Solutions for Mathematical Reflections 1(2007)

Juniors

J37. Let $a_{1}, a_{2} \ldots, a_{2 n+1}$ be distinct positive integers not exceeding $3 n+1$. Prove that among them there are two such that

$$
a_{i}-a_{j}=m, \text { for all } m \in\{1,2, \ldots, n\} .
$$

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Jose Alejandro Samper, Colegio Helvetia de Bogota, Colombia

Let $m \in\{1,2, \ldots, n\}$. Color the numbers from 1 to $3 n+1$ with m colors so that i and j have the same color if an only if $i \equiv j(\bmod m)$. The number of numbers of the same color is at most $\left\lceil\frac{3 n+1}{m}\right\rceil$. If more than half of the numbers of the same color are chosen, there are two that differ by m, because the numbers of the same color are all the numbers that have the same residue modulo m.

We have to choose $2 n+1$ different numbers from 1 to $3 n+1$. By the Pigeonhole principle, there are at least $\frac{2 n+1}{m}$ numbers having the same color. This means that the problem is equivalent to:
$2 \cdot \frac{2 n+1}{m}=\frac{4 n+2}{m}>\left\lceil\frac{3 n+1}{m}\right\rceil$, because there exists a color i, such that the number of chosen numbers of color i is greater than half of the total number of numbers of color i.

Using the fact that $n+1>m$ we get

$$
4 n+2>3 n+1+m \geq m\left\lfloor\frac{3 n+1}{m}\right\rfloor+m .
$$

Therefore

$$
\frac{4 n+2}{m}>\left\lfloor\frac{3 n+1}{m}\right\rfloor+1 \geq\left\lceil\frac{3 n+1}{m}\right\rceil .
$$

This completes the proof.

J38. Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b} \geq \frac{a^{2}+b c}{(a+b)(a+c)}+\frac{b^{2}+c a}{(b+a)(b+c)}+\frac{c^{2}+a b}{(c+a)(c+b)}
$$

Proposed by Cezar Lupu, University of Bucharest, Romania
Solution by Paolo Perfetti, Roma, Italy
The inequality is equivalent to

$$
\frac{a^{3}+b^{3}+c^{3}+3 a b c-a b(a+b)-a c(a+c)-b c(b+c)}{(a+b)(a+c)(b+c)} \geq 0
$$

which is in turn equivalent to

$$
a(a-b)(a-c)+b(b-a)(b-c)+c(c-a)(c-b) \geq 0
$$

This is the well-known Schur's inequality and we are done.
Also solved by Vishal Lama, Southern Utah University, USA; Vardan Verdiyan, Yerevan, Armenia; Son Ta Hong, Ha Noi University of Education, Vietnam; Jose Alejandro Samper, Colegio Helvetia de Bogota, Colombia; Courtis G. Chryssostomos, Larissa, Greece; Pham Huu Duc, Australia; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Vo Quoc Ba Can, Can Tho University, Vietnam; Vicente Vicario Garcia, University of Huelva, Spain

J39. Evaluate the product

$$
\left(\sqrt{3}+\tan 1^{\circ}\right)\left(\sqrt{3}+\tan 2^{\circ}\right) \ldots\left(\sqrt{3}+\tan 29^{\circ}\right) .
$$

Proposed by Dr. Titu Andreescu, University of Texas at Dallas First solution by Courtis G. Chryssostomos, Larissa, Greece

Let $A=\left(\sqrt{3}+\tan 1^{\circ}\right)\left(\sqrt{3}+\tan 2^{\circ}\right) \ldots\left(\sqrt{3}+\tan 29^{\circ}\right)$. We have

$$
\sqrt{3}+\tan 1^{\circ}=\tan 60^{\circ}+\tan 1^{\circ}=\frac{\sin 60^{\circ} \cos 1^{\circ}+\cos 60^{\circ} \sin 1^{\circ}}{\cos 60^{\circ} \cdot \cos 1^{\circ}}=\frac{\sin 61^{\circ}}{\cos 60^{\circ} \cdot \cos 1^{\circ}} .
$$

Analogously we obtain

$$
\sqrt{3}+\tan 2^{\circ}=\frac{\sin 62^{\circ}}{\cos 60^{\circ} \cdot \cos 2^{\circ}}, \ldots, \sqrt{3}+\tan 29^{\circ}=\frac{\sin 89^{\circ}}{\cos 60^{\circ} \cdot \cos 29^{\circ}} .
$$

Thus
$A=\frac{\sin 61^{\circ}}{\cos 60^{\circ} \cdot \cos 1^{\circ}} \cdot \frac{\sin 62^{\circ}}{\cos 60^{\circ} \cdot \cos 2^{\circ}} \cdot \ldots \cdot \frac{\sin 89^{\circ}}{\cos 60^{\circ} \cdot \cos 29^{\circ}}=\left(\frac{1}{\cos 60^{\circ}}\right)^{29}=2^{29}$.

Second solution by Jose Alejandro Samper, Colegio Helvetia de Bogota, Colombia

We will use the following identities:

$$
\tan (a+b)=\frac{\tan a+\tan b}{1-\tan a \cdot \tan b}, \quad \tan 30^{\circ}=\frac{1}{\sqrt{3}}, \quad \tan 15^{\circ}=2-\sqrt{3}
$$

We obtain

$$
\begin{gathered}
\frac{1}{\sqrt{3}}=\tan 30^{\circ}=\frac{\tan k+\tan (30-k)}{1-\tan k \cdot \tan (30-k)} \\
\Leftrightarrow \sqrt{3}(\tan k+\tan (30-k))=1-\tan k \cdot \tan (30-k)
\end{gathered}
$$

Then

$$
\begin{aligned}
& \prod_{k=1}^{29}(\sqrt{3}+\tan k)=\left(\sqrt{3}+\tan 15^{\circ}\right) \prod_{k=1}^{14}(\sqrt{3}+\tan k)(\sqrt{3}+\tan (30-k))= \\
= & (\sqrt{3}+(2-\sqrt{3})) \prod_{k=1}^{14}(3+\sqrt{3}(\tan k+\tan (30-k))+\tan k \tan (30-k))=
\end{aligned}
$$

$$
\begin{aligned}
& =2 \prod_{k=1}^{14}(3+\sqrt{3}(\tan k+\tan (30-k))+1-\sqrt{3}(\tan k+\tan (30-k))= \\
& =2 \cdot \prod_{k=1}^{14} 4=2^{29}, \text { and we are done. }
\end{aligned}
$$

Also solved by Jose Hernandez Santiago, Oaxaca, Mexico; Vardan Verdiyan, Yerevan, Armenia; Vishal Lama, Southern Utah University, USA; Daniel Campos Salas, Costa Rica; Gabriel Alexander Reyes, San Salvador, El Salvador; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Son Ta Hong, Ha Noi University of Education, Vietnam; Vo Quoc Ba Can, Can Tho University, Vietnam; Lee Ju-Hyeong, Suwon, Republic of Korea; Vicente Vicario Garcia, University of Huelva, Spain

J40. A 5×6 rectangle is cut into eight rectangles with integral dimensions and whose sides are parallel to the ones of the initial rectangle. Prove that among them there are two congruent rectangles.

Proposed by Ivan Borsenco, University of Texas at Dallas
Solution by Ivan Borsenco, University of Texas at Dallas

Let us assume that all the rectangles obtained by cutting are different. The table below shows rectangles with the least possible areas.

Area 1: 1×1
Area 2: 1×2
Area 3: 1×3
Area $4: 1 \times 4,2 \times 2$
Area 5: 1×5
Area $6: 1 \times 6,2 \times 3$

It is not difficult to see that if we choose 8 different rectangles with the least possible areas, the sum of their areas is $1+2+3+4+4+5+6+6=31>30$. Thus it is not possible to obtain 8 different rectangles.

J41. Let a, b, c be positive real numbers such that $a+b+c+1=4 a b c$. Prove that

$$
\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 3 \geq \frac{1}{\sqrt{a b}}+\frac{1}{\sqrt{b c}}+\frac{1}{\sqrt{c a}}
$$

Proposed by Daniel Campos Salas, Costa Rica
First solution by Vardan Verdiyan, Yerevan, Armenia
By the AM-GM inequality,

$$
4 \sqrt[4]{a} b c \leq a+b+c+1=4 a b c \Rightarrow a b c \geq 1
$$

Thus $a+b+c+a b c \geq a+b+c+1=4 a b c \Rightarrow a+b+c \geq 3 a b c$.
Again from the AM-GM inequality

$$
(a b+b c+c a)^{2} \geq 3 a b c(a+b+c) \Rightarrow(a b+b c+c a)^{2} \geq(3 a b c)^{2}
$$

It follows that

$$
a b+b c+c a \geq 3 a b c \Rightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geq 3
$$

For the second part of the inequality assume $3 \sqrt{a b c}<\sqrt{a}+\sqrt{b}+\sqrt{c}$. Using Schur's third degree inequality we get

$$
\begin{aligned}
& \left(\sum \sqrt{a}\right)^{3}+3\left(\sum \sqrt{a}\right)>\left(\sum \sqrt{a}\right)^{3}+9 \sqrt{a b c} \geq 4\left(\sum \sqrt{a}\right)\left(\sum \sqrt{b c}\right) \Rightarrow \\
& \left(\sum \sqrt{a}\right)^{2}+3>4 \sum \sqrt{b c}, \Leftrightarrow a+b+c+3>2(\sqrt{a b}+\sqrt{b c}+\sqrt{c a})
\end{aligned}
$$

From the AM-GM inequality, $a+b+c \geq \sqrt{a b}+\sqrt{b c}+\sqrt{c a} \Rightarrow$

$$
\begin{aligned}
& 3(a+b+c+3)+2(a+b+c)>8(\sqrt{a b}+\sqrt{b c}+\sqrt{c a}) \Leftrightarrow 9\left(\sum a+1\right)>4\left(\sum \sqrt{a}\right)^{2} \\
& \Leftrightarrow 9 a b c>(\sqrt{a}+\sqrt{b}+\sqrt{c})^{2} \Leftrightarrow 3 \sqrt{a b c}>\sqrt{a}+\sqrt{b}+\sqrt{c}, \text { contradiction. }
\end{aligned}
$$

Thus

$$
3 \geq \frac{1}{\sqrt{a b}}+\frac{1}{\sqrt{b c}}+\frac{1}{\sqrt{c a}}
$$

Second solution by Gabriel Alexander Reyes, San Salvador, El Salvador
The idea is to perform some substitutions in order to transform each part of our inequality. First we write the constraint $a+b+c+1=4 a b c$ as follows:

$$
4=\frac{a+b+c+1}{a b c}=\frac{1}{a b}+\frac{1}{b c}+\frac{1}{c a}+\frac{1}{a b c}
$$

So we may set $x=1 / a, y=1 / b, z=1 / c$. We get a new constraint $x y+y z+z x+x y z=4$, and now we have to show that $x+y+z \geq 3 \geq$ $\sqrt{x y}+\sqrt{y z}+\sqrt{z x}$.

