GMA 09 Riunione del Gruppo Materiali dell'AIMETA Politecnico di Milano 23-24 Gennaio 2009

Approccio micromeccanico alla modellazione di processi fisiologici

Paolo Bisegna

Università di Roma Tor Vergata Dipartimento di Ingegneria Civile

Towards predictive modeling of biological systems

- Need to cope with different space and time scales:
- nanoscale: macromolecules, biological membranes, citoskeleton, sarcomere (biochemical reaction cascades, cell response and motility, adaptation, etc.)
- microscale: cells and tissues (growth and remodeling, electric conduction, interface with biomedical devices)
- macroscale: organs, systems, whole organisms (overall behavior, signs and symptoms)
- all space scales: highly-regulated time dependent behavior at various time scales (e.g., acute/chronic loadings, early/late response)

Bridging between scales

- Attempts to elucidate macroscopic behaviors based on nanoscopic and microscopic data are valuable
- Fully realistic simulation is impracticable because of the cost entailed and huge amount of data required
- Abstraction and modeling are needed: methods of mechanics of materials turns out to be very useful
- Noteworthy examples in GMA09 presentations. Here:

 Phototransduction (nanoscale)

 Bioimpedance measurements (microscale)

Coauthors

M. Amar D. Andreucci G. Caruso F. Caselli E. DiBenedetto R. Gianni H. Hamm University of Rome La Sapienza University of Rome La Sapienza ITC – CNR University of Rome Tor Vergata Vanderbilt University University of Rome La Sapienza Vanderbilt University

Phototransduction

Transduction of photons into electrical signals

Biochemical process involving diffusion of second messengers into highly structured photoreceptors

Archetypal signaling: similar mechanisms in response to odorant, tastant, some hormones

Modeling phototransduction may help elucidating cell signaling mechanisms and single out drug targets

Retinal organization

Retinal cell types

Retinal layers

Photoreceptors

Cones:

Photopic vision Virtually no saturation Dynamic range : 5 decades

Rods:

Scotopic vision Single photon sensitivity Response saturation at 100 photon flash Limited dynamic range, 2 decades

Rod Cone

Visible spectrum

Geometry of rods

ROD (salamander): height ≈ 20 µm radius ≈ 3 µm

ROD (humans): height ≈ 20 µm radius ≈ 0.5 µm

Structure of rods

A thousand flattened sacs ("disks") fill rod outer segment

Structure of rods

2D structures:

- Disc membranes
- Plasma membrane

3D structure: cytosol

- discs ≈ 800
- width ≈ 15 nm
- distance ≈ 15 nm

outer shell thickness ≈ 15 nm

Phototransduction cascade

• Initial steps occur on the disk surface \rightarrow cG depletion

• cG diffusion \rightarrow CNGC close \rightarrow Ca²⁺ depletion, elect. resp.

Bridging between scales: Nano to Micro

Biophysical phenomenon strongly depends on cell nanostructure

Biological output operates at cellular level

Nanoscale: diffusion equations

diffusion of cG (cyclic guanosine monophosphate)

 $\frac{\partial [cG]}{\partial t} - D_{cG} \nabla^2 [cG] = 0$

diffusion of Ca²⁺ (calcium ion) $\frac{\partial [\text{Ca}^{2+}]}{\partial t} - D_{\text{Ca}} \nabla^2 [\text{Ca}^{2+}] = 0$

in the cytosol: a perforated domain

Nonlinear boundary-flux terms

Membrane-bound enzymes acting on cytosolic substrates

$$-D_{cG}\nabla[cG] \cdot n = E_{\sigma}^*[cG] - \frac{\alpha}{1 + ([Ca^{2+}]/\beta)^m}$$

Boundary flux terms on specific surfaces

Alleviating geometric complexity

Inner cylinder:

Periodic structure

Homogenization (period $\varepsilon \rightarrow 0$)

Perforated domain

Effective anisotropic medium ε 🛨 photons

3D diffusion in interdiscal spaces

Family of 2D diffusion parametrized by the longitudinal variable z

Alleviating geometric complexity

Outer shell:

Thin layer

Concentrating capacity (thickness $\varepsilon \rightarrow 0$)

Mass conservation: rescale capacity and diffusion coefficients by $a_{\epsilon} \approx 1/\epsilon$

Outer shell diffusion (3D)

Surface diffusion (2D)

Limit as $\varepsilon \rightarrow 0$

A-priori estimates (uniform w. r. to ϵ)

