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Abstract We address the problem of proving the total correctness of transformations of def-
inite logic programs. We consider a general transformation rule, called clause replacement,
which consists in transforming a program P into a new program Q by replacing a set Γ1 of
clauses occurring in P by a new set Γ2 of clauses, provided that Γ1 and Γ2 are equivalent in
the least Herbrand model M(P) of the program P .

We propose a general method for proving that transformations based on clause replace-
ment are totally correct, that is, M(P) = M(Q). Our method consists in showing that the
transformation of P into Q can be performed by: (i) adding extra arguments to predicates,
thereby deriving from the given program P an annotated program P , (ii) applying a variant
of the clause replacement rule and transforming the annotated program P into a terminating
annotated program Q, and (iii) erasing the annotations from Q, thereby getting Q.

Our method does not require that either P or Q are terminating and it is parametric with
respect to the annotations. By providing different annotations we can easily prove the total
correctness of program transformations based on various versions of the popular unfolding,
folding, and goal replacement rules, which can all be viewed as particular cases of our clause
replacement rule.
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1 Introduction

Program transformation rules can be viewed as conditional rewritings of programs. Indeed,
the transformation of a given program P into a new program Q can be performed by using
various rules, each of which rewrites a fragment of the program P into a new fragment,
provided that these two fragments are equivalent with respect to a given semantics (see, for
instance, [19]). In this paper we consider definite logic programs and, in order to transform
them, we introduce a general transformation rule, called clause replacement, which is a
conditional rewriting of the following form: a set Γ1 of clauses of a program P is rewritten
into a new set Γ2 of clauses, provided that a suitable equivalence between Γ1 and Γ2 holds
in the least Herbrand model of the program P . This model is denoted by M(P). Most
transformation rules proposed in the literature, including the popular unfolding, folding, and
goal replacement rules [7, 28], can be viewed as particular cases of this clause replacement
rule.

Much work has been devoted to the study of the correctness of program transformations
of definite programs (see, for instance, [5, 8, 11, 13, 16, 24, 28, 29]). Two correctness prop-
erties have been considered: partial correctness and total correctness. A transformation of
a program P into a program Q is said to be partially correct iff M(P) ⊇ M(Q), and it is
said to be totally correct iff M(P) = M(Q).

In Sect. 2 we will show that any transformation from an initial program P to a final
program Q performed by applying the clause replacement rule is partially correct. However,
this transformation may not be totally correct, that is, M(P) ⊆ M(Q) may not hold. We
will illustrate this fact in Example 1 below, where we consider the goal replacement rule
which, as already mentioned, is a particular instance of the clause replacement rule. (Other,
more realistic applications of the goal replacement rule will be presented in Example 9 and
Sect. 6.) The goal replacement rule can be defined as follows. A clause H ← GL ∧G1 ∧GR

of a program P is replaced by a new clause H ← GL ∧G2 ∧GR , provided that the following
equivalence holds in the least Herbrand model of P : M(P) |= ∀X(∃Y1G1 ↔ ∃Y2G2), where
X is the set of variables occurring in {H,GL,GR} and, for i = 1,2, Yi is the set of variables
occurring in the goal Gi and not in X. A totally correct variant of the goal replacement rule
will be introduced in Sect. 4.

Example 1 (i) Let us consider the transformation of P into Q, where P and Q are programs
defined as follows:

P : p(f (X)) ← q(X) Q: p(f (X)) ← q(X)

q(a) ← q(a) ←
q(X) ← p(f (X)) q(X) ← q(X)

This transformation is a legal application of the goal replacement rule defined above, be-
cause M(P) |= ∀X(p(f (X)) ↔ q(X)). The transformation of P into Q is totally correct,
because M(P) = {p(f (a)), q(a)} = M(Q).

(ii) Since equivalence is symmetric, also the replacement of q(X) by p(f (X)) in the
body of the first clause of P is a legal application of the goal replacement rule. However,
this goal replacement determines a transformation which is not totally correct. Indeed, if we
replace q(X) by p(f (X)) in the first clause of P , we get the following program:

R: p(f (X)) ← p(f (X))

q(a) ←
q(X) ← p(f (X))

and we have that M(P) = {p(f (a)), q(a)} ⊃ {q(a)} = M(R).
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Since the pioneering work by Tamaki and Sato [28], various authors have proposed suit-
able extra conditions which guarantee the total correctness of transformations determined
by applications of the unfolding, folding, and goal replacement rules [5, 8, 11, 13, 16, 24,
28, 29]. The essential idea presented by Tamaki and Sato in [28] is that the replacement
of G1 by G2 determines a totally correct transformation if, in addition to the condition
M(P) |= ∀X(∃Y1G1 ↔ ∃Y2G2), we have that, for every ground substitution σ for the vari-
ables in X, if there exist a ground substitution ϑ1 for the variables in Y1 and a proof π1 of
G1σϑ1 in P , then there exist a ground substitution ϑ2 for the variables in Y2 and a proof π2

of G2σϑ2 in P , such that the measure of π2 is not larger than the measure of π1. Here, by
measure of a proof we mean the number of nodes of the proof when it is represented as an
and-tree of atoms (the measure defined in [28] is slightly more general, but that generality
is not required here).

For instance, let us consider the program P of Example 1 and the equivalence M(P) |=
∀X(p(f (X)) ↔ q(X)). The only provable ground instances of p(f (X)) and q(X) are
p(f (a)) and q(a), respectively. We have that every proof of p(f (a)) in P has measure
greater than or equal to 2, whereas there exists a proof of q(a) in P which has measure 1.
Thus, the replacement of p(f (X)) by q(X) satisfies the condition by Tamaki and Sato (and,
indeed, this transformation is totally correct), while the replacement of q(X) by p(f (X))

does not satisfy that condition (and, indeed, this transformation is not totally correct). More
sophisticated proof measures are defined in [24, 29]. However, in [24, 29] and also in [28]
one cannot find any general methodology for comparing proof measures and checking the
conditions which ensure the total correctness of the transformations based on goal replace-
ments.

The main contribution of this paper is a method for proving the total correctness of the
transformations based on the clause replacement rule and, as a consequence, the total cor-
rectness of the transformations based on the unfolding, folding, and goal replacement rules.
By our method we can express the conditions which ensure total correctness by first order
formulas that can be checked by using standard theorem proving techniques.

Let us briefly describe our method in the particular case of the goal replacement rule
presented above. Suppose that program P is transformed into program Q by replacing goal
G1 in the clause H ← GL ∧ G1 ∧ GR of P by the new goal G2. In order to show the
partial correctness of this transformation, that is, in order to show that M(P) ⊇ M(Q), it
suffices to prove that M(P) |= ∀X(∃Y1G1 ← ∃Y2G2) (and, thus, M(P) |= ∀X∀Y1(H ←
GL ∧ G1 ∧ GR) → ∀X∀Y2(H ← GL ∧ G2 ∧ GR)).

In order to show also the reverse inclusion M(P) ⊆ M(Q), and thus, the total correctness
of the replacement of G1 by G2, we will use the unique fixpoint principle (see [9] for a short
presentation in the case of recursive equation programs) and our new proof method based
on program annotations. In our context, the unique fixpoint principle can be formulated
as follows: if M(P) |= ∀X(∃Y1G1 → ∃Y2G2) and the immediate consequence operator TQ

[1, 15] associated with the derived program Q has a unique fixpoint, then M(P) ⊆ M(Q).
Now, a sufficient (but not necessary) condition ensuring that TQ has a unique fixpoint is that
Q is terminating, that is, every SLD-derivation starting from a ground goal is finite [3].