Let us prove that $x+y+z \geq 3$. The constraint $x y+y z+z x+x y z=4$ can be written as

$$
\frac{x}{2} \cdot \frac{y}{2}+\frac{y}{2} \cdot \frac{z}{2}+\frac{z}{2} \cdot \frac{x}{2}+2 \cdot \frac{x}{2} \cdot \frac{y}{2} \cdot \frac{z}{2}=1 .
$$

Because it has the form $p q+q r+r p+2 p q r=1$, this enables us to perform the substitution

$$
x=\frac{2 p}{q+r}, y=\frac{2 q}{r+p}, z=\frac{2 r}{p+q}
$$

Now our inequality becomes

$$
2\left(\frac{p}{q+r}+\frac{q}{r+p}+\frac{r}{p+q}\right) \geq 3
$$

or

$$
\frac{p}{q+r}+\frac{q}{r+p}+\frac{r}{p+q} \geq \frac{3}{2}
$$

which is Nesbitt's inequality.
In order to deal with the second inequality, $\sqrt{x y}+\sqrt{y z}+\sqrt{z x} \leq 3$, we use another substitution. Observe that the constraint has the equivalent form

$$
(\sqrt{x y})^{2}+(\sqrt{y z})^{2}+(\sqrt{z x})^{2}+\sqrt{x y} \cdot \sqrt{y z} \cdot \sqrt{z x}=4 .
$$

This allows us to substitute

$$
\sqrt{y z}=2 \cos A, \sqrt{z x}=2 \cos B, \sqrt{x y}=2 \cos C
$$

where A, B, C are the angles of an acute triangle. Solving for x, y, z yields

$$
x=\frac{2 \cos B \cos C}{\cos A}, \frac{2 \cos C \cos A}{\cos B}, \frac{2 \cos A \cos B}{\cos C}
$$

Hence the inequality $\sqrt{x y}+\sqrt{y z}+\sqrt{z x} \leq 3$ is equivalent to

$$
\cos A+\cos B+\cos C \leq \frac{3}{2},
$$

which is well-known. This completes our proof.
Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let us define $u=\frac{1}{a}, v=\frac{1}{b}, w=\frac{1}{c}$, and let us denote the arithmetic, geometric and quadratic means of u, v, w by A, G, Q, respectively. Then, the condition given in the problem may be written as

$$
4=v w+w u+u v+u v w=\frac{9 A^{2}-3 Q^{2}}{2}+G^{3}
$$

while the first inequality is equivalent to $A \geq 1$. But since $Q \geq A \geq G$, with equalities if and only if $u=v=w$ we have

$$
\begin{gathered}
4=\frac{9 A^{2}}{2}-\frac{3 Q^{2}}{2}+G^{3} \leq 3 A^{2}+A^{3} \\
0 \leq A^{3}+3 A^{2}-4=(A-1)(A+2)^{2}
\end{gathered}
$$

Thus $A \geq 1$, with equality if and only if $u=v=w$, i.e., if and only if $a=b=c$.

Let us now define $x=\frac{1}{\sqrt{b c}}, y=\frac{1}{\sqrt{c a}}, z=\frac{1}{\sqrt{a b}}$, and $s=x+y+z$. Then, $a=\frac{x}{y z}, b=\frac{y}{z x}, c=\frac{z}{x y}$. The second inequality is equivalent to $s \leq 3$, and the condition given in the problem may be written as

$$
\begin{gathered}
\frac{x}{y z}+\frac{y}{z x}+\frac{z}{x y}+1=\frac{4}{x y z} \\
x^{2}+y^{2}+z^{2}+x y z=4
\end{gathered}
$$

From this last equation, it is obvious that x, y, z are all less than 2 , while

$$
(s-2)^{2}=8-4 s+2(x y+y z+z x)-x y z=(2-x)(2-y)(2-z) .
$$

Since $2-x, 2-y, 2-z$ are all positive, we may apply the AM-GM inequality, obtaining

$$
\begin{gathered}
(s-2)^{2} \leq\left(\frac{6-s}{3}\right)^{3} \\
0 \geq(s-6)^{3}+27(s-2)^{2}=s^{3}+9 s^{2}-108=(s-3)(s+6)^{2}
\end{gathered}
$$

with equality if and only if $x=y=z$. Therefore, $s \leq 3$ with equality if and only if $a=b=c$.

Also solved by Vo Quoc Ba Can, Can Tho University, Vietnam; Paolo Perfetti, Roma, Italy; Daniel Campos Salas, Costa Rica

J42. Find all triples (m, n, p) of positive integers such that $m+n+p=2008$ and the system of equations

$$
\frac{x}{y}+\frac{y}{x}=m, \frac{y}{z}+\frac{z}{y}=n, \frac{z}{x}+\frac{x}{z}=p
$$

has at least one solution in nonzero real numbers.
Proposed by Dr. Titu Andreescu, University of Texas at Dallas
Solution by Dr. Titu Andreescu, University of Texas at Dallas
We have

$$
\begin{gather*}
m n p=\left(\frac{x}{y}+\frac{y}{x}\right)\left(\frac{y}{z}+\frac{z}{y}\right)\left(\frac{z}{x}+\frac{x}{z}\right)=\frac{x^{2}}{y^{2}}+\frac{y^{2}}{x^{2}}+\frac{y^{2}}{z^{2}}+\frac{z^{2}}{y^{2}}+\frac{z^{2}}{x^{2}}+\frac{x^{2}}{z^{2}}= \\
=\left(\frac{x}{y}+\frac{y}{x}\right)^{2}+\left(\frac{y}{z}+\frac{z}{y}\right)^{2}+\left(\frac{z}{x}+\frac{x}{z}\right)^{2}-4=m^{2}+n^{2}+p^{2}-4 . \tag{1}
\end{gather*}
$$

Note it cam be rewritten as $p(m n-p)=m^{2}+n^{2}-4$, that gives us $m n \geq p$ or $(m+2)(n+2) \geq p+2$. Analogously, $(n+2)(p+2) \geq m+2$ and $(m+2)(p+2) \geq$ $p+2$. Equation (1) is equivalent to

$$
m n p+2(m n+n p+p m)=(m+n+p)^{2}-4 .
$$

Adding $4(m+n+p)+8$ to both sides, we obtain

$$
(m+2)(n+2)(p+2)=(m+n+p+2)^{2}=2010^{2},
$$

where m, n, p are integers greater than or equal to 2 .
Observe that $(m+2)(n+2)(p+2)=2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 67^{2}$. Suppose $d \mid m+2$ and $d \mid n+2$, then $d^{2} \mid(m+2)(n+2)(p+2)$. Therefore $d^{2} \mid(m+n+p+2)^{2}$ or $d \mid(m+2+n+2+p-2)$ implying $d \mid p-2$. Observe that 67^{2} cannot divide $m+2, n+2, p+2$. Assume without loss of generality $67^{2} \mid p+2$, then $30^{2}=2^{2} \cdot 3^{2} \cdot 5^{2} \geq(m+2)(n+2) \geq(p+2)=67^{2}$, contradiction. It follows that $67 \mid m+2$ and $67 \mid n+2$. From the observation above we get $67 \mid p-2$, where $p+2 \leq 2^{2} \cdot 3^{2} \cdot 5^{2}=900 i t$. We have $p+2$ can be represented as $67 k+4$ and is less than 900 . A quick case analysis shows that the only solution is $p=2$. Therefore $x=y, m=n$ and the desired triples are $(m, n, p)=(1003,1003,2)$ and their permutations. The system of equations clearly has solutions in real numbers:

$$
(x, y, z)=\left(2 r, 2 r, r\left(1003 \pm \sqrt{1003^{2}-1}\right)\right) .
$$

Seniors

S37. Let x, y, z be real numbers such that

$$
\cos x+\cos y+\cos z=0
$$

and

$$
\cos 3 x+\cos 3 y+\cos 3 z=0
$$

Prove that

$$
\cos 2 x \cdot \cos 2 y \cdot \cos 2 z \leq 0
$$

Proposed by Bogdan Enescu, B.P. Hasdeu National College, Romania

First solution by Lee Ju-Hyeong, Suwon, Republic of Korea

Because $\cos 3 a=4 \cos ^{3} a-3 \cos a$ and $\cos x+\cos y+\cos z=0$,

$$
\begin{aligned}
\cos 3 x+\cos 3 y+\cos 3 z & =4\left(\cos ^{3} x+\cos ^{3} y+\cos ^{3} z\right)-3(\cos x+\cos y+\cos z) \\
& =4\left(\cos ^{3} x+\cos ^{3} y+\cos ^{3} z\right)
\end{aligned}
$$

Then since $\cos 3 x+\cos 3 y+\cos 3 z=0$,

$$
\cos ^{3} x+\cos ^{3} y+\cos ^{3} z=0
$$

Hence

$$
\cos ^{3} x+\cos ^{3} y+\cos ^{3} z=3 \cos x \cos y \cos z=0
$$

Thus

$$
\cos x=0 \quad \text { or } \quad \cos y=0 \quad \text { or } \quad \cos z=0 .
$$

Without loss of generality, assume $\cos x=0$. Then

$$
\cos y=-\cos z
$$

Hence

$$
\begin{aligned}
\cos 2 x \cos 2 y \cos 2 z & =\left(2 \cos ^{2} x-1\right)\left(2 \cos ^{2} y-1\right)\left(2 \cos ^{z}-1\right) \\
& =-\left(2 \cos ^{2} z-1\right)^{2} \leq 0 .
\end{aligned}
$$

The problem is solved.

