
Solutions for Mathematical Reflections 1(2007)

Juniors

J37. Let a1, a2..., a2n+1 be distinct positive integers not exceeding 3n + 1.
Prove that among them there are two such that

ai − aj = m, for all m ∈ {1, 2, ..., n}.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Jose Alejandro Samper, Colegio Helvetia de Bogota, Colombia

Let m ∈ {1, 2, ..., n}. Color the numbers from 1 to 3n + 1 with m colors
so that i and j have the same color if an only if i ≡ j (mod m). The number
of numbers of the same color is at most d3n+1

m e. If more than half of the
numbers of the same color are chosen, there are two that differ by m, because
the numbers of the same color are all the numbers that have the same residue
modulo m.

We have to choose 2n + 1 different numbers from 1 to 3n + 1. By the
Pigeonhole principle, there are at least 2n+1

m numbers having the same color.
This means that the problem is equivalent to:
2 · 2n+1

m = 4n+2
m > d3n+1

m e, because there exists a color i, such that the number
of chosen numbers of color i is greater than half of the total number of numbers
of color i.

Using the fact that n + 1 > m we get

4n + 2 > 3n + 1 + m ≥ mb3n + 1
m

c+ m.

Therefore
4n + 2

m
> b3n + 1

m
c+ 1 ≥ d3n + 1

m
e.

This completes the proof.
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J38. Let a, b, c be positive real numbers. Prove that

a

b + c
+

b

c + a
+

c

a + b
≥ a2 + bc

(a + b)(a + c)
+

b2 + ca

(b + a)(b + c)
+

c2 + ab

(c + a)(c + b)
.

Proposed by Cezar Lupu, University of Bucharest, Romania

Solution by Paolo Perfetti, Roma, Italy
The inequality is equivalent to

a3 + b3 + c3 + 3abc− ab(a + b)− ac(a + c)− bc(b + c)
(a + b)(a + c)(b + c)

≥ 0

which is in turn equivalent to

a(a− b)(a− c) + b(b− a)(b− c) + c(c− a)(c− b) ≥ 0.

This is the well–known Schur’s inequality and we are done.

Also solved by Vishal Lama, Southern Utah University, USA; Vardan Verdiyan,
Yerevan, Armenia; Son Ta Hong, Ha Noi University of Education, Vietnam;
Jose Alejandro Samper, Colegio Helvetia de Bogota, Colombia; Courtis G.
Chryssostomos, Larissa, Greece; Pham Huu Duc, Australia; Daniel Lasaosa,
Universidad Publica de Navarra, Spain; Vo Quoc Ba Can, Can Tho Univer-
sity, Vietnam; Vicente Vicario Garcia, University of Huelva, Spain
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J39. Evaluate the product

(
√

3 + tan 1◦)(
√

3 + tan 2◦) . . . (
√

3 + tan 29◦).

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

First solution by Courtis G. Chryssostomos, Larissa, Greece

Let A = (
√

3 + tan 1◦)(
√

3 + tan 2◦)...(
√

3 + tan 29◦). We have

√
3+tan 1◦ = tan 60◦+tan 1◦ =

sin 60◦ cos 1◦ + cos 60◦ sin 1◦

cos 60◦ · cos 1◦
=

sin 61◦

cos 60◦ · cos 1◦
.

Analogously we obtain

√
3 + tan 2◦ =

sin 62◦

cos 60◦ · cos 2◦
, . . . ,

√
3 + tan 29◦ =

sin 89◦

cos 60◦ · cos 29◦
.

Thus

A =
sin 61◦

cos 60◦ · cos 1◦
· sin 62◦

cos 60◦ · cos 2◦
· ... · sin 89◦

cos 60◦ · cos 29◦
=
(

1
cos 60◦

)29

= 229.

Second solution by Jose Alejandro Samper, Colegio Helvetia de Bogota,
Colombia

We will use the following identities:

tan (a + b) =
tan a + tan b

1− tan a · tan b
, tan 30◦ =

1√
3
, tan 15◦ = 2−

√
3

We obtain
1√
3

= tan 30◦ =
tan k + tan (30− k)

1− tan k · tan (30− k)

⇔
√

3(tan k + tan (30− k)) = 1− tan k · tan (30− k).

Then

29∏
k=1

(
√

3 + tan k) = (
√

3 + tan 15◦)
14∏

k=1

(
√

3 + tan k)(
√

3 + tan (30− k)) =

=
(√

3 + (2−
√

3)
) 14∏

k=1

(
3 +

√
3(tan k + tan (30− k)) + tan k tan (30− k)

)
=
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= 2
14∏

k=1

(
3 +

√
3(tan k + tan (30− k)) + 1−

√
3(tan k + tan (30− k)

)
=

= 2 ·
14∏

k=1

4 = 229, and we are done.

Also solved by Jose Hernandez Santiago, Oaxaca, Mexico; Vardan Verdiyan,
Yerevan, Armenia; Vishal Lama, Southern Utah University, USA; Daniel
Campos Salas, Costa Rica; Gabriel Alexander Reyes, San Salvador, El Sal-
vador; Daniel Lasaosa, Universidad Publica de Navarra, Spain; Son Ta Hong,
Ha Noi University of Education, Vietnam; Vo Quoc Ba Can, Can Tho Uni-
versity, Vietnam; Lee Ju-Hyeong, Suwon, Republic of Korea; Vicente Vicario
Garcia, University of Huelva, Spain
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J40. A 5×6 rectangle is cut into eight rectangles with integral dimensions
and whose sides are parallel to the ones of the initial rectangle. Prove that
among them there are two congruent rectangles.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Ivan Borsenco, University of Texas at Dallas

Let us assume that all the rectangles obtained by cutting are different.
The table below shows rectangles with the least possible areas.

Area 1 : 1× 1
Area 2 : 1× 2
Area 3 : 1× 3
Area 4 : 1× 4, 2× 2
Area 5 : 1× 5
Area 6 : 1× 6, 2× 3

It is not difficult to see that if we choose 8 different rectangles with the least
possible areas, the sum of their areas is 1+2+3+4+4+5+6+6 = 31 > 30.
Thus it is not possible to obtain 8 different rectangles.
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J41. Let a, b, c be positive real numbers such that a + b + c + 1 = 4abc.
Prove that

1
a

+
1
b

+
1
c
≥ 3 ≥ 1√

ab
+

1√
bc

+
1√
ca

.

Proposed by Daniel Campos Salas, Costa Rica

First solution by Vardan Verdiyan, Yerevan, Armenia

By the AM-GM inequality,

4 4
√

abc ≤ a + b + c + 1 = 4abc ⇒ abc ≥ 1.

Thus a + b + c + abc ≥ a + b + c + 1 = 4abc ⇒ a + b + c ≥ 3abc.

Again from the AM-GM inequality

(ab + bc + ca)2 ≥ 3abc(a + b + c) ⇒ (ab + bc + ca)2 ≥ (3abc)2.

It follows that
ab + bc + ca ≥ 3abc ⇒ 1

a
+

1
b

+
1
c
≥ 3.

For the second part of the inequality assume 3
√

abc <
√

a +
√

b +
√

c.
Using Schur’s third degree inequality we get

(
∑√

a)3 + 3(
∑√

a) > (
∑√

a)3 + 9
√

abc ≥ 4(
∑√

a)(
∑√

bc) ⇒

(
∑√

a)2 + 3 > 4
∑√

bc, ⇔ a + b + c + 3 > 2(
√

ab +
√

bc +
√

ca).

From the AM-GM inequality, a + b + c ≥
√

ab +
√

bc +
√

ca ⇒

3(a+b+c+3)+2(a+b+c) > 8(
√

ab+
√

bc+
√

ca) ⇔ 9(
∑

a+1) > 4(
∑√

a)2

⇔ 9abc > (
√

a +
√

b +
√

c)2 ⇔ 3
√

abc >
√

a +
√

b +
√

c, contradiction.

Thus
3 ≥ 1√

ab
+

1√
bc

+
1√
ca

.

