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1. Introduction

De Finetti’s theorem, showing the relationship between exchangeability and

stochastic independence, has inspired a large literature both in classical and quan-

tum probability.5,6,9,11–14

The early quantum probabilistic extensions were dealing with one-dimensional

index set and tensor27 or Fermi independence.18,19

Extensions to continuous index set were discussed by Freedman15 and Kallen-

berg22 in the classical case and by Accardi and Lu in Ref. 4.
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More recently a free version of De Finetti’s theorem was proved by Lehner24

(see also the related paper by Köstler23).

Since there are many notions of stochastic independence, it would be desirable

to find some general conditions, common to a multiplicity of such notions, which

guarantee the validity of the thesis of De Finetti’s theorem.

The notion of singleton independence is a natural candidate for this goal: even if

there are notions of independence which do not satisfy this condition (see Ref. 1) for

a counterexample), it is common to all the main notions of stochastic independence,

including tensor, Fermi, free, monotone, boolean, . . . , and it is almost sufficient to

guarantee the validity of the central limit theorem.

Therefore it is natural to conjecture that it might also be almost sufficient for

the validity of the thesis of De Finetti’s theorem.

In this paper we give a precise statement of this conjecture and we list some

natural additional conditions (which are necessary for the usual formulations of De

Finetti’s theorem) under which the conjecture is true.

Our main results are Theorem 3.4 and its corollaries. There are stated some

conditions under which one can characterize the extremal points of the convex of

exchangeable states.

An algebraic probability space is a pair {A, ϕ} where A is a unital ∗-

algebra and ϕ : A → C a state. An algebraic stochastic process is a quadruple

{{A, ϕ},B, (ji)i∈I} where {A, ϕ} is an algebraic probability space, I a set, B a

unital ∗-algebra and for any i ∈ I, ji : B → A a ∗-homomorphism, which will be

called algebraic random variable. When for any i ∈ I, ji(1B) = 1A (or, equiva-

lently, all the ∗-subalgebras ji(B) are endowed with the same unit 1A), we speak of

unital algebraic stochastic process. Throughout the paper we shall denote by A its

restriction to the ∗-algebra generated by {ji(B)}i∈I ∪ 1A.

Recall that two algebraic stochastic processes {{A1, ϕ1},B, (j
(1)
i )i∈I} and

{{A2, ϕ2},B, (j
(2)
i )i∈I} are said to be stochastically equivalent if their moments

agree, i.e. for any n ∈ N, k1, . . . , kn ∈ I, b1, . . . , bn ∈ B

ϕ1(j
(1)
kn

(bn) · · · j
(1)
k1

(b1)) = ϕ2(j
(2)
kn

(bn) · · · j
(2)
k1

(b1)) . (1.1)

The expectation values in (1.1) are called mixed moments or correlators. Given

an algebraic probability space {A, ϕ}, its GNS representation is denoted by the

triple {Kϕ, πϕ,Φ}, where Kϕ is a pre-Hilbert space, πϕ is a ∗-representation

of A in H(Kϕ), the ∗-algebra spanned by the hermitian linear operators on

Kϕ, and Φ is a cyclic vector for {πϕ(a) : a ∈ A}. Moreover, for all a ∈

A, ϕ(a) = 〈Φ, πϕ(a)Φ〉. If {Kϕ1 , πϕ1 ,Φ1}, {Kϕ2 , πϕ2 ,Φ2} are the GNS repre-

sentations corresponding respectively to two stochastically equivalent processes

{{A1, ϕ1},B, (j
(1)
i )i∈I}, {{A2, ϕ2},B, (j

(2)
i )i∈I}, there exists a unitary isomorphism

(see Ref. 3 or Ref. 26 for details) U : Hϕ1 → Hϕ2 such that

UΦ1 = Φ2 , U∗πϕ2(j
(2)
i (b))U = πϕ1(j

(1)
i (b))

for each i ∈ I, b ∈ B, where Hϕh
is the completion of Kϕh

, h = 1, 2.
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2. Singletons and Exchangeability

For any arbitrary sequence of indices, the symbol “̂ ” will denote the absence of

the underwritten element in the sequence. In the following, for all n ∈ N and for

any choice of i1, . . . , in ∈ I, if there exists s ∈ {1, 2, . . . , n} such that is 6= ik for

any k = 1, . . . , ŝ, . . . , n, we will say is is a singleton in {i1, . . . , in} and the family

{i1, . . . , in} has a singleton.

Definition 2.1. Let be given an algebraic probability space {A, ϕ} and a family

{Ai}i∈I of ∗-subalgebras in A. {Ai}i∈I is said to satisfy the singleton condition

(with respect to ϕ) if for any n ≥ 1, for any choice of i1, . . . , in ∈ I such that

i1 6= i2 6= · · · 6= in

ϕ(an · · ·a1) = 0 , ah ∈ Aih
(2.1)

whenever {i1, . . . , in} has a singleton is and ϕ(as) = 0. The family above is said

to satisfy the strict singleton condition (with respect to ϕ) if, under the same

assumptions as above

ϕ(an · · · a1) = ϕ(as)ϕ(an · · · âs · · ·a1) , ah ∈ Aih
. (2.2)

Definition 2.2. Let an algebraic probability space {A, ϕ} and a family {Ai}i∈I of

∗-subalgebras in A be given. {Ai}i∈I is said to satisfy the block singleton condition

(with respect to ϕ) if for any n ≥ 1, for any choice of i1, . . . , in ∈ I such that

i1 6= i2 6= · · · 6= in

ϕ(an · · · a1) = ϕ(as+q · · · as+1as)ϕ(an · · · âs+q · · · âs+1âs · · · a1) , ah ∈ Aih

if, for any j = 0, . . . , q, is+j /∈ {i1, . . . , îs, îs+1, . . . , îs+q , . . . , in}. {is, . . . , is+q} is

called a block singleton in {i1, . . . , in}.

Remark 2.1. In the definition above no prescriptions are given on the family

{is, is+1, . . . , is+q}, namely the indices are not assumed to be mutually different.

From now on we will call any state satisfying the singleton, strict singleton or

block singleton conditions respectively a singleton, strict singleton or block singleton

state.

The strict singleton condition implies the singleton condition and, if the subal-

gebras Ai are all endowed with the same unit of A, say 1A, is equivalent to it. To

clarify the equivalence does not hold in general, we show the following example.

