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Abstract

As suggested by the title, the goal of the present talk is to describe
some casual photographs of different parts of quantum probability
without pretense of completeness. I will choose three topics which, in
my opinion, efficiently illustrate the fruitful interplay between mathe-
matics and physics which has characterized the development of quan-
tum probability in the past thirty years: (i) the description of a recent
experiment which has brought to a conclusion the long standing de-
bate about possible non local effects as necessary consequences of the
basic principles of quantum mechanics; (ii) the notion of interacting
Fock space, which emerged from quantum electrodynamics without
dipole approximation and turned out to be a fruitful tool in such dis-
parate fields as orthogonal polynomials, asymptotics of graphs, quan-
tum structure of classical probability measures, exclusion statistics, . . .
; (iii) the square (and higher powers) of white noise and its relation
to renormalization theory and infinitely divisible processes.

1 Introduction

The following philosophical thumb rule will be the guideline for the exposition
in the present section:

If I cannot solve a difficult problem, maybe I am not good enough, but if
I cannot solve an apparently simple problem, maybe there is something deep
behind this apparent simplicity.

Following this guideline I will use two simple problems to illustrate the
basic thesis of Quantum probability as it begun to emerge in the late 70’s of
the past century:
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Probability theory must go beyond the classical (Kolmogorov)
model!

This is a strong statement and therefore, to be taken into consideration,
it needs strong arguments in its support.

How to prove such a statement? The answer is: by means of the statis-
tical invariants. To explain what they are an analogy with geometry might
be useful.

It is generally recognized that the starting point of non euclidean ge-
ometry is Gauss’ theorema egregium (the excellent theorem) which gives a
criterium to distinguish between flat and curved surfaces in terms of exper-
imentally measurable parameters. Gauss was well aware of the importance
of this fact as shown by his historical attempt to experimentally measure a
geological triangle to estimate the local curvature of the earth.

Just as physicists measure geometrical quantities such as areas, angles,
. . ., they can also measure statistical quantities such as (conditional) proba-
bilities, correlations, . . ., .

Can one combine some of these measurements into ”statistical invariants”
which allow to distinguish between Kolmogorovian and non–Kolmogorovian
models of the laws of chance just as the ”geometrical invariants” allow to
distinguish between Euclidean and non–Euclidean models of space?

The following two simple but important examples show that this is indeed
possible.

The statistical invariant of the two slit experiment: a quantum
probabilistic analysis

We follow Feynman ([Feyn51] or [FeLeSa66]) in the exposition of this
experiment.

A source emits microscopic particles which can pass a first screen through
two slits, labeled 1 and 2, and are collected on a second screen. Denote X
an arbitrary region on this second screen.

The experimentally measurable statistical data are the probabilities:
P (X) = probability of hitting the region X of the screen
P (X|1) = probability of hitting X when the slit 2 is closed
P (X|2) = probability of hitting X when the slit 1 is closed

Definition 1 The statistical data P (X), P (X|1), P (X|2), admit a Kol-
mogorov model if there exists a probability space (Ω,F , µ) and events, still
denoted X, 1 and 2 and identified to subsets of Ω, such that:

P (X) = µ(X) (1)
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P (X|1) =
µ(X ∩ 1)

µ(1)
(2)

P (X|2) =
µ(X ∩ 2)

µ(2)
(3)

Remark The above definition means simply that in the classical, Kol-
mogorovian model the conditional probabilities P (X|1) and P (X|2) must be
given by the usual Bayes’ formula.

The crucial fact to be noted here is that the statistical data P (X),
P (X|1), P (X|2), have a well defined experimental meaning independently
of any mathematical model (just as the angles in Gauss’ triangle). Therefore
the existence of a Kolmogorov model for them cannot be postulated, but it
must be proved. Exactly as one cannot postulate the existence of an Eu-
clidean triangle determined by three empirically measured angles, but one
must use Gauss’ criterium to check if such a triangle exists or not.

