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tion content of the data. Further optimisation of the ANN models could also be obtained by
the selection of more appropriate input variables (d’Heygere et al. 2002).

Conclusion

To predict different river restoration scenarios, ‘extreme’ datasets were added to the origi-
nal one. Therefore, ecological expert knowledge was used. The presence/absence of Aselli-
dae in the ‘extreme’ validation set was predicted well when the number of ‘extreme’ sites in
the training set increased. However, the overall predictive power of the ANN models de-
creased when a relatively large virtual training dataset was applied. Three case studies have
shown that ANN models are in general quite robust with a rather high prediction reliability.
For very extreme situations, addition of ‘extreme’ data to the training dataset can be very
useful. However, for practical applications, the positive influence of the addition of ‘ex-
treme’ data to the training dataset is negligible. Although the addition of ‘extreme’ data has
no negative influence on the predictions, data-driven models are often sufficient to obtain
good model predictions for practical applications. As a conclusion, adding extreme data
improves the reliability of ANN models significantly for predictions under similar condi-
tions. The addition of only one ‘extreme’ case is however insufficient to obtain a significant
improvement of the predictive performance in similar cases, while the addition of too many
‘extreme’ cases in the training set decreases the general predictive performance of the mod-
els.

oF

4 Macroinvertebrate community assemblages 147

4.3 A neural network approach to the prediction of
benthic macroinvertebrate fauna composition in rivers’

Di Dato P, Mancini L, Tancioni L, Scardi M

Introduction

Predicting the composition of benthic macroinvertebrate fauna in rivers is not a trivial task,
both because of the number of species to be modelled and because of the complexity of bi-
otic and abiotic relationships that determine their distribution. However, the composition of
the benthic macroinvertebrate fauna usually provides very useful insights into the ecologi-
cal quality of lotic systems, as these organisms are very sensitive to disturbance. Benthic
macroinvertebrates are relatively sedentiry and long-lived, with life cycle durations ranging
from a few months to 2-3 years, and they show a wide range of adaptations to local envi-
ronmental conditions. They represent a continuous monitoring system of the water body
where they are living, but they are.also very easy to collect and to identify, at least at an in-
termediate taxonomic level. Therefore, benthic macroinvertebrates are widely used as bio-
logical indicators (Hellawell 1986) and, in particular, they have been used for many years
as a source of information for computing several biotic indices that are now used world-
wide to assess biological water quality (e.g., Metcalfe 1989, Resh et al. 1996, Lammert and
Allan 1999). In this study, the Italian IBE index (Ghetti 1997), derived from the Extended
Biotic Index proposed by Woodiwiss (1981) was used as a reference for selecting ecologi-
cally homogeneous taxa.

Several different biotic indices have been developed, as they had to be suited to ecore-
gional characteristics in order to provide correct diagnoses of the riverine ecosystem qual-
ity. Most indices, however, share the same rationale that is based on the identification of
sensitive taxa and on the recognition of the ecological role of other taxa. The main advan-
tage of this approach with respect to more thorough community structure analyses lies ob-
viously in its simplicity. In fact, even people with a limited taxonomic background can be
easily trained to carry out rapid surveys aimed at the computation of biotic indices. A more
complex approach to the assessment of the ecological status of streams and rivers is based
on the prediction of the whole community structure. In the case of benthic macroinverte-
brate fauna, different modelling techniques based on ecological knowledge and monitoring
data are now available. In the United Kingdom, the work by Wright et al. (1984) led to the
prediction of community types on the basis of environmental data by means of a multivari-
ate analysis procedure. This appraoch was then extended and used in the River Invertebrate
Prediction and Classification System (RIVPACS) (Wright et al. 1993b), which provides es-
timates of the ecological quality at a given site by comparing the observed macroinverte-
brate fauna composition with the expected one.

