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We study the free product of rooted graphs and its various decompositions using quan-
tum probabilistic methods. We show that the free product of rooted graphs is canonically
associated with free independence, which completes the proof of the conjecture that there
exists a product of rooted graphs canonically associated with each notion of noncommu-
tative independence which arises in the axiomatic theory. Using the orthogonal product

of rooted graphs, we decompose the branches of the free product of rooted graphs as
“alternating orthogonal products”. This leads to alternating decompositions of the free
product itself, with the star product or the comb product followed by orthogonal prod-
ucts. These decompositions correspond to the recently studied decompositions of the
free additive convolution of probability measures in terms of boolean and orthogonal
convolutions, or monotone and orthogonal convolutions. We also introduce a new type
of quantum decomposition of the free product of graphs, where the distance partition of
the set of vertices is taken with respect to a set of vertices instead of a single vertex. We
show that even in the case of widely studied graphs this yields new and more complete
information on their spectral properties, like spectral measures of a (usually infinite) set
of cyclic vectors under the action of the adjacency matrix.

Keywords: Free product of graphs; s-free product of graphs; free additive convolution;
monotone additive convolution; orthogonal additive convolution; subordination; subor-
dination branch; quantum decomposition.
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1. Introduction

Graph theory plays an important role in many branches of mathematics and its

applications. In particular, in solid state physics the idea that the study of a free

dynamics on a nonhomogeneous graph might be equivalent to the study of an
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interacting dynamics on a homogeneous graph (a discrete version of the basic idea

of general relativity) found interesting applications in the study of Bose–Einstein

condensation.7,8,23

In many of these applications, the main focus was not so much on the combi-

natorial properties of single graphs, as on the analytical aspects of the asymptotics

of large graphs (when the number of vertices tends to infinity). In that connection,

typical objects of interest are spectral distributions of the adjacency matrix with

respect to specially chosen states, or the full spectrum.

From these investigations an interesting class of graphs has emerged, namely

those which are built from subgraphs expressible as products of simpler graphs.

Intuitively, a product of graphs is a rule to construct a new graph by glueing together

two given graphs subject to additional conditions (like associativity). It is known

that there exist several different products among graphs, including those studied

extensively in discrete mathematics like the lexicographic product, the Cartesian

product or the strong product.

On the other hand, the experience of quantum probability teaches us that, at an

algebraic level, certain types of products of quantum probability spaces correspond

to different notions of stochastic independence.28,31 Recall that in the concept of

a quantum probability space one has to distinguish a state, which, in the simplest

graph setting, corresponds to a distinguished vertex called root. It is therefore natu-

ral to conjecture that certain types of products of rooted graphs could be canonically

associated with the main notions of stochastic independence Moreover, one might

expect that such graph products are important types of products, from which one

could not only construct more complicated graphs, but also obtain information

about their spectra, using (well-established or entirely new) quantum probabilistic

techniques.

The well-known case of the Cayley graph of a free product of groups and its

relation to free independence of Voiculescu33 and to the free product of states3,33

can be viewed as the first evidence that such a conjecture is true. That such a

relation holds also in the general case of the free product of rooted graphs can be

shown using the free probability techniques. Thus, we explicitly state and prove

the fact that the free product of graphs, introduced by Znojko39 for symmetric

graphs and generalized by Quenell30 and Gutkin11 to rooted graphs, is canonically

associated with the notion of free independence. More generally, we show that the

hierarchy ofm-freeness introduced by one of the authors,18 corresponds to a natural

hierarchy of m-free products of graphs, as well as to the natural inductive definition

of the free product.39,11

The next important evidence supporting this conjecture was the discovery, by

Accardi, Ben Ghorbal and Obata,1 that the comb product of rooted graphs is canon-

ically related to the monotone independence.22,26 A similar connection between the

star product of rooted graphs and boolean independence32 was established by one

of the authors17 and Obata.29 Since it is well known that the Cartesian product of

graphs is naturally related to tensor (or boson) independence, the correspondence
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between the main notions of stochastic independence (which arise in the axiomatic

theory) and certain types of products of rooted graphs is completed.

In all the above-mentioned cases, the canonical relation between a notion of

product of two graphs, G1 = (V1, E1) and G2 = (V2, E2), and a notion of inde-

pendence I is realized by showing that the adjacency matrix of their product is

naturally split into a sum of operator random variables which are I-independent

with respect to a given state. In all cases this decomposition can be obtained by

embedding the algebra of operators on the l2-space of the product graph into an

appropriate tensor product, paralleling the construction of Refs. 18 and 19.

Let us remark in this context that the Cartesian, comb and star products appear

to be “basic” graph products since the corresponding vertex sets are subsets of

V1 × V2, whereas the vertex set of the free product of graphs is the free product

V1 ∗V2 of rooted sets and the construction of G1 ∗G2 involves infinitely many copies

of G1 and G2. This is the main reason why the free product of graphs has this

peculiar feature that it admits a variety of natural decompositions. In particular,

the decomposition into the sum of “freely independent subgraphs”, although the

most natural from the point of view of free independence, is not always the most

intuitive or the most convenient.

In particular, we find new decompositions related to the “growth” of G1 ∗ G2

exhibited by its inductive definitions. Motivated by the recent work of one of

the authors on the decompositions of the free additive convolution of probabil-

ity measures20 (see also Ref. 21), we study a new type of “basic” product of

rooted graphs called the orthogonal product of graphs, related to the orthogo-

nal convolution of probability measures introduced in Ref. 20. We show that

this is the orthogonal product which is the main building block of G1 ∗ G2

since it is responsible for its “growth”. In fact, it allows us to decompose its

“branches”30 into products of alternating G1 and G2. Since one obtains the free

product by taking the comb product or the star product of “branches”, as shown

in Ref. 30 (we use quantum probabilistic techniques to simplify the proofs pre-

sented there), we arrive at two alternating decompositions of the free product of

graphs — the comb-orthogonal decomposition and the star-orthogonal decompo-

sition. More importantly, using the orthogonal convolution, one can study spec-

tral distributions of free products of uniformly locally finite graphs in a very

intuitive manner and see their direct relation to continued fractions, especially

periodic and mixed periodic Jacobi continued fractions14 (without using the R-

transforms).

Finally, in order to get a more detailed information about the structure of the

spectrum of G1 ∗ G2, we introduce a new type of quantum decomposition of the

adjacency matrix of a given graph G. This decomposition is based on a new type of

distance partition V =
⋃∞

n=0 Vn of the set of vertices, where Vn is the set of vertices

of G, whose distance from a set of vertices (instead of a single vertex) is equal to

n. This leads to a different quantum decomposition of the adjacency matrix A(G)

into the sum of a creation, annihilation and diagonal operators. It allows us to
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derive a cyclic direct sum decomposition of the Hilbert space l2(V ) together with

the spectral distributions associated with different cyclic (vacuum) vectors.

For classical (random walk) methods applied to the free products of Cayley

graphs and other infinite graphs, we refer the reader to Refs. 2, 6, 9, 10, 15, 16, 37,

38 and references therein.

2. Notation

By a rooted set we understand a pair (X, e), where X is a countable set and e is

a distinguished element of X called root. By a rooted graph we understand a pair

(G, e), where G = (V,E) is a non-oriented graph with the set of vertices V = V (G),

and the set of edges E = E(G) ⊆ {{x, x′} : x, x′ ∈ V, x 6= x′} and e ∈ V is a

distinguished vertex called the root. We will also denote by G the rooted graph

(G, e) if no confusion arises, especially if the graph is symmetric, i.e. for any x 6= x′

there exists an automorphism τ of G for which τ(x) = x′ (in other words, all vertices

are equivalent).

For rooted graphs we will use the notation

V 0 = V \{e} . (2.1)

Two vertices x, x′ ∈ V are called adjacent if {x, x′} ∈ E, i.e. vertices x, x′ are

connected with an edge. Then we write x ∼ x′. Simple graphs have no loops,

i.e. {x, x} /∈ E for all x ∈ V . The degree of x ∈ V is defined by κ(x) = |{x′ ∈ V :

x′ ∼ x}|, where |I | stands for the cardinality of I . A graph is called locally finite

if κ(x) < ∞ for every x ∈ V . It is called uniformly locally finite if sup{κ(x) : x ∈
V } <∞.

For x ∈ V , let δ(x) be the indicator function of the one-element set {x}. Then

{δ(x), x ∈ V } is an orthonormal basis of the Hilbert space l2(V ) of square integrable

functions on the set V , with the usual inner product.

The adjacency matrix A = A(G) of G is a 0–1 matrix defined by

Ax,x′ =

{

1 if x ∼ x′ ,

0 otherwise .
(2.2)

We identify it with the densely defined symmetric operator on l2(V ), denoted by

the same symbol, with the action on the basis of l2(V ) given by

Aδ(x) =
∑

x∼x′

δ(x′) (2.3)

for x ∈ V . Notice that the sum on the right-hand side is finite since our graph is

assumed to be locally finite. It is known that A(G) is bounded iff G is uniformly

locally finite. The closure of A(G) is called the adjacency operator of G and its

spectrum — the spectrum of G.

The unital algebra generated by A, i.e. the algebra of polynomials in A, is called

the adjacency algebra of G and is denoted by A(G), or simply A.



