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Sommario
In questo lavoro si considera l’analisi modale di anelli imperfetti che vibrano elasticamente nel proprio
piano. Le imperfezioni sono trattate come delle perturbazioni, dipendenti dalla variabile angolare, della
densità e della rigidezza flessionale dell’anello. Si utilizza la teoria di Eulero Bernoulli per modellare
il comportamento dinamico dell’anello imperfetto, e le frequenze e i modi di vibrazione sono ricavati
perturbando al primo ordine le frequenze e i modi propri dell’anello perfetto. Infine si considerano alcuni
esempi pratici al fine di confrontare i risultati ottenuti con il modello proposto con risultati analoghi
ottenuti utilizzando un modello agli elementi finiti.

Abstract
The modal analysis of imperfect rings vibrating in their own plane is considered in this paper. The
imperfections are modeled as generic perturbations, depending on the angular variable, of the linear
mass density and the bending stiffness of the ring. The Euler-Bernoulli theory is used to develop the
dynamical model of the ring, and a perturbation expansion of the solution is performed in order to find
out the modal split eigenfrequencies and the relevant perturbed modal shapes. Finally, some case-study
problems are considered and the analytical results obtained by using the proposed approach are compared
to results obtained by employing a finite-element model of the imperfect ring.
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1. INTRODUCTION

Axisymmetric structures are commonly used in practical applications, as turbine bladed disks, satellite
antennae, bells, stator-rotor assemblies in electrical machinery, vibrating ring gyroscopes and so on.
Due to the periodicity they possess, these structures exhibit degenerate pairs of eigenmodes at the same
frequency with modal shapes having sinusoidal behavior with respect to the angular variable. It is well
known that when structural irregularities are present, destroying the symmetry of the structure, the pairs
of eigenfrequencies coincident in the perfect symmetric case split into two different values. In many
cases, like for vibrating ring gyroscopes [1, 2] where a strong resonant coupling between two modes is
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required, the frequency split is a drawback effect and must be reduced with a correction procedure called
trimming. Moreover, the eigenmodes of a symmetric structure with imperfections deviate from the
sinusoidal shape presenting a local increase of vibration amplitude, leading consequently to an increase
of the dynamical load on the vibrating structure. This phenomenon is called localization of vibration and
may lead to fatigue failure [3, 4]. For these reasons, it is useful to have simple dynamical models able
to take into account the presence of imperfection and to predict the frequencies split and localization
phenomenon in axisymmetric structures with imperfections.

In this paper the attention is focused on the vibrations of imperfect rings. Many papers can be found
in the literature dealing with a quantitative analysis of the frequency split occurring in these structures,
and an updated review can be found in [5, 6]. Many causes of imperfections have been considered by
researchers and will be briefly summarized in what follows. In [7] a ring with variable cross section has
been considered, and the Rayleigh-Ritz method was used to find out the frequency split; a closed form
expression for the lower natural frequency was obtained using a first-order approximation. In [5] a simple
model for the frequency split of slightly imperfect rings has been developed, based on the Rayleigh-Ritz
method together with the simplifying assumption that the eigenmodes of the imperfect ring are still
sinusoidal. The imperfections are considered as added masses and radial and torsional springs. Closed
form expressions for all the eigenfrequencies of the imperfect ring are obtained; an extension to the case
of a distributed mass added to the ring has been proposed in [8], and a study on the statistics of frequency
splitting under various added random mass distributions was performed. In [6] in-plane profile variations
are taken into account as a cause of frequency splitting. In [9] the frequency split is caused by anisotropy
of the material (crystalline silicon) comprising the ring, yielding a dependence of the Young modulus on
the angular variable. According to the literature, while a great effort has been spent for the evaluation of
the frequency split in imperfect ring, less attention has been devoted to the analysis of the modal shapes
of a imperfect ring.

