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The Virasoro–Zamolodchikov ∗-Lie algebra w∞ has been widely studied in string theory
and in conformal field theory, motivated by the attempts of developing a satisfactory
theory of quantization of gravity. The renormalized higher powers of quantum white
noise (RHPWN) ∗-Lie algebra has been recently investigated in quantum probability,
motivated by the attempts to develop a nonlinear generalization of stochastic and white
noise analysis. We prove that, after introducing a new renormalization technique, the
RHPWN Lie algebra includes a second quantization of the w∞ algebra. Arguments
discussed at the end of this note suggest the conjecture that this inclusion is in fact an
identification.
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1. Introduction

Here we recall the basic definitions that pertain to the renormalized higher powers

of quantum white noise (RHPWN) algebra. We will use the notations of Ref. 2

which contains the proofs of all the results recalled in this section. The standard

Boson white noise ∗-Lie algebra is defined by the commutation relations
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[bt, b
†
s] = δ(t − s) · 1 ,

[b†t , b
†
s] = [bt, bs] = 0 ,

(b†s)
† = bs , 1† = 1 ,

where 1 (often omitted from the notations) denotes the central element and all the

identities are meant in the operator distribution sense described in Ref. 1.

The formal extension of the above commutation relations to the associative

∗-algebra generated by bt, b†s, 1 leads to the identities:

[b†
n

t bk
t , b†

N

s bK
s ] = εk,0εN,0

∑

L≥1

(

k

L

)

N (L)b†
n

t b†
N−L

s bk−L
t bK

s δL(t − s)

− εK,0εn,0

∑

L≥1

(

K

L

)

n(L)b†
N

s b†
n−L

t bK−L
s bk

t δL(t − s) , (1.1)

where ∀ n, k, N , K ∈ N ∪ 0
(

K

L

)

:=
K!

L!(K − L)!
(binomial coefficient);

(

K

L

)

= 0, if K < L

εn,k := 1 − δn,k (Kronecker’s delta)

n(L) := n(n − 1) · · · (n − L + 1) ; n(0) = 1; n(L) = 0, if n < L .

The right-hand side of the above identity is ill defined because of the powers

δL(t−s) of the δ-function. Any procedure to give a meaning to these powers will be

called a renormalization rule. In this note we will use the following renormalization

rule whose motivations are discussed in Ref. 4:

δl(t − s) = δ(s)δ(t − s) , l = 2, 3, 4, . . . . (1.2)

The right-hand side of (1.2) is well defined as a convolution of distributions. Using

this, (1.1) can be rewritten in the form:

[b†
n

t bk
t , b†

N

s bK
s ] = εk,0εN,0

(

kNb†
n

t b†
N−1

s bk−1
t bK

s δ(t − s)

+
∑

L≥2

(

k

L

)

N (L)b†
n

t b†
N−L

s bk−L
t bK

s δ(s)δ(t − s)

)

− εK,0εn,0

(

Knb†
N

s b†
n−1

t bK−1
s bk

t δ(t − s)

+
∑

L≥2

(

K

L

)

n(L)b†
N

s b†
n−L

t bK−L
s bk

t δ(s)δ(t − s)

)

. (1.3)
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Introducing test functions and the associated smeared fields

Bn
k (f) :=

∫

Rd

f(t)b†
n

t bk
t dt ,

the commutation relations (1.3) become:

[Bn
k (g), BN

K (f)] = (εk,0εN,0kN − εK,0εn,0Kn)BN+n−1
K+k−1 (gf)

+

(K∧n)∨(k∧N)
∑

L=2

θL(n, k; N, K)g(0)f(0)b†
N+n−L

0 bK+k−L
0 (1.4)

θL(n, k; N, K) := εk,0εN,0

(

k

L

)

N (L) − εK,0εn,0

(

K

L

)

n(L) (1.5)

which still contain the ill-defined symbols b†
N+n−L

0 , bK+k−L
0 . However, if the test

function space is chosen so that

f(0) = g(0) = 0 , (1.6)

then the singular term in (1.4) vanishes and the commutation relations (1.4)

become:

[Bn
k (g), BN

K (f)]R := (kN − Kn)Bn+N−1
k+K−1 (gf) (1.7)

which no longer include ill-defined objects. The symbol [·, ·]R denotes these renor-

malized commutation relations.

A direct calculation shows that the commutation relations (1.7) define, on the

family of symbols Bn
k (f), a structure of ∗-Lie algebra with involution

Bn
k (f)∗ := Bk

n(f̄) .