Proposition 1 The statistical data P (X), P (X|1), P (X|2) admit a Kol-
mogorov model if and only if the given probabilities satisfy the constraints

0 <
P (X)− P (X|2)

P (X|1)− P (X|2)
< 1 (4)

Proof. One solves the system (1), (2), (3), in the unknowns µ(X ∩
1), µ(1), µ(X ∩ 2), µ(2), and one imposes the condition that the solutions are
in (0, 1).

Remark If one changes the statistical data in (4), i.e. the probabilities,
so that the constraint (4) is still fulfilled, then the property of admitting a
Kolmogorovian model will remain unaltered.

In this sense we say that the relation (4) is a statistical invariant for the set
of statistical data P (X), P (X|1), P (X|2) with respect to the Kolmogorovian
model.

We can see that, if the empirical data P (X), P (X|1), P (X|2) have been
obtained in three different experiments on three different samples, then con-
dition (4) is by no means a tautology on the relative frequencies: its validity
is an experimental fact. If it holds, then a Kolmogorov model exists and the
identity

P (X) = µ(1)P (X|1) + µ(2)P (X|2) (5)
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must be satisfied. The experiment discussed by Feynman (and before him by
Bohr, Einstein, Heisenberg, . . ., shows that in some cases (5) is not satisfied
so that a Kolmogorov model for these data cannot exist.

Summing up: the 2–slit experiment, whose conceptual implications were
first discussed in the Solvay conference in 1928, provides the first example of a
simple set of statistical data, coming from different but related experiments,
which do not admit a Kolmogorovian model.

The statistical invariant of the EPR type experiments: a quan-
tum probabilistic analysis

In 1935 Einstein, Podolsky and Rosen (EPR) published a paper [EPR35]
which pointed out some difficulties in the interpretation of quantum mechan-
ics.

In 1964 Bell proved an inequality [Bell64], related to the EPR type ex-
periments, which can be experimentally checked.

The discovery, in [Ac81a], that both the 2–slit experiment and the
Bell inequality are two different aspects of the same mathematical
phenomenon was the starting point of quantum probability.

More precisely: both the 2–slit experiment and Bell’s inequality are nec-
essary conditions for the existence of a Kolmogorovian model for a set of sta-
tistical data coming from different and mutually incompatible experiments:
conditional probabilities in the 2–slit case; correlations in the Bell case.

In probabilistic language Bell’s inequality can be formulated as follows:

Theorem 1 Let (Ω,F , P ) be a probability space and let A,B,C be any three
random variables defined on Ω and taking values in the interval [−1, 1]. Then
the following (Bell) inequality holds:

|E(AB)− E(BC)| ≤ 1− E(AC) (6)

Proof Simple exercise.
The physical implications of Bell’s inequality can be formulated in the

language of quantum probability as follows:

Corollary 1 There exist triples a, b, c of unit vectors in R3 for which it is
not possible to find six {−1,+1}–valued random variables Sjx (x = a, b, c ; j =
1, 2) on the same probability space (Ω,F , P ) whose correlations are given by:

E(S1
x · S2

y) = −x · y ; x, y = a, b, c (7)

(where, for x, y ∈ R3 , x · y denotes the Euclidean scalar product.)
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Proof Choose

a = 0 ; b =
π

4
; c =

π

2

and show that

A := S1
a ; B := S2

b ; C := S1
c

violate Bell’s inequality. Then use the fact that (7) implies:

S1
c = −S2

c

The situation is as simple as in the case of the 2–slit experiment and, just
as in that case there is a huge literature on Bell’s inequality.

A mathematician, unaware of the 75 years of heated debate on the foun-
dations of quantum mechanics, might ask: Why such a huge literature?

The fact is that the simple arguments above were believed, for several
decades, to challange some of the basic pillars of contemporary physics, such
as the principle of reality or the principle of locality.

In fact, according to Bell, the inequality (6) is necessarily implied by
the locality principle: no physical interaction can propagate with a velocity
higher than the speed of light in the vacuum.

But, according to experiments, the EPR correlations violate Bell’s in-
equality.