August 30, 2007 2:8 WSPC/102-IDAQPRT 00275

Decompositions of the Free Product of Graphs 307

For simplicity of presentation, by a graph we shall understand a non-oriented,

connected and locally finite simple graph with a non-empty set of edges. Any rooted

graph of type (G, e), where G is a graph in this sense, will also be called a graph

if no confusion arises. However, it is not hard to observe that the theorems remain

true if we allow graphs to have loops, or even if we take multigraphs, i.e. graphs

with multiple edges.

3. Convolutions, Transforms and Graph Products

By the spectral distribution of A = A(G) in a state ψ on l2(V ) we understand the

sequence (ψ(An))n≥0, or the associated measure µ (in case the moment problem

has the unique solution), for which

ψ(An) =

∫

R

xnµ(dx) , n ∈ N ∪ {0} (3.1)

and by the spectral distribution of the rooted graph (G, e) we understand the spectral

distribution of A(G) in the state ϕe(·) = 〈·δ(e), δ(e)〉. The spectral distribution of

(G, e) is important in the evaluation of the spectrum spec(G) of the graph G. In

some cases (homogenous trees and n-ary trees are the easiest examples) it is even

so that spec(G) agrees with the support of the spectral distribution of (G, e).
For any probability distribution µ with the sequence of moments (Mn)n≥0,

we define its moment generating function as the formal power series Mµ(z) =
∑∞

n=0 Mnz
n. The corresponding Cauchy transform, K-transform, reciprocal Cauchy

transform and R-transform are defined, respectively, by the formal power series

Gµ(z) =
1

z
Mµ

(

1

z

)

, (3.2)

Kµ(z) = z − 1

Gµ(z)
, (3.3)

Fµ(z) =
1

Gµ(z)
, (3.4)

Rµ(z) = −1

z
+G−1

µ (z) . (3.5)

Let (G1, e1) and (G2, e2) be two graphs with adjacency matrices A1 = A(G1),

A2 = A(G2) and spectral distributions µ, ν, respectively. By µ ] ν we denote the

boolean convolution of µ and ν associated with boolean independence.32 By µ B ν

we denote the monotone convolution associated with monotone independence.26 By

µ� ν we denote the free additive convolution associated with free independence.33

Finally, by µ ` ν we denote the orthogonal convolution associated with orthogonal

independence, recently introduced in Ref. 20. The following identities hold:

Kµ]ν(z) = Kµ(z) +Kν(z) , (3.6)
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Rµ�ν(z) = Rµ(z) +Rν(z) , (3.7)

FµBν(z) = Fµ(Fν(z)) , (3.8)

Kµ`ν(z) = Kµ(Fν(z)) . (3.9)

The above relations can be treated as definitions of the associated convolutions, al-

though these are usually introduced by using some notion of noncommutative “inde-

pendence” which parallels the connection between the usual (classical) convolution

of distributions (measures) and the notion of classical independence. Note that the

K- and R-transforms are additive under the considered convolutions (see Refs. 32,

33 and 37), thus they play the role of the logarithm of the Fourier transform. In

the case of the monotone and orthogonal convolutions, addition of transforms is

replaced by composition (see Refs. 26 and 20).

Proposition 3.1. The following relations hold:

Fµ]ν(z) = Fµ(z) + Fν(z) − z , (3.10)

Fµ`ν(z) = Fµ(Fν(z)) − Fν(z) + z . (3.11)

Proof. These are straightforward consequences of (3.3), (3.4) and (3.6), (3.9).

It is natural that the free additive convolution and the R-transform appear

in the context of spectral theory of free product graphs. It seems less so in the

case of the other three types of convolutions. However, we will show that one can

decompose the free product of graphs using the products of graphs associated with

these convolutions. Let us give the definitions of these products.

Definition 3.1. The comb product of rooted graphs (G1, e1) and (G2, e2) is the

rooted graph (G1 B G2, e) obtained by attaching a copy of G2 by its root e2 to each

vertex of G1, where we denote by e the vertex obtained by identifying e1 and e2. If

no confusion arises, we denote the comb product by G1 B G2. If we identify its set

of vertices with V1 × V2, then its root is identified with e1 × e2.

Note that the comb product of rooted graphs is not commutative and it depends

on the choice of the root. Let us also remark that the definition given in Ref. 1 is

equivalent to the one given above, except that in our definition the information

about the role of the root e2 in the glueing is encoded in the definition of the rooted

graph (G2, e2). Moreover, as our product is taken in the (natural) category of rooted

graphs, we define the root of the comb product to be e, which makes the product

associative.

Theorem 3.1.1 Let (G1, e1) and (G2, e2) be rooted graphs with spectral distributions

µ and ν, respectively. Then, the adjacency matrix of their comb product can be

decomposed as

A(G1 B G2) = A(1) +A(2) , (3.12)
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where A(1) and A(2) are monotone independent with respect to ϕ(·) = 〈·δ(e), δ(e)〉.
Moreover, the spectral distribution of (G1 B G2, e) is given by µ B ν.

Definition 3.2. The star product of (G1, e1) and (G2, e2) is the graph (G1 ? G2, e)

obtained by attaching a copy of G2 by its root e2 to the root e1 of G1, where we

denote by e the vertex obtained by identifying e1 and e2. If no confusion arises,

we also denote the star product by G1 ? G2. If we identify its set of vertices with

V1 ? V2 := (V1 × {e2}) ∪ ({e1} × V2), then its root is identified with e1 × e2.

Theorem 3.2.16,29 Let (G1, e1) and (G2, e2) be rooted graphs with spectral distribu-

tions µ and ν, respectively. Then, the adjacency matrix of their star product can be

decomposed as

A(G1 ? G2) = A(1) +A(2) , (3.13)

where A(1) and A(2) are boolean independent with respect to ϕ, where ϕ(·) =

〈·δ(e), δ(e)〉. Moreover, the spectral distribution of (G1 ? G2, e) is given by µ ] ν.

4. Orthogonal Product of Graphs

Let us introduce now a new basic product of rooted graphs called “orthogonal”,

which is related to the orthogonal convolution introduced in Ref. 20. Using this new

product, together with the comb product of graphs (or, the star product of graphs),

one can construct their free product G1 ∗ G2, using copies of G1 and G2. This is an

application of the more general theory of constructing the free additive convolution

from the orthogonal and monotone (or, orthogonal and boolean) convolutions given

in Ref. 20 and we use the results contained there.

Definition 4.1. The orthogonal product of two rooted graphs (G1, e1) and (G2, e2)

is the rooted graph (G1 ` G2, e) obtained by attaching a copy of G2 by its root e2
to each vertex of G1 but the root e1, where e is taken to be equal to e1. If its set of

vertices is identified with V1 ` V2 := (V 0
1 ×V2)∪ {e1 × e2}, then e is identified with

e1 × e2.

It is worth noting that the orthogonal product of graphs resembles their comb

product. The difference is that in the comb product the second graph is glued by

its root to all vertices of the first graph, whereas in the orthogonal product the

second graph is glued to all vertices but the root of the first graph. An example of

the orthogonal product of graphs is given in Fig. 1.

�
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r r r r
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e1 x x′
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G1 G2 G1 ` G2
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Fig. 1. Orthogonal product G1 ` G2.
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The notion of the orthogonal product of graphs is related to the concept of

orthogonal subalgebras introduced in Ref. 20. By a non-unital subalgebra of a unital

algebra A we understand a subalgebra which does not contain the unit of A.

Definition 4.2. Let (A, ϕ, ψ) be a unital algebra with a pair of linear normalized

functionals and let A1 and A2 be non-unital subalgebras of A. We say that A2 is

orthogonal to A1 with respect to (ϕ, ψ) if

(i) ϕ(ba2) = ϕ(a1b) = 0,

(ii) ϕ(w1a1ba2w2) = ψ(b)(ϕ(w1a1a2w2) − ϕ(w1a1)ϕ(a2w2))

for any a1, a2 ∈ A1, b ∈ A2 and any elements w, v of the algebra alg(A1,A2)

generated by A1 and A2. We say that the pair (a, b) of elements of A is orthogonal

with respect to (ϕ, ψ) if the algebra generated by a ∈ A is orthogonal to the algebra

generated by b ∈ A.

In analogy to Theorems 3.1–3.2, one can decompose the adjacency matrix of the

orthogonal product of graphs. The proof is based on the tensor product realization

of orthogonal subalgebras.20 Note that tensor product realizations of noncommu-

tative random variables, originated in Ref. 17 for boolean, m-free and free random

variables, (see also Ref. 19), are especially useful in the context of graph products

since the projections introduced in this scheme tell us how the graphs should be

glued together. This technique was later used in a number of papers.1,11,18,29

Theorem 4.1. Let (G1, e1) and (G2, e2) be rooted graphs with spectral distributions

µ and ν, respectively. Then, the adjacency matrix of their orthogonal product can

be decomposed as

A(G1 ` G2) = A(1) +A(2) , (4.1)

where the pair (A(1), A(2)) is orthogonal with respect to (ϕ, ψ), where ϕ and ψ are

states associated with vectors δ(e), δ(v) ∈ l2(V1 ` V2) and v ∈ V 0
1 . Moreover, the

spectral distribution of (G1 ` G2, e) is given by µ ` ν.

