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Abstract In terms of EPR-chameleon models and local and
causal measures, the Bell’s argument is reanalyzed. Contrary
to Bell, it is shown that the nontriviality of the joint prob-
ability measure does not always imply the nonlocality. It is
analyzed that under what conditions correlations of distant par-
ticles are obtained which are different from the standard cor-
relations. The protocol for the correlations of distant particles
admits nontrivial probability measures respecting the locality.

1 introduction

In the first section of this paper we briefly recall the basic phys-
ical idea of the chameleon effect (i.e. the theory of adaptive
dynamical systems) and, in the second one, the main theorem
on the reversible, deterministic model constructed in [1, 2] (here-
inafter EPR–chameleon model), which reproduces the EPR–
Bohm correlations in full respect of causality and locality. Fur-
thermore, as it is apparent from the statement of Theorem (1)
below, there is no artificial post–selection in the assumptions of
the theorem (no “cospiracy of the detectors”).

In the third section we discuss the recent result (see [3]) that
the EPR–chameleon model is the only possible model with this
property, in a sense that will be specified in the following.

In the EPR–chameleon model, a ‘configuration’ of the sys-
tem changes during the measurement process. This change is
done locally: action at a distance in the measurement process is
unnecessary.

On the other hand, according to a widespread belief, Bell’s
argument implies that there is no local hidden variable theory
that reproduces the EPR–Bohm correlations.
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This belief however is based on some assumptions, which were
implicit in Bell’s argument and which have remained implicit
for a long time. The quantum probability approach, started
about 30 years ago, has made these assumptions explicit thus
introducing, in the debate on the foundations of quantum theory,
two main new ingredients, namely:

(i) the chameleon effect, as an intuitive explanation of the
mechanism through which non Kolmogorovian statistics can be
produced by classical deterministic systems

(ii) the difference between trivial and non–trivial local mea-
sures.

Statement (i), which implies that the meaning of the Bell
inequality consists in the proof of the existence of sets of ex-
perimentally measurable statistical data, coming from similar
but incompatible experiments, which cannot be described by a
single Kolmogorov model, is nowadays widely accepted in the
literature.

Therefore in the present paper we will concentrate our atten-
tion on statement (ii), which has a more subtle mathematical
nature. This will be done starting from the fourth section below.

1.1 The chameleon effect

The chameleon effect gives a mathematically precise formula-
tion to the widely used (and abused) statement that a mea-
surement determines the value of an observable: it distinguishes
those measurements which register a previously existing prop-
erty, independent of the measurement itself, from the adaptive
measurements, which register the reaction to a given interaction.
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The measurement of the color of a billiard ball provides a
good metaphor of the former situation. The measurement of
the color of the skin of a chameleon – of the latter.

We speak of chameleon effect whenever the dynamics of a sys-
tem depends on the observable that one measures. This property
can be taken as definition of adaptive dynamical systems.

Both situations are compatible with EPR’s requirement of
pre–determination, but in the former case this term should be
interpreted as the passive reading of a pre–existing property;
in the latter – as the active determination of a pre–established
response.

The two interpretations are reflected in two different mathe-
matical models and, in the following, we are going to illustrate
these differences.

2 The EPR–chameleon dynamical system

In this section we briefly recall the EPR–chameleon theorem,
proved in [1] which gives in particular a classical, deterministic,
reversible, local dynamical system that reproduces exactly the
EPR correlations.

Theorem 1 (i) For a, b ∈ [0, 2π) the maps (local adaptive
dynamics)

T1,a, T2,b : [0, 2π)×R→ [0,2π)×R (1)

T1,a(σ1, λ1) :=

(
σ1,

√
2π| cos(σ1 − a)|λ1

4

)
∈ [0, 2π)×R (2)

T2,b(σ2, λ2) := (σ2,
√

2πλ2) ∈ [0, 2π)×R (3)

5



are invertible with inverses:

T−1
1,a (σ1, λ1) := (σ1,

4λ1√
2π| cos(σ1 − a)|

) (4)

T−1
2,b (σ2, λ2) := (σ2,

λ2√
2π

) (5)

(ii) Denote T̂−1
j,x the second component of T−1

j,x (j = 1, 2, x =
a, b) and ma, mb arbitrary real numbers. Then the following
positive measure on [0, 2π)2 × R2 (initial distribution) is well
defined and is a probability measure:

Pa,b(dσ1dσ2dλ1dλ2) := pS(σ1, σ2)p1,a(σ1, λ1)p2,b(σ2, λ2)dσ1dσ2dλ1dλ2 :=
(6)

