{1}{2}\left[\frac{x+y}{\sqrt{\left(x^{2}+x y+y^{2}\right)^{3}}}+\frac{y+z}{\sqrt{\left(y^{2}+y z+z^{2}\right)^{3}}}+\frac{z+x}{\sqrt{\left(z^{2}+z x+x^{2}\right)^{3}}}\right] .
$$

Inserting λ in the first equation we obtain

$$
x \sum \frac{1}{\sqrt{\left(x^{2}+x y+y^{2}\right)^{3}}}=\frac{1}{\sqrt{\left(y^{2}+y z+z^{2}\right)^{3}}}
$$

Analogously,

$$
\begin{aligned}
& y \sum \frac{1}{\sqrt{\left(x^{2}+x y+y^{2}\right)^{3}}}=\frac{1}{\sqrt{\left(z^{2}+z x+x^{2}\right)^{3}}} \\
& z \sum \frac{1}{\sqrt{\left(x^{2}+x y+y^{2}\right)^{3}}}=\frac{1}{\sqrt{\left(x^{2}+x y+y^{2}\right)^{3}}}
\end{aligned}
$$

Hence

$$
y^{2}\left(z^{2}+z x+x^{2}\right)^{3}=z^{2}\left(x^{2}+x y+y^{2}\right)^{3} .
$$

Let $y=a x, z=b x$, where $1 \leq a \leq b$, we have

$$
a^{2}\left(b^{2}+b+1\right)^{3}=b^{2}\left(a^{2}+a+1\right)^{3} .
$$

Clearly we get $a=b$. It follows $y=z$ is a necessary condition for critical points in the interior of the region $0<x, y, z<1$. We have to prove

$$
\frac{2}{\sqrt{x^{2}+x y+y^{2}}}+\frac{1}{y \sqrt{3}} \geq 4+\frac{2 \sqrt{3}}{3},
$$

where $x+2 y=1$. Consider

$$
g(y)=\frac{2}{3 y^{2}-3 y+1}+\frac{1}{y \sqrt{3}} \geq 4+\frac{2 \sqrt{3}}{3},
$$

where $\frac{1}{3} \leq y \leq \frac{1}{2}$, because $x \leq y \leq z$. Using differentiation it is not difficult to check that the absolute minimum of $g(y)$ on $\left[\frac{1}{3}, \frac{1}{2}\right]$ is $g\left(\frac{1}{2}\right)=4+\frac{2 \sqrt{3}}{3}$.

Thus $\frac{1}{M A}+\frac{1}{M B}+\frac{1}{M C}$ attains its minimum value $4+\frac{2 \sqrt{3}}{3}$ at $M\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ and other permutations. These points are the midpoints of the triangle's sides.

U48. Let n be an integer greater than 1 and let $k \geq 1$ be a real number. For an n dimensional simplex $X_{1} X_{2} \ldots X_{n+1}$ define its k-perimeter by $\sum_{1 \leq i<j \leq n+1}\left|X_{i} X_{j}\right|^{k}$. Take now a regular simplex $A_{1} A_{2} \ldots A_{n+1}$ and consider all simplexes $B_{1} B_{2} \ldots B_{n+1}$ where B_{i} lies on the face $A_{1} \ldots A_{i-1} A_{i+1} \ldots A_{n}$. Find, in terms of the k-perimeter of $A_{1} A_{2} \ldots A_{n+1}$, the minimal possible k perimeter of $B_{1} B_{2} \ldots B_{n+1}$.

Proposed by Iurie Boreico, Moldova

Solution by Iurie Boreico, Moldova

Let O be the center of our simplex $A_{1} A_{2} \ldots A_{n}$. We may assume $O A_{i}=1$.
We will prove the intuitive assertion that the minimal value is obtained when B_{i} is the center of the corresponding face $A_{1} \ldots A_{i-1} A_{i+1} \ldots A_{n+1}$, i.e. equals $\frac{1}{n^{k}}$ of the k-perimeter of $A_{1} A_{2} \ldots A_{n+1}$ (because in this case $B_{1} \ldots B_{n+1}$ is obtained from $A_{1} A_{2} \ldots A_{n+1}$ via a homothety through O of magnitude $\frac{1}{n}$).