Proof. In order to prove the decomposition, it is convenient to identify the adja-

cency matrix of G1 ` G2 with the sum

A(G1 ` G2) = A1 ⊗ Pξ2
+ P⊥

ξ1
⊗A2

on the Hilbert space l2(V1 ` V2) ⊂ l2(V1 × V2) ∼= l2(V1) ⊗ l2(V2), where Ai is the

adjacency matrix of Gi and P⊥
ξ1

= 1 − Pξ1
, with Pξi

denoting the projection onto

Cξi, where ξi = δ(ei) and i = 1, 2. Projection P⊥
ξ1

indicates that graph G2 should

be glued to all vertices of G1 but the root, whereas projection Pξ2
indicates that

graph G1 should be glued only to vertex e2 of G2, which reproduces Definition 4.1. It

remains to take ϕ and ψ to be the states associated with unit vectors δ(e1)× δ(e2)

and δ(v)×δ(e2), respectively, where v is an arbitrary vertex from V 0
1 . Now, in view

of Theorem 4.1 of Ref. 20, the above summands form a pair of orthogonal elements
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(of the algebra they generate) with respect to the pair of states (ϕ, ψ). The proof

consists of checking (i)–(ii) of Definition 4.2 and in the case of graphs it is very

similar to the general convolution case.20

It follows from Corollary 4.2 of Ref. 20 that the spectral distribution of such a

sum in the state ϕ is equal to the orthogonal convolution µ ` ν. Nevertheless, we

choose to show this fact here since we can present a proof which nicely exhibits the

relation between the comb product and the orthogonal product. Namely, recall that

G1 ` G2 differs from G1 B G2 by the fact that no copy of G2 is glued to the vertex e1.

Therefore, one can obtain G1 B G2 by glueing G1 ` G2 and G2 at their roots, which

corresponds to their star product. Therefore, G1 B G2 = (G1 ` G2) ?G2, which leads

to the formula µ B ν = σ ] ν for spectral distributions, where σ is the spectral

distribution of G1 ` G2. Using transforms, we get Fµ(Fν(z)) = Fσ(z) + Fν(z) − z,

which, in view of (3.11), gives our assertion.

Example 4.1. Let us apply Theorem 4.1 to the orthogonal product in Fig. 1. We

have

Gµ(z) =
z2 − 1

z(z2 − 2)
, Gν(z) =

z2 − 2

z(z2 − 3)

and therefore,

Kµ(z) =
1

z − 1
z

, Fν(z) = z − 1

z − 2
z

.

In view of Theorem 4.1 and (3.9), we obtain the explicit formula for the Cauchy

transform Gµ`ν(z). Algebraic calculations lead to the continued fraction represen-

tation of Gµ`ν (z) associated with the sequences of Jacobi coefficients ω = (ωn) =

(1, 2, 3/2, 5/6, 4/15, 12/5, 0, . . .) and α = (αn) = (0, 0, . . .). The corresponding mea-

sure is a discrete measure consisting of seven atoms (since their explicit values and

corresponding masses are rather complicated, we do not give them here).

5. Free Decomposition of the Free Product of Graphs

In this section we recall after Refs. 39 and 10 the definition of the free product

of rooted graphs and we show that the adjacency matrix of the free product of

a finite family of rooted graphs is the sum of freely independent copies of the

adjacency matrices of the factors of the product. Essentially, this fact is a natural

consequence of free probability and one just needs to adapt the proof of Voiculescu.

We also define a corresponding approximating sequence of m-free products.

Consider rooted graphs (Gi, ei) = (Vi, Ei, ei), where i ∈ I and I is a finite index

set, and denote V 0
i = Vi\{ei}. By the free product of rooted sets (Vi, ei), i ∈ I , we

understand the rooted set (∗i∈IVi, e), where

∗i∈IVi = {e} ∪ {v1v2 · · · vm; vk ∈ V 0
ik

and i1 6= i2 6= · · · 6= in, m ∈ N}
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and e is the empty word. For notational convenience, we will sometimes use words

containing roots ek but then we shall always understand that wek = ekw ≡ w,

where w ∈ ∗i∈IVi, thus any ek will be treated as the “unit”, or the empty word.

We are ready to give the definition of the free product of graphs.

Definition 5.1. By the free product of rooted graphs (Gi, ei), i ∈ I , we understand

the rooted graph (∗i∈IGi, e) with the set of vertices ∗i∈IVi and the set of edges

∗i∈IEi consisting of pairs of vertices from ∗i∈IVi of the form

∗i∈IEi =

{

{vu, v′u} : {v, v′} ∈
⋃

i∈I

Ei and u, vu, v′u ∈ ∗i∈IVi

}

.

We denote this product by ∗i∈I(Gi, ei) or simply ∗i∈IGi if no confusion arises.

The most intuitive construction of the free product of graphs is given by some

inductive procedure which gives a sequence of growing graphs whose inductive

limit is the free product of graphs. In fact, one natural procedure was given in

Ref. 39, where it was one of the equivalent definitions of the free product of graphs.

Interestingly enough, this procedure gives a sequence of iterates indexed by m ∈ N

which corresponds to the m-free product of states introduced in Ref. 17. This leads

us to the following formal definition.

Definition 5.2. By the m-free product of rooted graphs (Gi, ei), i ∈ I , we un-

derstand the subgraph (∗(m)
i∈I Gi, e) of (∗i∈IGi, e) obtained by restricting the set of

vertices to words w of length |w| ≤ m.

Example 5.1. Consider two “segments” G1
∼= Z2 and G2

∼= Z2. They are graphs

consisting of one edge x ∼ e1 and y ∼ e2. Then

V1 ∗ V2 = {e, x, y, xy, yx, xyx, yxy, . . .} ,

E1 ∗E2 = {{e, x}, {e, y}, {x, yx}, {y, xy}, {yx, xyx}, {xy, yxy}, . . .}

and it is easy to see that G1 ∗ G2
∼= Z, where Z denotes the two-way infinite path

(or, one-dimensional integer lattice) with the root at 0. Truncations of this product

to words of length ≤ m give G1 ∗m G2.

In order to give the explicit form of the adjacency matrix of the free product of

graphs, consider the Hilbert space HI = l2(∗i∈IVi) spanned by δ(e) and vectors of

the form

δ(w) for w = v1v2 · · · vn ∈ ∗i∈IVi

and let ϕ be the vacuum expectation on B(H) given by ϕ(T ) = 〈Tδ(e), δ(e)〉. We

have

(HI , δ(e)) ∼= ∗i∈I(l
2(Vi), δ(ei)) ,
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where the RHS is understood as the free product of Hilbert spaces with distin-

guished unit vectors.33

In the sequel we will need the following subsets of ∗i∈IVi:

Wj(n) = {v1v2 · · · vn ∈ ∗i∈IVi : v1 /∈ V 0
j } ,

where n ∈ N. Thus, Wj(n) is the subset consisting of words of length n which do

not begin with a letter from V 0
j . We set

Wj =

∞
⋃

n=0

Wj(n)

with Wj(0) = {e} for every j.

Definition 5.3. Let Ai denote the adjacency matrix of the rooted graph (Gi, ei),

where i ∈ I . Let us define their copies in ∗i∈I(Gi, ei) by the formulas

(Ai(n))w,w′ =

{

1 if {w,w′} = {xu, x′u} for {x, x′} ∈ Ej and u ∈Wj(n− 1)

0 otherwise

where n ∈ N. By Pi(n) we denote the canonical projection of HI onto l2(Wi(n))

for n ≥ 1, with Pi(0) denoting the projection onto l2(e) = Cδ(e) for every i ∈ I .

Theorem 5.1. The adjacency matrix A(∗i∈IGi) of the free product of graphs admits

a decomposition of the form A(∗i∈IGi) =
∑

i∈I A
(i), where

A(i) =

∞
∑

n=1

Ai(n) =

∞
∑

n=1

AiPi(n− 1) (5.1)

are free with respect to the vacuum expectation ϕ and the action of Ai in the second

sum is given by Aiδ(xu) = δ(x′u) whenever {x, x′} ∈ Ei(i ∈ I). Moreover, the

series is strongly convergent for every i ∈ I.

Proof. First, let us observe that using local finitness of Gi, we can write

A(i)δ(w) =
∑

w′=x′u
{x,x′}∈Ei

δ(w′) = Ai(n)δ(w)

whenever w = xu, where u ∈ Wi(n− 1) and we allow x, x′ to be arbitrary vertices

from Vi, thus if x = e1, we have e1u ≡ u. Moreover, observe that Ai(m)δ(w) = 0

for such w for any m 6= n. Writing

δ(w) =

{

δ(x) ⊗ δ(u) whenever w = xu and x ∈ V 0
i ,

δ(u) if w = eiu

we obtain

A(i)δ(w) =
∑

w′=x′u
{x,x′}∈Ei,x′ 6=ei

δ(x′) ⊗ δ(u)+ 1l{{x,ei}∈Ei} δ(u)

= (Aiδ(x))
0 ⊗ δ(u) + 〈Aiδ(x), δ(ei))〉δ(u)

if w = xu, u ∈Wi, where 1{z∈A} = 1 if and only if z ∈ A and otherwise is zero.
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We can observe now that A(i) = λ(Ai), where λ denotes the free product repre-

sentation of the free product C[A1] ∗ C[A2] on l2(∗n
i=1Vi) in the sense of Avitzour3

and Voiculescu.33 Therefore, the A(i) are free with respect to ϕ.

