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SUMMARY. Rotationally periodic structures, like turbines, bladed disks, stators and rotors of elec-
tric machineries or satellite antennae, play an important role in many fields of the technology. It is
well known that when even small structural imperfections are present, destroying the perfect peri-
odicity of the structure, each couple of degenerate modal frequencies splits into two different values
(mistuning) and the corresponding modal shapes exhibit peaks of vibration amplitude (localization
phenomenon). In this paper a continuous model describing the in-plane vibrations of an imperfect
bladed rotor is derived via the homogenization theory, and is applied to the analysis of the local-
ization phenomenon. Imperfections are modeled as perturbations of mass and bending stiffness of
some blades, and a perturbation approach is adopted in order to find out the split eigenfrequencies
and eigenmodes of the imperfect structure. Numerical simulations show that the proposed model is
suitable and effective for the identification and analysis of the localization phenomenon, requiring
much lower computational effort than classical finite element models.

1 INTRODUCTION
Rotationally periodic structures are composed of a numberNb of identical substructures, peri-

odically arranged around an axis, so that the original shape is recovered upon rotations of an angle
of 2π/Nb radiants. This typology of structures plays an important role in many engineering ap-
plications, such as turbines, cooling towers with legs, satellite antennae, stator-rotor assemblies of
electrical machineries, and so on. It is well known that, due to the periodicity they posses, these
structures exhibit couples of degenerate eigenmodes at the same eigenfrequency [Thomas, 1979,
Shen, 1994]. Finite element analysis has been extensively used [Thomas, 1979, Cai et al., 1990,
Fricker and Potter, 1981] in order to study the free and forced response of perfect rotationally peri-
odic structures. By exploiting their periodicity properties, it is possible to obtain a discrete model
of the structure by considering just a single substructure and enforcing suitable constraints. Indeed,
for a given structural eigenmode, all the substructures exhibit the same vibration amplitude with
different phases.

When imperfections are present, destroying the symmetry of the structure, the degeneracy is
removed and each couple of eigenmodes belonging to the same eigenfrequency in the perfect case,
splits into two non-degenerate eigenmodes at different frequencies. Moreover, some eigenmodes ex-
hibit the well known localization phenomenon [Sinha, 1986, Pierre and Dowell, 1987], consisting of
a local increase of vibration amplitude, which is dangerous because it may lead to fatigue failure of
the structure. This phenomenon has been extensively studied in the literature by means of finite ele-
ment models [Huang, 2006, Chiu and Huang, 2007] or simplified discrete models [Tang and Wang, 2003,
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Yoo et al., 2003, Fang et al., 2006]. The finite element approach is accurate, since it can model the
exact geometry of the structure, but it requires a high computational effort; indeed, due to the pres-
ence of imperfections, the whole structure need to be discretized. The simplified models describe
the blades as lumped masses and the coupling between adjacent blades is accounted for by the
presence of elastic springs. Although these models are computationally more efficient than finite
element schemes, they are able to describe the influence of imperfections on the rotor dynamics
only in a qualitative way, since they are based on a simplified geometry, quite different from the
actual rotor geometry. Continuous models are less developed in the literature; an attempt has been
done in [Wagner and Griffin, 1993], where a perfect structure is considered, composed of grouped
blades mounted on a flexible disk; the coupling between adjacent groups of blades, due to presence
of the flexible disk, is modeled by means of discrete springs, whereas the stiffness of the blades is
accounted for by using distributed springs.

In real situations, each blade is coupled to all the other blades mounted on the flexible disk trough
the disk itself, and this feature should be taken into account for an accurate evaluation of the struc-
tural eigenmodes and eigenfrequencies. In this paper, a model of a bladed rotor is derived via the
homogenization theory, and is applied to the investigation of the localization phenomenon in imper-
fect bladed rotors. The considered structure is composed ofNb elastic blades clamped to an elastic
ring, modeling the rotor disk. The presence of imperfections is accounted for by perturbing the lin-
ear mass density and the bending stiffness of the imperfect blades. The homogenization technique
is employed in order to obtain a continuous model of the structure: the blade dynamical behavior
is described by the Euler-Bernoulli vibrating beam equation, equipped with suitable boundary con-
ditions, taking into account the presence of the elastic ring which couples all the blades together.
A perturbation technique is adopted to obtain a linearized variational formulation, whose solution
supplies the modal split eigenfrequencies and eigenmodes of the imperfect rotor. Numerical sim-
ulations reveal the frequency split effect and the localization phenomenon due to the presence of
imperfections, showing the ability of the proposed model to investigate the dynamics of imperfect
turbine bladed rotors. Due to its accuracy and efficiency, the proposed homogenized model seems to
be a useful tool for the design and the parametric analysis of rotationally periodic structures.

