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SUMMARY. The homogenization problem for random composites comprising radially-graded fi-
bres is dealt with, in the framework of antiplane shear deformations, by generalizing the Rayleigh
multipole expansion method. The statistics of the effective moduli are obtained in simulation. The
feasibility of reducing the shear stress at the fibre/matrix interface by properly grading the fibre
stiffness along the radius is proved.

1 INTRODUCTION
The homogenization problem for composites with long, parallel, randomly arranged fibres is

dealt with here, in the framework of antiplane shear deformations. A peculiar feature of this study
is that fibres are made of functionally graded material [1], i.e., they have composition which vary
continuously along the radius, resulting in a corresponding variation of their stiffness, which can
thus be tailored for reducing the stress level at the fibre/matrix interface.

A repeating unit cell (RUC) of the material is considered (Figure 1), and periodic boundary con-
ditions are enforced [2], by generalizing an approach tracing back to the classical Rayleigh multipole
expansion method [3, 4, 5], to the present multiple-inclusion situation. In particular, the solution over
the matrix domain is represented by superimposing the multipole expansions relevant to each fibre of
the RUC, given by series of doubly-periodic functions arising from the theory of Weierstrass elliptic
functions. The actual solution is then obtained through the identification of the above representation
with the Fourier-series representation around each fibre. After satisfying the field equilibrium equa-
tion in the fibre and matrix domains, and enforcing the equilibrium and compatibility condition at
the fibre/matrix interface, an infinite system of linear algebraic equations is derived, which is trun-
cated to a finite order and numerically solved. The numerical implementation exhibits exponential
asymptotic convergence rate with respect to the truncation order of the involved series representa-
tions. The proposed method is especially useful for composites comprising nearly touching fibres
(e.g., Figure 1), since in those cases FEM solutions require extremely fine meshes to properly resolve
the relevant narrow regions.

Monte Carlo simulations are used to approximate the statistics of the effective moduli. It is shown
that for sufficiently large RUCs, no bias is introduced in the estimation by edge effects generated
by the periodic boundary conditions. Hence, sufficiently large RUCs can be used to obtain a fair
estimate of the effective moduli. However, a stochastic dispersion is inherent to different RUC
realizations. A fit of the relevant standard deviation versus the RUC size is obtained in simulation,
and used to estimate the number of realizations that must be generated, solved and averaged, in order
to reach a required accuracy of the effective moduli.

These results enable the analysis of random composites comprising radially-graded fibres. It is
shown that suitably tuning the fibre grading profile is a feasible way to reduce the shear stress at the
fibre/matrix interfaces, without reducing the overall stiffness of the material. This outcome raises
attention on the possibility of devising innovative composite materials, specifically designed to have
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Figure 1: A stochastic realization of a repeating unit cell (RUC) of the composite.

better performance with respect to the risk of fibre/matrix debonding.

2 STATEMENT OF THE PROBLEM
Reference is made to a fibre-reinforced composite material, with long, parallel fibres, randomly

distributed in the material with a statistically homogeneous microstructure. Fibres have a circular
cross section and their radii may have a known random distribution.

A repeating unit cell (RUC) is considered, arranged in a periodic lattice. The RUC is assumed
to be a parallelogram, with sides L1 and L2 forming an angle ϕ. It contains the centres of F fibres,
denoted by Cj , with radii Rj , j = 1 . . . F .

The effective material shear moduli are obtained here by asymptotic homogenization: to this end,
a family of problems is introduced, indexed by a parameter ε scaling the microstructure. The value
ε = 1 refers to the real composite material under consideration, whereas the homogenization limit
is obtained by letting the parameter ε go to zero.

In the framework of antiplane shear deformations, the problem of determining the longitudinal
displacement field wε in the composite domain is stated as follows:

div(G∇wε) = 0 , in ∪jΩf
jε ∪ Ωm

ε ; (1)

[[G∇wε · ν]] = 0 , on ∪jΓjε ; (2)

G∇wε · ν =
1
ε
Dj [[wε]] , on ∪jΓjε . (3)

Here ∪jΩf
jε and Ωm

ε denote fibres and matrix domains respectively, ∪jΓjε is the ensemble of fi-
bre/matrix interfaces, ν is the normal unit vector to ∪jΓjε pointing into Ωm

ε , and square brackets
[[ · ]] denote the jump of the enclosed quantity across the interface, defined as extra-fibre value minus
intra-fibre value.

