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Abstract

A modified version of a susceptibles–infectives–removed (S–I–R) model for the HIV/AIDS epidemic,
proposed at the beginning of the 1990s and recently generalized, is presented to mirror the epidemics
of problematic drug use. The generalized model, which belongs to the susceptibles–infectives–susceptibles
(S–I–S) class of epidemic models, can be used both to estimate interesting epidemic macro-parameters and
to make scenario analyses. The model is a compartmental Mover–Stayer-type structure (Soc. Methods Res.
11 (1983) 345; Bull. Narcotics LIII (1-2) (2001) 39; Biometrics 55(4) (1999) 1252; Math. Biosci. 107 (1991)
521) and allows taking into account possible heterogeneous behaviours of the susceptibles. Such models, in
fact, consider the susceptible population as subdivided into two main groups: the group of stayers, that is,
the group of individuals who are considered not at risk of ‘‘infection’’, and the group of movers (possibly
divided into sub-groups with different risk behaviour) who are at risk of infection. Due to the interactions
between infectious individuals and the susceptibles, some of these may pass to the drug user compartments
and begin a ‘‘drug user career’’. The model is presented and studied from a qualitative point of view using a
Markov hybrid approximation. Some qualitative evaluation of the possible impact of interventions directed
both towards susceptibles (primary prevention) and towards users (secondary prevention and/or law
enforcement) are presented. Specific ‘‘what if’’ scenario analyses are obtained by simulation. Possible future
developments are outlined.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction: policy needs and dynamic models

The drug problem and its consequences for society represent a complicated research field.
Policy makers and researchers are seeking answers to a number of questions concerning drug use,
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its consequences, and related costs. They focus on questions such as: ‘‘how much drug use?’’, ‘‘what
trends are emerging?’’, ‘‘what are the consequences of this use?’’, ‘‘which policies are effective?’’,
‘‘what are the costs of the policies and of the consequences?’’. The consequences comprise, among
many others, the adverse effect of infectious diseases and the costs imposed to society by the drug-
related criminality, and by the burden of disease due to mortality and loss of productivity.
The needs of a policy maker seem remarkably clear if one remains in general terms: it is

necessary to describe and understand the problem and follow trends over time, to design proper
interventions and to evaluate the results of such interventions. Hence, it is important to
understand and ‘‘measure’’ drug use and how it responds to drug control interventions.
Mathematical models can contribute to a description and understanding of the various aspects of
the problem. They can even help in designing and choosing proper interventions by providing a
means of integrating data from different sources, describing a process to increase understanding
and simulating policy experiments that are not possible in real life. Important contributions in this
direction can be found in [1–3]. The present paper contributes to these objectives by introducing a
simple model of drug use, which incorporates various effects on initiation into new use or
recidivist use of drugs.
There is evidence that drug use spreads as an infectious disease, i.e. the rate of new cases

depends bilinearly on the number of existing cases and on the number of susceptibles [4–6]. Thus,
mathematical models developed for epidemiological applications may be of use in this field,
although the sociological parameters needed to model drug-related problems may be more
transient with respect to the biological parameters used to model infectious disease spread. The
length of time that someone remains infectious with a certain disease can be documented, and this
infectious period would presumably be the same in different countries; this may be different in the
drug field; for example, the reasons for a person ceasing using drugs in London or Amsterdam
may be different to those for someone in New York or Sidney and, this may, in turn, result in
different values of some characteristic parameters.

1.1. Compartmental models

Compartmental models represent a powerful and well-established mathematical tool in
modelling the spread of ‘‘diseases’’ in a population. They provide a framework in which numbers
of people in different compartments (each one homogeneous with respect to some specified
characteristics) and the relationships between such compartments, mirroring the spread of the
disease in the population of interest, can be described in mathematical terms.
Two main types of mathematical models have commonly been used to describe the spread of

diseases: deterministic models, expressed in terms of systems of differential or difference
equations, and stochastic models in terms of stochastic equations or processes. Both types of
model assume that the population can be split into compartments. Results from the model usually
include the number of people in some compartment of interest, or the number of people moving to
and/or from some compartment during a specified time interval.
Once the population has been split into relevant compartments, it is an easy task to describe

mathematically how the size of these compartments will change over time by means of suitable
equations according to the basic hypotheses of the model describing the dynamics of the
population of interest.
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The spread of an epidemic can be modelled either at the micro or macro level. The first
approach gives rise to the development of transmission models, the second to the development of
operational models. The main difference between the two kinds of models is that transmission
models take into account the dynamic processes at the micro level, modelling the interactions
between individuals belongings to the different sub-groups involved in the epidemic. Operational
models, on the other hand, work on macro-variables, or indicators, suitable to estimating the size
of the phenomena or to monitoring the impact of various interventions, as represented by suitable
scenario parameters. Many models of the two types have been developed in recent years to study
the HIV/AIDS epidemic and are suitable, with some modifications, to model the epidemic of
problematic drug use as well.