In this paper a theory for the modal analysis of slightly imperfect rings is proposed, yielding closed
form expressions for both the frequencies and the modal shapes of the ring. Quite general conditions
of imperfection are considered, by assuming that both the linear density and the in-plane bending stiff-
ness of the ring are given by the sum of a small perturbation depending on the angular variable and a
constant value relevant to the perfect ring. The Euler-Bernoulli theory is adopted to build a dynamical
model of the structure, under the assumption that the ring is axially undeformable. A first order perturba-
tion expansion of the solution if performed, by assuming that each eigenmode of the imperfect structure
can be represented as the sum of an unknown perturbation depending on the angular variable and the
corresponding sinusoidal eigenmode relevant to the perfect structure. A non homogeneous partial differ-
ential equation is derived, assuming as an unknown function the modal perturbation, and its solvability
conditions yield the values of the frequency splits and the corresponding phase angles. Closed-form
expressions are obtained for the Fourier series coefficients of the unknown modal perturbation. Finally,
some case study problems are considered; the frequency splits and perturbed modal shapes obtained by
using the proposed model are compared with the ones obtained via the use of a suitable finite-element
formulation.

2. DYNAMICAL MODEL OF A RING

A model of the dynamical behavior of a ring is here derived, based on the classical Euler-Bernoulli
theory. The ring of radius R is made of a elastic material. It is here assumed that, due to the presence of
imperfections, the linear density σ and the in-plane bending stiffness EI of the ring are functions of the
angular variable θ. Let u and v denote, respectively, the tangential and radial displacement as shown in
fig. 1. Moreover it is considered that the ring is axially inextensible, i.e. the tangential strain ε is zero.
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Figura 1: Schematic representation of the ring

Accordingly the following expression holds:

ε =
1
R

(
∂u

∂θ
+ w

)
= 0 (1)

The Hamiltonian functional H for the ring can be written as

H =
1
2

∫ t

0

∫ 2π

0
σ(θ)

[(
∂u

∂t

)2

+
(
− ∂2u

∂θ∂t

)2
]

R dθdt− 1
2

∫ t

0

∫ 2π

0

E(θ)I(θ)
R4

[
∂u

∂θ
+

∂3u

∂θ3

]2

R dθdt

(2)

The stationarity condition of (2) gives the dynamic equilibrium equation of the ring, and reads as follows:

∂2

∂t2

[
σu− ∂

∂θ

(
σ

∂u

∂θ

)]
R−

(
∂

∂θ
+

∂3

∂θ3

)[
EI

R3

(
∂u

∂θ
+

∂3u

∂θ3

)]
= 0 (3)

2.1 Perfect ring

If the ring is perfect σ and EI are not depending on θ and are here denoted by σo and EIo. The
stationarity condition of H reported in (3) can be simplified into:

σ

(
∂2u

∂t2
− ∂4u

∂θ2∂t2

)
− EI

R3

(
∂2u

∂θ2
+ 2

∂4u

∂θ4
+

∂6u

∂θ6

)
= 0 (4)

A solution of (4) can be found as:

u =
∞∑

n=0

uon =
∞∑

n=0

Un cos(nθ + ϕn)e(iωont) (5)

where uon is the eigemnode of circular frequency ωon, nodal diameter n and phase angle ϕn. Substituting
(5) in (4) the following well-known relation between n and ωon can be found:

ω2
on =

EIo

σoR4

n2(1− n2)2

1 + n2
(6)

The eigenmodes relevant to n = 0 and n = 1 corresponds to rigid motions, and thus have frequency
equal to 0. All the eigenmodes with k > 0 are degenerate, i.e. two orthogonal eigenmodes exist at the
same eigenfrequency.
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3. MODAL FREQUENCIES AND MODAL SHAPES EVALUATION

It is well understood that when small imperfections are added to a perfect ring, thus destroying the
rotational periodicity of the structure, the frequencies relevant to couples of degenerate eigenmodes, co-
inciding when the ring is perfect, split in two different values. Moreover the modal shape of these couples
of modes deviates from the sinusoidal shape, exhibiting localized increase of vibration amplitude. In this
section a model is established leading to analytical expressions of the frequency splits and the modal
shapes of imperfect rings for very general imperfections.