As a consequence of the decomposition theorem, one can use free additive

convolutions33 to compute spectral distributions of free products of rooted graphs

in terms of spectral distributions of the factors. One also obtains asymptotic spec-

tral properties of free powers (G, e)∗n. The proofs of these starightforward facts are

omitted.

Corollary 5.1. Let Ai be the adjacency matrix of (Gi, ei), i ∈ I = {1, . . . , n}, and

let µi denote its spectral distribution, where 1 ≤ i ≤ n. Then the spectral distribution

of A(∗n
i=1Gi) in the state ϕ is given by µ = µ1 � µ2 � · · · � µn.

Corollary 5.2. Let A be the adjacency matrix of (G, e) and let A∗n denote the

adjacency matrix of (G, e)∗n. Then

lim
n→∞

ϕ





(

A∗n

√

nk(e)

)2m


 = cm , (5.2)

where cm is the mth Catalan number for m ∈ N, c0 = 1 and k(e) is the degree of

the root e. The odd moments vanish.

Remark 5.1. The correspondence between the free product of graphs and free

probability (in particular, Corollary 5.2) can be applied to establish a connection

between free products of graphs and free additive convolutions of their spectral

distributions.

Example 5.2. Using Corollary 5.2, we find spectral distributions for two standard

examples of n-ary rooted trees and homogeneous trees which will be needed later.

Thus, the spectral distributions of n-ary trees Tn have Cauchy transforms

Gνn
(z) =

z −
√
z2 − 4n

2n
(5.3)

with densities given by Wigner laws

dνn(x) =

√
4n− x2

2πn
dx (5.4)

with the supports on [−2
√
n, 2

√
n ]. In a similar manner, we obtain the Cauchy

transforms of the spectral distributions µn of homogenous trees Hn of the form

Gµn
(z) =

(2 − n)z + n
√

z2 − 4(n− 1)

2(z2 − n2)
(5.5)

which, with the help of the Stieltjes inversion formula, give the (absolutely contin-

uous) measures with densities

dµn(x) =
n
√

4(n− 1) − x2

2π(n2 − x2)
dx (5.6)
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supported on [−2
√
n− 1, 2

√
n− 1]. In particular, the spectral distribution of H2

∼=
Z in the vacuum state ϕ associated with the vertex 0 is the arcsine law dµ2(x) =

1/(π
√

4 − x2)dx.

6. Orthogonal Decompositions of Branches

Let us look at the concept of “branches” of the free product of graphs introduced

by Quenell.30 They correspond to the so-called “subordination functions” studied

first by Voiculescu36 and Biane.4 We rely on the recent general study of the free

additive convolution and its decompositions given in Ref. 20, where we refer the

reader for the main concepts, like s-freeness, as well as general proofs.

Definition 6.1. Let (Vi, ei)i∈I be a finite family of rooted sets. By the jth sub-

ordination branch of ∗i∈I(Vi, ei), where j ∈ I , we shall understand the rooted set

(Sj , e), where

Sj = {e} ∪ {v1v2 · · · vm ∈ ∗i∈IVi : vm ∈ V 0
j ,m ∈ N}

is the subset of ∗i∈IVi consisting of the empty word and words which end with a

letter from V 0
j .

Definition 6.2. Let (Gi, ei)i∈I be a finite family of rooted graphs. By the jth

subordination branch of ∗i∈I(Gi, ei), where j ∈ I , we shall understand the rooted

graph (Bj , e), where Bj ≡ Bj((Gi)i∈I ) is the subgraph of ∗i∈IGi restricted to the

set Sj defined above. As before, we often omit the roots in the notations.

In the case of two graphs, it is easy to see that G1 ∗ G2 consists of two branches,

B1 and B2, with common root e. The branch B1 = B1(G1,G2) “begins” with a copy

of G1 and the branch B2 = B2(G1,G2) “begins” with a copy of G2. For instance, in

the case of a binary tree T2, the branches B1 and B2 are the left and right “halves”

of T2, respectively. However, the n-ary tree can itself be viewed as a branch of

another free product. Moreover, it is then constructed in a “distance-adapted”

manner, i.e. natural truncations of the product lead to natural truncations of the

tree (see Example 6.1 and Fig. 2).

Example 6.1. Take two graphs as in Fig. 2 and let B1 and B2 be the subordination

branches of the free product G1 ∗ G2. Figure 2 shows that T2
∼= B1(∼= B2).

In a similar way one can obtain the n-ary rooted tree as a branch of a free

product of two copies of the “fork” graph with n+1 vertices e, x1, . . . , xn (i.e. such

that e ∼ xk for all 1 ≤ k ≤ n).

Motivated by Ref. 20, we can view the branches of G1 ∗G2 as products of rooted

graphs. The needed notion of a product corresponds to freeness with subordination,

or s-freeness, introduced and studied there. Moreover, their adjacency matrices,

A(B1) and A(B2), can be decomposed as the sum of components which are “free

with subordination” (or, “s-free”) with respect to a pair of states (ϕ, ψ).
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Fig. 2. Binary tree T2
∼= B1(G1 ∗ G2).

Definition 6.3. Let (A, ϕ, ψ) be a unital algebra with a pair of linear normalized

functionals. Let A1 be a unital subalgebra of A and let A2 be a non-unital subal-

gebra with an “internal” unit 12, i.e. 12b = b = b12 for every b ∈ A2. We say that

the pair (A1,A2) is free with subordination, or simply s-free, with respect to (ϕ, ψ)

if ψ(12) = 1 and it holds that

(i) ϕ(a1a2 · · · an) = 0 whenever each aj ∈ A0
ij

and i1 6= i2 6= · · · 6= in
(ii) ϕ(w112w2) = ϕ(w1w2) − ϕ(w2)ϕ(w2) for any w1, w2 ∈ alg(A1,A2),

where A0
1 = A1 ∩ kerϕ and A0

2 = A2 ∩ kerψ. We say that the pair (a, b) of random

variables from A is s-free with respect to (ϕ, ψ) if there exists 12 ∈ A such that

the pair (A1,A2), where A1 is the unital algebra generated by a and A2 is the

non-unital algebra generated by 12 and b, is s-free with respect to (ϕ, ψ).

The notion of s-freeness resembles freeness — in the GNS representation, the

corresponding product of Hilbert spaces is the direct sum of Cξ, where ξ is the unit

(vacuum) vector, and tensors Hi1 ⊗Hi2 ⊗ · · · ⊗ Hin
, where i1 6= i2 6= · · · 6= in = 1.

The branches, which in this context replace free products of graphs, can also be

decomposed along the lines of Theorem 5.1 and can be called “s-free products”

of G1 and G2, or G2 and G1. Using a similar notation, we obtain the following

decomposition theorem (cf. Ref. 20).

Theorem 6.1. The adjacency matrix of the branch B1 ≡ B1(G1,G2) can be decom-

posed as the sum A(B1) = A(1) +A(2), where the strongly convergent series

A(1) =
∑

n odd

A1(n) , A(2) =
∑

n even

A2(n) , (6.1)

are s-free with respect to (ϕ, ψ), where ϕ(·) = 〈·δ(e), δ(e)〉 and ψ(·) = 〈·δ(v), δ(v)〉
for any v ∈ V 0

1 . An analogous decomposition holds for the branch B2(G1 ∗ G2) with

the summations over odd and even n interchanged.
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Proof. We refer the reader to Ref. 20, where it was shown, in a general Hilbert

space setting, that sums of operators of the above type are s-free with respect to

(ϕ, ψ) (one has to verify conditions (i)–(ii) of Definition 6.3, and in the case of

graphs, it is basically the same proof).

In order to “decompose completely” the branches, by which we mean to de-

compose them in terms of graphs G1 and G2, we will interpret (6.1) in terms of an

inductive limit of a sequence of graphs which resembles (but is not the same as) the

sequence of m-free products approximating the free product. In this fashion we will

obtain the “complete” orthogonal decomposition of branches given by the following

theorem.

Theorem 6.2. The branch B1 is the inductive limit of the sequence (G1 `m G2)m∈N

given by the recursion

G1 `1 G2 = G1 ` G2 , G1 `m G2 = G1 ` (G2 `m−1 G2) ,

where m > 1. An analogous statement holds for the branch B2.

Proof. Without loss of generality, consider branch B1. Our sequence of iterates will

remind the inductive way of defining the free product of graphs given in Ref. 39,

although it is not symmetric with respect to G1 and G2. Recall that Bi “begins”

with a copy of Gi. Therefore, let B1(0) be equal to G1 and choose its root to be e1.

To get B1(1), to every vertex of G1 but the root we glue by its root a copy of B2(0).