* Funding for this research was provided by the EU project PAEQANN (N° EVKI-
CT1999-00026).
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The RIVPACS approach has also been adapted to other ecoregions. For instance, the
Australian River Assessment Scheme (AUSRIVAS) (Simpson and Norris 2000) is based on
the RIVPACS approach, although it has been expanded and adapted to each Australian eco-
region. Another method that is closely related to RIVPACS and AUSRIVAS is the benthic
assessment of sediment (BEAST) (Reynoldson et al. 1995), that is based on quantitative
data about macroinvertebtare fauna instead of presence/absence data only. Even though the
RIVPACS approach proved to be very effective, it has limits related to the non-linearity,
complexity and dynamic nature of biotic responses to environmental characteristics. More-
over, the development of an assessment system based on the RIVPACS rationale requires a
considerable amount of work and thorough statistical analyses.

A new generation of empirical techniques for analysing and modelling complex ecologi-
cal data in a more simple and straightforward way is now emerging. Among these new
modelling methods Artificial Neural Networks (ANNSs) play a relevant role and represent a
useful tool when relationships among data are unknown and/or non-linear. ANNs learn
from examples and do not require a priori theoretical models, nevertheless they are able to
model complex temporal and spatial patterns and to reproduce the behaviour of very com-
plex systems (Recknagel and Wilson 2000). During the last 10 years, ANNs have been ap-
plied to various ecological fields (see, for instance, Lek and Guegan 2000), including stud-
ies relating community characteristics with environmental variables (e.g., Chon et al. 1996,
Recknagel 1997, Recknagel et al. 1997, 1998, Guégan et al. 1998) and modelling habitat
suitability (e.g., Paruelo and Tomasel 1997, Ozesmi and Ozesmi 1999). As for the particu-
lar case of macroinvertebrate fauna, Pudmenzky et al. (1998) and Walley and Fontama
(2000) recently developed ANN approaches that are aimed at the same goals and ecore-
gions as AUSRIVAS and RIVPACS respectively.

Our study was focused on a benthic macroinvertebrate data set provided by the Latium
Regional Environmental Protection Agency and it is aimed at testing different strategies for
modelling the presence or absence of macroinvertebrate benthic taxa on the basis of envi-
ronmental variables, using ANN models.

Materials and methods

0\\! data set is based on 153 sampling sites, distributed over 76 rivers in the Latium region
(Central Italy), where macroinvertebrate fauna was sampled between 1998 and 2000. The
hydrographic characteristics of the study area are highly variable, as a consequence of the
very diverse origin and evolution of the river basin. The main river in the area is the Tiber,
which is the second longest river in Italy, flowing from the north-eastern Appenine moun-
tains through Central Italy and Rome to the Tyrrhenian Sea. All the rivers and streams in
the area studied are located in the Tiber basin, with the exception of those in the Liri-
Garigliano basin, which 1 located in the southern part of the Latium region.

The macroinvertebrate benthic fauna was collected at each sampling site by means of a
small dredge. The dredge consisted of a handle, a rectangular frame (25 x 40 cm) and a
cone-shaped net. The net was made of nylon and mesh size was 0.5 mm. The net had a cup-
shaped detachable jar at its closed end that facilitates the collection of the organisms sam-
pled. The sampling sites were dredged from bank to bank to cover all the microhabitats us-
ing a technique called “kick sampling”. According to this technique the dredge, placed on
the bottom of the river with the mouth against the water flow, was dragged along a fixed
transect. At the same time the operator scrambled the substrate with his feet in order to di-
rect the benthic organisms towards the net. The fauna collected was preliminarily sorted in
situ, but an in-depth study by stereomicroscope was then carried out in the laboratory on
material fixed in alcohol (70%). The taxonomic analyses led to the identification of 174
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¥ taxa. At each sampling site 11 environmental variables were also recorded (Table 4.3.1)

some of them were derived from maps or from Geographical Information Systems (eleva-

tion, distance from source, gradient), while others were measured in the field (watershed

drainage area, water flow, structure of sediment in terms of granulometric classes). The
whole data set included 153 records for 11 predictive environmental variables and 174 taxa.