Second solution by Gabriel Alexander Reyes, San Salvador, El Salvador

The idea is to perform some substitutions in order to transform each part
of our inequality. First we write the constraint a + b + c + 1 = 4abc as follows:

4 =
a + b + c + 1

abc
=

1
ab

+
1
bc

+
1
ca

+
1

abc

Mathematical Reflections 2 (2007) 6



So we may set x = 1/a, y = 1/b, z = 1/c. We get a new constraint
xy + yz + zx + xyz = 4, and now we have to show that x + y + z ≥ 3 ≥√

xy +
√

yz +
√

zx.

Let us prove that x + y + z ≥ 3. The constraint xy + yz + zx + xyz = 4 can
be written as

x

2
· y

2
+

y

2
· z

2
+

z

2
· x

2
+ 2 · x

2
· y

2
· z

2
= 1.

Because it has the form pq + qr + rp + 2pqr = 1, this enables us to perform
the substitution

x =
2p

q + r
, y =

2q

r + p
, z =

2r

p + q

Now our inequality becomes

2
(

p

q + r
+

q

r + p
+

r

p + q

)
≥ 3

or
p

q + r
+

q

r + p
+

r

p + q
≥ 3

2

which is Nesbitt’s inequality.

In order to deal with the second inequality,
√

xy +
√

yz +
√

zx ≤ 3, we use
another substitution. Observe that the constraint has the equivalent form

(
√

xy)2 + (
√

yz)2 + (
√

zx)2 +
√

xy · √yz ·
√

zx = 4.

This allows us to substitute

√
yz = 2 cos A,

√
zx = 2 cos B,

√
xy = 2 cos C

where A, B, C are the angles of an acute triangle. Solving for x, y, z yields

x =
2 cos B cos C

cos A
,
2 cos C cos A

cos B
,

2 cos A cos B

cos C

Hence the inequality
√

xy +
√

yz +
√

zx ≤ 3 is equivalent to

cos A + cos B + cos C ≤ 3
2
,

which is well-known. This completes our proof.

Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain
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Let us define u = 1
a , v = 1

b , w = 1
c , and let us denote the arithmetic,

geometric and quadratic means of u, v, w by A,G,Q, respectively. Then, the
condition given in the problem may be written as

4 = vw + wu + uv + uvw =
9A2 − 3Q2

2
+ G3,

while the first inequality is equivalent to A ≥ 1. But since Q ≥ A ≥ G, with
equalities if and only if u = v = w we have

4 =
9A2

2
− 3Q2

2
+ G3 ≤ 3A2 + A3,

0 ≤ A3 + 3A2 − 4 = (A− 1) (A + 2)2 .

Thus A ≥ 1, with equality if and only if u = v = w, i.e., if and only if
a = b = c.

Let us now define x = 1√
bc

, y = 1√
ca

, z = 1√
ab

, and s = x + y + z. Then,
a = x

yz , b = y
zx , c = z

xy . The second inequality is equivalent to s ≤ 3, and the
condition given in the problem may be written as

x

yz
+

y

zx
+

z

xy
+ 1 =

4
xyz

;

x2 + y2 + z2 + xyz = 4.

From this last equation, it is obvious that x, y, z are all less than 2, while

(s− 2)2 = 8− 4s + 2 (xy + yz + zx)− xyz = (2− x) (2− y) (2− z) .

Since 2− x, 2− y, 2− z are all positive, we may apply the AM-GM inequality,
obtaining

(s− 2)2 ≤
(

6− s

3

)3

,

0 ≥ (s− 6)3 + 27 (s− 2)2 = s3 + 9s2 − 108 = (s− 3) (s + 6)2 ,

with equality if and only if x = y = z. Therefore, s ≤ 3 with equality if and
only if a = b = c.

Also solved by Vo Quoc Ba Can, Can Tho University, Vietnam; Paolo
Perfetti, Roma, Italy; Daniel Campos Salas, Costa Rica
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J42. Find all triples (m,n, p) of positive integers such that m+n+p = 2008
and the system of equations

x

y
+

y

x
= m,

y

z
+

z

y
= n,

z

x
+

x

z
= p

has at least one solution in nonzero real numbers.

Proposed by Dr. Titu Andreescu, University of Texas at Dallas

Solution by Dr. Titu Andreescu, University of Texas at Dallas

We have

mnp =
(

x

y
+

y

x

)(
y

z
+

z

y

)( z

x
+

x

z

)
=

x2

y2
+

y2

x2
+

y2

z2
+

z2

y2
+

z2

x2
+

x2

z2
=

=
(

x

y
+

y

x

)2

+
(

y

z
+

z

y

)2

+
( z

x
+

x

z

)2
− 4 = m2 + n2 + p2 − 4. (1)

Note it cam be rewritten as p(mn−p) = m2 +n2−4, that gives us mn ≥ p or
(m+2)(n+2) ≥ p+2. Analogously, (n+2)(p+2) ≥ m+2 and (m+2)(p+2) ≥
p + 2. Equation (1) is equivalent to

mnp + 2(mn + np + pm) = (m + n + p)2 − 4.

Adding 4(m + n + p) + 8 to both sides, we obtain

(m + 2)(n + 2)(p + 2) = (m + n + p + 2)2 = 20102,

where m, n, p are integers greater than or equal to 2.
Observe that (m + 2)(n + 2)(p + 2) = 22 · 32 · 52 · 672. Suppose d|m + 2

and d|n + 2, then d2|(m + 2)(n + 2)(p + 2). Therefore d2|(m + n + p + 2)2

or d|(m + 2 + n + 2 + p − 2) implying d|p − 2. Observe that 672 cannot
divide m + 2, n + 2, p + 2. Assume without loss of generality 672|p + 2, then
302 = 22 · 32 · 52 ≥ (m + 2)(n + 2) ≥ (p + 2) = 672, contradiction. It follows
that 67|m+2 and 67|n+2. From the observation above we get 67|p−2, where
p + 2 ≤ 22 · 32 · 52 = 900it. We have p + 2 can be represented as 67k + 4 and
is less than 900. A quick case analysis shows that the only solution is p = 2.
Therefore x = y, m = n and the desired triples are (m, n, p) = (1003, 1003, 2)
and their permutations. The system of equations clearly has solutions in real
numbers:

(x, y, z) = (2r, 2r, r(1003±
√

10032 − 1)).
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Seniors

S37. Let x, y, z be real numbers such that

cos x + cos y + cos z = 0,

and
cos 3x + cos 3y + cos 3z = 0.

Prove that
cos 2x · cos 2y · cos 2z ≤ 0.

Proposed by Bogdan Enescu, B.P. Hasdeu National College, Romania

First solution by Lee Ju-Hyeong, Suwon, Republic of Korea

Because cos 3a = 4 cos3 a− 3 cos a and cos x + cos y + cos z = 0,

cos 3x + cos 3y + cos 3z = 4(cos3 x + cos3 y + cos3 z)− 3(cos x + cos y + cos z)

= 4(cos3 x + cos3 y + cos3 z)
.

Then since cos 3x + cos 3y + cos 3z = 0,

cos3 x + cos3 y + cos3 z = 0.

Hence
cos3 x + cos3 y + cos3 z = 3 cos x cos y cos z = 0.

Thus
cos x = 0 or cos y = 0 or cos z = 0.

Without loss of generality, assume cos x = 0. Then

cos y = − cos z.

Hence

cos 2x cos 2y cos 2z = (2 cos2 x− 1)(2 cos2 y − 1)(2 cosz −1)

= −(2 cos2 z − 1)2 ≤ 0.
.

The problem is solved.
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Second solution by José Gibergans-Báguena and José Luis Dı́az-Barrero,
Universitat Politècnica de Catalunya, Barcelona, Spain

From the well known trigonometric identity cos 3A = 4 cos2 A−3 cos A, we
have

cos 3x+cos 3y +cos 3z = 4 cos3 x−3 cos x+4 cos3 y−3 cos y +4 cos3 z−3 cos z

= 4(cos3 x + cos3 y + cos3 z)− 3(cos x + cos y + cos z)

or equivalently
cos3 x + cos3 y + cos3 z = 0.

From cos x+cos y+cos z = 0 we have cos x = −(cos y+cos z) and replacing
it into the previous expression, we get

cos2 y cos z + cos y cos2 z = 0 ⇔ cos y cos z(cos y + cos z) = 0.