:=
1

2π
δ(σ1−σ2)dσ1dσ2δ(T̂

−1
1,a (σ1, λ1)−ma)dλ1δ(T̂

−1
2,b (σ2, λ2)−mb)dλ2

(iii) The Pa,b–pair correlations of the ±1–valued observables

S(1)
a , S

(2)
b : [0, 2π)×R→ {±1} (7)

S(1)
a (σ, µ) := sgn(cos(σ − a)) (8)

S
(2)
b (σ, µ) := −sgn(cos(σ − b)) = −S(1)

b (σ, µ) (9)

reproduce the EPR correlations for any value of the parameters
ma,mb, i.e.∫

S(1)
a (σ1, λ1)S

(2)
b (σ2, λ2)Pa,b(dσ1dσ2dλ1dλ2) = − cos(a− b)

(10)

Remark .
The physical meaning of the inverse maps T̂−1

j,x in the defi-
nition of the initial distribution (6) is explained in the paper
[4].
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3 The uniquenenss theorem

In the present section we study the most general family of local
causal probability measures which reproduce the EPR–Bohm
correlations and we prove that, under natural generic condi-
tions and up to convex combinations, they must have the form
described in the EPR-chameleon model constructed in [1, 2].

We will use the following notations. The configuration space
of the single particle is identified to the unit circle, i.e.

S1 = S2 = S1 := {(x, y) ∈ R2 : x2+y2 = 1} ≡ [0,2π) ≡ R/(2πZ)

and the observables to periodic functions f : R→ R with period
2π. We denote

T 2 := S1 × S1

and define the intervals

Ia :=
[
−π

2
+ a, a+

π

2

)
,

Ja :=

[
a+

π

2
, a+

3π

2

)
The random variables S

(1)
a and S

(2)
b (a, b ∈ [0, 2π)) are defined

by
S(1)
a (s1) := χIa(s1)− χJa

(s1) , s1 ∈ S1

S
(2)
b (s2) := −χIb(s2) + χJb

(s2) , s2 ∈ S2

If Pa,b is a local causal probability measure on S1×S2×M1×
M2 we denote Ra,b its marginal probability on T 2 = S1 × S1.
Thus:

dRa,b(s1, s2) = dPS(s1, s2) p1,a(s1)p2,b(s2) (11)

where s1, s2 ∈ [0, 2π) are fixed parameterizations of S1 = S1

and S2 = S1 respectively, PS is a probability measure on T 2 and
p1,a(s1), p2,b(s2) ≥ 0.

7



Definition 1 A family {Ra,b : a, b ∈ [0, 2π)} of probability
measures is said to reproduce the EPR statistics if for any
a, b ∈ [0, 2π) one has:

Ra,b(Ia × Ib) =
1

2
cos2

(
b− a

2

)
=: P+−

a,b (12)

Ra,b(Ja × Jb) =
1

2
cos2

(
b− a

2

)
=: P−+

a,b

Ra,b(Ia × Jb) =
1

2
sin2

(
b− a

2

)
=: P++

a,b

Ra,b(Ja × Ib) =
1

2
sin2

(
b− a

2

)
=: P−−a,b

Remark (1). Notice the rotation invariance of the experimen-
tally measured probabilities.

Remark (2). The class of all families R := {Ra,b : a, b ∈
[0, 2π)}, of probability measures which reproduce the EPR statis-
tics, is a closed convex set if topology and convex combinations
are defined as follows.

The sequence (Rn) is said to converge to R if, for every a, b ∈
[0, 2π) the sequence of probability mesures (Ra,b;n) converges
weakly to the probability mesure Ra,b.

The family R is said to be a convex combination of the two
families P , Q if there exists t ∈ [0, 1] such that, for every a, b ∈
[0, 2π) one has (in obvious notations)

Ra,b = tPa,b + (1− t)Qa,b

Definition 2 The family of LC probability measures

dRa,b(s1, s2) = dPS(s1, s2) p1,a(s1)p2,b(s2)
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is said to satisfy the condition of statistical pre–determination
if ∀(s1, s2) ∈ T 2 \ ∆ there exists a ∈ S1 and a neighborhood G
of (s1, s2), contained in (Ia × Ja) ∪ (Ja × Ia) such that

p1,a(s
′
1)p2,a(s

′
2) > 0 ; ∀(s′1, s′2) ∈ G

Remark.
Statistical predetermination means that, the fact that a con-

figuration is statistically forbidden for all measurements such
that the outcomes are precisely (anti-)correlated cannot depend
on the local measurements, but it is defined at the source.