Let us prove that the minimal value actually occurs. Pick up a random simplex $B_{1} \ldots B_{n}$ and let S be its k-perimeter. $\overline{O B_{i}}$ can be written as $\sum_{j \neq i} c_{j} \bar{O} B_{j}$ where $\sum_{j \neq i} c_{j}=1$. Now its projection on the face $A_{1} \ldots A_{j-1} A_{j+1} \ldots A_{n+1}$ will have length $\left|c_{j}\right|$ thus $B_{i} B_{j} \geq\left|c_{j}\right|$ so its k-perimeter will have length at least $\left|c_{j}\right|^{k}$. So if we want to have its perimeter not greater than S we infer that $\left|c_{j}\right| \leq \sqrt[k]{S}$. Therefore c_{j} is bounded and hence so are all of the B_{i}. Now Weierstrass Theorem implies that there is a minimal value for the k-perimeter and it is actually attained.

To proceed further, we define a well-known group of transformations on A_{i}. For $n=2$ these are the rotations with respect to O by 120 degrees and the symmetries with respect to the lines $O A_{i}$. For higher spaces we define them using linear algebra.

Consider O as the origin of the coordinate system and let $v_{i}=\overline{O A_{i}}$. We know that $v_{1}+v_{2}+\ldots+v_{n+1}=0$ and any n of these vectors span R^{n}. For any permutation $\pi \in S_{n+1}$ consider the linear transform T_{π} that take v_{i} to $v_{\pi(i)}$ for $i=1, \ldots, n$. As $v_{1}+v_{2}+\ldots+v_{n+1}=0$ it also takes v_{n+1} to $v_{\pi(n+1)}$. As $A_{i} A_{j}$ does not depend on i, j for $i \neq j$ we conclude that $v_{i} v_{j}=\frac{v_{i}^{2}+v_{j}^{2}-\left(v_{i}-v_{j}\right)^{2}}{2}=$ $\frac{2-A_{i}^{2} A_{j}^{2}}{2}$ does not depend on $i \neq j$ either. It is now also pretty clear to verify directly that if $v=\sum c_{i} v_{i}, v^{\prime}=\sum c_{i}^{\prime} v_{i}^{\prime}$ then $\left|v-v^{\prime}\right|^{2}=\left|T_{\pi}(v)-T_{\pi}\left(v^{\prime}\right)\right|^{2}$. So T_{π} preserves the distance between two points.

To proceed, we need a simple lemma.
If $u, v \in R^{n}$ then $\frac{\left(|u|^{k}+|v|^{k}\right)}{2} \geq\left|\frac{u+v}{2}\right|^{k}$. The equality holds if and only if $u=v$ for $k>1$ and if and only if $u \| v$ for $k=1$.

Pick now a set B_{1}, \ldots, B_{n+1} that realize the minimum k-perimeter asked. If $k=1$ among all these sets we can select the one which gives the minimum possible 2-perimeter.

Pick up a random permutation $\sigma \in S_{n+1}$ and let $C_{i}=T_{\sigma}\left(B_{i}\right)$. Clearly the simplex $C_{1} C_{2} \ldots C_{n+1}$ also satisfies our conditions and has the minimal possible k-perimeter (actually the two simplices are congruent). Then set $B_{\sigma(i)}^{\prime}$ be the midpoint of the segment determined by $B_{\sigma(i)}$ and C_{i}. It is clear that $\left|B_{\sigma(i)}^{\prime} B_{\sigma(j)}^{\prime}\right|^{k} \leq \frac{1}{2}\left(\left|B_{\sigma(i)} B_{\sigma(j)}\right|^{k}+\left|C_{i} C_{j}\right|^{k}\right)$. We sum all these relations to conclude that the k-perimeter of $B_{1}^{\prime} B_{2}^{\prime} \ldots B_{n+1}^{\prime}$ is not more than the possible minimum. This implies that we have equalities everywhere. For $k>1$ we conclude that $\overline{B_{\sigma(i)} B_{\sigma(j)}}=\overline{C_{i} C_{j}}$. We make the same conclusion for $k=1$ because otherwise by the same lemma the 2-perimeter of the simplex would decrease, contradicting the fact that it is also minimal.