Example 1. Let us take

A :=

{(
x 0

0 y

)
: x, y ∈ C

}

and its ∗-subalgebras

A1 :=

{(
x 0

0 0

)
: x ∈ C

}
,A2 :=

{(
0 0

0 x

)
: x ∈ C

}
.
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Let us define a state ϕ on A by ϕ(A) := 1
2Tr(A) for any A ∈ A. For each i = 1, 2

and Ai ∈ Ai, ϕ(Ai) = 0 if and only if Ai =
(
0 0
0 0

)
. Then it is easy to check that ϕ

is a singleton state. It is not strict singleton, in fact for any x, y ∈ C\{0}

ϕ

((
x 0

0 0

)(
0 0

0 y

))
= 0 6=

xy

4
= ϕ

((
x 0

0 0

))
ϕ

((
0 0

0 y

))
.

Remark 2.2. The strict singleton condition comes from the block singleton con-

dition when q = 0. As the definitions suggest, a strict singleton state would be not

necessarily block singleton. Even though a definite answer to such a problem can

not be done here, since we have not yet found a counterexample, for all the paper

we will assume the two conditions are different.

The following results provide examples for singleton, strict singleton and block

singleton states.

Proposition 2.1. Let {A, ϕ} and {Ai}i∈I as in Definition 2.1. Then, if {Ai}i∈I is

tensor, free, boolean, monotone, symmetric projectively independent, then it satisfies

the singleton condition.

Proof. The proof in the first four cases can be found in Proposition 8.14 of Ref. 17.

For the last case, we recall the definition of symmetric projective independence in-

troduced in Ref. 7. A family {Ai}i∈I of ∗-subalgebras of A is ϕ-symmetric projec-

tively independent if for any n ∈ N∗, any i : {1, . . . , n} → I with i(h) =: ih, there

exists ω(i) ≥ 0 such that, for any ah ∈ Aih
:

ϕ(an · · · a1) = ω(i)

q∏

j=1

ϕ




←∏

k:ik=ij

ak


 ,

where {i1, . . . , iq} denotes the range of i and the products
←∏

are taken in the same

order as they occur in an · · · a1. Then it is easy to check the singleton condition

holds.

Proposition 2.2. Let {A, ϕ} and {Ai}i∈I as in Definition 2.2. Then, if {Ai}i∈I

is tensor or free independent, then it satisfies the strict singleton and the block

singleton conditions.

Proof. In the tensor case the thesis easily follows. For the free case the strict

singleton condition can be achieved arguing as in Proposition 8.14 of Ref. 17. For

the block singleton condition we have to verify that for any n ≥ 1, for any choice

of i1, . . . , in ∈ I, i1 6= i2 6= · · · 6= in

ϕ(an · · ·a1) = ϕ(as+q · · ·as+1as)ϕ(an · · · âs+q · · · âs+1âs · · ·a1) , ah ∈ Aih
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whenever {is, . . . , is+q} is a block singleton in {i1, . . . , in}. Since in the free case all

the subalgebras have the same unit of A, one can set, for any j 6= s, s+1, . . . , s+q,

aj := aj − ϕ(aj)1A and as+q · · ·as+1as := as+q · · · as+1as − ϕ(as+q · · ·as+1as)1A,

thus obtaining mean zero elements. By a straightforward computation one achieves

ϕ(an · · · a1) = ϕ(as+q · · · as+1as)ϕ(an · · · âs+q · · · âs+1âs · · · a1)

+

n∑

j=1
j /∈{s,s+1,...,s+q}

ϕ(aj)ϕ(an · · · âj · · ·a1)

+
n∑

j1,j2=1

ji /∈{s,s+1,...,s+q}

ϕ(aj1 )ϕ(aj2)ϕ(an · · · âj2 · · · âj1 · · · a1)

+ · · · +
n∑

j1,jn−(q+1)=1

ji /∈{s,s+1,...,s+q}

ϕ(aj1 ) · · ·ϕ(ajn−(q+1)
)ϕ(as+q · · ·as+1as)

+ϕ(an · · · as+q · · · as+1as · · ·a1) .

Hence, for the free independence, on the right-hand side all the summands but the

first vanish.

Now we can translate Definitions 2.1 and 2.2 in the context of algebraic stochas-

tic processes. Recall the {jk}k∈Z are homomorphisms, then in any expectation value

of the form

ϕ(jkq (bq) · · · jk1(b1)) (2.3)

we can always assume that

kj 6= kj+1 , ∀ j = 1, . . . , q − 1 . (2.4)

This convention will be assumed throughout the paper and any expectation value

as (2.3) will be said to be in standard form if (2.4) is satisfied.

Definition 2.3. Let {{A, ϕ},B, (ji)i∈I} be an algebraic stochastic process. It sat-

isfies the singleton condition (with respect to ϕ) if for any n ≥ 1, for any choice of

i1, . . . , in ∈ I and bn, . . . , b1 ∈ B

ϕ(jin(bn) · · · ji1 (b1)) = 0 (2.5)

whenever {i1, . . . , in} has a singleton is and ϕ(js(bs)) = 0. The same process satis-

fies the strict singleton condition (with respect to ϕ) if

ϕ(jin(bn) · · · ji1 (b1)) = ϕ(jis(bs))ϕ(jin (bn) · · · ĵis(bs) · · · ji1 (b1)) (2.6)

whenever {i1, . . . , in} has a singleton is.

Definition 2.4. The algebraic stochastic process {{A, ϕ},B, (ji)i∈I} satisfies the

block singleton condition if for any n ≥ 1, i1, . . . , in ∈ I and bn, . . . , b1 ∈ B
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ϕ(jin(bn) · · · ji1(b1)) = ϕ(jis+q (bs+q) · · · jis(bs))

×ϕ(jin(bn) · · · ̂jis+q (bs+q) · · · ĵis(bs) · · · ji1(b1))

if, for any j = 0, . . . , q, is+j /∈ {i1, . . . , îs, îs+1, . . . , îs+q, . . . , in}.

Remark 2.3. As already observed, the block singleton condition is stronger than

the strict singleton condition and this implies the singleton condition. For uni-

tal algebraic stochastic processes the strict singleton and singleton conditions are

equivalent.

Remark 2.4. In the classical case the strict singleton condition is equivalent to

the stochastic independence.

Example 2. If {{A, ϕ},B, (ji)i∈I} is tensor or free independent, it satisfies the

strict singleton condition.

The following definition introduces the fundamental concept of exchangeability

for algebraic stochastic process, which plays a central role in De Finetti’s theorem.

