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PROBLEM DEPARTMENT

ASHLEY AHLIN∗ AND HAROLD REITER†

This department welcomes problems believed to be new and at a level appropriate for the readers

of this journal. Old problems displaying novel and elegant methods of solution are also invited.

Proposals should be accompanied by solutions if available and by any information that will assist

the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a

solution.

All correspondence should be addressed to Harold Reiter, Department of Mathematics, Univer-

sity of North Carolina Charlotte, 9201 University City Boulevard, Charlotte, NC 28223-0001 or sent

by email to hbreiter@email.uncc.edu. Electronic submissions using LATEX are encouraged. Other

electronic submissions are also encouraged. Please submit each proposal and solution preferably

typed or clearly written on a separate sheet (one side only) properly identified with name, affilia-

tion, and address. Solutions to problems in this issue should be mailed to arrive by March 1, 2007.

Solutions identified as by students are given preference.

Problems for Solution.

Solutions. We would like to make the following corrections with apologies. In the
Spring 2006 issue, we failed to credit Yoshinobu Murayoshi, Naha City, Okinawa,
Japan with the solution to problem 1116. Also, we failed to credit The Armstrong
Problem Solvers, Armstrong State University, Savannah, GA. with solutions to
problems 1110, 1112, 1114, 1115, 1116, 1117, 1118, 1120, 1121, and 1122.

1123. Proposed by Mike Pinter, Belmont University, Nashville, TN

This problem is in honor of the 300th birthday of Benjamin Franklin. Consider
the base 9 cryptarithm K I T E + K E Y = S H O C K. Find a solution that
minimizes the S H O C K.

Solution by Frank Battles, Massachusetts Maritime Academy, Buzzards Bay,
MA

Clearly S = 1, H = 0, and K = 8. We now aim for a minimum SHOCK. If
O = 2, then I = 3, but E + Y = 8 is not possible with the remaining digits, (4, 5, 6,
7). Trying O = 3, then I = 4. For E + Y = 8, we must have either (i) E = 6, Y = 2,
but T + 6 = C is impossible with the remaining digits or (ii) E = 2, Y = 6. Now we
have a solution with T = 5, C = 7. Our solution is 8452 + 826 = 10378.

Also solved by ABC Student Problem Solving Group, Mountain Lakes High School, Moun-

tain Lakes, NJ; Paul S. Bruckman, Sointula, BC; Josh Caswell, undergraduate, Eastern Ken-

tucky University, Richmond, KY; Thomas Dence, Ashland University, Ashland, OH; Billy Dobbs,

graduate student, Eastern Kentucky University, Richmond, KY; Clayton Dodge, Orono, ME;

Mark Evans, Louisville, KY; Robert Gebhardt, Hopatcong, NJ; Bohyun Areum Han, un-

dergraduate, Eastern Kentucky University, Richmond, KY; Richard Hess, Rancho Palos Verdes,

CA; Yoshinobu Murayoshi, Naha City, Okinawa, Japan; Rex H. Wu, Brooklyn, NY; and the

Proposer.

1124. Proposed by Paul S. Bruckman, Sointula, BC, Canada

∗Nashville, TN
†University of North Carolina Charlotte
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Given positive integers a and b, let S(a, b) =
a∑

j=0

{bb(1 − j2/a2)1/2c + 1}. Prove

that S(a, b) = S(b, a).
Solution by Jaree Hudson, student and the Armstrong Problem Solvers,

Armstrong State University, Savannah, GA
If we set y = b

√
1− x2/a2, then for integers j with 0 ≤ j ≤ a,

⌊
b
√

1− j2/a2
⌋

+ 1

counts the number of points (j, y) on the vertical line x = j on or above the x-axis and
on or below the ellipse x2/a2 + y2/b2 = 1. Thus, S(a, b) counts the number of points
(x, y) with nonnegative integer coordinates inside or on the ellipse x2/a2 + y2/b2 = 1.
Similarly, if we set x = a

√
1− y2/b2, then for integers j with 0 ≤ j ≤ b,

⌊
a
√

1− j2/b2
⌋

+ 1

counts the number of points (x, j) on the horizontal line y = j on or to the right of
the y-axis and on or to the left of the ellipse x2/a2 + y2/b2 = 1. Thus S(b, a) also
counts the number of points (x, y) with nonnegative integer coordinates inside or on
the ellipse x2/a2 + y2/b2 = 1, and hence must be equal to S(a, b).

Also solved by the Proposer.

1125. Proposed by David Wells, Penn State New Kensington, Upper Burrell, PA

For each positive integer n, let P (n) be the product of the decimal digits of n,
let P1(n) = P (n), and for k ≥ 2, let Pk(n) = P (Pk−1(n)). Prove that Pk(n) = 1 for
some k if and only if n contains no digits other than 1.