Second solution by José Gibergans-Báguena and José Luis Díaz-Barrero, Universitat Politècnica de Catalunya, Barcelona, Spain

From the well known trigonometric identity $\cos 3 A=4 \cos ^{2} A-3 \cos A$, we have
$\cos 3 x+\cos 3 y+\cos 3 z=4 \cos ^{3} x-3 \cos x+4 \cos ^{3} y-3 \cos y+4 \cos ^{3} z-3 \cos z$

$$
=4\left(\cos ^{3} x+\cos ^{3} y+\cos ^{3} z\right)-3(\cos x+\cos y+\cos z)
$$

or equivalently

$$
\cos ^{3} x+\cos ^{3} y+\cos ^{3} z=0
$$

From $\cos x+\cos y+\cos z=0$ we have $\cos x=-(\cos y+\cos z)$ and replacing it into the previous expression, we get

$$
\cos ^{2} y \cos z+\cos y \cos ^{2} z=0 \Leftrightarrow \cos y \cos z(\cos y+\cos z)=0
$$

Now, we discuss the following cases:
(1) If $\cos y=0$, then $y=\pi / 2+2 k \pi(k \in \mathbb{Z})$ and from $\cos x=-\cos z$ we get $x=(2 k+1) \pi-z(k \in \mathbb{Z})$. Therefore,

$$
\cos 2 x \cdot \cos 2 y \cdot \cos 2 z=-\cos ^{2} 2 z \leq 0
$$

Note that we get the same conclusion when $\cos z=0$.
(2) If $\cos y=-\cos z$ then $y=(2 k+1) \pi-z(k \in \mathbb{Z})$ and from $\cos x=0$ we have $x=\pi / 2+2 k \pi(k \in \mathbb{Z})$. Therefore,

$$
\cos 2 x \cdot \cos 2 y \cdot \cos 2 z=-\cos ^{2} 2 z \leq 0
$$

This completes the proof.
Also solved by Vicente Vicario Garcia, University of Huelva, Spain; Vo Quoc Ba Can, Can Tho University, Vietnam; Daniel Campos Salas, Costa Rica; Gabriel Alexander Reyes, San Salvador, El Salvador; Vardan Verdiyan, Yerevan, Armenia

S38. Prove that for each positive integer n, there is a positive integer m such that

$$
(1+\sqrt{2})^{n}=\sqrt{m}+\sqrt{m+1}
$$

Proposed by Jean-Charles Mathieux, Dakar University, Sénégal

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

It may be shown by induction that, for each positive integer n, we may find positive integers x_{n}, y_{n} such that

$$
(1+\sqrt{2})^{n}=x_{n}+y_{n} \sqrt{2}
$$

where $x_{1}=y_{1}=1$, and if positive integers x_{n}, y_{n} can be found, then

$$
\begin{gathered}
(1+\sqrt{2})^{n+1}=\left(x_{n}+y_{n} \sqrt{2}\right) \cdot(1+\sqrt{2})=\left(x_{n}+2 y_{n}\right)+\left(x_{n}+y_{n}\right) \sqrt{2} \\
x_{n+1}=x_{n}+2 y_{n} \\
y_{n+1}=x_{n}+y_{n}
\end{gathered}
$$

Therefore

$$
(1+\sqrt{2})^{n}=\sqrt{x_{n}^{2}}+\sqrt{2 y_{n}^{2}}
$$

Moreover, we may show, also by induction, that

$$
2 y_{n}^{2}-x_{n}^{2}=(-1)^{n+1}
$$

This result is true for $n=1$, and being true for n, then
$2 y_{n+1}^{2}-x_{n+1}^{2}=2 x_{n}^{2}+4 x_{n} y_{n}+2 y_{n}^{2}-x_{n}^{2}-4 x_{n} y_{n}-4 y_{n}^{2}=-\left(2 y_{n}^{2}-x_{n}^{2}\right)=(-1)^{n+2}$.
Therefore, we may choose, for all odd positive integers n,

$$
m=x_{n}^{2}=2 y_{n}^{2}-1
$$

and for all even positive integers n,

$$
m=2 y_{n}^{2}=x_{n}^{2}-1
$$

Although the proof is complete, we may go further and give general relations for m; it is not difficult to prove by induction that, for all positive integer n,

$$
\begin{aligned}
& x_{n}=\frac{(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{2}, \\
& y_{n}=\frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2 \sqrt{2}} .
\end{aligned}
$$

Hence for all positive integer n,

$$
m=\frac{(1+\sqrt{2})^{2 n}+(1-\sqrt{2})^{2 n}-2}{4}
$$

Let us prove the statement for $n=2 j$, in case $n=2 j+1$ solution is analogous. Using the binomial theorem

$$
\begin{aligned}
& (1+\sqrt{2})^{n}=\sum_{k=0}^{n}\binom{n}{k}(\sqrt{2})^{k}=1+\binom{n}{1} \sqrt{2}+\ldots+\binom{n}{n-1}(\sqrt{2})^{n-1}+(\sqrt{2})^{n}= \\
& =\left[\binom{n}{0}+2\binom{n}{2}+\ldots+2^{j}\binom{n}{2 j}\right]+\left[\binom{n}{1}+2\binom{n}{3}+\ldots+2^{j-1}\binom{n}{2 j-1}\right] \sqrt{2}= \\
& =\sqrt{\left[\binom{n}{0}+2\binom{n}{2}+\ldots+2^{j}\binom{n}{2 j}\right]^{2}}+\sqrt{2\left[\binom{n}{1}+2\binom{n}{3}+\ldots+2^{j-1}\binom{n}{2 j-1}\right]^{2}} \\
& =\sqrt{A+1}+\sqrt{B} .
\end{aligned}
$$

We will prove that $A=B$. Observe that

$$
\begin{gathered}
(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}=2\left[\binom{n}{0}+2\binom{n}{2}+\ldots+2^{j}\binom{n}{2 j}\right] . \\
(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}=2\left[\binom{n}{1}+2\binom{n}{3}+\ldots+2^{j-1}\binom{n}{2 j-1}\right] .
\end{gathered}
$$

The proof reduces to the following:

$$
\begin{aligned}
& {\left[\frac{(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}}{2}\right]^{2}-1=\left[\frac{(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}}{2}\right]^{2} \Leftrightarrow } \\
\Leftrightarrow & {\left[(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}\right]^{2}-4=\left[(1+\sqrt{2})^{n}-(1-\sqrt{2})^{n}\right]^{2} \Leftrightarrow } \\
\Leftrightarrow & 2(-1)^{n}-4=-2(-1)^{n} \Leftrightarrow 4(-1)^{n}=4 .
\end{aligned}
$$

Third solution by Gabriel Alexander Reyes, San Salvador, El Salvador

We use some algebraic number theory. Consider the quadratic field $\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2}, a, b \in \mathbb{Q}\}$. Here the norm function N is defined as $N(a+b \sqrt{2})=a^{2}-2 b^{2}$. We know that $1+\sqrt{2}$ is a unit, because $N(1+\sqrt{2})=$ $=1^{2}-2 \cdot 1^{2}=-1$. But the set of units is closed under multiplication; hence $(1+\sqrt{2})^{n}$ is a unit for every integer $n \geq 1$. If $(1+\sqrt{2})^{n}=A_{n}+B_{n} \sqrt{2}$, for integers A_{n} and B_{n}, the latter implies that $N\left[(1+\sqrt{2})^{n}\right]= \pm 1$, that is, $A_{n}^{2}-2 B_{n}^{2}= \pm 1$. Now we are done, because $(1+\sqrt{2})^{n}=A_{n}+B_{n} \sqrt{2}=$ $\sqrt{A_{n}^{2}}+\sqrt{2 B_{n}^{2}}$, and we have showed that A_{n}^{2} and $2 B_{n}^{2}$ differ by 1 .

Fourth solution is another solution received from Gabriel Alexander Reyes, San Salvador, El Salvador

Recall the following theorem from theory of Pell's equations:
Theorem. Let D be a square-free positive integer. If the equation $x^{2}-$ $D y^{2}=-1$ is solvable in positive integers, and (p_{0}, q_{0}) is its minimal solution, then all the positive integer solutions (p_{n}, q_{n}) of the equation $\left|x^{2}-D y^{2}\right|=1$ are given by $\left(p_{0}+q_{0} \sqrt{D}\right)^{n}=p_{n}+q_{n} \sqrt{D}$. In addition, we have $p_{n}^{2}-D q_{n}^{2}=(-1)^{n}$.

If $D=2$, the minimal solution of $x^{2}-2 y^{2}=-1$ is $x=y=1$. Hence all the positive solutions $\left(p_{n}, q_{n}\right)$ of the equation $x^{2}-2 y^{2}= \pm 1$ satisfy $(1+\sqrt{2})^{n}=$ $p_{n}+q_{n} \sqrt{2}$. The claim immediately follows after observing that $(1+\sqrt{2})^{n}=$ $p_{n}+q_{n} \sqrt{2}=\sqrt{p_{n}^{2}}+\sqrt{2 q_{n}^{2}}$. Furthermore, from $p_{n}^{2}-2 q_{n}^{2}=(-1)^{n}$ we infer that, if n is even, we can take $m=2 q_{n}^{2}$, and if n is odd, $m=p_{n}^{2}$.

Remark: This result is stronger than the previous solution. Indeed, we have proved that every unit of $\mathbb{Q}[\sqrt{2}]$ is of the form $\pm(1+\sqrt{2})^{n}$, where n is a integer. Observe that n can take negative values, since the reciprocal of a unit is a unit too.

S39. Let a be a positive integer and let

$$
A=\{\sqrt{a}, \sqrt[3]{a}, \sqrt[4]{a}, \ldots\}
$$

Prove that for every positive integer n the set A contains n consecutive terms of a geometric sequence, but it does not contain a geometric sequence with infinitely many terms.

Proposed by Bogdan Enescu, B.P. Hasdeu National College, Romania

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The elements of A are all the numbers of the form $a^{\frac{1}{m}}$, where m takes all integer values greater than or equal to 2 .

Let us consider the following set of n numbers in A :

$$
\left\{a^{\frac{1}{n!}}, a^{\frac{2}{n!}}, a^{\frac{3}{n!}}, \ldots, a^{\frac{n}{n!}}\right\} .
$$

Clearly they all belong to A, since $1,2,3, \ldots, n$, all divide $n!$. Furthermore, the result of dividing each number in the set by the previous one is $a^{\frac{1}{n!}}$, so they are consecutive terms of a geometric sequence. For each positive integer n a subset of A formed by n consecutive terms of a geometric sequence has been found.

Let us consider the set

$$
B=\left\{\frac{\ln a}{2}, \frac{\ln a}{3}, \frac{\ln a}{4}, \ldots\right\}
$$

Clearly the n-th element of set B is the natural logarithm of the n-th element of set A. Therefore, a subset of A forms a geometric sequence if and only if the corresponding subset in B forms an arithmetic progression. Or, the second part of the problem is equivalent to showing that no infinite arithmetic progression may be found in B.

If $a=1$, all elements in A are equal to 1 , and all elements in B are zero. An infinite geometric sequence with ratio 1 may be found in A, and an infinite arithmetic progression with common difference 0 may be found in B. Let us now show that no infinite arithmetic progression may be found in B when $a \neq 1$.

The set B is bound by $\frac{\ln a}{2}$ and 1 , the former being the upper bound and the latter the lower bound if $a>1$, vice versa otherwise. Furthermore, all elements in B are distinct when $\ln a \neq 0$. Therefore, if an infinite geometric sequence may be found in A, an infinite, bound, arithmetic sequence will be found in B, which is absurd, since all arithmetic sequences of nonzero difference are not bound.

S40. Let f and g be irreducible polynomials with rational coefficients and let a and b be complex numbers such that $f(a)=g(b)=0$. Prove that if $a+b$ is a rational number, then f and g have the same degree.

Proposed by Bogdan Enescu, B.P. Hasdeu National College, Romania
Solution by Iurie Boreico, Moldova
Consider $h(x) \in \mathbb{Q}[x]$ such that $h(x)=g(a+b-x)$. Clearly $h(a)=f(a)=$ 0 , and because $f(x)$ is irreducible, $f \mid h$. Thus $\operatorname{deg} f(x) \leq \operatorname{deg} h(x)=\operatorname{deg} g(x)$. Analogously we can prove that $\operatorname{deg} g(x) \leq \operatorname{deg} f(x)$. It follows that f and g have the same degree.