We have deduced that $\overline{B_{\sigma(i)} B_{\sigma(j)}}=\overline{T_{\sigma}\left(B_{i}\right) T_{\sigma}\left(B_{j}\right)}$. Thus these four points form a parallelogram so we deduce that $\overline{B_{\sigma(i)} T_{\sigma}\left(B_{i}\right)}=\overline{B_{\sigma(j)} T_{\sigma}\left(B_{j}\right)}$ for any σ. So all the vectors $\overline{B_{\sigma}(i) T_{\sigma}\left(B_{i}\right)}$ equal the same vector v_{σ}. However as $B_{\sigma(i)}$ and $T_{\sigma(i)}$ all belong to the sides $A_{1} A_{2} \ldots A_{\sigma(i)-1} A_{\sigma(i)+1} \ldots A_{n+1}, v_{\sigma}$ is parallel to it i.e. perpendicular to $v_{\sigma(i)}$. Letting i run over $1,2, \ldots, n+1$ as $v_{1}, v_{2}, \ldots, v_{n+1}$ $\operatorname{span} R^{n}$, we conclude $v_{\sigma}=0$ so $B_{\sigma(i)}=T_{\sigma}\left(B_{i}\right)$

Choose now σ be a transposition, for example transposing n and $n+1$. Introduce the unique matrix $A \in M_{n+1}(R)=\left(a_{i j}\right)$ with zeroes on the diagonal such that $\overline{O B_{i}}=\sum_{j=1}^{n+1} a_{i j} v_{j}$. We see $B_{\sigma(1)}=B_{1}$ so $\overline{O B_{\sigma(1)}}=\sum_{i=2}^{n+1} a_{1, i} v_{i}$. At the same time $T_{\sigma}\left(B_{1}\right)=\sum_{i=2}^{n-1} a_{1, i} v_{i}+a_{1, n+1} v_{n}+a_{1, n} v_{n+1}$. It implies $a_{1, n+1}=$ $a_{1, n}$. Since $n, n+1$ were taken arbitrarily, we conclude $a_{1,2}=a_{1,3}=\ldots=$ $a_{1, n+1}$. As there sum must be 1 for B_{1} to lie on $\left(A_{2} A_{3} \ldots A_{n+1}\right)$ we deduce $a_{1,2}=a_{1,3}=\ldots=a_{1, n+1}=\frac{1}{n}$ so B_{1} is the center of the face $A_{2} A_{3} \ldots A_{n+1}$. We reason similarly for $B_{2}, B_{3}, \ldots, B_{n+1}$ to finish the problem.

Remarks:

1. The above reasoning shows that for $k>1$ the only case for equality occurs when B_{i} are the corresponding centers of the faces. The reasoning fails for $k=1$, however a more careful analysis of the matrix A can lead us to the same conclusion. The reader is encouraged to do this himself, if any interested reader exists.
2. The main idea of this problem is to consider the linear transformations of the plane that preserve the distance and permute the vertices of the simplex $A_{1} A_{2} \ldots A_{n+1}$. The same idea could be used to other problems that arise when defining a k-perimeter in other way. Particularly we could define a (symmetric but non-transitive) relation \sim on $1,2, \ldots, n+1$ and define the k-perimeter as $\sum_{i \sim j} A_{i} A_{j}^{k}$. For such generalizations the difficulties rise considerably because we cannot take any permutation σ anymore, but only the ones that maintain
the relation \sim unchanged. For example at the Mathematical Competition for Former Soviet-Union Countries in 2005 the k-perimeter of a tetrahedron $A_{1} A_{2} A_{3} A_{4}$ was defined as $A_{1} A_{2}+A_{2} A_{3}+A_{3} A_{4}+A_{4} A_{1}$. The reader is encouraged to tackle this problem using the same method (but this time only cyclic permutations will work). Note that this problem was the inspiration for the mine.

Olympiad problems

O43. Let a, b, c be positive real numbers. Prove that

$$
\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}} \geq \sqrt{\frac{16(a+b+c)^{3}}{3(a+b)(b+c)(c+a)}} .
$$

Proposed by Vo Quoc Ba Can, Can Tho University, Vietnam
First solution by Arkady Alt, San Jose, California, USA
Let us solve the following inequality

$$
\sqrt{\frac{y+z}{x}}+\sqrt{\frac{z+x}{y}}+\sqrt{\frac{x+y}{z}} \geq \sqrt{\frac{16(x+y+z)^{3}}{3(x+y)(y+z)(z+x)}} .
$$

Let $a=y+z, b=z+x, c=x+y$, and $s=x+y+z=\frac{a+b+c}{2}$. Observe that a, b, c determine triangle $A B C$ with semiperimeter s, area F, and circumradius R. Using our notations we can rewrite our inequality

$$
\begin{aligned}
& \sqrt{\frac{a}{s-a}}+\sqrt{\frac{b}{s-b}}+\sqrt{\frac{c}{s-c}} \geq \sqrt{\frac{16 s^{3}}{3 a b c}} \Longleftrightarrow \\
& \sum_{c y c} \sqrt{\frac{(s-b)(s-c)}{b c}} \geq \frac{4}{\sqrt{3}} \cdot \frac{F s}{a b c}=\frac{1}{\sqrt{3}} \cdot \frac{s}{R} .
\end{aligned}
$$