2 HOMOGENIZED MODEL
In this section a homogenized model for the analysis of the in-plane vibrations of a bladed rotor

is developed. The rotor is schematically represented in fig. 1; it is made of a linearly elastic material
and is composed ofNb blades, of lengthlb, clamped on a ring of radiusR, representing the turbine
shaft. The angular spacingδθo between any two adjacent blades is constant and equal to2π/Nb.

2.1 Euler-Bernoulli model
In order to develop the homogenized model, a classical model based on the Euler-Bernoulli

theory is first recalled, denoted in the foregoing with the acronym EB. A polar coordinate system
(O, ρ, θ) is introduced. Letu(θ), w(θ) be the tangential and radial displacement of the ring, respec-
tively; let Ui(ρ), Wi(ρ) be the transversal and axial displacement of theith blade, placed at an angle
θi, respectively, as shown in fig. 1. Both the ring and the blades are assumed to be inextensible. As
well known, the axial strainε, the rotationϕ and the variation of curvature∆χ of the cross section
of the ring are respectively given by

ε =
1
R

(
∂u

∂θ
+ w

)
, ϕ =

1
R

(
u− ∂w

∂θ

)
, χ =

1
R2

(
∂u

∂θ
− ∂2w

∂θ2

)
(1)
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Figure 1: Schematization of a bladed rotor

whereR is the ring radius. Let assume for now that no imperfections are present, and letσr and
Kr denote, respectively, the linear mass density and in-plane bending stiffness of the ring, which
are constant quantities. Moreover letσob and Kob denote, respectively, the linear mass density
and bending stiffness of each blade, possibly depending on the radial variableρ. The Hamiltonian
functional governing the dynamical behavior of the structure is given by

H =
1
2

∫ 2π

0

σr

[(
∂u

∂t

)2

+
(

∂w

∂t

)2
]

R dθ +
1
2

Nb∑

i=1

∫ R+lb

R

σob(ρ)

[(
∂Ui

∂t

)2

+
(

∂Wi

∂t

)2
]

dρ

− 1
2

∫ 2π

0

Kr

R4

(
∂u

∂θ
− ∂2w

∂θ2

)2

R dθ − 1
2

Nb∑

i=1

∫ R+lb

R

Kob(ρ)
(

∂2Ui

∂ρ2

)2

dρ (2)

subjected to the following constraints

1
R

(
∂u

∂θ
+ w

)
= 0, θ ∈ (0, 2π);

∂Wi

∂ρ
= 0, ρ ∈ (R, R + lb), i = 1 . . . Nb;

Wi = w, Ui = u,
∂Ui

∂ρ
=

1
R

(
u− ∂w

∂θ

)
, ρ = R, θ = θi, i = 1 . . . Nb (3)

wheret denotes the time. Let now assume that thejth rotor blade, placed at an angleθj , is imperfect.
A great variety of imperfections can be accounted for by suitably modifying the linear mass density
and/or the bending stiffness of a single blade, e.g. in [Fang et al., 2006] a crack in a blade is mod-
eled by suitably reducing the bending stiffness of the damaged blade. Accordingly, the linear mass
densityσbj(ρ) and bending stiffnessKbj(ρ) of the imperfectjth blade are represented as follows

σbj(ρ) = σob(ρ) + δσbj(ρ), Kbj(ρ) = Kob(ρ) + δKbj(ρ) (4)

whereδσbj andδKbj are the variations with respect to their corresponding nominal values.
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2.2 Homogenized model for a perfect rotor
In order to derive a homogenized model for the dynamical behavior of a bladed rotor, let assume

for now that no imperfections are present. The variational formulation (2) is rewritten for a family
of rotors with increasing numberN of blades, starting fromN = Nb, which is the number of blades
exhibited by the reference rotor, in order to approach the homogenization limitN → ∞. It is
assumed that, for each chosenN , the blade linear mass densityσN

ob rescales asσob(ρ)Nb

N and the
blade bending stiffnessKN

ob rescales asKob(ρ)Nb

N , such that the overlined quantities

σob(ρ) =
σN

ob

δθ
, Kob(ρ) =

KN
ob

δθ
(5)

with δθ = 2π/N being the angular spacing between adjacent blades, do not depend onN . The
quantities defined in (5) represent, respectively, the homogenized linear mass density and bending
stiffness. These assumptions are substituted into the functional (2) and the homogenization limit
N → ∞ is then performed; by extending the functionsUi(ρ) and Wi(ρ), i = 1 . . . N , to the
annular region(R, R + lb) × (0, 2π) and assuming that they strongly converge, together with their
derivatives, to functionsU(ρ, θ) and W (ρ, θ), it is possible to prove that the functional (2), for
N →∞, converges to