Solution by Clayton Dodge, Orono, ME
If the positive integer n contains an even digit, then P (n) is an even number and

hence cannot be equal to 1. Similarly, if n contains the digit 5, then P (n) terminates
in either 0 or 5 and cannot equal 1. Therefore, we assume that n contains only the
odd digits in the set S = {1, 3, 7, 9} in its base ten representation. It is easy to check
that the product of any two not-necessarily-distinct members of that set has a tens
digit that is even and a units digit that is a member of S. Now, if n is a number
whose digits are in S , then P (n) will be of the form P (n) =1r3sy79u for some
nonnegative integers r, s, t, and u. Furthermore, since 9 = 32, P (n) reduces to the
form P (n) = 3s7t. By testing each product of 3 and 7 times every two-digit number
whose tens digit is even and whose units digit is a member of S, one discovers that
all such products terminate in a member of S and have an even tens digit. It follows
by induction that if the digits of n are members of S, then P (n) is even and cannot
be equal to 1. Hence, only if n is a number all of whose digits are 1s will P (n) = 1,
and clearly P (n) = 1 for such an n.

Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savannah,

GA; Paul S. Bruckman, Sointula, BC; Mark Evans, Louisville, KY; James Hall, La Crescenta,

CA; Richard Hess, Rancho Palos Verdes, CA; Mike Pinter, Belmont University, Nashville, TN;

Harry Sedinger, St. Bonaventure University, St. Bonaventure, NY; Mike Stein, undergradu-

ate, The College Of New Jersey, Ewing NJ; Rex H. Wu, Brooklyn, NY; and the Proposer.

1126. Proposed by Stanley Rabinowitz, MathPro Press, Chelmsford, MA

Find a rational function f(x) with integer coefficients such that

cos θ = f(sin θ − cos θ)
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is an identity or prove that no identity of this form exists.
Solution by Paola Perfetti, Università degli Studi di Roma “Tor Vergata”,

Rome, Italy

No identity of the given form can exist because sin θ − cos θ = 1 for θ1 =
π

2
and

θ2 = π but cos π = −1 while cos
π

2
= 0.

Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savannah,

GA; Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie, Angelo State University,

San Angelo, TX; Frank Battles, Massachusetts Maritime Academy, Buzzards Bay, MA; Brian

Bradie, Christopher Newport University, Newport News VA; Paul S. Bruckman, Sointula, BC;

Richard Hess, Rancho Palos Verdes, CA; Brendan Kelly, student, The College Of New Jersey,

Ewing NJ; Miguel Lerma, Northwestern University Problem Solving Group, Evanston, IL; David

E. Manes, Oneonta, NY; Raúl A. Simón, LAMB, Santiago, CHILE; Rex H. Wu, Brooklyn, NY;

and the Proposer.

1127. Proposed by Arthur Holshouser, Charlotte, NC

A bug starts from the origin on the plane and crawls one unit upwards to (0, 1)
after one minute. During the second minute, it crawls two units to the right ending at
(2, 1). Then during the third minute, it crawls three units upward, arriving at (2, 4).
It makes another right turn and crawls four units during the fourth minute. From
here it continues to crawl n units during minute n and then making a 90◦, either
left or right. The bug continues this until after 16 minutes, it finds itself back at the
origin. Its path does not intersect itself. What is the maximum possible area of the
16-gon traced out by its path?

Solution by Armstrong Problem Solvers, Armstrong Atlantic State Univer-
sity, Savannah, GA

The maximum possible area is 664 square units. The bug’s path is determined
for the first four minutes, after which its location is (6, 4). Since the bug moves
vertically during each odd minute, the condition that it finishes at the origin means
that 4± 5± 7± 9± 11± 13± 15 = 0. Since ±5± 7± 9 = ±3, ±7, ±11, or ±21; and
±11± 13± 15 = ±9, ±13, ±17, or ±39; the only possibility is that 4− 21 + 17 = 0,
so that 4− 5− 7− 9− 11 + 13 + 15 = 0.

Similarly, since the bug moves horizontally during each even minute, we must
have 6± 6± 8± 10± 12± 14± 16 = 0. Since ±6± 8± 10 = ±4, ±8, ±12, or ±24; and
±12± 14± 16 = ±10, ±14, ±18, or ±42; there are four possible sums: 6+4− 10 = 0,
6+8− 14 = 0, 6+12− 18 = 0, or 6− 24+18 = 0. Since the bug crosses the x-axis at
(6, 0) during the fifth minute, the last move must be to the right, rather than to the
left, ruling out the second and third paths. This leaves only two possible sequences of
horizontal moves: 6+6+8−10−12−14+16 = 0 and 6−6−8−10−12+14+16 = 0.
The first path encloses an area of 664 square units, whereas the second encloses an
area of 402 square units; thus the maximum possible area is 664 square units.