Definition 2.5. Let S0 = S0(Z) be the group of one-to-one maps π : Z → Z such

that π(j) = j for any j ∈ Z but a finite number of points. We say that an algebraic

stochastic process {{A, ϕ},B, (jk)k∈Z} is ϕ-exchangeable if it is S0-invariant, i.e. if

for any q ∈ N, bq , . . . , b1 ∈ B, kq , . . . , k1 ∈ Z and any π ∈ S0

ϕ(jkq (bq) · · · jk1(b1)) = ϕ(jπ(kq)(bq) · · · jπ(k1)(b1)) .

In such a case we also say that ϕ is exchangeable (with respect to the process

{jk}k∈Z).

Obviously exchangeability implies that all the random variables are identically

distributed, i.e. for each b ∈ B, k, h ∈ Z

ϕ(jk(b)) = ϕ(jh(b)) .

Lemma 2.1. Let {{A, ϕ},B, (jk)k∈Z} be a ϕ-exchangeable algebraic stochastic pro-

cess. If {ks1 , . . . , ksh
} is a block singleton in {kq , . . . , k1}, then for any l = 1, . . . , h,

any ml ∈ Z,ml /∈ {{kq, . . . , k̂sl
, . . . , k1} ∪ {mi : ksi 6= ksl

}}, (2.3) is equal to

ϕ(jkq (bq) · · · jmh
(bsh

) · · · jm1(bs1) · · · jk1(b1)) .

Proof. For any l = 1, . . . , h, fix ml ∈ Z, ml /∈ {{kq, . . . , k̂sl
, . . . , k1} ∪ {mi : ksi 6=

ksl
}}. Let us take π : Z → Z such that

π(r) =





ml if r = ksl
, l = 1, . . . , h

ksl
if r = ml, l = 1, . . . , h

r otherwise .

Then π ∈ S0 and ϕ-exchangeability gives us the thesis.
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Corollary 2.1. Let {{A, ϕ},B, (jk)k∈Z} be a ϕ-exchangeable algebraic stochastic

process. If ks is a singleton in {kq, . . . , k1}, then for any m ∈ {ks}∪(Z\{kq, . . . , k1}),

(2.3) is equal to

ϕ(jkq (bq) · · · jks+1(bs+1)jm(bs)jks−1 (bs−1) · · · jk1(b1)) .

Proof. It is straightforward.

Proposition 2.3. Let {{A, ϕ},B, (jk)k∈Z} be a ϕ-exchangeable algebraic stochastic

process. If {ks1 , . . . , ksh
} is a block singleton in {kq, . . . , k1}, then (2.3) is equal to

ϕ

(
jkq (bq) · · ·

[
1

N

N+M−1∑

l=M

(jksh
+l(bsh

) · · · jks1+l(bs1))

]
· · · jk1(b1)

)
, (2.7)

where M := max{|ki − kj | : i, j = 1, . . . , q} + 1.

Proof. In fact, if l = M , then for each i ∈ {1, . . . , h} one has ksi + M ∈

Z\({kq, . . . , k1} ∪ {ksp + M : ksp 6= ksi}). Hence Lemma 2.1 allows us to write

(2.3) as

ϕ(jkq (bq) · · · jksh
+M (bsh

) · · · jks1+M (bs1) · · · jk1(b1)) .

Iterating the same procedure for any l = M+1, . . . , N+M−1 one finds the desired

equality.

Corollary 2.2. Let {{A, ϕ},B, (jk)k∈Z} be a ϕ-exchangeable algebraic stochastic

process. If ks is a singleton in {kq , . . . , k1}, (2.3) is equal to

ϕ

(
jkq (bq) · · · jks+1(bs+1)

[
1

N

N+M−1∑

l=M

jks+l(bs)

]
jks−1(bs−1) · · · jk1(b1)

)
, (2.8)

where M := max{|ki − kj | : i, j = 1, . . . , q} + 1.

Proposition 2.4. Let {{A, ϕ},B, (jk)k∈Z} be an exchangeable algebraic stochastic

process. Then ϕ is translation invariant, i.e. for any q ∈ N, there exists M ∈ N

such that for any r ∈ Z with |r| ≥ M, for any kq , . . . , k1 ∈ Z and bq, . . . , b1 ∈ B

one has:

ϕ(jkq (bq) · · · jk1(b1)) = ϕ(jkq+r(bq) · · · jk1+r(b1)) .

Proof. Define

M := max{|ki − kl| : i, l ∈ {1, 2, . . . , q}} + 1 .

Thus, for any r ∈ Z, |r| ≥ M we have kl + r /∈ {kq, . . . , k1} for l ∈ {1, 2, . . . , q}.

Hence the map π : Z → Z defined by

π(m) :=





m+ r if m ∈ {kq, . . . , k1}

m− r if m ∈ {kq + r, . . . , k1 + r}

m if m ∈ Z\{kq + r, . . . , k1 + r, kq , . . . , k1}

belongs to S0 and consequently, by exchangeability, one achieves the thesis.
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3. Ergodicity and Quantum De Finetti’s Theorem

This section is devoted to prove a quantum analogue of the De Finetti’s theorem.

Namely we will show that the extremal points of the convex of the exchangeable

states are exactly the block singleton states. The main feature used is the ergodic

decomposition theory on C∗-algebras (see Refs. 8 and 25). Therefore, from now on

we need to assume that A is a C∗-algebra and, consequently, the GNS representation

for the pair {A, ϕ} is now given by a cyclic triple {Hϕ, πϕ,Φ}, where Hϕ is a Hilbert

space and πϕ a ∗-representation of A into B(Hϕ).

Arguing as in Proposition 1.4 of Ref. 3 one achieves the following result.

Proposition 3.1. Let {{A, ϕ},B, (jk)k∈Z} be an exchangeable algebraic stochastic

process and {Hϕ, πϕ,Φ} be the GNS representation of {A, ϕ}. Then there exists a

unitary operator U : Hϕ → Hϕ and a ∗-automorphism u on πϕ(A) such that

UΦ = Φ ,

u(πϕ(jk(b))) := Uπϕ(jk(b))U∗ = πϕ(jk+1(b)) , for all b ∈ B, k ∈ Z . (3.1)

The ∗-automorphism u introduced above is called the shift on the ∗-subalgebra

πϕ(A) of B(Hϕ).

Theorem 3.1. (Ergodic theorem) Let {{A, ϕ},B, (jk)k∈Z} be an exchangeable al-

gebraic stochastic process and {Hϕ, πϕ,Φ} be the GNS representation of {A, ϕ}.