Equation (1) is the field equilibrium equation; (2) accounts for equilibrium at the fibre/matrix
interface, stipulating the continuity of the normal-to-interface component of the shear stress; (3) de-
scribes the interface constitution law. These equations must be complemented by suitable boundary
conditions on the boundary of the domain Ω = (∪jΩf

jε) ∪ (∪jΓjε) ∪ Ωm
ε , but their specification is

immaterial for the present treatment.
Fibres and matrix are assumed to be linear elastic, and their shear moduli are collected in the

constitutive tensor G, which specializes in

G = Gf
j in Ωf

jε , j = 1 . . . F , G = Gm in Ωm
ε . (4)
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The matrix material is homogeneous and isotropic, so that Gm = GmI , with I the second order
identity tensor and Gm the matrix shear modulus. Fibres are made of a linear elastic, cylindrically-
orthotropic material whose moduli are functionally-graded along the radius. Introducing a polar
coordinate system (Cj , rj , θj), the fibre elasticity tensor is:

Gf
j = (Gr

je
r
j ⊗ er

j + Gθ
je

θ
j ⊗ eθ

j )gj(ρj) , (5)

where ρj = rj/Rj is the radial dimensionless coordinate, er
j and eθ

j are the radial and tangential unit
vectors, respectively, ⊗ denotes the tensor product, and the dimensionless functions gj(ρj) express
the material grading law along the radial direction relevant to fibre j.

Fibre/matrix interfaces are assumed to have zero-thickness and to be imperfect. The linear
spring-layer model, linearly relating the displacement discontinuity [[wε]] to the interface traction
G∇wε · ν, in terms of the spring constant parameter Dj is adopted [6, 7, 8]. As a matter of fact,
interfaces have a physical thickness t which, though much smaller than the microstructural length
scale L1 (or L2) to justify the present zero-thickness model, rescales as the latter one during the
homogenization process. Recalling that the corresponding interface parameter is inversely propor-
tional to the interface thickness, the ε−1 scaling of the interface parameter in the homogenization
limit follows [6, 9].

In order to guarantee the well posedness of the above problem, the following hypotheses are
assumed:

Gm > 0 , Gr
j > 0 , Gθ

j > 0 , Dj > 0 , gj(ρj) > 0 in (0, 1] , j = 1 . . . F. (6)

2.1 Homogenized equilibrium equation
The asymptotic homogenization method is employed to derive the homogenized or effective

constitutive tensor of the composite material. Two different length scales characterize the problem
under consideration. Hence, two different space variables are introduced: the macroscopic one, x,
and the microscopic one, y = x/ε, y ∈ Q, being Q the RUC (see Figure 1), whose extra-fibre
space, intra-fibre space and fibre-matrix interface are denoted by Qm, Qf

j and Γj , for j = 1 . . . F ,
respectively. An asymptotic expansion of the unknown displacement field is considered in the form:

wε(x, y) = w0(x, y) + εw1(x, y) + ε2w2(x, y) + . . . , (7)

where w0, w1, w2 are Q-periodic functions in y, and w1, w2 have null integral average over Q. Sub-
stituting (7) into Problem (1)–(3) and equating the power-like terms of ε, three differential problems
for w0, w1 and w2 are obtained, respectively, which, following a standard argument [10, 11], yield
the homogenized equation for the macroscopic displacement w0:

divx(G#∇xw0) = 0 . (8)

Here ∇xw0 is the macroscopic shear strain, and

G# =
1
|Q|

∫

Q

G(I −∇t
yχ) da (9)

is the effective constitutive tensor, where the superscript t denotes the transpose, da is the area
element of Q, | · | is the Lebesgue measure, and the cell function χ(y) has been introduced. Its
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components χh, h = 1, 2, are the unique, null average, Q-periodic solutions of the cell problem:

divy[G(∇yχh − eh)] = 0 , in ∪jQ
f
j ∪Qm ; (10)

[[G(∇yχh − eh) · ν]] = 0 , on ∪jΓj ; (11)
G(∇yχh − eh) · ν = Dj [[χh]] , on ∪jΓj , (12)

where eh is the unit vector parallel to the yh axis.
Using the Gauss-Green Lemma and introducing the auxiliary cell function:

χ̃ = χ− (y1e1 + y2e2) , (13)

(9) is transformed into:

G# = Gm +
F∑

j=1

1
|Q|

∫

Qf
j

(divyGf)⊗ χ̃ da +
F∑

j=1

1
|Q|

∫

Γj

[[Gν ⊗ χ̃]] dl . (14)

where dl is the line element of Γj . Equation (14) yields the effective shear moduli of the composite
material in terms of the solution χ of the cell problem.