Also solved by ABC Student Problem Solving Group, Mountain Lakes High School, Moun-

tain Lakes, NJ; Paul S. Bruckman, Sointula, BC; Cal Poly Pomona Problem Solving Group,

Pomona, CA; Mark Evans, Louisville, KY; Richard Hess, Rancho Palos Verdes, CA; Andy

Shapiro, undergraduate, The College of New Jersey, Bensalem, PA; Raúl A. Simón, LAMB,

Santiago, CHILE; Rex H. Wu, Brooklyn, NY; and the Proposer.

1128. Proposed by Brian Bradie, Christopher Newport University, Newport News,
VA



562 AHLIN and REITER

Evaluate
∫ π/2

0

1
1 + tann x

dx,

for n = 0, 1, 2, . . ..
Solution by Lee Kennard, student, Kenyon College, Gambier, OH
Let I be the value of the given integral. Then, on one hand, we can rewrite I as

I =
∫ π/2

0

1
1 + tann x

dx =
∫ π/2

0

cosn x

cosn x + sinn x
dx.

On the other hand, we can make the substitution u = π
2 − x to obtain another

expression for I:

I =
∫ 0

π/2

1
1 + tann(π

2 − u)
(−du)

= −
∫ 0

π/2

1
1 + cotn(u)

du

=
∫ π/2

0

sinn u

sinn u + cosn u
du.

Adding these two expressions for I gives us

2I =
∫ π/2

0

(
cosn x

cosn x + sinn x
+

sinn x

sinn x + cosn x

)
dx =

∫ π/2

0

1dx =
π

2

and, therefore, I = π
4 . (Note that we have proven that, in fact, I = π

4 for all real
numbers n.)

Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savannah,

GA; Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie, Angelo State University,

San Angelo, TX; Frank Battles, Massachusetts Maritime Academy, Buzzards Bay, MA; Paul

S. Bruckman, Sointula, BC; Printhwijit De, University College Cork, Cork, Ireland; Thomas

Dence, Ashland University, Ashland, OH; Mark Evans, Louisville, KY; Robert Gebhardt,

Hopatcong, NJ; Miguel Lerma, Northwestern University Problem Solving Group, Evanston, IL;

David E. Manes, Oneonta, NY; Ángel Plaza , Universidad de Las Palmas de Gran Canaria, Las

Palmas G.C., Spain; Henry Ramirez, Fundacion Universitaria SAN MARTIN, Bogota, Colom-

bia; Henry Ricardo, Medgar Evers College, Brooklyn, NY; Harry Sedinger, St. Bonaventure

University, St. Bonaventure, NY; Jonathan Strzelec, student Christopher Newport University

Newport News VA; and the Proposer. Perfetti Paolo, Università degli Studi di Roma
“Tor Vergata”, Rome, Italy points to A.K.Arora; S.K.Goel; D.M.Rodriguez: Spe-
cial Integration Techniques for Trigonometric Integrals, The American Mathematical
Monthly, vol.95, No.2.(Feb.,1988),pp.126–130, where integrals of this type are studied
using elementary methods.

1129. Proposed by Arthur Holshouser and Stas Molchanov

Let R denote the real numbers and Q the rational numbers. A function f has a
local minimum at the point x0 if there exists an open neighborhood U of x0 such that
f(x0) ≤ f(x) for all x ∈ U .

1. Find a non-constant function f : R → R such that f has a local minimum at
each point.
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2. Find a function g : Q → Q such that for each rational number r, there is
neighborhood U of r such that g(r) < g(x) for each x ∈ U .

Solution by Paola Perfetti, Università degli Studi di Roma “Tor Vergata”,
Rome, Italy

1. Let f : R → R be defined by f(x) = 1 if x < 0 and f(x) = 0 for x ≥ 0. f is
non–constant and every point is a minimum.

2. g : Q → Q, g(p/q) = −1/q, g(0) = −1 and (1 is the greatest common divisor

of p and q: (p|q) = 1). For any p/q let’s define a neighborhood by
∣∣∣∣
p

q
− p′

q′

∣∣∣∣ <
1
q2

,

p′/q′ 6= p/q.
1
q2

>

∣∣∣∣
pq′ − p′q

qq′

∣∣∣∣ ≥
1

qq′
whence q′ ≥ q + 1. It follows g(p′/q′) = −1/q′ >

−1/q. Of Course x = 0 is a minimum.

This function is not new. As far as I know, it goes back to Riemann.