1.2. Transmission models

The complexity of transmission models is due to a detailed formalization of the interactions
existing, or supposed to exist, between a large number of subjects involved in the epidemic
process. This is the case of the analysis of HIV transmission across risk groups, such as drug users
and heterosexuals, when some specific hypothesis on the contact pattern is formulated [7,8], or
when the time at which the contact occurs is supposed to somehow affect the probability of
transmission of the infection [9]. As already mentioned, such models can be very helpful when
specific contact or transmission patterns need to be analysed, but may be extremely cumbersome
when the epidemic as a whole is under study. In fact, these detailed model structures contain a
variety of parameters regulating every interaction in the diffusion process, while there is seldom
sufficient data for robust estimation of such a large number of parameters.

1.3. Operational models

A more efficient way of obtaining a simulated epidemic is by using a ‘‘simple’’ operational
model. As opposed to transmission models, simple models do not attempt to include all possible
group or individual interactions, rather, they summarize the dynamics of the epidemic by some
non-linear interaction term and sum up all infected individuals in chains of compartments. In
particular, they use the mass-action law in that the number of new infectives is proportional to the
product of the number of infectives and the number of susceptibles at risk of infection. Most of
the parameters controlling the dynamics in such systems are macro indicators derived from
epidemiological studies, external to the model. Their values simply come from monitoring
systems, from specialized studies, or from the literature; only a limited number of ‘‘internal’’
parameters is usually left to be estimated by fitting the existing data, or to be used for scenario
analyses. Typically, the set of internal parameters includes some form of control of the
transmission and of the size of the core group. Other internal parameters may have different
origins and interpretations, depending on the design of each model. The ability of correctly
describe the epidemic of simple models is theoretically more limited than for complex
transmission models. However, in general, they are more tractable and efficient, both because
of the limited number of parameters required for their functioning, and because of the robustness
of their output. In fact, while the large number of parameters in transmission models often result
in their being difficult to identify, parameter estimates in simple models are usually robust enough
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for the model to be successfully used in complex scenario analyses, and under other strained
conditions.
Most simple models have a stochastic basis, although their output results in some deterministic

forecast curves. Such models, defined as hybrid in [10–12], are the result of the deterministic
approximation of stochastic models, using mean times of stay in compartments with conditional
Poisson arrivals and maximum likelihood (ML) or numerical estimates of internal parameters.
Their use, however theoretically disputable, is more and more frequent among applied researchers
because of their technical simplicity and the clarity and immediate possibility of use and
interpretation of their results: their output consists of deterministic curves of epidemic indicators
(incidence, prevalence, dynamics of the core group, etc.), while the ML estimation of the
parameters of interest is derived by the distributional hypotheses of the original stochastic model.
One of these models for the HIV/AIDS epidemic was proposed in the early 1990s and has been
recently generalized. It allows one to easily obtain scenario analyses [13,14]. Such a model, when
used jointly with suitable back-calculation methods, allows one to reduce uncertainties in the
estimates of incidence curves [15]. A modified version of this model, first presented in [16], is
developed and studied herein to mirror the epidemic of problematic drug use. The model can be
used both to estimate interesting epidemic macro-parameters and to make scenario analyses. In
Section 2, the model is presented. In Section 3, the model is studied from a qualitative point of
view to assess the characteristics of the epidemic/endemic behaviour, and to forecast the impact of
possible interventions on the spread of the epidemic. Section 4 discusses hypotheses involving the
model’s parameters. Sections 5 and 6 deal with the simulation procedure and scenario analyses,
respectively. Section 7 presents concluding remarks and suggestions for further developments.
Mathematical derivations and equations are reported in appendices.

2. A Mover–Stayer model for the epidemic of problematic drug use

The graph in Fig. 1 describes the main features of the proposed model: a Mover–Stayer-type
structure [17,18] allowing for non-randomness among the susceptibles. According to this model,
the susceptible population as subdivided into two groups:

* The Stayers, that is, those individuals who, due to their ‘‘prudent’’ behaviour, cannot be infected
and, thus, are not to be at risk. They always remain in the compartment of susceptibles.

* The Movers, who are at risk of infection, represent the so called ‘‘core group’’ [10–12]. They can
move to the drug user compartments and begin a ‘‘drug user career’’.