3.1 Position of the problem

In order to take into account the presence of imperfections in a ring, it is assumed that the density σ and
the in-plane bending stiffness EI of the imperfect ring are given by:

σ = σo + δσ(θ), EI = EIo + δEI(θ) (7)

where σo and EIo are constant values corresponding, respectively, to the density and bending stiffness
of the perfect ring whereas δσ and δEI are small perturbations depending on θ. Accordingly, the eigen-
modes un of the imperfect ring can be obtained by perturbing the perfect ring eigenmodes given in (5).
To this end, it is assumed that

un = (uon + δun)ei(ωon+δωn)t (8)

where δun is a small unknown perturbation of the modal shape uon of the perfect ring, depending on θ
and δωn is the unknown perturbation of the corresponding modal circular frequency ωon. A differential
equation for δun can be obtained by substituting the assumptions (7) and (8) in the equation (3). By
remembering that the zero-order terms satisfy the equation (4) and neglecting infinitesimal terms of
order higher than 1, the following differential equation is obtained:

−ω2
onσoR

(
δun − ∂2δun

∂θ2

)
− EIo

R3

(
∂2δun

∂θ2
+ 2

∂4δun

∂θ4
+

∂6δun

δθ6

)
=

+ ω2
onR

[
δσ uon − ∂

∂θ

(
δσ

∂uon

∂θ

)]
+ 2ωonσoR δωn

(
uon − ∂2uon

∂θ2

)

+
(

∂

∂θ
+

∂3

∂θ3

)[
δEI

R3

(
∂uon

∂θ
+

∂3uon

∂θ3

)]
= 0 (9)

A condition for the existence of a solution of equation (9) is that the non homogeneous term at the right
hand side of the equation is orthogonal to the kernel of the self adjoint operator at the left hand side. It
can be easily seen that a basis of such a kernel is given by
{

cos(nθ), sin(nθ)
}

(10)

Accordingly the right end side F (θ) of equation (9) must satisfy

∫ 2π

0
F (θ) cos(nθ) = 0,

∫ 2π

0
F (θ) sin(nθ) = 0 (11)

These two conditions are non linear equations in the scalar the unknowns δωn and ϕn, which can be
solved in order to find out the frequency split δωn and the angular phase ϕn. As shown in the foregoing,
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for each n ≥ 2 (elastic modes) there are two solutions of system (11), corresponding to the two split fre-
quencies δωn1,2 of the degenerate pair of eigenmodes relevant to the perfect ring, and the corresponding
two phase angles ϕn1,2. A weak version of (9) is given by:

∫ 2π

0

[
−ω2

onσoR

(
δunψ +

∂δun

∂θ

∂ψ

∂θ

)
+

EIo

R3

(
∂δun

∂θ
+

∂3δun

∂θ3

)(
∂ψ

∂θ
+

∂3ψ

∂θ3

)]
dθ =

∫ 2π

0

[
(ω2

onR δσ + 2ωonσoR δωn)
(

uonψ +
∂uon

∂θ

∂ψ

∂θ

)
−

δEI

R3

(
∂uon

∂θ
+

∂3uon

∂θ3

)(
∂ψ

∂θ
+

∂3ψ

∂θ3

)]
dθ (12)

Equation (12) is used in order to obtain a series expansion of the unknown function δun. Accordingly,
the values of δωn and ϕn evaluated from (11) together with the expression in (5) of uon are substituted
into equation (12). The Fourier representation for δun is given by

δun =
aδun

o

2
+

∞∑

k=1

[aδun
k cos(kθ) + b δun

k sin(kθ)] (13)

By substituting the representation (13) of δun in (12) and taking as test function ψ

ψ =
1
2
, cos(θ), sin(θ), cos(2θ), sin(2θ), . . . cos(kθ), sin(kθ), . . . (14)

it is obtained

aδun
o πωonσo = −Un

∫ 2π

0
cos(nθ + ϕn)(ωonδσ + 2σoδωn) dθ

aδun
k π

[
EI

R3
k2(1− k2)2 − ω2

onσoR (1 + k2)
]

= Un

∫ 2π

0

{
ωonR(ωon δσ + 2σo δωn)×

[cos(nθ + ϕn) cos(kθ) + nk sin(nθ + ϕn) sin(kθ)]−
δEI

R3
sin(nθ + ϕn)(−n)(1− n2) sin(kθ)(−k)(1− k2)

}
dθ

b δun
k π

[
EI

R3
k2(1− k2)2 − ω2

onσoR (1 + k2)
]

