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Abstract. This paper deals with single-mode passive damping of piezoactuated
structures. The problem of shunting in the best way a piezoelectric actuator is
discussed, and a new passive shunt circuit, given by the parallel of an inductance
and a capacitance in series to a resistance, is here proposed. For a sufficiently high
piezoelectric coupling coefficient, it is analytically shown to be more performant
than the classical resistive-inductive shunt circuit, in the sense that it guarantees
an higher exponential time decay rate of the free vibrations.

1 Introduction

Piezoelectric materials, due to their lightness and easy integrability to the
host structure, have been intensely applied for vibration control in special
applications, like aeronautic and aerospace structures. Different strategies to
vibration control are available: passive, active or hybrid [2,4]. Passive vibra-
tion damping, which is dealt with in this paper, is intrinsically stable, cheap
and easy to be implemented by using piezoelectric actuators. The actuators
are bonded to the mechanical structure and shunted to suitable external elec-
tric circuits containing at least resistive components, able to dissipate electric
energy [7,5,6]. The basic idea can be easily understood looking on a simple,
linearly elastic strut equipped with a piezoelectric patch and vibrating along
an eigenmode. Due to the piezoelectric effect, at the electrodes of the piezo-
electric device, acting as a capacitor, an alternating voltage arises. It is quite
a natural idea to connect the electrodes on a passive circuit, in order to ob-
tain an alternating current and an energy dissipation. The simplest shunt is
the resonant one, tuned on the same frequency of the motion to be damped,
in order to obtain, at that frequency, the lowest, purely resistive impedance
and the maximum current for the induced voltage. It appears that the basic
requirement is to dissipate as much energy as possible in the lowest time,
with a circuit easy to be implemented, stable and cheap. Another require-
ment may concern the performance of the shunt in a frequency band large
enough to include different structural eigenmodes.

In [7] both a resistive (R) and a resistive-inductive (RL) shunt circuit
applied to the vibration damping of a single-mode piezoactuated structure
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were thoroughly examined. A slight variation of the RL series circuit, i.e.
the RL parallel circuit, was presented in [8]. Many authors were involved in
the analysis of those circuits [9,10] and some modifications were proposed in
order to improve their performances [11–13].

A major problem arises from the values of the electrical parameters of
the piezoelectric components commercially available, because the inductors
needed to tune the resonant circuit at the mechanical frequencies of interest
are usually very high. Consequently, some authors [3] were considering the use
of synthetic inductors. Later, others synthetic components of special shunt
circuits were proposed, including negative capacitances [14].

At the present time, the RL series circuit is generally accepted as the
most performant passive shunt in vibration damping on a single eigenmode.
Aim of this paper is to show that different schemes can be proposed, which
are more performant than the RL circuit, for a sufficiently high piezoelec-
tric coupling coefficient. This result is obtained by choosing as performance
index, and therefore optimization criterium, the exponential time-decay rate
(ETDR) of the free vibrations. The maximization of such an objective func-
tion can be obtained, due to the linearity of the differential model of the
electromechanical system, by means of an application of the pole placement
technique to the system transfer function.

The new passive shunt circuit presented here in order to outperform over
the classical RL shunt circuit, is indicated by R(L||C) and is shown in Fig. 1.
It is composed by the parallel of an inductance L and a capacitance C, in
series to a resistance R.

The analysis is analytically carried out, and closed-form expressions for
the optimal values of the electrical components and of the achieved ETDR
are determined. This analysis turns out to be very useful for design purposes
and effective comparisons with the classical RL series shunt circuit, in terms
of optimal values of circuit parameters and achieved ETDR.