Conclusion: if Bell’s idea, that his inequality (6) is a necessary conse-
quence of the locality principle, is correct, then quantum mechanics is non–
local.

But the locality principle, is one of the pillars of relativity theory. There-
fore if Bell’s idea is correct, then QM contradicts relativity.

Thus we are faced with the following dramatic question:
Is it true that the two basic theories of contemporary physics
– the theory of relativity
– quantum mechanics
are mutually contradictory?
In the past 30 years the answer to this question, accepted by the majority

of physicists has been:
yes they are mutually contradictory. Moreover this can be proved by

theory and confirmed by experiment
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But a minority of physicists and mathematicians still had some doubts
and insisted to look for a way out of this apparent contradiction. The story
of this pursuit is long and tormented and will not be discussed here. The
final result can be synthetized in the bizarre statement:

Mathematics saves physics by an experiment!
More precisely, the paper [AcImRe01] describes an experiment which re-

alizes a local, deterministic, classical, macroscopic, dynamical system repro-
ducing the EPR correlations, hence violating Bell’s inequality.

This experiment is based on a mathematical model of a new type of dy-
namical systems (adaptive dynamical systems) which will probably be very
fruitful not only in mathematics and physics, but also in biological, economi-
cal and social sciences where adaptive dynamical systems are the rule rather
than the exception.

This experiment proves that arguments such as Bell’s inequality cannot
be invoked to assert an hypothetical contradiction between the two basic
theories of contemporary physics (relativity and quantum mechanics) for the
simple reason that it is (mathematically and experimentally) not true
that locality implies Bell’s inequality.

This brings quantum physics out of what K. Popper defined: ”... The
great quantum muddle ... ”.

The experiment of [AcImRe01], and more generally the theory of adaptive
dynamical systems of which this paper is only a first example, also provides an
intuitive answer to the following question: how can non Kolmogorovian
models of physical systems naturally arise within classical physics
and classical probability? In other words: how can we build non Kol-
mogorovian models of physical systems using classical probability?

This answer is based on the “chameleon effect” which ca be formulated
as follows:

the dynamics of a system may depend on the observables we
want to measure (or, more generally, on the local environment).

For example: the color of a chameleon is as ”pre–determined” as the
color of a ball in a ballot box but everybody understands that the word
”pre–determination” has a different meaning in the two cases.

In the case of a ball in a ballot box you measure what was there, inde-
pendently of the environment (passive property).

In the case of a chameleon you measure the response to an environment
(adaptive property). In other words:
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The symbol of classical probability is the color of a ball in a box (passive
property: environment independent).

The symbol of quantum probability is the color of a chameleon (adaptive
property: response to an environment).

This result has also some practical implications which make a bridge be-
tween mathematical philosophy and industrial applications because it gave
rise to a new line of research which could be called non–Kolmogorovian
stochastic simulation and which generalizes usual stochastic simulation in
the sense that it allows to reproduce quantum entanglement by classical
computer, a task which was considered impossible up to a few years ago.

In particular it is now possible to set up a competition between quantum
cryptography based on quantum optics and quantum cryptography based on
the chameleon effect. The group in Volterra Center is now actively persuing
this goal in collaboration with an italian industry and we hope to arrive soon
(say within one year from now) to the production of a software which can be
effectively sold on the market.

Coming back to the foundations of probability theory, the conclusions
which can be drawn from the above described experiments are the following:

there exist sets of statistical data empirically obtainable from simple real
experiments which cannot be described within a single classical probability
space but which can be described within a single quantum probability space.

So you have a choice:
(i) either you use many classical probability spaces to describe these data
(ii) or you use a single quantum probability space
But (i) is a bad choice for many reasons, the most important of which

is that, to realize it, you must introduce a huge quantity of spurious, non
observable, information (e.g., in a quantum mechanical context, all the joint
probabilities of incompatible observables)

This also explains the difference between the term ”Non commutative
probablity”, which refers to a purely mathematical generalization of the clas-
sical probabilistic formalism, and ”Quantum probability” which underlines
the experimental necessity to go beyond the Kolmogorov model.