Hhom =
1
2

∫ 2π

0

σr

[(
∂u

∂t

)2

+
(

∂w

∂t

)2
]

R dθ+
1
2

∫ 2π

0

∫ R+lb

R

σob(ρ)

[(
∂U

∂t

)2

+
(

∂W

∂t

)2
]

dρdθ

− 1
2

∫ 2π

0

Kr

R4

(
∂u

∂θ
− ∂2w

∂θ2

)2

R dθ − 1
2

∫ 2π

0

∫ R+lb

R

Kob(ρ)
(

∂2U

∂ρ2

)2

dρdθ (6)

subjected to the following constraints

1
R

(
∂u

∂θ
+ w

)
= 0, θ ∈ (0, 2π);

∂W

∂ρ
= 0, (ρ, θ) ∈ (R, R + lb)× (0, 2π);

W = w, U = u,
∂U

∂ρ
=

1
R

(
u− ∂w

∂θ

)
, ρ = R, θ ∈ (0, 2π) (7)

obtained from (3) after performing the homogenization limit. By a priory enforcing the constraints
(7) in (6), the following functional is obtained

Hhom =
1
2

∫ 2π

0

σr

[(
∂U

∂t

)2

+
(
− ∂2U

∂θ∂t

)2
]

ρ=R

R dθ +
1
2

∫ 2π

0

∫ R+lb

R

σob(ρ)
(

∂U

∂t

)2

dρdθ

+
1
2

∫ 2π

0

(∫ R+lb

R

σob(ρ) dρ

) [
− ∂2U

∂θ∂t

]2

ρ=R

dθ − 1
2

∫ 2π

0

Kr

R4

[
∂U

∂θ
+

∂3U

∂θ3

]2

ρ=R

R dθ

− 1
2

∫ 2π

0

∫ R+lb

R

Kob(ρ)
(

∂2U

∂ρ2

)2

dρdθ (8)

subjected to the essential constraint condition

∂U

∂ρ
=

1
R

(
U +

∂2U

∂θ2

)
, ρ = R, θ ∈ (0, 2π) (9)
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In order to study the free vibrations of the perfect bladed rotor, a sinusoidal time dependence of the
unknownU is assumed (i.e., with a slightly abuse of notation,U(ρ, θ, t) = U(ρ, θ)eiω t), i being
here the imaginary unit. Enforcing this position and recasting the functional (8) into a variational
form, it is obtained

− ω2
{ ∫ 2π

0

σr

[
Uψ +

∂U

∂θ

∂ψ

∂θ

]

ρ=R

Rdθ +
∫ 2π

0

∫ R+lb

R

σob(ρ)Uψ dρdθ

+
∫ 2π

0

(∫ R+lb

R

σob(ρ) dρ

) [
∂U

∂θ

∂ψ

∂θ

]

ρ=R

dθ
}

+
∫ 2π

0

Kr

R4

[(
∂U

∂θ
+

∂3U

∂θ3

)(
∂ψ

∂θ
+

∂3ψ

∂θ3

)]

ρ=R

R dθ

+
∫ 2π

0

∫ R+lb

R

Kob(ρ)
∂2U

∂ρ2

∂2ψ

∂ρ2
dρdθ = 0 (10)

subjected to the following constraints

∂U

∂ρ
=

1
R

(
U +

∂2U

∂θ2

)
,

∂ψ

∂ρ
=

1
R

(
ψ +

∂2ψ

∂θ2

)
, ρ = R, θ ∈ (0, 2π) (11)

whereψ(ρ, θ) indicate a generic test function.
The homogenized model here described is denoted with the acronym HOM in the foregoing.

2.3 Homogenized model for a imperfect rotor
The presence of imperfections can be accounted for in the homogenized model by letting the

homogenized linear mass density and bending stiffness depend also on the angular variableθ. Ac-
cordingly, let assume that

σb(ρ, θ) = σob(ρ) + δσb(ρ, θ), Kb(ρ, θ) = Kob(ρ) + δKb(ρ, θ) (12)

whereδσb andδKb are suitable perturbations superimposed to the homogenized nominal values of
linear mass densityσob and bending stiffnessKob, respectively. In order to chooseδσb andδKb

it is necessary to assume a specific behavior of the imperfect blades during the homogenization
limit. To this end, for the sake of clarity, let assume that thejth blade of the rotor has increased
linear mass density equal toσob + δσbj . It is assumed that when the number of blades is artificially
increased to approach the homogenization limit, the number of imperfect blades is increased as
well, as depicted in fig. 2; in doing so, the linear mass density and bending stiffness of the blades
are rescaled according to the conditions given in section 2.2. In particular, if the number of blades
is increased by a factor2n with n positive integer, the total number of blades becomesN = 2nNb

and the nominal value of the blade linear mass density rescales toa = σob/2n; the number of
imperfect blades becomes2n+1 − 1, equally spaced in the angular region centered inθ = θj , where
the imperfectjth blade is placed in the reference rotor, and whose amplitude is equal to the angular
spacingδθo between two adjacent blades in the reference configuration; all the imperfect blades have
rescaled linear mass density variation equal tob = δσbj/2n, except the two blades at the boundary
of this region, which have linear mass density variationb/2.