• By the way f : R → R,

f(x) =

{
−1/q x = p/q, (p|q) = 1
0 otherwise

has a dense set of minima of 0 Lebesgue measure. The set of minima of the everywhere
discontinuous Dirichlet function: f(x) = 0 x ∈ Q and f(x) = −1 for x ∈ R\Q is of
full measure.
In [2] the authors construct an example of continuous function f : R → R having a
dense set of proper minima (f(x0) < f(x)). This type of functions can be proved to
be dense (residual) in the set of continuous functions C([0, 1]) with the sup norm [3].
A considerably more difficult example of a differentiable function having a dense set
of maxima and minima is constructed in [4], see also [5] p.141.

• As for point 1 we could have inserted “more steps”: f(x) = −k for k ≤ x < k + 1
whose graph is a “staircase”. The steps can be made as close as we want but there
does not exist a function satisfying 1 and not constant on every interval. We then
prove the theorem

Theorem There does not exist a function f : R → R, having a minimum at each
point and not constant on every open neighborhood

The initial step of the proof is the following interesting lemma (proved as early as
1900 [1]).

Lemma The set of the ordinates of maxima or minima is a countable set for
any function f : R → R,

Proof of the theorem Let be f : R → R and B = f(R). By hypotheses each point of
B is a minimum and

the lemma implies the countability of B: B =
∞⋃

k=1

yk. Let’s define Ak
.= f−1(yk)

so that R =
∞⋃

k=1

Ak, (A(k0) .=
∞⋃

k=1,k 6=k0

Ak).
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By the Baire–category theorem applied on R which is complete, we have
o

Ak 6= ∅
for at least a k, say k = k0. Hence there exists an open set, say C, such that for any
p ∈ C, Ak0 ∩ Up 6= ∅ for any open neighborhood Up 3 p.

There are two possibilities:

i) If Up ∩A(k0) = ∅ for a pair p–Up, then Up ⊂ Ak0 and this would imply f constant
and equal to yk0 in Up hence the thesis.

ii) If Up ∩A(k0) 6= ∅ for any p ∈ C and for any Up 3 p, then A(k0) would be dense in
C. In this case the density of A(k0) and Ak0 contradicts the fact that each point must
be a minimum.

• The Lemma is false if one wants countable the set of the inflection points and in fact
a C1 counterexample is easily constructed. Let be F ⊂ [0, 1] the Cantor–ternary–set

and for x ∈ [0, 1], ρ(x, F ) is the distance between x and F. Let be h(x) .=
∫ x

0

ρ(t, F )dt.

1) h is differentiable and h′(x) = ρ(x, F ) being ρ(x, F ) continuous , 2) h′(x) ≥ 0
being ρ(x, F ) ≥ 0. The derivative is zero if and only if x ∈ F being F a closed set 3)
h is injective. In fact

∫ x′

x
ρ(t, F )dt > 0 if x < x′ because F is completely disconnected,

(F does not contain any interval), 4) the points of zero derivative are uncountable
being F uncountable (as well known).

The Cantor–ternary–set has zero Lebesgue measure but this is inessential. We could
have taken a Cantor set of positive measure.

See also

[1] A.Shoenflies: Die Entwickelung der Lenhre von dem Punktmannigflatigkeiten,
Jahrebsbericht Deutschen Mathematiker–Vereinigung 8, Leipzig, 1900.

[2] E.E.Posey, J.E.Vaughan: Functions with a Proper Local Maximum in Each Inter-
val, Amer.Math.Monthly, Vol.90, Issue 4 (Apr.,1983), 281–283.

[3] V Drobot, M.Motayne: Continuous Functions with a dense set of Proper Local
Maxima, Amer.Math.Monthly, Vol.92, Issue 3 (Mar.,1985), 209–211.

[4] Y.Katznelson, K.Stromberg: Everywhere differentiable, Nowhere Monotone Func-
tions, Amer.Math.Monthly, Vol.81, Issue 4 (Apr.,1974), 349–354.

[5] A.M.Bruckner, J.Marik, C.E.Weil: Some Aspects of Products of Derivatives,
Amer.Math.Monthly, Vol.99, Issue 2 (Feb.,1992), 134–145.

Solution by Gabriel T. Prǎjiturǎ, SUNY Brockport, Brockport, NY
1. The function f : R→ R, given by

f(x) =

{
1 if x 6= 0
0 if x = 0

is non-constant and has a local minimum at every point.
2. Let {x1, x2, x3, . . . } be an enumeration of Q and g : Q → Q, g(xn) = n. We

define U1 = Q and, for n ≥ 2, Un = (xn − rn, xn + rn), where

rn = min{|xn − x1|, |xn − x2|, . . . , |xn − xn−1|}.
It is obvious that g(xn) < g(x) for each x ∈ Un, x 6= xn.
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Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savannah,

GA; Cal Poly Pomona Problem Solving Group, Pomona, CA; Don Hancock, Pepperdine

University, Malibu, CA; Mike Stein and Brendan Kelly, undergraduates, The College Of New

Jersey, Ewing NJ; and the Proposers.

