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Abstract—In this paper we investigate the distribution of the Heisenberg evolution of the number operator in
the stochastic limit of the quantum electromagnetic field without dipole approximation. We prove that in this
case the usual Poisson statistics of the free fields has to be replaced by a hypergeometric series whose coeffi-
cients we compute explicitly. The physical effects of the new statistics should manifest themselves in situation
which are not yet in the relativistic regime, but in which the dipole approximation is no longer valid.
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1. INTRODUCTION

It is known (see [1]) that, in the stochastic limit of
strongly nonlinear interactions dramatically new phys-
ical and mathematical features arise, for example, the
breaking of the usual commutation relations and their
replacement by new “entangled commutation rela-
tions,” which are responsible for richer and more inter-
esting statistics, the replacement of usual Fock by
“interacting” Fock space, and the emergence of Hilbert
modules rather than Hilbert spaces as natural quantum
state spaces.

In the present paper this class of phenomena will be
illustrated with the case of the stochastic limit of QED
without dipole approximation. More precisely we
prove that, in this limit, the photon statistics, although
more complex, can still be explicitly calculated and is
expressed by a series whose coefficient can be split into
a product of two terms, one that is a matrix element of
the atomic part and a combinatorial one that is given by
a hypergeometric series (see [2]).

In Section 4 (see formula (1)) we introduce the main
object studied in the present paper, i.e., the vacuum
mean value, denoted V(t, T;), of any function G of the
time—#—evolved number operator, i.e., the photon statis-
tics at time 7. Our main result is condensed in formula (9)
of Section 5, which expresses this distribution as a
hypergeometric series whose coefficients have a simple
expression given in terms of the atomic momentum p
and the generalized (moment dependent) susceptivities
(F4|F,)_ (see formulas (4), (5)).

! The text was submitted by the authors in English.

1.1. Notations

For a nonrelativistic particle with mass m and charge
e interacting with the quantum electromagnetic (QEM)
field with vector potential A, the total Hamiltonian H
has the form

H=H;+Hy,+H,, D
where: (1) H is the free Hamiltonian of the particle
ﬁ2
Hg = —%A + V(x), 2)

(ii) Hp is the free Hamiltonian of the QEM field

Hy = Zﬁm(k)a,jak, (3)

k
(ii1) H, is the interaction Hamiltonian between the par-
ticle and the QEM field which has the form

. 2
g Vil A-A, @)
m 2m

and if we assume that the QEM field considered is not
very strong, then the A - A—term in the interaction
Hamiltonian can be neglected i.e.,

H, = %LA V. )

We have proved elsewhere that effectively, in the sto-
chastic limit, the A - A—term tends to zero.
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It is well known that, for the Hamiltonian Hg, one
has two typical choices:

(a) HS has a discrete spectrum, e.g., Hy =

Z Eb;b;, where b;, b; are independent Fermi cre-

ation—annihilation operators, E; are positive (the sim-
plest case is that of a two-level particle for which H =

Eobyby + E\bib)).
(b) The particle has a continuous energy spectrum.

In the present paper we assume that scalar potential
V is so small that it can be neglected. Thus the “free”
particle Hamiltonian is the Laplacian on full space

hz

(therefore, the energy spectrum is absolutely continu-
ous).

The interaction Hamiltonian can be put in the form

bo (6)

where p, q are the momentum, position operator of the
particle and u,, is a constant depending on the velocity
of light and the Planck constant 7.

In order to obtain useful information on the QEM
field, some approximations are usually introduced to
simplify the problem. Among them, the most widely
used is the so-called dipole approximation, which
replaces the exponential factor e* 9 in (6) by 1.

This approximation is reasonable when the wave
length of the QEM field is larger than the Bohr radius
of the particle. But it is inadequate for super-short
impulses and also for multi-mode photons. Therefore,
an important problem is to study the interaction of the
QEM fields with a particle outside the dipole approxi-
mation. This problem was first investigated in [3, 4] and
in this paper we study again the case (b).

For notational simplicity we neglect the explicit
form of all constants appearing in Hamiltonians and
write

= AR, @)
Hy:=Y o(k)aja, = jm(k)a,j a,dk, 8)
k Rd
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Hys = LY polag ge™ “go(k) +ay ™ *go(k))

k,o

)

=AY pag o™ go(k) +ay ™ 3ok,

where A is the coupling constant; g, is a Schwartz func-
tion which comes from the combination of the disper-

sion function 1/./®w(k) with a cutoff; the polarization
index o runs over a two elements set, e.g., {0, 1}. More-
over, the usual boson commutation relations are
assumed:
[ak, o’ al-:', 0’] = 80, G'S(k - k’) (10)
In the following investigation, we shall also neglect
the polarization index {0, 1}.

