Proposed problem for Mathematical Reflections

Dear Ivan, dear Editor, I would like to propose the following problem with solution.

Give an example of a real differentiable function f defined on (0,1) such that $\sup_{x\in E} |f'(x)| = M < +\infty$, E is a dense subset of the domain (say $\overline{E} \supset (0,1)$) and |f| nowhere differentiable on (0,1). Otherwise prove that such a function does not exist.

Comment: If one asks E infinite but not having any limit point in (0,1), the function does exist (Amer. Math. Monthly Vol.75, No.6 (Jun.-Jul., 1968), 688–689)

Answer The function does not exist.

Let's suppose that the function f exists. Of course $f(x_0) = 0$ if $x_0 \in E$ because otherwise we would have |f| differentiable at x_0 . The differentiability of f at x_0 means $|f(x)| = |f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)| \le M|x - x_0| + o(x - x_0)$. The density of E in (0, 1) means

 $\forall \ x \in (0,1) \ \forall \ \varepsilon > 0 \ \exists \ x_{\varepsilon} \in E \colon |x - x_{\varepsilon}| < \varepsilon$

This implies that for any $x \in (0, 1)$, for any $\varepsilon > 0$, there exists $x_0 \in E$ such that $|(x - x_0) + o(x - x_0)| < 2\varepsilon$ namely f(x) = 0 for any $x \in (0, 1)$ contradicting the non differentiability of |f|.

Of course, feel free to change the statement if accepted.

Perfetti Paolo, Dipartimento di Matematica, Università degli studi di Tor Vergata Roma, via della ricerca scientifica, 00133 Roma, Italy – email: perfetti@mat.uniroma2.it

Roma(Italy) 04/12/07

Best regards Paolo Perfetti