Now, we discuss the following cases:

(1) If cos y = 0, then y = π/2 + 2kπ (k ∈ Z) and from cos x = − cos z we
get x = (2k + 1)π − z (k ∈ Z). Therefore,

cos 2x · cos 2y · cos 2z = − cos2 2z ≤ 0.

Note that we get the same conclusion when cos z = 0.

(2) If cos y = − cos z then y = (2k + 1)π − z (k ∈ Z) and from cos x = 0
we have x = π/2 + 2kπ (k ∈ Z). Therefore,

cos 2x · cos 2y · cos 2z = − cos2 2z ≤ 0.

This completes the proof.

Also solved by Vicente Vicario Garcia, University of Huelva, Spain; Vo
Quoc Ba Can, Can Tho University, Vietnam; Daniel Campos Salas, Costa
Rica; Gabriel Alexander Reyes, San Salvador, El Salvador; Vardan Verdiyan,
Yerevan, Armenia
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S38. Prove that for each positive integer n, there is a positive integer m
such that

(1 +
√

2)n =
√

m +
√

m + 1.

Proposed by Jean-Charles Mathieux, Dakar University, Sénégal

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

It may be shown by induction that, for each positive integer n, we may
find positive integers xn, yn such that(

1 +
√

2
)n

= xn + yn

√
2,

where x1 = y1 = 1, and if positive integers xn, yn can be found, then(
1 +

√
2
)n+1

=
(
xn + yn

√
2
)
·
(
1 +

√
2
)

= (xn + 2yn) + (xn + yn)
√

2,

xn+1 = xn + 2yn,

yn+1 = xn + yn.

Therefore (
1 +

√
2
)n

=
√

x2
n +

√
2y2

n.

Moreover, we may show, also by induction, that

2y2
n − x2

n = (−1)n+1 .

This result is true for n = 1, and being true for n, then

2y2
n+1−x2

n+1 = 2x2
n+4xnyn+2y2

n−x2
n−4xnyn−4y2

n = −
(
2y2

n − x2
n

)
= (−1)n+2 .

Therefore, we may choose, for all odd positive integers n,

m = x2
n = 2y2

n − 1,

and for all even positive integers n,

m = 2y2
n = x2

n − 1.

Although the proof is complete, we may go further and give general rela-
tions for m; it is not difficult to prove by induction that, for all positive integer
n,

xn =

(
1 +

√
2
)n

+
(
1−

√
2
)n

2
,

yn =

(
1 +

√
2
)n − (1−√2

)n
2
√

2
.

Hence for all positive integer n,

m =

(
1 +

√
2
)2n

+
(
1−

√
2
)2n − 2

4
.

Mathematical Reflections 2 (2007) 12



Second solution by Vicente Vicario Garcia, University of Huelva, Spain

Let us prove the statement for n = 2j, in case n = 2j + 1 solution is
analogous. Using the binomial theorem

(1 +
√

2)n =
n∑

k=0

(
n

k

)
(
√

2)k = 1 +
(

n

1

)√
2 + ... +

(
n

n− 1

)
(
√

2)n−1 + (
√

2)n =

=
[(

n

0

)
+ 2
(

n

2

)
+ ... + 2j

(
n

2j

)]
+
[(

n

1

)
+ 2
(

n

3

)
+ ... + 2j−1

(
n

2j − 1

)]√
2 =

=

√[(
n

0

)
+ 2
(

n

2

)
+ ... + 2j

(
n

2j

)]2

+

√
2
[(

n

1

)
+ 2
(

n

3

)
+ ... + 2j−1

(
n

2j − 1

)]2

=
√

A + 1 +
√

B.

We will prove that A = B. Observe that

(1 +
√

2)n + (1−
√

2)n = 2
[(

n

0

)
+ 2
(

n

2

)
+ ... + 2j

(
n

2j

)]
.

(1 +
√

2)n − (1−
√

2)n = 2
[(

n

1

)
+ 2
(

n

3

)
+ ... + 2j−1

(
n

2j − 1

)]
.

The proof reduces to the following:[
(1 +

√
2)n + (1−

√
2)n

2

]2

− 1 =

[
(1 +

√
2)n − (1−

√
2)n

2

]2

⇔

⇔
[
(1 +

√
2)n + (1−

√
2)n
]2 − 4 =

[
(1 +

√
2)n − (1−

√
2)n
]2 ⇔

⇔ 2(−1)n − 4 = −2(−1)n ⇔ 4(−1)n = 4.

Third solution by Gabriel Alexander Reyes, San Salvador, El Salvador

We use some algebraic number theory. Consider the quadratic field
Q[
√

2] = {a + b
√

2, a, b ∈ Q}. Here the norm function N is defined as
N(a + b

√
2) = a2− 2b2. We know that 1 +

√
2 is a unit, because N(1 +

√
2) =

= 12 − 2 · 12 = −1. But the set of units is closed under multiplication; hence
(1 +

√
2)n is a unit for every integer n ≥ 1. If (1 +

√
2)n = An + Bn

√
2,

for integers An and Bn, the latter implies that N [(1 +
√

2)n] = ±1, that is,
A2

n − 2B2
n = ±1. Now we are done, because (1 +

√
2)n = An + Bn

√
2 =√

A2
n +

√
2B2

n, and we have showed that A2
n and 2B2

n differ by 1.
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Fourth solution is another solution received from Gabriel Alexander Reyes,
San Salvador, El Salvador

Recall the following theorem from theory of Pell’s equations:

Theorem. Let D be a square-free positive integer. If the equation x2 −
Dy2 = −1 is solvable in positive integers, and (p0, q0) is its minimal solution,
then all the positive integer solutions (pn, qn) of the equation |x2−Dy2| = 1 are
given by (p0 + q0

√
D)n = pn + qn

√
D. In addition, we have p2

n−Dq2
n = (−1)n.

If D = 2, the minimal solution of x2−2y2 = −1 is x = y = 1. Hence all the
positive solutions (pn, qn) of the equation x2 − 2y2 = ±1 satisfy (1 +

√
2)n =

pn + qn

√
2. The claim immediately follows after observing that (1 +

√
2)n =

pn +qn

√
2 =

√
p2

n +
√

2q2
n. Furthermore, from p2

n−2q2
n = (−1)n we infer that,

if n is even, we can take m = 2q2
n, and if n is odd, m = p2

n.

Remark: This result is stronger than the previous solution. Indeed, we
have proved that every unit of Q[

√
2] is of the form ±(1 +

√
2)n, where n is

a integer. Observe that n can take negative values, since the reciprocal of a
unit is a unit too.
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S39. Let a be a positive integer and let

A =
{√

a, 3
√

a, 4
√

a, . . .
}

.

Prove that for every positive integer n the set A contains n consecutive
terms of a geometric sequence, but it does not contain a geometric sequence
with infinitely many terms.

Proposed by Bogdan Enescu, B.P. Hasdeu National College, Romania

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

The elements of A are all the numbers of the form a
1
m , where m takes all

integer values greater than or equal to 2.

Let us consider the following set of n numbers in A:{
a

1
n! , a

2
n! , a

3
n! , . . . , a

n
n!

}
.

Clearly they all belong to A, since 1, 2, 3, ..., n, all divide n!. Furthermore, the
result of dividing each number in the set by the previous one is a

1
n! , so they

are consecutive terms of a geometric sequence. For each positive integer n a
subset of A formed by n consecutive terms of a geometric sequence has been
found.

Let us consider the set

B =
{

ln a

2
,
ln a

3
,
ln a

4
, . . .

}
.

Clearly the n-th element of set B is the natural logarithm of the n-th element
of set A. Therefore, a subset of A forms a geometric sequence if and only
if the corresponding subset in B forms an arithmetic progression. Or, the
second part of the problem is equivalent to showing that no infinite arithmetic
progression may be found in B.

If a = 1, all elements in A are equal to 1, and all elements in B are zero.
An infinite geometric sequence with ratio 1 may be found in A, and an infinite
arithmetic progression with common difference 0 may be found in B. Let us
now show that no infinite arithmetic progression may be found in B when
a 6= 1.

The set B is bound by ln a
2 and 1, the former being the upper bound and the

latter the lower bound if a > 1, vice versa otherwise. Furthermore, all elements
in B are distinct when ln a 6= 0. Therefore, if an infinite geometric sequence
may be found in A, an infinite, bound, arithmetic sequence will be found in
B, which is absurd, since all arithmetic sequences of nonzero difference are
not bound.
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S40. Let f and g be irreducible polynomials with rational coefficients and
let a and b be complex numbers such that f (a) = g (b) = 0. Prove that if a+ b
is a rational number, then f and g have the same degree.