We know that $\frac{s}{R}=\sin A+\sin B+\sin C=4 \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2}$ and

$$
\sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}}, \sin \frac{B}{2}=\sqrt{\frac{(s-c)(s-a)}{c a}}, \sin \frac{C}{2}=\sqrt{\frac{(s-a)(s-b)}{a b}} .
$$

Our inequality is equivalent to

$$
\sin \frac{A}{2}+\sin \frac{B}{2}+\sin \frac{C}{2} \geq \frac{4}{\sqrt{3}} \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} .
$$

Denote by $\alpha=\frac{\pi-A}{2}, \beta=\frac{\pi-B}{2}, \gamma=\frac{\pi-C}{2}$. Observe that $\alpha+\beta+\gamma=\pi$ and $\alpha, \beta, \gamma \in\left(0, \frac{\pi}{2}\right)$. Consider now an acute-angled triangle $A^{\prime} B^{\prime} C^{\prime}$ with $A^{\prime}=$ $\alpha, B^{\prime}=\beta, C^{\prime}=\gamma$ with the same notations a, b, c, s, R, r, for the lengths of sides, the semiperimeter, the circumradius, and the inradius, respectively. Our inequality can be rewritten as

$$
\cos \alpha+\cos \beta+\cos \gamma \geq \frac{4}{\sqrt{3}} \sin \alpha \sin \beta \sin \gamma .
$$

Using the identity $\cos \alpha+\cos \beta+\cos \gamma=\frac{R+r}{R}$ and Euler's Inequality $R \geq 2 r$ we get $\cos \alpha+\cos \beta+\cos \gamma \geq \frac{3 r}{R}$. Also we know $\sin \alpha \sin \beta \sin \gamma=\frac{a b c}{8 R^{3}}=$ $\frac{4 R r s}{8 R^{3}}=\frac{r s}{2 R^{2}}$. Thus, it suffices to prove

$$
\frac{4}{\sqrt{3}} \cdot \frac{r s}{2 R^{2}} \leq \frac{3 r}{R} \text { or } 2 s \leq 3 \sqrt{3} R,
$$

that is clear from the famous fact $9 R^{2} \geq a^{2}+b^{2}+c^{2} \geq \frac{(a+b+c)^{2}}{3}=\frac{4 s^{2}}{3}$.

Second solution by Kee-Wai Lau, Hong Kong, China

Our inequality is homogeneous, therefore we can assume that $a+b+c=1$. Let us rewrite it in the following form
$\frac{b+c}{\sqrt{a}} \sqrt{(c+a)(a+b)}+\frac{c+a}{\sqrt{b}} \sqrt{(a+b)(b+c)}+\frac{a+b}{\sqrt{c}} \sqrt{(b+c)(c+a)} \geq \frac{4 \sqrt{3}}{3}$.
We have
$\frac{b+c}{\sqrt{a}} \sqrt{(c+a)(a+b)}=\left(\frac{1}{\sqrt{a}}-\sqrt{a}\right) \sqrt{(c+a)(a+b)}=\sqrt{1+\frac{b c}{a}}-\sqrt{a} \sqrt{a+b c}$.
Using similar expressions for $\frac{c+a}{\sqrt{b}} \sqrt{(a+b)(b+c)}$ and $\frac{a+b}{\sqrt{c}} \sqrt{(b+c)(c+a)}$ we see that the left hand side is equal to $S_{1}-S_{2}$, where

$$
S_{1}=\sqrt{1+\frac{a b}{c}}+\sqrt{1+\frac{b c}{a}}+\sqrt{1+\frac{c a}{b}}
$$

and

$$
S_{2}=\sqrt{a} \sqrt{a+b c}+\sqrt{b} \sqrt{b+a c}+\sqrt{c} \sqrt{c+a b} .
$$

From the AM-GM inequality we have

$$
a b+b c+c a \leq \frac{1}{3}, a^{2}+b^{2}+c^{2} \geq \frac{1}{3}, \frac{a b}{c}+\frac{b c}{a}+\frac{c a}{b} \geq 1 .
$$