1130. Proposed by Marcin Kuczma, University of Warsaw, Warsaw, Poland

*Twins* is the keyword for this season. Let t(1) = 5, t(2) = 7, t(3) = 13,
t(4) = 19, . . . be the increasing sequence (finite or infinite?) of all primes such that,
for each i, t(i) − 2 is also a prime –and let t(t(t(2))) be nice and lucky and happy
for you!!! Editor’s note: this puzzle was sent to friends of the poser in December of
a certain year as a gift. This is the fourth of several such problems we plan for this
column.

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

Since

t(1) = 5,
t(2) = 7,
t(3) = 13, and
t(4) = 19,

then
t(7) = 61.

Then continuing in the same manner,

t(t(t(2))) = t(t(7)) = t(61) = 1999.

Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savan-
nah, GA; Avery Cotton, student, Western Oregon University, Monmouth, OR; Frank Battles,
Massachusetts Maritime Academy, Buzzards Bay, MA;

Paul S. Bruckman, Sointula, BC; Mark Evans, Louisville, KY; Robert Gebhardt, Hopat-

cong, NJ; Richard Hess, Rancho Palos Verdes, CA; Peter Lindstrom, Batavia, NY; David E.

Manes, Oneonta, NY; Yoshinobu Murayoshi, Naha City, Okinawa, Japan; Mike Pinter, Bel-

mont University, Nashville, TN; Rex H. Wu, Brooklyn, NY; and the Proposer.

1131. Proposed by Ayoub B. Ayoub, Pennsylvania State University, Abington
College, Abington, PA

ABCD is a convex quadrilateral in which ∆BCD is equilateral and m∠DAB =
30◦. Show that (AC)2 = (AD)2 + (AB)2 .

Solution by Brian Bradie, Christopher Newport University, Newport News VA

Without loss of generality, let BC = CD = BC = 1. Further, let m∠ADB = θ.
Then m∠ABD = 150◦ − θ. Applying the Law of Sines twice to ∆ABD, we find

AB = 2 sin θ and AD = cos θ +
√

3 sin θ.

Thus,

(AD)2 + (AB)2 = cos2 θ + 2
√

3 sin θ cos θ + 3 sin2 θ + 4 sin2 θ

= 6 sin2 θ + 1 + 2
√

3 sin θ cos θ. (0.1)
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Finally, applying the Law of Cosines to ∆ABC, we find

(AC)2 = 4 sin2 θ + 1− 4 sin θ cos(210◦ − θ)

= 4 sin2 θ + 1 + 2 sin θ
(√

3 cos θ + sin θ
)

= 6 sin2 θ + 1 + 2
√

3 sin θ cos θ. (0.2)

Comparing (1) and (2), we see that (AC)2 = (AD)2 + (AB)2.
Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savannah,

GA; Paul S. Bruckman, Sointula, BC; Miguel Amengual Covas, Mallorca, Spain; Robert

Gebhardt, Hopatcong, NJ; Richard Hess, Rancho Palos Verdes, CA; Jaree Hudson, student,

Armstrong State University, Savannah, GA; Yoshinobu Murayoshi, Naha City, Okinawa, Japan;

Rex H. Wu, Brooklyn, NY; and the Proposer.

1132. Proposed by Leo Schneider, John Carroll University, Cleveland, OH

The two parallel sides of a trapezoid are of length a and b. A segment of length
m parallel to these two sides divides the trapezoid into two trapezoids, each of area
equal to one half of the original trapezoid. Prove that if a, b, and m are relatively
prime positive integers, then neither 2 nor 3 is a prime factor of any of these integers.

Solution by Rex H. Wu, Brooklyn, NY

Let h be the height of the trapezoid with parallel sides a and b, h1 be the height
of the trapezoid with parallel sides a and m. Then the height for the trapezoid with
parallel sides m and b is h2 = h− h1. Equating the areas, we have

1
2
(a + m)h1 =

1
2
(m + b)(h− h1) =

1
4
(a + b)h

From the above, the first and the last parts give

h1 =
a + b

2(a + m)
h

and the first two parts give

h1 =
m + b

a + b + 2m
h

Equating h1 and simplify gives

a2 + b2 = 2m2

The original problem is now reduced to showing the primitive solutions, i.e.
gcd(a, b, m) = 1, of the diophantine equation a2 + b2 = 2m2 cannot be divisible
by 2 or 3.

