Junior problems

J67. Prove that among seven arbitrary perfect squares there are two whose difference is divisible by 20 .

Proposed by Ivan Borsenco, University of Texas at Dallas, USA
J68. Let $A B C$ be a triangle with circumradius R. Prove that if the length of one of the medians is equal to R, then the triangle is not acute. Characterize all triangles for which the lengths of two medians are equal to R.

Proposed by Daniel Lasaosa, Universidad Publica de Navarra, Spain
J69. Consider a convex polygon $A_{1} A_{2} \ldots A_{n}$ and a point P in its interior. Find the least number of triangles $A_{i} A_{j} A_{k}$ that contain P on their sides or in their interiors.

Proposed by Samin Riasat, Notre Dame College, Dhaka, Bangladesh
J70. Let l_{a}, l_{b}, l_{c} be the lengths of the angle bisectors of a triangle. Prove the following identity

$$
\frac{\sin \frac{\alpha-\beta}{2}}{l_{c}}+\frac{\sin \frac{\beta-\gamma}{2}}{l_{a}}+\frac{\sin \frac{\gamma-\alpha}{2}}{l_{b}}=0
$$

where α, β, γ are the angles of the triangle.
Proposed by Oleh Faynshteyn, Leipzig, Germany
J71. In the Cartesian plane call a line "good" if it contains infinitely many lattice points. Two lines intersect at a lattice point at an angle of 45° degrees. Prove that if one of the lines is good, then so is the other.

Proposed by Samin Riasat, Notre Dame College, Dhaka, Bangladesh
J72. Let a, b, c be real numbers such that $|a|^{3} \leq b c$. Prove that $b^{2}+c^{2} \geq \frac{1}{3}$ whenever $a^{6}+b^{6}+c^{6} \geq \frac{1}{27}$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Senior problems

S67. Let $A B C$ be a triangle. Prove that

$$
\begin{aligned}
& \cos ^{3} A+\cos ^{3} B+\cos ^{3} C+5 \cos A \cos B \cos C \leq 1 \\
& \text { Proposed by Daniel Campos Salas, Costa Rica }
\end{aligned}
$$

S68. Let $A B C$ be an isosceles triangle with $A B=A C$. Let X ad Y be points on sides $B C$ and $C A$ such that $X Y \| A B$. Denote by D the circumcenter of triangle $C X Y$ and by E be the midpoint of $B Y$. Prove that $\angle A E D=90^{\circ}$.

Proposed by Francisco Javier Garcia Capitan, Spain
S69. Circles ω_{1} and ω_{2} intersect at X and Y. Let $A B$ be a common tangent with $A \in \omega_{1}, B \in \omega_{2}$. Point Y lies inside triangle $A B X$. Let C and D be the intersections of an arbitrary line, parallel to $A B$, with ω_{1} and ω_{2}, such that $C \in \omega_{1}, D \in \omega_{2}, C$ is not inside ω_{2}, and D is not inside ω_{1}. Denote by Z the intersection of lines $A C$ and $B D$. Prove that $X Z$ is the bisector of angle $C X D$.

Proposed by Son Hong Ta, Ha Noi University, Vietnam
S70. Find the least odd positive integer n such that for each prime $p, \frac{n^{2}-1}{4}+n p^{4}+p^{8}$ is divisible by at least four primes.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
S71. Let $A B C$ be a triangle and let P be a point inside the triangle. Denote by $\alpha=\frac{\angle B P C}{2}, \beta=\frac{\angle C P A}{2}, \gamma=\frac{\angle A P B}{2}$. Prove that if I is the incenter of $A B C$, then

$$
\frac{\sin \alpha \sin \beta \sin \gamma}{\sin A \sin B \sin C} \geq \frac{R}{2(r+P I)}
$$

where R and r are the circumcenter and incenter, respectively.
Proposed by Khoa Lu Nguyen, Massachusetts Institute of Technology, USA
S72. Let $A B C$ be a triangle and let $\omega(I)$ and $C(O)$ be its incircle and circumcircle, respectively. Let D, E, and F be the intersections with $C(O)$ of the lines through I perpendicular to sides $B C, C A$ and $A B$, respectively. Two triangles $X Y Z$ and $X^{\prime} Y^{\prime} Z^{\prime}$, with the same circumcircle, are called parallelopolar if and only if the Simson line of X with respect to triangle $X^{\prime} Y^{\prime} Z^{\prime}$ is parallel to $Y Z$ and two analogous relations hold. Prove that triangles $A B C$ and $D E F$ are parallelopolar.

Proposed by Cosmin Pohoata, Bucharest, Romania

Undergraduate problems

U67. Let $\left(a_{n}\right)_{n \geq 0}$ be a decreasing sequence of positive real numbers. Prove that if the series $\sum_{k=1}^{\infty} a_{k}$ diverges, then so does the series $\sum_{k=1}^{\infty}\left(\frac{a_{0}}{a_{1}}+\cdots+\frac{a_{k-1}}{a_{k}}\right)^{-1}$.