Under these assumptions it is easy to show that, in the homogenization limitN → ∞, the ho-
mogenized linear mass density perturbationδσb and the homogenized bending stiffness perturbation
δKb are piecewise constant functions having the following expressions:

δσb(ρ, θ) =
m∑

i=1

δσbi(ρ)
δθo

χi(θ), δKb(ρ, θ) =
m∑

i=1

δKbi(ρ)
δθo

χi(θ) (13)
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N= Nb
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ob
+

b

N=2n·N
b
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n
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k+p-1
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a+b/2

Figure 2: Homogenization limit for a imperfect rotor; imperfection due to the increase of linear mass
density of a blade. On the left: reference rotor withNb blades and imperfection on thejth blade, in
black color. On the right: rotor withN = 2nNb blades with rescaled bending stiffnessKob/2n and
linear mass densitya = σob/2n. Imperfect blades in black color;k = 2n(j − 1) + 1, p = 2n − 1,
b = δσbj/2n

.

where

χi(θ) = 1 ∀θ ∈
(

θi − δθo

2
, θi +

δθo

2

)
, χi = 0 elsewhere (14)

3 ANALYTICAL SOLUTIONS FOR EIGENFREQUENCIES AND EIGENMODES
In this section explicit formulas for the evaluation of the eigenfrequencies and eigenmodes of a

bladed rotor, with or without imperfections, are reported. They are obtained by using the homoge-
nized model developed in sections. 2.2 and 2.3.

3.1 Perfect rotor
In order to evaluate the eigenmodes and eigenfrequencies of a perfect rotor by using the homog-

enized model here proposed, let assume for the sake of simplicity thatσob andKob do not depend
on the radial variableρ; under this simplifying assumption, using the localization lemma, equations
(10) and (11) yields the field equilibrium equation:

−ω2 σobU + Kob
∂4U

∂ρ4
= 0, (ρ, θ) ∈ (R, R + lb)× (0, 2π) (15)
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and the boundary conditions:

−ω2σrR

(
U − ∂2U

∂θ2

)
+ ω2σoblb

∂2U

∂θ2
− Kr

R3

(
∂

∂θ
+

∂3

∂θ3

)2

U

−Kob

R

(
1 +

∂2

∂θ2

)
∂2U

∂ρ2
−Kob

∂3U

∂ρ3
= 0 ρ = R, θ ∈ (0, 2π);

∂U

∂ρ
=

1
R

(
U +

∂2U

∂θ2

)
ρ = R, θ ∈ (0, 2π);

Kob
∂2U

∂ρ2
= 0 ρ = R + lb, θ ∈ (0, 2π);

−Kob
∂3U

∂ρ3
= 0 ρ = R + lb, θ ∈ (0, 2π). (16)

Due to the rotational symmetry of the problem, the eigenmodesU depend harmonically on the angu-
lar variableθ. For each fixed nodal diameter, denoted by the modal numbern ≥ 0, a numerable set
of eigenfrequencies and eigenmodes, denoted by the modal numberl = 1, 2, 3 . . ., can be computed
as follows. Fixedn, a solution of the field equation (15) is given by

Uon,l(ρ, θ) = 2An,l

(
4∑

i=1

Ci fi(ρ)

)
cos(nθ + ϕn,l) (17)

whereAn,l is an arbitrary constant,

f1(ρ) = cos[λn,l(ρ−R)], f2(ρ) = sin[λn,l(ρ−R)], f3(ρ) = cosh[λn,l(ρ−R)],
f4(ρ) = sinh[λn,l(ρ−R)] (18)

and the modal eigenfrequencyωon,l is related toλn,l by the relation

ωon,l =

√
Kob

σob
λ2

n,l (19)

In (17) the quantitiesCi, i = 1 . . . 4 are scalar unknowns; by substituting (17) into the four boundary
conditions (16) an eigenvalue problem is obtained, exhibiting a numerable set of eigenvaluesλn,l,
and corresponding eigenvectorsCi, i = 1 . . . 4. The phase orientationϕn,l is left undetermined
after solving (15) and (16); as a consequence, for each fixedn > 0 and l two independent eigen-
modes exist, at the same modal frequencyωon,l. These are known in the literature as degenerate
eigenmodes[Thomas, 1979, Shen, 1994]. All the eigenmodes relevant ton = 0 are non-degenerate.