Theorem 2 Suppose that the family of probability measures

dRa,b(s1, s2) = dPS(s1, s2) p1,a(s1)p2,b(s2)

satisfies the conditions:
(i) reproduce the EPR statistics
(ii) statistical pre–determination.
Then the source distribution PS must have support in the

diagonal of T 2

suppPS ⊆ ∆ :=
{

(s1, s2) ∈ T 2 : s1 = s2(mod 2π)
}

If in addition
(iii) the restriction of PS to ∆ is absolutely continuous with

respect to the Lebesgue measure on ∆
(iv) the local measures p1,a and p2,b are rotation invariant, i.e.

p1,a+δ(s1+δ) = p1,a(s1) ; p2,b+δ(s2+δ) = p2,b(s2) ; ∀δ ∈ R
(13)

(v) the local measures p1,a and p2,b are twice continuously differ-
entiable,
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Then the probability measure dRa,b(s1, s2), defined by (11),
must have either the form

dRa,b(s1, s2) = δ(s1 − s2)ds1ds2
1

4
| cos(s1 − a)| (14)

or the form

dRa,b(s1, s2) = δ(s1 − s2)ds1ds2
1

4
| cos(s2 − b)|. (15)

Proof. Because of rotation invariance

p1,a(s1) = p1,0(s1 − a) =: p1(s1 − a)

p2,b(s2) = p2,0(s2 − b) =: p2(s2 − b).

Using the concentration of PS on the diagonal, we have

dRa,b(s1, s2) = ρ(s1)p1(s1 − a)p2(s2 − b)δ(s1 − s2)ds1ds2.

For a and b satisfying 0 ≤ b−a ≤ π, Ia∩Ib = [−π/2+b, a+π/2),
and therefore

Ra,b(Ia × Ib) =

∫ a+π/2

−π/2+b
ds1ρ(s1)p1(s1 − a)p2(s1 − b)

From (12) we deduce that,

1

4
(1+cos(b−a)) = Ra,b(Ia×Ib) =

∫ a+π/2

−π/2+b
ds1ρ(s1)p1(s1−a)p2(s1−b)

Differentiating this with respect to b, we find

−1

4
sin(b− a) = −ρ(b− π/2)p1(b− a− π/2)p2(−π/2)

+

∫ a+π/2

b−π/2
ds1ρ(s1)p1(s1 − a)p′2(s1 − b)
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Putting b = a+ π, we obtain

0 = ρ(a+ π/2)p1(π/2)p2(−π/2)

Since ρ is a probability density, ρ(a+ π/2) cannot vanish for all
a. Since a is arbitrary it follows that

p1(π/2) = 0 or p2(−π/2) = 0

Let us assume that p1(π/2) = 0.
Differentiating again with respect to b and putting b = a+π,

we obtain
1

4
= −ρ(a+ π/2)p′1(π/2)p2(−π/2)

From this we can see

p′1(π/2) 6= 0 and p2(−π/2) 6= 0

and therefore

ρ(a+ π/2) = 1/(4p′1(π/2)p2(−π/2)) = (const.)

since a is arbitrary we deduce that ρ(s1) = c. Since Ia ∩ Jb =
[−π/2 + a,−π/2 + b), (12) implies that

1

4
(1−cos(b−a)) = Ra,b(Ia×Jb) = c

∫ −π/2+a

−π/2+b
ds1p1(s1−a)p2(s1−b)

Differentiating this with respect to b, we have

1

4
sin(b− a) = −cp1(b− a− π/2)p2(−π/2) + c

∫ −π/2+a

−π/2+b
ds1p1(s1 − a)p′2(s1 − b)

Putting b = a, we obtain

0 = −cp1(−π/2)p2(−π/2)
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Since p2(−π/2) 6= 0 it follows that:

p1(−π/2) = 0

Since (Ia ∩ Jb) ∪ (Ia ∩ Ib) = [−π/2 + a, a+ π/2), by (12) we
have

1

2
= Ra,b(Ia × Jb ∪ Ia × Ib) = c

∫ a+π/2

−π/2+a
ds1p1(s1 − a)p2(s1 − b)

Changing variable with s = s1 − a, we obtain

1

2
= c

∫ π/2

−π/2
dsp1(s)p2(s− b+ a)

In the same way, for π ≤ b− a ≤ 2π one has,

Ia∩Ib = [−π/2+a,−3π/2+b) ; Ia∩Jb = [−3π/2+b, a+π/2)

Therefore we have

1

2
= Ra,b(Ia × Ib ∪ Ia × Jb)

= c

∫ a+π/2

−π/2+a
ds1p1(s1− a)p2(s1− b) = c

∫ π/2

−π/2
dsp1(s)p2(s− b+ a)

Since p1 is continuous and a and b are arbitrary, we conclude
that
p2(s) =const.=: c2. Thus by renaming

p̃1(s1) := cp1(s1)c2

we find

dRa,b(s1, s2) = p̃1(s1 − a)δ(s1 − s2)ds1ds2.