In fact, from a purely mathematical point of view, every branch of math-
ematics can be made non commutative.

However probability theory must be made non commutative in the sense
that, in thia case, noncommutativity is not an arbitrary choice but an exper-
imental necessity expressing the seesnce of a physical situation. The precise
sense of this statement, translated into a set of physically meaningful axioms,
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is explained in the papers [Ac95a], [Ac82c] where the reader will find the an-
swer to several natural questions, which have accompanied the development
of quantum theory since its birth, such as for example: Why just the Hilbert
space model? Why the Hilbert space should be complex? Why the super-
position principle? Why the evolution of probability should be described by
the Schrödinger equation? Where do the canonical commutation relations
come from? . . .

The general picture which emerges from the above considerations suggests
an analogy between the main thesis of general relativity (the interaction
with masses determines the laws of space) and the main thesis of quantum
probability (the interaction with the environment determines the laws of
chance).

According to relativity theory the geometry of space with masses tends
to be non Euclidean.

According to quantum probability the statistics of responses (i.e. of adap-
tive systems) tends to be non Kolmogorovian.

2 The Interacting Fock Functor

It is known that the Fock functor establishes an isomorphism between the
category of Gaussian processes and the category of Fock Spaces.

In view of this the following natural question arises:
does there exist a functor realizing, for arbitrary probability measures,

what the Fock functor realizes for Gaussian measures?
The answer is: yes, the Interacting Fock Functor realizes this goal.
Interacting Fock Spaces: intuitive idea
An Interacting Fock Space (IFS) is any Hilbert spaceH with the following

properties:
(i) H is the orthogonal sum of ”n–particle sub–spaces:

H =
⊕
n≥0

Hn

(ii) there exist a vector space H0 and a linear map

A+ : f ∈ H0 → A+
f

from H0 to densely defined operators, called creation operators,

A+
f : Hn → Hn+1
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(iii1) there is a unit vector Φ ∈ H such that

H0 ≡ C · Φ

(iii2) For each n ∈ N and f1, . . . , fn, fn+1 ∈ H0

A+
fn
· . . . · A+

f1
Φ ∈ Dom(A+

fn+1
)

(iii3) For each n ∈ N the vectors

Nn := {A+
fn
· . . . · A+

f1
Φ : f1, . . . , fn ∈ H0}

are total in Hn

(iv) the adjoints of the creation operators, called annihilation operators,
are defined on the (dense) sub–space

N :=
⋃
n≥0

Nn

Interacting Fock Spaces were introduced in the paper [AcLu92b] because
they natuarlly arise in quantum electrodynamics when one drops the usual
dipole approximation (cf. [AcLuVo02] for more details). The first systematic
discussion of this notion from an axiomatic point of view is in [AcLuVo97b],
but the definition used here, which is more suitable for the aplications to
the theory of orthogonal polynomials we are going to discuss, is taken from
[AcSk98].

The connection between one–mode interacting Fock Spaces and orthogo-
nal polynomials, associated to an arbitrary probability measure on the real
line with moments of any order, was first established in the paper [AcBo97].

In order to understand the intuitive idea behind this result let us recall
the Jacobi recurrence formula for orthogonal polynomials, associated to any
probability measure µ on R:

xP (n)(x) = P (n+1)(x) + αnP
(n)(x) + ωnP

(n−1)(x) , (8)

where n ∈ N and P (−1)(x) := 0. If we define the (creation and number)
operators by:

a+P (n) := P (n+1) (9)

NP (n) := nP (n) (10)
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Then (20) becomes equivalent to

X = a(+) + a+ αN (11)

where αN is defined by the spectral theorem (αNP
(n) := αnP

(n)).
This is the quantum decomposition of an arbitrary real valued classical

random variable (with moments of any order).
Example In the usual Fock space, with vacuum distribution and with

the usual creation and annihilation operators, the standard Gaussian random
variable can be represented as

X = a(+) + a (12)

and the standard Poisson random variable intensity α can be represented as

X = a(+) + a+ αa(+)a (13)

In the following we will see that there is a deep reason why both the standard
Gaussian and the standard Poisson random variable can be represented in
the same Fock space.

connections with works by Berezansky
Algebra implies statistics !
Another interesting fall out of the interacting Fock space is a new, purely

probabilistic, approach to the commutation relations which allowed a natu-
ral generalization of the Heisenberg commutation relations to an arbitrary
probability measure.