2 The electromechanical model

A single-degree-of-freedom mechanical system equipped with a piezoelectric
device shunted on a passive circuit is here considered. The governing equa-
tions, in the Laplace domain, are [1,13]:

(s2m + kmm)x + kmeV = sxo + ẋo (1a)
q = −kmex + CpV (1b)
V + sZq = 0 (1c)

In the domain of the Laplace variable s, x is the mechanical variable, V is
the electric potential and q is the electric charge on the piezoelectric elec-
trode. Moreover, m is the mass, kmm is the mechanical stiffness, kme is the
electro-mechanical coupling stiffness and xo, ẋo are the initial displacement
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Fig. 1. R(L||C) shunt circuit

and velocity. The electric initial conditions are assumed to vanish, for the
sake of simplicity. Equation (1a) is the dynamic equilibrium of the mass m,
equation (1b) is the free electric charge balance equation on the piezoelectric
surfaces and equation (1c) is the Kirchhoff equation of the shunt electric cir-
cuit connected to the piezoelectric electrodes, whose impedance is denoted
by Z.

In the case of a complex structure, equations (1a)–(1b) can be regarded
as modal equations describing the evolution along a chosen eigenmode. Ac-
cordingly, the involved parameters can be evaluated by means of a suitable
finite element formulation (e.g., [15]).

The shunt circuit described in the Introduction and reported in Fig. 1 is
considered here. Its impedance is:

Z = R +
1

(sL)−1 + sC
(2)

By substituting V from equation (1b) into equations (1a) and (1c), and taking
into account the above expression of Z, the governing equations are rewritten
as follows:

(
s2m + kmm +

k2
me

Cp

)
x +

kme

Cp
q = sxo + ẋo (3a)

kme

Cp
x +

(
1

Cp
+

sR + s3LRC + s2L

1 + s2LC

)
q = 0 (3b)

In order to study the system (3a)–(3b) and to optimize the electrical
parameters R, L and C in order to achieve the maximum ETDR, it is con-
venient to rewrite it in a dimensionless version. By letting x = xX, q = qQ
and s = sS, where the capital letters mean dimensionless quantities and the
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overlined letters are the corresponding dimensional scales, a dimensionless
version of (3a)–(3b) can be written as:

(S2 + 1 + κ2)X + κQ = sXo + Ẋo (4a)

κ X +
1 + ρS + λ(1 + c)S2 + λcρS3

1 + cλS2
Q = 0 (4b)

where the following dimensionless parameters have been introduced:

κ =
kme√
kmmCp

, c =
C

Cp
, ρ = RωmCp, λ = ω2

mCpL,

ωm =

√
kmm

m
,

x

q
=

√
1

kmmCp
, s = ωm

(5)

and Xo, Ẋo are the dimensionless counterparts of xo, ẋo, respectively. In
equation (5), κ is the piezoelectric coupling coefficient and depends only on
the piezoactuated structure, c is the ratio between the capacity C of the shunt
circuit and the piezoelectric capacity Cp, λ is the dimensionless inductance
and ρ is the dimensionless resistance.

3 Optimization of the shunt circuit

In this section an optimization of the dimensionless quantities c, λ and ρ is
performed to maximize the exponential time decay rate of the solution. The
characteristic polynomial p(S) of the dimensionless system (4a)–(4b) reads
explicitly as:

p(S) = S5 +
1 + c

cρ
S4 +

(
1
cλ

+ 1 + κ2

)
S3

+
λ(1 + κ2) + λc + 1

cλρ
S2 +

1 + κ2

cλ
S +

1
cλρ

(6)

The system poles Si are the roots of the above polynomial p(S). They
have a nonpositive real part, due to the inherent passivity of the system. The
exponential time decay rate of the free vibrations is given by:

ETDR = −maxi{Re(Si)} (7)

where Re denotes the real part of a complex number. Consequently, the
optimization problem amounts to searching for the values of λ, ρ and c which
maximize the ETDR for each fixed value of κ. It is here remarked that the
poles of the dimensionless system (4a)–(4b) are proportional to the poles of
(3a)–(3b) trough the time-scale coefficient ω−1

m .
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3.1 Analysis of the asymptotic case c → 0

In this section it is proved that the addition of a small capacitance in parallel
to the inductance L of a RL series shunt circuit increases the ETDR, provided
that the piezoelectric coupling coefficient is sufficiently high. To this end, an
asymptotic analysis near c = 0 is developed.