Our remaining task is to determine the form of p̃1.
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For a and b satisfying 0 ≤ b − a ≤ π the above calculations
lead to

−1

4
sin(b− a) = −p̃1(−π/2 + b− a)

By putting s := b− π/2, we obtain

p̃1(s− a) =
1

4
cos(s− a) for − π/2 ≤ s− a ≤ π/2

Therefore

p̃1(s− a) =
1

4
| cos(s− a)|, −π/2 ≤ s− a ≤ π/2.

Since Ja ∩ Ib = [a+ π/2, b+ π/2),

1

4
(1− cos(b− a)) = Ra,b(Ja × Ib) =

∫ b+π/2

a+π/2
ds1p̃1(s1 − a).

By differentiating this with respect to b we have

1

4
sin(b− a) = p̃1(b+ π/2− a).

By putting s = b + π/2, p̃1(s − a) = 1
4 sin(s − a − π/2) =

−1
4 cos(s− a) for π/2 ≤ s− a ≤ 3π/2. Therefore

p̃1(s− a) =
1

4
| cos(s− a)|, π/2 ≤ s− a ≤ 3π/2.

Accordingly,

dRa,b(s1, s2) = δ(s1 − s2)ds1ds2
1

4
| cos(s1 − a)|.

If we assume that p2(−π/2) = 0 instead of p1(π/2) = 0, then
in the same way we obtain

dRa,b(s1, s2) = δ(s1 − s2)ds1ds2
1

4
| cos(s2 − b)|
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Summarizing
The genericity assumptions used in the proof of the above

uniqueness theorem are the following:
– (i) The local causal structure of the probability measure
– (i) The condition of statistical pre–determination
– (ii) The rotation invariance of the densities describing the

local apparata
– (iii) The twice continuous differentiability of these densities
– (iv) The absolute continuity of the source measure with

respect to the Lebesgue measure
While conditions (i) and (ii) have a natural physical interpre-

tation, we don’t see a natural physical justification for conditions
(iii) and (iv).

For example at the moment we have no reasons to exclude
the possibility of reproducing the EPR correlations with a source
measure having a fractal support.

Therefore it would be interesting to know if, by dropping
some of these assumptions, the uniqueness result continues to be
true. This problem will be the object of further investigations.

4 Local, causal measurements

von Neumann’s theory of measurement did not incorporate the
locality requirement, which is essential in the discussion of EPR
type experiments.

In the following we will briefly outline the main properties of
a theory of local, causal measurements in a classical nonrelativis-
tic context. We refer to the survey paper [5] for the quantum
formulation and additional information.
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We consider a composite system made up of two subsystems,
called ‘particles’ in the following, and denoted with the symbols
1 and 2 respectively. Their ‘configuration’ (or ‘phase’) spaces
will be denoted by S1 and S2 respectively.

The two systems are spatially separated so that the mutual
interactions between them can be neglected. Each system inter-
acts locally with a measurement apparatus, i.e. system 1 with
apparatus m1 and system 2 with apparatus m2. The configura-
tion spaces of the measurement apparata will be denoted by M1

and M2 respectively. We use the indices a, b, . . . ∈ I to represent
settings of the measurement apparata.

Definition 3 (Ref. [2], Definition 6.) A probability measure
Pa,b on
S1×S2×M1×M2 is called extremal, local and causal (extremal–
LC, shortly) if it has the form

dPa,b(s1, s2, λ1, λ2) = dPS(s1, s2)P1,a(dλ1; s1)P2,b(dλ2; s2) (16)

where PS is a probability measure on S1 × S2; for all s1 ∈
S1, P1,a( · ; s1) is a positive measure on M1; for all s2 ∈ S2,
P2,b( · ; s2) is a positive measure on M2.

It is called local and causal (LC, shortly) if it is a convex
combination of extremal–LC measures, i.e. if it has the form

dPa,b(s1, s2, λ1, λ2) = dPS(s1, s2)

∫
X

q(dx)P1,a(dλ1; s1;x)P2,b(dλ2; s2;x)

(17)
where PS, P1,a( · ; s1;x), P2,b( · ; s2;x) are as above and (X, q)
is a probability space.