The limit

lim
N→∞

1

N

N−1∑

l=0

ul = E∞

exists pointwise strongly on πϕ(A)′′ and is equal to the Umegaki conditional expec-

tation E∞ onto the algebra

Aϕ
∞ = A∞ := {x ∈ πϕ(A)′′ : u(x) = x} .

Proof. The thesis follows from the mean ergodic theorem as stated in Theo-

rem 2.2.1 of Refs. 20 or in Ref. 8.

Remark 3.1. Umegaki conditional expectation was introduced in Ref. 28. A gen-

eral definition in the context of ∗-algebras can be found in Ref. 2. In the setting

of C∗-algebras, a theorem due to Tamijama characterizes a Umegaki conditional

expectation as a norm-one projection onto a subalgebra.

Proposition 3.2. Let {{A, ϕ},B, (jk)k∈Z} be an exchangeable algebraic stochas-

tic process, {Hϕ, πϕ,Φ} be the GNS representation of {A, ϕ} and q ∈ N∗. If

{ks1 , . . . , ksh
} is a block singleton in {kq, . . . , k1}, then
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ϕ(jkq (bq) · · · jk1(b1))

= 〈Φ, πϕ(jkq (bq) · · · jksh+1(bsh+1))E∞[πϕ(jksh
(bsh

)) · · ·πϕ(jks1
(bs1))]

πϕ(jks1−1(bs1−1) · · · jk1(b1))Φ〉 . (3.2)

Proof. Notice that for any M ≥ 1

E∞ = lim
N→∞

1

N

N+M−1∑

l=M

ul .

In fact, take πϕ(a) ∈ πϕ(A)′′. Then

lim
N→∞

1

N

N+M−1∑

l=M

ul(πϕ(a)) = uM lim
N→∞

1

N

N−1∑

l=0

ul(πϕ(a))

= uME∞(πϕ(a)) = E∞(πϕ(a)) ,

where the last equality is obtained since E∞(πϕ(a)) ∈ A∞. Moreover, by Proposi-

tion 2.3,

ϕ(jkq (bq) · · · jk1(b1))

= ϕ

(
jkq (bq) · · ·

[
1

N

N+M−1∑

l=M

(jksh
+l(bsh

) · · · jks1+l(bs1))

]
· · · jk1(b1)

)
, (3.3)

where M := max{|ki − kj | : i, j = 1, . . . , q}+ 1. Using the GNS representation and

exploiting the homomorphism property of u, (3.3) can be written as
〈

Φ, π(jkq (bq) · · ·)

[
1

N

N+M−1∑

l=M

ulπϕ(jksh
(bsh

) · · · jks1
(bs1))

]
π(· · · jk1(b1))Φ

〉
. (3.4)

Taking the limit for N → ∞ one achieves the thesis.

Corollary 3.1. Let {{A, ϕ},B, (jk)k∈Z} be an exchangeable algebraic stochastic

process, {Hϕ, πϕ,Φ} be the GNS representation of {A, ϕ} and q ∈ N∗. If ks is a

singleton in {kq, . . . , k1}, then

ϕ(jkq (bq) · · · jk1(b1))

= 〈Φ, πϕ(jkq (bq) · · ·)E∞[πϕ(jks(bs))]πϕ(· · · jk1(b1))Φ〉 .

Corollary 3.2. Under the same assumptions of the corollary above, if ks is a

singleton for {kq , . . . , k1} and

E∞[πϕ(jks(bs))] = 0

then the expectation value (3.4) is equal to 0.
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In the previous section we presented some factorization rules (i.e. singleton con-

ditions) for joint expectations in order to achieve, in the noncommutative case,

a condition replacing the stochastic independence appearing in the classical De

Finetti’s theorems. To gain such results we need now to get a bridge between sin-

gleton and extremal exchangeable states. The following definition should be viewed

in this direction.

Definition 3.1. An exchangeable state ϕ on a unital ∗-algebra A is called ergodic

if it is extremal.

ϕ is called 1-ergodic if the asymptotic algebra A∞ is trivial, i.e.

A∞ = C · 1 .

The former part of definition above comes from Definition 3.1.9 of Ref. 25. The

next result clarifies the emergence of the latter.

Theorem 3.2. For {{A, ϕ},B, (jk)k∈Z} exchangeable algebraic stochastic process,

the following are equivalent

(i) ϕ is 1-ergodic

(ii) ϕ is a block singleton state.

Proof. (i) ⇒ (ii). For any n ∈ N, b1, . . . , bn ∈ B, k1, . . . , kn ∈ Z, the exchangeability

gives

ϕ(jkn(bn) · · · jk1(b1)) =
1

N

N−1∑

l=0

ϕ(jkn+l(bn) · · · jk1+l(b1))

=
1

N

N−1∑

l=0

〈Φ, ulπϕ(jkn(bn) · · · jk1(b1))Φ〉 . (3.5)

Taking the limit for N → ∞ in (3.5) and using Theorem 3.1 one has

ϕ(jkn(bn) · · · jk1(b1)) = 〈Φ,E∞(πϕ(jkn(bn) · · · jk1(b1)))Φ〉 .

Hence, the state being 1-ergodic,

E∞(πϕ(jkn(bn) · · · jk1(b1))) = ϕ(jkn(bn) · · · jk1(b1)) · 1 . (3.6)

Let q ∈ N∗ and take {ks1 , . . . , ksh
} a block singleton in {k1, . . . , kq}. For any

b1, . . . , bq ∈ B, (3.2) gives

ϕ(jkq (bq) · · · jksh
(bsh

) · · · jks1
(bs1) · · · jk1(b1))

= 〈Φ, πϕ(jkq (bq) · · · jksh+1(bsh+1))E∞[πϕ(jksh
(bsh

)) · · ·πϕ(jks1
(bs1))]

πϕ(jks1−1(bs1−1) · · · jk1(b1))Φ〉 .

From (3.6), we can write the quantity above as

ϕ(jksh
(bsh

) · · · jks1
(bs1))ϕ(jkq (bq) · · · ̂jksh

(bsh
) · · · ̂jks1

(bs1) · · · jk1(b1)) .
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(ii) ⇒ (i). Let us take a ∈ A. Since A is generated by {jk(B)}k∈Z ∪ 1A, then

a = jkh
(bh) · · · jk1(b1) for some h ≥ 1, b1, . . . , bh ∈ B, k1, . . . , kh ∈ Z.