3.2 Linearized homogenized model for imperfect rotors
In order to derive analytical expressions for the modal eigenfrequencies and eigenmodes of rotor

in the presence of imperfections, the homogenized model proposed in section 2.3 is linearized by
performing an asymptotic expansion. Accordingly, the eigenmodes of the imperfect rotor are com-
puted by perturbing the eigenmodes relevant to the perfect rotor, i.e., for each fixed couple of modal
indices(n, l), the eigenmodesUn,l of the imperfect rotor are given by:

Un,l(ρ, θ) = Uon,l(ρ, θ) + δUn,l(ρ, θ) (20)
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whereUon,l is the eigenmode of the perfect rotor given in (17) andδUn,l is an unknown perturbation.
Moreover the relevant eigenfrequencyωn,l is given by

ωn,l = ωon,l + δωn,l (21)

whereδωn,l is the frequency shift due to the presence of imperfections. By substituting the expan-
sions (12), (20) and (21) into the weak formulation (10) and retaining only the first order terms, the
following linearized weak formulation is obtained:

− ω2
on,l

{ ∫ 2π

0

σr

(
δUn,lψ +

∂δUn,l

∂θ

∂ψ

∂θ

) ∣∣∣
ρ=R

R dθ +
∫ 2π

0

∫ R+lb

R

σb δUn,lψ dρdθ

+
∫ 2π

0

σblb
∂δUn,l

∂θ

∂ψ

∂θ

∣∣∣
ρ=R

dθ
}

+
∫ 2π

0

Kr

R4

(
∂δUn,l

∂θ
+

∂3δUn,l

∂θ3

)(
∂ψ

∂θ
+

∂3ψ

∂θ3

) ∣∣∣
ρ=R

R dθ

+
∫ 2π

0

∫ R+lb

R

Kb
∂2δUn,l

∂ρ2

∂2ψ

∂ρ2
dρdθ = 2ωon,lδωn,l

{ ∫ 2π

0

σr

(
Uon,lψ +

∂Uon,l

∂θ

∂ψ

∂θ

) ∣∣∣
ρ=R

R dθ

+
∫ 2π

0

∫ R+lb

R

σbUon,lψ dρdθ+
∫ 2π

0

σblb
∂Uon,l

∂θ

∂ψ

∂θ

∣∣∣
ρ=R

dθ
}

+ω2
on,l

{ ∫ 2π

0

∫ R+lb

R

δσb Uon,lψ dρdθ

+
∫ 2π

0

lb δσb
∂Uon,l

∂θ

∂ψ

∂θ

}
−

∫ 2π

0

∫ R+lb

R

δKb
∂2Uon,l

∂ρ2

∂2ψ

∂ρ2
dρdθ (22)

under the constraints

∂δUon,l

∂ρ
=

1
R

(
δUon,l +

∂2δUon,l

∂θ2

)
,

∂ψ

∂ρ
=

1
R

(
ψ +

∂2ψ

∂θ2

)
, ρ = R, θ ∈ (0, 2π) (23)

where it is assumed, for simplicity, thatσob andKob do not depend on the radial variableρ. The
unknowns appearing in (22) are the scalar quantitiesδωn,l, ϕn,l and the functionδUn,l. Due to
the presence of the imperfections, the indeterminacy on the phase angleϕn,l is removed and, for
each couple of modal indexes(n, l), two set of solutions(δωn,l, ϕn,l, δUn,l) are expected to be
found, corresponding to the two split eigenmodes belonging to the same degenerate eigenmodeUon,l

relevant to the perfect structure. This linearized homogenized model is denoted in the foregoing with
the acronym L-HOM.

3.3 Eigenfrequencies and eigenmodes evaluation for a imperfect rotor
In order to derive analytical expressions for the split eigenfrequencies and eigenmodes of an

imperfect rotor, the linearized variational formulation (22) is here adopted. It is observed that, for
each fixed modal numbern,

g1(ρ, θ) =

(
4∑

i=1

Cifi(ρ)

)
cos(nθ)

g2(ρ, θ) =

(
4∑

i=1

Cifi(ρ)

)
sin(nθ) (24)

with Ci, i = 1 . . . 4 andλn,l solutions of (15) and (16), are two independent functions belonging to
the kernel of the self-adjoint operator in (22). Accordingly, by substituting onceψ = g1 and then
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ψ = g2 in (22), together with the expression ofUon,l given by (17), two independent equations in
the unknownsδωn,l andϕn,l are obtained, whose solutions supply the two couples of frequency
split and phase orientation(δωn,l, ϕn,l) relevant to the perturbed mode(n, l). Once the values of
δωn,l andϕn,l, in correspondence of a choice of modal numbers(n, l), have been computed, the
corresponding modal shapes can be obtained by making use of the linear weak formulation (22). To
this end (22) is integrated by parts with respect to the variableρ and, making use of the first of (23),
it yields