In such a graph we again choose the root e1. This gives a rooted graph (B1(1), e1),

which is, in fact, G1 ` G2. In a similar fashion we obtain (B2(1), e2). Now, note that

the mth approximant of the branch B1 is obtained by glueing by its root a copy of

(B2(m− 1), e2) to every vertex of (G1, e1) but the root. In other words, we obtain

B1(m) = G1 ` B2(m− 1) and B2(m) = G2 ` B1(m− 1)

for m ≥ 1. It is clear that the inductive limits of our iterates give the branches,

namely

Bi =
⋃

m≥0

Bi(m)

for i = 1, 2 (with the root ei), and this proves the assertion.

In order to obtain spectral distributions of the branches, one takes a sequence

of alternating iterates of orthogonal convolutions — this method was introduced in

Ref. 20, but here, in the graph context, is especially appealing and easy to justify.

Corollary 6.1. If µ and ν are spectral distributions of G1 and G2, respectively,

then the spectral distribution of G1 `m G2 is given by µ `m ν, where the sequence

(µ `m ν)m∈N of distributions is given by the recursion

µ `1 ν = µ ` ν , µ `m ν = µ ` (ν `m−1 µ) ,
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where m > 1. If G1 and G2 are uniformly locally finite, the spectral distribution

of the branch B1 is given by the weak limit µ �| ν := w − limm→∞(µ `m ν). An

analogous statement holds for the branch B2.

Proof. The spectral distribution of G1 `m G2 is given by µ `m ν by Theorem 4.1.

Now, observe that moments of the same order k, where k ≤ 2m, in all graphs

G1 `n G2 (computed with respect to the root e), with n ≥ m, are equal. This is

because in the orthogonal product of graphs no copy of the second graph is glued to

the root of the first graph and therefore, the distance from the root e in G1 `m G2 at

which the graph differs from G1 `m−1 G2 is equal to m+1. Therefore, the moments

of µ `m ν converge to the corresponding moments of the spectral distributions

of B1. If G1 and G2 are uniformly locally finite, this implies weak convergence of

measures.

Corollary 6.2. Under the assumptions of Corollary 6.1, the K-transform of µ �| ν

can be expressed as

Kµ�| ν(z) = Kµ(z −Kν(z −Kµ(z −Kν(· · ·)))) ,

where the right-hand side is understood as the uniform limit on compact subsets of

the complex upper half-plane. The K-transform of µ `m ν is obtained by a truncation

of the above formula to m+ 1 alternating transforms.

Proof. Since weak convergence of measures implies uniform convergence of the

Cauchy transform on compact subsets of the complex upper half-plane, the assertion

follows from a repeated application of (3.9) and Corollary 6.1.

Example 6.2. Consider two rooted graphs G1, G2, whose spectral distributions µ,

ν are associated with reciprocal Cauchy transforms of the form

Fµ(z) = z − α0 −
ω0

z − α1
, Fν(z) = z − β0 −

γ0

z − β1
,

respectively (this includes Kn and Fn, whose free products were studied by other

authors and also in Sec. 10). From Corollary 6.2 we easily obtain the K-transform

Kµ�| ν(z) = α0 +
ω0

z − α1 − β0 −
γ0

z − α0 − β1 −
ω0

z − α1 − β0 −
γ0

· · ·
and thus, in view of (3.3), the distribution µ �| ν of branch B1 is associated with

the sequences of Jacobi parameters

α = (α0, α1 + β0, α0 + β1, α1 + β0, . . .) , ω = (ω0, γ0, ω0, γ0, . . .)
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which correspond to the so-called mixed periodic Jacobi continued fraction.13 For

details on the corresponding measures, see Ref. 13. In particular, if G1 = G2 = K2

(3-vertex complete graph), we have α0 = β0 = 0, α1 = β1 = 1 ω0 = γ0 = 2, which

gives µ �| ν associated with the sequences of Jacobi parameters α = (0, 1, 1, . . .)

and ω = (2, 2, . . .). Its Cauchy transform is

G(z) =
z + 1−

√
z2 − 2z − 7

2z + 4

and the measure has density dµ(x) =
√

7 + 2x− x2/(π(2x + 4)) on the interval

[1 − 2
√

2, 1 + 2
√

2].

7. “Complete” Decompositions of Free Products

In this section we derive new decompositions of the free product of graphs, which

are based on the orthogonal decomposition of branches of Sec. 6. We rely on the

general theory of the decompositions of the free additive convolution20 and apply

it to the context of graph products.

We start from two lemmas, which rephrase the results of Quenell using the

language of quantum probability. This reduces certain proofs presented in Ref. 30

to the basic properties of monotone and boolean convolutions.

Lemma 7.1. The free product of rooted graphs admits the decomposition

G1 ∗ G2
∼= B1 ? B2 (7.1)

which we call the star decomposition of G1 ∗ G2.

Proof. Notice that V1 ∗ V2 = S1 ∪ S2. Moreover, it follows immediately from

Definition 6.2 that the free product G1 ∗ G2 is obtained by glueing together the

branches B1 and B2 at their roots. From the definition of the star product we know

that this is the star product of B1 and B2.

Lemma 7.2. The free product of rooted graphs admits the decompositions

G1 ∗ G2
∼= G1 B B2

∼= G2 B B1 (7.2)

which we call the comb decompositions of G1 ∗ G2.

Proof. Without loss of generality, consider the first relation. Observe that we can

view the branch B1 as one replica of graph G1, to which we glue “orthogonally”

replicas of branch B2. Therefore

B1
∼= G1 ` B2 and B2

∼= G2 ` B1 .

By Lemma 7.1, we can obtain G1 ∗ G2 by glueing B1 and B2 together at their roots

identified with e. Equivalently, (one replica of) B2 is glued to e and branch B1 is

replaced by G1 ` B2, which means that a replica of B2 is glued to every vertex
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v ∈ V 0
1 ⊂ V1 ∗ V2. In other words, a replica of B2 is glued to every vertex of

V 0
1 ∪ {e} ∼= V1, which gives the comb product of G1 and B2, which proves our

assertion.

Corollary 7.1. The following relations hold:

Fµ�ν(z) = Fµ(Fν �| µ(z)) + Fν(Fµ�| ν(z)) − z ,

Fµ�ν(z) = Fµ(Fν �| µ(z)) = Fν(Fµ�| ν(z)) ,

where µ and ν are spectral distributions of rooted graphs G1 and G2, respectively.

Proof. These are straightforward consequences of Lemmas 7.1–7.2 and (3.8),

(3.10).

Remark 7.1. In terms of moment generating functions Mµ(z), related to Fµ(z)

by (3.2) and (3.4), formulas of Corollary 7.1 give the results of Quenell30 (see also

Ref. 24). In our notation, Mµ(z) correspond to return generating functions of type

Re(z) (from which the first return generating functions of type Se(z) are easily

obtained). Moreover, these results can be easily generalized to a finite number of

rooted graphs.

Let us now use the “complete” orthogonal decomposition of branches (The-

orem 6.2) and Lemmas 7.1–7.2 to derive “complete” decompositions of the free

product of graphs. We begin with a decomposition of m-free products.

Theorem 7.1. Let G1 and G2 be rooted graphs with spectral distributions µ and ν.

Then their m-free product admits the decomposition

G1 ∗(m) G2 = (G1 `m G2) ? (G2 `m G1)

called the star-orthogonal decomposition, and its spectral distribution is given by the

m-free convolution µ�m ν := (µ `m ν) ] (ν `m µ).

Proof. The proof consists in describing how to obtain the iterates of the free

product G1 ∗ G2 in an inductive manner by appropriate glueing. Thus, in the first

step we obtain G1 ∗(1) G2 by glueing one copy of G1 to one copy of G2 by means of

identifying e1 with e2 and choosing it to be the root e. This gives (G1 ` G2) ? (G2 `
G1). Note that in the mth step we can obtain the graph G1 ∗(m) G2 by glueing a

copy of G2 ∗(m−1) G1 to every vertex of G1 but the root e1, and vice versa, a copy

of G1 ∗(m−1) G2 to every vertex of G2 but the root e2, and then, by glueing the two

graphs obtained in that way at their roots (e1 and e2, respectively). These rules of

glueing correspond to the orthogonal and star products and thus the first assertion

is proved. The second assertion is then a consequence of Corollary 6.1.

Below we state our results on the decompositions of the free product of uniformly

locally finite rooted graphs. The limits of products of rooted graphs are understood
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as inductive limits (towers of graphs with the same root). Results concerning convo-

lutions have been proven in Ref. 20 for compactly supported probability measures

(see also Ref. 17, where it is shown that µ � ν = w − limm→∞ µ �m ν, with a

different, purely algebraic, definition of the m-free convolution).

Theorem 7.2. Let G1 and G2 be rooted graphs with spectral distributions µ and ν.

Then their free product admits the decomposition

G1 ∗ G2
∼= (G1 ` (G2 ` (G1 ` · · ·))) ? (G2 ` (G1 ` (G2 ` · · ·)))

called the star-orthogonal decomposition. If G1 and G2 are uniformly locally finite,

its spectral distribution is given by µ� ν = w − limm→∞((µ `m ν) ] (ν `m µ)).

Proof. The first statement follows from Theorem 6.1 and Lemma 7.1. The weak

limit formula for µ� ν is a consequence of Corollary 6.1.