S41. Prove that for any positive real numbers a, b and c,

$$
\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}+\sqrt{\frac{a+b}{c}} \geq \sqrt{6 \cdot \frac{a+b+c}{\sqrt[3]{a b c}}}
$$

Proposed by Pham Huu Duc, Ballajura, Australia

First solution by Tigran Sloyan, Yerevan, Armenia

We can assume that $a b c=1$ and rewrite the inequality in the following form

$$
\sqrt{b c(b+c)}+\sqrt{a c(a+c)}+\sqrt{a b(a+b)} \geq \sqrt{6(a+b+c)}
$$

Squaring both sides we obtain
$b c(b+c)+a c(a+c)+a b(a+b)+2\left(\sum \sqrt{c^{2}(a b+a c)(a b+b c)}\right) \geq 6(a+b+c)$.
From the inequality $\sqrt{\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)} \geq x_{1} y_{1}+x_{2} y_{2}$ we can say that

$$
\begin{gathered}
\sum \sqrt{c^{2}(a b+a c)(a b+b c)} \geq \sum c\left(a b+\sqrt{a b c^{2}}\right)=\sum c(a b+\sqrt{c}) \\
\Rightarrow \sum \sqrt{c^{2}(a b+a c)(a b+b c)} \geq 3+\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{c^{3}}
\end{gathered}
$$

Therefore it is sufficient to prove that

$$
b c(b+c)+a c(a+c)+a b(a+b)+6+2\left(\sqrt{a^{3}}+\sqrt{b^{3}}+\sqrt{c^{3}}\right) \geq 6(a+b+c)
$$

From the AM-GM inequality for six positive real numbers we have

$$
\begin{gathered}
\sqrt{c^{3}}+\sqrt{c^{3}}+a c^{2}+b c^{2}+1+1 \geq 6 \sqrt[6]{c^{7} a b}=6 c \\
\Rightarrow 2 \sqrt{c^{3}}+c^{2}(a+b)+2 \geq 6 c
\end{gathered}
$$

Similarly we can prove that

$$
\begin{aligned}
& 2 \sqrt{b^{3}}+b^{2}(a+c)+2 \geq 6 b \\
& 2 \sqrt{a^{3}}+a^{2}(b+c)+2 \geq 6 a
\end{aligned}
$$

Finally, adding up the last three inequalities we get the desired one.

Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let s, A, G respectively denote the sum, the arithmetic, and geometric means of a, b, c. Dividing both sides of the proposed inequality by \sqrt{s}, we find it to be equivalent to:

$$
\sqrt{\frac{1}{a}-\frac{1}{s}}+\sqrt{\frac{1}{b}-\frac{1}{s}}+\sqrt{\frac{1}{c}-\frac{1}{s}} \geq \sqrt{\frac{6}{G}} .
$$

Squaring both sides and multiplying throughout by G allows us to write the proposed inequality in the following equivalent form:
$\frac{a b+b c+c a}{G^{2}}-\frac{G}{A}+\frac{2 G}{3 A} \cdot\left(\sqrt{1+3 \frac{A \cdot c^{2}}{G^{3}}}+\sqrt{1+3 \frac{A \cdot b^{2}}{G^{3}}}+\sqrt{1+3 \frac{A \cdot a^{2}}{G^{3}}}\right) \geq 6$,
where it has been used that

$$
\left(\frac{1}{a}-\frac{1}{s}\right) \cdot\left(\frac{1}{b}-\frac{1}{s}\right)=\frac{s-a-b}{s a b}+\frac{1}{s^{2}}=\frac{c^{2}}{s G^{3}}+\frac{1}{s^{2}}=\frac{1}{9 A^{2}} \cdot\left(1+\frac{3 A \cdot c^{2}}{G^{3}}\right),
$$

and similarly for the other two cross-products.
Now, using the inequalities between arithmetic and quadratic means, and between arithmetic and geometric means, allows us to find:

$$
\frac{1}{\sqrt{4}} \sqrt{1+3 \frac{A \cdot c^{2}}{G^{3}}} \geq \frac{1}{4}\left(1+3 \frac{c}{G} \sqrt{\frac{A}{G}}\right) \geq \frac{1}{4}\left(1+3 \frac{c}{G}\right),
$$

with equality if and only if $A \cdot c^{2}=G^{3}$ and simultaneously $A=G$, i.e., if and only if $a=b=c$. Or,

$$
\sqrt{1+3 \frac{A \cdot c^{2}}{G^{3}}}+\sqrt{1+3 \frac{A \cdot b^{2}}{G^{3}}}+\sqrt{1+3 \frac{A \cdot a^{2}}{G^{3}}} \geq \frac{3}{2}+\frac{3 s}{2 G}=\frac{3}{2}+\frac{9 A}{2 G},
$$

with equality if and only if $a=b=c$. Therefore, in order to complete the proof, it is sufficient to show that

$$
\frac{a b+b c+c a}{G^{2}}+3 \geq 6,
$$

which boils down to

$$
\frac{a b+b c+c a}{3} \geq G^{2} .
$$

But this is always true, as a result of the AM-GM inequality applied to $a b, b c, c a$. Or, the proof is complete, and the equality holds if and only if $a=b=c$.

Third solution by Ho Phu Thai, Da Nang, Vietnam
Squaring both sides yields:

$$
\begin{aligned}
& \frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}+ \\
& 2\left(\sqrt{\frac{(a+b)(a+c)}{b c}}+\sqrt{\frac{(b+c)(b+a)}{c a}}+\sqrt{\frac{(c+a)(c+b)}{a b}}\right) \geq \frac{6(a+b+c)}{\sqrt[3]{a b c}} .
\end{aligned}
$$

Using the well-known inequality $\sqrt{(p+q)(p+r)} \geq p+\sqrt{q r}$, we will prove that

$$
\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}+2\left(\frac{a}{\sqrt{b c}}+\frac{b}{\sqrt{c a}}+\frac{c}{\sqrt{a b}}\right)+6 \geq \frac{6(a+b+c)}{\sqrt[3]{a b c}} .
$$

Using Chebyshev's inequality we have

$$
\frac{a}{\sqrt{b c}}+\frac{b}{\sqrt{c a}}+\frac{c}{\sqrt{a b}} \geq \frac{a+b+c}{3}\left(\frac{1}{\sqrt{a b}}+\frac{1}{\sqrt{b c}}+\frac{1}{\sqrt{c a}}\right) \geq \frac{a+b+c}{\sqrt[3]{a b c}} .
$$

Our inequality becomes

$$
\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}+6 \geq \frac{4(a+b+c)}{\sqrt[3]{a b c}}
$$

From the substitution $a=x^{3}, b=y^{3}, c=z^{3}$ and expansion we get

$$
\begin{aligned}
x^{6}\left(y^{3}+z^{3}\right) & +y^{6}\left(z^{3}+x^{3}\right)+z^{6}\left(x^{3}+y^{3}\right)+6 x^{3} y^{3} z^{3} \geq 4\left(x^{5} y^{2} z^{2}+y^{5} z^{2} x^{2}+z^{5} x^{2} y^{2}\right) \\
& \Leftrightarrow \sum_{c y c} z^{2}\left[z^{4} x+z^{4} y+x^{4} y+x y^{4}-x^{2} y^{2} z\right](x-y)^{2} \geq 0
\end{aligned}
$$

We just need to prove that for all positive numbers x, y, z :

$$
z^{4} x+z^{4} y+x^{4} y+x y^{4} \geq x^{2} y^{2} z
$$

which is a consequence of the AM-GM inequality:

$$
z^{4} x+z^{4} y+3 \cdot \frac{1}{3} x^{4} y+3 \cdot \frac{1}{3} x y^{4} \geq 8 \sqrt[8]{\frac{1}{3^{6}} x^{6} y^{16} z^{8}}>x^{2} y^{2} z
$$

The proof is complete. Equality holds if and only if $a=b=c$.
Also solved by Daniel Campos Salas, Costa Rica; Vo Quoc Ba Can, Can Tho University, Vietnam; Vardan Verdiyan, Yerevan, Armenia

S42. Prove that in any triangle there exist a pair $\left(M_{1}, M_{2}\right)$ of isogonal conjugates such that $O M_{1} \cdot O M_{2}>O I^{2}$, where O and I are the circumcenter and the incenter, respectively.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let $A B C$ be the triangle. We will consider two cases:

1) $A B C$ is equilateral. The isogonal conjugate of $O=I$ is clearly itself, so the isogonal conjugate of any point M_{1} other than $O=I$ inside the triangle is not O. Therefore, choosing $M_{1} \neq O$ inside triangle $A B C$ results in $O M_{1}$ and $O M_{2}$ being both positive, and the inequality is true.
2) $A B C$ is not equilateral. Let a, b, c be the lengths of sides $B C, C A, A B$, respectively, and let us assume without loss of generality that $a \leq b \leq c$. Let us call M the point where the incircle touches side $B C$. It is well known that $B M=r \cot \frac{B}{2}$ and $C M=r \cot \frac{C}{2}$, where r is the inradius of $A B C$. Writing the power of point M with respect to the circumcircle of $A B C$ as $B M \cdot C M$, and calling R the circumradius of $A B C$, results in

$$
O M^{2}=R^{2}-B M \cdot C M=R^{2}-r^{2} \cot \frac{B}{2} \cot \frac{C}{2}
$$

Let us take any point M_{1} inside $A B C$, on $A M$, arbitrarily close to M. Lines $B M_{1}$ and $C M_{1}$ are then arbitrarily close to $B C$, or their reflections about the angle bisectors of B and C, respectively, are arbitrarily close to $B A$ and $C A$, or the isogonal conjugate of M_{1} is arbitrarily close to A. Therefore, isogonal conjugates M_{1}, M_{2} may be chosen such that $O M_{2}$ is arbitrarily close to $O A=R$, and $O M_{1}$ is arbitrarily close to $O M$. It suffices therefore to prove that

$$
O M>\frac{O I^{2}}{R}=R-2 r
$$

or, squaring both sides of the resulting inequality,

$$
\begin{gathered}
R^{2}-4 R r+4 r^{2}<R^{2}-r^{2} \cot \frac{B}{2} \cot \frac{C}{2}, \\
R>r+\frac{r}{4} \cot \frac{B}{2} \cot \frac{C}{2} .
\end{gathered}
$$

But since we have assumed that $C>\frac{\pi}{3}$ and $B \geq A$,

$$
\cot \frac{B}{2} \cot \frac{C}{2}=1+\frac{\sin \frac{A}{2}}{\sin \frac{B}{2} \sin \frac{C}{2}} \leq 1+\frac{1}{\sin \frac{C}{2}}<1+\frac{1}{\sin \frac{\pi}{6}}=3
$$

all that needs to be proved is $R>\frac{7 r}{4}$, and this is always true, since $R>2 r$ for non-equilateral triangles.