∫ 2π

0

∫ R+lb

R

(
− ω2

on,lσbδUn,l + Kb
∂4δUn,l

∂ρ4
− 2ωon,lδωn,lσbUon,l − ω2

on,lδσbUon,l

+ δKb
∂4Un,l

∂ρ4

)
ψ dρdθ +

∫ 2π

0

{
− ω2

on,lσrR

(
δUn,lψ +

∂δUn,l

∂θ

∂ψ

∂θ

)
− ω2

on,lσblb
∂δUn,l

∂θ

∂ψ

∂θ

+
Kr

R3

(
∂δUn,l

∂θ
+

∂3δUn,l

∂θ3

)(
∂ψ

∂θ
+

∂3ψ

∂θ3

)
− Kb

R

∂δUn,l

∂ρ2

(
ψ +

∂2ψ

∂θ2

)
+ Kb

∂3δUn,l

∂ρ3
ψ

− 2ωon,lδωn,l

[
σrR

(
Uon,lψ +

∂Uon,l

∂θ

∂ψ

∂θ

)
+ σblb

∂Uon,l

∂θ

∂ψ

∂θ

]
− ω2

on,llbδσb
∂Uon,l

∂θ

∂ψ

∂θ

− δKb

R

∂2Uon,l

∂ρ2

(
ψ +

∂2ψ

∂θ2

)
+ δKb

∂3Uon,l

∂ρ3
ψ

}∣∣∣
ρ=R

dθ +
∫ 2π

0

[(
Kb

∂2δUn,l

∂ρ2

+ δKb
∂2Uon,l

∂ρ2

)∂ψ

∂ρ

]
ρ=R+lb

dθ +
∫ 2π

0

[(
−Kb

∂3δUn,l

∂ρ3
− δKb

∂2Uon,l

∂ρ3

)
ψ

]

ρ=R+lb

dθ = 0

(25)

Another weak-form equation is obtained multiplying the second of (23) byψ and integrating over
(0, 2π), which reads as:

∫ 2π

0

[
∂δUn,l

∂ρ
− 1

R

(
δUon,l +

∂2δUn,l

∂θ2

)]
ψ dθ = 0 (26)

In order to find out the unknown modal perturbationδUn,l, a spectral representation is used by
setting

δUn,l(ρ, θ) =
4∑

i=1

{
Ci0

2
+ ρ

Gi0

2
+

∑

k>0

[(Cik + ρGik) cos(k θ) + (Dik + ρHik) sin(k θ)]

}
fi(ρ)

(27)
The representation (27) ofδUn,l is then substituted in (25), and the test functionψ is chosen accord-
ing to the following expressions

ψ(ρ, θ) = cos(kθ)β(ρ), ψ(ρ, θ) = sin(kθ)β(ρ) (28)

wherek is any positive fixed integer andβ is an arbitrary function ofρ. Using the localization lemma
in the first integral of (25) an explicit expression forGik andHik, i = 1 . . . 4 is obtained. The
expression (27) forδUn,l, where nowGik andHik are known scalar quantities, is then substituted
into (25) and (26). Linear equations in the unknown coefficientsCik andDik are obtained, for each
fixed positive integerk, by choosing the test functionψ and∂ψ/∂θ, at ρ = R andρ = R + lb,
ascos(k θ) andsin(k θ) and using again localization lemma. Their solution provides the Fourier
coefficients of the unknown modal perturbationδUn,l.

9



4 NUMERICAL SIMULATIONS
In this section some numerical simulation results are presented, in order to show the effective-

ness of the proposed homogenized model in the investigation of the frequency split and localization
phenomenon in imperfect rotors.

4.1 Case study bladed rotor
A case study problem is here introduced; a bladed rotor, similar to the one schematically rep-

resented in fig. 1, is considered. It is composed of 32 elastic blades of cross section2 × 50 mm
and length600 mm; the blades are clamped to a support ring of radius200 mm and cross section
4× 50 mm. The ring and the blades are comprised of steel, with Young modulus210 GPa and mass
density7850 Kg/m3. The degenerate modal frequencies of this bladed rotor are reported in table 1,
relevant to modal numbersn = 2, . . . 5 andl = 1 and evaluated according to the EB model.

n = 2 n = 3 n = 4 n = 5
27.0746 27.0746 27.9718 27.9718 28.4242 28.4242 28.6596 28.6596

Table 1: Modal frequenciesωon,l in rad/s, relevant to the perfect rotor and evaluated according to
the EB model. Modal frequencies relevant to modal numbersn = 2, n = 3, n = 4, n = 5 andl = 1

4.2 Numerical algorithms
In this section several numerical algorithms are briefly described, in order to find a minimizer for

the Hamiltonian functional (2), describing the dynamical behavior of the case study bladed rotor, and
to solve the variational equation (10), describing the dynamical behavior of the homogenized bladed
rotor. The functional (2) is discretized by using two-node beam elements and Hermite polynomials
as interpolation scheme, both for the ring and the blades. The axial inextensibility constraint is
enforced by using a penalization method. A discrete formulations for the dynamical problem is
finally obtained by assuming as unknowns the nodal displacements and rotations.