However, the condition that the operator TQ has a unique fixpoint, is too restrictive in
practice, because it is often the case that for a logic program Q, TQ does not have a unique
fixpoint. For instance, the operator TQ associated with the non-terminating program Q of
Example 1(i) has infinitely many fixpoints, each of which is of the form:

{p(f (a)), . . . , p(f n+1(a)), q(a), . . . , q(f n(a))} for some n ≥ 0.
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Thus, the unique fixpoint principle alone is not sufficient to prove the total correctness of the
transformation presented in Example 1(i). A more realistic example of non-terminating pro-
gram whose immediate consequence operator has more than one fixpoint, is the reachability
program of Example 9 below.

We will overcome these limitations by introducing program annotations as we now ex-
plain by looking at the transformation of program P into program Q presented in Exam-
ple 1(i). Program Q can be derived from program P by performing the following three
steps.

(Step 1) From program P we derive the following annotated program:

P : 1. p(f (X))〈M〉 ← M > N ∧ q(X)〈N〉
2. q(a)〈M〉 ←
3. q(X)〈M〉 ← M > N ∧ p(f (X))〈N〉

where: (i) M and N are distinct annotation variables ranging over the set N of nat-
ural numbers, (ii) > denotes the usual greater-than well-founded ordering on N, and
(iii) M > N is an annotation formula. The annotation variables should be considered
as extra arguments of the annotated atoms. For instance, the annotated atom q(X)〈N〉
should be considered identical to the atom q(X,N). Thus, by considering the annota-
tion formulas as constraints, the annotated program P is a constraint logic program for
which we can define a least N-model, denoted by M(P) (see [12]).
The following property holds for M(P) and M(P):

Property 1 For each ground atom A ∈ M(P) there exists n ∈ N such that A〈n〉 ∈ M(P).

Since the least D-model of a constraint logic program, for any constraint domain D, is
also a model of the completion of the program, which is obtained by replacing sets of
clauses by if-and-only-if definitions [1, 12, 15], we have the following property which
is derived from clause 1:

Property 2 M(P) |= ∀N(p(f (X))〈N〉 ↔ ∃K(N > K ∧ q(X)〈K〉))

(Step 2) By replacing p(f (X))〈N〉 by N > K ∧ q(X)〈K〉 in the body of clause 3 in pro-
gram P , we derive the following clause:

4. q(X)〈M〉 ← M > N ∧ N > K ∧ q(X)〈K〉

Let Q be the annotated program consisting of clauses 1, 2, and 4. We have the following
property:

Property 3 Every annotated clause of the form H 〈M〉 ← c(M,N) ∧ A〈N〉 in Q is
decreasing (with respect to >), that is, the implication ∀M∀N(c(M,N) → M > N)

holds. (In particular, clause 4 is decreasing because ∀M∀N∀K(M > N ∧ N > K →
M > K) holds.)

(Step 3) Finally, we get program Q by erasing all annotation variables and annotation for-
mulas from program Q. We have the following property:
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Property 4 For every ground atom A, if there exists n ∈ N such that A〈n〉 ∈ M(Q),
then A ∈ M(Q).

Let us present a few remarks on Properties 1–4. Property 1 says that the annotations
added to program P do not restrict its least Herbrand model. In Sect. 3 we will provide
conditions on annotations which guarantee that this property holds in general (see Defini-
tion 8 and Proposition 2). Property 2 is of the form: M(P) |= ∀X(∃Y1G1 ↔ ∃Y2G2), where
G1 and G2 are goals containing annotation variables and annotation formulas. However,
only the only-if part M(P) |= ∀X(∃Y1G1 → ∃Y2G2) is used to prove the reverse inclusion
M(P) ⊆ M(Q). Property 3 ensures that program Q terminates according to the follow-
ing notion of termination, which is weaker than the notion considered in [3]: every SLD-
derivation starting from a ground goal and constructed using the left-to-right atom selection
rule is finite. (Indeed, the left-to-right atom selection rule ensures that annotation formulas
are selected first.) This weaker termination notion, which is also called left-termination, is
sufficient to guarantee that TQ has a unique fixpoint [2]. In the sequel we need not distin-
guish between termination in the sense of [3], and left-termination, because these notions
will not be used in the technical results we will derive. In particular, in Sect. 3 we will make
a direct proof that the fixpoint of TQ is unique by using the hypothesis that Q is decreasing.
Finally, Property 4 is the converse of Property 1, where P is replaced by Q, and holds in
general for every program Q and annotated program Q, as shown in Proposition 1 of Sect. 3.

Now, let us explain why the above Properties 1–4 ensure that M(P) ⊆ M(Q). Let us
take A ∈ M(P). By Property 1 there exists n ∈ N such that A〈n〉 ∈ M(P). By Properties 2
and 3, and by the unique fixpoint principle, we have that M(P) ⊆ M(Q) and, therefore,
A〈n〉 ∈ M(Q). Finally, by Property 4, we conclude that A ∈ M(Q).

We would like to stress that we have applied our method for proving the total correctness
of the transformation of program P into program Q, where neither P nor Q is terminating.

Our method based on program annotations can be used not only to prove that a given
transformation is totally correct, but also to prevent incorrect transformations. Indeed, we
can rule out incorrect transformations by requiring that the annotated clauses which are de-
rived by program transformation, are decreasing with respect to a suitable well-founded or-
dering. Let us consider, for instance, the replacement of M > N ∧q(X)〈N〉 by p(f (X))〈M〉
in the body of the first clause of P . By Property 2 above, this is a legal goal replacement,
but the corresponding program transformation is not totally correct. Now, by applying this
goal replacement, we would get the following annotated clause:

p(f (X))〈M〉 ← p(f (X))〈M〉
which is not decreasing and, thus, Property 3 does not hold. Thus, if we restrict ourselves to
transformations that produce decreasing annotated clauses, then the incorrect replacement
of M > N ∧ q(X)〈N〉 by p(f (X))〈M〉 is ruled out.

The paper is structured as follows. In Sect. 2 we introduce the clause replacement trans-
formation rule, which generalizes the unfolding, folding, and goal replacement rules. We
prove the partial correctness of the transformations based on the clause replacement rule
and we also give a sufficient condition for their total correctness based on the unique fix-
point principle. In Sect. 3 we introduce program annotations and, in particular, well-founded
annotations, that is, annotations which produce decreasing programs. Then we prove a suf-
ficient condition based on well-founded annotations that ensures the total correctness of
the transformations based on the clause replacement rule. This condition is the basis of the
method we propose in this paper for proving the total correctness of program transforma-
tions. In Sect. 4 we present variants of the unfolding, folding, and goal replacement rules
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for annotated programs and we use the results of Sect. 3 for showing that the transforma-
tions based on these rules are totally correct. In Sect. 5 we present a technique for proving
program properties, such as implications and equivalences between goals, by means of the
unfolding, folding, and goal replacement rules for annotated programs. In Sect. 6 we present
an extended example of application of our method for proving the total correctness of pro-
gram transformations when they are based on the unfolding, folding, and goal replacement
rules. Finally, in Sect. 7 we compare our method with other related techniques published in
the literature.

2 Clause replacement

In this section we will introduce the clause replacement transformation rule for definite
logic programs. All usual program transformation rules, such as unfolding, folding, and goal
replacement, are instances of this clause replacement rule. Indeed, we will prove that clause
replacement is the most general program transformation rule, in the sense that every totally
correct program transformation can be obtained by applying this rule (see Theorem 1). Then
we will extend to the transformations based on clause replacements some correctness results
which have been established for the transformations based on the unfolding, folding, and
goal replacements (see, for instance, [5, 8, 11, 13, 16, 24, 28, 29]. In particular, (i) we will
prove the partial correctness of the program transformations based on clause replacements
(see Theorem 2), and (ii) we will give a sufficient condition for the total correctness of these
transformations. This condition is based on the uniqueness of the fixpoint of the immediate
consequence operator of the program derived by the transformation (see Corollary 2 below).