Undergraduate

U37. Let $f:[0,1] \rightarrow \mathbb{R}$ be a differentiable function with f^{\prime} continuous, such that

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} x f(x) d x=1 .
$$

Prove that there exists $c \in(0,1)$ for which $f^{\prime}(c)=6$.
Proposed by Cezar Lupu, University of Bucharest, Romania

Solution by Li Zhou, Polk Community College, USA
Let $p(x)=6 x-2$. Then $\int_{0}^{1} p(x) d x=\int_{0}^{1} x p(x) d x=1$. Thus we cannot have $f(x)-g(x)$ entirely positive or entirely negative on $(0,1)$.

Suppose that $\{x \in(0,1): f(x)=p(x)\}=\{a\}$. If $f(x)>p(x)$ for all $x \in(0, a)$, then $f(x)<p(x)$ for all $x \in(a, 1)$

$$
\begin{gathered}
\int_{0}^{1} x f(x)-1=\int_{0}^{a} x(f(x)-p(x)) d x+\int_{a}^{1} x(f(x)-p(x)) d x< \\
a \int_{0}^{a}(f(x)-p(x)) d x+a \int_{a}^{1}(f(x)-p(x)) d x=a\left(\int_{0}^{1} f(x) d x-\int_{0}^{1} p(x) d x\right)=0 .
\end{gathered}
$$

Similarly, if $f(x)<p(x)$ for all $x \in(0, a)$, then $f(x)>p(x)$ for all $x \in(a, 1)$ and $\int_{0}^{1} x f(x) d x>1$.

Therefore, there are a and b in $(0,1), a<b$, such that $f(a)=p(a)$ and $f(b)=p(b)$. By the Mean Value Theorem, there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{p(b)-p(a)}{b-a}=6 .
$$

U38. Let $n>1$ be an odd positive integer and let x be a real number. Set

$$
t=\sum_{k=1}^{n-1} \arctan \left(\frac{\cos \left(\frac{2 \pi k}{n}\right)-x}{\sin \left(\frac{2 \pi k}{n}\right)}\right) .
$$

Compute the value of $\tan t$ in terms of n and x.
Proposed by Alex Anderson, New Trier High School, Winnetka, IL

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain
For each integer k such that $1 \leq k \leq \frac{n-1}{2}$, we find that

$$
\frac{\cos \left(\frac{2 \pi(n-k)}{n}\right)-x}{\sin \left(\frac{2 \pi(n-k)}{n}\right)}=\frac{\cos \left(\frac{2 \pi k}{n}\right)-x}{-\sin \left(\frac{2 \pi k}{n}\right)}=-\frac{\cos \left(\frac{2 \pi k}{n}\right)-x}{\sin \left(\frac{2 \pi k}{n}\right)} .
$$

Or, the angles

$$
\arctan \left(\frac{\cos \left(\frac{2 \pi k}{n}\right)-x}{\sin \left(\frac{2 \pi k}{n}\right)}\right)
$$

and

$$
\arctan \left(\frac{\cos \left(\frac{2 \pi(n-k)}{n}\right)-x}{\sin \left(\frac{2 \pi(n-k)}{n}\right)}\right)
$$

add up to a multiple of π. Since t is then the sum of $\frac{n-1}{2}$ such angles, t is an integer multiple of π, hence $\tan t=0$, for each x and each positive odd integer n.

U39. Prove that $\lim _{n \rightarrow \infty} \frac{1}{\ln n} \sum_{k=1}^{n} \frac{\{\ln k\}}{k}=\frac{1}{2}$,
where $\{x\}$ denotes the fractional part of x.
Proposed by Cristinel Mortici, Valahia University of Targoviste, Romania

Solution by Vicente Vicario Garcia, University of Huelva, Spain

We use the famous Cauchy's integral test for the convergence of numerical infinite series. If $f(x):[1, \infty) \rightarrow \mathbb{R}$ is a decreasing function such that $\lim _{x \rightarrow \infty} f(x)=0$, then

$$
0 \leq \sum_{k=1}^{n} f(k)-\int_{1}^{n} f(x) d x-D \leq f(n)
$$

with $D=\lim d_{n}=\lim \left(s_{n}-t_{n}\right)\left(D\right.$ is a constant) and $s_{n}=\sum_{k=1}^{n} f(k)$, $t_{n}=\int_{1}^{n} f(x) d x$. Thus

$$
\sum_{k=1}^{n} \frac{\{\ln k\}}{k}=\sum_{k=1}^{n} \frac{\ln k-[\ln k]}{k}=\sum_{k=1}^{n} \frac{\ln k}{k}-\sum_{k=1}^{n} \frac{[\ln k]}{k} .
$$

By Cauchy's integral test we obtain
$\sum_{k=1}^{n} \frac{\ln k}{k}=\frac{1}{2} \ln ^{2} n+B+O\left(\frac{\ln n}{n}\right), B$ is constant and $\int_{1}^{n} \frac{\ln x}{x} d x=\frac{1}{2} \ln ^{2} n$.
Again using Cauchy's test we get
$\sum_{k=1}^{n} \frac{1}{k}=\ln n+\gamma+O\left(\frac{1}{n}\right)$, where γ is Euler-Mascheroni constant.
Now we use (2) to evaluate
$\sum_{k=\left[e^{j}\right]+1}^{\left[e^{j+1}\right]-1} \frac{[\ln k]}{k}=j\left(\frac{1}{\left[e^{j}\right]+1}+\frac{1}{\left[e^{j}\right]+2}+\ldots+\frac{1}{\left[e^{j+1}\right]-1}\right) \sim j\left(\ln e^{j+1}-\ln e^{j}\right)=j$,
where \sim denotes asymptotic equivalent formulas. Then if $e^{j+1}=n \rightarrow j=$ $-1+\ln n$,
$\sum_{k=1}^{n} \frac{[\ln k]}{k} \sim 1+2+\ldots+j=\frac{j(j+1)}{2}=\frac{\ln n(\ln n-1)}{2}+O(\ln n)=\frac{\ln ^{2} n}{2}-\frac{\ln n}{2}+O(\ln n)$.
Finally we have
$\lim _{n \rightarrow \infty} \frac{1}{\ln n} \sum_{k=1}^{n} \frac{\{\ln k\}}{k}=\lim _{n \rightarrow \infty} \frac{\left(\frac{\ln ^{2} n}{2}+A+O\left(\frac{\ln n}{n}\right)-\frac{\ln ^{2} n}{2}+\frac{\ln n}{2}+O(\ln n)\right)}{\ln n}=\frac{1}{2}$.

U40. Show that $\mathrm{GL}_{4}(\mathbb{Q})$ has no element of order 7 .
Proposed by Jean-Charles Mathieux, Dakar University, Sénégal
Solution by Gabriel Dospinescu, Ecole Normale Superieure, Paris
Suppose A is such a matrix. Observe that if a is an eigenvalue of A, then $a^{7}=1$ and $a^{6}+\ldots+a+1$ is nonzero. Indeed, otherwise the irreducible polynomial $X^{6}+\ldots+X+1$ (over the field of rationals) would have a common root with the characteristic polynomial of A, therefore it would divide the latter. This is impossible, looking at the degrees. Thus each eigenvalue of A is 1 . It follows that $A=I_{4}$. Because A is diagonalisable over the field of complex numbers, we obtain the desired contradiction.

U41. Let k be a positive integer and let α be a real number greater than 1 . A number is called a k-prime if it is the product of at most k (not necessarily distinct) primes. Let $p(r)$ be the probability that a random integer x contains $r k$-prime divisors $d_{1}<d_{2}<\ldots<d_{r}$ such that $d_{r}<\alpha d_{1}$. Prove that $\lim _{r \rightarrow \infty} p_{r}=0$.

Proposed by Iurie Boreico, Moldova

Solution by Iurie Boreico, Moldova

We use induction on k. The base case $k=0$ is clear.
First of all let us prove some basic facts.
a) A graph having $\binom{n+k-2}{k-1}$ edges contains either a K_{n} or a $\overline{K_{k}}$. This is proven by induction on $n+k$. If $n+k=2$, then a graph with at least one vertex satisfies the condition, and the same holds if at least one of n, k is 0 . Now assume $n+k=m$ and for $n+k<m$ we have already proven the problem.

Take a vertex A and let S_{1} be the set of its neighbors, S_{2} be the set of its non-neighbors. Then $\left|S_{1}\right|+\left|S_{2}\right| \geq\binom{ n+k-2}{k-1}-1=\binom{n+k-2}{k-1}+\binom{n+k-2}{k-2}$, therefore $\left|S_{1}\right| \geq\binom{ n+k-2}{k-1}$ or $S_{1} \geq\binom{ n+k-2}{k-2}$. In the first case, by the induction hypothesis, S_{1} contains either a K_{n-1} or a $\overline{K_{k}}$. If it contains a $\overline{K_{k}}$ we are done and so we are if it contains a K_{n-1} because we can add A to it. In the second case, by the induction hypothesis, S_{2} contains either a K_{n} or a $\overline{K_{k-1}}$. Again, if it contains a K_{n} we are done, and if it contains a $\overline{K_{k-1}}$, then we add A to it and complete the inductive step.
b) Set q_{r} be the probability that a number x is divisible by r pairwise coprime k-prime numbers. Then $\lim _{r \rightarrow \infty} q_{r}=\lim _{r \rightarrow \infty} p_{r}$.

To do this, it suffices to prove that the density of numbers x divisible by R pairwise coprime k-prime numbers so that no r of these divisors are pairwise coprime is 0 . According to a) we can select a R such that if from these R divisors no r are mutually coprime then at least $k m+1$ are mutually not coprime. Now take one of these numbers. It is divisible by at most k prime numbers so out of the $k m+1$ at least $m+1$ are divisible by the same prime divisor p. These numbers divisible by p constitute at least $m k-1$-prime numbers dividing the number x. But the density of such numbers x tends to zero according to the induction hypothesis.
c) We thus need to show that $\lim _{r \rightarrow \infty} q_{r}=0$.

We prove that the interval $(n ; \alpha n)$ contains at most $C\left(\frac{n \ln \ln n^{k}}{\ln n}\right) k$-prime numbers. This is done by induction on k. The base case $k=1$ is clear.

Now the induction step. A k-prime number M between n and αn satisfies the condition that its smallest divisor p is at most $\sqrt[k]{n}$.

