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A Feynman formula is a representation of the solu-
tion to the Cauchy problem for an evolution partial dif-
ferential (or pseudodifferential) equation in terms of the
limit of a sequence of multiple integrals with multiplic-
ities tending to infinity. The integrands are products of
the initial condition and Gaussian (or complex Gauss-
ian) exponentials
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 [5]. In this paper, we obtain Feyn-
man formulas for the solutions to the Cauchy problems
for the Schrödinger equation and the heat equation with
Levy Laplacian on the infinite-dimensional manifold of
mappings from a closed real interval to a Riemannian
manifold. The definition of the Levi Laplacian acting
on functions on such a manifold is obtained by combin-
ing the methods of papers [3] and [7]. In the former,
Levi Laplacians in the space of functions on an infinite-
dimensional vector space were considered, and in the
latter, Volterra Laplacians in the space of functions on
the above infinite-dimensional manifold were exam-
ined. This definition of a Levi Laplacian is equivalent to
that given in [2], but it is better adapted for derivation
of Feynman formulas.

The main idea of the proof of the central result of
this paper is reducing the derivation of Feynman formu-

 

1

 

For the heat equation, these multiple integrals coincide with inte-
grals being finite-dimensional approximations to integrals with
respect to the Wiener measure. For the Schrödinger equation,
such integrals coincide with those used in the definition (which
goes back to Feynman himself) of sequential Feynman path inte-
grals. Therefore, the limits of multiple integrals in the Feynman
formulas are integrals with respect to the Wiener measure in the
former case and (sequential) Feynman path integrals in the latter
case, and in both cases, the Feynman–Kac-type formulas are con-
sequences of the Feynman formulas being discussed.

 

las for equations on a manifold to the derivation of sim-
ilar formulas for equations on a vector space. For equa-
tions on finite-dimensional manifolds (containing the
usual finite-dimensional Laplacians), this approach was
suggested in [4] and developed in [6]. The Riemannian
manifold under consideration was embedded in a suit-
able Euclidean space (this can always be done by the
Nash theorem), and the technique of surface measures
developed in [4, 7] was applied. An essential point in
the proof was the application of the Chernoff formula
(generalizing the Trotter formula), which is related to
obtaining representations of solutions to evolution
equations on manifolds (and to representations of solu-
tions to equations on vector spaces in terms of path
integrals in the phase space [5]) in the same way as the
Trotter formula is related to representations of the solu-
tion to the simplest Schrödinger equation with potential
in terms of path integrals in the configuration space.

The remark made in the footnote means that the
results obtained in this paper contain the construction
of a Levy Brownian motion on the set of paths on a
(compact) Riemannian manifold (cf. [9, 8, 3]). Note
also that the interest to equations with Levy Laplacians
is largely caused by the fact that the Yang–Mills gauge
fields are harmonic functions for the Levy Laplacian
(see [1] and references therein).

The exposition in this paper is formal in part; some
analytical assumptions are omitted.

1. PRELIMINARIES AND NOTATION

For any metric space 

 

E

 

 and a number 

 

a

 

 > 0, 
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([0, 
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],

 

E

 

)

 

 denotes the set of all continuous mappings from the
interval [0, 

 

a

 

] to 

 

E

 

 endowed with the uniform metric.
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x
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E
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x
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], 

 

E
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 is the subspace of the met-
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 formed by the functions taking the
value 

 

x

 

 at zero. If 
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 is a Riemannian 
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k
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infinite-dimensional manifolds of 
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-times continuously
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differentiable functions from 

 

C

 

([0, 

 

a

 

], 

 

E

 

)

 

 and from

 

C

 

x

 

([0, 

 

a

 

], 

 

E

 

)

 

, respectively. We assume that these mani-
folds are endowed with the (metrizable) topologies of
the uniform convergence of functions and their deriva-

tives up to order 

 

n

 

. The space 

 

([0, 

 

a

 

], 

 

E

 

),

 

 where

 

x

 

 

 

∈ 

 

E

 

, is defined as follows. Let 

 

E

 

 be a Riemannian

 

C

 

j

 

-submanifold (

 

j

 

 

 

≥

 

 

 

2

 

) in 

 

�

 

k

 