In what follows, unless otherwise stated, we will adopt the standard notions and termi-
nology which are used in logic programming [1, 15]. However, unlike [1, 15], a clause is
denoted by A ← A1 ∧ · · · ∧ An, with n ≥ 0 (instead of A ← A1, . . . ,An) and a goal is
defined to be a conjunction of atoms (instead of the negation of a conjunction of atoms).
The empty conjunction is identified with true and a clause of the form A ← true is also
written as A ←. The empty disjunction is identified with false. The set of variables oc-
curring in a term t is denoted by vars(t). A similar notation is also used for the set of
variables occurring in a formula or in a set of formulas. Given a clause C of the form
A ← G, the head A of C is denoted by hd(C) and the body G of C is denoted by bd(C).
Given a predicate p and a clause C with predicate p in its head, C is said to be a clause
for p.

Let us briefly summarize the fixpoint semantics of definite logic programs. Recall that an
Herbrand interpretation I is a set of ground atoms. For a ground atom A, we write I |= A

iff A ∈ I . For a first order formula ϕ the satisfaction relation I |= ϕ is defined as usual in
first order logic by induction on the structure of ϕ. The immediate consequence operator
associated with a program P is a function TP from Herbrand interpretations to Herbrand
interpretations, defined as follows:

TP (I ) = {A | there exists a ground instance A ← G of a clause in P such that I |= G}
TP is a continuous function on the complete lattice of Herbrand interpretations or-
dered by set inclusion. Thus, TP has a least fixpoint, denoted by lfp(TP ), and a great-
est fixpoint, denoted by gfp(TP ). We have that lfp(TP ) is also the least prefixpoint
of TP , that is, the least Herbrand interpretation I such that TP (I ) ⊆ I . Similarly,
gfp(TP ) is also the greatest postfixpoint of TP , that is, the greatest Herbrand interpre-
tation I such that TP (I ) ⊇ I . Since TP is continuous, lfp(TP ) is the least upper bound
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of the chain {T n
P (∅) | n ∈ N}. Moreover, lfp(TP ) is the least Herbrand model of P ,

that is, the least Herbrand interpretation I such that I |= P . lfp(TP ) is also denoted
by M(P).

We assume that in every Herbrand interpretation I , the equality predicate, denoted =, is
interpreted as the identity relation over ground terms, that is, for any two ground terms t1
and t2, we have that I |= t1 = t2 (or, equivalently, t1 = t2 ∈ I ) iff t1 is syntactically identical
to t2.

Before giving the formal definition of the clause replacement rule, let us introduce that
rule by means of a simple example. Let us consider the following EvenOdd program:

EvenOdd:

1. p(X) ← even(X) 5. odd(s(0)) ←
2. p(X) ← odd(X) 6. odd(s(s(X))) ← odd(X)

3. even(0) ← 7. nat(0) ←
4. even(s(s(X))) ← even(X) 8. nat(s(X)) ← nat(X)

We have that the conjunction of clauses 1 and 2 is logically equivalent to p(X) ← even(X)∨
odd(X), and the following equivalence holds in the least Herbrand model of EvenOdd:

M(EvenOdd) |= ∀X((even(X) ∨ odd(X)) ↔ nat(X))

The clause replacement rule allows us to derive a new program by replacing clauses 1 and 2
by the following clause:

9. p(X) ← nat(X)

In order to define the clause replacement rule in a formal way (see Definition 4 below)
we need some auxiliary notions. First, in Definition 1 below we define the if-form of a
set Γ of clauses for a predicate p, as a formula of the form p(· · · ) ← ϕ, where ϕ is a
disjunction of existentially quantified conjunctions of atoms. For instance, in the EvenOdd
example, the if-form of the set consisting of clauses 1 and 2 is p(X) ← even(X) ∨ odd(X).
Then, in Definition 2 we define the notions of implication (⇒), reverse implication (⇐),
and equivalence (⇔) between sets of clauses, based on implication, reverse implication, and
equivalence between the premises of their if-forms. For instance, in the EvenOdd example,
we have that M(EvenOdd) |= {clause 1, clause 2} ⇔ {clause 9}.

Definition 1 (if-form) Let p be a predicate symbol of arity j (≥ 0) and let Γ be a set of
n (≥ 0) clauses for p. The if-form of Γ , denoted by if (Γ ), is a formula constructed as
specified by the following three steps, where X1, . . . ,Xj are distinct variables not occurring
in Γ .

(Step 1: Introduce equalities) Transform each clause p(t1, . . . , tj ) ← A1 ∧ · · · ∧ Ak of Γ

into

p(X1, . . . ,Xj ) ← X1 = t1 ∧ · · · ∧ Xj = tj ∧ A1 ∧ · · · ∧ Ak

(Step 2: Introduce existential quantifiers) Transform each formula p(X1, . . . ,Xj ) ← F de-
rived at the end of Step 1 into

p(X1, . . . ,Xj ) ← ∃Y1 · · · ∃YmF

where {Y1, . . . , Ym} = vars(F ) − {X1, . . . ,Xj }.
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(Step 3: Introduce disjunctions) Let

p(X1, . . . ,Xj ) ← R1

. . .

p(X1, . . . ,Xj ) ← Rn

be the formulas obtained at the end of Step 2. Then if (Γ ) is the formula:

p(X1, . . . ,Xj ) ← R1 ∨ · · · ∨ Rn

Note that Steps 1–3 of Definition 1 are the first three steps in the construction of the
completion of a logic program [1, p. 536]. The following is an example of if-form of a set
of clauses.

Example 2 Let Γ be the set consisting of the following two clauses:

p(a) ←
p(f (Y1)) ← q(Y1, Y2) ∧ r(Y2)

Then if (Γ ) is the formula: p(X) ← X = a ∨ ∃Y1∃Y2(X = f (Y1) ∧ q(Y1, Y2) ∧ r(Y2)).

Note that if Γ is the empty set of clauses, that is, in Definition 1 we have n = 0, then
if (Γ ) is the formula p(X1, . . . ,Xj ) ← false (recall that false is the empty disjunction). Note
also that any set Γ of clauses for a predicate p is logically equivalent to if (Γ ), in the sense
that if Γ = {C1, . . . ,Cn}, then |= ∀(C1 ∧ · · · ∧ Cn) ↔ ∀(if (Γ )).

Given a set Γ of clauses and a predicate symbol p, by Γ � p we denote the set of clauses
for p in Γ .

Definition 2 (Implication, Reverse-Implication, and Equivalence between Sets of Clauses)
Let I be an Herbrand interpretation. Let Γ1 and Γ2 be two sets of clauses for the same
predicate p of arity j (≥0). Let if (Γ1) be p(X1, . . . ,Xj ) ← ϕ1 and let if (Γ2) be (a variant
of) p(X1, . . . ,Xj ) ← ϕ2. We say that Γ1 implies Γ2 in the interpretation I , and we write
I |= Γ1 ⇒ Γ2, iff

I |= ∀X1 · · · ∀Xj (ϕ2 → ϕ1)

Let Γ1 and Γ2 be any two sets of clauses.