The question: ”where do the canonical commutation relations come from?”
was, as mentioned in the first section of this paper, one of the old problems
in the foundations of quantum theory. The answer suggested by the theory
of interacting Fock spaces is very simple: from classical probability theory!
The intuitive idea on which this answer is based is very simple: in any one–
mode interacting Fock space both aa(+) and a(+)a leave the n–particle space
invariant. Therefore also their difference, i.e. the commutator aa(+) − a(+)a
leaves each n–particle space invariant and, in one–mode case, this is possible
if and only if this commutator is a function of the number operator, i.e. if,
for some function T , one has:

[a, a(+)] = aa(+) − a(+)a = T (N) (14)

More precisely:
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Theorem 2 Every classical probability measure on R with moments of any
order is canonically associated to a commutation relation in an interacting
Fock space. This commutation relation, together with the Fock prescription

aΦ = 0 (15)

uniquely determines all the moments of the given probability measure (hence
the measure itself, in all cases in which the moment problem admits a unique
solution).

The explicit formula of T (N) can be easily calculated in terms of the
Jacobi parameters (i.e. the coefficients appearing in the Jacobi relation (20).
The following table, taken from the joint paper with H.H. Kuo and A. Stan
[ACKUST], shows the result of this calculation in the case of some well known
probability measures.
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Measure Polynomials Jacobi parameters

Gaussian Hermite αn = 0
N(0, σ2) Hn(x;σ2) ωn = σ2n

= (−σ2)nex2/2σ2
∂n

x e−x2/2σ2
(λn = σ2nn!)

Poisson Charlier αn = n + a
Poi (a) Cn(x; a) = ωn = an

(−1)na−xΓ(x + 1)∆n
[

ax

Γ(x−n+1)

]
(λn = ann!)

Gamma Γ(α), (α > −1) Laguerre αn = 2n + 1 + α
ωn = n(n + α)

1
Γ(α+1) xαe−x, x > 0 L(α)

n (x)
= (−1)nx−αex∂n

x [xn+αe−x] (λn = n!(n + α) · · · (1 + α))

Uniform on [−1, 1] Legendre αn = 0
L̃n(x) = 1

2n(2n−1)!! ∂n
x [(x2 − 1)n] ωn = n2

(2n+1)(2n−1)(
λn = (n!)2

[(2n−1)!!]2(2n+1)

)
Arcsine Chebyshev (1st kind) αn = 0

1
π
√

1−x2 , |x| < 1 T̃0(x) = 1 ωn =
{

1
2 , n = 1
1
4 , n ≥ 2

T̃n(x) = 1
2n−1 cos(n cos−1 x), n ≥ 1

(
λn = 1

22n−1

)
Semicircle Chehyshev (2nd kind) αn = 0
2
π

√
1− x2, |x| < 1 Ũn(x) = 1

2n

sin[(n+1) cos−1 x]
sin[cos−1 x] ωn = 1

4(
λn = 1

4n

)
1√
π

Γ(β+1)

Γ(β+ 1
2 )

(1− x2)β− 1
2 Gegenbauer αn = 0

|x| < 1, β > − 1
2 G̃

(β)
n (x) = C

(β)
n (1− x2)

1
2 −β∂n

x [(1− x2)n+β− 1
2 ] ωn = n(n+2β−1)

4(n+β)(n+β−1)

C
(β)
n = (−1)n2nΓ(2β+n)

Γ(2β+2n)
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[a−, a+]en Coherent vector Generating function