The movers can be infected either by a contact with an infectious individual (drug user) or by a
contact with a pusher operating in the black market of drugs.
A drug user passes through a period of ‘‘hidden’’ use at the beginning of his/her career. This

period, called ‘‘latency period’’ [19,20], can be split into several different phases. During this
period the drug users can:

1. stop using drugs,
2. continue using drugs,
3. die.
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Afterwards, those who continue using drugs, due to health and criminal problems connected
with drug use, are normally recorded by some Agency and becomes ‘‘visible’’. Usually, at this stage,
he/she starts to be assisted by health care services and can be cured. However, addictive use of drug
is a recidivant syndrome, thus, ‘‘recidivist use’’ is a possible further phase of a drug user career.
The present model uses several compartments to mirror the phenomenon. Similarly to the

model proposed in [12], the hidden stage corresponding to the latency period is split into two
phases:

* the ‘‘light use’’ phase, which is the initial phase of drug use, wherein light drug users can either
stop, die or pass to

* the ‘‘hard drug use’’ phase.

The arrows in the graph of Fig. 1 completely describe all the possible transitions of a drug user
career as specified above.
The curves connecting the drug use (infectives) compartments and the susceptible (or temporary

no-use) compartments graphically represent the possible interactions between infectious
individuals (drug users) and susceptibles. Such interactions, regulated by the mass-action law
which produces bi-linear terms in the equations of the model (Appendix A), may cause infections,
that is, transitions from susceptibles (or temporary no-use) to infectives. The other possible
transitions from susceptibles (or temporary no-use) to infectives are induced by the action of
pushers working in the black market and are represented by linear terms in the equations.
In order to write the equations (either deterministic or stochastic), it is necessary to assume

further hypotheses and describe the known and unknown parameters. A (possibly marked)
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Fig. 1. Compartmental representation of the system dynamic model of the epidemic of problematic drug use.
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Markov model is suitable to give a first qualitative insight in the epidemic process. In such a case
the length of stay in each compartment is assumed to be exponentially distributed. This implies
constant transitions parameters. A more realistic approximation would be based on semi-Markov
processes. In such a case the length of stay in each compartment may be assumed to be distributed
differently from an exponential. The analysis is more complex but suitable mathematical and
simulation techniques can be used. In the present paper, the Markov model is developed and used
to make some scenario analyses.
From the graph reported in Fig. 1, the equations of the hybrid Markov model can be easily

derived, either in the form of deterministic (continuous or discrete) equations or in the form of
stochastic (continuous or discrete) equations. In Appendix A, only the discrete deterministic
system of equations is reported, which is the basis of both, the qualitative study of the model, and
the simulation procedure. The state variables (other than SðtÞ which is a proportion) represent the
prevalence per million inhabitants, the unit time for numerically integrating the discrete equations
is denoted by Dt: In the simulation runs Dt is taken equal to 1 week. The state variables are
shortly described in Appendix B.
The equation for the proportion of stayers SðtÞ is derived under the hypothesis that the new

susceptibles, entering in the population of interest, are divided into Stayers and Movers according
to constant proportions S0 and M0 ¼ 1� S0 (stationarity), with 0oS0o1 [13]. As a matter of
fact, it is reasonable supposing that the adverse consequences of drug abuse, once known, may
increase the proportion S0: Taking into account this possibility (modification of S0) would cause
higher complexity of the model, thus it is preferable modelling this situation by modulating the
proportion of stayers at time t; according to the effect of some prevention intervention, measured
by an impact parameter D; as shown in Section 4.
In the following section, the qualitative study of the model is considered and the prior

evaluation of the efficacy of primary prevention and of secondary prevention and law
enforcement is performed. Primary prevention interventions mostly refer to advertising
campaigns directed towards susceptibles, whereas secondary prevention interventions essentially
comprise campaigns directed towards drug users and harm reduction.

3. Qualitative study of the epidemic model

The qualitative study can be performed by jointly analysing the equation for X
(susceptibles) and the equation for S: The approach is similar to that used in [13]. The analysis
focus on the onset incidence indicator, that is, the number of transitions from susceptibles to
light drug users per unit time, which is a crucial indicator for monitoring and evaluating drug
policy [19].

3.1. Epidemic/endemic behaviour

Let us consider the equations for X ðtÞ and for the ratio Sðt þ DtÞ=SðtÞ:

X ðt þ DtÞ ¼X ðtÞð1þ m01 � m10 � p17Þ � X ðtÞ½1� SðtÞ�½m12 þ n12Y1ðtÞ

þ n13Y2ðtÞ þ n15W1ðtÞ� þ m61W2ðtÞ;
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Sðt þ DtÞ
SðtÞ

¼
X ðtÞð1� m10 � p17Þ

X ðt þ DtÞ
þ

S0

SðtÞ
m01X ðtÞ þ m61W2ðtÞ

X ðt þ DtÞ
:

Dividing the first one by X ðt þ DtÞ and subtracting the second, we obtain

rðtÞ ¼ 1�
Sðt þ DtÞ

SðtÞ
¼ 1�

S0

SðtÞ

� �
m01X ðtÞ þ m61W2ðtÞ

X ðt þ DtÞ
�

X ðtÞ
X ðt þ DtÞ

½1� SðtÞ�

� ½m12 þ n12Y1ðtÞ þ n13Y2ðtÞ þ n15W1ðtÞ�:

The qualitative analysis of the epidemic is based on the study of the function rðtÞ; which can be
defined ‘‘epidemic/endemic indicator’’. The details are reported in Appendix C.
To summarize: if rðtÞo0; then Sðt þ DtÞ > SðtÞ; the epidemic is spreading and then going

towards the endemic phase, whereas if rðtÞ > 0 then Sðt þ DtÞoSðtÞ and the endemic phase is
ongoing [9]. These two situations are characterized by the following relationships:

rðtÞ > 03 1�
S0

SðtÞ

� �
½m01X ðtÞ þ m61W2ðtÞ� > X ðtÞ½1� SðtÞ�½m12 þ n12Y1ðtÞ

þ n13Y2ðtÞ þ n15W1ðtÞ�; ð1Þ

rðtÞo02 1�
S0

SðtÞ

� �
½m01X ðtÞ þ m61W2ðtÞ�oX ðtÞ½1� SðtÞ�½m12 þ n12Y1ðtÞ

þ n13Y2ðtÞ þ n15W1ðtÞ�; ð2Þ

where

1�
S0

SðtÞ

� �
½m01X ðtÞ þ m61W2ðtÞ�

represents the ‘‘demographic’’ contribution to the dynamics and:

X ðtÞ½1� SðtÞ�½m12 þ n12Y1ðtÞ þ n13Y2ðtÞ þ n15W1ðtÞ�

represents the ‘‘epidemic’’ contribution to the dynamics (onset incidence).
Further qualitative analyses of the model can be performed under the hypothesis of possible

modifications of the parameters or of the dynamics introduced to mirror particular situations. In
the following, the analysis of the effect of possible control interventions is briefly outlined.

3.2. Prior evaluation of the impact of primary and secondary prevention interventions

Let us consider a primary prevention intervention with efficacy parameter D; where D is the
probability that a mover becomes a stayer due to the intervention, and let us suppose that both,
the intervention and the effect, are observed in the same time unit. In order to evaluate the
qualitative impact of the intervention at population level we use the onset incidence indicator [19]
as an overall measure. Let us consider the following equations:

D1ðtÞ ¼X ðt þ DtÞ � X ðtÞ ¼ X ðtÞðm01 � m10 � p17Þ � X ðtÞ½1� SðtÞ�½m12 þ n12Y1ðtÞ

þ n13Y2ðtÞ þ n15W1ðtÞ� þ m61W2ðtÞ
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and

D2ðtÞ ¼X ðt þ DtÞ � X ðtÞ ¼ X ðtÞðm01 � m10 � p17Þ � X ðtÞð1� DÞ½1� SðtÞ�½m12 þ n12Y1ðtÞ

þ n13Y2ðtÞ þ n15W1ðtÞ� þ m61W2ðtÞ;

where the second relationship takes into account the effect of the primary prevention intervention
with efficacy parameter D: By calculating the difference of the two expressions, we obtain

D2ðtÞ � D1ðtÞ ¼X ðtÞD½1� SðtÞ�½m12 þ n12Y1ðtÞ þ n13Y2ðtÞ þ n15W1ðtÞ�

¼X ðtÞDMðtÞ½m12 þ xðtÞ�;

where

MðtÞ ¼ 1� SðtÞ

and

xðtÞ ¼ n12Y1ðtÞ þ n13Y2ðtÞ þ n15W1ðtÞ:

Thus, it is easily seen that the impact of a primary prevention intervention, with efficacy
parameter D; is proportional to MðtÞ; the proportion of movers among susceptibles, which is
monotonically decreasing during the epidemic phase. This implies that the effect of a primary
prevention intervention is higher at the beginning of the epidemic. It also implies that the effect of
the observation of the adverse consequences of drug abuse cannot be by itself highly effective as
primary prevention, due to the long latency period [19]. This prevents from observing such
consequences for several years since the beginning of the epidemic. When starting observing them,
most movers are already drug users.
Similarly, the effect on initiation of law enforcement interventions can be evaluated by reducing

m12; and the impact of secondary prevention interventions by reducing the n parameters or by
modifying the characteristic therapy parameters. A reduction of the sizes of the compartment Y1;
Y2 and W1 follows. Thus, the impact of such interventions is more effective during a mature phase
of the epidemic when the sizes of the drug use compartments are high.
Thus, MðtÞ can be used to measure the maximum expected instantaneous impact of primary

prevention interventions and xðtÞ can be used to measure the maximum expected instantaneous
impact of secondary prevention interventions and law enforcement.
Further qualitative and quantitative analyses are shown in the following scenario section and

are obtained by simulation.