For ξ := πϕ(j
k̃q

(b̃q) · · · jk̃1
(b̃1))Φ, η := πϕ(jkr

(br) · · · jk1
(b1))Φ arbitrary vectors

in πϕ(A)Φ

〈η,E∞(πϕ(a))ξ〉

= 〈Φ, πϕ(jk1
(b1
∗
) · · · jkr

(br
∗
))E∞(πϕ(jkh

(bh) · · · jk1(b1)))

πϕ(j
k̃q

(b̃q) · · · jk̃1
(b̃1))Φ〉 . (3.7)

Let us firstly assume that {k1, . . . , kh} is a block singleton in

K := {k1, . . . , kr, k1, . . . , kh, k̃1, . . . , k̃q} ,

then, by Proposition 3.2 and the block singleton condition, (3.7) is equal to

ϕ(jk1
(b1
∗
) · · · jkr

(br
∗
)jkh

(bh) · · · jk1(b1)jk̃q
(b̃q) · · · jk̃1

(b̃1))

= ϕ(jkh
(bh) · · · jk1(b1))

×ϕ(jk1
(b1
∗
) · · · jkr

(br
∗
) ̂jkh

(bh) · · · ĵk1(b1)jk̃q
(b̃q) · · · jk̃1

(b̃1)) . (3.8)

Notice that (3.8) is nothing but

ϕ(a)〈η, ξ〉 .

From the density of πϕ(A)Φ into Hϕ, one achieves E∞(πϕ(a)) = ϕ(a) · 1.

If {k1, . . . , kh} is not a block singleton in K, then for M := maxki,kj∈K{|ki −

kj |} + 1, exchangeability ensures us that

ϕ(a) · 1 = ϕ(jkh+M (bh) · · · jk1+M (b1)) · 1 (3.9)

and {k1+M, . . . , kh+M} becomes a block singleton in {k1, . . . , kr, k1+M, . . . , kh+

M, k̃1, . . . , k̃q}. Therefore, arguing as above, one finds

ϕ(jkh+M (bh) · · · jk1+M (b1)) · 1 = E∞(πϕ(jkh+M (bh) · · · jk1+M (b1)))

on the whole Hϕ. The right-hand side above can be written as

E∞u
M (πϕ(jkh

(bh) · · · jk1(b1)))

since, u and E∞ are mutually commutative, one obtains

ϕ(jkh+M (bh) · · · jk1+M (b1)) · 1 = E∞(πϕ(jkh
(bh) · · · jk1(b1))) .

Then, by (3.9), one ends the proof.

Corollary 3.3. Let {{A, ϕ},B, (jk)k∈Z} be an exchangeable algebraic stochastic

process. If ϕ is 1-ergodic, then it is a strict singleton state.

Proof. Clear.
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The 1-ergodicity is not a consequence of the strict singleton condition. In fact,

using the notations introduced above, if a = jkh
(bh) · · · jk1 (b1) and {k1, . . . , kh}

has not singletons but is a block singleton in K, one cannot pull out the “block

singleton” part from the following mixed moment

ϕ(jk1
(b1
∗
) · · · jkr

(br
∗
)jkh

(bh) · · · jk1(b1)jk̃q
(b̃q) · · · jk̃1

(b̃1)) .

Hence there is no hope to understand if E∞(πϕ(a)) is, up to a multiplicative con-

stant, the identity operator on Hϕ. If one aims to use only the strict singleton

condition as a factorization rule for the mixed moments, and contemporarily ob-

tain information about the structure of the asymptotic algebra, some additional

conditions should be done on the algebra A. The following lemma suggests a pos-

sible way to get such conditions.

Lemma 3.1. Let {{A, ϕ},B, (jk)k∈Z} be an exchangeable algebraic stochastic pro-

cess satisfying the strict singleton condition and {Hϕ, πϕ,Φ} be the GNS representa-

tion of {A, ϕ}. For any jkn(bn) · · · jk1(b1), n ∈ N, kn > · · · > k1 ∈ N, b1, . . . , bn ∈ B,

for any ξ, η ∈ πϕ(A)Φ, one has

〈η,E∞(πϕ(jkn(bn))) · · ·E∞(πϕ(jk1(b1)))ξ〉

= 〈η,E∞(πϕ(jkn(bn) · · · jk1(b1)))ξ〉 .

Proof. Let us first compute, for any N ∈ N,

〈
η,

1

Nn

N−1∑

ln=0

uln(πϕ(jkn(bn))) · · ·
N−1∑

l1=0

ul1(πϕ(jk1(b1)))ξ

〉
. (3.10)

It can be written as
〈
η,

1

Nn

N−1∑

ln=0

πϕ(jkn+ln(bn)) · · ·
N−1∑

l1=0

πϕ(jk1+l1(b1))ξ

〉

=

//
∖
\

η,
1

Nn

N−1∑

ln=0

πϕ(jkn+ln(bn))

×




N−1∑

ln−1=0

kn−1+ln−1 /∈{kn+ln}

πϕ(jkn−1+ln−1(bn−1)) + (πϕ(jkn+ln(bn−1))




· · ·
N−1∑

l1=0

πϕ(jk1+l1(b1))ξ

∖
\
/
/
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= · · · =

//
∖
\

η,
1

Nn

N−1∑

ln=0

πϕ(jkn+ln(bn))

×




N−1∑

ln−1=0

kn−1+ln−1 /∈{kn+ln}

πϕ(jkn−1+ln−1(bn−1)) + πϕ(jkn+ln(bn−1))







N−1∑

l1=0

k1+l1 /∈{kn+ln,...,k2+l2}

πϕ(jk1+l1(b1)) + πϕ(jkn+ln(bn−1))

+ · · · + πϕ(jk2+l2(b1))


 ξ
∖
\
/
/

. (3.11)

After computing the products appearing in the last equality of (3.11), one recognizes

only one term has n summations, namely

//
∖
\

η,
1

Nn

N−1∑

ln=0

πϕ(jkn+ln(bn))
N−1∑

ln−1=0

kn−1+ln−1 /∈{kn+ln}

πϕ(jkn−1+ln−1(bn−1))

· · ·
N−1∑

l1=0

k1+l1 /∈{kn+ln,...,k2+l2}

πϕ(jk1+l1(b1))ξ

∖
\
/
/

whereas the remaining n! − 1 terms have at most n − 1 summations. Taking the

limit for N → ∞, all such terms tends to 0. Hence (3.10) becomes equal to

//
∖
\

η,
1

Nn

N−1∑

ln=0

πϕ(jkn+ln(bn))
N−1∑

ln−1=0

kn−1+ln−1 /∈{kn+ln}

πϕ(jkn−1+ln−1(bn−1))