Proposed by Bogdan Enescu, B.P. Hasdeu National College, Romania

Solution by Iurie Boreico, Moldova

Consider h(x) ∈ Q[x] such that h(x) = g(a+b−x). Clearly h(a) = f(a) =
0, and because f(x) is irreducible, f |h. Thus deg f(x) ≤ deg h(x) = deg g(x).
Analogously we can prove that deg g(x) ≤ deg f(x). It follows that f and g
have the same degree.
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S41. Prove that for any positive real numbers a, b and c,√
b + c

a
+

√
c + a

b
+

√
a + b

c
≥

√
6· a + b + c

3
√

abc
.

Proposed by Pham Huu Duc, Ballajura, Australia

First solution by Tigran Sloyan, Yerevan, Armenia

We can assume that abc = 1 and rewrite the inequality in the following
form √

bc(b + c) +
√

ac(a + c) +
√

ab(a + b) ≥
√

6(a + b + c).

Squaring both sides we obtain

bc(b + c) + ac(a + c) + ab(a + b) + 2(
∑√

c2(ab + ac)(ab + bc)) ≥ 6(a + b + c).

From the inequality
√

(x2
1 + x2

2)(y
2
1 + y2

2) ≥ x1y1 + x2y2 we can say that

∑√
c2(ab + ac)(ab + bc) ≥

∑
c(ab +

√
abc2) =

∑
c(ab +

√
c)

⇒
∑√

c2(ab + ac)(ab + bc) ≥ 3 +
√

a3 +
√

b3 +
√

c3.

Therefore it is sufficient to prove that

bc(b + c) + ac(a + c) + ab(a + b) + 6 + 2(
√

a3 +
√

b3 +
√

c3) ≥ 6(a + b + c).

From the AM-GM inequality for six positive real numbers we have
√

c3 +
√

c3 + ac2 + bc2 + 1 + 1 ≥ 6 6
√

c7ab = 6c

⇒ 2
√

c3 + c2(a + b) + 2 ≥ 6c.

Similarly we can prove that

2
√

b3 + b2(a + c) + 2 ≥ 6b

2
√

a3 + a2(b + c) + 2 ≥ 6a.

Finally, adding up the last three inequalities we get the desired one.
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Second solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let s,A, G respectively denote the sum, the arithmetic, and geometric
means of a, b, c. Dividing both sides of the proposed inequality by

√
s, we find

it to be equivalent to:√
1
a
− 1

s
+

√
1
b
− 1

s
+

√
1
c
− 1

s
≥
√

6
G

.

Squaring both sides and multiplying throughout by G allows us to write
the proposed inequality in the following equivalent form:

ab + bc + ca

G2
−G

A
+

2G

3A
·

(√
1 + 3

A · c2

G3
+

√
1 + 3

A · b2

G3
+

√
1 + 3

A · a2

G3

)
≥ 6,

where it has been used that(
1
a
− 1

s

)
·
(

1
b
− 1

s

)
=

s− a− b

sab
+

1
s2

=
c2

sG3
+

1
s2

=
1

9A2
·
(

1 +
3A · c2

G3

)
,

and similarly for the other two cross-products.

Now, using the inequalities between arithmetic and quadratic means, and
between arithmetic and geometric means, allows us to find:

1√
4

√
1 + 3

A · c2

G3
≥ 1

4

(
1 + 3

c

G

√
A

G

)
≥ 1

4

(
1 + 3

c

G

)
,

with equality if and only if A · c2 = G3 and simultaneously A = G, i.e., if and
only if a = b = c. Or,√

1 + 3
A · c2

G3
+

√
1 + 3

A · b2

G3
+

√
1 + 3

A · a2

G3
≥ 3

2
+

3s

2G
=

3
2

+
9A

2G
,

with equality if and only if a = b = c. Therefore, in order to complete the
proof, it is sufficient to show that

ab + bc + ca

G2
+ 3 ≥ 6,

which boils down to
ab + bc + ca

3
≥ G2.

But this is always true, as a result of the AM-GM inequality applied to
ab, bc, ca. Or, the proof is complete, and the equality holds if and only if
a = b = c.
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Third solution by Ho Phu Thai, Da Nang, Vietnam

Squaring both sides yields:
b + c

a
+

c + a

b
+

a + b

c
+

2

(√
(a + b)(a + c)

bc
+

√
(b + c)(b + a)

ca
+

√
(c + a)(c + b)

ab

)
≥ 6(a + b + c)

3
√

abc
.

Using the well-known inequality
√

(p + q)(p + r) ≥ p +
√

qr, we will prove
that

b + c

a
+

c + a

b
+

a + b

c
+ 2

(
a√
bc

+
b√
ca

+
c√
ab

)
+ 6 ≥ 6(a + b + c)

3
√

abc
.

Using Chebyshev’s inequality we have

a√
bc

+
b√
ca

+
c√
ab
≥ a + b + c

3

(
1√
ab

+
1√
bc

+
1√
ca

)
≥ a + b + c

3
√

abc
.

Our inequality becomes

b + c

a
+

c + a

b
+

a + b

c
+ 6 ≥ 4(a + b + c)

3
√

abc
.

From the substitution a = x3, b = y3, c = z3 and expansion we get

x6(y3+z3)+y6(z3+x3)+z6(x3+y3)+6x3y3z3 ≥ 4(x5y2z2+y5z2x2+z5x2y2).

⇔
∑
cyc

z2
[
z4x + z4y + x4y + xy4 − x2y2z

]
(x− y)2 ≥ 0.

We just need to prove that for all positive numbers x, y, z:

z4x + z4y + x4y + xy4 ≥ x2y2z,

which is a consequence of the AM-GM inequality:

z4x + z4y + 3 · 1
3
x4y + 3 · 1

3
xy4 ≥ 8 8

√
1
36

x6y16z8 > x2y2z.

The proof is complete. Equality holds if and only if a = b = c.

Also solved by Daniel Campos Salas, Costa Rica; Vo Quoc Ba Can, Can
Tho University, Vietnam; Vardan Verdiyan, Yerevan, Armenia
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S42. Prove that in any triangle there exist a pair (M1,M2) of isogonal
conjugates such that OM1 ·OM2 > OI2, where O and I are the circumcenter
and the incenter, respectively.

Proposed by Ivan Borsenco, University of Texas at Dallas

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let ABC be the triangle. We will consider two cases:
1) ABC is equilateral. The isogonal conjugate of O = I is clearly itself, so

the isogonal conjugate of any point M1 other than O = I inside the triangle is
not O. Therefore, choosing M1 6= O inside triangle ABC results in OM1 and
OM2 being both positive, and the inequality is true.

2) ABC is not equilateral. Let a, b, c be the lengths of sides BC, CA,AB,
respectively, and let us assume without loss of generality that a ≤ b ≤ c. Let
us call M the point where the incircle touches side BC. It is well known that
BM = r cot B

2 and CM = r cot C
2 , where r is the inradius of ABC. Writing

the power of point M with respect to the circumcircle of ABC as BM · CM ,
and calling R the circumradius of ABC, results in

OM2 = R2 −BM · CM = R2 − r2 cot
B

2
cot

C

2
.

Let us take any point M1 inside ABC, on AM , arbitrarily close to M . Lines
BM1 and CM1 are then arbitrarily close to BC, or their reflections about
the angle bisectors of B and C, respectively, are arbitrarily close to BA and
CA, or the isogonal conjugate of M1 is arbitrarily close to A. Therefore,
isogonal conjugates M1,M2 may be chosen such that OM2 is arbitrarily close
to OA = R, and OM1 is arbitrarily close to OM . It suffices therefore to prove
that

OM >
OI2

R
= R− 2r,

or, squaring both sides of the resulting inequality,

R2 − 4Rr + 4r2 < R2 − r2 cot
B

2
cot

C

2
,

R > r +
r

4
cot

B

2
cot

C

2
.