Let us prove that $S_{1} \geq 2 \sqrt{3}$. Using the AM-GM inequality we have

$$
\begin{aligned}
\left(\frac{S_{1}}{3}\right)^{6} & \geq\left(1+\frac{a b}{c}\right)\left(1+\frac{b c}{a}\right)\left(1+\frac{c a}{b}\right)=1+a^{2}+b^{2}+c^{2}+\frac{a b}{c}+\frac{b c}{a}+\frac{c a}{b}+a b c= \\
& =1+\frac{1}{9}(a+b+c)^{2}+\frac{8}{9}\left(a^{2}+b^{2}+c^{2}\right)+\frac{26}{27}\left(\frac{a b}{c}+\frac{b c}{a}+\frac{c a}{b}\right)+
\end{aligned}
$$

$$
\begin{gathered}
+a b\left(\frac{1}{3 \sqrt{3} c}-\sqrt{\frac{c}{3}}\right)^{2}+b c\left(\frac{1}{3 \sqrt{3} a}-\sqrt{\frac{a}{3}}\right)^{2}+a c\left(\frac{1}{3 \sqrt{3} b}-\sqrt{\frac{b}{3}}\right)^{2} \geq \\
\geq 1+\frac{1}{9}+\left(\frac{8}{9}\right)\left(\frac{1}{3}\right)+\frac{26}{27}=\frac{64}{27}
\end{gathered}
$$

From the Cauchy-Schwarz inequality we have

$$
\begin{aligned}
S_{2} \leq & \sqrt{a+b+c} \cdot \sqrt{(a+b c)+(b+c a)+(c+a b)}= \\
& =\sqrt{1+a b+b c+c a} \leq \sqrt{1+\frac{1}{3}}=\frac{2 \sqrt{3}}{3}
\end{aligned}
$$

Thus $S_{1}-S_{2} \geq 2 \sqrt{3}-\frac{2 \sqrt{3}}{3}=\frac{4 \sqrt{3}}{3}$ and we are done.

Third solution by Pham Huu Duc, Ballajura, Australia
Using Holder Inequality we get

$$
\left(\sum_{\text {cyc }} \sqrt{\frac{b+c}{a}}\right)^{2} \sum_{\text {сус }} a(b+c)^{2} \geq 8(a+b+c)^{3} .
$$

It suffices to prove that

$$
3(a+b)(b+c)(c+a) \geq 2 \sum_{\text {cyc }} a(b+c)^{2}
$$

The inequality is equivalent to

$$
3\left(\sum_{c y c} a\left(b^{2}+c^{2}\right)+2 a b c\right) \geq 2\left(\sum_{\text {cyc }} a\left(b^{2}+c^{2}\right)+6 a b c\right)
$$

or

$$
\sum_{c y c} a\left(b^{2}+c^{2}\right) \geq 6 a b c
$$

which is true from the AM-GM inequality.
Also solved by Jingjun Han, High School Affiliated to Fudan University, China; Orif Ibrogimov, SamSU, Samarkand, Uzbekistan; Diyora Salimova, Lyceum N1, Samarkand, Uzbekistan; Paolo Perfetti, Mathematical Department of "Tor Vergata" University, Roma, Italy; Daniel Campos Salas, Costa Rica; Magkos Athanasios, Kozani, Greece; Vardan Verdiyan, Yerevan, Armenia; Tigran Sloyan, Yerevan, Armenia

O44. Let $A B C D$ be a cyclic quadrilateral and let O be the intersection of its diagonals. Denote by $I_{a b}$ and $I_{c d}$ the centers of incircles of triangles $O A B$ and $O C D$, respectively. Prove that the perpendiculars from $O, I_{a b}, I_{c d}$ to lines $A D, B D, A C$, respectively, are concurrent.

Proposed by Mihai Miculita, Oradea, Romania
Solution by Vardan Verdiyan, Yerevan, Armenia
Let $I_{c d} H_{1}, O H_{2}$ and $I_{a b} H_{3}$ be the perpendiculars from $I_{c d}, O, I_{a b}$ to lines $D B, B C, A C$, respectively.

Denote by M_{1} the intersection point of lines $O H_{2}$ and $I_{c d} H_{1}$ and by M_{2} the intersection point of lines OH_{2} and $\mathrm{I}_{a b} \mathrm{H}_{3}$.