, and let 

 

([0, 

 

a

 

], 

 

�

 

k

 

)

 

 be
the space of all 

 

�

 

k

 

-valued absolutely continuous func-
tions on [0, 

 

a

 

] vanishing at zero and having square-inte-
grable derivatives with the (Hilbert) norm defined by

 

||

 

g

 

||

 

2

 

 = 

 

g

 

'(

 

t

 

)

 

dt

 

. For every 

 

z

 

 

 

∈ 

 

E

 

, let 

 

g

 

z

 

 

 

∈ 
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([0, 

 

a

 

], 

 

E

 

)

 

be the function defined by 

 

g

 

z

 

(

 

t

 

) = 

 

z

 

 for 

 

t

 

 

 

∈ 

 

[0, 

 

a

 

]

 

. Then,

 

([0, 

 

a

 

], 

 

E

 

) = ( ([0, 

 

a

 

], 

 

�

 

k

 

) + 

 

g

 

z

 

) 

 

∩ 

 

C

 

([0, 

 

a

 

], 

 

E

 

)

 

.
This definition does not depend on the embedding of 

 

E

 

into 

 

�

 

n

 

 [on the space 

 

([0, 

 

a

 

], E) [which contains �

([0, a], E) for n ≥ 1], there is the natural structure of
a Hilbert manifold generated by the Hilbert space struc-

ture on ([0, a], �k), but we do not use it in what fol-

lows]. The space ([0, t], ( ([0, a], G)), where

q ∈ ([0, a], G), is defined similarly.

Let E be a Banach space, and let H be its Hilbert
subspace; this means that H is a vector subspace of E
and the canonical embedding of H into E is continuous.
If B is a continuous positive definite operator on H, then
the cylindrical Gaussian measure on E with (H-) corre-
lation operator B is defined as the image (under the
canonical embedding of H into E) of the cylindrical
Gaussian measure on H with correlation operator B.
Under the same assumptions, a (cylindrical) Wiener
process on [0, a] taking values in E, or a (cylindrical)
Brownian motion in E (defined on [0, a]), starting at
x ∈ E and having correlation operator B is defined as a
(cylindrical) homogeneous Markov process in E that
starts at x ∈ E, is defined on [0, a], and has transition
probability PB(t, x, ·) = PE(t, ·) + x, where t > 0, x ∈ E, and
PE(t, ·) is the cylindrical Gaussian measure on E with
H-correlation operator tB and mean zero. The cylindri-
cal probability on C([0, a], E) generated by this process
is called a Wiener measure with (H-)correlation opera-
tor B; it can be assumed to be concentrated on Cx([0, a],
E). Moreover, P(·, ·, ·) is the integral kernel of the solv-
ing operator of the Cauchy problem for the heat equa-
tion on E with the Laplace operator ∆B defined by
(∆Bg)(x) = tr(Bg''(x), where the symbol g''(x) denotes
the second derivative (along H) of the function g and tr
denotes the trace of the corresponding operator on H
(∆B is sometimes called the Volterra Laplacian gener-
ated by B).
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2. LAPLACE OPERATORS

In this section, we define the Laplace–Volterra oper-
ator ∆V and the Laplace–Levy operator ∆L on the spaces

of functions on ([0, a], G), where x ∈ G and G is
a Riemannian manifold (although the main purpose of
this paper is studying equations with Levy Laplacian, it
is useful to define both operators simultaneously). In
what follows, we assume that the manifold G is either
the entire Euclidean space or a compact space.

Suppose that G is a Ck-submanifold with k > 2 of

dimension d in �n, F is a function on ([0, a], G),

and ψ ∈ ([0, a], G). For each t ∈ [0, a], let { ,

, …, } be an orthonormal basis in the space tan-
gent to G at ψ(t) obtained by translating some fixed (not
depending on t) orthonormal basis in the space tangent
to G at x along ψ([0, t]). For each r = 1, 2, …, d, we use

 to denote the geodesic passing through ψ(t) in the

direction of the vector . Suppose also that { } is an

orthonormal basis in ([0, a], �1). For integers k = 1,
2, …, d and p ∈ � and a number α ∈ � with suffi-

ciently small absolute value, let  ∈ ([0, a], G)

be the function defined as follows: (t) is the ele-

ment of the geodesic  such that the distance from this

element to ψ(t) along  equals |α (t)| and the direc-

tion from ψ(t) to this element coincides with that of 

if α (t) > 0 and is opposite to that of  if α (t) < 0.