Then the number $\frac{M}{p}$ is a $k-1$-prime number between $\frac{n}{p}$ and $\alpha \frac{n}{p}$. By the induction hypothesis there are at most $C \frac{\frac{n}{p}\left(\ln \ln \frac{n}{p} k-1\right)}{\ln \frac{n}{p}}<C_{1} \frac{1}{p} \frac{n \ln \ln n^{k-1}}{\ln n}$ such numbers. So by summing over all $p<\sqrt[k]{n}$ as $\sum_{p<\sqrt[k]{n}}^{p}<\ln \ln n$ we conclude the total number is at most $C_{1}\left(\frac{n \ln \ln n^{k}}{\ln n}\right)$ and the induction step is proven.
d) We now show that $\lim _{r \rightarrow \infty} q_{r}=0$. Consider $A=\sqrt{\alpha}$. Let's take a x having $2 r$ pairwise coprime k-prime divisors in an interval $(n ; \alpha n)$. It is easy to see x has r pairwise coprime k-prime divisors in an interval $\left(A^{k} ; A^{k+1}\right)$. Say that it has divisors $d_{1}, d_{2}, \ldots, d_{r}$. The probability that x is divisible by all of them is $\frac{1}{d_{1} d_{2} \ldots d_{r}}<\frac{1}{A^{k r}}$ as $d_{1}, d_{2}, \ldots, d_{r}$ are pairwise coprime. Finally $d_{1}, d_{2}, \ldots, d_{r}$ can be chosen in less than $\binom{t_{k}}{r}<\frac{t_{k}^{r}}{r!}$ where t_{k} is the number of k-prime numbers between A^{k} and A^{k+1}. But according to c) $t_{k}<C \frac{A^{k} \ln k a^{k}}{k a}$ where $a=\ln A$. So $\frac{t_{k}^{r}}{r!}<\frac{C^{r} e^{r} A^{k r} \ln k a^{k}}{k^{r} a^{r} r^{r}}$ as $r!\sim\left(\frac{r}{e}\right)^{r}$. It is clear that $\ln x^{k}<C^{\prime} x$ for some x therefore $\frac{t_{k}^{r}}{r!}<C^{\prime} \frac{(C E)^{r} A^{k r}}{r^{r} k^{r-1} a^{r}}$. Now multiplying by the probability which is less than $\frac{1}{A^{k r}}$ and summing by all k we get

$$
\lim _{r \rightarrow \infty} q_{r}<\lim _{r \rightarrow \infty} \sum_{k=1}^{\infty} \frac{1}{A^{k r}} \cdot C^{\prime} \frac{(C E)^{r} A^{k r}}{r^{r} k^{r-1} a^{r}}
$$

Now $\sum_{k=1}^{\infty} \frac{1}{k^{r-1} a^{r}}$ clearly is convergent to some C_{1} when $r \rightarrow \infty$ while $\frac{C^{\prime}(C E)^{r}}{r^{r}}<$ $\frac{1}{r}$ for sufficiently big r. Therefore this sum is at most $C_{1} \frac{1}{r}$ for sufficiently big r and tends to 0 , as desired.

U42. Let $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ be points in a plane such that $B_{i} A_{1} \cdot B_{i} A_{2} \cdot \ldots \cdot B_{i} A_{n} \leq A_{j} B_{i}$ for all i and j. Prove that

$$
\prod_{1 \leq i<j \leq n} A_{i} A_{j} \cdot B_{i} B_{j} \leq n^{\frac{n}{2}}
$$

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris Solution by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Recall the expression of the Cauchy determinant

$$
\operatorname{det}\left(\frac{1}{a_{i}+b_{j}}\right)=\frac{\prod_{1 \leq i<j \leq n}\left(b_{j}-b_{i}\right)\left(a_{j}-a_{i}\right)}{\prod_{i, j}\left(a_{i}+b_{j}\right)} .
$$

Using Hadamard's inequality, we deduce that

$$
\left(\prod_{1 \leq i<j \leq n}\left|b_{j}-b_{i}\right|\left|a_{j}-a_{i}\right|\right)^{2} \leq\left(\prod_{i, j}\left|a_{i}+b_{j}\right|^{2}\right)^{2} \cdot \prod_{j}\left(\frac{1}{\left|b_{j}+a_{1}\right|^{2}}+\ldots+\frac{1}{\left|b_{j}+a_{n}\right|^{2}}\right) .
$$

However, the last quantity is at most n^{n}, because each factor can be rewritten as

$$
\left|b_{j}+a_{2}\right|^{2} \ldots\left|b_{j}+a_{n}\right|^{2}+\ldots+\left|b_{j}+a_{1}\right|^{2} \ldots\left|b_{j}+a_{n-1}\right|^{2} \leq n .
$$

From here the conclusion follows, by interpreting A_{i} and B_{j} as points of affixes a_{i} and $-b_{j}$.

Olympiad

O37. Let a, b, c, d be nonnegative real numbers such that $a^{2}+b^{2}+c^{2}+d^{2}=$ 4. Prove that

$$
\sqrt{2}(4-a b-b c-c d-d a) \geq(\sqrt{2}+1)(4-a-b-c-d)
$$

Proposed by Vasile Cartoaje, University of Ploiesti, Romania First solution by Daniel Campos Salas, Costa Rica

Let $s=a+b+c+d$. From the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
4=\sqrt{4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)} \geq s \tag{1}
\end{equation*}
$$

and since a, b, c, d are nonnegative reals numbers,

$$
\begin{equation*}
s \geq \sqrt{a^{2}+b^{2}+c^{2}+d^{2}}=2 \tag{2}
\end{equation*}
$$

Applying the AM-GM inequality it follows that

$$
\sqrt{2}(4-a b-b c-c d-d a)=\sqrt{2}(4-(a+b)(c+d)) \geq \sqrt{2}\left(4-\frac{s^{2}}{4}\right)
$$

Note that

$$
\begin{gather*}
\sqrt{2}\left(4-\frac{s^{2}}{4}\right)-(\sqrt{2}+1)(4-s)=-\frac{s^{2} \sqrt{2}}{4}+(\sqrt{2}+1) s-4= \\
=\frac{\sqrt{2}}{4}\left(-s^{2}+(4+2 \sqrt{2}) s-8 \sqrt{2}\right)=\frac{\sqrt{2}}{4}(4-s)(s-2 \sqrt{2}) \tag{3}
\end{gather*}
$$

From (1) and (3) it follows that the inequality holds for $s \geq 2 \sqrt{2}$. Suppose that $s \leq 2 \sqrt{2}$. Then
$\sqrt{2}(4-a b-b c-c d-d a) \geq \sqrt{2}(4-a b-b c-c d-d a-a c-b d)=\frac{\sqrt{2}}{2}\left(12-s^{2}\right)$.
Hence

$$
\begin{align*}
& \frac{\sqrt{2}}{2}\left(12-s^{2}\right)-(\sqrt{2}+1)(4-s)=-\frac{s^{2} \sqrt{2}}{2}+(\sqrt{2}+1) s+(2 \sqrt{2}-4)= \\
= & \frac{\sqrt{2}}{2}\left(-s^{2}+(2+\sqrt{2}) s+(4-4 \sqrt{2})\right)=\frac{\sqrt{2}}{2}(2 \sqrt{2}-s)(s-2+2 \sqrt{2}) \tag{4}
\end{align*}
$$

From (2) and (4) it follows that the inequality also holds for $s \leq 2 \sqrt{2}$, and this completes the proof.

Second solution by Vardan Verdiyan, Yerevan, Armenia

Because $a b+b c+c d+d a=(a+c)(b+d)$, our inequality can be rewritten as

$$
\begin{gathered}
\sqrt{2}(4-(a+c)(b+d)) \geq(\sqrt{2}+1)(4-(a+c)-(b+d)) \Leftrightarrow \\
(\sqrt{2}+1)(a+b+c+d) \geq \sqrt{2}(a+c)(b+d)+4
\end{gathered}
$$

Denote $x=a+c$ and $y=b+d$. From the condition of the problem we have $x^{2}+y^{2} \geq a^{2}+b^{2}+c^{2}+d^{2}=4 \Rightarrow(x+y)^{2} \geq 4+2 x y$. Therefore $x+y \geq 2$. We can rewrite our inequality

$$
\begin{aligned}
(\sqrt{2}+1)(x+y) & \geq \sqrt{2} x y+4 \Leftrightarrow(2+\sqrt{2})(x+y) \geq 2 x y+4 \sqrt{2} \Leftrightarrow \\
4 & +(2+\sqrt{2})(x+y)-4 \sqrt{2} \geq 4+2 x y
\end{aligned}
$$

Thus it is enough to prove

$$
4+(2+\sqrt{2})(x+y)-4 \sqrt{2} \geq(x+y)^{2}
$$

Denote $x+y=k$. We have to prove

$$
\begin{gathered}
k^{2}-(2+\sqrt{2}) k+4(\sqrt{2}-1) \Leftrightarrow \\
\frac{2+\sqrt{2}-\sqrt{22-12 \sqrt{2}}}{2} \leq k \leq \frac{2+\sqrt{2}+\sqrt{22-12 \sqrt{2}}}{2}=2 \sqrt{2}
\end{gathered}
$$

It follows that our inequality is true if $x+y \leq 2 \sqrt{2}$.
Assume that $x+y>2 \sqrt{2}$. Observe that $x y<4$ as $4=a^{2}+b^{2}+c^{2}+d^{2} \geq$ $(a+c)(b+d)=x y$. Because $x+y \geq 2 \sqrt{x y}$, it suffices to prove that

$$
(2+\sqrt{2}) 2 \sqrt{x y} \geq 2 x y+4 \sqrt{2} \Leftrightarrow x y-(2+\sqrt{2}) \sqrt{x y}+2 \sqrt{2} \leq 0
$$

This is true when $\sqrt{2}=\frac{2+\sqrt{2}-\sqrt{6-4 \sqrt{2}}}{2} \leq \sqrt{x y} \leq \frac{2+\sqrt{2}+\sqrt{6-4 \sqrt{2}}}{2}=2$.
But if $\sqrt{x y}<\sqrt{2}$, then $(2+\sqrt{2})(x+y)>4+4 \sqrt{2}>2 x y+4 \sqrt{2}$ and we are done.

Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain
Let us call $s=a+b+c+d$, and let us find first the maximum and minimum values of s. Since the quadratic mean of a, b, c, d is 1 , the inequality between the arithmetic and quadratic means ensures that the maximum value of the sum is 4, achieved if and only if $a=b=c=d=1$. Furthermore, since $a b, a c, a d, b c, b d, c d$ are all non-negative,

$$
s^{2} \geq a^{2}+b^{2}+c^{2}+d^{2}=4
$$

with equality if and only if $a b=a c=a d=b c=b d=c d=0$, or if and only if one of a, b, c, d equals 2 , and the rest are 0 . Therefore,

$$
2 \leq s \leq 4 .
$$

Let us now consider two different cases, $2 \leq s<2 \sqrt{2}$ and $2 \sqrt{2} \leq s \leq 4$. In the first case,

$$
s^{2}-(2+\sqrt{2}) s+4 \sqrt{2}-4=(s-2 \sqrt{2})(s-2+\sqrt{2})<0 \leq 2 a c+2 b d .
$$

In the second case,

$$
4+2 a c+2 b d=a^{2}+b^{2}+c^{2}+d^{2}+2 a c+2 b d=(a+c)^{2}+(b+d)^{2} \geq \frac{s^{2}}{2}
$$

with equality if and only if $a+c=b+d$, and where the arithmetic-quadratic inequality has been used. Now, since

$$
s^{2}-(2+\sqrt{2}) s+4 \sqrt{2}=\frac{s^{2}}{2}+\frac{(s-4)(s-2 \sqrt{2})}{2} \leq \frac{s^{2}}{2}
$$

we have

$$
s^{2}-(2+\sqrt{2}) s+4 \sqrt{2}-4 \leq 2 a c+2 b d
$$

with equality if and only if $s=4$ or $s=2 \sqrt{2}$.
Finally, in either case,

$$
\begin{gathered}
a b+b c+c d+d a=\frac{s^{2}-4-2 a c-2 b d}{2} \leq \frac{1+\sqrt{2}}{\sqrt{2}} s-\frac{4}{\sqrt{2}}, \\
\sqrt{2}(4-a b-b c-c d-d a) \geq 4 \sqrt{2}+4-(1+\sqrt{2}) s=(1+\sqrt{2})(4-s),
\end{gathered}
$$

Equality happens in two cases:

1) if and only if $s=4$, or if and only if $a=b=c=d=1$
2) if and only if $s=2 \sqrt{2}$ and simultaneously $a+c=b+d$, or if and only if $a+c=b+d=\sqrt{2}$. In this case, since

$$
(a+c)^{2}+(b+d)^{2}=4=a^{2}+b^{2}+c^{2}+d^{2},
$$

it follows that $a c=b d=0$, or one of a, c equals $\sqrt{2}$ and the other one is zero, and likewise with b, d.