= Un

∫ 2π

0

{
ωonR(ωon δσ + 2σo δωn)×

[cos(nθ + ϕn) sin(kθ)− nk sin(nθ + ϕn) cos(kθ)]−
δEI

R3
sin(nθ + ϕn)(−n)(1− n2) cos(kθ)k(1− k2)

}
dθ (15)

yielding the values of the coefficients appearing in the series expansion (13) of δun. It can be noticed
that the coefficients aδun

k and bδun
k relevant to k = n are left undeterminated by equations (15); in fact

when k = n both the left and right hand side of equations (15)2 and (15)3 are equal to 0; the latter for
obvious computations whereas the former due to the existence conditions (11). Moreover it can be easily
seen that the Fourier coefficient and thus the perturbed modal shapes do not depend on the frequency
split δωn, because the relevant term in equations (15) is always 0 when k 6= n.

3.1 Fourier expansion of δσ and δEI

In order to develop closed-from expressions for the frequency split and the perturbed modal shapes,
the generic density perturbation δσ and bending stiffness perturbation δEI are represented using their
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Fourier series expansion. Accordingly, the following expressions hold:

δσ =
aσ

o

2
+

∞∑

p=1

{
aσ

p cos(p θ) + bσ
p sin(p θ)

}

δEI =
aEI

o

2
+

∞∑

q=1

{
aEI

q cos(q θ) + bEI
q sin(q θ)

}
(16)

By substituting (16) into the existence conditions (11), after some calculations involving the integration
of the product of many trigonometric functions over (0, 2π), the values of the two frequency splits δωn

and the two corresponding phase angles ϕn for each mode of index n are obtained and read as:

tan(2ϕn) = − ω2
onRbσ

2n + n2

R3 (1− n2)bEI
2n

ω2
onRaσ

2n + n2

R3 (1− n2)aEI
2n

δωn = (1 + n2)
ωon

4σo

(
aσ

o −
σo

EIo
aEI

o

)
± (1− n2)

1 + n2

ωon

4σo
×

√(
aσ

2n +
σo

EIo

1 + n2

1− n2
aEI

2n

)2

+
(

bσ
2n +

σo

EIo

1 + n2

1− n2
bEI
2n

)2

(17)

By substituting (16) into (15) an analytical expression of the Fourier coefficient of the unknown modal
perturbation δun depending on the Fourier coefficients of δσ and δEI is obtained. After some calcula-
tions involving integrals of product of trigonometric functions it is obtained:

aδun
o = −Un

aσ
n cos(ϕn)

σo

aδu
k = Un

{
[(aσ

|k−n| + aσ
k+n) cos(ϕn) + (sign(k− n)bσ

k−n − bσ
k+n) sin(ϕn)] +

nk[(aσ
|k−n| − aσ

k+n) cos(ϕn) + (sign(k− n)bσ
k−n + bσ

k+n) sin(ϕn)]−
σo

EIo

k(1− k2)
n(1− n2)

(1 + n2)[(aEI
|k−n| − aEI

k+n) cos(ϕn) +

(sign(k− n)bEI
k−n + bEI

k+n) sin(ϕn)]
}

/
{

σo

[
k2(1− k2)
n2(1− n2)

(1 + n2)− (1 + k2)
]}

bδu
k = Un

{
[(−aσ

|k−n| + aσ
k+n) sin(ϕn) + (sign(k− n)bσ

k−n + bσ
k+n) cos(ϕn)] +

−nk[(aσ
|k−n| + aσ

k+n) sin(ϕn) + (−sign(k− n)bσ
k−n + bσ

k+n) cos(ϕn)] +

− σo

EIo

k(1− k2)
n(1− n2)

(1 + n2)[(aEI
|k−n| + aEI

k+n) sin(ϕn) +

(−sign(k− n)bEI
k−n + bEI

k+n) cos(ϕn)]
}

/
{

σo

[
k2(1− k2)
n2(1− n2)

(1 + n2)− (1 + k2)
] }

(18)

where the value of ϕn is known from (17). In (18) sign(x) is the sign of x.