For the same k and p, we define a real function  of

the argument α by the equality (α) = F( ).

Definition 1. A function F: ([0, a], G) → � is
contained in the domain dom∆V of the Laplace–Volt-
erra operator ∆V if and only if, for each function ψ ∈

([0, a], E), the series (0) converges and

the function ([0, a], E) � ψ � (0) admits

a continuous extension over the space ([0, a], G).
If F ∈ dom∆V, then ∆VF is this continuous extension.

Remark 1. A Brownian motion (Wiener process) in
C([0, a], G) starting at q ∈ C([0, a], G) can be defined
as a homogeneous Markov process in Cq(0)([0, a], G)
starting at q with transition probability coinciding with
the Green measure of the heat equation with Laplace–
Volterra operator ∆V . Let �q, t be the corresponding
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Wiener measure on Cq([0, t], Cq(0)([0, a], G)). It can be
shown that the measure �q, t coincides with the surface
measure generated by the (Wiener) measure on Cq([0,
t], Cq(0)([0, a], �n)) that is a translation of the Wiener

measure on C([0, t], C([0, a], �n)) whose ([0, a],
�n)-correlation operator coincides with the identity

operator on ([0, a], �n).

In what follows, we identify the spaces C([0, a1],
C([0, a2], G)) and C([0, a1] × [0, a2], G).

Suppose that { } is an orthonormal basis in L2([0,

a], �1), { } ⊂ C2([0, a], �1), and ϕ ∈ ([0, a], G).
For integers k = 1, 2, …, d and p ∈ � and a number
α ∈ � with sufficiently small absolute value, we define

a function  ∈ ([0, a], G) as follows: (t) is

the element of the geodesic  such that the distance

from ϕ(t) (along ) to this element equals |α (t)| and
the direction from ϕ(t) to this element coincides with

that of  if α (t) > 0 and is opposite to that of  oth-

erwise. For F: ([0, a], G) ∈ �, we define a func-

tion : � → � by setting (α) = F( ).

Definition 2. A function F: ([0, a], G) → � is
contained in the domain dom∆L of the Laplace–Levy

operator ∆L if and only if, for each function ϕ ∈ ([0, a],

E), the limit (0) exists and the

function ([0, a], E) � ψ � (0)

admits a continuous extension over the space ([0,
a], G). If F ∈ dom∆L, then ∆LF is this continuous exten-
sion.

Remark 2. For G = �k, the definitions of the Levy
and Volterra Laplacians given above coincide with the
classical definitions (see, e.g., [3, 8, 9] and the refer-
ences therein).

3. FEYNMAN FORMULAS

Let ρ be the distance on a Riemannian manifold G
generated by its Riemannian structure, and let scal(q)
and m(q) be the scalar and (vector-valued) mean curva-
tures of the manifold G at the point q ∈ G. We assume
that G is a Riemannian Ck-submanifold (k ≥ 3) of some
Euclidean space with norm ||·||.

W2
1

W2
1

en
L

en
L Cx

2

ϕα
k p, Cx

1 ϕα
k p,

ck
t

ck
t ep

L

zk
t ep

L zk
t

W2 x,
1

Fk p,
ϕ L, Fk p,

ϕ L, ϕα
k p,

W2, x
1

Cx
2

1
dr
----- Fk p,

ϕ L,( )''
k 1= p, 1=

k d= p r=,

∑
r ∞→
lim

Cx
2 1

dr
----- Fk p,

ϕ L,( )''
k 1= p, 1=

k d= p r=,

∑
r ∞→
lim

W2 x,
1

Consider the nonnegative functions pR, QR, pE, and
QE on [0, ∞) × G × G defined by

In what follows, we assume that a, t > 0; F is the
function on C([0, t] × [0, a], G) defined by F(g) =

(g(t1, t2))dt1dt2, where V is a continuous function

on G; and q ∈ ([0, a], G) [thus, q(0) = z].