Theorem 7.3. Under the assumptions of Theorem 7.2, the free product of rooted

graphs admits the decomposition

G1 ∗ G2
∼= G1 B (G2 ` (G1 ` (G2 ` · · ·)))

called the comb-orthogonal decomposition. If G1 and G2 are uniformly locally finite,

its spectral distribution is given by µ� ν = w − limm→∞ µ B (ν `m µ).

Proof. The first statement follows from Theorem 6.2 and Lemma 7.2. The formula

for µ� ν is a consequence of Corollary 6.1.

Corollary 7.2. Under the assumptions of Theorem 7.2, the Cauchy transform of

µ� ν can be expressed as

Gµ�ν(z) = Gµ(z −Kν(z −Kµ(z −Kν(· · ·)))) ,
where the right-hand side is understood as the uniform limit on compact subsets of

the complex upper half-plane.

Proof. This is a consequence of repeated application of (3.9) and Theorem 7.3.

If G1 or G2 is not uniformly locally finite, the statement of Theorem 7.3 con-

cerning spectral distributions holds in the weaker sense of convergence of moments.

Example 7.1. Take two graphs of type given in Example 6.2. In contrast to the

s-free product considered there, one cannot obtain an explicit formula for the con-

tinued Jacobi fraction corresponding to the free product (essentially, due to the

presence of Gµ in the beginning of the above formula). Instead, we immediately

obtain the algebraic formula

Gµ�ν(z) =
1

z − α0 −
ω0

z − α1 −Kν �| µ(z)
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which allows us to find an analytic form of Gµ�ν(z) once we have an analytic

formula for Kν �| µ(z). This type of algebraic computation was used, for instance,

in Ref. 10, where we refer the reader for a general explicit formula for the Green

function (equivalent to the Cauchy transform). Explicit computations based on this

formula for specific graphs are given in Secs. 9–10.

8. Quantum Decomposition of Adjacency Matrices

In this section we will introduce a new type of “quantum decomposition” of the

adjacency matrix A(G) of a graph G in which the distance is measured with respect

to a set of vertices instead of a single vertex.

The results of this section can be applied to any graph, not only free products of

graphs to which this paper is devoted. In the latter case, our quantum decomposi-

tion is of different category than those studied in the previous sections, but it bears

some resemblance to the comb-orthogonal decomposition since in some sense it “be-

gins” with one copy of one of the graphs. However, as in the standard “quantum

decomposition”,11,12 its components, called “quantum components”, use infinitely

many copies of both graphs and, moreover, cannot be represented as subgraphs of

the product graph. More importantly, it allows us to obtain more complete infor-

mation on the spectral properties of many graphs, including certain free products,

which cannot be obtained by means of other decompositions, including the standard

“quantum decomposition”.

The set of vertices with respect to which distance is measured will be denoted

by V0. The sequence of sets

Vn = {v ∈ V ; d(v,V0) = n} ,
where d(v,V0) = min{d(v, v0); v0 ∈ V0} and n ∈ N∗ := N ∪ {0}, will be called the

distance partition of the set V . The associated Hilbert space decomposition is of

the form

l2(V ) =
⊕

n∈N∗

l2(Vn) (8.1)

which, in turn, leads to the quantum decomposition of A, by which we shall under-

stand the triple (A+, A0, A−) of operators on l2(V ) given by

A+δ(x) =
∑

y∼x

y∈Vn+1

δ(y) , A0δ(x) =
∑

y∼x

y∈Vn

δ(y) , A−δ(x) =
∑

y∼x

y∈Vn−1

δ(y) (8.2)

whenever x ∈ Vn. Clearly, we have A = A+ + A0 + A−, which justifies the above

terminology, and, moreover, (A+)∗ = A− and (A0)∗ = A0. Finally, a nonzero vector

ξ ∈ l2(V ) will be called a vacuum vector if A−ξ = 0. Of interest to us will be vacuum

vectors of special type.

Definition 8.1. A vector ξ ∈ l2(V ) will be called a J-vacuum vector with respect

to the quantum decomposition (A+, A0, A−) (or, simply, a J-vacuum vector) if it is
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a vacuum vector and for every n ∈ N∗ it holds that

A−A+(A+nξ) = ωnA
+nξ , (8.3)

A0(A+nξ) = αnA
+nξ , (8.4)

where αn ∈ R and ωn ≥ 0 and where we use the convention that A+mξ = 0 implies

ωm = αm = 0 and thus ωn = αn = 0 for n ≥ m.

In this fashion we can associate with each J-vacuum vector the Jacobi param-

eters written in the form of a pair of sequences (α, ω) (called from now on J-

sequences), where α = (αn)n∈N∗ and ω = (ωn)n∈N∗ .

Proposition 8.1. J-vacuum vectors associated with non-identical J-sequences are

orthogonal.

Proof. Denote these vectors by ξ and ξ′ and the associated J-sequences by (α, ω)

and (α′, ω′). Assume that αn 6= α′
n for some n ∈ N∗. Without loss of generality we

can assume that αn 6= 0, which implies that ωn−1 6= 0. Then

〈A+nξ, A+nξ′〉 =
1

αn

〈A0A+nξ, A+nξ′〉 =
α′

n

αn

〈A+nξ, A+nξ′〉

and therefore, A+nξ ⊥ A+nξ′, which gives

0 = 〈A+nξ, A+nξ′〉 = 〈A−nA+nξ, ξ′〉 = ω〈ξ, ξ′〉 ,
where ω = ω0ω1 · · ·ωn−1 6= 0 and thus ξ ⊥ ξ′. Similar computations for the case

when ωn 6= ω′
n for given n ∈ N lead to orthogonality ξ ⊥ ξ′ as well.

For a given distance partition of V , any set Ξ of vectors from l2(V ) will be

called distance-adapted if Ξ =
⋃

n∈N∗ Ξn, where Ξn ⊆ l2(Vn). Such sets are con-

venient to deal with and for that reason we show in the proposition given below

that if we have a set of mutually orthogonal J-vacuum vectors, which we call an

orthogonal J-vacuum set, we can always choose one which is distance-adapted. For

a given quantum decomposition of A, we denote by [Ax] and [A+x] the closed linear

subspaces generated by vectors {Anx}∞n=0 and {A+nx}∞n=0, respectively.

Proposition 8.2. For a given distance partition of V and the associated quantum

decomposition of A, let Ξ be an orthogonal J-vacuum set. Then there exists an

orthogonal J-vacuum set Θ, which is distance-adapted and such that
⊕

ξ∈Ξ

[Aξ] ⊆
⊕

ξ∈Θ

[Aξ] .

Proof. Let Ξ = {ξi; i ∈ I}, for a countable set of indices I . According to the

decomposition (8.1), we have

ξi =

∞
∑

n=0

ξ
(n)
i
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for every i ∈ I , where ξ
(n)
i ∈ l2(Vn) and n ∈ N∗. It is not difficult to observe

that each ξ
(n)
i is a J-vacuum vector or ξ

(n)
i = 0. For every n ∈ N∗, we choose

from the set {ξ(n)
i ; i ∈ I} a maximal linearly independent set, which we denote

Γn = {γ1, . . . , γkn
}. If ξ

(n)
i = 0, we set Γn = ∅. Of course, kn ≤ |Vn|. We divide Γn

into disjoint classes

Γn = Γn(1) ∪ Γn(2) ∪ · · · ∪ Γn(ln)

subject to the condition: γi, γj ∈ Γn(l) ⇐⇒ γi, γj are associated with the same

J-sequences. From Proposition 8.1 it follows that vectors from different classes are

orthogonal. Let Θn(l) be the set obtained by applying the Gram–Schmidt orthog-

onalization to class Γn(l). Then

Θn = Θn(1) ∪ Θn(2) ∪ · · · ∪ Θn(ln)

is an orthogonal set. Moreover, each element of Θn is a J-vacuum vector since it

is a linear combination of J-vacuum vectors associated with the same J-sequence.

Finally, we take Θ to be the union of the Θn, i.e. Θ =
⋃

n∈N∗ Θn. From the con-

struction of the set Θ it follows easily that it satisfies the conditions stated above.

Definition 8.2. For a given distance-adapted J-vacuum set Ξ with decomposition

Ξ =
⋃

n∈N∗ Ξn, define a sequence of mutually orthogonal sets by the recurrence

B0 = Ξ0 , Bn+1 = (A+Bn ∪ Ξn+1)\{0} . (8.5)

The set Ξ will be called generating if for every n ∈ N∗ the set Bn is a basis in

l2(Vn). This notion will turn out useful in the theorem given below.

Theorem 8.1. If Ξ is an orthogonal J-vacuum set which is generating and

distance-adapted, then we have the direct sum decomposition l2(V ) =
⊕

ξ∈Ξ[Aξ].

Proof. First, let us show that for ξ ∈ Ξ it holds that [Aξ] = [A+ξ]. Notice that

for m < n we have

〈A+nξ, A+mξ〉 = 〈A+(n−m−1)ξ, A−(m+1)A+mξ〉

= ω〈A+(n−m−1)ξ, A−ξ〉 = 0 ,

and therefore {A+nξ}∞n=0 is an orthogonal set. Applying the Gram–Schmidt orthog-

onalization to the set {Anξ}∞n=0, we obtain {A+nξ}∞n=0, and thus [Aξ] = [A+ξ].