· · ·
N−1∑

l1=0

k1+l1 /∈{kn+ln,...,k2+l2}

πϕ(jk1+l1(b1))ξ

∖
\
/
/

+O

(
1

N

)
. (3.12)

Denote ξ := πϕ(j
k̃q

(b̃q) · · · jk̃1
(b̃1))Φ, η := πϕ(jkr

(br) · · · jk1
(b1))Φ. We can even

suppose {ki + li : li = 0, . . . , N − 1, ki + li /∈ {kn + ln, . . . , ki+1 + li+1}}n
i=1 is a set

of singletons in {k1, . . . , kr, k1, k1 + 1, . . . , kn + N − 1, k̃1, . . . , k̃q}. In fact, in the

contrary case, we properly shift them and, using the same arguments developed in

the proof of Theorem 3.2, reduce to this case. By the strict singleton condition, one
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finds (3.12) is nothing else than

1

Nn

N−1∑

ln=0

N−1∑

ln−1=0

kn−1+ln−1 /∈{kn+ln}

· · ·
N−1∑

l1=0

k1+l1 /∈{kn+ln,...,k2+l2}

ϕ(jkn+ln(bn)) · · ·ϕ(jk1+l1(b1))

×ϕ(jk1
(b1
∗
) · · · jkr

(br
∗
) ̂jkn+ln(bn) · · · ̂jk1+l1(b1)jk̃q

(b̃q) · · · jk̃1
(b̃1)) +O

(
1

N

)
.

(3.13)

For each i = 1, . . . , n− 1, by exchangeability follows

N−1∑

li=0

ki+li /∈{kn+ln,...,ki+1+li+1}

ϕ(jki+li(bi))

= (N − |{ki + li = kn + ln, . . . , ki+1 + li+1}|)ϕ(jmi+ln(bi)) ,

where | · | denotes the cardinality. For a suitable mi ∈ Z, namely mi ≥

maxh,j∈{1,...,n}{|kh − kj |}+ i, denoting Ki := |{ki + li = kn + ln, . . . , ki+1 + li+1}|,

(3.13) is equal to

(N −Kn−1)(N −Kn−2) · · · (N −K1)

Nn

N−1∑

ln=0

ϕ(jkn+ln(bn))ϕ(jmn−1+ln(bn−1))

· · · ϕ(jm1+ln(b1))ϕ(jk1
(b1
∗
) · · · jkr

(br
∗
) ̂jkn+ln(bn)

· · · ̂jk1+l1(b1)jk̃q
(b̃q) · · · jk̃1

(b̃1)) +O

(
1

N

)
.

Since exchangeability implies all the random variables are identically distributed,

the quantity above is equal to

(N −Kn−1)(N −Kn−2) · · · (N −K1)

Nn

N−1∑

ln=0

ϕ(jkn+ln(bn))ϕ(jkn−1+ln(bn−1))

· · · ϕ(jk1+ln(b1))ϕ(jk1
(b1
∗
) · · · jkr

(br
∗
) ̂jkn+ln(bn)

· · · ̂jk1+l1(b1)jk̃q
(b̃q) · · · jk̃1

(b̃1)) +O

(
1

N

)

=
(N −Kn−1)(N −Kn−2) · · · (N −K1)

Nn

N−1∑

ln=0

〈η, πϕ(jkn+ln(bn)

· · · jk1+ln(b1))ξ〉 +O

(
1

N

)
, (3.14)
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where in the last equality we used the strict singleton condition. The right-hand

side in (3.14) is equal to (3.10), namely
〈
η,

1

Nn

N−1∑

ln=0

uln(πϕ(jkn(bn))) · · ·
N−1∑

l1=0

ul1(πϕ(jk1(b1)))ξ

〉

=
(N −Kn−1)(N −Kn−2) · · · (N −K1)

Nn

N−1∑

ln=0

〈η, πϕ(jkn+ln(bn)

· · · jk1+ln(b1))ξ〉 +O

(
1

N

)

the thesis follows after taking the limit for N → ∞.

If A is such that the products jkn(bn) · · · jk1(b1), n ∈ N, kn > · · · > k1 ∈ N,

b1, . . . , bn ∈ B are total, the strict singleton condition implies the 1-ergodicity for

exchangeable states, as shown in the following result. If the condition above holds,

we say A satisfies condition TOD (the totally ordered products are dense).

Proposition 3.3. Let {{A, ϕ},B, (jk)k∈Z} be an exchangeable algebraic stochastic

process and suppose A satisfies condition TOD. Then, if ϕ is a strict singleton

state, it is 1-ergodic.

Proof. Let us fix a ∈ A. We need to prove that there exists α ∈ C such that

E∞(πϕ(a)) = α · 1. Because of the condition TOD, it is sufficient to prove it for

a = jkn(bn) · · · jk1(b1), n ∈ N, kn > · · · > k1 ∈ N, b1, . . . , bn ∈ B. As usual,

denote ξ := πϕ(j
k̃q

(b̃q) · · · jk̃1
(b̃1))Φ, η := πϕ(jkr

(br) · · · jk1
(b1))Φ, arbitrary vectors

in πϕ(A)Φ. Then

〈η,E∞(πϕ(a))ξ〉 = 〈η,E∞(πϕ(jkn(bn) · · · jk1(b1)))ξ〉

= 〈η,E∞(πϕ(jkn(bn))) · · ·E∞(πϕ(jk1(b1)))ξ〉 , (3.15)

where the last equality comes from Lemma 3.1.

As already observed, without loss of generality, we take {k1, . . . , kn} all single-

tons in {k1, . . . , kr, k1, . . . , kn, k̃1, . . . , k̃q}. Applying Corollary 3.1, (3.15) is equal

to

ϕ(jk1
(b1
∗
) · · · jkr

(br
∗
)jkn(bh) · · · jk1(b1)jk̃q

(b̃q) · · · jk̃1
(b̃1))

= ϕ(jkn(bn)) · · ·ϕ(jk1 (b1))

×ϕ(jk1
(b1
∗
) · · · jkr

(br
∗
) ̂jkn(bn) · · · ĵk1(b1)jk̃q

(b̃q) · · · jk̃1
(b̃1))

by the strict singleton condition. The right-hand side above is

ϕ(a)〈η, ξ〉 .
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Since it is equal to

〈η,E∞(πϕ(a))ξ〉

one finds α = ϕ(jkn(bn)) · · ·ϕ(jk1(b1)) from the density of πϕ(A)Φ into Hϕ.