Proposition 1. On the space ([0, t], ([0,

a], G)), there exists a cylindrical probability  (we
call it the Levy–Wiener probability) for which

where qn, 0 = q .

The proposition obtained from Proposition 1 by
replacing QR by QE is also valid.

Remark 3. In Proposition 1 and the subsequent

propositions, the choice of ([0, a], G) as the
domain on which the solutions are defined and the cor-
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responding choice of the domain of integration are not
very essential (cf. [8]).

The following theorems are concerned with Feyn-
man formulas for the semigroups determining solutions
to the Cauchy problems for the heat equation and the
Schrödinger equation with Levy Laplacian on the space

of functions on ([0, a], G). The methods and
results of [7] make it possible to obtain similar results
for the Volterra Laplacian.

Let Φ be the function on C([0, a], G) defined by

and let ψ be the function on C([0, a], G) defined by

where VΦ and Vψ are continuous functions on G; sup-

pose that f = – ∆L f + Φf for any function f :

([0, a], G) → �1. In Theorems 1 and 2 and Propo-
sitions 2 and 3 of the next section, it is assumed that the

Cauchy problem for the equation  = – f in [0, ∞) ×

([0, a], G) with initial data (0, ψ) has a solution;
we denote the value of this solution at (t, q) ∈ (0, ∞) ×

([0, a], G) by ψ(q). In Theorem 3, it is

assumed that the Cauchy problem for the equation i  =

f in [0, ∞) × ([0, a], G) with initial data (0, ψ)
has a solution; we denote the value of this solution at

(t, q) ∈ (0, ∞) × ([0, a], G) by ψ(q).

Theorem 1. If (t, q) ∈ (0, ∞) × ([0, a], G), then

where qn, 0 = q .

This theorem is derived from Proposition 1 with the
use of the Chernoff theorem.

The proof of the following theorem uses Proposi-
tion 1, the bounds for integrals over Riemannian mani-
folds obtained in [4], and the Chernoff theorem.
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the following equalities hold in these equalities,
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In what follows, we assume that  = .
Theorem 3. Suppose that VΦ and Vψ are the restric-

tions to G of functions (denoted by the same symbols)
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If the Riemannian curvature tensor admits an ana-
lytic extension over this domain, then (under the same
assumptions)

 here, qn, 0 = q .

This theorem is obtained from Theorem 2 by pass-
ing from the Schrödinger equation to the heat equation

with the use of the change q → q.

4. ADDITIONAL REMARKS

In this section, we suggest yet another method for
obtaining approximations of the semigroups generated
by the Levy Laplacian. It is based on approximating
Levi–Wiener processes by finite-dimensional Brown-
ian motions and substantially differs from that
described above. We consider the Laplace–Levy equa-

tion first in the space of functions on ([0, a], �n),

and then in the space of functions on ([0, a], G).

Suppose that {ek} is an orthonormal basis in the
space L2([0, a], �n) such that {ek} ⊂ C2([0, a], �n); sup-
pose also that, for each p ∈ �, Sp denotes the linear

span of the set {ek: k = 1, 2, …, p} and  denotes the
Brownian motion in Sp starting at x ∈ Sp whose transi-

tion function has correlation operator Id, where Id is

the identity self-mapping of Sp. Finally, suppose that

 with t > 0 is the Wiener measure on Cx([0, t], Sp)

generated by the Brownian motion  and f = ∆Lf +

VΦf for any function f : ([0, a], �n) → �1.
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∫=

- n
p
---a⎝ ⎠

⎛ ⎞

i

W2
1

W2 x,
1

bx
p

1
p
---

Wx t,
p

bx
p ĤL

1
2
---

W2
1

Proposition 2. If (t, q) ∈ (0, ∞) × ( ([0, a], G)),
then

where q(p) is the orthogonal projection in L2([0, a], �n)

of the element q ∈ ([0, a], �n) on Sp.

The proof uses approximations of the Levy Lapla-
cian by finite-dimensional Laplacians and the perturba-
tion theory of semigroups.

The following proposition is an analogue of Propo-

sition 2 for functions on ([0, a], G); the symbol

 in this proposition denotes the operator defined
before the statement of Theorem 1.