Let’s show the primitive solutions are not divisible by 2. Suppose a = 2α, for
some integer α. Since a2+b2 = 2m2, or a2+b2 is even, it follows that b2 must be even.
Therefore, b = 2β, for some integer β. Then a2+b2 = 4(α2+β2) = 2m2 which implies
m2 = 2(α2 + β2). So m = 2µ for some integer µ. But then 2 is a common factor of
a, b and m, contradicting the assumption that gcd(a, b,m) = 1. Similar argument can
be applied to see b cannot be even.

Suppose m = 2µ for some integer µ. Then a2 + b2 = 2(2µ)2 = 8µ2. This implies
4 divides a2 +b2. Observe that a and b cannot be one odd and one even since the sum
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a2 + b2 would be odd. Therefore, a and b must be both odd or both even. Suppose
a and b are both odd, a = 2i + 1 and b = 2j + 1 for some integers i and j. We have
a2 + b2 = 4i2 + 4i + 4j2 + 4j + 2, not divisible by 4. Therefore, a and b must be
both even. But then we have the contradiction again, that a, b and m have a common
factor 2.

To show 3 cannot be a factor of a, b and m is more involved. I need to characterize
the primitive solutions (a, b, m) of the equation a2+b2 = 2m2. The equation a2+b2 =
2m2 is closely related to the well-known equation x2 + y2 = z2.

Lemma 0.1. n = x2 + y2 has a solution if and only if n does not contain any
prime p ≡ 3 (mod 4) and the exponent of p is odd. This is a well know fact. A proof
can be found in many elementary number theory books.

Lemma 0.2. If p is a prime and p ≡ 3 (mod 4), then p2 = x2 + y2 has no
primitive solutions in positive integers.

Proof. All the primitive solutions to p2 = x2 +y2 can be generated by p = r2 +s2,
x = r2 − s2 and y = 2rs, with r 6≡ s (mod 2) and gcd(r, s) = 1. From Lemma 1, we
know there is no integer solution to p = r2 + s2.

Lemma 0.3. If p is a prime and p ≡ 3 (mod 4), Q = q1q2 · · · qj where qi is
prime and qi 6≡ 3 (mod 4), then the solution to n = x2 + y2, where n = p2kQ, is not
primitive.

Proof. p2k can be viewed as (pk)2. If k is odd, by lemma 1, pk cannot be expressed
as the sum of two squares and therefore, (pk)2 cannot be the sum of two squares. If k

is even, then the only way to express p2k as the sum of two squares is p2k = 02+(pk)2.
Suppose Q = r2 + s2, then p2kQ = p2k(r2 + s2) = p2kr2 + p2ks2, i.e. gcd(n, x, y) =
gcd(p2kQ, p2kr2, p2ks2) = p2k.

Lemma 0.4. The product of the sum of two squares is again a sum of two squares.
Proof.

(r2 + s2)(t2 + u2) = (rt + su)2 + (ru− st)2 = (rt− su)2 + (ru + st)2.

Theorem 0.5. All the primitive solutions of the diophantine equation a2 + b2 =
2m2 are generated by (a, b, m) = (|r2 − s2 − 2rs|, |r2 − s2 + 2rs|, r2 + s2), where
gcd(r, s) = 1 and r 6≡ s (mod 2).

Proof. It is easy to verify that (a, b,m) = (|r2 − s2 − 2rs|, |r2 − s2 + 2rs|, r2 + s2)
is a solution to a2 + b2 = 2m2.

Suppose there is a primitive solution to a2 + b2 = 2m2. By Lemma 1, we know
2m2 cannot contain a prime p such that p ≡ 3 (mod 4) and the exponent of p is odd.

From Lemma 3, we know m cannot contain a prime p such that p ≡ 3 (mod 4)
and the exponent of p is even.

That means 2m2 can only contain primes p such that p 6≡ 3 (mod 4).
Since 2 is the only even prime, m ≡ 1 (mod 4).
From Lemma 1, m2 = x2 + y2, for some integers x and y. This representation

of m is unique if m is prime. However, from Lemma 4, if m is composite, there is at
least one representation.

The primitive solutions of m2 = x2 + y2 are the Pythagorean triples, (x, y, m) =
(r2 − s2, 2rs, r2 + s2), where gcd(r, s) = 1 and r 6≡ s (mod 2).

Going back to the original equation, a2+b2 = 2m2 = 2(x2+y2) = (1+1)(x2+y2) =
(x−y)2+(x+y)2. Thus, we have 2m2 = 2(r2+s2)2 = (r2−s2−2rs)2+(r2−s2+2rs)2 =
a2 + b2.
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Lemma 0.6. If (x, y, z) is a primitive solution of x2 + y2 = z2, then gcd(x, y) =
gcd(x, z) = gcd(y, z) = 1.