Four modelling strategies, based on different model structures and different complexity
levels in the model outputs were selected:

— Strategy A: a single model for all the taxa that were present in more than 5% of the
samples (65 taxa out of 174);

— Strategy B: a separate model for each taxon that was present in more than 5% of the
samples (65 taxa out of 174);

— Strategy C: a single model for all the taxa present in more than 20% of the samples (19
taxa out of 174). Before adopting this strategy, we checked if the smaller subset of taxa
preserved the information contained in the data set based on 65 taxa. A Principal Coor-
dinate Analysis (PCO) (Gower 1966) using Jaccard’s dissimilarity (Jaccard 1908) matri-
ces and a Mantel test (1967) were carried out to compare the results obtained with 19
and 65 taxa. .

~ Strategy D: a single model for only 8 major taxa, which were selected on the basis of
their ecological properties. In particular, we selected the taxonomic groups used for the
computation of the Italian IBE index, namely Plecoptera, Ephemeroptera, Trichoptera,
Gammaridae and Palaemonidae, Asellidae, Oligochaeta, the genus Leuctra, Baetidae
and Caenidae. .

Table 4.3.1 Environmental variables collected at each sampling site.

Environmental predictive variables

elevation (m) boulders (surface, %)
distance from source (km) rocks (surface, %)
gradient (%) pebbles (surface, %)

watershed drainage area (km?)
water flow (score, 1-5)

gravel (surface, %)
sand (surface, %)
silt and clay (surface, %)

The records available for both predictive and faunistic variables were divided into three
subsets (training, validation and test). The training subset included 50% of the records
(n=77), while the validation and test subsets contained 25% of the records each (n=38). The
three subsets were defined according to a stratified procedure, using elevation as the strati-
fication criterion. Therefore, each subset includes samples from sites at different elevations.
Faunistic information was exploited at its simplest (and most reliable) level, i.e. as binary
(presence/absence) data. All predictive variables, that include heterogeneous quantitative
and semiquantitative environmental variables, were normalized into the [0,1] interval,

The composition of the benthic macroinvertebrate fauna was modelled using feed-
forward multilayer perceptrons. The number of nodes in the hidden layer was defined after
empirical tests and the structures of the ANNs that provided the best results are shown in
Table 4.3.2. The validation subset was used to compute the mean square error (MSE) of the
ANN after each epoch, whereas the test set was used to test the performance of the ANN
after completion of the training procedure.

The learning procedure was iterated over 100 000 epochs, restarting the learning proce-
dure each time the validation began to increase, and keeping the set of synaptic weights that
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provided the minimum validation error. In order to prevent overtraining, only a random
subset of the training patterns (38 patterns) was submitted to the ANN at each training ep-
och, and white noise in the [-0.01,0.01] range was added to each input value at each epoch.
Sigmoid activation functions were used in all the nodes of the hidden and output layers of
the ANN, whereas the error back-propagation algorithm was selected for adjusting the
ANN weights during the training procedure. The leaming rate and the momentum were
constant and set respectively to 0.90 and 0.10.

Table 4.3.2 Four different model outputs, corresponding to different modelling strategies
were selected. The optimal ANN structure for each modelling strategy was defined after
empirical tests.

MODELLING ANN
MODEL OUTPUTS STRATEGY STRUCTURE
Only taxa present in more 1 model o
than 5% samples 65 outputs 11-19-65
65 models

Only taxa present in more

than 5% samples 1 output each 11-5-1
Only taxa present in more 1 model .
than 20% samples 19 outputs | 11-5-19
Only taxa involved in IBE in- 81 :l::’::tls 11148

dex (Ghetti 1997) computation

The continuous ANN outputs, representing the probability of presence in a given site for
each modelled taxon, were converted back to binary presence/absence estimates using a
threshold function set to 0.5. The percentage of Correctly Classified Instances (CCI) was
then computed for each modelling strategy and for each taxon, but a more reliable method
for evaluating the accuracy of the models was needed. Therefore, the K statistic (Cohen
1960, Kraemer 1982) was also computed. In particular, this method tests the null hypothe-
sis of independence between the modelled presence and absence data and the observed
data. Finally, the modelling strategies were compared by computing Jaccard’s dissimilari-
ties (Jaccard 1908) between observed and modelled patterns (i.e. samples).