(Implication) We say that Γ1 implies Γ2 in the interpretation I , and we write I |= Γ1 ⇒ Γ2,
iff for every predicate p occurring in Γ1 ∪ Γ2, we have

I |= (Γ1 � p) ⇒ (Γ2� p)

(Reverse-Implication) We say that Γ1 is implied by Γ2 in the interpretation I , and we write
I |= Γ1 ⇐ Γ2, iff I |= Γ2 ⇒ Γ1.

(Equivalence) We say that Γ1 is equivalent to Γ2 in the interpretation I , and we write I |=
Γ1 ⇔ Γ2, iff I |= Γ1 ⇒ Γ2 and I |= Γ1 ⇐ Γ2.
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Note that the implication ⇒ between sets of clauses Γ1 and Γ2 implies the log-
ical implication → between Γ1 and Γ2. Indeed, for any Herbrand interpretation I ,
if I |= ∀X1 · · · ∀Xj(ϕ2 → ϕ1) holds, then I |= ∀X1 · · · ∀Xj((p(X1, . . . ,Xj ) ← ϕ1) →
(p(X1, . . . ,Xj ) ← ϕ2)) holds.

Let us now give an example of equivalence between sets of clauses.

Example 3 Let us consider the sets of clauses Γ1 and Γ2, consisting of the following clauses:

Γ1: p(a) ← Γ2: p(a) ←
p(b) ← p(b) ←
q(f (a)) ← q(f (Y )) ← p(Y )

q(f (b)) ←
Let M(Γ1) be the least Herbrand model of Γ1. The following equivalence holds:

M(Γ1) |= Γ1 ⇔ Γ2

Indeed, we have that:

if (Γ1 � p) = if (Γ2 � p) = (p(X) ← X = a ∨ X = b)

if (Γ1 � q) = (q(X) ← X = f (a) ∨ X = f (b))

if (Γ2 � q) = (q(X) ← ∃Y (X = f (Y ) ∧ p(Y ))

and we have that:

M(Γ1) |= ∀X((X = f (a) ∨ X = f (b)) ↔ ∃Y (X = f (Y ) ∧ p(Y )))

The following lemma, whose proof is given in the Appendix, will be useful to prove our
partial and total correctness results.

Lemma 1 Let I be an Herbrand interpretation. Let Γ1 and Γ2 be two sets of clauses. We
have that I |= Γ1 ⇒ Γ2 iff for every ground instance C2 of a clause in Γ2 such that I |=
bd(C2) there exists a ground instance C1 of a clause in Γ1 such that hd(C1) = hd(C2) and
I |= bd(C1).

For every Herbrand interpretation I and sets of clauses Γ1,Γ2, and Γ3 the following
properties hold:

Reflexivity: I |= Γ1 ⇒ Γ1

Transitivity: if I |= Γ1 ⇒ Γ2 and I |= Γ2 ⇒ Γ3 then I |= Γ1 ⇒ Γ3

Monotonicity: if I |= Γ1 ⇒ Γ2 then I |= Γ1 ∪ Γ3 ⇒ Γ2 ∪ Γ3.

Now we introduce our basic program transformation rule, called clause replacement rule,
which allows us to construct a sequence of programs starting from a given initial program
P0. This sequence of programs will be called a transformation sequence and it is formally
defined as follows.

Definition 3 (Transformation Sequence) A transformation sequence from an initial pro-
gram P0 to a final program Pn, with n ≥ 0, is a sequence of programs, denoted
P0 �→ · · · �→ Pn, such that, for k = 0, . . . , n − 1, program Pk+1 is derived from program
Pk by applying the following clause replacement rule.
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Definition 4 (Clause Replacement Rule) Let us consider a transformation sequence
P0 �→ · · · �→ Pk , for any k ≥ 0. Let Γk be a set of clauses for a predicate p such that Γk ⊆ Pk ,
and let Δk be a set of clauses for p such that M(P0) |= Γk ⇔ Δk . By applying the clause
replacement rule we derive the new program Pk+1 = (Pk − Γk) ∪ Δk and we derive the
transformation sequence P0 �→ · · · �→ Pk �→ Pk+1.

Note that the familiar unfolding, folding, and goal replacement rules [28] are instances
of the clause replacement rule.

By abuse of notation, by P0 �→ · · · �→ Pn, for n ≥ 0, we will also denote any sequence of
n+1 programs from P0 to Pn. The context will tell the reader whether or not P0 �→ · · · �→ Pn

is a transformation sequence, that is, it is derived by n applications of the clause replacement
rule.

In order to prove the partial and total correctness properties of transformation sequences,
we will find it useful to introduce the following two notions of program sequences, called
implication-based and reverse-implication-based program sequences. These notions arise
by separating the equivalence Γk ⇔ Δk which has to be satisfied when applying the clause
replacement rule (see Definition 4), into the two conjuncts Γk ⇒ Δk and Γk ⇐ Δk .

Definition 5 (Implication-based and Reverse-implication-based Program Sequence) A se-
quence of programs P0 �→ · · · �→ Pn, for n ≥ 0, is said to be implication-based (or reverse-
implication-based) iff for k = 0, . . . , n − 1, there exist two sets Γk and Δk of clauses for the
same predicate such that:

(i) Γk ⊆ Pk ,
(ii) M(P0) |= Γk ⇒ Δk (or M(P0) |= Γk ⇐ Δk , respectively), and

(iii) Pk+1 = (Pk − Γk) ∪ Δk .

A transformation sequence is both an implication-based and a reverse-implication-based
program sequence, and it will also be called an equivalence-based program sequence.

Definition 6 (Correctness of Program Sequences) We say that a sequence of programs
P0 �→ · · · �→ Pn, with n ≥ 0, is:

(i) partially correct iff M(P0) ⊇ M(Pn),
(ii) conservative iff M(P0) ⊆ M(Pn), and

(iii) totally correct iff M(P0) = M(Pn).

Note that in a transformation sequence P0 �→ · · · �→ Pn, we require that, for k =
0, . . . , n − 1, if Pk+1 is (Pk − Γk) ∪ Δk then the equivalence Γk ⇔ Δk should hold in the
least Herbrand model M(P0) of the initial program P0. Recall also that, by Definition 2, any
two sets Γk and Δk of clauses are equivalent if and only if Γk � p and Δk � p are equivalent
for every predicate p in Γk ∪Δk . As a consequence, by an application of the clause replace-
ment rule we can introduce a clause of the form newp(X) ← B for a new predicate newp
only when M(P0) |= ∀(B ↔ false) holds. Thus, the definition introduction rule [28] cannot
be viewed as an instance of the clause replacement rule.

For reasons of simplicity, we have chosen not to include the definition introduction rule
among our transformation rules. However, the total correctness results presented in this pa-
per can easily be extended to the case where program sequences are constructed by using
the definition introduction rule in addition to the clause replacement rule, because the total
correctness of a program sequence constructed by using the clause replacement rule and the
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definition introduction rule, can be reduced, as we now explain, to the total correctness of
a transformation sequence, that is, a sequence of programs constructed by using the clause
replacement rule only.

Indeed, similarly to [28], we may stipulate that a program sequence P0 �→ · · · �→ Pn con-
structed by using the clause replacement rule and the definition introduction rule is totally
correct iff M(P0 ∪ Defs) = M(Pn), where Defs is the set of clauses for the new predicates,
that is, the predicates not occurring in P0 which are added during the sequence by applying
the definition introduction rule. Then, given a program sequence P0 �→ · · · �→ Pn constructed
by using the clause replacement rule and the definition introduction rule, we can construct
a program sequence of the form P0 ∪ Defs �→ · · · �→ Pn by using the clause replacement
rule only. In other words, we may think as if all new predicate definitions were added to
the initial program P0, while, in practice, we allow ourselves to add these new predicate
definitions to any program of the sequence, when they are actually needed.