4. Case-study problems

In order to assess the accuracy of the results obtained with the perturbation approach here proposed, two
case-study problems are here studied. To this end, a elastic ring is considered, of radius R = 200 mm
and rectangular cross section of dimensions 50 × 5 mm; the ring is made of steel, Young modulus E =
210 GPa and density ρ = 7850 kg/m3. The modal eigenfrequencies of the perfect ring are reported in
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Tabella 1: Modal circular frequencies of the perfect ring
n ωon [rad/s]
2 500
3 1416
4 2716

table (1), evaluated according to formula (6). The two case-study problems are schematically shown in
fig. 2. In the first case a massless reinforce of constant section is applied to the ring, spanning an angle
of Θ. In the second case a lumped mass is added to the ring at an angle Θ. A dynamical analysis is
performed by applying the theory previously described, and the modal frequencies and modal shapes
relevant to the imperfect ring are evaluated. The results are then compared with the results obtained by
employing a finite element model of the imperfect ring. The finite element formulation is based on the

Figura 2: On the left: case 1; on the right: case 2

functional (2) and employs curvilinear two-node elements. The interpolation scheme uses the following
non linear shape functions

1, θ, cos(θ), sin(θ), θ cos(θ), θ sin(θ) (19)

which guarantees exact integration of constant and sinusoidal functions (i.e. perfect reconstruction of
rigid motions) and global continuity up to the second derivative; thus the interpolated functions are in
the Sobolev space H3, which is the minimum regularity requested by the functional (2).

4.1 Case 1

It is here considered a imperfect ring as shown at the left hand side of fig. 2. The imperfection is due
to a reinforce spanning the arc [0,Θ); it is assumed that the reinforce has vanishing mass and constant
cross section, thus locally increasing the in-plane bending stiffness EI of the ring of a quantity α. As a
consequence the linear density σ is constant on all the ring whereas the bending stiffness EI is a constant
piecewise function given by

EI(θ) = EIo in θ ∈ [0, Θ)
EI(θ) = EIo + α in θ ∈ [Θ, 2π) (20)
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In the present case, the existence conditions (11) are equivalently written as follows

2ωonσoRδωn

∫ 2π

0

(
uon − ∂2uon

∂θ2

)
cos(nθ + ϕn) dθ +

− α

R3

∫ Θ

0

(
∂uon

∂θ
+

∂3uon

∂θ3

) (
∂

∂θ
+

∂3

∂θ3

)
cos(nθ + ϕn) dθ = 0

2ωonσoRδωn

∫ 2π

0

(
uon − ∂2uon

∂θ2

)
sin(nθ + ϕn) dθ +

− α

R3

∫ Θ

0

(
∂uon

∂θ
+

∂3uon

∂θ3

) (
∂

∂θ
+

∂3

∂θ3

)
sin(nθ + ϕn) dθ = 0 (21)

Substituting the expression in (5) of uon in (21) and making some calculations, the following equations
are obtained:

2ωonσoR(1 + n2)π δωn − α(−n + n3)2

R3

[
Θ
2

+
sin(2ϕn)− sin(2ϕn + 2nΘ)

4n

]
= 0

α(−n + n3)2

R3

cos(2ϕn)− cos(2ϕn + 2nΘ)
4n

= 0 (22)

From (22)2 the value of ϕn is obtained, which can be then substituted in (22)2 in order to find out
the modal frequency split δωn. From the knowledge of δωn and ϕn the coefficients (15) of the series
expansion of δun can be computed. Taking into account that in the considered case δσ = 0 and δEI =
αχ[0,Θ), where χ[0,Θ) is the characteristic function of the interval [0, Θ), the coefficients of δun read as:

aδun
o = 0

aδun
k = −Unα

nk(1− n2)(1− k2)
π [EIk2(1− k2)− ω2

onσoR4(1 + k2)]

{sin[(n− k)Θ + ϕn]− sin(ϕn)
2(n− k)

− sin[(n + k)Θ + ϕn]− sin(ϕn)
2(n + k)

}

bδun
k = −Unα

nk(1− n2)(1− k2)
π [EIk2(1− k2)− ω2

onσoR4(1 + k2)]

{cos[(n− k)Θ + ϕn]− cos(ϕn)
2(n− k)

+
cos[(n + k)Θ + ϕn]− cos(ϕn)

2(n + k)

}
(23)

In figure 3 and 4 the modal perturbations δun corresponding, respectively, to n = 2 and n = 3 have been
plotted considering as baseline the undeformed ring. The increment α of bending stiffness due to the
reinforce is equal to 20% of the ring bending stiffness EI , and the reinforce spans the angle [0, 75o). Each
eigenmode δun has been rescaled such as the maximum absolute value among its radial and tangential
nodal displacement components is equal to R/4. As a comparison, the corresponding curves evaluated
by using the finite element method have been superimposed with dotted line; the agreement is quite
satisfying.