Lemma 0.7. If (x, y, z) is a primitive solution of x2 + y2 = z2, then only one of
x or y is a multiple of 3.

Proofs to these two lemmas can be found in many elementary number theory
textbooks.

Lemma 0.8. If (x, y, z) is a primitive solution of x2 + y2 = z2, then x + y and
x− y cannot contain the factor 3.

Proof. This follows from Lemmas 5 and 6 since gcd(x, y) = 1 and only one of x
and y is a multiple of 3.

Now, we are ready to show 3 cannot be a factor of a, b and m in the equation
a2 + b2 = 2m2. Here I will also refer to the equation x2 + y2 = z2.

a and b cannot contain a factor 3 because a = |r2 − s2 − 2rs| = |x − y| and
b = |r2 − s2 + 2rs| = |x + y|, both as a consequence of Lemma 7.

That m cannot be a multiple of 3 is already shown in the proof to Theorem 1. In
fact, m cannot contain any prime p such that p ≡ 3 (mod 4).

Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savannah,

GA; Paul S. Bruckman, Sointula, BC; Richard Hess, Rancho Palos Verdes, CA; Cal Poly

Pomona Problem Solving Group, Pomona, CA; Harry Sedinger, St. Bonaventure University,

St. Bonaventure, NY; and the Proposer.

1133. Proposed by Arthur Holshouser, Charlotte, NC; Anita Chatelain and Joe
Albree, Auburn University at Montgomery

In Pillow Problem 14, Lewis Carroll proved in his head that 3 times the sum of
3 squares is also the sum of 4 squares. (Of course, 02 is considered to be a square).

1. Prove pillow problem 14.
2. Prove that

(
a2 + b2 + c2

) (
x2 + y2 + z2

)
is also the sum of 4 squares.

3. Prove that
∏n

i=1

(
x2

i + y2
i + z2

i + v2
i

)
is also the sum of 4 squares by first

proving that
(
a2 + b2 + c2 + d2

) (
x2 + y2 + z2 + v2

)
is the sum of 4 squares.

Solution by Mike Pinter, Belmont University, Nashville, TN
1. The following identity is verified by routine algebraic manipulation:

(a− b)2 + (a− c)2 + (b− c)2 + (a + b + c)2 = 3(a2 + b2 + c2).

2. After some trial and error, one is led to the following identity, which again is
verified by algebraic manipulation:

(az−cx)2+(bx−ay)2+(cy−bz)2+(ax+by+cz)2 = (a2+b2+c2)(x2+y2+z2).

3. Similar to above, after some trial and error the following identity is obtained:

[(ay − bx) + (cv − dz)]2 + [(cx− az) + (bv − dy)]2 + [(av − dx) + (bz − cy)]2

+(ax + by + cz + dv)2 = (a2 + b2 + c2 + d2)(x2 + y2 + z2 + v2).

Assume inductively that
n−1∏

i=1

(x2
i + y2

i + z2
i + v2

i ) = (a2 + b2 + c2 + d2). Thus,

n∏

i=1

(x2
i + y2

i + z2
i + v2

i ) = (x2
n + y2

n + z2
n + v2

n)
n−1∏

i=1

(x2
i + y2

i + z2
i + v2

i ). From our
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basis for induction (shown immediately above), we know this last expression
can be represented as the sum of 4 squares.
The desired result follows by induction.

Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savannah,

GA; Paul S. Bruckman, Sointula, BC; Miguel Amengual Covas, Mallorca, Spain; Thomas

Dence, Ashland University, Ashland, OH; Charles R. Diminnie, Angelo State University, San

Angelo, James Hall, La Crescenta, CA; TX; Richard Hess, Rancho Palos Verdes, CA; Peter

Lindstrom, Batavia, NY; David E. Manes, Oneonta, NY; Mike Pinter, Belmont University,

Nashville, TN; Raúl A. Simón, LAMB, Santiago, CHILE; Rex H. Wu, Brooklyn, NY; and the

Proposer.

1134. Proposed by Paul S. Bruckman, Sointula, BC

For all x > 0, let π(x) denote the number of positive integers less than or equal
to x that are prime. Prove the following inequality :

π(2n + 4) > 1 +
3 · 5 · 7 · . . . · (2n + 1)

2 · 4 · 6 · . . . 2n

n = 1, 2, . . ..
Solution by ,
Also solved by , and the Proposer.