From the commutation relations (1.7) it is clear that, fixing a subset I ⊆ R
d,

not containing 0, and the test function

χI(s) =

{

1 , s ∈ I

0 , s /∈ I
(1.8)

the commutation relations (1.7) restricted to the (self-adjoint) family

{Bn
k := Bn

k (χI ) : n, k ∈ N ∪ 0, n + k ≥ 3} (1.9)

give

[Bn
k , BN

K ]R := (kN − Kn)Bn+N−1
k+K−1 . (1.10)

The arguments in Ref. 4 then suggest the natural interpretation of the ∗-Lie-algebra,

defined by the relations (1.9), (1.10), as the 1-mode algebra of the RHPWN and,

conversely, the interpretation of the RHPWN ∗-Lie-algebra as a current algebra of

its 1-mode version.

Now recall the following definition (see Refs. 6–11):
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Definition 1. The w∞-∗-Lie-algebra is the infinite dimensional Lie algebra

spanned by the generators B̂n
k , where n ∈ N, n ≥ 2 and k ∈ Z, with commutation

relations:

[B̂n
k , B̂N

K ]w∞
= (k(N − 1) − K(n − 1))B̂n+N−2

k+K (1.11)

and involution

(B̂n
k )∗ = B̂n

−k . (1.12)

Remark 1. The w∞-∗-Lie-algebra, whose elements are interpreted as area-

preserving diffeomorphisms of 2-manifolds, contains as a sub-Lie-algebra (not as

a ∗-sub-algebra) the (centerless) Virasoro (or Witt) algebra with commutation

relations

[B̂2
k(g), B̂2

K(f)]V := (k − K)B̂2
k+K(gf) .

Both w∞ and a quantum deformation of it, denoted W∞ and defined as a

(non-unique) large N limit of Zamolodchikov’s WN algebra,8 have been studied

extensively6,7,9–11 in connection to two-dimensional conformal field theory and

quantum gravity.

The striking similarity between the commutation relations (1.11) and (1.10)

suggests that the two algebras are deeply related. The following theorem shows that

the current algebra, over R
d, of the w∞-∗-Lie-algebra can be realized in terms of

the renormalized powers of white noise. The converse of this statement is intuitively

obvious at the level of formal white noise operators, but a precise statement about

this topic will be discussed elsewhere.

Theorem 1. Let S0 be the test function space of complex valued (right-continuous)

step functions on R
d assuming a finite number of values and vanishing at zero, and

let the powers of the δ-function be renormalized by the prescription

δl(t − s) = δ(s)δ(t − s) , l = 2, 3, . . . (1.13)

(cf. Ref. 4). Then the white noise operators

B̂n
k (f) :=

∫

Rd

f(t)e
k

2
(bt−b

†
t
)

(

bt + b†t
2

)n−1

e
k

2
(bt−b

†
t
)dt; n ∈ N, n ≥ 2, k ∈ Z (1.14)

satisfy the relations (1.11) and (1.12) of the w∞-Lie algebra.

Remark 2. The integral on the right-hand side of (1.14) is meant in the sense

that one expands the exponential series, applies the commutation relations (1.1)

to bring the resulting expression to normal order, introduces the renormalization

prescription (1.13), integrates the resulting expressions after multiplication by a test

function and interprets the result as a quadratic form on the exponential vectors.

Proof. The relation (1.12) is obvious, thus we will only prove (1.11). To this goal

notice that the left-hand side of (1.11) is equal to:



August 31, 2006 13:45 WSPC/102-IDAQPRT 00241

Renormalized Higher Powers of White Noise (RHPWN) and Conformal Field Theory 357

∫

Rd

∫

Rd

g(t)f(s)

[

e
k

2
(bt−b

†
t
)

(

bt + b†t
2

)n−1

e
k

2
(bt−b

†
t
) ,

e
K

2
(bs−b†

s
)

(

bs + b†s
2

)N−1

e
K

2
(bs−b†

s
)

]

dt ds

=

∫

Rd

∫

Rd

g(t)f(s)e
k

2
(bt−b

†
t
)

(

bt + b†t
2

)n−1

e
k

2
(bt−b

†
t
)

× e
K

2
(bs−b†

s
)

(

bs + b†s
2

)N−1

e
K

2
(bs−b†

s
)dt ds

−

∫

Rd

∫

Rd

g(t)f(s)e
K

2
(bs−b†

s
)

(

bs + b†s
2

)N−1

e
K

2
(bs−b†

s
)

× e
k

2
(bt−b

†
t
)

(

bt + b†t
2

)n−1

e
k

2
(bt−b

†
t
)dt ds .