4. The parameters to be externally estimated and the scenario parameters

In order to perform scenario analyses, we refer to the heroin (by injecting) epidemic which took
place in Italy in the past 20 years (beginning estimated around 1980, epidemic peak in 1990–91).
Regarding this epidemic, incidence estimates have been obtained by means of back-calculation in
the framework of several EU projects [20] and some preliminary results have been published [19].
As a by-product, most parameter values, needed to implement the present model, are available
from these studies and from other national epidemiological studies. Thus, only few parameters are
used as scenario parameters for the simulation runs in order to obtain ‘‘what if’’ scenarios. These
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are useful for evaluating the impact of possible future epidemics and of control interventions, at
least from a qualitative point of view.
For what concerns the parameters needed to implement the simulation program:

* The demographic parameters regulating the dynamics of the susceptible population, namely
m01; m10 and p17; are known and are country-specific.

* The other p parameters can be externally estimated from mortality studies among drug users,
which are available for most countries in the EU.

* The parameters m23 and m34 (natural history parameters) can be estimated on the basis of data
available for the study of the latency period [19,20].

* The parameters m45; m46; m54; m56; m65 and m61 (therapy parameters) can be obtained, at least
their order of magnitude, from therapy data available in most countries.

The values of all these parameters for the heroin epidemic in Italy (order of magnitude) are
reported in Table 1. All the other parameters, namely m12; m26; n12; n13; n15; n26; n36 and n56 can be
used as scenario parameters. The ‘‘stationary proportion of Stayers’’, S0 can be used as a scenario
parameter too.
All the transition parameters m and p; represent transmission rates per person of the origin

compartment per week and appear in the linear terms of the equations, the n parameters
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Table 1

Transmission parameters estimated for Italy. Scenario parameters are in bold character (order of magnitude)

Between compartments m p n

0–1 0.00025

1–0 0.00002

1–2 10�5–10�6 10�5–10�6

1–3 10�6–10�5

1–5 10�5–10�6

6–1 0.0096

1–7 0.00023

2–3 0.009

2–6 0.004–0.0004 10�5– 10�6

2–7 [0.0002–0.0008]a

3–4 0.004

3–6 10�6– 10�5

3–7 [0.0002–0.0008]a

4–5 [0.014–0.018]b

4–6 [0.007–0.009]b

4–7 [0.0002–0.0008]a

5–4 0.001

5–6 [0.05–0.1]c 10�5–10�6

6–5 0.001

5–7 [0.0002–0.0008]a

6–7 [0.0002–0.0008]a

aEstimates from mortality studies used within the Consensus Conference on AIDS (Italy, 1998), reported in [14].
bAverage length of treatment (hypothesis): 27–36 weeks.
cAverage length of stay in compartment 5 (hypothesis): 5–10 weeks.
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(interaction parameters) are rates per week per pair and appear in the bilinear terms of the
equations.
Using a suitable simulation procedure, some impact or sensitivity analysis can be conducted to

evaluate the influence of the scenario parameters on the spread of the epidemic.
It would also be possible to make some further scenario analyses to evaluate the impact of an

improved efficacy of the therapy services, by taking the scenario parameters as fixed and by using
the therapy parameters as variable. Similarly, the natural history parameters could be used to
make further ‘‘what if’’ scenario analyses.

5. The simulation procedure

The simulation procedure, used to obtain the scenario analyses presented below, is written in
S-plus 2000 for PC. All the parameters can be modified at the beginning of each run by means of a
user friendly interface. The standard output comprises tables and graphs of the prevalence and
incidence curves, related to the various compartments, and of the function SðtÞ and the various
macro-indicators of interest such as MðtÞ; rðtÞ and xðtÞ: The total simulation time, which is
measured in weeks, can be modified at the beginning of each run.

6. Some scenario analyses

Some scenario analyses have been performed to assess the impact of S0 and some other
parameters on the qualitative and quantitative behaviour of the epidemic. As expected from the
results already obtained for the analogous model for the HIV/AIDS epidemic [14], the effect of S0

is higher with respect to the other parameters used for the simulation runs.
Some results are reported only in graphic form (Graphs 1–4).
In particular, the graphs presented below show the curves corresponding to: the behaviour of

the maximum expected instantaneous impact of primary prevention interventions, measured by
MðtÞ; the behaviour of secondary prevention interventions, measured by xðtÞ; the behaviour of the
epidemic/endemic indicator rðtÞ and the behaviour of the function SðtÞ (proportion of Stayers). A
summary table (Table 2) describes the macro-characteristics of the different simulated epidemics
using the locations and the sizes of the peaks of the incidence and prevalence curves, the
cumulative incidence of people who ever use drugs and of those who ever progress to heavy
use, the value of the cumulative curve of deaths at the end of the period taken into account, and
the location of the maximum of the proportion of stayers, which represents the time when the
endemic phase starts (saturation effect).
All the values related to incidence and prevalence curves are normalized and expressed per

million inhabitants.