O38. Let w_{1} be a circle smaller than and internally tangent to the circle w_{2} at T. A tangent to $w_{1}\left(\right.$ at $\left.T^{\prime}\right)$, intersects w_{2} at A and B. If A, T^{\prime}, and B are fixed, what is the locus of T .

Proposed by Alex Anderson, New Trier High School, Winnetka, IL

First solution by Gabriel Alexander Reyes, San Salvador, El Salvador
We need to prove the following lemma:
Lemma. $T T^{\prime}$ is the angle bisector of $\angle A T B$.
Proof. This problem appeared at the British Olympiad (first round, 1993). Let A^{\prime} and B^{\prime} be the second point of intersection of $A T$ and $B T$ with w_{1}, respectively. Because T is the center of similarity of circles w_{1} and w_{2}, we know that $A B$ and $A^{\prime} B^{\prime}$ are parallel. Then $\angle A T^{\prime} A=\angle T^{\prime} A^{\prime} B$. But $\angle A T^{\prime} A=\angle A^{\prime} T T^{\prime}$, because $A T^{\prime}$ is tangent to w_{1}. On the other hand, $\angle T^{\prime} A^{\prime} B^{\prime}=\angle T^{\prime} T B^{\prime}$, given that $A T B^{\prime} T^{\prime}$ is a cyclic quadrilateral. Hence $\angle A^{\prime} T T^{\prime}=\angle T^{\prime} T B^{\prime}$, so $T T^{\prime}$ is the angle bisector of $\angle A^{\prime} T B^{\prime}$, as claimed.

Applying now the angle bisector theorem in the triangle $A T B$ yields $A T / T B=A T^{\prime} / T^{\prime} B$. Upon observing that the ratio on the right hand side is fixed, observe that the condition of the Apollonius circle is satisfied. Therefore the locus of T is a circle, namely the Apollonius circle corresponding to the points A, B and the ratio $A T^{\prime} / T^{\prime} B$. If $A T^{\prime} / T^{\prime} B=1$, we know this circle degenerates into the perpendicular bisector of $A B$.

Second solution is another solution received from Gabriel Alexander Reyes, San Salvador, El Salvador

Perform an inversion with center T^{\prime}. The line $A B$ remains fixed, w_{1}, which is tangent to $A B$ at T^{\prime}, becomes a line ℓ parallel to $A B$, and w_{2} becomes a circle through A and B, tangent to ℓ at T. But the latter implies, by symmetry, that T belongs to the perpendicular bisector ℓ^{\prime} of $A B$. Then the locus of the inverse of T is a line orthogonal to $A B$. If ℓ^{\prime} passes through T^{\prime}, this line is its own inverse, so the locus of T is the perpendicular bisector of $A B$ (of course, this is the case when T^{\prime} is the midpoint of $A B$). Otherwise, the locus of T is a circle through T^{\prime}, whose center lies on $A B$. This happens to be an Apollonius circle, as we noted above.

Let P be the point where the tangents to w_{1} at T and T^{\prime} meet. Clearly, $P T=P T^{\prime}$. Because $P T^{\prime}$ intersects w_{2} at A and B, and $P T$ is tangent to w_{2} at T, it follows that $P A \cdot P B=P T^{2}=P T^{\prime 2}$. Or, given A, B, T^{\prime}, point P is fixed for any T, and T is on the circle with center P that passes through T^{\prime}. Using Stewart's theorem on cevian $T A$ in triangle PTB,

$$
\begin{gathered}
A T^{2}=\frac{P T^{2} \cdot A B+B T^{2} \cdot P A-P A \cdot A B \cdot P B}{P B}=\frac{B T^{2} \cdot P A}{P B} ; \\
\frac{A T^{2}}{B T^{2}}=\frac{P A}{P B}=\frac{P A^{2}}{P T^{\prime 2}}=\frac{P T^{\prime 2}}{P B^{2}} .
\end{gathered}
$$

Therefore, the ratio $\frac{A T}{B T}$ is independent on T, and the circle is the Apollonius circle such that any point T on it satisfies

$$
\frac{A T}{B T}=\frac{A T^{\prime}}{B T^{\prime}}
$$

Let us show that for any given point on the circle, except for T^{\prime} and its diametrally opposite point, there exist circles w_{1} and w_{2} such that the given point is a valid location of T.

Given any point on the Apollonius circle described above, because $P T=$ $P T^{\prime}$, a circle tangent to $P T$ at T and to $P T^{\prime}$ at T^{\prime} exists. Its center is the angle bisector of $\angle T P T^{\prime}$. Denote this circle will be w_{1}. Let us w_{2} be the circumcircle of triangle $A T B$. Because $P T^{2}=P A \cdot P B, P T$ is a tangent to w_{2} at T, which means that w_{1} and w_{2} are tangent at T. Because T^{\prime} is on side $A B$ of triangle $A T B, w_{1}$ is partially inside w_{2}. But since both these circles are tangent, so w_{1} is completely inside w_{2}, since two tangent circles may only be equal, exterior to each other, or one interior to the other. Thus, for any point T in the Apollonius circle described, we have found circles w_{1} and w_{2} satisfying the conditions of the problem. In the case of T^{\prime} and its diametrally opposite point $T^{\prime \prime}$, circle w_{1} becomes point T^{\prime} and line $A B$, respectively, w_{2} becoming line $A B$ in both cases.

Note finally that, when T^{\prime} is the midpoint of $A B$, the Apollonius circle becomes the perpendicular bisector of segment $A B$ and circles w_{1} and w_{2} have their centers on this bisector, the former having $T T^{\prime}$ as a diameter, the latter being, as always, the circumcircle of $A T B$.

O39. Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{\sqrt{a^{2}+2 b c}}+\frac{b}{\sqrt{b^{2}+2 c a}}+\frac{c}{\sqrt{c^{2}+2 a b}} \leq \frac{a+b+c}{\sqrt{a b+b c+c a}}
$$

Proposed by Ho Phu Thai, Da Nang, Vietnam

First solution by Daniel Campos Salas, Costa Rica

Since the inequality is symmetric with respect a, b, c we can assume without loss of generality that $a \geq b \geq c$. Then $(a-c)(b-c) \geq 0$, which implies

$$
\frac{c}{\sqrt{c^{2}+2 a b}} \leq \frac{c}{\sqrt{a b+b c+c a}}
$$

It is not difficult to prove that

$$
\frac{a}{\sqrt{a^{2}+2 b c}}+\frac{b}{\sqrt{b^{2}+2 c a}} \leq \frac{a+b}{\sqrt{a b+b c+c a}}
$$

Note that this inequality is equivalent to

$$
\begin{equation*}
\frac{a\left(\sqrt{a^{2}+2 b c}-\sqrt{a b+b c+c a}\right)}{\sqrt{a^{2}+2 b c}} \geq \frac{b\left(\sqrt{a b+b c+c a}-\sqrt{b^{2}+2 c a}\right)}{\sqrt{b^{2}+2 c a}} \tag{1}
\end{equation*}
$$

It is easy to verify that

$$
\sqrt{a^{2}+2 b c}-\sqrt{a b+b c+c a}, \sqrt{a b+b c+c a}-\sqrt{b^{2}+2 c a} \geq 0
$$

given $a \geq b \geq c$. Let us prove that

$$
\begin{equation*}
\frac{a}{\sqrt{a^{2}+2 b c}} \geq \frac{b}{\sqrt{b^{2}+2 a c}} \tag{2}
\end{equation*}
$$

is equivalent to $a^{3} c \geq b^{3} c$, which is clearly true.
Let us also prove that

$$
\begin{equation*}
\sqrt{a^{2}+2 b c}-\sqrt{a b+b c+c a} \geq \sqrt{a b+b c+c a}-\sqrt{b^{2}+2 c a} \tag{3}
\end{equation*}
$$

This inequality is equivalent to

$$
\sqrt{a^{2}+2 b c}+\sqrt{b^{2}+2 c a} \geq 2 \sqrt{a b+b c+c a}
$$

which (after squaring both sides and cancelling some terms) becomes

$$
a^{2}+b^{2}+2 \sqrt{\left(a^{2}+2 b c\right)\left(b^{2}+2 c a\right)} \geq 4 a b+2 b c+2 c a
$$

Because $a^{2}+b^{2} \geq 2 a b$, it is enough to prove that

$$
\sqrt{\left(a^{2}+2 b c\right)\left(b^{2}+2 c a\right)} \geq a b+b c+c a
$$

which is equivalent to

$$
c\left(2 a^{3}+2 b^{3}+2 a b c-a^{2} c-b^{2} c-2 a^{2} b-2 a b^{2}\right)=c(2 a+2 b-c)(a-b)^{2} \geq 0
$$

Multiplying (2) and (3) we prove that (1) holds and the conclusion follows.

Second solution by Pham Huu Duc, Australia

By the Cauchy-Schwarz inequality,

$$
\left(\sum \frac{a}{\sqrt{a^{2}+2 b c}}\right)^{2} \leq \sum a \sum \frac{a}{a^{2}+2 b c}
$$

It remains to show that

$$
\sum \frac{a}{a^{2}+2 b c} \leq \frac{a+b+c}{a b+b c+c a}
$$

or, equivalently,

$$
\sum \frac{a(a b+b c+c a)}{a^{2}+2 b c} \leq a+b+c
$$

We have

$$
\sum\left(a-\frac{a(a b+b c+c a)}{a^{2}+2 b c}\right)=\sum \frac{a(a-b)(a-c)}{a^{2}+2 b c}
$$

Without loss of generality, assume $a \geq b \geq c$. Then

$$
\frac{c(c-a)(c-b)}{c^{2}+2 a b} \geq 0
$$

and
$\frac{a(a-b)(a-c)}{a^{2}+2 b c}+\frac{b(b-c)(b-a)}{b^{2}+2 c a}=\frac{c(a-b)^{2}[3 a b+2 a(a-c)+2 b(b-c)]}{\left(a^{2}+2 b c\right)\left(b^{2}+2 c a\right)} \geq 0$ and the conclusion follows.