As a consequence of the above result, under exchangeability and the TOD con-

ditions, strict singleton states are equivalent to 1-ergodic.

Hence a link between singleton conditions and asymptotic algebra has been es-

tablished. Now we investigate their possible links with ergodic (i.e. extremal) states.

A possible way is to obtain a quantum version of the celebrated lemma of He-

witt and Savage. To this aim, let us consider {{A, ϕ},B, (jk)k∈Z} an exchangeable

algebraic stochastic process and {Hϕ, πϕ,Φ} the GNS representation of {A, ϕ}.

The exchangeability condition implies that, given an arbitrary σ ∈ S0, the alge-

braic stochastic process {{A, ϕ},B, (j
(1)
k )k∈Z}, where j

(1)
k := jσ(k) for all k ∈ Z is

stochastically equivalent to the previous one. Hence we know there exists a unitary

isomorphism Uσ : Hϕ → Hϕ such that UσΦ = Φ and for any b ∈ B, k ∈ Z

Uσπϕ(jk(b)) = πϕ(jσ(k)(b))Uσ .

Moreover, the map uσ on πϕ(A) such that for any b ∈ B, k ∈ Z

uσπϕ(jk(b)) := Uσπϕ(jk(b)U∗σ = πϕ(jσ(k)(b))

is a ∗-automorphism. Define the symmetric algebra

AS0 = Aϕ
S0

:= {x ∈ πϕ(A)′′ : uσ(x) = x for all σ ∈ S0} ,

ES0 := {ξ ∈ Hϕ : Uσξ = ξ for all σ ∈ S0} .

Then ES0 is a closed subspace of Hϕ.

Given a family of classical exchangeable random variables on a probability space,

the symmetric σ-algebra coincide with the asymptotic one. This result, known as

Lemma of Hewitt–Savage (see Refs. 10 and 16), has a quantum analogue in the

following result.

Proposition 3.4. (Quantum Hewitt–Savage Lemma) For an exchangeable stochas-

tic process {{A, ϕ},B, (jk)k∈Z}, in the same notations introduced above, one has

AS0 = A∞ .

Proof. Let us firstly prove that A∞ ⊆ AS0 . By definition any element x ∈ A∞
has the form

x = lim
N→∞

1

N

N∑

l=1

ul(a) ; a ∈ πϕ(A) . (3.16)

We need to prove that it is S0-invariant. In fact for any σ ∈ S0

uσ(x) = lim
N→∞

1

N

N∑

l=1

uσ(ul(a)) .



January 9, 2009 9:9 WSPC/102-IDAQPRT 00323

Singleton Conditions and Quantum De Finetti’s Theorem 655

Since A := ∗− alg({(jk(B))k∈Z} ∪ 1A), if a ∈ πϕ(A), there exists a finite set I ⊆ Z

and (bi)i∈I subset of B, such that a = πϕ(
∏

i∈I ji(bi)). Therefore, by definition,

ul(a) = πϕ(
∏

i∈I ji+l(bi)) and the set

Iσ(a) := {n ∈ N : uσ(un(a)) /∈ un(a)}

is finite. Moreover, one has

lim
N→∞

∥∥∥∥∥∥
1

N

∑

n∈Iσ(a)∩{1,2,...,N}

[uσ(un(a)) − un(a)]

∥∥∥∥∥∥
≤ lim

N→∞

|Iσ(a)|

N
M = 0 ,

where

M := max
n∈Iσ(a)

‖uσ(un(a)) − un(a)‖ .

Hence it follows that

uσ(x) = lim
N→∞

1

N

N∑

n=1

uσ(un(a))

= lim
N→∞

1

N





∑

n∈Iσ(a)∩{1,2,...,N}

uσ(un(a)) +
∑

n∈Iσ(a)C∩{1,2,...,N}

uσ(un(a))





= lim
N→∞

1

N





∑

n∈Iσ(a)∩{1,2,...,N}

uσ(un(a))−
∑

n∈Iσ(a)∩{1,2,...,N}

un(a)+

N∑

n=1

un(a)





= lim
N→∞

1

N

N∑

n=1

un(a) = x .

Thus x ∈ AS0 .

Conversely, let us prove that

AS0 ⊆ A∞ .

Take x ∈ AS0 . By definition AS0 ⊆ πϕ(A)′′ and, by the double commutant von

Neumann’s Theorem (see Theorem 5.3.1 of Ref. 21), πϕ(A)′′ is the weak and strong

closure of πϕ(A). Then, for any ε > 0 there exist a finite set {k1, . . . , kq} ⊆ Z and

b1, . . . , bq ∈ B such that

‖x− πϕ(jkq (bq) · · · jk1(b1))‖ <
ε

4
.

Denote a := jkq (bq) · · · jk1(b1). If u is the shift on πϕ(A), one has

‖u(x) − x‖ ≤ ‖u(x) − u(πϕ(a))‖ + ‖u(πϕ(a)) − πϕ(a)‖ + ‖πϕ(a) − x‖

<
ε

2
+ ‖u(πϕ(a)) − πϕ(a)‖ ,

where the last inequality follows from the fact that u(·) = U(·)U ∗, with U uni-

tary. Notice that u can be seen as a suitable uσ , (σ ∈ S0) on πϕ(A{k1,...,kq}),
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where A{k1,...,kq} :=
∏

k∈{k1,...,kq}
jk(B). Namely, denote k̄ := max{k1, . . . , kq},

k := min{k1, . . . , kq}, take IZ := [k, k̄] ∩ Z and define σ : Z → Z as

σ(r) :=





r + 1 if r ∈ IZ ,

k if r = k̄ + 1 ,

r otherwise .

Hence σ ∈ S0 and uσ|πϕ(A{k1,...,kq}) = u.

Therefore

‖u(πϕ(a)) − πϕ(a)‖ = ‖uσ(πϕ(a)) − πϕ(a)‖

≤ ‖uσ(πϕ(a)) − uσ(x)‖ + ‖x− πϕ(a)‖ <
ε

2
,

where we used both uσ(·) = Uσ(·)U∗σ , uσ(x) = x. In conclusion

‖u(x) − x‖ < ε

thus giving x ∈ A∞.