6.1. Basic scenarios

The basic scenarios are obtained using the second value of the n parameters shown in the
corresponding column of Table 1. This means that we suppose that the interactions between light
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drug users and susceptibles, as well as that between recidivist drug users and susceptibles, are less
effective than the interactions between hard drug users and susceptibles.
The values of the other parameters used as scenario parameters are reported in the following.

Scenario B1: This scenario is obtained using the parameters reported in Table 1 with S0 ¼ 0:98;
m12 ¼ 10�5; m26 ¼ 0:004: Various graphs representing the curves of major interest are reported
below (Graph 1). Summary statistics are reported in Table 2.
Scenario B2: This scenario is obtained using the parameters reported in Table 1 with S0 ¼ 0:99;

m12 ¼ 10�5; m26 ¼ 0:004: The graphs representing the curves of interest are reported below (Graph
2). Summary statistics are reported in Table 2.
Scenario B3: This scenario is obtained using the parameters reported in Table 1 with S0 ¼ 0:98;

m12 ¼ 10�6; m26 ¼ 0:004: Summary statistics are reported in Table 2.
Scenario B4: This scenario is obtained using the parameters reported in Table 1 with S0 ¼ 0:98;

m12 ¼ 10�5; m26 ¼ 0:0004: Summary statistics are reported in Table 2.
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Graph 1. Curve corresponding to the behaviour of the maximum expected effect of a primary prevention intervention

MðtÞ; to the behaviour of the epidemic/endemic indicator rðtÞ; to the behaviour of the function SðtÞ (proportion of

Stayers) and measuring the maximum expected instantaneous impact of secondary prevention interventions xðtÞ
corresponding to basic scenario B1.
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6.2. Alternative n-scenarios

Scenario A1: This scenario is obtained using the parameters reported in Table 1, but modifying
the order of magnitude of the parameters n (10�5 instead of 10�6 and viceversa) and with S0 ¼
0:98; m12 ¼ 10�5; m26 ¼ 0:004: The graphs representing the curves of interest are reported below
(Graph 3). Summary statistics are reported in Table 2.
Scenario A2: This scenario is obtained using the parameters reported in Table 1, but modifying

the order of magnitude of the parameters n (10�5 instead of 10�6 and viceversa) and with S0 ¼
0:99; m12 ¼ 10�5; m26 ¼ 0:004: The graphs representing the curves of interest are reported below
(Graph 4). Summary statistics are reported in Table 2.
By analysing the graphs and the summary statistics reported in Table 2, it is evident that the

parameter with the highest impact on the course of the epidemic is S0; which is a measure of
the size of the group of susceptibles who are at risk of infection (core group). The bigger the core
group (the lower S0Þ the faster the evolution of the epidemic and the higher the peaks of
the prevalence and incidence curves. The impact of the parameter which measures the influence
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Graph 2. Curve corresponding to the behaviour of the maximum expected effect of a primary prevention intervention

MðtÞ; to the behaviour of the epidemic/endemic indicator rðtÞ; to the behaviour of the function SðtÞ (proportion of

Stayers) and measuring the maximum expected instantaneous impact of secondary prevention interventions xðtÞ
corresponding to basic scenario B2.
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of the black market, namely m12; appears to be lower. Comparing the results obtained under the
basic hypothesis on the n parameters, that is, that infectives are mainly hard users, and under the
alternative hypothesis, that is, that infectives are mainly light users, it appears that the alternative
scenarios show faster evolutions of the epidemics. The qualitative analyses (Section 3) concerning
the behaviours of the functions SðtÞ; rðtÞ and of the maximum expected instantaneous impact of
primary prevention interventions, measured by MðtÞ; and of secondary prevention interventions,
measured by xðtÞ; are also confirmed.
It must be stressed again that the stationary proportion of stayers S0 is the parameter with the

highest impact: there are higher differences in the macro indicators between scenarios 1 and 2 than
between scenarios 1 and 3, or between scenarios 2 and 4.