1.2. Previous Results on Stochastic Limit of QED

In this section as a way to introduce our notations,
we quickly summarize our previous results on the sto-
chastic limit of QED and we refer to the book [1] for a
systematic exposition and more details.

The evolution operator in the interacting picture is

an

In QED the quantity e/m, i.e., the coupling constant
A is small. The basic idea of the stochastic limit is to
single out the asymptotic behavior of the relevant
dynamical quantities when the time 7 tends to infinity
by the rescaling ¢ and the coupling constant A to zero.
This is equivalent to replace the time parameter ¢
by /A%

It was proved in [3, 4] that, without assuming the
dipole approximation, the limit

it(Hg+ Hy) —it(Hg+Hy+\H))
e .

A
U,():=

)

lim U} =: U(1) (12)

exists and satisfies a new type of quantum stochastic
differential equation of the form

U(1) = 1+ [(dA](F,)(=ip) - (ip)"dA,(F,)

0

—(ip)"(F,|F,) (ip)ds)U(s),

(13)

where

(1) all quantum stochastic processes live on the QED
Hilbert module T, over the momentum algebra % of the
atom,

(ii) P is the momentum W*-algebra L(p) generated
by {e® 'k ke RY},
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(iii) % is defined as the P-linear module generated
by the set,

Fi(t) = [(S.tee™ e  dk,

d

R
(14)
f is Schwartz function on R’ ,
S f(k) =" f(k), (15)

(iv) for each n € N, the module inner (not scalar)
product on (L*(R%) ® Z)®", as a right module on L=(p),
is defined as

(0, ®F,)® (0, ® F)
® ..(0,®F,)|(B®F,)® (B, ®F,)

® (Bn®Fg”)) = H(O(’h! Bh> 2
h

L (R(I)
=1

(16)
x _[dul...dunjdkl...dkn

R’ R’

! urkrkll +1

x [T ce" " Futk) (S, g (ke =7

h=1
V) A,, A: in Eq. (3) are free annihilation and cre-

ation operators on the Free Fock module I" character-
ized by the commutation relations

A(@®F)A"(B®F,) = (o, B)(F|F,),

ik = (17)
(Ff|Fp) = [ du [ ke F(k)(S,8)(K).
Rn Rd
and, if p, denotes the momentum operator on the one-
particle space of the QEM field,
PA (0 ®F)) = A"(0® F, ,)p. (18)

The two relations (7) and (8) characterize the Fock
module as a right Fock module over L*(p) in the sense
that the scalar product

(A0, ® f))...A (0, ® f,)D,
A+(Bl ® gl)A+(Bn ® gn)q)>

computed using (8) and (7) gives exactly the expres-
sion (6).
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The meaning of the limit (2) is the following. One
introduces the so-called collective creation—annihila-
tion operators:

A(S, T, f)
/A
—itkp i 7 19
=) j dzj(e "M@ a,)S f(k)dk, (19
st RY
Ay (S, T, f)
TIA
o . (20)
= j dtj(e”kpe’kq®ak)Stf(k)dk,
sin’ R

where S, T € R with § < T and fis a Schwartz function.

With these notations, the main result of [3, 4] can be
stated as follows: forany n,me N, S,, T}, ..., S, T,, S},
T,,....S,.,T, €R,f,...[f,and Schwartz functions

(A)
tor U e

, f», the matrix element of the evolution opera-

(AL (SH T ) AL(S, T, [P,
(7\,)? + 1 i 1 + 1 1 1 (21)
Ut/;f A?»(Sli Tl’ fl)"'AX(Srm Tm9 fm)q)>

converges, as A —» 0, to the corresponding matrix ele-
ment of the evolution operator U, which solves the limit
equation (3), i.e.,

<A+(X[s],m ® fl)--~A+(X[S”, 7 ® )Y,
UT(I)A+(X[51,T]] ® fi)---AJr(X[S' 71 ® f)'P),

m> tm

(22)

where U means U or U* and ¥ (resp. @) is the vacuum
vector of the QED Hilbert module I" ((resp. the original
Fock space).

A simpler proof of this result was given in [5] and a
diagrammatic approach to the result was developed in
[6, 7].

In the following we will study the same type of con-
vergence for the expectation values of the evolved num-
ber operator.

2. PHOTON STATISTICS:
STATEMENT OF THE PROBLEM

In this paper, we consider the following problem:
given the dynamics defined by the evolution equation (3)
of Section (1.2), determine the photon statistics at time
t under the condition that the field was in the vacuum
state at time 0.
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Since the photon statistics is determined by the
number operator, we introduce a generalized number
operator of the form

ZG(k)a,‘:ak

k

N(G) =) G(k)aja,=1®
k

(23)
~1® jG(k)a,jak

RI

for a sufficiently regular measurable function G:
RY—> R (what we need is that, for any pair of
Schwartz functions f, f', the integral

(FpaTF)) = [dt [dk(FGS. )™ (24)

R R
is a bounded operator on ). Given the operator (23)

as input, we define, for any time ¢ > 0, the forward out-
put process as

A A (A)*
AP @) = Ut(m){l ® zG(k)a,jak] U (25)
k
and the backward number process as
A (A)* + A
AP =0 (1 ® EG(k)akak]U:m)z, (26)
k

which describe the interacting radiation statistics.