Results

Only data belonging to the independent test set, which was not used during the training and
validation phases, were used for evaluating the performance and the accuracy of the differ-
ent models. In the case of Strategy C the effects of the reduction of the number of modelled
taxa from 65 to 19 were analysed by comparing the first Principal Coordinates (PCool) ob-
tained from PCOs performed on the two data sets. The overall agreement between the two
cases was very good, as shown in Fig. 4.3.1, and Spearman’s rank correlation was highly
significant (r=0.905, p<0.01). The Mantel test confirmed this result, as the null hypothesis
of independence between the dissimilarity matrices was rejected (r=0.67, p<0.01). The re-
sults about the performances of the models trained according to the four different strategies
are shown in Tables 4.3.3 to 6, in which the percentage of CCI, the values in the four con-
fusion matrix cells and the K statistic are reported. Only taxa that were associated to sig-
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nificant K statistics, i.e. predicted by the ANN models in a way that was significantly dif-
ferent from random, have been included in the tableés::.

Table 4.3.3 Strategy A modelling results. Only 6 out of 65 taxa, which are associated to
significant K statistics are shown.

Overall CCI: 83.8%

Strategy A CCI % 1-1 1-0 0-1 0-0 K
Baetis 7632 19 4 5 10 0.50
Simuliidae 73.68 -12 2 8 16 0.48
Elmidae 81.58 5 5 2 26 0.47
Hydropsychidae 78.95 6 5 3 24 0.46
Rhyacophilidae 76.32 5 7 2 24 0.38
Lumbricidae 68.42 7 8 4 19 031
0.8
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Figure 4.3.1 The overall structure of the data set including taxa that were present in more
than 20% of the samples (19 taxa) was compared to that of the data set including taxa that
were present in more than 5% of the samples (65 taxa). The information contained in the
two data sets was similar, as shown by the agreement between the first Principal Coordi-
nates obtained from Jaccard’s dissimilarity matrices (Spearman’s r=0.905, p<0.01).
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Table 4.3.4 Strategy B modelling results. Only 10 out of 65 taxa, which are associated to
significant K statistics are shown.

Overall CCI: 80.6%

Strategy B CCl% 1-1 1-0 0-1 0-0 K
Dinocras 89.47 5 1 3 29 0.65
Simuliidae 78.95 12 2 6 18 0.57
Rhyacophilidae 76.32 4 5 21 0.46
Baetis 73.68 22 1 9 6 0.39
Hydropsychidae 65.79 11 0 13 14 0.38
Ephemerella 71.05 7 5 6 20 0.34
Ceratopogonidae 68.42 3 6 6 18 0.32
Onychogomphus 84.21 3 3 3 29 0.41
Limoniidae 78.95 4 5 3 26 037
Limnephilidae 76.32 4 1 8 25 0.35

Table 4.3.5 Strategy C modelling results. Only 7 out of 19 taxa, which are associated to
significant K statistics are shown.

Overall CCI: 68.3%
Strategy C CCl % 1-1 1-0 0-1 0-0 K
Baetis 73.7 19 4 6 9 0.44
Hydropsychidae 711 10 1 10 17 0.43
Elmidae 73.7 6 4 6 22 0.36
Gammaridae 68.4 9 9 3 17 0.36
Leuctra 76.3 4 8 1 25 0.35
!y Lumbricidae 68.4 8 7 5 18 032
Ceratopogonidae 68.4 8 6 6 18 0.32

Table 4.3.6 Strategy D modelling results. Only 3 out of 8 taxa, which are associated to sig-
nificant K statistics are shown.

Overall CCI: 73.3%

Strategy D CCI % 1-1 1-0 0-1 0-0 K

Plecoptera 86.84 8 1 4 25 0.67
Ephemeroptera 73.68 23 7 3 0.33
Trichoptera 68.42 23 12 0 0.23