Next, observe that for different ξ, ξ′ ∈ Ξ and arbitrary m, n ≥ 0, the vectors A+nξ,

A+mξ′ are orthogonal, which follows from a straightforward induction. Therefore,

[A+ξ] ⊥ [A+ξ′]. Finally, we know by assumption that Bn is a basis in l2(Vn), and

therefore

l2(V ) =

∞
⊕

n=0

l2(Vn) =

∞
⊕

n=0

span(Bn) ⊆
⊕

ξ∈Ξ

[A+ξ] =
⊕

ξ∈Ξ

[Aξ] ,

which completes the proof since the reverse implication is obvious.
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Let us observe that Theorem 8.1 gives an interacting Fock space decomposition

of l2(V ) since [Aξ] is an interacting Fock space for each ξ ∈ Ξ, in which the set

{A+nξ}∞n=0 is a basis. The results of this Section give us sufficient conditions for

an orthogonal decomposition of l2(V ) of Theorem 8.1 to exist and that in turn

allows us to get detailed information about the spectral properties of the adjacency

matrix A, including spectral distributions associated with all vacuum vectors ξ ∈ Ξ

which appear in this decomposition. In particular, this also gives the spectrum of

the considered graph.

9. Trees

In this section we use the theory of Sec. 8 to consider the simplest examples of

n-ary trees and homogenous trees. Here, the set V0 will consist of one root, which

considerably simplifies the spectral analysis and the corresponding quantum decom-

position agrees with that used in the approach of Hora and Obata.11,12 However,

our analysis goes a little further since we study spectral distributions associated

with all cyclic vectors.

9.1. n-ary trees Tn

By Theorem 8.1, it suffices to find a distance-adapted generating J-vacuum set.

Denote by Wn the set of words in n letters a1, a2, . . . , an, including the empty

word. Then there exists a natural bijection between Wn and V (Tn). If w labels a

vertex of Tn for which d(w, e) = m, then a1w, a2w, . . . , anw denote “sons” of w.

Let Ξ0 = {δ(e)} and

Ξm =







k
∑

j=1

(δ(ajw) − δ(ak+1w)), 1 ≤ k ≤ n− 1, w ∈ Wn, |w| = m− 1







for every natural m ≥ 1. Clearly, Ξ =
⋃∞

m=0 Ξm is a distance-adapted orthogonal

J-vacuum set. In fact, it is easy to see that it is an orthogonal set of vacuum vectors.

Next, observe that the cardinalities of sets

Bm = A+(Bm−1) ∪ Ξm , m ≥ 1 ,

with B0 = Ξ0, satisfy the recurrence

|Bm| = |Bm−1| + (n− 1)nm−1

since |Ξm| = (n − 1)nm−1, which gives |Bm| = nm = |Vm| and thus Bm is a basis

of Vm. By Theorem 8.1, we have a direct sum decomposition of l2(V ) into the sum

of [Aξ], ξ ∈ Ξ. Finally, every δ(w) (and thus every ξ ∈ Ξ) is an eigenvector of

both A−A+ and A0 with eigenvalues n and 0, respectively, for every w ∈ V (Tm).

Therefore, every ξ is a J-vacuum vector and the associated J-sequences are ωk(ξ) =

n and αk(ξ) = 0 for every k. This shows that to every ξ corresponds the same

Cauchy transform, namely that of the form (5.3) and thus the measure (5.4). Thus,
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the spectrum of Tn agrees with the support of that measure, which is the interval

[−2
√
n, 2

√
n ].

9.2. Homogenous trees Hn

A similar approach can be used for homogeneous trees. Since Hn is a symmetric

graph, any vertex can be chosen to be the root denoted e.

The case n = 1 is straightforward, we have Ξ = {δ(e)} and the decomposition

of Theorem 8.1 is simply l2(V ) = [Aδ(e)]. Therefore, let n ≥ 2 and denote by a1,

a2, . . . , an the “sons” of e and label all the vertices with distance bigger than 2

from the root using only a1, a2, . . . , an−1. The situation is very similar to that of

the n-ary trees. Let Ξ0 = {δ(e)} and

Ξ1 =







k
∑

j=1

(δ(aj) − δ(ak+1)), 1 ≤ k ≤ n− 1







,

Ξm =







k
∑

j=1

(δ(ajw) − δ(ak+1w)), 1 ≤ k ≤ n− 2, w ∈ Wn−1, |w| = m− 1







(for m = 2, the procedure of finding cyclic vectors stops at Ξ1), where Wm−1 is the

set of words in a1, a2, . . . , an−1 of length equal to m − 1. The set Ξ =
⋃∞

m=0 Ξm

is clearly a distance-adapted orthogonal set of vacuum vectors. To show that Ξ is

generating, take the sequence (Bm) defined by (8.5) and observe that we have the

recurrence

|Bm| = |Bm−1| + n(n− 1)m−2(n− 2)

since |Ξm| = n(n − 1)m−2(n − 2), which is solved by |Bm| = n(n − 1)m−1 = |Vm|,
and thus B =

⋃

m∈N∗ Bm is a basis in l2(V ).

The vector δ(e) (and thus ξ0) is an eigenvector of both A−A+ and A0 with

eigenvalues n and 0, respectively. This gives J-sequences ω0(ξ0) = n and ωk(ξ0) =

n− 1 for k ≥ 1 with αk(ξ) = 0 for all k, and thus the Cauchy transform

Gξ0
(z) =

−2z + nz − n
√

4 − 4n+ z2

2(n− z)(n+ z)
.

If n = 1, the measure µξ0
consists of two atoms at ±1 of mass 1/2 each. For n ≥ 2,

µξ0
is absolutely continuous with respect to Lebesgue measure and has density

fξ0
(x) =

∣

∣

∣

∣

∣

n
√

4n− 4 − x2

2π(n− x)(n+ x)

∣

∣

∣

∣

∣

on the interval [−2
√
n− 1, 2

√
n− 1].

In turn, vectors δ(w) 6= δ(e) (and thus ξ 6= ξ0) are eigenvectors of both A−A+

and A0 with eigenvalues n − 1 and 0, respectively. Therefore, ξ 6= ξ0 (for n ≥ 2)
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are J-vacuum vectors with the Jacobi parameters of the form ωk(ξ) = n − 1 and

αk(ξ) = 0 for all k, which give the Cauchy transform

Gξ(z) =
z −

√

z2 − 4(n− 1)

2(n− 1)
.

and thus µξ is the Wigner measure on the interval [−2
√
n− 1, 2

√
n− 1]. Although

we get two different spectral distributions, their contributions to the spectrum

spec(Hn) = [−2
√
n− 1, 2

√
n− 1] are the same.

10. Other Examples

In this section we apply the same approach as in Sec. 9 to two types of examples:

free products of complete graphs Kn ∗ Km and free products of a complete graph

with a graph of “fork”-type Kn ∗Fm. In the first case, we deal with free products of

symmetric graphs and therefore their spectra can be determined from one spectral

distribution (see Ref. 10 for a detailed study). However, since our approach examines

spectral distributions associated with all cyclic vectors, even in this case we obtain

new information (for instance, about the “multiplicity” of the spectrum).

10.1. Free products Kn ∗ Km

By Kn we denote the complete graph with n+1 vertices, i.e. such in which each pair

of vertices forms an edge. Observe that any choice of a root gives an isomorphic

rooted graph since all vertices are equivalent. Take two complete graphs Kn and

Km with vertices x0, x1, . . . , xn (choose x0 as the root) and y0, y1, . . . , ym (choose

y0 as the root), respectively, where n, m ≥ 1. Then Kn ∗Km = (V,E, e), where the

distance partition of the set of vertices V can be given by the recursion

V0 = {e, x1, . . . , xn} ,

V2k+1 = {yiw;w ∈ V2k, i = 1, . . . ,m} , (10.1)

V2k+2 = {xiw;w ∈ V2k+1, i = 1, . . . , n} ,

where k = 0, 1, . . . (see Figs. 3 and 4). Directly from this construction it follows

that

|V2k| = (n+ 1)mknk and |V2k+1| = (n+ 1)mk+1nk . (10.2)

Let (A+, A−, A0) be the quantum decomposition of the incidence matrix of

Kn ∗ Km. We shall find the corresponding orthogonal J-vacuum set Ξ which is

generating and distance-adapted. Let

Ξ0 =







n
∑

j=0

δ(xj)







∪







i−1
∑

j=0

(δ(xj) − δ(xi)); i = 1, . . . , n







,
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Fig. 3. K2 ∗ K2.

}

V0

}

V1

}V2

}V3
�

�

�

K ∗ K

Fig. 4. K1 ∗ K2.

Ξ2k+1 =







i−1
∑

j=1

(δ(yjw) − δ(yiw));w ∈ V2k, i = 2, . . . ,m







, (10.3)

Ξ2k+2 =







i−1
∑

j=1

(δ(xjw) − δ(xiw));w ∈ V2k+1, i = 2, . . . , n







,

where x0 is identified with e. This gives

|Ξ2k+1| = (m− 1)|V2k| and |Ξ2k+2| = (n− 1)|V2k−1|
for k ∈ N

∗, which, by (10.2) leads to

|Ξk| = |Vk| − |Vk−1| . (10.4)

An elementary computation shows that Ξk is an orthogonal set for every k ∈ N∗.