But since we have assumed that C > π
3 and B ≥ A,

cot
B

2
cot

C

2
= 1 +

sin A
2

sin B
2 sin C

2

≤ 1 +
1

sin C
2

< 1 +
1

sin π
6

= 3,

all that needs to be proved is R > 7r
4 , and this is always true, since R > 2r

for non-equilateral triangles.
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Undergraduate

U37. Let f : [0, 1] → R be a differentiable function with f ′ continuous, such
that ∫ 1

0
f(x)dx =

∫ 1

0
xf(x)dx = 1.

Prove that there exists c ∈ (0, 1) for which f ′(c) = 6.

Proposed by Cezar Lupu, University of Bucharest, Romania

Solution by Li Zhou, Polk Community College, USA

Let p(x) = 6x − 2. Then
∫ 1
0 p(x)dx =

∫ 1
0 xp(x)dx = 1. Thus we cannot

have f(x)− g(x) entirely positive or entirely negative on (0, 1).

Suppose that {x ∈ (0, 1) : f(x) = p(x)} = {a}. If f(x) > p(x) for all
x ∈ (0, a), then f(x) < p(x) for all x ∈ (a, 1)∫ 1

0
xf(x)− 1 =

∫ a

0
x(f(x)− p(x))dx +

∫ 1

a
x(f(x)− p(x))dx <

a

∫ a

0
(f(x)−p(x))dx+a

∫ 1

a
(f(x)−p(x))dx = a

(∫ 1

0
f(x)dx−

∫ 1

0
p(x)dx

)
= 0.

Similarly, if f(x) < p(x) for all x ∈ (0, a), then f(x) > p(x) for all x ∈ (a, 1)
and

∫ 1
0 xf(x)dx > 1.

Therefore, there are a and b in (0, 1), a < b, such that f(a) = p(a) and
f(b) = p(b). By the Mean Value Theorem, there exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
=

p(b)− p(a)
b− a

= 6.
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U38. Let n > 1 be an odd positive integer and let x be a real number. Set

t =
n−1∑
k=1

arctan

(
cos
(

2πk
n

)
− x

sin
(

2πk
n

) )
.

Compute the value of tan t in terms of n and x.

Proposed by Alex Anderson, New Trier High School, Winnetka, IL

Solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

For each integer k such that 1 ≤ k ≤ n−1
2 , we find that

cos
(

2π(n−k)
n

)
− x

sin
(

2π(n−k)
n

) =
cos
(

2πk
n

)
− x

− sin
(

2πk
n

) = −
cos
(

2πk
n

)
− x

sin
(

2πk
n

) .

Or, the angles

arctan

(
cos
(

2πk
n

)
− x

sin
(

2πk
n

) )
and

arctan

cos
(

2π(n−k)
n

)
− x

sin
(

2π(n−k)
n

)


add up to a multiple of π. Since t is then the sum of n−1
2 such angles, t is an

integer multiple of π, hence tan t = 0, for each x and each positive odd integer
n.
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U39. Prove that lim
n→∞

1
lnn

n∑
k=1

{ln k}
k

=
1
2
,

where {x} denotes the fractional part of x.

Proposed by Cristinel Mortici, Valahia University of Targoviste, Romania

Solution by Vicente Vicario Garcia, University of Huelva, Spain
We use the famous Cauchy’s integral test for the convergence of numer-

ical infinite series. If f(x) : [1,∞) → R is a decreasing function such that
limx→∞ f(x) = 0, then

0 ≤
n∑

k=1

f(k)−
∫ n

1
f(x)dx−D ≤ f(n),

with D = lim dn = lim(sn − tn) (D is a constant) and sn =
∑n

k=1 f(k),
tn =

∫ n
1 f(x)dx. Thus

n∑
k=1

{ln k}
k

=
n∑

k=1

ln k − [lnk]
k

=
n∑

k=1

ln k

k
−

n∑
k=1

[ln k]
k

.

By Cauchy’s integral test we obtain
n∑

k=1

ln k

k
=

1
2

ln2 n+B+O

(
lnn

n

)
, B is constant and

∫ n

1

lnx

x
dx =

1
2

ln2 n. (1)

Again using Cauchy’s test we get
n∑

k=1

1
k

= ln n+γ+O(
1
n

), where γ is Euler-Mascheroni constant. (2)

Now we use (2) to evaluate

[ej+1]−1∑
k=[ej ]+1

[ln k]
k

= j

(
1

[ej ] + 1
+

1
[ej ] + 2

+ ... +
1

[ej+1]− 1

)
∼ j(ln ej+1−ln ej) = j,

where ∼ denotes asymptotic equivalent formulas. Then if ej+1 = n → j =
−1 + lnn,

n∑
k=1

[ln k]
k

∼ 1+2+...+j =
j(j + 1)

2
=

lnn(lnn− 1)
2

+O(lnn) =
ln2 n

2
− lnn

2
+O(lnn).

Finally we have

lim
n→∞

1
lnn

n∑
k=1

{ln k}
k

= lim
n→∞

(
ln2 n

2 + A + O
(

ln n
n

)
− ln2 n

2 + ln n
2 + O(lnn)

)
lnn

=
1
2
.
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U40. Show that GL4(Q) has no element of order 7.
Proposed by Jean-Charles Mathieux, Dakar University, Sénégal

Solution by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Suppose A is such a matrix. Observe that if a is an eigenvalue of A, then
a7 = 1 and a6 + ... + a + 1 is nonzero. Indeed, otherwise the irreducible
polynomial X6 + ...+X +1 (over the field of rationals) would have a common
root with the characteristic polynomial of A, therefore it would divide the
latter. This is impossible, looking at the degrees. Thus each eigenvalue of
A is 1. It follows that A = I4. Because A is diagonalisable over the field of
complex numbers, we obtain the desired contradiction.
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U41. Let k be a positive integer and let α be a real number greater than 1.
A number is called a k-prime if it is the product of at most k (not necessarily
distinct) primes. Let p(r) be the probability that a random integer x contains
r k-prime divisors d1 < d2 < . . . < dr such that dr < αd1. Prove that
limr→∞ pr = 0.

Proposed by Iurie Boreico, Moldova

Solution by Iurie Boreico, Moldova

We use induction on k. The base case k = 0 is clear.
First of all let us prove some basic facts.

a) A graph having
(
n+k−2

k−1

)
edges contains either a Kn or a Kk. This is

proven by induction on n + k. If n + k = 2, then a graph with at least one
vertex satisfies the condition, and the same holds if at least one of n, k is 0.
Now assume n+k = m and for n+k < m we have already proven the problem.

Take a vertex A and let S1 be the set of its neighbors, S2 be the set of its
non-neighbors. Then |S1|+ |S2| ≥

(
n+k−2

k−1

)
− 1 =

(
n+k−2

k−1

)
+
(
n+k−2

k−2

)
, therefore

|S1| ≥
(
n+k−2

k−1

)
or S1 ≥

(
n+k−2

k−2

)
. In the first case, by the induction hypothesis,

S1 contains either a Kn−1 or a Kk. If it contains a Kk we are done and so
we are if it contains a Kn−1 because we can add A to it. In the second case,
by the induction hypothesis, S2 contains either a Kn or a Kk−1. Again, if it
contains a Kn we are done, and if it contains a Kk−1, then we add A to it and
complete the inductive step.

b) Set qr be the probability that a number x is divisible by r pairwise
coprime k-prime numbers. Then limr→∞ qr = limr→∞ pr.

To do this, it suffices to prove that the density of numbers x divisible by R
pairwise coprime k-prime numbers so that no r of these divisors are pairwise
coprime is 0. According to a) we can select a R such that if from these R
divisors no r are mutually coprime then at least km + 1 are mutually not
coprime. Now take one of these numbers. It is divisible by at most k prime
numbers so out of the km + 1 at least m + 1 are divisible by the same prime
divisor p. These numbers divisible by p constitute at least m k − 1-prime
numbers dividing the number x. But the density of such numbers x tends to
zero according to the induction hypothesis.

c)We thus need to show that limr→∞ qr = 0.

We prove that the interval (n;αn) contains at most C(n ln ln nk

ln n ) k-prime
numbers. This is done by induction on k. The base case k = 1 is clear.
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Now the induction step. A k-prime number M between n and αn satisfies
the condition that its smallest divisor p is at most k

√
n.