In applications, a central role is played by the local shear stress τ ε = G∇wε in the composite.
The leading-order term of its asymptotic expansion turns out to be:

τ 0 = G(I −∇t
yχ)[∇xw0] . (15)

This expression will be used in Section 4.2, dealing with stress concentration issues.

3 CELL PROBLEM
3.1 Fourier series representation

The general solution of the field equation (10) is obtained via Fourier series representations. With
reference to fibre j, j = 1 . . . F , the cell function χh, h = 1, 2, is given by:

• in the isotropic, homogeneous matrix subdomain Qm:

χm
jh(rj , θj) = yh + <

[
+∞∑

k=−∞
bkjhρk

j eikθj

]
, (16)

• in the cylindrically orthotropic, radially-graded fibre subdomain Qf
j :

χf
jh(rj , θj) = yh + <

[
+∞∑

k=0

akjh Wkj(ρj)eikθj

]
. (17)

Here i =
√−1 and the symbol < denotes the real part; moreover, the sum in (17) is extended over

nonnegative indices only, in order to enforce the regularity of χf
jh near Cj ∈ Qf

j . Finally, functions
Wkj(ρj) solve the problem:

W ′′
kj +

(
g′j
gj

+
1
ρj

)
W ′

kj −
σ2

j k2

ρ2
j

Wkj = 0 , in (0, 1) , (18)

Wkj(0) = 0 , (19)
Wkj(1) = 1 , (20)

4



where (19) is a regularity requirement on Wkj , (20) is a normalization condition, σ2
j = Gθ

j/Gr
j is

the anisotropy ratio of fibre j, and an apex denotes differentiation with respect to ρj . Finally, the
quantities akjh, bkjh, b(−k)jh, k = 1, . . . , +∞, are complex constants, whilst a0jh and b0jh are
real constants. They are determined in Sections 3.2 and 3.3, by exploiting the interface boundary
conditions (11)-(12) on Γj and the periodicity requirement on ∂Q.

3.2 Interface boundary condition
Substituting representations (16)–(17) into the interface boundary conditions (11)–(12), the fol-

lowing equations are obtained for k = 1 . . . +∞:

GmkR−1
j (bkjh − b(−k)jh) = Gr

jgj(1)W ′
kj(1)R−1

j akjh , (21)

Dj(bkjh + b(−k)jh − akjh) = Gr
jgj(1)W ′

kj(1)R−1
j akjh , (22)

whereas k = 0 yields b0jh = a0jh. Here an overbar denotes the complex conjugate. Equations (21)–
(22) allow to express the unknown coefficients akjh and bkjh as functions of b(−k)jh, as follows:

akjh = λkjb(−k)jh , bkjh = γkjb(−k)jh , (23)

where

λkj =
2RjDj [Gr

jgj(1)]−1

k + ψ−kj

k

W ′
kj(1)

, γkj =
k + ψ+

kj

k + ψ−kj

, (24)

being

ψ±kj = RjDj

{
k

W ′
kj(1)

[Gr
jgj(1)]−1 ± (Gm)−1

}
. (25)

3.3 Periodicity condition
The cell function χ is Q-periodic, i.e., it satisfies:

χ(y1 + L1, y2) = χ(y1, y2) = χ(y1 + L2 cosϕ, y2 + L2 sin ϕ) . (26)

It is sufficient to enforce this periodicity requirement with reference to the restriction of χ to the
matrix domain Qm. This is obtained by identifying the representation (16) with a linear combination
of doubly-periodic basis functions defined in terms of the complex variable z = (y1 + iy2)/L1.
Accordingly, the relevant semi-periods are ω1 = 1/2, ω2 = κeiϕ/2, where κ = L2/L1 is the side
ratio of the RUC. More specifically, according to the classical Rayleigh multipole expansion method
[3, 12], the following equation is implemented:

χm
h (z) =

F∑
n=1

2∑

l=1

+∞∑
s=1

wslnh <[Bsl(z − zn)] . (27)

Here zn is the value of z corresponding to the centre Cn of fibre n, the coefficients wslnh are real
unknowns, and the functions Bsl(z) are chosen as follows [13, 14, 5, 15]:

Bsl(z) =

{
−ηlz + ωlζ(z) , if s = 1, l = 1, 2 ;

ωl
ζ(s−1)(z)
(s−1)! , for s > 1, l = 1, 2 ,

(28)
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where ζ(z) denotes the Weierstrass Zeta function of semiperiods ω1, ω2 [16]. It is odd and quasi-
periodic, i.e., ζ(z + 2ωk) = ζ(z) + 2ηk, with k = 1, 2, and ηk = ζ(ωk). The latter quantities
are linked to the semiperiods ω1, ω2 by Legendre’s relationship η1ω2 − η2ω1 = πi/2. Using these
equations, and recalling that the derivatives of ζ(z) are elliptic functions, it is easy to verify that the
basis functions <[Bsl(z − zn)] are indeed doubly periodic, with semiperiods ω1, ω2.

In the cited literature, the RUC is symmetric with respect to the y1 and y2 axes. This implies
evenness or oddness properties for the cell function χm

h , which is consequently represented by the
subset of the functions (28) corresponding to l = 1 or l = 2 only. In this work no such symmetry
is assumed, and hence the whole set (28) is considered. Moreover, a superposition of multipoles
around each fibre is taken into account.

The identification of (16) and (27) is easily obtained by introducing power-series expansions
around z = zj of the functions Bsl(z − zn) and remembering that

z − zj =
rjeiθj

L1
= R̂jρjeiθj , (29)

where R̂j = Rj/L1 is the dimensionless fibre radius. In particular, ζ(z) has a pole of order 1 at
z = 0, and its Laurent series expansion is:

ζ(z) =
1
z
−

+∞∑

k=2

ck
z2k−1

2k − 1
, (30)

where ck, k ≥ 2 can be easily computed using a rapidly convergent Fourier series [17]. Accordingly,
the power-series expansion of ζs−1(z − zj), s ≥ 1, around z = zj is given by:

ζs−1(z − zj)
(s− 1)!

= (−1)s−1(z − zj)−s −
+∞∑

k=0

µks(z − zj)k , (31)

where

µks =

{
1

k+s−1

(
k+s−1

s−1

)
c k+s

2
, for even k + s ;

0 , for odd k + s .
(32)

Here round brackets denote the binomial coefficient, and it has been stipulated that c1 = 0 for ease
of notation. On the other hand, ζ(z − zn), for n 6= j, is analytic around z = zj , and its Taylor
expansion is:

ζs−1(z − zn) =
+∞∑

k=0

ζk+s−1(zj − zn)
k!

(z − zj)k . (33)

Hence, (27) is transformed into:

χm
h (z) = <

[
C0jh +

+∞∑

k=1

C(−k)jh(z − zj)−k +
+∞∑

k=1

Ckjh(z − zj)k

]
, (34)
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where, for k = 1, . . . , +∞,

C(−k)jh = (−1)k−1
2∑

l=1

wkljh ωl , (35)

Ckjh =
F∑

n=1
n 6=j

2∑

l=1

+∞∑
s=1

wslnh ωl
ζk+s−1(zj − zn)

(s− 1)!k!
−

2∑

l=1

+∞∑
s=1

wsljh ωl µks

− δk1

F∑
n=1

2∑

l=1

w1lnh ηl , (36)

where δ is the Krönecker symbol. The expression of C0jh is obtained by setting k = 0 in the
expression of Ckjh, and adding the constant term

∑F
n=1

∑2
l=1−w1lnh ηl(zj − zn).

Equation (34), recalling (29), is compared term-by-term to (16) and yields, for k = 1 . . . +∞:

b(−k)jh = R̂−k
j C(−k)jh , (37)

bkjh + Rjchδk1 = R̂k
j Ckjh , (38)

b0jh + y
Cj

h = C0jh , (39)

where y
Cj

h is the yh coordinate at the centre Cj of fibre j, and ch = 1 if h = 1, ch = −i if h = 2, so
that yh = y

Cj

h + <(chrjeiθj ).