Moreover, it is clear that these sets are mutually orthogonal and that they contain

only vacuum vectors (use A−δ(yjw) = δ(w) and A−δ(xjw
′) = δ(w′)) and therefore

Ξ is an orthogonal set of vacuum vectors.

We will show now that it is an orthogonal J-vacuum set. Let ξ ∈ Ξ2k+1 and

r ∈ N. We have

A+rξ = A+r

i−1
∑

j=1

(δ(yjw) − δ(yiw)) =

i−1
∑

j=1

∑

|u|=r

uyiw∈V

(δ(uyjw) − δ(uyiw))

for some w ∈ V2k. If r is odd, then each u in the above sum begins with a vertex

from Kn and therefore each δ(uykw) in the above sum (and thus also A+rξ) is

an eigenvector of A−A+ with eigenvalue m. Moreover, the sums
∑

|u|=r

uykw∈V

δ(uykw)
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(and thus also A+rξ) are eigenvectors of A0 with eigenvalue n − 1 for each k.

Therefore, ωr(ξ) = m and αr(ξ) = n − 1 for r odd. In the case of r even, each

u begins with a vertex from Km in the above reasoning and thus ωr(ξ) = n and

αr(ξ) = m− 1. Analogous computations holds when ξ ∈ Ξ2k. Therefore, all vectors

from Ξ are J-vacuum vectors.

To show that Ξ is generating, we need to check that for every k ∈ N
∗ the set

Bk, defined recursively by (8.5), is a basis in l2(Vk). For that purpose it is enough

to show that |Bk| = |Vk| since Bk is a set of non-zero orthogonal vectors. This is

shown by induction. For k = 0 we have |B0| = |Ξ0| = n + 1 = |V0|. Assume now

that |Bk| = |Vk| for some k ∈ N. Then from (10.4) we get

|Bk+1| = |A+Bk| + |Ξk+1| = |Vk| + |Vk+1| − |Vk| = |Vk+1|
and our claim holds by induction. This proves that Ξ is a generating J-vacuum set.

In order to find the spectrum of A, we find the probability measures µξ with

moments µξ(n) = 〈Anξ, ξ〉 for every ξ ∈ Ξ and then take the union of their supports.

Let

ξ0 = δ(e) + δ(x1) + · · · + δ(xn) .

The associated J-sequences are of the form

ωk(ξ0) =

{

n k odd

m k even
, αk(ξ0) =











n k = 0

m− 1 k odd

n− 1 k even positive

and they give a continued-fraction representation of the Cauchy transform Gξ0
of

the measure µξ0
, which leads to

Gξ0
(z) =

1 −mn+mz + nz − z2 +
√

w(z)

2(−1 + n− z)(m+ n− z)
,

w(z) = (1 − 2n+mn+ (2 −m− n)z + z2)2 − 4m(1−m+ z)(1− n+ z) .

Applying the Stieltjes inversion formula to the transform Gξ0
, we obtain the abso-

lutely continuous part of µξ0
of the form

fξ0
(x) =

∣

∣

∣

∣

∣

√

−w(x)

2π(x+ 1 − n)(x−m− n)

∣

∣

∣

∣

∣

, x ∈ Im,n ,

on the set Im,n being the union of two closed intervals with ends at 1
2 (m+ n− 2±

√

4(
√
m±√

n)2 + (m− n)2) and disjoint interiors. In addition, µξ0
has an atom at

n− 1 of mass 1
1+m

max{0,m− n}.
Now, let ξ ∈ Ξ2k and ξ 6= ξ0. Then the J-sequences are of the form

ωk(ξ) =

{

n k odd

m k even
, αk(ξ) =











−1 k = 0

m− 1 k odd

n− 1 k even positive
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which give the Cauchy transform

Gξ(z) =
1 − 2m+ 2n−mn+ (2 −m+ n)z + z2 +

√

w(z)

2n(1 −m+ z)(2 + z)
.

Again, the Stieltjes inversion formula gives the absolutely continuous part of µξ of

the form

fξ(x) =

∣

∣

∣

∣

∣

√

−w(x)

2n(1 −m+ x)(2 + x)

∣

∣

∣

∣

∣

, x ∈ Im,n .

Besides, µξ has atoms at −2 and m−1 of masses mn−1
n(1+m) and 1

n(1+m) max{0, n−m},
respectively.

For ξ ∈ Ξ2k+1, the J-sequences are of the form

ωk(ξ) =

{

m k odd

n k even
, αk(ξ) =











−1 k = 0

n− 1 k odd

m− 1 k even positive

which give the Cauchy transform

Gξ(z) =
1 − 2n+ 2m−mn+ (2 − n+m)z + z2 +

√

w(z)

2m(1 − n+ z)(2 + z)
.

fξ(x) =

∣

∣

∣

∣

∣

√

−w(x)

2m(1 − n+ x)(2 + x)

∣

∣

∣

∣

∣

, x ∈ Im,n .

Besides, µξ has atoms at −2 and n−1 of masses mn−1
m(1+n) and 1

m(1+n) max{0,m−n},
respectively.

We conclude that for any m, n ≥ 1 the continuous part of the spectrum of

Kn ∗ Km agrees with Im,n. The point spectrum is given by






















∅ if m = n = 1 ,

{−2} if m = n > 1 ,

{−2,m− 1} if m < n ,

{−2, n− 1} if m > n .

10.2. Free products Kn ∗ Fm

By Fm we denote the fork of degree m, i.e. a connected simple graph with m + 1

vertices, say y0, y1, . . . , ym, in which the only edges are given by yi ∼ y0 for i 6= 0.

As before, by Kn we denote a complete graph with vertices x0, x1, . . . , xn. It is

easy to see that the set of vertices of Kn ∗ Fm coincides with that in the previous

example. Besides, on V we introduce the same distance partition as in (8.1) (see

Fig. 5). Let Ξ =
∑∞

i=0 Ξi be the set of vectors defined as in (10.3). That Ξ is a

generating J-vacuum set is shown as in the case of Kn ∗ Km.



August 30, 2007 2:8 WSPC/102-IDAQPRT 00275

Decompositions of the Free Product of Graphs 331

}

V0

}

V1

}V2

}V3
�

�

�

Fig. 5. K2 ∗ F2.

Let us compute now the measures µξ with moments µξ(k) = 〈Akξ, ξ〉, for all

ξ ∈ Ξ. The Jacobi parameters associated with vector ξ0 are of the form

ωk(ξ0) =

{

n k odd

m k even
, αk(ξ0) =











n k = 0

0 k odd

n− 1 k even positive

.

The Cauchy transform Gξ0
of measure µξ0

has the form

Gξ0
(z) =

n−m− z − nz + z2 −
√

v(z)

2(m− n2 + 2nz − z2)
,

where v(z) = (m−n+z−nz+z2)2−4mz(z+1−n). The measure µξ0
is absolutely

continuous with respect to Lebesgue measure and its density is of the form

fξ0
(x) =

∣

∣

∣

∣

∣

√

−v(x)
2π(m− n2 + 2nx− x2)

∣

∣

∣

∣

∣

, x ∈ Jm,n ,

where Jm,n denotes the set, which is a union of two closed intervals with disjoint

interiors and ends at 1
2 (n− 1 ±

√

4(
√
m±√

n)2 + (n− 1)2).

Let now ξ ∈ Ξ2k and ξ 6= ξ0. Then the Jacobi parameters are of the form

ωk(ξ) =

{

n k odd

m k even
, αk(ξ) =











−1 k = 0

0 k odd

n− 1 k even positive

which gives the Cauchy transform

Gξ(z) =
z2 + z + nz −m+ n−

√

v(z)

2n(1 −m+ 2z + z2)
.

The absolutely continuous part of the measure µξ is given by

fξ(x) =

∣

∣

∣

∣

∣

√

−v(x)
2πn(1−m+ 2x+ x2)

∣

∣

∣

∣

∣

, x ∈ Jm,n .

Besides, µξ has two atoms at ±√
m− 1 of mass n−1

2n
each.
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For ξ ∈ Ξ2k+1, the Jacobi parameters are of the form

ωk(ξ) =

{

m k odd

n k even
, αk(ξ) =

{

n− 1 k odd

0 k even

which gives the Cauchy transform

Gξ(z) =
m− n+ z − nz + z2 −

√

v(z)

2mz
.

The absolutely continuous part of µξ is given by

fξ(x) =

∣

∣

∣

∣

∣

√

−v(x)
2πmz

∣

∣

∣

∣

∣

, x ∈ Jm,n .

Besides, µξ has an atom at 0 of mass 1
m

max{0,m− n}.
We conclude that the continuous spectrum of Kn ∗ Fm coincides with Jm,n.

Besides, A has a discrete spectrum of the form






























∅ if m = n = 1 ,

{0} if m > n = 1 ,

{−2, 0} if n > m = 1 ,

{√m− 1,−√
m− 1} if n ≥ m > 1 ,

{√m− 1,−√
m− 1, 0} if m > n > 1 .

For a general study of measures associated with mixed periodic Jacobi continued

fractions, we refer the reader to Ref. 13.
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