3. THE NUMBER DISTRIBUTION
IN THE WCL

The commutation rule between A ;: (S, T, f) and the
number operator N(G) defined by (23) of Section 2 is

HJ G(kya; ak} ALS.T, f)}

d

) I\
= A J' dtJG(k)dk
s’ R

(27)
% J(eitk'peik'q ® [Cl+ + , ,
kA ap)S, f (k") dk

d

R
70}

- _[ dzj(e”"pe’“‘@a,j)G(k)S,f(k)dk.
s’ RY
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Denote by M, the multiplication operator, in momen-
tum representation, by the function G. By the definition
of the unitary group {S,},  (see (5) of Section 1.2) the
operator M; commutes with any S,.

We will investigate the matrix elements of the num-
ber operator N(G) in the collective number vectors, i.e.,
expressions of the form

@, A"VS,, T, £)... A"S,, T, fn)[jG(k)aZakJ

Rzl

XAS("+1)(Sn+l’Tn+l’ fn+l) (28)

X ...Ag('1+m)(Sn+m’ Tn+m’ fﬂ+m)q) ’

where in order to have nontrivial result, we consider 7,
m, and € such that

(i) n+m=2Nis even,

Gi)ee {0, 112N and|{je {1, ....n}:e(j)=0}|>

Hjie {l,...,n}:e(ND=1}; {je {n+1, ..., n+m}:
e=1}>{je {n+1,....,n+m} :e(j)=0}|.

We fix two atomic vectors &, € ¥ and we study

matrix elements of the form

E (@A S, Ty, 1) AL (S, Ty f)

e(n+1)

x [ GWaiadkas" (S, Tyurs fr)  (29)
Rd
X oo A5 (S v Towms Frem) @M,
where

@A) Zzzle(h) <nl2;
(ii) Z’;: &+ h)>ml2;
(iii) n + m = 2N, Z;;”;g(h) = N for some N.

By the definition (9), (10) (see Section 1.2) of Af,
(29) is equal to

OPTICS AND SPECTROSCOPY  Vol. 103 No. 2 2007
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T,/3" T,/
n+m
) jdtl... j dr, ., J' dk,...dk, . ,
S1/7\.2 S’Hmmz R(n+nl)d
n+m
(h)
< TS, 0" (k)
H thfh h (30)
h=1
e(1) e(n) + e(n+1) e(n+m)
x [ kG Olay,..ap"ajaay" V. .ai" "10)
Rd
—itkyp ikiq e(1) =ity Ky P ik, E( )
x (& (e e (e e .

An important step in our investigation is to understand
the second scalar product of (30), i.e., denoting 2N =
n+m,

—it,k,p ik q_e(1)

(G (e e ) (e

—it,k,p ikyq €(2)
e

—itykonP ko E2N) (31)
X...(e e ) M.
The CCR imply that for any x, y,
eixqeiyp - e—ixyeiypeixq (32)

ik;q

and this formula allows one to bring all the & in
(31) near to M. Repeatedly using (32), the scalar product
(31) becomes the product of

2N
3 exp[—i S (—l)g(h)thkhpjn (33)
h=1
and
exp(—i >tk (-1 T
1<h<r<2N (34)

2N
+iy zhkhkhsl,a(,,)].

h=1

By the CCR, the first scalar product in (30) can also be
calculated, and is equal to

2 O~k Ok -ty

ae {r<n:e(r)=0}
Be{r<m:e(n+r)=1}

(35)

e(l) -~ e(n) emn+1) ~+ e(n+m)
XOlay, "...ay,...a;, a kg ik |0},

n+1

P

where 7.
absent.

means that the corresponding object is
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Now we introduce a shift to rewrite the ;s, kjs.
Let us denote

I/l:=ta, V:=tB,
t, if j=12,...,0-1
S (36)
SJ = tj—l’ lf J = OC+1,...,B—1
ti o, if j=B+1,...,2N,
S, if j=1,2,..,0-1
S) = Sj—l’ if j = O(,+1,...,B—1
;s if j=B+1,...,2N,
37
T, if j=12..,0-1
T;:=1T;_, if j=oa+l1,..,p-1
T, 5 if j=B+1,...,2N,
S =fa 8&=1/3
Loif j=1,2,...,0-1
fo A 77 (38)
gj = fj—l’ lf J = O€+1,,I.))—1
fjfza if j=B+1,...,2N,
ki, if j=1,2..,0-1
=<k, if j=a+l,..,p-1 39)
ki_y if j=B+1,...,2N
and
e(j); if j=12.,a-1
€p(J) =1e(j-1), if j=a+1,..,B-1 (40)
e(j-2), if j=Pp+1,...,2N.