The comparisons between the results of the different modelling strategies, although
based on a small number of efficiently predicted taxa, provided some useful hints. In par-
ticular, the comparison between Strategies A and B (Tables 4.3.3, 4.3.4) showed that the
predictions were slightly more accurate when a set of models, one for each taxon, was
trained instead of a single model simultaneously predicting all the taxa. In fact, with Strat-
egy B not only was the number of taxa efficiently predicted larger (10 instead of 6 out of
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65), but the average value of the K statistics for the predicted taxa was also slightly larger.
This evidence, however, is not in agreement with the results for other groups of organisms,
like fishes or diatoms (see sections 3.8 and 5.8), and is probably related to the smaller spa-
tial scale at which the benthic macroinvertebrates respond to environmental conditions.
Four taxa, namely Simuliidae, Rhyacophilidae, Hydropsychidae and the genus Baetis, were
efficiently predicted both by Strategy A and by Strategy B, while two taxa (Elmidae and
Lumbricidae) were efficiently predicted only by Strategy A, i.e. by using a single model for
predicting all the species. Since information about interspecific interactions can only be
embedded into this kind of model, it is possible that the success in modelling Elmidae and
Lumbricidae depends on consistent association with other taxa or on the role that biotic in-
teractions play in determining their distribution,

In Strategy C, a single model was trained for predicting the 19 taxa that were present in
more than 20% of the samples. The accuracy of the predictions was not very different from
the previous cases, as seven taxa had K statistics significantly different from zero (Table
4.3.5). Four of these taxa (Hydropsychidae, Elmidae, Lumbricidae and the genus Baetis)
were also included among those that were efficiently predicted by the Strategy A model.
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Figure 4.3.2 Strategy A: comparison between 65 ANN outputs (grey bars) and targets
(white bars). The percentage of CCI is also shown (solid line with black dots).

Finally, eight taxa were modelled according to Strategy D (Table 4.3.6). In particular,
these taxa are the ones that are routinely used for computing the IBE index. Obviously,
these taxa have been considered for the biotic index because they have distinct ecological
characteristics, and this is also the reason why they were selected as targets for ANN mod-
elling. Three out of eight taxa were efficiently predicted by the ANN model, namely Ple-
coptera, Ephemeroptera and Trichoptera, but it is important to point out that these taxa are
certainly the most sensitive to disturbance and pollution.

The difference between the apparently high CCI percentages, ranging from 83.8% to
68.6%, and the limited number of taxa that can be reliably predicted by the ANN models
needs some explanation. In Figs. 4.3.2 to S the observed (target, white bar) and modelled
data (ANN output, grey bar) are ranked according to the observed frequency of the taxa in
the test set (n=38). It is obvious that the two bars are similar in height when the predicted
values closely approximate the observed ones. The bars are not labelled to avoid clutter and
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because distinguishing each modelled taxon is not relevant in this case. The CCI percentage
(solid line with black circles) was also plotted for each taxon.
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Figure 4.3.3 Strategy B: comparison between 65 ANN outputs (grey bars) and targets
(white bars). The percentage of CClI is also shown (solid line with black dots).

When the number of taxa to be modelled was large (Strategies A and B, 65 taxa), the
CCI percentage tended to be inversely correlated to the taxon frequency. This inverse rela-
tionship is a clear symptom of model malfunction, as the predictive ability of a quel
should not be related to the frequency of the taxa to be predicted. In fact, the models mainly
failed in predicting the rarest taxa, and this bias was caused by the tendency of the ANNs to
output only absence predictions when those taxa were considered.
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Figure 4.3.4 Strategy C: comparison between 19 ANN outputs (grey bars) and targets

(white bars). The percentage of CCl is also shown (solid line with black dots).
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Figure 4.3.5 Strategy D: comparison between 8 ANN outputs (grey bars) and targets (white
bars). The percentage of CCl is also shown (solid line with black circles).

In the case of Strategies C and D, in which only frequent taxa have been modelled, the
inverse relationship between CCI percentage and taxon frequency was not observed, and
the overall agreement between predicted and observed presence data was better than in the
case of Strategies A and B. Therefore, these strategies were more effective in providing un-
biased predictions about community structure, even though they obviously traded resolution
for accuracy. -

MEAN DISSIMILARITY

{between observed and modelled data)

Strategy A Strategy B Strategy C Strategy D

Figure 4.3.6 Comparison of the mean dissimilarities between observed and modelled sam-
ples for the four selected ANN training strategies.