Then the number M
p is a k − 1-prime number between n

p and αn
p . By

the induction hypothesis there are at most C
n
p
(ln ln n

p
k−1)

ln n
p

< C1
1
p

n ln ln nk−1

ln n such

numbers. So by summing over all p < k
√

n as
∑

p< k√n < ln lnn we conclude

the total number is at most C1(n ln ln nk

ln n ) and the induction step is proven.

d) We now show that limr→∞ qr = 0. Consider A =
√

α. Let’s take a x
having 2r pairwise coprime k-prime divisors in an interval (n;αn). It is easy
to see x has r pairwise coprime k-prime divisors in an interval (Ak;Ak+1).
Say that it has divisors d1, d2, . . . , dr. The probability that x is divisible by
all of them is 1

d1d2...dr
< 1

Akr as d1, d2, . . . , dr are pairwise coprime. Finally

d1, d2, . . . , dr can be chosen in less than
(
tk
r

)
<

trk
r! where tk is the number of

k-prime numbers between Ak and Ak+1. But according to c) tk < C Ak ln kak

ka

where a = ln A. So trk
r! < CrerAkr ln kak

krarrr as r! ∼ ( r
e)

r. It is clear that ln xk < C ′x

for some x therefore trk
r! < C ′ (CE)rAkr

rrkr−1ar . Now multiplying by the probability
which is less than 1

Akr and summing by all k we get

lim
r→∞

qr < lim
r→∞

∞∑
k=1

1
Akr

· C ′ (CE)rAkr

rrkr−1ar
.

Now
∑∞

k=1
1

kr−1ar clearly is convergent to some C1 when r →∞ while C′(CE)r

rr <
1
r for sufficiently big r. Therefore this sum is at most C1

1
r for sufficiently big

r and tends to 0, as desired.
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U42. Let A1, ..., An, B1, ..., Bn be points in a plane such that
BiA1 ·BiA2 · ... ·BiAn ≤ AjBi for all i and j. Prove that∏

1≤i<j≤n

AiAj ·BiBj ≤ n
n
2 ,

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Recall the expression of the Cauchy determinant

det
(

1
ai + bj

)
=

∏
1≤i<j≤n (bj − bi)(aj − ai)∏

i,j (ai + bj)
.

Using Hadamard’s inequality, we deduce that

(
∏

1≤i<j≤n

|bj − bi||aj − ai|)2 ≤ (
∏
i,j

|ai + bj |2)2·
∏
j

(
1

|bj + a1|2
+ ... +

1
|bj + an|2

)
.

However, the last quantity is at most nn, because each factor can be rewritten
as

|bj + a2|2...|bj + an|2 + ... + |bj + a1|2...|bj + an−1|2 ≤ n.

From here the conclusion follows, by interpreting Ai and Bj as points of affixes
ai and −bj .
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Olympiad

O37. Let a, b, c, d be nonnegative real numbers such that a2+b2+c2+d2 =
4. Prove that

√
2(4− ab− bc− cd− da) ≥ (

√
2 + 1)(4− a− b− c− d).

Proposed by Vasile Cartoaje, University of Ploiesti, Romania

First solution by Daniel Campos Salas, Costa Rica

Let s = a + b + c + d. From the Cauchy-Schwarz inequality we have

4 =
√

4(a2 + b2 + c2 + d2) ≥ s, (1)

and since a, b, c, d are nonnegative reals numbers,

s ≥
√

a2 + b2 + c2 + d2 = 2. (2)

Applying the AM-GM inequality it follows that

√
2(4− ab− bc− cd− da) =

√
2(4− (a + b)(c + d)) ≥

√
2
(

4− s2

4

)
.

Note that

√
2
(

4− s2

4

)
− (

√
2 + 1)(4− s) = −s2

√
2

4
+ (

√
2 + 1)s− 4 =

=
√

2
4

(
−s2 + (4 + 2

√
2)s− 8

√
2
)

=
√

2
4

(4− s)(s− 2
√

2). (3)

From (1) and (3) it follows that the inequality holds for s ≥ 2
√

2. Suppose
that s ≤ 2

√
2. Then

√
2(4−ab− bc− cd−da) ≥

√
2(4−ab− bc− cd−da−ac− bd) =

√
2

2
(12− s2).

Hence
√

2
2

(12− s2)− (
√

2 + 1)(4− s) = −s2
√

2
2

+ (
√

2 + 1)s + (2
√

2− 4) =

=
√

2
2

(
−s2 + (2 +

√
2)s + (4− 4

√
2)
)

=
√

2
2

(2
√

2− s)(s− 2 + 2
√

2). (4)

From (2) and (4) it follows that the inequality also holds for s ≤ 2
√

2, and
this completes the proof.
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Second solution by Vardan Verdiyan, Yerevan, Armenia

Because ab + bc + cd + da = (a + c)(b + d), our inequality can be rewritten
as √

2(4− (a + c)(b + d)) ≥ (
√

2 + 1)(4− (a + c)− (b + d)) ⇔

(
√

2 + 1)(a + b + c + d) ≥
√

2(a + c)(b + d) + 4.

Denote x = a + c and y = b + d. From the condition of the problem we have
x2 + y2 ≥ a2 + b2 + c2 + d2 = 4 ⇒ (x + y)2 ≥ 4 + 2xy. Therefore x + y ≥ 2.
We can rewrite our inequality

(
√

2 + 1)(x + y) ≥
√

2xy + 4 ⇔ (2 +
√

2)(x + y) ≥ 2xy + 4
√

2 ⇔

4 + (2 +
√

2)(x + y)− 4
√

2 ≥ 4 + 2xy.

Thus it is enough to prove

4 + (2 +
√

2)(x + y)− 4
√

2 ≥ (x + y)2.

Denote x + y = k. We have to prove

k2 − (2 +
√

2)k + 4(
√

2− 1) ⇔

2 +
√

2−
√

22− 12
√

2
2

≤ k ≤ 2 +
√

2 +
√

22− 12
√

2
2

= 2
√

2.

It follows that our inequality is true if x + y ≤ 2
√

2.
Assume that x + y > 2

√
2. Observe that xy < 4 as 4 = a2 + b2 + c2 + d2 ≥

(a + c)(b + d) = xy. Because x + y ≥ 2
√

xy, it suffices to prove that

(2 +
√

2)2
√

xy ≥ 2xy + 4
√

2 ⇔ xy − (2 +
√

2)
√

xy + 2
√

2 ≤ 0.

This is true when
√

2 = 2+
√

2−
√

6−4
√

2
2 ≤ √

xy ≤ 2+
√

2+
√

6−4
√

2
2 = 2.

But if
√

xy <
√

2, then (2 +
√

2)(x + y) > 4 + 4
√

2 > 2xy + 4
√

2 and we
are done.

Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let us call s = a+b+c+d, and let us find first the maximum and minimum
values of s. Since the quadratic mean of a, b, c, d is 1, the inequality between
the arithmetic and quadratic means ensures that the maximum value of the
sum is 4, achieved if and only if a = b = c = d = 1. Furthermore, since
ab, ac, ad, bc, bd, cd are all non-negative,

s2 ≥ a2 + b2 + c2 + d2 = 4,
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with equality if and only if ab = ac = ad = bc = bd = cd = 0, or if and only if
one of a, b, c, d equals 2, and the rest are 0. Therefore,

2 ≤ s ≤ 4.

Let us now consider two different cases, 2 ≤ s < 2
√

2 and 2
√

2 ≤ s ≤ 4.
In the first case,

s2 −
(
2 +

√
2
)

s + 4
√

2− 4 =
(
s− 2

√
2
)(

s− 2 +
√

2
)

< 0 ≤ 2ac + 2bd.