With these notations, we know that

P

e(l) —~ e(n) en+1) + e(n+m)
Olay, . ay,...ap ay, = ... k- Ok, 0y
gap(l) €5 p(2N=2) (41)
_ o, B o, B -
= Ola,"" "...a,. [0},
2N
. e(h)
=iy ()" 1k;p
h=1
-2 42)
. €, 5(1) —iuk _+ivk
=iy D" gpp"p,
h=1
1—¢e(r)+e(h)
Y tkik(-1)
1<h<r<2N
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1-¢,g(r)+e,5(h)
o, B o, B
§,2,2,(=1)

= 2
1<h<r<2N-2

-2
+v Y k(1)

h=o

2N-2

+ z s,z,k(=1)
h=B-1

€4, (1) &g, (h)

2N-2

= Y spzpk(=1)

h=o

€0, p(h) €0, p(h)

o-1
+v Y zk(-1)

h=1

(43)

o-1

~uY k(D" ik

h=1

- 3

1<h<r<2N-2

1 —Smﬁ(r) +’3a.p(h)

Srzhzr(_1 )

+ g({shvzh}zzzz, g 0, B, u, v, k) - vkk,

and

2N 2N-2

thkhkh61,s(h) = vkk + 2 shzhzhal,eayﬁ(h)'

h=1 h=1

So, (30) is equal to

(44)

T Ty’

2
S W]
ae {r<n:e(r)=0} s 2 SB/XZ

Be{r<m:e(n+r)=1}

TI°

x [ A(G(S,f)S f X" | ds,

R’ Sy

Ty /A

J ds,n_» J. dz,...dzyn_»

SﬁN,z/hz RN -2

2N-2

x T (So80""" (z1)¢0la

h=1

(45)
10)

fapD)  Eup2N=2)

ZZN 2

2N-2
x( &, exp(—i Z (—I)E“TB(h)zhp— iukp + ivkp]n

h=1

1 _Sa,B(r) +£mﬁ(h)

SrZth(_l )

X exp [—i D

1<h<r<2N-2

2N-2
+l 2 shzhzh6178a,ﬁ(h)J

h=1

X exp(—ig({shvzh};Z]z, g, o, B, u, v, k)).
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Comparing with [4], what is really new is the factor

T {spz },31:]2 , €, 0, B, u, v, k), which according to the
definition, is equal to

B-2 IN-2
v kD B siakn™
h=oa h=B-1
2N-2
_ Z Shth( 1) ap() VZth( 1) €y, p(h)
= h=1 (46)
—uZzhk(—l)S“‘ﬁ(h) - szhk(—l)g“'ﬁ(h)
h=1 h=o
B-2
-3 sak(-D" 4 (v - u)Zzhk( 1y,
h=ao h=1
2N-2

Since there is no z,z,—factor in the term T ({s,2,}, -1

g, o, B, u, v, k), we can repeat the discussion of Sec-
tions 4 and 6 of [4] to find the limit of (45). This gives
the following result:

Lemma 1. Ife€ {0, 1 }fN (this implies that for any
oe {r<n:e(r)=0}andPe {(n<r<n+m: e(r)=1},
€y, defined as before is in {0, 1 }ENﬁz), the limit of
(45), as A — 0, exists and is equal to zero

Now we considerane e {0, 1 }EN (with 2N =n+m).
It is known (see [4] for the proof) that there is exactly
one noncrossing pair partition, say {/,, r, },ivz , of the

set {1, 2, ..., 2N}, such that
{Lhh-y = {je{l,...2N}: &(j) = 0}; w
(b, = {je{l,...2N}e(j) =1}
L<lh<..<ly, l,<r,, VYh=1 .., ,N. (48

Now we introduce some new notions about pair par-
titions.

Definition 1. A pair (o, B) is said to be admissible
for {1, rh},]:]=1 ifthereisanh=1,2, ..., N, such that
o=1,and B =r, Fora given n<2N -1, (a, B) is said
to be the minimum admissible pair of {l,, r, },I,V= 1
around n, if

(i) (o, B) is admissible to {1, P
(iasnB2n+1;
(i) for any for any j =1, ..., N, if [, > o (it follows

form the non-crossing principle that r; < B), then either
risnorlzn+1.