7. Conclusive remarks and further developments

In the present contribution a compartmental model has been developed to reproduce the
epidemic of problematic drug use. Both qualitative and quantitative analyses (by means of
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Graph 3. Curve corresponding to the behaviour of the maximum expected effect of a primary prevention intervention

MðtÞ; to the behaviour of the epidemic/endemic indicator rðtÞ; to the behaviour of the function SðtÞ (proportion of

Stayers) and measuring the maximum expected instantaneous impact of secondary prevention interventions xðtÞ
corresponding to alternative n—scenario A1.

C. Rossi / Socio-Economic Planning Sciences 38 (2004) 73–90 85



simulation) have been presented to show the potentiality of the model for decision makers. The
quantitative analyses (what if scenarios) have been developed on the basis of the knowledge of the
heroin epidemic in Italy in the last 20 years. This allowed to obtain several parameter values from
various epidemiological and statistical studies already available. As a matter of fact, heroin by
injecting caused the majority of consequences for both health and criminal justice departments in
Italy during the 1990s. The majority of treatment requests (about 90% in the last 10 years) were
due to heroin as primary drug abused. Thus, it is clear that the most problematic drug use in Italy
still relates to heroin use by injecting. On the other hand, ‘‘mutatis mutandis’’, the results
obtained, both from the qualitative and quantitative analyses, apply to other epidemics of drug
use, such as new drugs, at least from a qualitative point of view. In particular, the qualitative
evaluation of the effectiveness of different types of interventions over the course of the epidemic is
valid for any epidemic of problematic use of drugs. As an example one can consider the
indications coming from the behaviour of the epidemic/endemic indicator, which changes
abruptly in coincidence with changes in the power of policy interventions (notably prevention).
This suggests that policy makers should monitor such parameter, which is not directly observable,
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Graph 4. Curve corresponding to the behaviour of the maximum expected effect of a primary prevention intervention

MðtÞ; to the behaviour of the epidemic/endemic indicator rðtÞ; to the behaviour of the function SðtÞ (proportion of

Stayers) and measuring the maximum expected instantaneous impact of secondary prevention interventions xðtÞ
corresponding to alternative n—scenario A2.
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using indirect estimates, such as onset incidence estimates, obtained by various estimation
methods [20] or survey data. In fact, the epidemic part of the indicator is essentially based on
incidence of new use, whereas the demographic part is easily obtained on the basis of census
statistics and therapy data. As a consequence, decision makers should organise real-time
monitoring systems allowing for onset incidence estimation.
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Table 2

Macro-indicators describing the results of the scenario analyses (location is measured in months since the beginning of

the epidemic, size of the peak is normalized per million inhabitants)

Scenario B1 B2 B3 B4 A1 A2

Incidence curve from susceptibles to light users

Location of the peak 50 75 50 50 15 30

Size of the peak 1000 350 1000 1000 3500 850

Cumulative incidence 20,000 14,000 20,000 20,000 35,000 18,000

Prevalence curve of light users

Location of the peak 62 90 62 62 20 40

Size of the peak 10,000 3800 10,000 12,000 15,000 6200

Incidence curve from light users to hard users

Location of the peak 62 90 62 62 20 40

Size of the peak 350 150 350 500 550 250

Cumulative incidence 16,000 6000 16,000 18,000 20,000 6000

Prevalence curve of hard users

Location of the peak 80 125 80 80 50 60

Size of the peak 7500 3500 7500 9000 8000 3800

Incidence curve from hard users to therapy

Location of the peak 90 110 90 90 50 60

Size of the peak 120 60 120 150 120 50

Prevalence curve of clients of therapy services

Location of the peak 100 125 100 100 62 64

Size of the peak 1200 600 1200 1600 1300 620

Prevalence curve of recidivist use

Location of the peak 100 125 100 100 62 64

Size of the peak 2700 800 2700 3000 2500 700

Prevalence curve of no use (temporary)

Location of the peak 130 150 130 150 80 80

Size of the peak 3000 1500 3000 2600 3200 1700

Cumulative death curve

Final value 4100 1800 4100 5000 4100 1800

Proportion of stayers

Location of the peak 70 100 70 62 18 40
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The use of suitable markers (marked processes) would allow to incorporate further descriptions
of each individual involved, for instance a mark might take into account the numbers of
incarcerations, or the numbers of failed therapy interventions, or the numbers of non-fatal
overdoses and so on. In particular, possible repeated therapy interventions should be
incorporated in order to get a more realistic model of a drug user career. There is a general
agreement that the time spent in the therapy compartment for the first therapy episode is
differently distributed with respect to those related to the following episodes and this should be
taken into account. The complexity of such analysis is evident and the interpretation of the results
might be quite uncertain and unreliable, due to the great number of unknown parameters which
are presently not available from epidemiological studies. Thus, it is much better to wait until the
therapy data-sets comprise reliable and complete information to allow the estimation of the
parameters of interest for scenario analyses.
In order to obtain a more realistic model, the transition parameters should not be taken as

constant but should be represented as functions taking into account the history of drug use for
any individual, represented by statistical variables supposed known (covariates), and the history
of policy interventions (availability of services, law enforcement activities), represented by other
covariates (time dependent) and, possibly, by latent variables. This would result in a very realistic
but, at the same time, unreliable and intractable transmission micro-model of no use.
Further generalizations might concern a more realistic approach to modelling the length of stay

in the various compartments, taking into account the heterogeneity of individual behaviours as
resulting from studies on latency period [19,20]. This issue will be addressed in a future
contribution by means of a proper simulation model.
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Appendix A. Deterministic difference equations of the model