Remark (1) We will see in Theorem (2) that, under generic
regularity conditions, there exist only two extremal–LC mea-
sures and they attribute an asymmetric role to the two particles
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1 and 2. Non extremal–LC measures are useful to build statis-
tical models in which the two particles appear in a symmetric
way.

Remark (2)
All experimentally measured statistics depend on:
– a preparation,
– an observable
– a dynamics.
In classical physics the mathematical model of an experi-

mental preparation is given by a probability measure (a quan-
tum state in quantum physics). The extreme case of Dirac
δ–measures correspond to exact theories.

In EPR type experiments the experimental preparation is
localized in different space–time regions:

– the emission time and the interaction times
– the emission region and the local measurement regions
The time separation involves causality: at the emission time,

the type of interation that will be met at the measurement time
is unknown. Therefore the statistics at the source cannot de-
pend on this interaction. This causality condition is reflect-
ed in the factorization condition Pa,b = PS · QM1,a×M2,b

, where
QM1,a×M2,b

( · ; s1, s2) is a positive measure on M1 ×M2.
The space separation involves locality: the statistics of the

local measurements should be mutually independent except for
possible conservation laws realized at the emission time
(pre–determination).

Locality is reflected in the fact that QM1,a×M2,b
( · ; s1, s2) is

factorized as P1,a( · ; s1)P2,b( · ; s2)
Remark.
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Note that it is not required that P1,a( · ; s1) and P2,b( · ; s2)
are conditional probability measures. We will come back to this
point in section ().

Now we introduce the phase (or configuration) spaces of our
systems: for the moment we introduce them in an abstract way,
without specifying their structure (this might include position,
momentum, spin, . . ., and possibly othe hidden parameters). We
only assume, to simplify the mathematical description, that they
are compact Hausdorff spaces:

– the configuration space S1 of the particle 1,

– the configuration space S2 of the particle 2,

– the configuration space M1 of the measurement apparatus
for the particle 1,

– the configuration space M2 of the measurement apparatus
for the particle 2.

In terms of these we define the configuration spaces for the
composite systems:

S := S1×S2 ; M := M1×M2 ; Ω1 := S1×M1 ; Ω2 := S2×M2

Ω := Ω1×Ω2 = S1×M1× S2×M2 = S1× S2×M1×M2 (18)

We will use the following notations: Meas(Ω) denotes the set
of all regular, signed, finite Borel measures on Ω. 〈Meas(Ω), C(Ω)〉
denotes the duality, between C(Ω) and Meas(Ω) = C(Ω)∗, given
by the integral:

〈P, f〉 :=

∫
Ω
f(ω)P (dω)

Meas+(Ω) and Prob(Ω) denote the set of all positive measures
and the set of all probability measures in Meas(Ω) respectively.
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Any LC measure on S1×S2×M1×M2, of the form (16), can
be written in the following functional form:

Pa,b := PS◦(P 1,a⊗P 2,b) ∈ (C(Ω1)⊗C(Ω2))
∗ = C(Ω1×Ω2)

∗ (19)

where, for j = 1, 2 and x = a, b, the linear maps
P j,x : C(Ωj) = C(Sj ×Mj)→ C(Sj) ⊆ C(Ωj) are defined by

P j,x(f)(sj) :=

∫
Mj

f(sj, λj)dPj,x(λj; sj) (20)

for each f ∈ C(Sj ×Mj).

5 Trivial extremal LC probability measures

The notion of trivial LC probability measure is crucial for the
EPR-chameleon models.

Definition 4 (Ref. [2], Definition 7.) An extremal LC proba-
bility measure on the space S1 × S2 ×M1 ×M2

dPa,b(s1, s2, λ1, λ2) = dPS(s1, s2)dP1,a(λ1; s1)dP2,b(λ2; s2)

is called trivial if, in the notation (20), ∀a, b ∈ I the map

P 1,a ⊗ P 2,b : C(Ω1 × Ω2)→ C(S1 × S2)

is a PS–conditional expectation i.e.

P 1,a(11)(s1)P 2,b(12)(s2) ≡ 1 , PS-a.e. (21)

Denoting

p1,a(s1) := P 1,a(11)(s1) =

∫
M1

dP1,a(λ1; s1) (22)
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p2,b(s2) := P 2,b(12)(s2) =

∫
M2

dP2,b(λ2; s2) (23)

condition (21) becomes equivalent to:

p1,a(s1)p2,b(s2) = 1 , PS-a.e. (24)

If a LC measure is trivial, then there exists a positive real
number c such that

p1,a(s1) = c, p2,b(s2) =
1

c
, PS-a.e.