In the case c = 0, the impedance Z in equation (2) reduces R + sL.
Consequently, the dimensionless system (4a)–(4b) reduces to the case of a
RL shunt circuit and the characteristic polynomial becomes [7,13]:

p(S) = S4 +
ρ

λ
S3 + (1 + κ2 +

1
λ

)S2 +
ρ

λ
(1 + κ2)S +

1
λ

(8)

which can be also obtained by taking the limit of cρp(S) for c → 0. Ac-
cordingly, the optimal values of λ and ρ can be computed, in the practical
situation 0 < κ < 2, by enforcing that p(S) has two coincident couples of
complex conjugate roots:

p(S) = (S2 − 2x1S + x2
1 + x2

2)
2 (9)

Here x1 and x2 are, respectively, the real and the imaginary part of the
complex conjugate roots, and the ETDR coincides with −x1. The optimal
values of the parameters ρ and λ and the corresponding ETDR are [1,13]

λ =
1

(1 + κ2)2
, ρ =

2κ

(1 + κ2)
3
2
, ETDR =

κ
√

1 + κ2

2
(10)

Returning now to the case c > 0 and limiting the analysis to the case of
c close to 0, the following factorization of the fifth-order degree polynomial
p(S) is assumed:

p(S) = (S2 − 2x1S + x2
1 + x2

2)
2(S − x3) (11)

Here x3 is a real root which approaches −∞ when c → 0: hence, for each
fixed small value of c, the ETDR is still the opposite of x1.

By identifying the expressions (6) and (11) of p(S), five nonlinear equa-
tions in the six unknowns x1, x2, x3, λ, ρ and c are obtained, where κ is
intended to be kept fixed. By an elimination procedure, a single nonlinear
equation f(x1, c) = 0 is obtained, which implicitly defines a function x1(c).
The derivative ∂x1/∂c can be obtained by a straightforward application of
Dini’s theorem. In particular, for c = 0 this derivative is given by

∂x1(c)
∂c

∣∣∣
c=0

= −κ

4
2κ2 − 1√

1 + κ2
(12)

and is plotted versus κ in Fig. 2.
It is emphasized that ∂x1/∂c|c=0 is negative for κ > 1/

√
2. Hence, x1 is

a decreasing function of c around c = 0. As a consequence, for κ > 1/
√

2,
adding a small capacitance in parallel to the inductance increases the ETDR,
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Fig. 2. Behaviour of ∂x1/∂c versus κ for c = 0

proving that the proposed shunt circuit performs better than the classical
RL one. It is emphasized that this conclusion is not limited by the assumed
factorization (11) used in the computations. Indeed, if another factorization
of p(S) exist yielding a higher ETDR than the one supplied by (11), a-fortiori
that ETDR would be better than the one provided by the RL shunt circuit.

3.2 Optimization of the R(L||C) shunt circuit
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Fig. 3. Behavior of ETDR versus κ

In this section an analytical optimization of the proposed circuit is per-
formed. In particular, the optimal values of ρ, λ and c, and the corresponding
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Fig. 4. Behavior of λ versus κ
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Fig. 5. Behavior of ρ versus κ

ETDR, are determined for given values of the piezoelectric coupling coeffi-
cient κ.

As a consequence of equation (12), it turns out that, for κ ≤ 1/
√

2 no
increase in performances can be obtained with respect to the RL circuit if a
small capacitance C is added in parallel to the inductance L. Accordingly, in
this range the optimal value of c, near c = 0, is just zero, and the optimal
expressions for the other parameters are those relevant to the RL circuit,
given in equation (10).