Finally, observed and modelled data were compared using Jaccard’s dissimilarities (Jac-
card 1908) as a criterion for summarizing their resemblance. In Fig. 4.3.6 the distribution of
these dissimilarities is shown, and it is evident that the closest match between modelled and
observed data was obtained when the eight taxa that are used in the IBE index computations
(Strategy D) were taken into account. In fact, the three lower quartiles in the dissimilarity
distribution for the latter training strategy do not extend beyond the lowest quartile for the
other training strategies (A, B and C). In other words, the similarity relationships that de-
scribe the structure of the test data set were closely reproduced by the ANN model when
only a small number of ecologically significant taxa were selected as ANN outputs.




156 Di Dato P, Mancini L, Tancioni L, Scardi M

\

Conclusions

The benthic macroinvertebrate data set that was available for our study was certainly too
small to support the development of accurate models. However, it provided a good oppor-
tunity for testing different training strategies and collecting useful hints for further devel-
opments. As in the case of other groups of organisms (see chapters 3 and 5), rare taxa (as
well as very frequent ones, although the latter case is less likely to occur) could not be ac-
curately predicted by the ANN models, independently of the training strategy. In fact, ANN
models tend to “learn” that predicting only absence of rare taxa is the best solution for
minimizing errors, even though this practice is obviously not appropriate for a real model.
Obviously, the only solution to this problem would be a larger data set, but the way data are
collected also plays a major role. In particular, more information is needed to model taxa
that are insufficiently frequent. This goal can be attained, for instance, by planning the
sampling activities at different spatial scales, thus allowing the collection of information
about widely distributed taxa as well as about taxa that are only found in limited areas. It is
obvious that a homogeneous spatial allocation of the sampling effort, although very con-
venient from a practical point of view, is not the best practice in this case. On the contrary,
a multi-scale approach is needed, in which part of the samples are collected according to a
ecoregional systematic sampling design, while other samples are collected in sub-areas
where local maxima in beta diversity are detected. This way more information about the re-
lationships between environmental variables and spatial distribution of benthic macroinver-
tebrates would probably be available.
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Figure 4.3.7 Three training strategies involving a single model for simultaneously predict-
ing all the taxa are qualitatively compared. The comparison criterion is the mean dissimilar-
ity between observeg and predicted samples. The optimal efficiency of the modelling ap-
proach, correspondmg to the minimum mean dissimilarity, was observed in the case of the
modelling strategy based on the smallest set of taxa.

As for the different training strategies that have been tested, the macroinvertebrate fauna
was predicted more efficiently when a set of single-taxon models was trained instead of a
single model with multiple outputs. This result was not in agreement with previous findings
obtained for other organisms (see chapters 3 & 5 in this book). Given the limited size of our
data set, it is not easy to figure out whether this is a particular characteristic of benthic
macroinvertebrate fauna or not. However, it is certainly possible that the lack of efficiency
of the single model approach was somehow related to the complexity of underlying inter-
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specific associations or interactions that were not adequately incorporated into a single
ANN model.

Finally, the best training strategy among the ones we tested was based on very broad
taxonomical units, namely on the taxa that are routinely used in the Italian IBE index com-
putation. In particular, this approach was the one that gave the closest approximaiton of the
observed structure of the dissimilarities among the samples in the test set. This result is not
surprising, because the ecological characteristics of the taxa considered in the IBE index are
certainly well defined. Therefore, they represent entities that are probably easier to model
than others that are less closely related to the environmental variables. This result can be
very useful in other ecoregions, where species that have been selected for other biotic indi-
ces could probably play a similar role in defining the structure of the macroinvertebrate as-
semblage. The different efficiencies, measured in terms of mean dissimilarity between ob-
served and predicted data, of the three strategies involving a single model for the prediction
of all the species is qualitatively shown in Fig. 4.3.7. It is obvious that the output resolution,
i.e. the potential accuracy of the model, can be expressed as the number of modelied taxa,
although the taxonomic level of the latter also plays a role. According to our results, the
mean dlssnmxlarlty between observed and modelled data tends to increase with the output
resolution, i.e. with the number of modelled taxa. Therefore, even though only a few cases
have been considered in our study, our results support the hypothesis that the taxa to be
modelled should be limited to the minimum set that provides the relevant information for
correctly reproducing the relationships among observed samples.
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