Remark 1. Clearly, foreachNe N,n=1,2,...2N -1

. . . N
and a noncrossing pair partition {l,, r,},_,, there
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exists a unique minimum admissible pair of {1, r;,}, -1

around n.
Lemma 2. For any N € N, e € {0, 1}." which

determines the noncrossing pair partition {[,, rh};l,vz 1
and o, Be{l,2,...,2N} (with a. < B). Define

s j=1,2, .01
1;“4”;: Ly, if j=a+l,...,p-1
2 if j=B+1,..,2N,
(49)
r if j=1,2..,0-1
r;%m;: rioy, if j=oa+l Bl
ri_ if j=PB+1,...,2N.

N . . .
{l(a B), (o B)}h=1 is the noncrossing pair

2N — 2} determined by
if (o, B) is admissible for

partmon of the set {1 2, .,
enpe {0, 1)7°7°
{h, ’”h}/]zvzl-

Proof. A trivial calculation.
Again, thanks to the fact that there is no z,z,-factor in

T({siznbner > 0B, u, v, k)
the contributions to the limit (45) of the factor

€, (1) €, (2N -2)
(Ola."" !

2 RSy )

10)

are (as argued in [4]) zero except for the term deter-
mined by the noncrossing pair partition

(0< By N

(o, B)
{l ’ h=1"

That is, the only possibly nonzero contribution if the
factor

T({spzntnes’s e o B, u, v, k)

could be forgotten and has the form

X

oe {r<n:e(r)=0}
Be{r<m:e(n+r)=1}

X I I X . ,
a pr T o B) [Srw,[s)’ T, B)}
h h

x Jdtdrl...dtN_l j dikdk,...dky_\(FaGS.f5) (k)

(Kis, 7,10 Xisy 7,1

RN RNd (50)
N-1
X H (gl;a,ﬁ>Srhg,’<1u,ﬁ>)(kh)
h=1
OPTICS AND SPECTROSCOPY  Vol. 103  No. 2 2007
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N-1

D tikip + itkp]n

h=1

)

1<x<ys<N-1

x| &, exp(i
X exp[i

where the following changes of variables have been
performed:

TxkxkyX(ly, ry) ( lx)] ’

k= Z (@p> Vx=12..,N-1, 5D

u' = ?\.zu; T:= v—u'/7\.2; s, = 7V251<«,p>;
(52)

Tx = Sr(a,g)—s;/kz, vx = 17 27 [EEY) N - 1

For this, possibly nonzero, contribution, we have also to
consider the role of the factor

2N-2
g({sh'zh}h: 1 €, O, B’ u, v, k)

This consideration does not eliminate our unique possi-
bly nonzero, term only if under the changes of variables

(52), the factor J ({shzh}h_l , €, 0, B, u, v, k) could be

represented as a function of 7, &, {T,, k, }

x=1"-

Lemma 3. The quantity T({syz,}1~7 . € o, B, u,
v, k) can be represented as a function of T, k,
{1, kx}iv= L if (0, B) is the minimum admissible pair of
{l, rh},]:]= . around n.

Theorem 1. The limit, as A — 0, of (30) exists and
is equal to

N-1

Kis, 70 Xisy 140 H < X[S'l_(a. T | X[S;(a, T B)}>
h=1 h h h h

x jdmdrl...drN_l j dikdk,...dky_\(foGS.f5) (k)
RN RNd
N-1

x [T (805,80 (ki)

h=1

x{ &, exp [i

X

1<x<ys<N-1

(53)

N-1

Y kb + itkpjn

h=1

Jo—1
D Thkhk],

h=h

X exp [i

where {c, B} = {/, , r,,} is the minimum admissible

TxkxkyX(l}., r))(lx)] €Xp [l

. N Jo . .
pair of {1}, r;}, -, around n; {l;, ry}, -, is the restric-
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tion of the noncrossing pair partition {I,, r,, };lv _, onthe
set {or, v+ 1, ..., B}.

Theorem 2. As A —= 0, the limits of the forward
(36) and the backward (1I) output number operators

exist. Moreover, the limit of the forward output number
operator (36) is equal to

A1) = U (1 @ N(T))U(1) (54)

and the limit of the backward output number operator
37 is

A(t) =U@) (1 ®N(T;)U*(1), (55)

where N(Ty,) is the usual number operator on the Free
Fock module T, which is defined

foranyne N,ee€ {0, 1}, suchthatVk=1,2,...,n,

Hji=kk+1,..,n:e()=1}
>{j=kk+1,...n:e()=0},
. + (56)
N(To)A (X ®F;)...A (X, ®F;)
=AT (N ®TGF,)...A (X, ® F,),
and
N(T;)B = BN(T;) := N(BT;), VBe P. (57)

Remark 2. Notice that in (40), we have e*™ but not
e"™®_since the number operator also contributes a fac-
tor e™P,

4. MEAN VALUES
OF OUTPUT NUMBER OPERATORS

Denote, for any atomic state & (¥ being the vacuum
state after the stochastic limit),

V(t, To) = (&, (¥, (U*O)(1 ® N(Tp))U)Y)<),
(58)

using the techniques of quantum stochastic calculus on
the QED module [8], one has

V(t,Tg) = (&Y, 2 z Jd €<1>J‘d €(2)

n=0¢c 10,+1}"0

.