In table 2 the frequency splits δωn are reported, evaluated according to the proposed method, as
a function of the ratio γ = α/EI , while keeping fixed the angle spanned by the reinforce as chosen
previously. Moreover the relative difference δωn% between the frequency splits and the relative l2 norm
δun% between the modal shape perturbations δun, evaluated using the proposed model and the finite
element model, are also reported. The results in the table show that the proposed method is very accurate
both in evaluating the frequency splits δωn and the perturbations δun of the modal shapes, even in the
case of not small imperfections.
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Figura 3: Perturbation δun relevant to n = 2 due to a reinforce; continuous line: theory, dotted line: fem
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Figura 4: Perturbation δun relevant to n = 3 due to a reinforce; continuous line: theory, dotted line: fem

4.2 Case 2

It is here considered a imperfect ring, as shown at the right hand side of fig. 2, whose imperfection is due
to p lumped masses mi added at angles θ = Θi. As a consequence the bending stiffness EI is constant
on all the ring whereas the linear density σ is given by

σ(θ) = σo +
p∑

i=1

αi δ(θ −Θi) (24)

where σo is a constant, αi = mi/R and δ is the Dirac distribution. The two existence conditions (11) for
the solution of the perturbed dynamical problem are specialized to the present case as follows:

ωon

p∑

i=1

αi[cos(nΘi + ϕn) cos(nΘi) + n2 sin(nΘi + ϕn) sin(nΘi)] + 2σoπδωn(1 + n2) cos(ϕn) = 0

ωon

p∑

i=1

αi[cos(nΘi + ϕn) sin(nΘi)− n2 sin(nΘi + ϕn) cos(nΘi)] +

−2σoπδωn(1 + n2) sin(ϕn) = 0 (25)
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Tabella 2: Comparison results between theoretical and fem model; imperfection due to a reinforce applied to the ring
γ δωn[rad/s] δωn% δun%

n=2 n=3 n=1 n=2 n=1 n=2
0.04 1.69 2.48 4.84 6.96 3.45E-2 1.20E-2 1.45E-2 2.72E-2 3.23E-3 6.56E-3 1.19E-2 4.84E-3
0.08 3.38 4.97 9.68 13.9 6.91E-2 2.40E-2 2.86E-2 5.46E-2 3.37E-3 1.20E-2 2.18E-2 7.73E-3
0.12 5.06 7.45 14.5 20.9 1.04E-1 3.60E-2 4.22E-2 8.20E-2 3.55E-3 1.77E-2 3.17E-2 1.07E-2
0.16 6.75 9.94 19.4 27.9 1.38E-1 4.79E-2 5.53E-2 1.10E-1 3.75E-3 2.31E-2 4.12E-2 1.36E-2
0.20 8.44 12.4 24.2 34.8 1.73E-1 5.97E-2 6.81E-2 1.37E-1 3.97E-3 2.83E-2 5.12E-2 1.63E-2

After some manipulations it is obtained

cos(ϕn)

[
ωon

R

p∑

i=1

mi[cos2(nΘi) + n2 sin2(nΘi)] + 2σoπδωn(1 + n2)

]

− sin(ϕn)

[
ωon

R

p∑

i=1

mi(1− n2) cos(nΘi) sin(nΘi)

]
= 0

cos(ϕn)

[
ωon

R

p∑

i=1

mi(1− n2) cos(nΘi) sin(nΘi)

]

− sin(ϕn)

[
ωon

R

p∑

i=1

mi[n2 cos2(nΘi) + sin2(nΘi)] + 2σoπδωn(1 + n2)

]
= 0 (26)

These are two nonlinear equations in the unknowns δωn and ϕn; the solution is:

tan(2ϕn) = −
∑p

i=1 mi(sin 2nΘi)∑p
i=1 mi(cos 2nΘi)