Proposed by Paolo Perfetti, Universita degli studi di Tor Vergata, Italy
U68. In the plane consider two lines d_{1} and d_{2} and let $B, C \in d_{1}$ and $A \in d_{2}$. Denote by M the midpoint of $B C$ and by A^{\prime} the orthogonal projection of A onto d_{1}. Let P be a point on d_{2} such that $T=P M \cap A A^{\prime}$ lies in the halfplane bounded by d_{1} and containing A. Prove that there is a point Q on segment $A P$ such that the angle bisector of Q passes through T.

Proposed by Nicolae Nica and Cristina Nica, Romania
U69. Evaluate

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(1+\arctan \frac{k}{n}\right) \sin \frac{1}{n+k}
$$

Proposed by Cezar Lupu, University of Bucharest, Romania
U70. For all integers $k, n \geq 2$ prove that

$$
\sqrt[n]{1+\frac{n}{k}} \leq \frac{1}{n} \log \left(1+\frac{n-1}{k-1}\right)+1
$$

Proposed by Oleg Golberg, Massachusetts Institute of Technology, USA
U71. A polynomial $p \in \mathbb{R}[X]$ is called a "mirror" if $|p(x)|=|p(-x)|$. Let $f \in$ $\mathbb{R}[X]$ and consider polynomials $p, q \in \mathbb{R}[X]$ such that $p(x)-p^{\prime}(x)=f(x)$, and $q(x)+q^{\prime}(x)=f(x)$. Prove that $p+q$ is a mirror polynomial if and only if f is a mirror polynomial.

Proposed by Iurie Boreico, Harvard University, USA
U72. Let n be an even integer. Evaluate

$$
\lim _{x \rightarrow-1}\left[\frac{n\left(x^{n}+1\right)}{\left(x^{2}-1\right)\left(x^{n}-1\right)}-\frac{1}{(x+1)^{2}}\right] .
$$

Proposed by Dorin Andrica, Babes-Bolyai University, Romania

Olympiad problems

O67. Let $a_{1}, a_{2}, \ldots, a_{n}$ be positive real numbers. Prove that for $a>0$,

$$
a+a_{1}^{2}+a_{2}^{2}+\ldots+a_{n}^{2} \geq m\left(a_{1}+a_{2}+\ldots+a_{n}\right)
$$

where $m=2 \sqrt{\frac{a}{n}}$, if n is even, and $m=2 \sqrt{\frac{a n}{n^{2}-1}}$, if n is odd.
Proposed by Pham Kim Hung, Stanford University, USA
O68. Let $A B C D$ be a quadrilateral and let P be a point in its interior. Denote by K, L, M, N the orthogonal projections of P onto lines $A B, B C, C D, D A$, and by $H_{a}, H_{b}, H_{c}, H_{d}$ the orthocenters of triangles $A K N, B K L, C L M, D M N$, respectively. Prove that $H_{a}, H_{b}, H_{c}, H_{d}$ are the vertices of a parallelogram.

Proposed by Mihai Miculita, Oradea, Romania
O69. Find all integers a, b, c for which there is a positive integer n such that

$$
\left(\frac{a+b i \sqrt{3}}{2}\right)^{n}=c+i \sqrt{3}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Dorin Andrica, Babes-Bolyai University, Romania

O70. In triangle $A B C$ let M_{a}, M_{b}, M_{c} be the midpoints of $B C, C A, A B$, respectively. The incircle (I) of triangle $A B C$ touches the sides $B C, A C, A B$ at points $A^{\prime}, B^{\prime}, C^{\prime}$. The line r_{1} is the reflection of line $B C$ in $A I$, and line r_{2} is the perpendicular from A^{\prime} to $I M_{a}$. Denote by X_{a} the intersection of r_{1} and r_{2}, and define X_{b} and X_{c} analogously. Prove that X_{a}, X_{b}, X_{c} lie on a line that is tangent to the incircle of triangle $A B C$.

Proposed by Jan Vonk, Ghent University, Belgium
O71. Let n be a positive integer. Prove that $\sum_{k=1}^{n-1} \frac{1}{\cos ^{2} \frac{k \pi}{2 n}}=\frac{2}{3}\left(n^{2}-1\right)$.
Proposed by Dorin Andrica, Babes-Bolyai University, Romania
O72. For $n \geq 2$, let S_{n} be the set of divisors of all polynomials of degree n with coefficients in $\{-1,0,1\}$. Let $C(n)$ be the greatest coefficient of a polynomial with integer coefficients that belongs to S_{n}. Prove that there is a positive integer k such that for all $n>k$,

$$
n^{2007}<C(n)<2^{n}
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Gabriel Dospinescu, Ecole Normale Superieure, France