Note that if $O M_{1}=O M_{2}$ then the lines $I_{c d} H_{1}, O H_{2}$ and $I_{a b} H_{3}$ are concurrent. Since $\angle H_{1} O M_{1}=\angle H_{2} O B$ and $\Delta H_{1} O M_{1}, \Delta H_{2} O B$ are right-angled triangles \Rightarrow

$$
\Delta H_{1} O M_{1} \sim \Delta H_{2} O B, \Rightarrow O M_{1}=O B \cdot \frac{O H_{1}}{O H_{2}} .
$$

Analogously, $\mathrm{OM}_{2}=\mathrm{OC} \cdot \frac{\mathrm{OH}_{3}}{\mathrm{OH}}$. It suffices to prove that

$$
O C \cdot \frac{O H_{3}}{O H_{2}}=O B \cdot \frac{O H_{1}}{O H_{2}} \text { or } O C \cdot O H_{3}=O B \cdot O H_{1} \text {. }
$$

Because $I_{c d} H_{1} \perp O D$ we have H_{1} is the point of tangency of the incircle of triangle $C O D$ with the line $O D$. Thus $O H_{1}=\frac{C O+D O-C D}{2}$. Similarly we get $O H_{3}=\frac{A O+B O-A B}{2}$. It is enough to prove that

$$
\begin{gathered}
O C \cdot \frac{A O+B O-A B}{2}=O B \cdot \frac{C O+D O-C D}{2} \Longleftrightarrow \\
O C(A O-A B)=O B(D O-C D)
\end{gathered}
$$

Because $A B C D$ is cyclic quadrilateral we have $\triangle A O B \sim \triangle D O C$. Therefore

$$
\frac{O B}{O C}=\frac{A O}{D O}=\frac{A B}{C D}=\frac{A O-A B}{D O-C D},
$$

which completes the proof.
Also solved by Andrea Munaro, Italy; Tigran Sloyan, Yerevan, Armenia; David E. Narvaez, Universidad Tecnologica de Panama

O45. Consider a positive real number t. A grasshopper has a finite number of pointwise nests. It can add new nests as follows: from two nests A and B it can jump to point C with $\frac{\overrightarrow{A C}}{\overrightarrow{A B}}=t$, and make C its nest. Prove that there are points in the plane that cannot be made nests.

Proposed by Iurie Boreico, Moldova
Solution by Iurie Boreico, Moldova
Let $x_{1}, x_{2}, \ldots, x_{n}$ be the affixes of the initial nests of the grasshopper. The new nest C produced from the nests A, B with affixes a, b has affix $b+k(b-a)$. It is therefore straightforward by induction to show that each new next may be represented as $P\left(k, x_{1}, x_{2}, \ldots, x_{n}\right)$ where P is an integer polynomial in $n+1$ variables. It is known that the set of integer polynomials in $n+1$ variables is countable. Thus the set of all possible nests is also at most countable. As C is uncountable, there are infinitely many points that cannot be made nests.

O46. Let O and I be the circumcenter and the incenter of triangle $A B C$, respectively. Denote by D the intersection of the incircle of $A B C$ with $B C$ and by E and F the intersections of $A I$ and $A O$ with the circumcircle of $A B C$, respectively. Let S be the intersection of $F I$ and $E D, M$ the intersection of $S C$ and $B E$, and N the intersection of $A C$ and $B F$. Prove that M, I and N are collinear.

Proposed by Pohoata Cosmin, Bucharest, Romania
Solution by Son Ta Hong, Ha Noi University of Education, Vietnam
Denote by D^{\prime} the intersection of $A E$ and $B C$. Let R, r be the circumradius and the inradius of triangle $A B C$. Without loss of generality suppose $A B<$ $A C$, we have
$\angle I D^{\prime} D=\angle D^{\prime} A C+\angle D^{\prime} C A=\angle E A B+\angle A E B=180-\angle A B E=\angle E F A$.
Thus $90^{\circ}-\angle I D^{\prime} D=90^{\circ}-\angle E F A$ and $\angle E I D=\angle F A I \quad$ (1).
On the otherhand, looking at the power of a point I with respect to the circumcircle and using Euler's theorem we have

$$
\begin{equation*}
p(I)=I A \cdot I E=2 R \cdot r=A F \cdot I D \Longrightarrow \frac{I A}{A F}=\frac{I D}{I E} \tag{2}
\end{equation*}
$$

From (1) and (2) we obtain

$$
\triangle A I F \sim \triangle I D E, \Rightarrow \angle A F S=\angle A F I=\angle I E D=\angle A E S, \Rightarrow S \in(O)
$$

Applying Pascal's theorem to the hexagon $A S C E F B$ we get M, I and N are collinear.