σ2I e
zx
σ2 − z2

2σ2 etx− 1
2 σ2t2 =

∞∑
n=0

Hn(x;σ2)
n! tn

aI e−z
(
1 + z

a

)x
e−at(1 + t)x =

∞∑
n=0

Cn(x;a)
n! tn

(1 + t)−α−1e
tx
1+t

(2n + α + 1)en

∞∑
n=0

L(α)
n (x)

n!(n+α)···(1+α) zn

=
∞∑

n=0

tn

n! L
(α)
n (x)

1√
1−2tx+t2

− 1
(2n+3)(2n+1)(2n−1) en

∞∑
n=0

((2n−1)!!)2(2n+1)
(n!)2 L̃n(x)zn

=
∞∑

n=0

(2n−1)!!
n! L̃n(x)tn


1
2 e0, n = 0
− 1

4 e1, n = 1
0, n ≥ 2

1−2xz
1−4xz+4z2

4−t2

4−4tx+t2

=
∞∑

n=0
T̃n(x)tn

{
1
4 e0, n = 0
0, n ≥ 1

1
1−4xz+4z2

4
4−4tx+t2 =

∞∑
n=0

Ũn(x)tn

β2−β
2(n+1+β)(n+β)(n−1+β) not in close form 1

(1−2tx+t2)β

=
∞∑

n=0

2nΓ(β+n)
Γ(β)n! G̃

(β)
n (x)tn

The problem to extend the above results from one–mode interacting Fock
spaces (corresponding to measures on the real line) to general interacting
Fock spaces (corresponding to measures on multi (possibly infinite dimen-
sional) spaces) was solved in the paper [AcNh01] in the finite dimensional
case and in the paper [AcKuSt04] in the infinite dimensional case

The general programme to which this line of research is inspired can be
synthetized in a single sentence: algebra implies statistics.

This means that the main goal of this programme is to realize, just like
in the Gaussian and Poisson case, a complete coding of all the statistical
information of a probability measure (e.g. mixed moments) into algebraic
properties of the creation and annihilation operators, appearing in its quan-
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tum decomposition, such as, for example, the commutation relations (14) or
the property of ”killing the vacuum” (15).

3 The renormalized square of white noise

and Meixner classification theorem

As an illustration of the slogan: algebra implies statistics, I will now dis-
cuss the quantum probabilistic solution of the old problem to give a meaning
to the square of classical white noise.

The quantum decomposition of a classical random variable is functorial,
hence it can be easily transported from single random variables to processes.
For example the quantum decomposition of classical white noise is

wt = b+t + bt (16)

where b+t , bt is the quantum (Boson Fock) white noise, algebraically charac-
terized by the properties

[bt, b
+
s ] = δ(t− s) (17)

btΦ = 0 (18)

Given the quantum decomposition (16) of classical white noise an intuitive
formal candidate for the square of classical white noise is:

w2
t = (b+t + bt)

2

= b+2
t + b2t + b+t bt + btb

+
t

= b+2
t + b2t + 2b+t bt + δ(0)

Here the presence of the meaningless symbol δ(0) reflects the fact that,
since the white noise is a distribution, its square is ill defined. Mimicking
a standard procedure in physics (renormalization) we subtract this infinity
and find:

b+2
t + b2t + 2b+t bt

But this does not solve our problem because, since b+t , bt are operator valued
distributions, also expressions like b+2

t , b2t are meaningless. Thus even after
additive renormalizion, w2

t remains meaningless !
However, if we take seriously the slogan: algebra implies statistics, we

could think of another approach to the problem. That is, instead of trying
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to give a direct meaning to expressions like b+2
t , b2t , we try to give a meaning

to the commutator [b2t , b
+2
t′ ] and then we realize a representation of these

commutation relations in a Hilbert space with a unit vector Φ satisfying

b2tΦ = 0

since algebra implies statistics, if we find the good algebra for the square of
white noise then we will also find the good statistics!