X ... j da; ™ (1® N (Tg)) (59)

xz Y jdb“”jdb“(” jdb"“’”\}’

m=0ce {0,£1}"0

OPTICS AND SPECTROSCOPY  Vol. 103

ACCARDI, LU

where
—dA,(F)(=ip), if =1
da, =1 (—ip)'dA,(F,), if €= -1
X.du, if € =0,
(60)
dAL(F)(-ip), if o =1
db; =1\ _(~ip)'dA,(F,), if o =-I
X du, if o=0,
and
= —(=ip) (F,|F,) . (-ip) = —p’(F,|F,)_. (61)
= —(~ip)(F,|F,)_(~ip) = p'(F,|F,). (62)
Lemma 4. In (59) the sum zee{o,il}” (resp.
ZGE {o,il}’”) can be replaced by the sum zee .

resp.
( P Zce{o,+1}"’)

Proof. If e(k) = +1, then the operator dafk ® -

—dA;: (Fp)(—ip) must act on the vacuum state which

gives zero. So we can replace the sum 2 , by
ee {0,%1}

the sum z oy Similarly, the sum Z

ce {0,+1}"

can be replaced by the sum 2

ce {0, 411"
Lemma 5. Denote
n m(t TG? €, G)

f

t [
W, [da; " das”... [ dai"(1® N(T¢)) (63)
0 0 0

S -1

j dbc(l)jdbc(z) j by " )E).

Then
(1) Vo.u(t, Tg; €, 0) and V, (1, Tg; €, ©) are zero;
(i) forn,m21,V, ,(t, Tg: €, 6) = 0 if

(1+ Ze(h)] +(1- Zo(h)J =0
h=1

h=1

(64)

is not verified.

Proof.

(1) In the term V, ,(#, T;; €, ©) (resp. V, o(t, Tg; €, O),
we have always a quantity like (¥, (1 ® N'(Ty))y) (resp.

No. 2 2007
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(7, 1 ® N(Te)W)) with y € T. Therefore, V, . (t, Tg;
€,0)=V, (t, Ts €, 0)=0.

(ii) If (64) is not true, then we have, in the expression
Vn, m(t’ TG; €, G),

(iia) more dA less dA™, or

(iib) more dA* less dA, or

(iic) 7'sdA (in the left hand side of the number oper-
ator) and r's dA* (in the right hand side of the number
operator) with r > 2.

In the cases (iia) and (iib), we have always an anni-
hilator acting on the vacuum vector, which gives zero.
In order to treat the case (iic), denote the time variables

of the r’s dA (resp. the r’s dA*) as 1, > ... > 1, (resp.

s; >...>s; ). Since we are considering the vacuum

state, in order to be different from zero, all operators
must be “used” to produce inner products among them-
selves (by mean of the Ito formula). By the noncrossing

principle, denote & := h,, j := j;; the annihilator dA, (g)

should be paired with the creator dA:f (F,). Thus, by
the Ito formula, for such »n, m and €, o,

Vm(t, Tg; € 0)

h

t 3 Tho2 Thot n—h
._ e[ ; €2 e(h-1) Iy
=& ¥ [da)" [da;... | da}" j(n_h)!
0 0 0 0

Si o Sio

jj“ds,-l [ ipyaa, (£,

0 0

xjdsl... (65)
0

V(t, Ty) = z 2

nom=11<h<n, 1<j<m

275

XX (1@ N(T)X! ™ dAT (F)(-ip)

Ty

o(j+1) o(m)
x[ap]0 [ db] e )e).
0 0

By the Ito formula and the property of the number
operator, we know that, for any choice of the functions
M, (1), M,(t), one has

b_18j_

[ [ Mi@)=ip)yaa,(Fy
0 0

X X1 @ N(Te) X! dA[(F)(-ip)My(s))

= [ M@ (F X TXT F)(-ip)
0

(66)

X M,(T)dr.

So, for any x, y < r, #, should be larger than s;
since 7, >1T>s; . The consequence of this fact is that
dA, commutes essentially with dA:j . In the stated

A ,

case, we have at least one annihilator acting on the vac-
uum vector giving zero.