(1) Susceptible population: state variable: X

X ðt þ DtÞ ¼X ðtÞð1þ m01 � m10 � p17Þ � X ðtÞ½1� SðtÞ�½m12 þ n12Y1ðtÞ

þ n13Y2ðtÞ þ n15W1ðtÞ� þ m61W2ðtÞ:

(2) Light drug users (initial phase of drug use): state variable: Y1

Y1ðt þ DtÞ ¼Y1ðtÞð1� m23 � m26 � p27Þ þ X ðtÞ½1� SðtÞ�½m12 þ n12Y1ðtÞ

þ n13Y2ðtÞ þ n15W1ðtÞ�:
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(3) Hard drug users (problematic phase of drug use): state variable: Y2

Y2ðt þ DtÞ ¼ Y2ðtÞð1� m34 � p37Þ þ m23Y1ðtÞ:

(4) Clients of health care services: state variable: Z

Zðt þ DtÞ ¼ ZðtÞð1� m45 � m46 � p47Þ þ m34Y3ðtÞ þ m54W1ðtÞ:

(5) Recidivistic drug users: state variable: W1

W1ðt þ DtÞ ¼W1ðtÞð1� m54 � m56 � p57Þ þ W2ðtÞ½m65 þ n26Y1ðtÞ

þ n36Y2ðtÞ þ n56W1ðtÞ� þ m45ZðtÞ:

(6) No use (temporary): state variable: W2

W2ðt þ DtÞ ¼W2ðtÞð1� m61 � p67Þ � W2ðtÞ½m65 þ n26Y1ðtÞ þ n36Y2ðtÞ þ n56W1ðtÞ�

þ m26Y1ðtÞ þ m46ZðtÞ þ m56W1ðtÞ:

(7) Deaths from drug user population: state variable: D

Dðt þ DtÞ ¼ DðtÞ þ p27Y1ðtÞ þ p37Y2ðtÞ þ p47ZðtÞ þ p57W1ðtÞ þ p67W2ðtÞ:

(8) Proportion of stayers: state variable: S

Sðt þ DtÞ ¼ SðtÞ
X ðtÞð1� m10 � p17Þ

X ðt þ DtÞ
þ S0

m01X ðtÞ þ m61W2ðtÞ
X ðt þ DtÞ

:

Appendix B. State variables and parameters of the Markov model

mij linear transition rates (constant)
pij mortality rates (constant)
nij interaction rates (constant)
X ðtÞ population of susceptibles (prevalence)
SðtÞ proportion of stayers
MðtÞ proportion of movers
Y1ðtÞ light drug users (prevalence)
Y2ðtÞ hard drug users (prevalence)
ZðtÞ clients of health care services (prevalence)
W1ðtÞ recidivist drug users (prevalence)
W2ðtÞ temporary non-users (prevalence)
DðtÞ deaths by any cause (cumulative prevalence)

Appendix C. Study of the epidemic/endemic indicator

Relation (1) implies that if SðtÞ ¼ 1 (all the susceptibles are stayers) then the epidemic
contribution vanishes, SðtÞ is decreasing ðrðtÞ > 0Þ and the endemic phase starts, whereas, from
relation (2), it follows that if SðtÞpS0; then SðtÞ is increasing ðrðtÞo0Þ; thus, there exists a time t�
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such that for t > t�S0pSðtÞp1: It follows that the values S1 ¼ 1 and S2 ¼ S0 are reflecting
barriers for the stochastic process for t > t�; thus, it exists a positive value e ð0oeo1� S0Þ such
that if SðtÞ > 1� e; then the endemic phase of the epidemic starts and SðtÞ becomes a decreasing
function, but, as soon as SðtÞo1� e then SðtÞ becomes an increasing function producing new
smaller epidemic waves such as those observed periodically for any epidemic. In other words, we
can say that the relative influence of the epidemic term is increasing for SðtÞ decreasing, whereas
the relative influence of the demographic term is decreasing for SðtÞ decreasing. We can define the
value S� ¼ 1� e� the threshold epidemic value.
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