Proposed problem for Mathematical Reflections

Dear Ivan, dear Editor,
I would like to propose the following problem with solution.

Give an example of a real differentiable function f defined on $(0,1)$ such that $\sup _{x \in E}\left|f^{\prime}(x)\right|=$ $M<+\infty, E$ is a dense subset of the domain (say $\bar{E} \supset(0,1))$ and $|f|$ nowhere differentiable on $(0,1)$. Otherwise prove that such a function does not exist.

Comment: If one asks E infinite but not having any limit point in $(0,1)$, the function does exist (Amer. Math. Monthly Vol.75, No. 6 (Jun.--Jul., 1968), 688-689)

Answer The function does not exist.

Let's suppose that the function f exists. Of course $f\left(x_{0}\right)=0$ if $x_{0} \in E$ because otherwise we would have $|f|$ differentiable at x_{0}. The differentiability of f at x_{0} means $|f(x)|=$ $\left|f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+o\left(x-x_{0}\right)\right| \leq M\left|x-x_{0}\right|+o\left(x-x_{0}\right)$. The density of E in $(0,1)$ means

$$
\forall x \in(0,1) \forall \varepsilon>0 \exists x_{\varepsilon} \in E:\left|x-x_{\varepsilon}\right|<\varepsilon
$$

This implies that for any $x \in(0,1)$, for any $\varepsilon>0$, there exists $x_{0} \in E$ such that $\mid\left(x-x_{0}\right)+$ $o\left(x-x_{0}\right) \mid<2 \varepsilon$ namely $f(x)=0$ for any $x \in(0,1)$ contradicting the non differentiability of $|f|$.

Of course, feel free to change the statement if accepted.

Perfetti Paolo, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma, via della ricerca scientifica, 00133 Roma, Italy - email: perfetti@mat.uniroma2.it
Roma(Italy) 04/12/07

Best regards
Paolo Perfetti