Theorem 3. In the notations (61), (62) one has

(&, X, (=ip) (Fo| X\ "TeX! "' F ) (~ip) X" ')

Denote, for eachn,m, Ne N, n,m=>2,

t 31 Ihoo t 1 Sj-2 i (67)
jdtljdtz... Jdt,,_ljdsljdsz... J ds;_\(ty_y~s; )"
% 0 0 0 0 0 0
(n+m+1—h—))n—h)(m—j)!
(F| X\ "ToX! " 'F ) (-ip) X" (69)

t 1 [

Com(t, N) = jdrljdrz... j dtnjdsljdsz
0

S

0 0 0 0 (68)
Sm-1
N
X... J ds,(t,ns,) ,
0
then
h-1 . +
Vi Te) = Y, Y, X{(=ip)
nm=11<h<n, 1<j<m
OPTICS AND SPECTROSCOPY  Vol. 103 No. 2
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Choy joi(tbn+tm+1-h—j)
(n+m+1-h-j)(n-k)!(m-j)

Remark 3. The forward output number operator can
be investigated similarly. In fact, if in the above discus-
sion we exchange X, with X _, the forward output oper-
ator is obtained. In the following section we will com-
plete our calculation of the expectation value (58) of
Section 4 by explicitly computing the coefficients

Cm, n(t’ N)
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5. THE EXPLICIT FORM and, thus,
OF THE ¢, ,(t, N) ,
v+1
From the above discussion, we know that in order to I,(v) = J.dsﬁr -
determine completely the output operators, we have to ) v+l

determine the explicit form of the coefficients {c,, ,(z,
N)}. This section is devoted to this purpose.

Lemma 6. The coefficients c,, ,(t, N) (cf. (11) of

Section 4) satisfy the relations

Cpm(t,N) =c, (t,N), Vn,me N, (70)
d
Ecn,m(ts N) = Cn—l,m(ta N)+Cn,m—l(t’ N)’

N (71)

6 ON) =0, e Ny = N

n,m\v» - Y n, O\ % - (N+n)"
. (t N) _ (I’l+ l)fllN+n+l

) = N D (N+2). (N+n+1)  (72)

n=2.

Proof (70) and (71) are obtained by direct calcula-

tion. The equality (72) can be obtained as follows. First

notice that

cn,](t’ N) = Cl,n(ta N)
t S Sn—1 t
= jds,fdsz... j dsnjdt,(tl As)N.
0o 0 0 0
Denoting

j dsds’ ...ds, = I(k),

t2s52...25,

then one has

k+m k‘
1,(k) =1 Trml’ (73)
Proof. In fact,
sk+l
_ m—1
Ly = [ edsds,
t285,2...25,_,
=1 (k+1)L =1 (k+2);
ool k+1~ "m? (k+2)(k+1)
k!
= ... = Imia(k-'-a)(—k—l—&,—)_!
k!
= Il(k+m_1)———_(k+m—l)!

Consider that the integral (73) follows
1 s t
Idtl(tl As)Y = jdt,tfv + sN.[dtl
0 0 K

N

N+1 N+1
=1 +sN(t—s) =23 stV
N+1| N+1
_ SN+1( 1 _1)+SNI
a N+1
___N SN+1+SNt_SN(t_ N s)
T ON+1 B N+1°)

This implies that, form m > 2,

Ca(t,N) = jdsldeZ...
0

m—1
N
J ds, (s, NS,
0 0

N N N+1
= j ds,...dsm(smt—msm )
125, 2...25,

_ttN*’"N!_ N wnetsm (N+1)!
- (N+m)! N+1 (N+1+m)!
N+m+1 N! |: _ N(N+1) :|
(N +m)! (N+1+m)(N+1)

N+m+1 N‘
(N +m)!

[N2+N+N+1+mN+m—N2—N}
(N+1+m)(N+1)

N+1+mN+m
- ('”)[(N+1+m)(N+1)}

_ Nemed N! [(N+1)+m(N+1)}
a (N+m+1)! N+1

N+m+1 N'
= —_— 1).
NimzDitth
In conclusion, ¢ ,(t, N) is given by formula (72).
Therefore,

N+2 N!
¢, (t,N) = 2t ~——x,
116 N) (N +2)!
OPTICS AND SPECTROSCOPY Vol. 103 No. 2 2007
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N+1 N!

N1 - Corll N+ ot N).

atcl’ l(t’ N) = 2t

Lemma 7. c, (1) has always the form

N!
"N+ n+m)!