The following lemma is a straightforward consequence of the reflexivity, transitivity, and
monotonicity properties of ⇒.

Lemma 2 Let P0 �→ · · · �→ Pn, for n ≥ 0, be a sequence of programs.

(i) If P0 �→ · · · �→ Pn is implication-based, then M(P0) |= P0 ⇒ Pn.
(ii) If P0 �→ · · · �→ Pn is reverse-implication-based, then M(P0) |= P0 ⇐ Pn.

The following theorem shows that the clause replacement rule is a complete transforma-
tion rule in the sense that, given any two programs having the same least Herbrand model,
it is possible to derive one of them from the other by a transformation sequence, that is, a
sequence of clause replacements. Note, however, that in general, the applicability condition
for the clause replacement rule, that is, M(P0) |= Γk ⇔ Δk , is undecidable.

Theorem 1 (Completeness of the Clause Replacement Rule) Given two programs P and
Q, such that M(P) = M(Q), there exists a transformation sequence P0 �→ · · · �→ Pn with
P = P0 and Q = Pn.

Proof Let p1, . . . , pn be the predicates occurring in P ∪ Q. For k = 1, . . . , n, let Γk be
P � pk and let Δk be Q � pk . Let us consider the sequence P0 �→ · · · �→ Pn of programs,
where P0 = P , Pn = Q, and, for k = 1, . . . , n, Pk = (Pk−1 − Γk) ∪ Δk . We will show that
P0 �→ · · · �→ Pn is a transformation sequence, that is, for k = 1, . . . , n, M(P) |= Γk ⇔ Δk .

By Lemma 1 it is enough to show that, for k = 1, . . . , n, there exists a ground instance
H ← G1 of a clause in Γk such that M(P) |= G1 iff there exists a ground instance H ← G2

of a clause in Δk such that M(P) |= G2.
Let H ← G1 be a ground instance of a clause in Γk (thus, the predicate of H is pk)

such that M(P) |= G1. By definition of an Herbrand model, we have that H ∈ M(P). Since
M(Q) is a postfixpoint of TQ and M(P) = M(Q), also M(P) is a postfixpoint of TQ, that is,
M(P) ⊆ TQ(M(P )). Thus, H ∈ TQ(M(P )) and, by definition of TQ, there exists a ground
instance H ← G2 of a clause in Q such that M(P) |= G2. Since the predicate of H is pk ,
we have that H ← G2 is a ground instance of a clause in Δk .

Similarly, we can prove that if there exists a ground instance H ← G2 of a clause in Δk

such that M(P) |= G2, then there exists a ground instance H ← G1 of a clause in Γk such
that M(P) |= G1. �

Now we present some sufficient conditions ensuring that a sequence of programs is
partially correct and conservative, and thus, totally correct. First we show that every
implication-based sequence of programs is partially correct.
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Theorem 2 (Partial Correctness) If P0 �→ · · · �→ Pn, for n ≥ 0, is an implication-based
sequence of programs, then M(P0) ⊇ M(Pn).

Proof First we show that M(P0) is a prefixpoint of TPn , that is, TPn(M(P0)) ⊆ M(P0). Let
A be a ground atom in TPn(M(P0)). By definition of TPn there exists a ground instance
A ← G2 of a clause in Pn such that M(P0) |= G2. Since P0 �→ · · · �→ Pn is an implication-
based sequence of programs, by Lemma 2(i) we have that M(P0) |= P0 ⇒ Pn. Thus, by
Lemma 1, there exists a ground instance A ← G1 of a clause in P0 such that M(P0) |= G1.
Hence, by definition of TP0 , A ∈ TP0(M(P0)). Since M(P0) is a prefixpoint of TP0 , we have
that TP0(M(P0)) ⊆ M(P0) and, therefore, A ∈ M(P0). Thus, we have proved that M(P0) is
a prefixpoint of TPn . Since M(Pn) = lfp(TPn) and lfp(TPn) is the least prefixpoint of TPn , we
have that M(P0) ⊇ M(Pn). �

Since every transformation sequence is an implication-based sequence of programs, The-
orem 2 also tells us that every transformation sequence is partially correct.

Corollary 1 (Partial Correctness of Transformation Sequences) If P0 �→ · · · �→ Pn, for
n ≥ 0, is a transformation sequence, then M(P0) ⊇ M(Pn).

Now we describe a method based on the unique fixpoint principle [9, 22], which can
be applied to prove that a sequence of programs is conservative. Let us first introduce the
following definition.

Definition 7 (Univocal Program) A program P is said to be univocal iff TP has a unique
fixpoint, that is, lfp(TP ) = gfp(TP ).

A sufficient condition for a program to be univocal is that it is terminating in the sense
of [3]. Note, however, that this condition is not necessary. For instance, consider the program

P : p

p ← p

This program is not terminating and, nevertheless, the immediate consequence operator TP

has a unique fixpoint which is {p}.

Theorem 3 (Conservativity) If P0 �→ · · · �→ Pn, for n ≥ 0, is a reverse-implication-based
sequence of programs and Pn is univocal, then M(P0) ⊆ M(Pn).

Proof We first show that M(P0) is a postfixpoint of TPn , that is, TPn(M(P0)) ⊇ M(P0). Let
A be a ground atom in M(P0). Since M(P0) is a postfixpoint of TP0 , that is, TP0(M(P0)) ⊇
M(P0), we have that there exists a ground instance A ← G1 of a clause in P0 such that
M(P0) |= G1. Since P0 �→ · · · �→ Pn is a reverse-implication-based sequence of programs,
by Lemma 2(ii) we have that M(P0) |= P0 ⇐ Pn. Therefore, by Lemma 1, there exists a
ground instance A ← G2 of a clause in Pn such that M(P0) |= G2. By definition of TPn ,
we have that A ∈ TPn(M(P0)). Thus, we have proved that M(P0) is a postfixpoint of TPn .
Since gfp(TPn) is the greatest postfixpoint of TPn , we have that M(P0) ⊆ gfp(TPn). Finally,
by the hypothesis that Pn is univocal, that is, gfp(TPn) = lfp(TPn) = M(Pn), we get that
M(P0) ⊆ M(Pn). �
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Since every transformation sequence is an equivalence-based sequence of programs, by
Theorems 2 and 3 we have the following total correctness result.

Corollary 2 (Total Correctness via the Unique Fixpoint Principle) If P0 �→ · · · �→ Pn, for
n ≥ 0, is a transformation sequence and Pn is univocal, then M(P0) = M(Pn).

Note that, in order to apply the unique fixpoint principle, it is important that the notion of
equivalence between sets of clauses and the notion of transformation sequence are defined
as stated in Definitions 2 and 3, respectively. To illustrate this point, let us first consider the
following alternative definition of equivalence between sets of clauses: two sets of clauses
{C1, . . . ,Ck} and {D1, . . . ,Dm} are equivalent with respect to an interpretation I iff I |=
∀(C1 ∧ · · · ∧ Ck) ↔ ∀(D1 ∧ · · · ∧ Dm). If we use this alternative definition of equivalence,
then Corollary 2 does not hold, as shown by the following example.

Example 4 Let us consider the following sequence P0 �→ P1 of programs, where:

P0: p ← true P1: p ← false

We have that M(P0) |= (p ← true) ↔ (p ← false), because p (and, therefore, p ← true) is
true in M(P0) and p ← false is true in every interpretation. We also have that P1 is univocal
(the only fixpoint of TP1 is the empty set). However, the sequence P0 �→ P1 of programs is
not totally correct, because {p} = M(P0) �= M(P1) = ∅.