It is well known (see Proposition 3.1.10 of Ref. 25) that for any fixed ϕ, exchange-

able state on A, if AS0 = C · 1, then ϕ is extremal. As a consequence, taking into

account the previous result, this means that any 1-ergodic state is ergodic. Hence,

in the convex of exchangeable states, all the block singleton ones are extremal.

Example 3. An exchangeable, not be block singleton, not 1-ergodic state. Let

H := L2(R+) and take the Boolean Fock space over H

Γ(H) = C ⊕H

with vacuum vector Φ := (1,0). For any f ∈ H, define the creation and annihilation

operators in the usual way, i.e.

A+(f) : Γ(H) → Γ(H) ,

A(f) : Γ(H) → Γ(H) ,

such that

A+(f)

(
α

g

)
=

(
0

αf

)
, A(f)

(
α

g

)
=

(
〈f, g〉H

0

)

with α ∈ C, g ∈ H. Consider 0 = k0 < k1 < · · · < kn < · · · a partition on R+ such

that for all i, j ≥ 0, ki+1 − ki = kj+1 − kj =: d. For any i ≥ 0, define the position

operator Qki := A(χ[ki,ki+1)) +A+(χ[ki,ki+1)), where χ denotes the indicator. If

A := ∗ − alg{1, Qki : i ≥ 0} , ϕ := 〈Φ, ·Φ〉 ,
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then (A, ϕ) is an algebraic probability space. Choosing n ∈ N, i1 6= i2 6= · · · 6= in,

ij ≥ 0 for each j = 1, . . . , n, p1, . . . , pn ∈ N, it follows

〈Φ, Qp1

ki1
Qp2

ki2
· · ·Qpn

kin
Φ〉 =





0 if ∃ j = 1, . . . , n s.t. pj is odd

d
1
2




n∑

j=1

pj


 otherwise ,

(3.17)

i.e. the mixed moments do not depend on the particular interval [ki, ki+1) chosen.

Hence, for any σ ∈ S0

ϕ(Qp1

ki1
Qp2

ki2
· · ·Qpn

kin
) = ϕ(Qp1

kσ(i1)
Qp2

kσ(i2)
· · ·Qpn

kσ(in)
) ,

i.e. ϕ is exchangeable. Finally we prove that it is not a strict singleton state. In

fact, by (3.17)

〈Φ, Qki1
Q2

ki2
Qki1

Φ〉 = 0 . (3.18)

If the state is strict singleton, one has

〈Φ, Qki1
Q2

ki2
Qki1

Φ〉 = 〈Φ, Q2
ki2

Φ〉〈Φ, Q2
ki1

Φ〉 = d2

which contradicts (3.18). Then ϕ cannot be block singleton, or by Theorem 3.2,

1-ergodic.

To obtain the equivalence between block singleton and extremal states or,

equivalently, ergodicity and 1-ergodicity one needs additional requests on the pair

(A, ϕ), such as the S0-abelianity (see Definition 3.1.11 of Ref. 25). This means

that PS0πϕ(A)PS0 is a family of mutually commutative operators, where PS0 is

the orthogonal projection of Hϕ onto ES0 . In the classical case this condition is

automatically satisfied, since A is a subalgebra of L∞(Ω,F ,P) which is an abelian

algebra. Before introducing a quantum analogue of De Finetti’s theorem, we firstly

present a version of the classical one, which makes use of the equivalence between

strict singletons states and stochastic independence of a process.

Theorem 3.3. The classical exchangeable stochastic processes form a Choquet sim-

plex whose extremal points are exactly those made by stochastically independent

random variables.

Proof. Notice that classical exchangeable states (process) form a Choquet sim-

plex (see Theorem 3.1.14 of Ref. 25). Moreover, in the classical case stochastic

independence is equivalent to the strict singleton condition and the condition TOD

is satisfied.

Thus, thanks to Proposition 3.3, any process made by stochastically independent

random variables is extremal.

Conversely, for any q ∈ N, k1, . . . , kq ∈ Z, b1, . . . , bq ∈ B, let us compute the

mixed moment

ϕ(jkq (bq) · · · jk1(b1)) , (3.19)
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where ϕ is extremal. As a consequence of commutativity and recalling the jk’s are

homomorphisms, without loss of generality, we can assume that kq < kq−1 < · · · <

k1, i.e. the ki’s are all singletons. Then, by Theorem 3.2 of Ref. 4, (3.19) is equal to

k∏

l=1

ϕ0(bl) , ϕ0 := ϕ ◦ jkl
, l = 1, . . . , q

thus giving ϕ strict singleton.

The following result and its corollaries can be seen as quantum versions of the

De Finetti’s theorem. Denote by SE the set of exchangeable states.

Theorem 3.4. If the pair (A, ϕ) is S0-abelian, then the weak∗ compact convex set

of exchangeable states is a Choquet simplex whose extremal points are exactly all

the block singleton states. Therefore, for any ϕ ∈ SE , there exists a unique Radon

probability measure µ on SE such that

ϕ(a) =

∫

SE

ψ(a)dµ(ψ) , a ∈ A

and for any Baire set ∆ in SE with EE ∩∆ = ∅,
∫
∆ dµ(ψ) = 0 (where EE is the set

of extreme points of SE).

Proof. The S0-abelianity of the pair (A, ϕ) implies, thanks to ergodic decompo-

sition theorem (see Theorem 3.1.14 of Ref. 25), that the exchangeable states are

a Choquet simplex. The same condition gives, for any ϕ extremal in this simplex,

AS0 = C · 1 (see Proposition 3.1.12 of Ref. 25). Hence, by Proposition 3.4, ϕ is

1-ergodic. Using Theorem 3.2 one achieves that ϕ is block singleton. The remaining

part of the thesis is a consequence of the above mentioned ergodic decomposition

theorem.

Corollary 3.4. Let us assume that A satisfies the S0-abelianity. If ϕ is exchange-

able and extremal, then ϕ is a strict singleton state.

Corollary 3.5. Let us assume that A satisfies the condition TOD. If ϕ is an

exchangeable and strict singleton state, then it is extremal.

Remark 3.2. Denote by SB the closed set of exchangeable and block singleton

states, SS the closed set of exchangeable and strict singleton states and suppose

A satisfies the S0-abelianity. Theorem 3.4 and Krein–Milmann imply SE = coSB ,

where co denotes the closed convex hull. Since SB is contained in SS , we have

SE = coSS . Hence, even if SB and SB are not equal, they have the same convex

hull.
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