δωn =
ωon

2πRσo

p∑

i=1

mi

[
−1

2
+

1− n2

2(1 + n2)

√
[
∑p

i=1 mi cos(2nΘi)]2 + [
∑p

i=1 mi sin(2nΘi)]2

(
∑p

i=1 mi)2

]
(27)

The first of (27) correspond to two values of ϕn differing from each other by an angle of π/2; these two
values, once substituted in the second of (27) yield two different values of the frequency split δωn. In
order to evaluate the coefficients relevant to the series expansion of δun, the equations (15) are taken into
account and specialized to the present case; the coefficients of δun read as:

aδun
o = − Un

πσoR

p∑

i=1

mi cos(nΘi + ϕn)

aδun
k = Un

ω2
on

π
[

EI
R3 k2(1− k2)2 −Rω2

onσo(1 + k2)
]

×
p∑

i=1

mi[cos(nΘi + ϕn) cos(kΘi) + nk sin(nΘi + ϕn) sin(kΘi)]

bδun
k = Un

ω2
on

π
[

EI
R3 k2(1− k2)2 −Rω2

onσo(1 + k2)
]

×
p∑

i=1

mi[cos(nΘi + ϕn) sin(kΘi)− nk sin(nΘi + ϕn) cos(kΘi)] (28)
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In the special case of just one lumped mass added (p=1), (27) reduces to:

ϕn1 = −nΘ, ϕn2 = −nΘ +
π

2

δωn1 = − M ωon

2πσoR(1 + n2)
, δωn2 = − n2M ωon

2πσoR(1 + n2)
(29)

In figures 5 and 6 the modal perturbations δun corresponding, respectively, to n = 2 and n = 3 have
been plotted, due to a lumped mass M equal to 5% of the ring mass applied at θ = 0.
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Figura 5: Perturbation δun relevant to n = 2 due to an added mass; continuous line: theory, dotted line: fem
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Figura 6: Perturbation δun relevant to n = 3 due to an added mass; continuous line: theory, dotted line: fem

In table 3 quantities analogous to those of table 2 are reported, referred to the case of added lumped
mass. The parameter γ = M/(2πRσ) is the ratio between the added lumped mass and the mass of the
ring, which is kept fixed at θ = 0.

Tabella 3: Comparison results between theoretical and fem model; imperfection due to a lumped mass attached to the ring
γ δωn[rad/s] δωn% δun%

n=2 n=3 n=1 n=2 n=1 n=2
0.01 -1.00 -4.00 -1.42 -12.7 1.83E-2 2.27E-2 3.04E-2 2.55E-2 1.56E-2 1.53E-3 1.81E-2 1.55E-3
0.02 -2.00 -8.01 -2.83 -25.5 3.66E-2 4.53E-2 6.13E-2 5.10E-2 3.07E-2 1.99E-3 3.37E-2 2.16E-3
0.03 -3.00 -12.0 -4.25 -38.2 5.51E-2 6.80E-2 9.26E-2 7.65E-2 4.56E-2 2.53E-3 4.84E-2 2.86E-3
0.04 -4.00 -16.0 -5.67 -51.0 7.36E-2 9.06E-2 1.24E-1 1.02E-1 6.02E-2 3.08E-3 6.24E-2 3.58E-3
0.05 -5.00 -20.0 -7.08 -63.7 9.22E-2 1.13E-1 1.57E-1 1.27E-1 7.46E-2 3.63E-3 7.56E-2 4.29E-3

Also in the present case the agreement between results provided by the proposed approach and by
the finite element model is quite good, both in terms of frequency split prediction and in terms of modal
perturbation evaluation.
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5. CONCLUSIONS

The dynamics of a imperfect ring has been studied in this paper. The imperfections were modeled as
small perturbations of the linear density and the in-plane bending stiffness of the ring, depending on
the angular variable. A first-order perturbation expansion was employed in order to derive a differential
equation governing the eigenmode perturbation. Closed-form expressions for the perturbed eigenmodes
and eigenfrequencies have been found out considering a Fourier series expansion of the linear density
and bending stiffness of the ring. Finally some case-study problems have been considered in order to
compare the analytical results with analogous results obtained using a finite element model.
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