Note that, on the contrary, if the equivalence relation ⇔ is defined as in Definition 2,
then we have that M(P0) �|= {p ← true} ⇔ {p ← false}, because M(P0) �|= true ↔ false.

Let us now consider an alternative definition of a transformation sequence P0 �→ · · · �→
Pn in which we assume that for k = 0, . . . , n − 1, when deriving Pk+1 from Pk we have
that: M(Pk) |= Γk ⇔ Δk , instead of M(P0) |= Γk ⇔ Δk (see Definition 4). If we use this
alternative definition of a transformation sequence, Corollary 2 does not hold, as shown by
the following example.

Example 5 Let us consider the sequence P0 �→ P1 �→ P2 of programs, where:

P0: p ← true P1: p ← p P2: p ← false

We have that M(P0) |= {p ← true} ⇔ {p ← p}, because M(P0) |= true ↔ p. We also have
that M(P1) |= {p ← p} ⇔ {p ← false}, because M(P1) |= p ↔ false. Finally, P2 is univo-
cal, but the sequence of programs P0 �→ P1 �→ P2 is not totally correct, because it is the case
that {p} = M(P0) �= M(P2) = ∅.

Note that P0 �→ P1 �→ P2 is not a transformation sequence according to our Definition 3
above. Indeed, P2 cannot be derived from P1 by applying the clause replacement rule of
Definition 4, because M(P0) �|= p ↔ false.

The result of Corollary 2 gives us a useful method for proving the total correctness of
a transformation sequence. However, this method cannot be applied when the program de-
rived by clause replacement is not univocal. For instance, Corollary 2 cannot be applied to
prove the total correctness of the transformation sequences presented in Example 1(i) of
the Introduction and in the more realistic Example 9 of the following Sect. 3. Note that, in
particular, for program Q of Example 1(i), TQ has more than one fixpoint. In Sect. 3 we
will present a method that overcomes this limitation and can be applied even if the programs
derived by clause replacement are not univocal.
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3 Well-founded annotations

In this section we present our method based on the notion of program annotation for proving
that a transformation sequence is totally correct. In particular, we introduce well-founded
annotations, that is, annotations which generate decreasing (thus, terminating and univocal)
annotated programs. First, we present the syntax and the semantics of annotated clauses and
annotated programs. Then, we present an extension of the clause replacement rule that can be
used for transforming annotated programs. Finally, we present a sufficient condition based
on well-founded annotations, which guarantees the total correctness of the transformation
sequences constructed by using the clause replacement rule.

Let Lp be a first order language, called the language of programs, and let us consider the
sets of definite clauses, definite logic programs, and well-formed formulas of the language
Lp which we call Clauses, Programs, and Formulas, respectively.

Let us also consider a different first order language, called the language of annotations,
denoted La , such that La ∩ Lp = ∅. We introduce the annotation formulas of the language
La as follows. We assume that in the set of predicate symbols of La there is a symbol �,
which will be interpreted as a well-founded ordering relation on a given set W (thus, by
definition, no infinite descending sequence w1 � · · · � wn � · · · exists in W ). A variable of
the language La is called an annotation variable. Similarly, a term, an atom, and a well-
formed formula of La is called an annotation term, an annotation atom, and an annotation
formula, respectively. We will add the qualification ordinary to variables, terms, atoms, and
formulas of Lp when we want to distinguish them from those of La .

Now, we introduce the annotated formulas of Lp and La as follows. An annotated atom
is of the form A〈w〉, where A is an atom of Lp and w is an annotation term of La . A formula
ϕ is an annotated formula iff one of the following holds:

(i) ϕ is an annotation formula;
(ii) ϕ is an annotated atom;

(iii) ϕ = ¬ϕ1, where ϕ1 is an annotated formula;
(iv) ϕ = ϕ1 ∧ ϕ2, where ϕ1 and ϕ2 are annotated formulas;
(v) ϕ = ∀Xϕ1, where X is a variable of La ∪ Lp and ϕ1 is an annotated formula.

When constructing annotated formulas we will also use the connectives ∨, ←, →, ↔, and
the quantifier ∃, which are defined as usual in terms of ¬, ∧, and ∀. The set of annotated
formulas is denoted by AFormulas. As usual in the first order predicate calculus, we say
that an ordinary or annotated term (or formula) is ground iff it contains no occurrences
of variables, and we say that an ordinary or annotated formula is closed iff it contains no
occurrences of free variables.

An annotated goal is a conjunction of annotated atoms. An annotated clause is an anno-
tated formula of the form:

H 〈w〉 ← c ∧ A1〈w1〉 ∧ · · · ∧ An〈wn〉 with n ≥ 0,

where: (i) H 〈w〉, A1〈w1〉, . . . , An〈wn〉 are annotated atoms, and (ii) c is an annotation for-
mula. For reasons of simplicity, we assume that in an annotated clause no quantifiers occur
in the annotation formula c. The set of annotated clauses is denoted by AClauses. An an-
notated program is a set of annotated clauses. The set of annotated programs is denoted by
APrograms. Annotated atoms, annotated goals, annotated clauses, and annotated programs
are denoted by overlined symbols, such as A, G, C, and P , respectively. An example of an
annotated program is program P given in the Introduction. More examples will be given in
the sequel.
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The semantics of annotated formulas (and, in particular, annotated programs) can be
defined similarly to the semantics of constraint logic programs [12] as we now describe. We
fix an interpretation W for La . Let W be the carrier of W which, without loss of generality,
is assumed to be a set of ground annotation terms. We assume that the predicate symbol �
is interpreted as a well-founded ordering relation on W which, by abuse of language, will
also be denoted by �. The interpretation W will also be called the well-founded ordering
(W,�). A W-interpretation is a subset of the following set BW :

BW = {A〈w〉|A is a ground atom and w ∈ W }
Let us consider a W-interpretation I . A closed annotation formula c is true in I iff W |= c,
where the satisfaction relation |= is defined as usual in the first order predicate calculus.
A closed annotated atom (that is, a ground annotated atom) A〈w〉 is true in I iff A〈wW〉 ∈ I ,
where wW is the interpretation of the term w in W . A closed annotated formula of the form
¬ϕ is true in I iff ϕ is not true in I . A closed annotated formula of the form ϕ1 ∧ ϕ2 is true
in I iff both ϕ1 and ϕ2 are true in I . A closed annotated formula of the form ∀Xϕ is true in
I iff for every ground substitution {X/t}, ϕ{X/t} is true in I . An annotated formula ϕ such
that the variables X1, . . . ,Xn occur free in ϕ, is true in I iff for every ground substitution
{X1/t1, . . . ,Xn/tn}, ϕ{X1/t1, . . . ,Xn/tn} is true in I . A set Γ of annotated formulas is true
in I iff every annotated formula of Γ is true in I . If an annotated formula ϕ is true in a
W-interpretation I , then we write I |= ϕ and we say that I is a W-model of ϕ. The same
terminology will also be used for sets of annotated formulas (in particular, for annotated
programs).

Similarly to the case of constraint logic programs, it can be shown that every annotated
program P has a least W-model which we will denote by M(P) (for least W-models we
adopt the same notation used for least Herbrand models of definite logic programs). It can
also be shown that for every annotated program P the least W-model of P can be computed
as the least fixpoint of a suitable continuous function TP over W-interpretations, called the
immediate consequence operator of the program P . TP is defined as follows. For every
annotated program P we define a function TP : P(BW) → P(BW), where P(BW) denotes
the powerset of BW , such that for every I ∈ P(BW),

TP (I ) = {H | there exists a ground instance H ← c ∧ G of an annotated clause in P

such that I |= c ∧ G}
Similarly to the case of definite and constraint logic programs (see, for instance, [1, 12, 15]),
we have the following result.