3.4 Solution of the cell problem and effective constitutive tensor
The solution of the cell problem is achieved by substituting (37)–(38) into the interface boundary

condition (23)2, leading to:

R̂k
j Ckjh −Rjchδk1 = γkjR̂

−k
j C(−k)jh . (40)

This is a system of infinite linear algebraic equations in the unknowns wkljh, involved into Ckjh and
C(−k)jh. Making the position [18]

qkljh =

√
k

R̂k
j

wkljh , (41)

and recalling (35) and (36), (40) yields, after multiplying by −
√

k:

(−1)k−1γkj

2∑

l=1

ωl qkljh −
F∑

n=1
n6=j

2∑

l=1

+∞∑
s=1

√
k

s
ωlR̂

k
j R̂s

n

ζk+s−1(zj − zn)
(s− 1)!k!

qslnh

+
2∑

l=1

+∞∑
s=1

√
k

s
ωlµksR̂

k+s
j qsljh + δk1

F∑
n=1

2∑

l=1

R̂jR̂nηl q1lnh = −Rjchδk1 . (42)

To obtain a numerical solution, it is necessary to truncate this system to a finite order N , amounting
to extending the sums in the representations (16)–(17) to |k| ≤ N only.

Recalling that (42) hold for j = 1 . . . F , and taking its real and imaginary parts, a linear system
of 2NF equations in the 2NF unknowns qkljh, k = 1 . . . N , l = 1, 2, j = 1 . . . F , is obtained, to
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Figure 2: (a) Mean value µG# and dispersion of G#, normalized by Gm, and (b) coefficient of
variation CVG# , as a function of the RUC size. Monte Carlo simulation - blue line; fit reported
in (46) - red line. Fibre/matrix stiffness ratio Gr/Gm = 1000. Grading type: exponential profile
g(ρ) = exp(− log(10)ρ4). Isotropic fibres. Perfect interfaces. Square RUC. Volume fraction f =
0.4.

be solved for h = 1 and h = 2. Moreover, the truncation order N may be chosen for each fibre
depending on its distance from neighbouring fibres. After computing qkljh, one can determine wkljh

via (41), b(−k)jh via (37), and bkjh, akh via (23). Hence, the cell functions χm
h , χf

h are obtained by
(16)–(17), for h = 1, 2.

Finally, the effective material tensor G# follows from (14). After some algebra, it turns out that:

G#
hl = Gmδhl +

F∑

j=1

fj

Rj
< [

Gm(chb1jl + chb−1jl)−Gr
jΨjcha1jl

]
, (43)

where fj = πR2
j/|Q| is the volume fraction of the jth fibre, and

Ψj = gj(1)−
∫ 1

0

[ρjg
′
j(ρj) + (1− σ2

j )gj(ρj)]W1j(ρj) dρj . (44)

For a general grading profile, the above coefficients Ψj , as well as the coefficients W1j(1) entering
(24)–(25), can be computed via numerical integration of (18)–(20). Closed-form solutions to the
latter problem for large families of grading profiles are presented in [15].

4 NUMERICAL RESULTS AND DISCUSSION
4.1 The size of the RUC

Statistically homogeneous microstructures, yielding an isotropic effective behaviour are consid-
ered. A quantitative estimation of the RUC size, based on statistical arguments, is derived here.
The effective modulus G#, obtained by the spatial averaging (14) in a given RUC Q, is a random
variable, since it depends on the specific realization of Q. If the RUC were a representative vol-
ume element (RVE), the dispersion would theoretically vanish. In practice, the RUC size has to be
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chosen in order to ensure a given relative accuracy ε of G#. Recalling that the width of the 95%
confidence interval is twice the standard deviation σG# of G#, the following inequality must hold:
2σG#/µG# ≤ ε, where µG# denotes the mean value. In this way, large RUCs are usually obtained,
whose analysis could require heavy computational effort.

However, the use of smaller RUCs might be compensated by averaging over several realizations
of the microstructure to get the same accuracy, provided that no bias is introduced in the estimation
by some edge effects generated by the periodic boundary conditions [2]. Indeed, the standard devia-
tion of the average of G# resulting from n independent realizations Q is given by σn

G# = σG#/
√

n,
so that n could be chosen such that

n ≥ 4 CV2
G#/ε2 , (45)

where CVG# = σG#/µG# is the coefficient of variation.
It is pointed out that µG# , σG# and CVG# do depend on the size of the RUC. An estimation

of this dependence is obtained here in simulation. Square RUCs are considered, comprising equal,
isotropic, graded fibres with volume fraction f =

∑F
j=1 fj = 0.4, perfect fibre/matrix interfaces and

stiffness ratio Gr/Gm = 1000. The RUC side S ranges from 1.98 to 15.85 fibre diameters (hence,
the number of fibres included into a RUC ranges from 2 to 128).