By redefining P ′1,a := (1/c)P1,a , P ′2,b := cP2,b, we can assume
without loss of generality that

p1,a(s1) = 1, p2,b(s2) = 1 , PS-a.e.

The following proposition shows that triviality implies Bell
type inequalities.

Proposition 1 Let I be any index set and let Pa,b (a, b ∈ I) be a
family of trivial LC probability measures on the space Ω defined
by (18) and let S

(1)
a , S

(2)
b : Ω → [−1, 1] (a, b ∈ I) be a family of

random variables satisfying the locality condition

S(1)
a (ω1, ω2) = S(1)

a (ω1) ; S
(2)
b (ω1, ω2) = S

(2)
b (ω2) ;

(ω1, ω2) ∈ Ω = Ω1 × Ω2 , a, b ∈ I (25)

For any ordered pair (a, b), with a, b ∈ I, define the Pa,b–pair

correlation of the pair (S
(1)
a , S

(2)
b ) in the usual way, i.e.

C(a, b) :=

∫
S(1)
a S

(2)
b dPa,b

(Notice that the probability measure depends on the pair (a, b)).
Then the family of pair correlations {C(a, b) : a, b ∈ I} satisfies
the Bell inequality in the CHSH form (but not necessarily in the
original Bell form).
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Proof. See Ref. [1, 3].
Remark (1). The above theorem provides an example of a

context dependent family of pair correlations which must sat-
isfy Bell’s inequality. This proves that the contextuality con-
dition alone is not sufficient to guarantee the violation of this
inequality.

Remark (2). The locality condition (25) is necessary only
because of the assumption the probability measures in the family
{Pa,b : a, b ∈ I}) depend on the pair (a, b) (contextuality)). As
shown in [6], Theorem (3), in the standard context considered
in the literature (a single probability measure and no chameleon
dynamics) this assumption is not necessary.

Remark (3). To be a trivial LC measure is a sufficient, but
not necessary condition to satisfy Bell’s inequality: there are
examples of nontrivial LC measures which do not violate Bell’s
inequality.

Recall that, if Ω, S are topological spaces, a linear map
T ∗ : C(Ω) → C(S) is called a Markov operator if it is posi-
tivity preserving (f ≥ 0 ⇒ T ∗(f) ≥ 0, f ∈ C(Ω)) and identity
preserving:

T ∗(1Ω) = 1S

If on S there is a probability measure PS and T ∗ satisfies the
weaker conditions

f ≥ 0⇒ T ∗(f) ≥ 0 ; PS-a.e. f ∈ C(Ω)

T ∗(1Ω) = 1S , PS-a.e.

we call it a PS–Markov operator. Now let

Ω = Ω1 × Ω2 ; S = S1 × S2
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Lemma 1 For j = 1, 2, let T ∗j : C(Ωj) → C(Ωj) be a posi-
tivity preserving linear operator. The following conditions are
equivalent:

P 1,a(T ∗1 (1))P 1,b(T ∗2 (1)) = 1 ; PS − a.e. (26)

there exists a constant c > 0 such that

P 1,a(cT ∗1 (1)) = P 1,b (T ∗2 (1)/c) = 1 ; PS-a.e. (27)

Proof. It is clear that (27) ⇒ (26). Let us prove the converse
implication. If (26) holds, then

PS ◦ ([P 1,a ◦ T ∗1 ]⊗ [P 2,b ◦ T ∗2 ])

is a trivial measure. Therefore, by the remark below Definition
(4) there exists a constant c > 0 such that

cP 1,a(T ∗1 (1))(s1) =
1

c
P 2,b(T ∗2 (1))(s2) = 1 ; PS−∀ (s1, s2) ∈ S1×S2

and this is (27).

Definition 5 A linear positive operator T ∗1 ⊗T ∗2 : C(Ω1×Ω2)→
C(Ω1×Ω2) (or equivalently its dual T1⊗T2, acting on measures),
which satisfies the conditions of Lemma (1), will be called a Pa,b–
Markovian operator. In such a case, by absorbing the constants
c, 1/c in the definition of T ∗1 and T ∗2 , one can always assume
that they are equal to 1.

Notice that any Markov operator from C(Ω1×Ω2) to C(Ω1×
Ω2) is Pa,b–Markovian for any Pa,b.