Also solved by Anuj Kumar, New Delhi, India; Tigran Sloyan, Yerevan, Armenia; Vardan Verdiyan, Yerevan, Armenia; Vo Quoc Ba Can, Can Tho University, Vietnam

O40. In the AwesomeMath summer camp there are 80 boys and 40 girls. It has been noticed that any two boys have an even number of acquaintances among the girls and exactly 19 boys know an odd number of girls. Prove that one can choose a group of at least 50 boys such that any girl is acquainted to an even number of boys from this group.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Let us consider the matrix $A=\left(a_{i j}\right)$ where

$$
a_{i j}= \begin{cases}1, & \text { if } B_{i} \text { knows } F_{j} \\ 0, & \text { otherwise }\end{cases}
$$

Here $B_{1}, B_{2}, \ldots, B_{80}$ are the boys and $F_{1}, F_{2}, \ldots, F_{40}$ are the girls. Now, consider the matrix $T=A \cdot{ }^{t} A$. Observe that all the elements of the matrix T, except those from the main diagonal, are even (because $t_{i j}=\sum_{k=1}^{40} a_{i k} a_{j k}$ is the number of common acquaintances among the girls of the boys $\left.B_{i}, B_{j}\right)$. Each element on the main diagonal of T is precisely the number of girls known by the corresponding boy. If we consider the matrix T in $\left(\mathbb{Z}_{2},+, \cdot\right)$, it will be diagonal, with exactly 19 nonzero elements on its main diagonal. From now on, we will work only in $\mathbb{Z} / 2 \mathbb{Z}$. We have seen that $\operatorname{rank}(T)=19$. Using Sylvester's inequality, we have

$$
19=\operatorname{rank}(T) \geq \operatorname{rank}(A)+\operatorname{rank}\left({ }^{t} A\right)-40=2 \operatorname{rank}\left({ }^{t} A\right)-40
$$

hence $r=\operatorname{rank}\left({ }^{t} A\right) \leq 29$. Let us consider now the linear system in $\left(\mathbb{Z}_{2},+, \cdot\right)$:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{21} x_{2}+\cdots+a_{80,1} x_{80}=0 \\
a_{12} x_{1}+a_{22} x_{2}+\cdots+a_{80,2} x_{80}=0 \\
\cdots \\
a_{1,40} x_{1}+a_{2,40} x_{2}+\cdots+a_{80,40} x_{80}=0
\end{array}\right.
$$

The set of solutions of this system is a vector space of dimension $80-r \geq 51$. That is why we can choose a solution $\left(x_{1}, x_{2}, \ldots, x_{80}\right)$ of the system, having at least 50 components equal to $\widehat{1}$. Finally, consider the set $S=\left\{i \in\{1,2, \ldots, 80\} \mid x_{i}=\widehat{1}\right\}$. We have proved that $|S| \geq 29$ and also $\sum_{j \in S} a_{j i}=0$ for all $i=1,2, \ldots, 40$. But observe that $\sum_{j \in S} a_{j i}$ is the number of boys B_{k} with $k \in S$ such that B_{k} knows F_{i}. Thus if we choose the group of those boys B_{k} with $k \in S$, then each girl is known by an even number of boys from this group and the problem is solved.

O41. Prove the following identity:

$$
\sum_{0 \leq a \leq \sqrt{n}}\left\lfloor\sqrt{n-a^{2}}\right\rfloor=\sum_{0 \leq i \leq \frac{n}{2}}(-1)^{i}\left\lfloor\frac{n}{2 i+1}\right\rfloor
$$

Proposed by Ashay Burungale, India

Solution by Ashay Burungale, India

Observe that $\left\lfloor\sqrt{n-a^{2}}\right\rfloor$ is the number of positive integers b with $a^{2}+b^{2} \leq$ n. Therefore the left hand side of the identity is the number of $a \geq 0, b \geq 1$ with $a^{2}+b^{2} \leq n$. If $f(k)$ is the number of pairs (a, b) then we use the classical result

$$
f(k)=\sum_{d \mid k, d \text { odd }}(-1)^{(d-1) / 2}
$$

Thus the left hand side equals to $\sum_{k=1}^{n} f(k)$. But

$$
\sum_{k=1}^{n} f(k)=\sum_{0 \leq i \leq \frac{n}{2}}(-1)^{i}\left\lfloor\frac{n}{2 i+1}\right\rfloor
$$

because the term $(-1)^{(d-1) / 2}$ occurs exactly for those k that satisfy $d \mid k$ and there are $\left\lfloor\frac{n}{d}\right\rfloor$ of those.

O42. Let $a_{1}, a_{2}, \ldots, a_{5}$ be positive real numbers such that

$$
a_{1} a_{2} \ldots a_{5}=a_{1}\left(1+a_{2}\right)+a_{2}\left(1+a_{3}\right)+\ldots+a_{5}\left(1+a_{1}\right)+2 .
$$

Find the minimal value of $\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}+\frac{1}{a_{5}}$.
Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

First solution by Vo Quoc Ba Can, Can Tho University, Vietnam

First, we will prove that for all positive real numbers x, y, z, t, u, the following inequality holds

$$
(x+y+z+t+u)^{3} \geq 25(x y z+y z t+z t u+t u x+u x y)
$$

Indeed, without loss of generality, assume $x=\min \{x, y, z, t, u\}$. Setting $y=$ $x+b, z=x+c, t=x+d, u=x+e$ then $b, c, d, e \geq 0$, we have

$$
L H S-R H S=5 A x+(b+c+d+e)^{3}-25 c d(b+e)
$$

where

$$
\begin{aligned}
A & =3(b+c+d+e)^{2}-5 b e-10 b c-5 b d-10 c d-5 c e-10 d e \\
& =\frac{1}{12}(6 b+d+e-4 c)^{2}+\frac{5}{84}(7 d-4 c-5 e)^{2}+\frac{5}{28}(2 c-e)^{2}+\frac{5}{4} e^{2} \geq 0
\end{aligned}
$$

By the AM - GM inequality, we have

$$
25 c d(b+e) \leq 27 c d(b+e) \leq(c+d+(b+e))^{3}=(b+c+d+e)^{3}
$$

The inequality is proved. Now, using this inequality with $x=\frac{1}{a_{1}}, y=\frac{1}{a_{2}}, z=$ $\frac{1}{a_{3}}, t=\frac{1}{a_{4}}, u=\frac{1}{a_{5}}$, we obtain

$$
P^{3} \geq \frac{25\left(a_{1} a_{2}+a_{2} a_{3}+\ldots+a_{5} a_{1}\right)}{a_{1} a_{2} \ldots a_{5}}
$$

On the other hand, by the MacLaurin and AM - GM inequalities, we have

$$
\frac{125\left(a_{1}+a_{2}+\ldots+a_{5}\right)}{a_{1} a_{2} \ldots a_{5}} \leq P^{4}, \quad \frac{3125}{a_{1} a_{2} \ldots a_{5}} \leq P^{5}
$$

Hence

$$
1=\frac{a_{1}+a_{2}+\ldots+a_{5}}{a_{1} a_{2} \ldots a_{5}}+\frac{a_{1} a_{2}+a_{2} a_{3}+\ldots+a_{5} a_{1}}{a_{1} a_{2} \ldots a_{5}}+\frac{2}{a_{1} a_{2} \ldots a_{5}} \leq \frac{P^{4}}{125}+\frac{P^{3}}{25}+\frac{2 P^{5}}{3125}
$$

or

$$
\frac{(2 P-5)\left(P^{4}+15 P^{3}+100 P^{2}+250 P+625\right)}{3125} \geq 0
$$

From this, we have $P \geq \frac{5}{2}$. Now, letting $a_{1}=a_{2}=\ldots=a_{5}=2$, we get $P=\frac{5}{2}$, therefore

$$
\min P=\frac{5}{2}
$$

Second solution by Ho Phu Thai, Da Nang, Vietnam

Denote the variables by a, b, c, d, e. From the hypothesis, $a b c d e \geq 32$ and

$$
1=\frac{1}{a b c d}+\frac{1}{b c d e}+\frac{1}{c d e a}+\frac{1}{d e a b}+\frac{1}{e a b c}+\frac{1}{a b c}+\frac{1}{b c d}+\frac{1}{c d e}+\frac{1}{d e a}+\frac{1}{e a b}+\frac{2}{a b c d e}
$$

Let us prove the following inequalities:

$$
\begin{gathered}
(x+y+z+t+w)^{4} \geq 125(x y z t+y z t w+z t w x+t w x y+w x y z) \Leftrightarrow \\
x^{4}+y^{4}+z^{4}+t^{4}+w^{4}+7 \sum_{20 \mathrm{terms}} x^{3} y+12 \sum_{30 \mathrm{terms}} x^{2} y z+24 \sum_{24 \mathrm{terms}} x y z t \geq 125 \sum_{24 \mathrm{terms}} x y z t \Leftrightarrow \\
x^{4}+y^{4}+z^{4}+t^{4}+w^{4}+7 \sum_{20 \mathrm{terms}} x^{3} y+12 \sum_{30 \mathrm{terms}} x^{2} y z \geq 101 \sum_{24 \mathrm{terms}} x y z t .
\end{gathered}
$$

This is a consequence of Muirhead's theorem. We will now prove that

$$
(x+y+z+t+w)^{3} \geq 25(x y z+y z t+z t w+t w x+w x y)
$$

Normalizing $x+y+z+t+w=5$, we show that $x y z+y z t+z t w+t w x+w x y \leq 5$ by Lagrange multipliers. Define the function $F=x y z+y z t+z t w+t w x+$ $w x y+\lambda(x+y+z+t+w-5)$. Solving the system

$$
\frac{d F}{d x}=\frac{d F}{d y}=\frac{d F}{d z}=\frac{d F}{d t}=\frac{d F}{d w}=0
$$

we get $x=y=z=t=w=1$ and $\lambda=-3$. The condition $x+y+z+t+w=5$ implies $\frac{d F}{d x}+\frac{d F}{d y}+\frac{d F}{d z}+\frac{d F}{d t}+\frac{d F}{d w}=0$. Observing that $d^{2} x=d^{2} y=d^{2} z=d^{2} t=$ $d^{2} w=0$, we have
$d F=\sum_{c y c}(x y d z+y z d x+z x d y), d^{2} F=\frac{1}{2} \sum_{\text {sym }} d x d y \leq \frac{12}{5}(d x+d y+d z+d t+d w)^{2}=0$.
Hence F attains its maximum when $x=y=z=t=w=1$. Applying the two inequalities, we get

$$
1 \leq \frac{1}{125}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)^{4}+\frac{1}{25}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\right)^{3}+\frac{1}{16}
$$

This implies $\frac{1}{a}+\frac{1}{b}+\cdots+\frac{1}{c}+\frac{1}{d}+\frac{1}{e} \leq \frac{5}{2}$. Equality holds if and only if $a=b=c=d=e=2$.