- Energy estimate $(u_{\varepsilon} \text{ stands for [cG] or [Ca²⁺]}):$ $\sup_{0 \le t \le T} \left\| \sqrt{a_{\varepsilon}} u_{\varepsilon}(\cdot, t) \right\|_{2, \widetilde{\Omega}_{\varepsilon}} + \left\| \sqrt{a_{\varepsilon}} \nabla u_{\varepsilon} \right\|_{2, \widetilde{\Omega}_{\varepsilon, T}} \le \gamma$
- Equiboundedness: $0 \le u_{\varepsilon}(x,t) \le \gamma$

Perforated domain depends on ε Need to extend u $_{\varepsilon}$ inside the holes (in Cioranescu, Saint Jean Paulin, 1998, homogeneous Neumann boundary conditions)

H^1 extension of u_{ϵ}

 $\bar{u}_{\varepsilon}(P)$ inside a hole:

weighted mean of $u_{\varepsilon}(P_1)$ and $u_{\varepsilon}(P_2)$ at reflected points P_1 and P_2 inside adjacent interdiscal spaces

But $u_{\varepsilon}(P_1)$ and $u_{\varepsilon}(P_2)$ seem to be not related to each other:

Why should the extension \bar{u}_{ε} have any uniform regularity in *z*?

$$\left\|\overline{u}_{\varepsilon}(z+h) - \overline{u}_{\varepsilon}(z)\right\|_{2,\Omega_{o,T}} \le \gamma h$$

 $\left\|\overline{u}_{\varepsilon}\right\|_{L^{2}(0,T;W^{1,2}(\Omega_{o}))} \leq \gamma$

Almost disconnected structures

Bladed rotors

Vibration localization

Homogenization

Phototransduction

Model at microscale

 Interior limit (u): family of 2D diffusions driven by volumic source f accounting for flux on discs

$$u_t - \Delta_{\overline{x}} u = -(u - f)$$

• Limit on the outer shell (\hat{u}) :

$$\hat{u}(\theta, z, t) = u(\overline{x}, z, t)|_{|\overline{x}|=R}$$

2D diffusion driven by outflux from interior

$$\hat{u}_t - \Delta_S \hat{u} = \left(-\frac{(1 - \theta_o)}{\sigma \varepsilon_o} u_\rho \right)_{|\overline{x}| = B} + g$$

Reduced model

Family of 2D diffusions + diffusion on outer shell

1D diffusion:

$$\frac{\partial [\mathrm{cG}]}{\partial t} - D_{\mathrm{eff}} \frac{\partial [\mathrm{cG}]}{\partial z^2} =$$

 $= -\beta[\mathrm{cG}] + f([\mathrm{Ca}^{2+}])$

Example: variability of the response

Observed

Expected, based on R* decay time

Variability is mainly due to randomness of R* shutoff Observed variability is lower than expected Model quantitatively accounts for variability reduction: Diffusion / "Cellar effect"

Perspectives

 Spatio-temporal model: useful to tackle open biophysical problems (e.g., light adaptation, cones)

Similar approach to model other signaling networks

Measurements currently fitted by phenomenological models: ambiguities arise

Aim: to determine the relationships between effective dielectric properties and properties of the constituents

Electric conduction

Intra-/extra- cellular space

 $div(\sigma \nabla w_{\varepsilon}) = 0$ w_{\varepsilon}: electric potential \sigma: conductivity \varepsilon: microstructural scale

Capacitive-conductive behavior: Imperfect interface

$$\llbracket \sigma \nabla w_{\varepsilon} \cdot \nu \rrbracket = 0$$

$$\frac{\epsilon_{\mathbf{o}}\epsilon_{\mathbf{r}}}{\boldsymbol{\varepsilon}d}\frac{\partial \llbracket w_{\varepsilon}\rrbracket}{\partial t} + \frac{\sigma}{\boldsymbol{\varepsilon}d}\llbracket w_{\varepsilon}\rrbracket = \sigma\nabla w_{\varepsilon}\cdot\nu$$

Anti-plane problem

Fibre / matrix

 $\operatorname{div}(G \nabla w_{\varepsilon}) = 0$ w_{ε} : longitudinal displacement G: shear modulus ε : microstructural scale

Е

Interface

Imperfect interface Lene & Leguillon, 1981; Hashin, 1991; Bigoni et al., 1998 Kelvin-Voigt model w_{ε}

$$\llbracket G \nabla w_{\varepsilon} \cdot \nu \rrbracket = 0$$

$$\frac{\eta}{\varepsilon d} \frac{\partial \llbracket w_{\varepsilon} \rrbracket}{\partial t} + \frac{E}{\varepsilon d} \llbracket w_{\varepsilon} \rrbracket = G \nabla w_{\varepsilon} \cdot \nu$$