1135. Proposed by Cecil Rousseau, University of Memphis, Memphis, TN

Let φ = (1 +
√

5)/2 denote the golden ratio. Prove that the series

∞∑
n=1

1
n2| sin(nπφ)|

converges.
Solution by Paul S. Bruckman, Sointula, BC
Solution by the proposer.
A much stronger result is true; φ can be replaced by any algebraic irrational and

n2 can be replaced by n1+ε where ε > 0. Let α be an algebraic irrational and let
δ = ε/2. Then there is a positive constant c = c(α, δ) such that

∣∣∣α− m

n

∣∣∣ >
c

n2+δ
(0.3)

for all integers n > 0 and m (Thue-Siegel-Roth Theorem). Let 〈x〉 denote the distance
from x to the nearest integer. Consider the sequence of numbers

〈α〉, 〈2α〉, . . . , 〈nα〉.
Then

〈kα〉 >
c

k1+δ
≥ c

n1+δ
(k = 1, 2, . . . , n),

and since

|〈x〉 − 〈y〉| = min{〈x + y〉, 〈x− y〉},
it follows that for all 1 ≤ j < k ≤ n, the value of |〈kα〉 − 〈jα〉| is one of the numbers

〈α〉, 〈2α〉, . . . , 〈(2n− 1)α〉.
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Hence

|〈kα〉 − 〈jα〉| > c

(2n)1+δ
.

Hence if the sequence 〈α〉, 〈2α〉, . . . , 〈nα〉 is arranged in increasing order, the kth
number on the list is greater than kc/(2n)1+δ. Thus we obtain

n∑

k=1

1
〈kα〉 <

(2n)1+δ

c

n∑

k=1

1
k
≤ (2n)1+δ(log n + 1)

c
.

The convergence of
∞∑

n=1

1
n1+ε〈nα〉

now follows by applying Abel’s summation by parts formula (see note below) with
ak = 1/〈kα〉 and bk = k−(1+ε). Since

2〈x〉 ≤ | sin(πx)| ≤ π〈x〉,
we see that

∞∑
n=1

1
n1+ε| sin(nπα)|

converges if α is any algebraic irrational and ε is positive. Of course, for the particular
case of φ (or any other quadratic irrational) the strength of the Thue-Siegel-Roth
Theorem is not required; one can use Liouville’s Theorem or simply prove directly
that

∣∣∣φ− m

n

∣∣∣ >
1

3n2

for all positive rational numbers m/n.
Note. Abel’s formula is the discrete version of integration by parts, namely

n∑

k=1

akbk =
n∑

k=1

(Ak −Ak−1)bk = Anbn −
n−1∑

k=1

Ak(bk+1 − bk),

where Ak =
∑k

i=1 ai for k ≥ 1 and A0 = 0.

1137. Proposed by Peter Lindstrom, Batavia, NY

Let n be a positive integer and Ti be the ith triangular number.

Find the value of lim
k→∞

k∑
i=1

nP
j=1

(n
j)in−j

(Ti)
n .

Solution by Printhwijit De, University College Cork, Cork, Ireland
n∑

j=1

(
n
j

)
in−j = in

n∑
j=1

(
n
j

)
in−j = in

((
1 + 1

i

)n − 1
)

= (1 + i)n − in.

As Ti = i(i+1)
2 we have,

n∑
j=1

(
n
j

)
in−j

(Ti)
n = 2n · ((1 + i)n − in)

(i (i + 1))n = 2n

(
1
in
− 1

(i + 1)n

)
.
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∴
k∑

i=1

n∑
j=1

(
n
j

)
in−j

(Ti)
n = 2n

k∑

i=1

(
1
in
− 1

(i + 1)n

)

= 2n

(
1− 1

(k + 1)n

)
.

∴
k∑

i=1




n∑
j=1

(
n
j

)
in−j

(Ti)
n


 = 2n.

Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

Using the Binomial Theorem,

lim
k→∞

k∑

i=1

∑n
j=1

(
n
j

)
in−j

(Ti)n
= lim

k→∞

k∑

i=1

(i + 1)n − in

(Ti)n

= lim
k→∞

k∑

i=1

(i + 1)n − in(
i(i+1)

2

)n

= lim
k→∞

k∑

i=1

[(
2
i

)n

−
(

2
i + 1

)n]

= lim
k→∞

[
2n −

(
2

k + 1

)n]

= 2n.

Also solved by Armstrong Problem Solvers, Armstrong Atlantic State University, Savan-

nah, GA; Frank Battles, Massachusetts Maritime Academy, Buzzards Bay, MA; Brian Bradie,

Christopher Newport University, Newport News VA; Paul S. Bruckman, Sointula, BC; Kenny

Davenport, Dallas, PA; Billy Dobbs, graduate student, Eastern Kentucky University, Rich-

mond, KY; Nate Dorr, undergraduate, Rose-Hulman Institute of Technology, Terre Haute, IN;

Henry Ricardo, Medgar Evers College, Brooklyn, NY; Rex H. Wu, Brooklyn, NY; and the

Proposer.