Second solution by Tigran Sloyan, Yerevan, Armenia
At first we prove that S lies on the circumcircle of triangle $A B C$. Let T be the intersection point of $F I$ with the circumcircle and L, K be the points of tangency of the incircle with the sides $A C$ and $A B$, respectively.

Then we have

$$
\angle I T A=\angle F T A=90^{\circ}=\angle I L A=\angle I K A .
$$

It follows that points T, L, K and A lie on the circle with diameter $A I$. Thus $\angle T L A=\angle T K A$ which means that $\angle T L C=\angle T K B$. Also $\angle T C L=$ $\angle T C A=\angle T B A=\angle T B K$ and therefore triangles $T C L$ and $T B K$ are similar. Hence

$$
\frac{C T}{B T}=\frac{C L}{B K}=\frac{C D}{B D} .
$$

We get that $T D$ is the angle bisector of $\angle C T B$, and therefore it passes through E. Thus both $E D$ and $F I$ pass through $T, \Rightarrow S \equiv T$.

To complete the proof we consider the self-intersecting inscribed hexagon $A E B F T C$. Using Pascal's theorem we obtain that the intersection points of the pairs of opposite sides are collinear. That is the intersection point of $A E$ and $F T$ (point I), the intersection point of $E B$ and $T C$ (point M) and the intersection point of $B F$ and $C A$ (point N) are collinear, as desired.

O47. Consider the Fibonacci sequence $F_{0}=0, F_{1}=1, F_{n+1}=F_{n}+F_{n-1}$ for $n \geq 1$. Prove that

$$
\sum_{i=0}^{n} \frac{(-1)^{n-i} F_{i}}{n+1-i}\binom{n}{i}=\left\{\begin{array}{cl}
\frac{2 F_{n+1}}{n+1} & \text { if } n \text { is odd } \\
0 & \text { otherwise }
\end{array}\right.
$$

Proposed by Gabriel Alexander Reyes, San Salvador, El Salvador

First solution by David E. Narvaez, Universidad Tecnologica de Panama
Observe that

$$
\frac{1}{n+1-i}\binom{n}{i}=\frac{1}{n+1}\binom{n+1}{i}
$$

thus
$\sum_{i=0}^{n} \frac{(-1)^{n-i} F_{i}}{n+1-i}\binom{n}{i}=\sum_{i=0}^{n} \frac{(-1)^{n-i} F_{i}}{n+1}\binom{n+1}{i}=\frac{1}{n+1} \sum_{i=0}^{n}(-1)^{n-i} F_{i}\binom{n+1}{i}$
and we are left to prove that

$$
\sum_{i=0}^{n}(-1)^{n-i} F_{i}\binom{n+1}{i}=\left\{\begin{array}{cc}
2 F_{n+1}, & \text { if } n \text { is odd } \\
0, & \text { otherwise }
\end{array}\right.
$$

But is easy to prove that $F_{i}=\frac{\phi^{i}-(1-\phi)^{i}}{\sqrt{5}}$, where $\phi=\frac{\sqrt{5}+1}{2}$. Thus

$$
\begin{gathered}
\sum_{i=0}^{n}(-1)^{n-i} F_{i}\binom{n}{i}=\sum_{i=0}^{n}(-1)^{n-i} \frac{\phi^{i}-(1-\phi)^{i}}{\sqrt{5}}\binom{n}{i}= \\
=\frac{1}{\sqrt{5}}\left(\sum_{i=0}^{n}\binom{n+1}{i}(-1)^{n-i} \phi^{i}-\sum_{i=0}^{n}\binom{n+1}{i}(-1)^{n-i}(1-\phi)^{i}\right)= \\
=\frac{1}{\sqrt{5}}\left[-(-1+\phi)^{n+1}+\phi^{n+1}-\left(-(-1+(1-\phi))^{n+1}+(1-\phi)^{n}\right)\right] \\
\sum_{i=0}^{n}(-1)^{n-i} F_{i}\binom{n}{i}=\frac{1}{\sqrt{5}}\left[-\left(-(1-\phi)^{n+1}+\phi^{n+1}+(-\phi)^{n+1}+(1-\phi)^{n}\right)\right]
\end{gathered}
$$

Clearly, this last expression takes values of 0 if n is even and $2 F_{i}$ if n is odd, and we are done.