21



Theorem 3 Let, for j = 1, 2, Tj be a linear mapping of Meas+(Ωj)
into Meas+(Ωj) such that T ∗j : C(Ωj)→ C(Ωj) and let

Pa,b = PS ◦ (P 1,a ⊗ P 2,b) ∈ Prob(Ω1 × Ω2)

be any trivial LC measure. Then if T1,a⊗T2,b is a Pa,b–Markovian
operator, (T1,a ⊗ T2,b)(Pa,b) is a trivial LC measure.

In particular, if T1,a⊗T2,b is a Markov operator, it maps trivial
LC measures into trivial LC measures.

Proof. The functional form of (T1,a ⊗ T2,b)(Pa,b) is:

(T1,a ⊗ T2,b)(Pa,b) = PS ◦ (P 1,a ◦ T ∗1,a ⊗ P 2,b ◦ T ∗2,b). (28)

Condition (27) (with c = 1) is equivalent to

P 1,a(T ∗1 (1)) = P 2,b (T ∗2 (1)) = 1 ; PS-a.e.

which is equivalent to the triviality of (T1,a ⊗ T2,b)(Pa,b).

Corollary 1 Any local reversible dynamics induces a mapping
which maps a nontrivial (resp. trivial) LC measure into a non-
trivial (resp. trivial) LC measure.

Proof. The statement about trivial LC measures follows from
Theorem (3).

Let µ be a nontrivial LC measure and T be a reversible
measurable transformation of S1 × M1 × S2 × M2 into itself.
Suppose by contradiction that ν := µ ◦ T is trivial. The lin-
ear mapping T induced by T is a Markov operator satisfying
µ = T (ν) := ν ◦ T−1. Its inverse is also a Markov operator
satisfying ν = T −1(µ) := µ ◦ T .
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But if T is local i.e. of the form T = T1 × T2 for some
T1 : S1 ×M1 → S1 ×M1 and T2 : S2 ×M2 → S2 ×M2 , then
T = T1 ⊗ T2 where T1 and T2 are Markov operators. By the
remark after Definition (5) this contradicts Theorem (3).

6 Bell implicitly assumes triviality

In “Bertlmann’s sock and the nature of reality” [7] Bell requires
the condition

P (A,B|a, b, λ) = P1(A|a, λ)P2(B|b, λ).

and argues that it is reasonable to expect that P1 and P2 are
conditional probability distributions.

Given the following correspondence between the notations in
Bell’s argument and those of Definition (4):

λ↔ (s1, s2) , P1(A|a, λ)↔ P 1,a ◦ T ∗1,a , P2(B|b, λ)↔ P 2,b ◦ T ∗2,b

we see that Bell implicitly assumes triviality of the LC measure.
This assumption is equivalent to postulate that the stochastic

processes given by the observables of the two systems at the
final (measurement) time are conditionally independent given
the source.

However such an assumption is physically and probabilisti-
cally unwarranted whenever there are constraints (e.g. conser-
vation laws) which are determined both at the source and at the

local measurement sites. For example, if S
(1)
a , S

(2)
a are random

variables that depend both on the source and the apparatus
variables and if we know that, at the time of measurement, they
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must satisfy the constraint:

S(1)
a (s1, λ1) + S(2)

a (s2, λ2) = 0

then surely they are not conditionally independent given the
source variables (s1, s2): here the difference between a pre–
existent property and a property pre–determined as a response
to a local interaction (the if . . . then . . . scheme) is essential.

Since this is precisely the situation in the EPR type experi-
ments, we see that Bell’s implicit assumption is not justified in
this case.

The class of LC measures is the disjoint union of its two sub-
classes, of the trivial and the nontrivial LC measures. Corollary
(1) implies that a local reversible dynamics induces a map of
each of these classes into itself.

Since a local measurement process is described by a local
Markov operator, it follows that the initial probability mea-
sure,in the EPR-chameleon model, must be nontrivial otherwise
one could not have violation of Bell’s inequality.

The above discussion proves that the nontriviality of the ini-
tial LC measure is precisely what is required by the physical
context of the EPR type experiments where locality and causal-
ity have to be combined with the existence of constraints (con-
servation laws). Conversely, Bell’s implicit assumption of the
triviality of the initial measure, being equivalent to conditional
independence given the source, puts the locality and causality
requirement in contradiction with the conservation laws.