The homogenized weak formulation in (10), defined in the annular region(R,R + lb)× (0, 2π),
is discretized in the angular direction with the Ritz-Rayleigh method assuming, as shape functions,

1, 2 cos(kθ), −2 sin(kθ) k = 1, 2, . . . nf (29)

whereas a finite element discretization is assumed in the radial direction, employing two-node beam
elements with Hermite polynomials as interpolation scheme. Accordingly, the nodal unknowns are
the real and imaginary part of the complex Fourier coefficients of the tangential displacementU and
its radial derivative.

4.3 Validation of the homogenization limit
In this section the homogenization limit is numerically studied, and a convergence analysis is

presented. The modal eigenfrequencies of the perfect rotor described in section 4.1 are computed
increasing the numberN of blades, starting from the reference configuration with 32 blades, and
rescaling at the same time the linear mass density and the bending stiffness of the blades as described
in section 2, in order to approach the homogenization limitN →∞ relevant to the HOM model. In
particular,N = 32, N = 64, N = 128 andN = 256 have been considered in the computations. In
fig. 3 the relative error between degenerate eigenfrequencies evaluated according to the EB model
and the HOM model are reported, relevant to modal numbersn = 2, . . . 5 and l = 1. The figure
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Figure 3: Convergence analysis for the homogenization limit: relative error between modal frequen-
cies evaluated according to the EB model and according to the HOM model, as a function of the
number of bladesN . Rotor without imperfections. Modal frequencies relevant to modal numbers
¤ n = 2, l = 1; ◦ n = 3, l = 1; ∗ n = 4, l = 1; 4 n = 5, l = 1

shows that a quadratic convergence to the homogenized solution is achieved. The relative error
slightly increases with the increase ofn. The homogenized model turns out to be quite accurate in
describing the rotor dynamics, as the relative error is very small even in the reference case of 32
blades.

4.4 Modal frequency analysis
In this section the modal frequencies relevant to an imperfect bladed rotor are analyzed. The

imperfection is introduced by increasing the linear mass density of fourth blade of the perfect rotor
described in section 4.1 by a factorγ. The modal frequenciesωn,l, relevant to modal numbers
n = 2, . . . 5 andl = 1, are evaluated according to the EB model and the HOM model, considering
different values ofγ. In table 2 the modal frequencies evaluated according to the EB model are
reported.

n = 2 n = 3 n = 4 n = 5
γ = 0.0005 27.0742 27.0746 27.9713 27.9718 28.4237 28.4242 28.6591 28.6596
γ = 0.001 27.0738 27.0746 27.9709 27.9718 28.4233 28.4242 28.6587 28.6596
γ = 0.005 27.0703 27.0746 27.9671 27.9718 28.4193 28.4242 28.6544 28.6596
γ = 0.01 27.0656 27.0746 27.9619 27.9718 28.4134 28.4242 28.6476 28.6596

Table 2: Modal frequenciesωn,l in rad/s, relevant to the imperfect rotor and evaluated according
to the EB model. The imperfection is introduced by increasing the mass of the fourth blade of the
perfect rotor described in section 4.1 by a factorγ = 0.0005, 0.001, 0.005, 0.01, with respect to its
nominal value. Modal frequencies relevant to modal numbersn = 2, n = 3, n = 4, n = 5 andl = 1

From table 2 it can be seen that, due to the presence of imperfections, a frequency split occurs
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between frequencies belonging to the same modal number(n, l), which where coinciding in the
perfect case as shown in table 1. The difference between eigenfrequencies relevant to the imperfect
rotor in table 2 and the corresponding ones relevant to the perfect rotor in table 1 is the frequency
shift δωn,l which occurs due to the presence of imperfections. In particular, due to the particular
choice of the imperfection, for each couple of modal numbers(n, l) one of the two frequency shifts
δωn,l is vanishing; in fact, for each fixed(n, l), one of the two eigenfrequencies of the imperfect rotor
in table 2 coincides with the corresponding frequency of the perfect rotor in table 1. A similar result
is obtained in [Fang et al., 2006]. Table 3 contains the relative error between the frequency shifts
δωn,l evaluated according to the EB model and to the HOM model, relevant to the same imperfect
bladed rotor. For each couple of modal numbers(n, l) only one value is reported, relevant to the non
vanishing frequency shifts. The errors are almost independent from the imperfection coefficientγ,

n = 2 n = 3 n = 4 n = 5
γ=0.0005 0.0114 0.0281 0.0513 0.0824
γ=0.001 0.0116 0.0283 0.0519 0.0834
γ=0.005 0.0125 0.0299 0.0556 0.0906
γ=0.01 0.0103 0.0261 0.0500 0.0828