Second solution by Tigran Sloyan, Yerevan, Armenia
Note that

$$
\frac{1}{n+1-i} C_{n}^{i}=\frac{1}{n+1-i} \cdot \frac{n!}{i!(n-i)!}=\frac{1}{n+1} \cdot \frac{(n+1)!}{i!((n+1)-i)!}=\frac{1}{n+1} C_{n+1}^{i}
$$

Then

$$
\sum_{i=0}^{n} \frac{(-1)^{n-i} F_{i}}{n+1-i} C_{n}^{i}=\frac{1}{n+1} \sum_{i=0}^{n}(-1)^{n-i} F_{i} C_{n+1}^{i}
$$

From Binet's formula for Fibonacci numbers we have that for any positive integer i

$$
F_{i}=\frac{1}{\sqrt{5}}\left(\left(\frac{\sqrt{5}+1}{2}\right)^{i}-\left(\frac{1-\sqrt{5}}{2}\right)^{i}\right)
$$

We denote $\frac{1+\sqrt{5}}{2}=x$ and $\frac{1-\sqrt{5}}{2}=y$ then $F_{i}=\frac{1}{\sqrt{5}}\left(x^{i}-y^{i}\right)$. Thus

$$
\begin{aligned}
& \frac{1}{n+1} \sum_{i=0}^{n}(-1)^{n-i} F_{i} C_{n+1}^{i}=\frac{1}{\sqrt{5}(n+1)}\left(\sum_{i=0}^{n}(-1)^{n-i} x^{i} C_{n+1}^{i}-\sum_{i=0}^{n}(-1)^{n-i} y^{i} C_{n+1}^{i}\right)= \\
& =\frac{1}{\sqrt{5}(n+1)}\left(\sum_{i=0}^{n}(-1)^{(n+1)-i} y^{i} C_{n+1}^{i}-\sum_{i=0}^{n}(-1)^{(n+1)-i} x^{i} C_{n+1}^{i}\right)
\end{aligned}
$$

We have that $(a+b)^{m}=\sum_{i=0}^{m} a^{i} b^{m-i} C_{m}^{i}$, therefore

$$
\sum_{i=0}^{n}(-1)^{(n+1)-i} y^{i} C_{n+1}^{i}=(y-1)^{n+1}-y^{n+1}=(-x)^{n+1}-y^{n+1}
$$

and

$$
\sum_{i=0}^{n}(-1)^{(n+1)-i} x^{i} C_{n+1}^{i}=(x-1)^{n+1}-x^{n+1}=(-y)^{n+1}-x^{n+1}
$$

therefore
$\frac{1}{n+1} \sum_{i=0}^{n}(-1)^{n-i} F_{i} C_{n+1}^{i}=\frac{1}{n+1}\left(\frac{1}{\sqrt{5}}\left(x^{n+1}-y^{n+1}\right)+(-1)^{n+1} \frac{1}{\sqrt{5}}\left(x^{n+1}-y^{n+1}\right)\right)$.
Hence $\frac{1}{n+1} \sum_{i=0}^{n}(-1)^{n-i} F_{i} C_{n+1}^{i}=\frac{F_{n+1}\left(1+(-1)^{n+1}\right)}{n+1}=\frac{2 F_{n+1}}{n+1} \quad$ if n is odd
Also solved by Jose Hernandez Santiago, UTM, Oaxaca, Mexico; Arkady Alt, San Jose, California, USA; Daniel Campos Salas, Costa Rica

O48. Let $f \in \mathbb{Z}[X]$ be a monic irreducible polynomial of degree n whose zeros $x_{1}, x_{2}, \ldots, x_{n}$ are all real numbers. Let $S_{k}=x_{1}^{2 k}+x_{2}^{2 k}+\ldots+x_{n}^{2 k}$. Prove that there exist a universal constant $c>0$, such that

$$
S_{1} \cdot S_{2} \cdot \ldots \cdot S_{n-1} \geq c \cdot \frac{e^{2 n}}{n^{2}}
$$

holds for all n.
Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris
Solution by Iurie Boreico, Moldova
Let $f(x)=x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}=\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)$. Clearly $\left|a_{n}\right|=\left|x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}\right| \geq 1$. Using the AM-GM inequality we get

$$
S_{k}=x_{1}^{2 k}+x_{2}^{2 k}+\ldots+x_{n}^{2 k} \geq n\left|x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}\right|^{\frac{2 k}{n}} \geq n .
$$

Thus we have

$$
S_{1} \cdot S_{2} \cdot \ldots \cdot S_{n-1} \cdot \frac{n^{2}}{e^{2 n}} \geq \frac{n^{n+1}}{e^{2 n}} \geq \frac{1}{e^{2}}
$$

for $n \geq 1$.