N+n+m

C.n(t,N) =a (74)

Proof. From (71), one obtains that

t
Cn,m(t? N) = J.Cn— l,m(t]’ N)dtl
’ (75)

1

277

By (72), the first term of the right-hand side of (75)
is equal to

th Im-1 tN+n
nm
” J.(N+1)(N+2) Ny i
N+n+m
nt

TN+ D(N+2)...(N+n+m)

Moreover, the second term of the right-hand side of
(75) depends only on n — 1, therefore (75) gives an iter-
ation formula to determine {c, (1)}, < N-

Lemma 8. The coefficients (a,, ,) in (74) have the

+ [qmoi (0, Nyd,. form
0
By applying again (71) to the second term of the right- a = (ﬂ+m) _ (n+m)! (77)
hand side of (75), we find that mn m n!m!
’ Proof.
Cn,m(t7 N) = J.Cn—l,m(tl’ N)dtl
0 a,, = ag +a; =2,
th a2,1=al,1+a2,0=2+1=3,
+chn—l,m—l(t2’ N)dtldtZ
00 a3’1=az’1+a3,0=3+1=4,
th t an’l=n+1=(n-{l),
+.[.[Cn,171—2(t2’ N)dtldtZ = .[Cn—l,m(tb N)dtl
0 Ayo = Ay 1 2%a, = a, 1 ,+(n+1)
th n+1
[ eurmor (b Nt =@, gp+m+(m+1) = a, 55 k
o (76)
tti1t2
=a, ;,+(n-1)+ Y k=a, 5+ k
+ J-J-J-Cn— l,m—Z(tS’ N)dtldtZdt3 2 k§1 : k ;1
000 n+l
= = an (12+ 2 k,
tiih n—o+2
+J‘JJ‘C”J"73(I3’ N)dtldIZdt3 T o = 17 27 s, N — 19 n-(n-1),2 — al,2 =4 = 3
000
n+1 n+1
tt Tn—1 a”2_3+zk:zk
jj j Cuolty)dty...d,, SR
12(n+1)(n+2) = (”’2“ )
mo1th  fe Now suppose that
+ZJ-J- _[ n-tm-n(Tpe )ty dly . L _(n+o
h=000 no o ’
OPTICS AND SPECTROSCOPY  Vol. 103 No.2 2007



278

then

_ n+ao
an,oc+1 - an—l,(x+1 +

o
+
o

n-1+a n
= an—2,(x+1+( o )+(

. k+o
Y (59

k=n-1=m-2)+1

_ n-3+a . k+o
_an—3,oc+l+( o )+ 2 ( o )

k=(n-2)+1

n
k+ o
= an—3,<x+1+ 2 ( o
k=(n-3)+1
n

k=n-B)+1

= an—2,oc+l +

B

.= an—B,OL+1 +

k+oc)
o

we stopatn—B=1< B =n- 1, which gives

n
_ k+ao
an,oc+1 - al,oc+1+ z o
k=2

n n

_ (lza)Jrz(k-&(x) _ Z(k&a)

So the induction is true if
zn: k+o _ n+l+o
o o+1 J°
k=1

By induction this is equivalent to

n+ao n+o n+o+1
+ = ,
(oc + 1) ( o ) ( oa+1 )
which is identically satisfied. In fact the left-hand side
of the identity

(e20)+ ()= G

n!
(k+1D)!(n-k-1)!

is equal to

+ n! n! [ 1 + 1 }
K(n-k)'k!n-k-D'lk+1 n-k

:(nqﬁif%ﬁéé}:(u)[

_ (n+1)
T k+ D)!(n—k)!

In conclusion, (76) holds.

n+1
(k+1)n—k}

_(n+1
T \k+1)

ACCARDI, LU

Combining Lemma 8 with (74) we obtain
_(n+m N!
Cn,m(t) - ( m )(N+n+m)‘
N!
(N+n+m)!

_ 1 N+n+m _ltN+n+m
nlm!\ n+m )

N+n+m

_ (n+m)!
~ nlm!

N+n+m

Therefore, using the notation:
D(h, j, n, m)
h-1, . n—h -1 =)
= X, (=ip) (F| Xi ' TeX! F)(=ip) X",

we find

V(t,Tg) = ), Y, Ok jn,m)

nom=11<h<n 1<j<m
Chorjabn+tm+1-h-j)
(n-h)!(m-H(n+m+1-h-j)

=YY ®(h, j,n,m)

nm h,j
% 1
) m-n+m+1-h—))
% 1 (n+m—1)_ln+m+1—h—j+h—1+j—1
-G\ h+j-2

. —1\! —h—j
= Xy jmm(3 30 ()

n,m h, j
hej-2) 1
X( ho1 Lh+j—2ﬂt

and from the identity

(h+j-2)!(n+m+1-h-j)!
(n+m-1)!

n+m-1

><(h+j—2) 1
h=1 Jin+m—h—j+DI(h+j—2)!

_ 1
T (n+m-1)0

we finally obtain

VLT = Y, Y Y X (-ip)’

mn=1h=1j=1

X (F | Xy "ToX! " F)(-ip) X"~ (78)
L (n+m—h—th+j—2)
(n+m-1)I\ n-h h=1 )
OPTICS AND SPECTROSCOPY  Vol. 103  No. 2 2007
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