Figure 2(a) shows the mean value µG# and the dispersion of G# as a function of the RUC size.
A bias in the mean value is observed when S < 8; on the other hand, a RUC whose side is greater
than or equal to 8 fibre diameters (hence, comprising at least 32 fibres, for f = 0.4) can be used
to obtain a fair estimate of µG# in the present case. Figure 2(b) shows the coefficient of variation
CVG# as a function of the RUC size. The empirical fit

CVG# ≈ 0.27 · S−1.5 (46)

is obtained in the present case. Equations (45) and (46) can be used to estimate the number of
realizations needed to reach a required accuracy. As an example, if S = 8, the estimated values
derived from n ≥ 6 RUC samples should be averaged in order to reach an accuracy of ε = 1% on
µG# .

Further research will be devoted to ascertain how the present result depend on the fibre volume
fraction, on the local randomness of the latter, on the fibre/matrix stiffness ratio or interface param-
eter, on the grading profile, and on the investigated effective property.

4.2 The shear stress concentration factor
In this section, the analysis points at assessing the reduction of the shear stress at the fibre/matrix

interface, by suitably choosing the grading intensity factor ω = g(1)/g(0), keeping fixed the effec-
tive shear stiffness of the composite material.

Reference is made to a material with fibre volume fraction f = 0.7. Perfect interfaces are
assumed. An exponential grading profile g(ρ) = exp(− log(ω)ρ4) is considered, with ω = 1 . . . 10.
Taking ω = 1 amounts to considering standard homogeneous fibres. Square RUCs with edge length
of 8 fibre diameters are used and the average over n = 32 samples is taken in each computation.

The dimensionless effective shear stiffness µG#/Gm is taken constant. Hence, the higher ω is,
the higher Gr/Gm has to be chosen, since higher values of ω imply a steeper decrease of the fibre
stiffness along the radius. This issue is shown in Figure 3(a), reporting the values of Gr/Gm versus
ω, that yield µG#/Gm = 3, 4 or 5.

Grading the fibre stiffness turns out to be a feasible way to mitigate the fibre/matrix interface
shear stress. A quantitative account of this issue can be obtained by introducing the Shear Stress
Concentration Factor (SSCF), defined as the highest ratio between the L∞ norm of the normal

9



1 2 3 4 5 6 7 8 9 10
400

500

600

700

800

900

1000

Grading intensity  ω

G
r /G

m

(a)
1 2 3 4 5 6 7 8 9 10

0.5

0.6

0.7

0.8

0.9

1

Grading intensity  ω
S

S
C

F
(ω

) 
/ S

S
C

F
(1

)
(b)

Figure 3: (a) Fibre/matrix stiffness ratio (Gr/Gm) required to achieve a given dimensionless effec-
tive modulus µG#/Gm, vs grading intensity ω. (b) Normalized Shear Stress Concentration Factor
[SSCF(ω)/SSCF(1)], vs grading intensity ω. µG#/Gm = 3 - red dashed lines, µG#/Gm = 4
- blue dash-dot lines, µG#/Gm = 5 - green solid lines. Grading type: exponential profile
g(ρ) = exp(− log(ω)ρ4). Isotropic fibres. Perfect interfaces. Square RUC. Volume fraction
f = 0.7.

component of the shear stress at the fibre/matrix interface in the graded composite, and the same
quantity in the homogenized material, under all the macroscopic shear strains ∇xw0:

SSCF = sup
∇xw0

sup
j∈{1...F}

sup
ρj=1

|τ 0 · ν|

G#|∇xw0| . (47)

This quantity is indeed a random variable: since it describes a stress level, its mean value increased
by twice its standard deviation is considered. The SSCF(ω) for a composite comprising graded fi-
bres, normalized by the corresponding SSCF(1) relevant to a composite with homogeneous fibres, is
reported in Figure 3(b) as a function of ω, for µG#/Gm = 3, 4 or 5. A reduction of the shear stress
of 30% – 40% for highly graded fibres (ω = 10) is observed for all the levels of dimensionless ho-
mogenized modulus. Hence, properly grading the elastic properties of the fibres leads to a decrease
of the interfacial stress concentration, without reducing the overall stiffness of the material. This
result raises attention on an innovative class of composite materials, enhanced in terms of durability
of the bonding at the fibre/matrix interface.
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