When κ > 1/
√

2, equation (12) implies that there exists an optimal value
of c, strictly greater than zero, yielding the optimal ETDR. In order to ap-
ply the pole placement technique to find the optimum, a special factoriza-
tion of p(S) is needed. This factorization is suggested by the case of the
resistive-inductive shunt circuit. In that case, two coincident couples of com-
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Fig. 6. Behaviour of c versus κ

plex conjugate roots can be collocated. In the R(L||C) case, the characteristic
polynomial p(S) is fifth-order degree. Hence, an extra real root exists and,
accordingly, the factorization (11) is considered. By identifying the expres-
sions (6) and (11) of p(S), five nonlinear equations can be written involving
the six unknowns x1, x2, x3, ρ, λ and c. These equations define implicitly x1,
x2, x3, ρ and λ as functions of c. Thus, the extra condition of the stationarity
of x1 = −ETDR with respect to c can be added. In the range κ > 1/

√
2 an

admissible solution to this stationary condition can be found and is reported
in Appendix 4.1.

For κ = κ ' 1.53, computed in Appendix 4.1, it turns out that x1 =
x3, so that all the real parts of the poles are coincident. When κ > κ the
factorization (11) is no longer optimal, since x3 would became greater than
x1. Hence, the optimal factorization enforces that the double complex poles
and the real pole have the same real part:

p(S) = (S2 − 2x1S + x2
1 + x2

2)
2(S − x1) (13)

In this case, there are only five unknowns x1, x2, ρ, λ and c involved into
the five nonlinear equations coming from the polynomial identification, which
determine the admissible solution reported in Appendix 4.2.

Finally, for κ = κ̃ ' 1.75, computed in Appendix 4.2, there exists a choice
of the electrical parameters such that the polynomial p(S) exhibits a fifth-
order real pole, and the best possible ETDR supplied by the proposed shunt
circuit is attained.

The values of the ETDR, λ, ρ and c are respectively plotted in Figs. (3)–
(6) versus the piezoelectric coupling coefficient κ, and compared to the cor-
responding quantities relevant to the RL circuit. From Fig. 3 it turns out
that, for κ > 1/

√
2, the R(L||C) circuit exhibits a greater ETDR than the

classical RL circuit. Moreover the difference between the performances of the
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two shunt circuits increases with increasing κ. From Figs. 4 and 5 it follows
that the optimal inductance and resistance relevant to the R(L||C) circuit are
almost the same as the ones required by the RL shunt circuit. Finally, Fig. 6
shows that c has a maximum of the order of 0.3; hence, the capacitance C
to be put in parallel to the inductance L is less than 30% of the piezoelectric
capacity Cp.

The above results show that the proposed shunt circuit performs better
than the RL shunt circuit for κ > 1/

√
2, and requires values of the electrical

component very close to the ones required by the RL circuit.

4 Conclusions

In this paper the problem of choosing the optimal shunt circuit for single-
mode passive vibration damping was discussed. It was shown that, at least
for sufficiently high coupling coefficients κ, the traditional RL circuit is not
the most effective. Indeed, the performance of a new shunt circuit proposed
here is definitely better. It is emphasized that in modern applications very
high values of κ can be achieved, for instance by using negative capacitances.
In multi-modal vibration damping the basic design concepts remain the same
and therefore the problem of choosing the optimal shunt circuit must be faced
also in that case.
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Appendix

4.1 Optimization according to factorization (11) with stationary
x1

For 1/
√

2 < κ < κ the optimal value of x1 is given by

x1 = −
√

maxi{zi} (14)

where zi are the positive real roots of the polynomial in the unknown z

q(z) = 4096(κ2 − 8)2z8

+2048(−7κ6 + 42κ4 − 336κ2 + 128)z7

+512(36κ8 + 91κ6 + 635κ4 + 448κ2 + 192)z6

+16(κ12 − 644κ10 − 5324κ8 − 9720κ6 − 5520κ4 + 896κ2 + 1024)z5

−8(1 + κ2)(7κ12 − 230κ10 − 1210κ8 + 2270κ6

+6238κ4 + 2912κ2 − 128)z4

+κ2(1 + κ2)2(73κ10 + 684κ8 + 6964κ6 + 14544κ4 + 8096κ2 − 256)z3

−κ4(1 + κ2)3(43κ8 + 488κ6 + 1596κ4 + 1024κ2 − 16)z2

+κ8(1 + κ2)4(11κ4 + 76κ2 + 44)z
−κ12(1 + κ2)5 (15)