In the second case,

4 + 2ac + 2bd = a2 + b2 + c2 + d2 + 2ac + 2bd = (a + c)2 + (b + d)2 ≥ s2

2
,

with equality if and only if a + c = b + d, and where the arithmetic-quadratic
inequality has been used. Now, since

s2 −
(
2 +

√
2
)

s + 4
√

2 =
s2

2
+

(s− 4)
(
s− 2

√
2
)

2
≤ s2

2
,

we have
s2 −

(
2 +

√
2
)

s + 4
√

2− 4 ≤ 2ac + 2bd,

with equality if and only if s = 4 or s = 2
√

2.
Finally, in either case,

ab + bc + cd + da =
s2 − 4− 2ac− 2bd

2
≤ 1 +

√
2√

2
s− 4√

2
,

√
2 (4− ab− bc− cd− da) ≥ 4

√
2 + 4−

(
1 +

√
2
)

s =
(
1 +

√
2
)

(4− s) ,

Equality happens in two cases:
1) if and only if s = 4, or if and only if a = b = c = d = 1
2) if and only if s = 2

√
2 and simultaneously a + c = b + d, or if and only

if a + c = b + d =
√

2. In this case, since

(a + c)2 + (b + d)2 = 4 = a2 + b2 + c2 + d2,

it follows that ac = bd = 0, or one of a, c equals
√

2 and the other one is zero,
and likewise with b, d.
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O38. Let w1 be a circle smaller than and internally tangent to the circle
w2 at T . A tangent to w1 (at T ′), intersects w2 at A and B. If A, T ′, and B
are fixed, what is the locus of T.

Proposed by Alex Anderson, New Trier High School, Winnetka, IL

First solution by Gabriel Alexander Reyes, San Salvador, El Salvador

We need to prove the following lemma:
Lemma. TT ′ is the angle bisector of ∠ATB.
Proof. This problem appeared at the British Olympiad (first round, 1993).

Let A′ and B′ be the second point of intersection of AT and BT with w1,
respectively. Because T is the center of similarity of circles w1 and w2,
we know that AB and A′B′ are parallel. Then ∠AT ′A = ∠T ′A′B. But
∠AT ′A = ∠A′TT ′, because AT ′ is tangent to w1. On the other hand,
∠T ′A′B′ = ∠T ′TB′, given that ATB′T ′ is a cyclic quadrilateral. Hence
∠A′TT ′ = ∠T ′TB′, so TT ′ is the angle bisector of ∠A′TB′, as claimed.

Applying now the angle bisector theorem in the triangle ATB yields
AT/TB = AT ′/T ′B. Upon observing that the ratio on the right hand side is
fixed, observe that the condition of the Apollonius circle is satisfied. Therefore
the locus of T is a circle, namely the Apollonius circle corresponding to the
points A, B and the ratio AT ′/T ′B. If AT ′/T ′B = 1, we know this circle
degenerates into the perpendicular bisector of AB.

Second solution is another solution received from Gabriel Alexander Reyes,
San Salvador, El Salvador

Perform an inversion with center T ′. The line AB remains fixed, w1, which
is tangent to AB at T ′, becomes a line ` parallel to AB, and w2 becomes a
circle through A and B, tangent to ` at T . But the latter implies, by symmetry,
that T belongs to the perpendicular bisector `′ of AB. Then the locus of the
inverse of T is a line orthogonal to AB. If `′ passes through T ′, this line is its
own inverse, so the locus of T is the perpendicular bisector of AB (of course,
this is the case when T ′ is the midpoint of AB). Otherwise, the locus of T is a
circle through T ′, whose center lies on AB. This happens to be an Apollonius
circle, as we noted above.
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Third solution by Daniel Lasaosa, Universidad Publica de Navarra, Spain

Let P be the point where the tangents to w1 at T and T ′ meet. Clearly,
PT = PT ′. Because PT ′ intersects w2 at A and B, and PT is tangent to w2

at T , it follows that PA · PB = PT 2 = PT ′2. Or, given A,B, T ′, point P is
fixed for any T , and T is on the circle with center P that passes through T ′.
Using Stewart’s theorem on cevian TA in triangle PTB,

AT 2 =
PT 2 ·AB + BT 2 · PA− PA ·AB · PB

PB
=

BT 2 · PA

PB
;

AT 2

BT 2
=

PA

PB
=

PA2

PT ′2
=

PT ′2

PB2
.

Therefore, the ratio AT
BT is independent on T , and the circle is the Apollo-

nius circle such that any point T on it satisfies

AT

BT
=

AT ′

BT ′
.

Let us show that for any given point on the circle, except for T ′ and its
diametrally opposite point, there exist circles w1 and w2 such that the given
point is a valid location of T .

Given any point on the Apollonius circle described above, because PT =
PT ′, a circle tangent to PT at T and to PT ′ at T ′ exists. Its center is the
angle bisector of ∠TPT ′. Denote this circle will be w1. Let us w2 be the
circumcircle of triangle ATB. Because PT 2 = PA · PB, PT is a tangent to
w2 at T , which means that w1 and w2 are tangent at T . Because T ′ is on side
AB of triangle ATB, w1 is partially inside w2. But since both these circles
are tangent, so w1 is completely inside w2, since two tangent circles may only
be equal, exterior to each other, or one interior to the other. Thus, for any
point T in the Apollonius circle described, we have found circles w1 and w2

satisfying the conditions of the problem. In the case of T ′ and its diametrally
opposite point T ′′, circle w1 becomes point T ′ and line AB, respectively, w2

becoming line AB in both cases.
Note finally that, when T ′ is the midpoint of AB, the Apollonius circle

becomes the perpendicular bisector of segment AB and circles w1 and w2

have their centers on this bisector, the former having TT ′ as a diameter, the
latter being, as always, the circumcircle of ATB.
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O39. Let a, b, c be positive real numbers. Prove that

a√
a2 + 2bc

+
b√

b2 + 2ca
+

c√
c2 + 2ab

≤ a + b + c√
ab + bc + ca

.

Proposed by Ho Phu Thai, Da Nang, Vietnam

First solution by Daniel Campos Salas, Costa Rica

Since the inequality is symmetric with respect a, b, c we can assume without
loss of generality that a ≥ b ≥ c. Then (a− c)(b− c) ≥ 0, which implies

c√
c2 + 2ab

≤ c√
ab + bc + ca

.

It is not difficult to prove that

a√
a2 + 2bc

+
b√

b2 + 2ca
≤ a + b√

ab + bc + ca
.

Note that this inequality is equivalent to

a(
√

a2 + 2bc−
√

ab + bc + ca)√
a2 + 2bc

≥ b(
√

ab + bc + ca−
√

b2 + 2ca)√
b2 + 2ca

. (1)

It is easy to verify that
√

a2 + 2bc−
√

ab + bc + ca,
√

ab + bc + ca−
√

b2 + 2ca ≥ 0,

given a ≥ b ≥ c. Let us prove that

a√
a2 + 2bc

≥ b√
b2 + 2ac

(2)

is equivalent to a3c ≥ b3c, which is clearly true.
Let us also prove that√

a2 + 2bc−
√

ab + bc + ca ≥
√

ab + bc + ca−
√

b2 + 2ca. (3)

This inequality is equivalent to
√

a2 + 2bc +
√

b2 + 2ca ≥ 2
√

ab + bc + ca,

which (after squaring both sides and cancelling some terms) becomes

a2 + b2 + 2
√

(a2 + 2bc)(b2 + 2ca) ≥ 4ab + 2bc + 2ca.

Because a2 + b2 ≥ 2ab, it is enough to prove that
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√
(a2 + 2bc)(b2 + 2ca) ≥ ab + bc + ca,

which is equivalent to

c
(
2a3 + 2b3 + 2abc− a2c− b2c− 2a2b− 2ab2

)
= c(2a + 2b− c)(a− b)2 ≥ 0.

Multiplying (2) and (3) we prove that (1) holds and the conclusion follows.

Second solution by Pham Huu Duc, Australia

By the Cauchy-Schwarz inequality,(∑ a√
a2 + 2bc

)2

≤
∑

a
∑ a

a2 + 2bc

It remains to show that ∑ a

a2 + 2bc
≤ a + b + c

ab + bc + ca

or, equivalently, ∑ a(ab + bc + ca)
a2 + 2bc

≤ a + b + c.

We have ∑(
a− a(ab + bc + ca)

a2 + 2bc

)
=
∑ a(a− b)(a− c)

a2 + 2bc

Without loss of generality, assume a ≥ b ≥ c. Then

c(c− a)(c− b)
c2 + 2ab

≥ 0

and

a(a− b)(a− c)
a2 + 2bc

+
b(b− c)(b− a)

b2 + 2ca
=

c(a− b)2[3ab + 2a(a− c) + 2b(b− c)]
(a2 + 2bc)(b2 + 2ca)

≥ 0

and the conclusion follows.