Theorem 4 The set P(BW) is a complete lattice with respect to set inclusion and, for every
annotated program P , the immediate consequence operator TPP(BW) → P(BW) is a con-
tinuous function. Thus, TP : has a least fixpoint lfp(TP ) and a greatest fixpoint gfp(TP ).
Moreover, lfp(TP ) is the least upper bound of the chain {T n

P
(∅) | n ∈ N} and lfp(TP ) is the

least W-model M(P) of P .

We can erase annotation formulas and annotation terms from annotated atoms, annotated
goals, annotated clauses, and annotated programs by using the projection function π defined
as follows:

− π(A〈w〉) = A, for every annotated atom A〈w〉,
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− π(A1 ∧ · · · ∧ An) = π(A1) ∧ · · · ∧ π(An), for every annotated goal A1 ∧ · · · ∧ An,
− π(H ← c ∧ G) = π(H) ← π(G), for every annotated clause H ← c ∧ G, and
− π({C1, . . . ,Ck}) = {π(C1), . . . , π(Ck)}, for every annotated program {C1, . . . ,Ck}.
When we apply the projection function π to an annotated program P , we obtain an ordinary
program π(P ) such that the least W-model of P is isomorphic to a subset of the least
Herbrand model of π(P ). This property is formally stated by the following proposition
whose proof is straightforward and is omitted.

Proposition 1 Let P be an annotated program and let P be π(P ). For every ground atom A,
if there exists a ground annotation term w such that A〈w〉 ∈ M(P) then A ∈ M(P).

The converse of Proposition 1 does not hold in the sense that, for some ground anno-
tated atom A〈w〉, we have that: A〈w〉 �∈ M(P) and A ∈ M(P), as shown by the following
example.

Example 6 Let us also consider the following annotated program P :

p〈1〉 ← q〈0〉
q〈1〉 ←

By applying the projection function π we get the following program P :

p ← q

q ←

We have that M(P) = {q〈1〉} and M(P) = {p,q}.

For the theory of total correctness of logic program transformations developed in this
paper it is important to construct a class of annotated programs for which the converse of
Proposition 1 holds, so that A ∈ M(P) if and only if there exists a ground annotation term
w such that A〈w〉 ∈ M(P). In order to construct such a class of annotated programs we
introduce the following definition of annotation function.

Definition 8 (Annotation Function) Let W be a well-founded ordering (W,�) providing
an interpretation for the annotation language La . An annotation over W is a function α:
Clauses → AClauses such that, for every clause C of the form H ← A1 ∧ · · · ∧ An, the
annotated clause α(C) is of the form H 〈X〉 ← c ∧ A1〈X1〉 ∧ · · · ∧ An〈Xn〉, such that:

(i) X,X1, . . . ,Xn are distinct annotation variables, and
(ii) W |= ∀X1 · · · ∀Xn∃Y1 · · · ∃Ymc, where {Y1, . . . , Ym} = vars(c) − {X1, . . . ,Xn}.
The annotation α can be extended to a function, also denoted by α, from Programs to
APrograms, by stipulating that, for every program {C1, . . . ,Cn}, the annotated program
α({C1, . . . ,Cn}) is {α(C1), . . . , α(Cn)}.

For any program P , we have P = π(α(P )). The following proposition states the con-
verse of Proposition 1 under the hypothesis that annotated programs are constructed by
using annotation functions.
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Proposition 2 Let P be a program, let α be an annotation function, and let P be the an-
notated program α(P ). For every ground atom A, if A ∈ M(P) then there exists a ground
annotation term w such that A〈w〉 ∈ M(P).

Proof Recall that M(P) is the least upper bound of the chain {T n
P (∅) | n ∈ N} and M(P)

is the least upper bound of the chain {T n

P
(∅) | n ∈ N}. Thus, it is enough to prove that, for

every n ∈ N, the following property holds:

ϕ(n): if A ∈ T n
P (∅) then there exists a ground annotation term w such that A〈w〉 ∈ T n

P
(∅)

We proceed by induction on n. (Basis) ϕ(0) is trivially true. (Step) We assume ϕ(k) and
we prove ϕ(k + 1). Suppose that A ∈ T k+1

P (∅). Then, by the definition of TP , there ex-
ists a ground instance (H ← A1 ∧ · · · ∧ Am)ϑ , for some substitution ϑ , of a clause H ←
A1 ∧ · · · ∧ Am in P such that A = Hϑ and A1ϑ ∈ T k

P (∅), . . . ,Amϑ ∈ T k
P (∅). Let H 〈X〉 ←

c ∧ A1〈X1〉 ∧ · · · ∧ Am〈Xm〉 be the annotated clause α(H ← A1 ∧ · · · ∧ Am) in P . By
the induction hypothesis ϕ(k), there exist m ground annotation terms w1, . . . ,wm such that
A1ϑ〈w1〉 ∈ T k

P
(∅), . . . ,Amϑ〈wm〉 ∈ T k

P
(∅). Let σ be the substitution {X1/w1, . . . ,Xm/wm}.

By Conditions (i) and (ii) of Definition 8, there exists a ground substitution τ such that cστ

is a ground annotation formula, W |= cστ , and Xτ is a ground annotation term. Thus, by
the definition of TP , A〈Xτ 〉 ∈ T k+1

P
(∅). �

In the following example we present two annotation functions.

Example 7 Let N be the well-founded ordering (N,>), where N is the set of natural num-
bers and > is the usual ‘greater than’ ordering on N.

(i) The annotation α1 over N is defined as follows: for any clause C: H ← A1 ∧ · · · ∧ An,
the annotated clause α1(C) is

H 〈X〉 ← X > X1 + · · · + Xn ∧ A1〈X1〉 ∧ · · · ∧ An〈Xn〉
where + is interpreted in N as the addition of natural numbers.

(ii) The annotation α2 over N is defined as follows: for any clause C: H ← A1 ∧ · · · ∧ An,
the annotated clause α2(C) is

H 〈X〉 ← X > X1 ∧ · · · ∧ X > Xn ∧ A1〈X1〉 ∧ · · · ∧ An〈Xn〉
Both α1 and α2 are indeed annotation functions, because the following properties hold:

N |= ∀X1 · · · ∀Xn∃X(X > X1 + · · · + Xn)

N |= ∀X1 · · · ∀Xn∃X(X > X1 ∧ · · · ∧ X > Xn)

Now we give an example of annotated program which is not obtained by applying an
annotation function.

Example 8 Let us consider the following annotated program P :

p〈Y 〉 ← Y = 1 ∧ X = 0 ∧ q〈X〉
q〈Y 〉 ← Y = 1



210 Higher-Order Symb Comput (2008) 21: 193–234

which is an equivalent way of writing the annotated program of Example 6. We have that
N �|= ∀X∃Y (Y = 1∧X = 0) and, thus, P is not obtained by applying an annotation function.

In the rest of the paper, we assume that every annotated program is constructed by ap-
plying an annotation function. Moreover, for any program P , we denote by P the annotated
program obtained from P by applying some annotation function to P . Thus, for any P , we
have that: (i) there exists an annotation function α such that P = α(P ), and (ii) π(P ) = P .
A similar notation is also used for clauses and, thus, for any clause C, we denote by C the
annotated clause obtained from C by applying some annotation function.