Table 3: Relative error between frequency shifts relevant to the imperfect rotor, evaluated according
to the HOM model and the EB model. The imperfection is introduced by increasing the mass of the
fourth blade of the perfect rotor described in section 4.1 by a factorγ = 0.0005, 0.001, 0.005, 0.01,
with respect to its nominal value. Modal frequencies relevant to modal numbersn = 2, n = 3,
n = 4, n = 5 andl = 1

and they slightly increase with the increase ofn, ranging from1% whenn = 2 to 9% whenn = 5.
Finally, in table 4 the relatives errors between frequency shiftsδωn,l evaluated according to the
HOM model and the L-HOM model are reported. For each couple of modal numbers(n, l) only one
value is reported, relevant to the relative error between the non vanishing frequency shifts. Results

n = 2 n = 3 n = 4 n = 5
γ = 0.0005 0.0032 0.0054 0.0087 0.0125
γ = 0.001 0.0064 0.0108 0.0173 0.0250
γ = 0.005 0.0319 0.0539 0.0860 0.1233
γ = 0.01 0.0665 0.1122 0.1777 0.2507

Table 4: Relative error between frequency shifts relevant to the imperfect rotor, evaluated ac-
cording to the HOM model and the L-HOM model. The imperfection is introduced by in-
creasing the mass of the fourth blade of the perfect rotor described in section 4.1 by a factor
γ = 0.0005, 0.001, 0.005, 0.01, with respect to its nominal value. Modal frequencies relevant to
modal numbersn = 2, n = 3, n = 4, n = 5 andl = 1

in table 4 show that the linearized model is suitable for accurately evaluating frequency shifts of a
imperfect rotor when imperfections are sufficiently small; forγ ≤ 0.001 the relative errors ranges
from 0.3% to 2.5%, increasing with mode numbern. The relative difference between frequency
shifts becomes larger for larger values ofγ together with higher values of mode numbern; for an
increased accuracy a refined theory may be used, obtained by retaining in the perturbation expansion
performed in section 3.2 also the higher order infinitesimal terms. Accordingly a non linear theory
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would be obtained, whose solution would require a numerical iterative procedure.

4.5 Eigenmode analysis
In this section the eigenmodes of the rotor described in section 4.1, made imperfect by increas-

ing the linear mass density of its4th blade by a factorγ = 0.01, are evaluated. For the sake of
comparison both the HOM model and the L-HOM model are employed in the analysis. In fig. 4 the
eigenmodes relevant to mode numbersn = 2, 3, 4, 5 andl = 1 are reported; in particular, for each
couple of modal number(n, l) only the eigenmode corresponding to a non vanishing frequency shift
δωn,l exhibits a vibration localization and appears in the figure. The modal shapes relevant to the
perfect rotor are with blue dashed line, the modal shapes relevant to the imperfect ring and evaluated
with the L-HOM model are reported with continuous green line whereas the red mixed line refers to
the modal shapes relevant to the imperfect ring and evaluated using the HOM model. All the modal
shapes have been normalized using the same procedure; they have been rescaled in such a way as to
make the modulus of the complex Fourier coefficient relevant to the dominant mode (i.e. thenth +1
Fourier coefficient for a eigenmode of mode numbern) equal to 1. Finally, the eigenmodes have
been rescaled by a factor 0.2 before being represented in the figure.

The homogenized model turns out to be suitable for studying the localization phenomenon in
imperfect rotors: in fact, as shown in fig. 4, the localization effect due to the imperfection placed
on the fourth blade clearly appears, increasing with the increase of the modal numbern. It turn out
that the HOM model and the L-HOM model are in close agreement for evaluating the modal shapes,
with the L-HOM model slightly underestimating the modal amplitude around the imperfect blade
with respect to the HOM model.

5 Conclusions
In this paper a homogenized model has been proposed, suitable for the analysis of the frequency

split and vibration localization phenomenon in imperfect bladed rotors. The model seems to be
a good compromise between accuracy and simplicity; indeed it considers the coupling between a
single blade and all the other ones, due to the presence of the support disk. On the other end, it is
a continuous model and thus it is synthetic and computationally more efficient than classical finite
element models. Numerical simulations reported show its ability in studying the frequency split and
vibration localization phenomenon. The proposed model may be an efficient tool for the design and
the parametric analysis of turbine machineries and rotationally periodic structures in general.
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