Also solved by Anuj Kumar, New Delhi, India; Tigran Sloyan, Yerevan,
Armenia; Vardan Verdiyan, Yerevan, Armenia; Vo Quoc Ba Can, Can Tho
University, Vietnam
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O40. In the AwesomeMath summer camp there are 80 boys and 40 girls.
It has been noticed that any two boys have an even number of acquaintances
among the girls and exactly 19 boys know an odd number of girls. Prove that
one can choose a group of at least 50 boys such that any girl is acquainted to
an even number of boys from this group.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Solution by Gabriel Dospinescu, Ecole Normale Superieure, Paris

Let us consider the matrix A = (aij) where

aij =
{

1, if Bi knows Fj

0, otherwise.

Here B1, B2, . . . , B80 are the boys and F1, F2, . . . , F40 are the girls. Now,
consider the matrix T = A · tA. Observe that all the elements of the matrix T ,

except those from the main diagonal, are even (because tij =
40∑

k=1

aikajk is the

number of common acquaintances among the girls of the boys Bi, Bj). Each
element on the main diagonal of T is precisely the number of girls known
by the corresponding boy. If we consider the matrix T in (Z2,+, ·), it will
be diagonal, with exactly 19 nonzero elements on its main diagonal. From
now on, we will work only in Z/2Z. We have seen that rank(T ) = 19. Using
Sylvester’s inequality, we have

19 = rank(T ) ≥ rank(A) + rank (tA)− 40 = 2rank (tA)− 40,

hence r = rank (tA) ≤ 29. Let us consider now the linear system in (Z2,+, ·):
a11x1 + a21x2 + · · ·+ a80,1x80 = 0
a12x1 + a22x2 + · · ·+ a80,2x80 = 0
..............................................
a1,40x1 + a2,40x2 + · · ·+ a80,40x80 = 0.

The set of solutions of this system is a vector space of dimension
80 − r ≥ 51. That is why we can choose a solution (x1, x2, . . . , x80) of the
system, having at least 50 components equal to 1̂. Finally, consider the set
S = {i ∈ {1, 2, . . . , 80}| xi = 1̂}. We have proved that |S| ≥ 29 and also∑
j∈S

aji = 0 for all i = 1, 2, ..., 40. But observe that
∑
j∈S

aji is the number of

boys Bk with k ∈ S such that Bk knows Fi. Thus if we choose the group of
those boys Bk with k ∈ S, then each girl is known by an even number of boys
from this group and the problem is solved.
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O41. Prove the following identity:∑
0≤a≤

√
n

⌊√
n− a2

⌋
=
∑

0≤i≤n
2

(−1)i

⌊
n

2i + 1

⌋
.

Proposed by Ashay Burungale, India

Solution by Ashay Burungale, India

Observe that b
√

n− a2c is the number of positive integers b with a2 + b2 ≤
n. Therefore the left hand side of the identity is the number of a ≥ 0, b ≥ 1
with a2 + b2 ≤ n. If f(k) is the number of pairs (a, b) then we use the classical
result

f(k) =
∑

d|k, d odd

(−1)(d−1)/2.

Thus the left hand side equals to
∑n

k=1 f(k). But

n∑
k=1

f(k) =
∑

0≤i≤n
2

(−1)i

⌊
n

2i + 1

⌋
,

because the term (−1)(d−1)/2 occurs exactly for those k that satisfy d|k and
there are

⌊
n
d

⌋
of those.
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O42. Let a1, a2, ..., a5 be positive real numbers such that

a1a2...a5 = a1(1 + a2) + a2(1 + a3) + ... + a5(1 + a1) + 2.

Find the minimal value of
1
a1

+
1
a2

+
1
a3

+
1
a4

+
1
a5

.

Proposed by Gabriel Dospinescu, Ecole Normale Superieure, Paris

First solution by Vo Quoc Ba Can, Can Tho University, Vietnam

First, we will prove that for all positive real numbers x, y, z, t, u, the fol-
lowing inequality holds

(x + y + z + t + u)3 ≥ 25(xyz + yzt + ztu + tux + uxy)

Indeed, without loss of generality, assume x = min{x, y, z, t, u}. Setting y =
x + b, z = x + c, t = x + d, u = x + e then b, c, d, e ≥ 0, we have

LHS −RHS = 5Ax + (b + c + d + e)3 − 25cd(b + e),

where

A = 3(b + c + d + e)2 − 5be− 10bc− 5bd− 10cd− 5ce− 10de

=
1
12

(6b + d + e− 4c)2 +
5
84

(7d− 4c− 5e)2 +
5
28

(2c− e)2 +
5
4
e2 ≥ 0.

By the AM - GM inequality, we have

25cd(b + e) ≤ 27cd(b + e) ≤ (c + d + (b + e))3 = (b + c + d + e)3.

The inequality is proved. Now, using this inequality with x = 1
a1

, y = 1
a2

, z =
1
a3

, t = 1
a4

, u = 1
a5

, we obtain

P 3 ≥ 25(a1a2 + a2a3 + . . . + a5a1)
a1a2 . . . a5

On the other hand, by the MacLaurin and AM - GM inequalities, we have

125(a1 + a2 + . . . + a5)
a1a2 . . . a5

≤ P 4,
3125

a1a2 . . . a5
≤ P 5.

Hence

1 =
a1 + a2 + . . . + a5

a1a2 . . . a5
+

a1a2 + a2a3 + . . . + a5a1

a1a2 . . . a5
+

2
a1a2 . . . a5

≤ P 4

125
+

P 3

25
+

2P 5

3125

or
(2P − 5)(P 4 + 15P 3 + 100P 2 + 250P + 625)

3125
≥ 0.
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From this, we have P ≥ 5
2 . Now, letting a1 = a2 = . . . = a5 = 2, we get

P = 5
2 , therefore

minP =
5
2
.

Second solution by Ho Phu Thai, Da Nang, Vietnam

Denote the variables by a, b, c, d, e. From the hypothesis, abcde ≥ 32 and

1 =
1

abcd
+

1
bcde

+
1

cdea
+

1
deab

+
1

eabc
+

1
abc

+
1

bcd
+

1
cde

+
1

dea
+

1
eab

+
2

abcde
.

Let us prove the following inequalities:

(x + y + z + t + w)4 ≥ 125(xyzt + yztw + ztwx + twxy + wxyz) ⇔

x4+y4+z4+t4+w4+7
∑

20terms

x3y+12
∑

30terms

x2yz+24
∑

24terms

xyzt ≥ 125
∑

24terms

xyzt ⇔

x4 + y4 + z4 + t4 + w4 + 7
∑

20terms

x3y + 12
∑

30terms

x2yz ≥ 101
∑

24terms

xyzt.

This is a consequence of Muirhead’s theorem. We will now prove that

(x + y + z + t + w)3 ≥ 25(xyz + yzt + ztw + twx + wxy).

Normalizing x+y+z+t+w = 5, we show that xyz+yzt+ztw+twx+wxy ≤ 5
by Lagrange multipliers. Define the function F = xyz + yzt + ztw + twx +
wxy + λ(x + y + z + t + w − 5). Solving the system

dF

dx
=

dF

dy
=

dF

dz
=

dF

dt
=

dF

dw
= 0,

we get x = y = z = t = w = 1 and λ = −3. The condition x+y+z+t+w = 5
implies dF

dx + dF
dy + dF

dz + dF
dt + dF

dw = 0. Observing that d2x = d2y = d2z = d2t =
d2w = 0, we have

dF =
∑
cyc

(xydz+yzdx+zxdy), d2F =
1
2

∑
sym

dxdy ≤ 12
5

(dx+dy+dz+dt+dw)2 = 0.

Hence F attains its maximum when x = y = z = t = w = 1. Applying the
two inequalities, we get

1 ≤ 1
125

(
1
a

+
1
b

+
1
c

+
1
d

+
1
e

)4

+
1
25

(
1
a

+
1
b

+
1
c

+
1
d

+
1
e

)3

+
1
16

.

This implies
1
a

+
1
b

+ · · · + 1
c

+
1
d

+
1
e
≤ 5

2
. Equality holds if and only if

a = b = c = d = e = 2.
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