Bridging between scales: Micro to Macro

Biophysical phenomenon strongly depends on tissue microstructure

Measurements are taken at organ level

Homogenization

Energy estimate: $\int_{0}^{t} \int_{\Omega} \sigma |\nabla w_{\varepsilon}|^{2} dx dt + \frac{1}{\varepsilon} \int_{\Gamma^{\varepsilon}} [w_{\varepsilon}]^{2} (x, t) d\sigma \leq \gamma$ Poincare's inequality (Hom. Dirichlet b.c. on $\partial \Omega$): $\int_{\Omega} v^{2} dx \leq C \left\{ \int_{\Omega} |\nabla v|^{2} dx + \frac{1}{\varepsilon} \int_{\Gamma^{\varepsilon}} [v]^{2} d\sigma \right\}$

Equiboundedness in $H^{s}(\Omega)$, $0 < s < \frac{1}{2} \rightarrow strong L^{2} conv.$ (Hummel, 1999)

Limiting equation

$$w_{\varepsilon} \to w_o \qquad \sigma \nabla w_{\varepsilon} \rightharpoonup \xi \qquad \operatorname{div} \xi = 0$$

How are w_o and $\boldsymbol{\xi}$ related to each other ? What is the effective constitutive equation ?

Oscillating test function method (Tartar, 1977) (→ imperfect interfaces & time-dependent behavior)

$$\xi = \sigma^{\#} \nabla w_0 + \int_0^t F(t-\tau) \nabla w_0(x,\tau) \,\mathrm{d}\tau + \mathcal{S}$$

Memory effects appear

Barbero et al, 1995 Yeong-Moo et al., 1998 Giorgi et al., 2001 Friebel et al., 2006 Appleby et al., 2006

Effective behavior

Fourier transform in time & asymptotic expansion: $w_{\varepsilon} = w_0(x) - \varepsilon \chi(y) \cdot \nabla w_0(x) + \dots$

Cell-problem $-\sigma \Delta_y \chi_h = 0$ $\llbracket \sigma (\nabla_y \chi_h - \mathbf{e}_h) \cdot \nu \rrbracket = 0$ $Y \llbracket \chi_h \rrbracket = \sigma (\nabla_y \chi_h - \mathbf{e}_h) \cdot \nu$

in
$$Q_i \cup Q_e$$

on Γ
on Γ

Lord Rayleigh, 1892 Gu et al, 1992 Nicorovici et al, 1993 Sangani et al, 1997 Cheng et al, 1997 Rodrìguez-Ramos, 2001 Jiang at al, 2004

Solution (Fourier series in space) $\chi_{i} = \sum_{m=1}^{+\infty} a_{m} \left(\frac{r}{R}\right)^{m} \cos m\theta$ $\chi_{i} = \sum_{m=1}^{+\infty} a_{m} \left(\frac{r}{R}\right)^{m} + b_{-m} \left(\frac{r}{R}\right)^{-m} \cos m\theta$ $\chi_{e} = \sum_{m=1}^{+\infty} \left[b_{m} \left(\frac{r}{R}\right)^{m} + b_{-m} \left(\frac{r}{R}\right)^{-m}\right] \cos m\theta$ $\chi_{e} = -c_{1} \Re \left(\frac{\eta_{1}}{\omega_{1}}z\right) + \sum_{s=1}^{+\infty} c_{s} \Re \left(\frac{\zeta^{(s-1)}(z)}{(s-1)!}\right)_{n}$

Effective behavior

Closed-form effective conductivity (Fourier domain)

$$\frac{\sigma^{\#}}{\sigma_{\mathrm{e}}} = \frac{\gamma_{1}^{-} \sum_{n=0}^{N} \sum_{I \in N \mathcal{C}_{n}} (\det M_{I,I}) \prod_{k \in I} (\gamma_{k}^{-})^{-1} \left(\frac{\omega_{1}}{\eta_{1}} f\right)^{|I|}}{\gamma_{1}^{+} \sum_{n=0}^{N} \sum_{I \in N \mathcal{C}_{n}} (\det M_{I,I}) \prod_{k \in I} (\gamma_{k}^{+})^{-1} \left(\frac{\omega_{1}}{\eta_{1}} f\right)^{|I|}}$$

f : volume fraction; γ's : material parameters; others : geometry

Truncation order N=4

$$\frac{\sigma^{\#}}{\sigma_{\rm e}} = 1 - \frac{2f}{\gamma_1} \left[1 + \frac{f}{\gamma_1} - \frac{\frac{p_{1,5}f^6}{\gamma_1\gamma_5}}{1 - \frac{p_{5,7}f^{12}}{\gamma_5\gamma_7}} \right]^{-1}$$

Perspectives

Extension to nonperiodic structures

Applications: Virtual biopsy, RF-ablation, monitoring cell growth and adhesion, device optimization

Modeling electroporation: gene therapy, bioavailability of drugs (electrochemotherapy)