Since [bt − b†t , bs − b†s] = 0, this is equal to:

=

∫

Rd

∫

Rd

g(t)f(s)e
k

2
(bt−b

†
t
)

(

bt + b†t
2

)n−1

e
K

2
(bs−b†

s
)

× e
k

2
(bt−b

†
t
)

(

bs + b†s
2

)N−1

e
K

2
(bs−b†

s
)dt ds

−

∫

Rd

∫

Rd

g(t)f(s)e
K

2
(bs−b†

s
)

(

bs + b†s
2

)N−1

e
k

2
(bt−b

†
t
)

× e
K

2
(bs−b†

s
)

(

bt + b†t
2

)n−1

e
k

2
(bt−b

†
t
)dt ds

=
1

2n+N−2

{

∫

Rd

∫

Rd

g(t)f(s)e
k

2
(bt−b

†
t
)(bt + b†t )

n−1e
K

2
(bs−b†

s
)

× e
k

2
(bt−b

†
t
)(bs + b†s)

N−1e
K

2
(bs−b†

s
)dt ds

−

∫

Rd

∫

Rd

g(t)f(s)e
K

2
(bs−b†

s
)(bs + b†s)

N−1e
k

2
(bt−b

†
t
)

× e
K

2
(bs−b†

s
)(bt + b†t)

n−1e
k

2
(bt−b

†
t
)dt ds

}

.
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From the formal expression (1.1) of the CCR we deduce the identities:

e
K

2
(bs−b†

s
)(bt + b†t)

n−1

=

n−1
∑

m=0

(

n − 1

m

)

(bt + b†t )
mKn−1−mδn−1−m(t − s)e

K

2
(bs−b†

s
) ,

e
k

2
(bt−b

†
t
)(bs + b†s)

N−1

=
N−1
∑

m=0

(

N − 1

m

)

(bs + b†s)
mkN−1−mδN−1−m(t − s)e

k

2
(bt−b

†
t
) ,

(bt + b†t)
n−1e

K

2
(bs−b†

s
)

= e
K

2
(bs−b†

s
)

n−1
∑

m=0

(

n − 1

m

)

(bt + b†t)
m(−1)n−1−mKn−1−mδn−1−m(t − s) ,

(bs + b†s)
N−1e

k

2
(bt−b

†
t
)

= e
k

2
(bt−b

†
t
)

N−1
∑

m=0

(

N − 1

m

)

(bs + b†s)
m(−1)N−1−mkN−1−mδN−1−m(t − s) .

These identities imply that:

[B̂n
k (g), B̂N

K (f)]

=
1

2n+N−2

{

n−1
∑

m1=0

N−1
∑

m2=0

(

n − 1

m1

)(

N − 1

m2

)

(−1)n−1−m1Kn−1−m1kN−1−m2

×

∫

Rd

∫

Rd

g(t)f(s)e
k

2
(bt−b

†
t
)e

K

2
(bs−b†

s
)(bt + b†t)

m1(bs + b†s)
m2e

k

2
(bt−b

†
t
)e

K

2
(bs−b†

s
)

× δn−1−m1+N−1−m2(t − s)dt ds

−

N−1
∑

m3=0

n−1
∑

m4=0

(

N − 1

m3

)(

n − 1

m4

)

(−1)N−1−m3kN−1−m3Kn−1−m4

×

∫

Rd

∫

Rd

g(t)f(s)e
K

2
(bs−b†

s
)e

k

2
(bt−b

†
t
)(bs + b†s)

m3(bt + b†t)
m4e

K

2
(bs−b†

s
)e

k

2
(bt−b

†
t
)

× δN−1−m3+n−1−m4(t − s)dt ds

}

.

The term (m1 = n−1, m2 = N −1) cancels out with (m3 = N −1, m4 = n−1).
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The renormalization prescription (1.13) and the choice of test functions vanish-

ing at zero imply that

n−3
∑

m1=0

N−3
∑

m2=0

(· · ·) =

N−3
∑

m3=0

n−3
∑

m4=0

(· · ·) = 0 .

Therefore, after the renormalization prescription (1.13), the only surviving terms

are those corresponding to the pairs:

(m1 = n − 1, m2 = N − 2) , (m3 = N − 1, m4 = n − 2) ,

(m1 = n − 2, m2 = N − 1) , (m3 = N − 2, m4 = n − 1)

and we obtain:

[B̂n
k (g), B̂N

K (f)]

=
1

2n+N−2
((N − 1)k − (n − 1)K − (n − 1)K + (N − 1)k)

×

∫

Rd

g(t)f(t)e
k+K

2
(bt−b

†
t
)(bt + b†t)

n+N−3e
k+K

2
(bt−b

†
t
)dt

=
2

2n+N−2
((N − 1)k − (n − 1)K)

×

∫

Rd

g(t)f(t)e
k+K

2
(bt−b

†
t
)(bt + b†t)

n+N−3e
k+K

2
(bt−b

†
t
)dt

=
1

2n+N−3
((N − 1)k − (n − 1)K)

×

∫

Rd

g(t)f(t)e
k+K

2
(bt−b

†
t
)(bt + b†t)

n+N−3e
k+K

2
(bt−b

†
t
)dt

= (k(N − 1) − K(n − 1))B̂n+N−2
k+K (gf) .
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