Because of (17) we expect that b+2
t , b2t should satisfy the commutation

relations:

[b2t , b
+2
t′ ] = [b2t , b

+
t′ ]b

+
t′ + b+t′ [b

2
t , b

+
t′ ]

= bt[bt, b
+
t′ ]b

+
t′ + [bt, b

+
t′ ]btb

+
t′ + b+t′ , bt[bt, b

+
t′ ] + b+t′ [bt, b

+
t′ ]bt

= δ(t− t′)btb
+
t′ + δ(t− t′)btb

+
t′ + b+t′ btδ(t− t′) + δ(t− t′)b+t′ bt

= 2δ(t− t′)btb
+
t′ + 2δ(t− t′)b+t′ bt = 2δ(t− t′)2 + 4δ(t− t′)b+t′ bt

where the singularity now appears in the emergence of the factor δ(t −
t′)2. To handle this singularity a new idea was proposed in [AcLuVo99]:
multiplicative renormalizion . This amounts to use the following known
formula from distribution theory:

Theorem 3 δ(t)2 = cδ(t) where the constant c ∈ c is arbitrary.

In order to define the renormalized commutation relations of the square of
WN, let us introduce, as usual, the ”smeared” fields:

b+ϕ =

∫
dtϕ(t)b2t ; bϕ = (b+ϕ )+

nϕ =

∫
dtϕ(t)b+t bt

With these notations we find the renormalized commutation relations:

[bϕ, b
+
ψ ] = γ〈ϕ, ψ〉+ nϕψ

[nϕ, bψ] = −2bϕψ

[nϕ, b
+
ψ ] = 2b+ϕψ

(b+ϕ )+ = bϕ ; n+
ϕ = nϕ
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Thus, to complete the definition of the Fock representation, we need only the
prescription:

bϕΦ = 0

It is easy to verify that, if the Fock representation exists, then it is unique.
The problem thus is: Does the Fock representation exist?

The answer, discovered in [AcLuVo99] is: Yes if the constant c ∈ c is > 0.
It was then proved in [AcFrSk00] that the algebra of the RSWN is isomor-

phic to a representation of the algebra of currents over (a central extension
of) the Lie algebra sl(2,R). It is known that this has 3 generators

B− B+ M

(the central extension corresponds to a multiple of the identity) and relations

[B−, B+] = M

[M,B±] = ±2B±

An application of a general result due to Schürmann, on the classifica-
tion theorem for independent increment processes on *–bi–algebras [Schü93],
allows to obtain a full classification of an important subclass of representa-
tions of this current algebra as well as a concrete realization of them on some
explicitly constructed Fock space.

4 The five simplest classes of Levy processes:

the Meixner processes

Meixner, in his classical paper [Meix34], considered the following problem:
find all sequences of polynomials P (n)(x) (n ∈ N), in one real variable x with
the following properties:

(i) the leading coefficient of each P (n)(x) is 1
(ii) for each n ∈ N, P (n)(x) is the n–th orthogonal polynomial with

respect to some probability measure µ on R.
(iii) there exist functions f(z) and Ψ(z) such that

G(x, z) := exp(xΨ(z))f(z) =
∞∑
n=0

P (n)(x)

n!
zn (19)
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If a probability measure µ on R, which solves the Meixner problem, exists,
then it is uniquely determined by two sequences:

– (an) real number
– (bn) positive numbers
which are the coefficients of the Jacobi recurrence formula

xP (n)(x) = P (n+1)(x) + anP
(n)(x) + bnP

(n−1)(x) , (20)

n ∈ N , P (1)(x) := 0 (21)

Meixner showed that the sequences corresponding to the solution of his
problem are completely determined by two parameters λ and k through the
equations

k =
bn
n
− bn−1

n− 1
, n ≥ 2

λ = an − an−1 (equivalently an = λn) , n ∈ N

ii He then proved that these equation admit exactly 5 solutions, namely:
– 2 solutions for k = 0
– 3 solutions for k 6= 0
I) The 1–st Meixner class
If k = 0 and λ = 0, then

an = 0 , bn = n

and the P (n) are the Hermite polynomials so that µ is the standard Gaussian
distribution on R.