The optimal values of the electrical parameters are given by

λ = − (1 + κ2 − 4x1x3 − 4x2
1 − 2y)y2x3

Λ
(16)
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c =
λ

(4x1x3 + 4x2
1 + 2y − 1− κ2)

(17)

ρ =
(1 + c)

−c(x3 + 4x1)
(18)

where

x3 = −1
4

y2 − 2y − 2κ2y − 4x2
1κ

2 + 2κ2 − 4x2
1 + 1 + κ4

x1(−1 + y − κ2)
(19)

Λ = y2x3−4x2
3x1−20x2

1x3−2yx3+x3+x3κ
2−16x3

1−8yx1+4x1+4x1κ
2(20)

and y is given by the maximum positive real root of the following polynomial
in the unknown y

r(y) = y5 + (4x2
1 − 4κ2 − 5)y4 + (10 + 16κ2 − 12x2

1κ
2 − 8x2

1 + 6κ4)y3

+(32x4
1 − 10− 4κ6 − 16x4

1κ
2 + 12x2

1κ
2 − 18κ4 − 24κ2 + 12x2

1κ
4)y2

+(5 + 8x2
1 − 4κ6x2

1 + 18κ4 + 12x2
1κ

2 − 48x4
1 + 16κ2

+κ8 − 48x4
1κ

2 + 8κ6)y
−1/4− 3x2

1κ
2 − 3κ4/2− κ6 − κ2 + 4x4

1 − 3x2
1κ

4

+4κ4x4
1 − κ8/4− x2

1 + 16x6
1κ

2 + 16x6
1 + 8x4

1κ
2 − κ6x2

1 (21)

The imaginary part of the double complex conjugate roots is x2 = ±
√

y − x2
1.

The present factorization supplies an optimal ETDR as long as the real
root x3 is less than or equal to the real part x1 of the double complex conju-
gate roots. The limit κ in Section 3.2 is just defined as the value of κ which
makes the equality prevail. It is given by the real positive solution of the
following system in the unknowns κ and x1

A(4x2
1κ

2 − 2 + κ4 − κ2 − 2x2
1)

= 6x2
1 + 6x4

1 + κ2x2
1 − 5κ4x2

1 + 4κ2x4
1

A(6x2
1 + 13κ2 + 9κ6 − 32x4

1 + 20κ4 − 8x4
1κ

2 + 2 + 16x2
1κ

4 + 22x2
1κ

2)
= −8κ2x6

1 − 3κ6 − 62κ4x2
1 + 34κ2x4

1 + 32x6
1 − 26κ6x2

1 − κ8

+22x4
1 − 10x2

1 − κ2 + 12κ4x4
1 − 3κ4 − 46κ2x2

1 (22)

where A =
√

x2
1(1 + x2

1 + κ2).

4.2 Optimization according to factorization (13)

For κ < κ < κ̃ the optimal value of x1 is given by

x1 = −
√

2
2

√
2κ6 − 3κ2 + κ4 − 2 +

√
4κ12 − 8κ8 + 2κ10 − 6κ6

1 + 2κ2
(23)
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and the optimal parameters are

λ =
(8x2

1 + 2y − 1− κ2)y2

−y2 + 40x2
1 + 10y − 5− 5κ2

(24)

c =
λ

8x2
1 + 2y − 1− κ2

(25)

ρ =
1
5

1 + c

(−x1)c
(26)

where

y = −2x2
1 + κ2 + 1 + 2

√
x4

1 + κ2x2
1 + x2

1 (27)

The present factorization is admissible as long as two double complex
conjugate roots exist. When κ → κ̃, given by

κ̃ =

√
24 + 6

√
5− 2

25

√
5(125 + 30

√
5) (28)

the imaginary part x2 = ±
√

y − x2
1 of those conjugate roots tends to zero,

and for κ = κ̃ the characteristic polynomial p(S) admits five coincident real
roots.