Let SG be the linear span of the set ([0, a], G)
in the space L2([0, a], �n), and let {an} be an orthonor-
mal [in the metric of L2([0, a], �n)] basis of SG consist-
ing of functions from C2([0, a], �n) such that, for each
p ∈ �, the dimension of the intersection of the linear

span  of {an: n = 1, 2, …, p} with C2([0, a], G) equals

p. Suppose that , where q ∈  ∩ C2([0, a], G) is the

Brownian motion in  starting at q whose transition

function has correlation operator Id, where Id is the

identity self-mapping of the space ; by , where

t > 0, we denote the Wiener measure on Cq([0, t], )

generated by the Brownian motion . Finally, let

 be the probability measure on C([0, t], ([0,

a], G)) concentrated on the set Cq([0, t], ) ∩ C([0, t],

([0, a], G)) and coinciding on this set with the sur-

face measure [4] generated by the measure .

Proposition 3. If (t, q) ∈ (0, ∞) × ( ([0, a], G)),
then

where q(p) is the orthogonal projection [in L2([0, t],

�k)] of the element q on .

W2
1

e
tĤLψ q( ) Φ ξ τ( )( ) τd

0

t

∫⎩ ⎭
⎨ ⎬
⎧ ⎫

exp

Cp q( ) 0 t,[ ] Sp,( )

∫p ∞→
lim=

× ψ ξ t( )Wq p( )
p dξ( ),(

W2 x,
1

W2 x,
1

ĤL

W2 x,
1

Sp
G

bq
p Sp

G

Sp
G

1
p
---

Sp
G Wq t,

p

Sp
G

bq
p

WG p t, ,
p W2 x,

1

Sp
G

W2 x,
1

Wq t,
p

W2 x,
1

e
tĤLψ q( ) Φ ξ τ( )( ) τd

0

t

∫⎩ ⎭
⎨ ⎬
⎧ ⎫

exp

Cq p( ) 0 t,[ ] Sp
G,( )

∫p ∞→
lim=

×   ψ ξ t ( )( ) W G q p ( ) t , , 
p ξ d ( ) ,

Sp
G
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A similar proposition is valid for the semigroup
determining the solution to the Cauchy problem for the
Schrödinger equation with Levy Laplacian.

 

Remark 4.

 

 Proposition 3 can also be regarded as a
definition of a (cylindrical) Levy–Wiener probability
on the space of mappings from the interval [0, 

 

t

 

] to

 

([0, 

 

a

 

], 

 

G

 

)

 

 [or to 

 

([0, 

 

a

 

], 

 

G

 

)

 

].

REFERENCES

 

1. L. Accardi, P. Gibilisco, and I. V. Volovich, Rus. J. Math.
Phys. 

 

2

 

, 235–250 (1994).

2. L. Leandre and I. V. Volovich, Infin. Dimens. Anal.
Quantum Probab. Relat. Top. 

 

4

 

 (2), 151–172 (2002).

3. L. Accardi and O. G. Smolyanov, Dokl. Akad. Nauk 

 

384

 

,
295–301 (2002) [Dokl. Math. 

 

65

 

, 356-362 (2002)].
4. O. G. Smolyanov, H. von Weizsaecker, and O. Wittich,

Canad. Math. Soc. Conf. Proc. 

 

29

 

, 589–602 (2000).
5. O. G. Smolyanov, A. G. Tokarev, and A. Truman, J.

Math. Phys. 

 

43

 

, 5161–5171 (2002).
6. O. G. Smolyanov and A. Trumen, Dokl. Akad. Nauk

 

392

 

, 174–179 (2003) [Dokl. Math. 

 

68

 

, 194–198 (2003)].
7. O. G. Smolyanov, H. von Weizsacker, and O. Wittich,

Dokl. Akad. Nauk 

 

402

 

, 316–320 (2005).
8. L. Accardi and O. G. Smolyanov, Mat. Zametki 

 

64

 

, 483–
492 (1998).

9. L. Accardi, P. Rozelli, and O. G. Smolyanov, Mat.
Zametki 

 

54

 

 (5), 144–149 (1993).
10. R. P. Chernoff, J. Funct. Anal. 

 

40

 

, 239 (1968). 

W2 x,
1 Cx

2