II) The 2–d Meixner class
If k = 0 and λ 6= 0, then

an = λn , bn = n

and the P (n) are the Charlier polynomials so that µ is the centered Poisson
distribution on R with parameter λ.

If k 6= 0 then

bn = kn+
n

n− 1
bn−1 =

= kn+
n

n− 1
bn−2 = kn+

n

n− 1
(k(n− 1) +

n− 1

n− 2
bn−2 =

= . . . = kn2

17



Setting for simplicity of notations k = 1 and introducing two quantities α
and β through the equation

1 + λz + z2 = (1− αz)(1− βz) . (22)

we distinguish the three following cases:
III) The 3–d Meixner class
|λ| = 2
In this case the P (n)(x) are the Laguerre polynomials and µ is a centered

gamma distribution which is a compound Poisson measure.
(IV) The 4–th Meixner class
|λ| > 2
In this case the P (n)(x) are the Meixner polynomials (of the first kind),

which are orthogonal with respect to a centered Pascal (negative binomial)
distribution i.e., up to reparametrization, a distribution of the form (??).

(V) The 5–d Meixner class
|λ| < 2, so that α 6= β, both complex conjugate.
In this case the P (n)(x) are the Meixner polynomials of the second kind,

(or Meixner–Pollaczek polynomials). These are orthogonal with respect
to a measure µ obtained by centering a probability measure of the form
C exp(ax)|Γ(1 + imx)|2dx, where a ∈ R, m > 0, and C is the normalizing
constant.

The measures of the 3–d Meixner class do not possess the chaotic decom-
position property but, as shown by Nualart and Schoutens [NUSCH00], see
also the recent book [SCHOU00], they enjoy a generalization of this property
obtained by adding to the original process (Xt) its associated “power jump
processes”

X
(i)
t :=

∑
0<s≤t

(∆Xs)
(i) , i ≥ 2

The measures in the 4–th Meixner class, i.e. the Lévy processes, corre-
sponding to the Pascal measures, were introduced in [BruRo91] in the context
of optimal selection strategies based on relative ranks, when the total number
of options is unknown.

The measures in the 5–th Meixner class are called Meixner measures in
the papers [Grig99], [LYTVa], [Grig01] and they are a sub–class of Grige-
lionis’ “generalized z–distributions” In fact, in [Grig00c] the term “Meixner
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distribution” is used for the class of probability measures on R whose charac-
teristic function (Fourier transform of the probability density) has the form

f̂(z) =

(
cos(β/2)

cosh((αz − iβ)/2)

)2δ

with z ∈ R,−π < β < π, δ > 0, µ ∈ R. We refer to [Grig01] for several
interesting properties of these distributions and explicit formulae related to
them.

In [SchTeu98] it was proved that the measures in this class correspond to
Levy processes and their connection with the Meixner–Pollaczek polynomials
was established. In particular, in [Grig00c] the Meixner process was proposed
as a model for risky assets and an analogue of the Black and Sholes formula
was established for them.

The infinite dimensional and multidimensional analogues of orthogonal
polynomials associated to a given measure have been widely studied both
in the Gaussian ([BEKO], [HiKuPoStr93], [Kuo96]) and in the Poisson case
([CHIHA], [KOKUOL]).

The programme to extend this analysis to more general probability mea-
sures was developed by Berezansky, who introduced in this connection the no-
tion of Jacobi field of operators, and his school ([BELILY], [LYTV], [BEREZa],
[BEREZb]).

To write a stochastic equation as a white noise equation is a simple ex-
ercise, but the resulting equation is not Hamiltonian, so its connection with
physics is not clear. The converse problem: given an Hamiltonian white
noise equation, find the associated stochastic equation, is nontrivial and its
solution was suggested by the stochastic limit of quantum theory. It in-
volves a new type of normal order - causal normal order - and a purely white
noise formulation of Ito table. This, in its turn, opens the way to a nonlin-
ear extension of classical Ito calculus which turns out to be strictly related
with a new approach to renormalization theory and to the theory of current
representations of classical and infinite dimensional Lie algebras.
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