The dependence of the initial state on the pair (a, b) is not
a non–local requirement because, for adaptive dynamical sys-
tems, the ensamble to which the individual systems belong is
not defined at the emission time but at the time in which the
interaction with the local instruments begins to take place.
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In other words, since for such systems the measurement local-
ly affects the dynamics, the natural notion of classical statistical
state is not, as for passive systems, a single probability measure
(corresponding to the fact that the state will be independent of
the measurement), but a family of probability measures – one
for each possible measurement (corresponding to the fact that
the state will be determined by the response to a measurement
which is not known at the initial time).

The EPR–chameleon model shows that all this is perfectly
compatible with a local, deterministic, reversible dynamics.

7 Empirical Correlations of pairs of distant

particles

The same term ‘pair correlation’, when referred to pairs of dis-
tant particles is often used to describe two completely different
experimental procedures. Below we discuss these experimental
differences [3].

7.1 Standard correlations

The term standard correlation is used when the following phys-
ical conditions are verified:

1) The total number N of emitted pairs is exactly known.

2) The trajectory of each pair can be followed without distur-
bance so that, at each time t, the experimenters know ex-
actly to which of the N pairs their measurement is referred.
This property will be called distinguishability.
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3) The observable (f1, f2) is measured on each pair of the en-
semble. The result of the measurement of (f1, f2) on the
jth pair will be denoted by

(f1,j, f2,j);

the measurement itself will be denoted by Mj.

Under these conditions the following definition makes sense.

Definition 6 The empirical correlation between the pair of ob-
servables (f1, f2), relative to the sequence of measurements M =
(Mj) on the ensemble {(1j, 2j) : j = 1, . . . , N} is

〈f1 · f2〉M :=
1

N

N∑
j=1

f1,jf2,j. (29)

We further specify our context of standard correlations as fol-
lows.

4) Each measurement Mj is specified by a time

t′j := tj + T,

where T is independent of j, tj is the emission time for the
pair (1j, 2j).

5) The result of the jth measurement does not depend on the
interval [tj, tj + T ] but only on T (time homogeneity).

Under these conditions the correlations (29) are interpreted as
the correlations of (f1, f2) at time T and T is interpreted as the
final time of the single measurement.
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7.2 Correlations of distant pairs

Suppose that the measurement protocol is the following.

(DP1) It is known that each pair is emitted simultaneously, but
the experimenters do not know precisely when the pair is
emitted.

(DP2) The experimenters cannot follow the trajectory of each par-
ticle, but only register the result of a measurement at time
t (indistinguishability).

(DP3) The experimenters have synchronized clocks, so the time t
is the same for both.

(DP4) The experimenters do not know the total number of emitted
particles.

(DP5) The experimenters cannot postulate that, if a particle of a
pair reaches one of them, then the other particle reaches
the other experimenters.

Conditions (4) and (5) of the previous section are still mean-
ingful because they are referred to single particles. Howev-
er condition (3) is meaningless because of indistinguishability.
Moreover the N , in formula (29) is unknown. In a situation
described by the above conditions we speak of correlations of
distant particles .

In conclusion: under the above described physical conditions,
the definition of standard correlations is meaningless and a new
one is needed.

Definition 7 The protocol to define correlations of distant par-
ticles is the following:
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(CDP1) The experimenter X, X ∈ {1, 2} performs measurements
on MX particles and records

– the time t′X,j of the jth measurement

– the value fX,j of the measured observable fX

for ∀ j ∈ {1, . . . ,MX}.

(CDP2) The two experimenters exchange the sequences

((t′1,j, f1,j) : j = 1, . . . ,M1) and ((t′2,j, f2,j) : j = 1, . . . ,M2).

(CDP3) Each experimenter extracts the sequences

(f ′1,h : h = 1, . . . ,Mf1f2) and (f ′2,h : h = 1, . . . ,Mf1f2),

where

{sh : h ∈ {1, . . . ,Mf1f2}} := {t′1,j : j ∈ {1, . . . ,M1}}∩{t′2,j : j ∈ {1, . . . ,M2}}

and
f ′X,h := fX,j, if sh = t′X,j (X = 1, 2).

(CDP4) The empirical correlations of distant pairs are defined by

〈f1f2〉DP :=
1

Mf1,f2

Mf1,f2∑
h=1

f ′1,hf
′
2,h.

In other words: by definition, correlation of distant pairs means
conditioned correlations on coincidences.

Practically the totality of the EPR type experiments follows
the protocol described in Definition (7).

As far as experiments are performed under this protocol (Def-
inition (7)), it is possible to take the Bell’s fifth position named
by Gill: “a decisive experiment cannot be done” [8].
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