Let us now introduce the notion of well-founded annotation, which is an annotation func-
tion yielding annotated programs that are terminating and, thus, univocal. We will use the
following notations. Given two annotated atoms A1 = A1〈w1〉 and A2 = A2〈w2〉, the for-
mula w1 � w2 is also written as A1 � A2. Moreover, given an annotated atom H and
an annotated goal A1 ∧ · · · ∧ An, the formula H � A1 ∧ · · · ∧ H � An is also written as
H � (A1 ∧ · · · ∧ An).

Definition 9 (Well-Founded Annotation) Let W be the well-founded ordering (W,�). An
annotated clause H ← c ∧ A1 ∧ · · · ∧ An is said to be decreasing w.r.t. � iff

W |= ∀(c → H � (A1 ∧ · · · ∧ An))

An annotated program P is said to be decreasing w.r.t. � iff every clause in P is decreasing
w.r.t. �. An annotation α is said to be well-founded w.r.t. � iff for every program P , the
annotated program α(P ) is decreasing w.r.t. �.

The annotations α1 and α2 presented in Example 7 are both well-founded w.r.t. >. The
next theorem gives us a sufficient condition for an annotated program to be univocal. This
condition is based on the notion of decreasing, annotated program.

Theorem 5 Suppose that an annotated program P is decreasing w.r.t. a given well-founded
ordering. Then P is univocal and M(P) is the unique fixpoint of TP .

Proof Let α be an annotation over the well-founded ordering W = (W,�) such that P =
α(P ) and P is decreasing w.r.t. �. Assume that I and J are fixpoints of TP . By well-
founded induction on � we prove that: for every ground annotated atom A, we have that
A ∈ I iff A ∈ J . The inductive hypothesis is the following: for every ground annotated atom
B , if W |= A � B then B ∈ I iff B ∈ J . Assume that A ∈ I . Since I = TP (I ), we have
that there exists a clause of the form A ← c ∧ A1 ∧ · · · ∧ An in P such that W |= c and,
for i = 1, . . . , n, Ai ∈ I . Since P is decreasing w.r.t. �, we have that, by definition, for
i = 1, . . . , n, W |= A � Ai . Therefore, by the inductive hypothesis, for i = 1, . . . , n, we
have that Ai ∈ J . Since J is a fixpoint of TP and W |= c, we get that A ∈ J . Thus, we have
proved that if A ∈ I then A ∈ J . Similarly, we can prove that if A ∈ J then A ∈ I . Thus, TP

has a unique fixpoint, which is equal to its least fixpoint M(P). �

The notions introduced in Definition 1 (if-form of a set of clauses), Definition 2 (im-
plication, reverse-implication, and equivalence between sets of clauses), and Definition 5
(implication-based and reverse-implication-based program sequence) can be extended to
annotated clauses and annotated programs by simply considering annotated formulas, in-
stead of formulas, and W-interpretations, instead of Herbrand interpretations. For reasons
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of brevity, we will not present these definitions in the cases of annotated clauses and anno-
tated programs and, instead, we will refer, also in these cases, to Definitions 1, 2, and 5 given
above. The context will tell the reader whether these definitions are used in the annotated
case or in the ordinary case. We have that the properties stated by Lemmata 1 and 2, and
Theorems 2 and 3, hold for annotated programs as well.

Unlike the above mentioned notions, the clause replacement rule will be re-defined in the
case of annotated programs (see Definition 10 below), and the results concerning the total
correctness of the transformation sequences constructed by applying this rule will be given
later on.

We are now able to prove a sufficient condition for a sequence P0 �→ · · · �→ Pn of
programs to be totally correct. This condition is based on the existence of a sequence
P 0 �→ · · · �→ P n of annotated programs such that P n is decreasing with respect to a given
well-founded ordering and, thus, by Theorem 5, P n is univocal. This sufficient condition
will be used to prove that any transformation sequence constructed by applying the clause
replacement rule for annotated programs is totally correct.

Theorem 6 (Total Correctness via Well-Founded Annotations) Let P 0, . . . ,P n be anno-
tated programs over a well-founded ordering (W,�). Suppose that:

(i) P0 �→ · · · �→ Pn is an implication-based sequence of programs,
(ii) P 0 �→ · · · �→ P n is a reverse-implication-based sequence of programs, and

(iii) P n is decreasing w.r.t. �.

Then:

(1) M(P 0) ⊆ M(P n), and
(2) the sequence P0 �→ · · · �→ Pn of programs is totally correct, that is, M(P0) = M(Pn).

Proof (Point 1) By Hypothesis (iii), P n is decreasing w.r.t. �, and thus, it follows from
Theorem 5 that P n is univocal. Since, by Hypothesis (ii), P 0 �→ · · · �→ P n is a reverse-
implication-based sequence of programs, by Theorem 3 we get that M(P 0) ⊆ M(P n).

(Point 2) By Hypothesis (i) and Theorem 2, P0 �→ · · · �→ Pn is partially correct, that
is, M(P0) ⊇ M(Pn). Now it remains to prove that P0 �→ · · · �→ Pn is conservative, that is,
M(P0) ⊆ M(Pn). Let A be a ground atom in M(P0). By Proposition 2 there exists a ground
annotation term w such that A〈w〉 belongs to M(P 0). By Point (1), we have that M(P 0) ⊆
M(P n). Thus, A〈w〉 belongs to M(P n) and, by Proposition 1, A belongs to M(Pn). �

Note that the annotated programs P 0, . . . ,P n−1 are not required to be decreasing, while
P n is required to be decreasing. In practice, however, it is often useful to start from an
annotated program P 0 which is decreasing w.r.t. a given well-founded ordering �, and to
apply the following clause replacement rule which acts on annotated programs so that the
decreasingness w.r.t. � is preserved and, thus, the final annotated program P n is decreasing
by construction. In the definition below we assume that the notion of transformation se-
quence for annotated programs is the obvious extension of the notion given in Definition 3
for ordinary programs.

Definition 10 (Clause Replacement Rule for Annotated Programs) Let � be a well-founded
ordering. Let us consider a transformation sequence P 0 �→ · · · �→ P k , for any k ≥ 0, such
that, for i = 0, . . . , k, the annotated program P i is decreasing w.r.t. �. Let Γ k be a set of
clauses for a predicate p such that Γ k ⊆ P k , and let Δk be a set of annotated clauses for p

such that:
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(i) M(P0) |= Γk ⇐ Δk ,
(ii) M(P 0) |= Γ k ⇒ Δk , and

(iii) Δk is decreasing w.r.t. �.

By applying the clause replacement rule we derive the program P k+1 = (P k −Γ k)∪Δk and
we derive the transformation sequence P 0 �→ · · · �→ P k �→ P k+1.

We would like to note that, if P 0 �→ · · · �→ P n is a transformation sequence of annotated
programs, then the sequence P0 �→ · · · �→ Pn obtained by applying the projection function π

to each program of the given sequence, is a transformation sequence of ordinary programs.
Indeed, by the following Lemma 3 (whose proof is given in the Appendix), Point (ii) of
Definition 10 implies M(P0) |= Γk ⇒ Δk and, thus, by Point (i) of the same definition, we
have that P0 �→ · · · �→ Pn is an equivalence-based sequence of programs.

Lemma 3 Let P be an annotated program and let Γ 1 and Γ 2 be sets of annotated clauses.
If M(P) |= Γ 1 ⇒ Γ 2 then M(P) |= Γ1 ⇒ Γ2.

The transformation sequence P0 �→ · · · �→ Pn constructed by applying the projection
function π to the programs of a transformation sequence P 0 �→ · · · �→ P n is totally correct.
Indeed, by Point (i) of Definition 10, P0 �→ · · · �→ Pn is an implication-based sequence of
programs, by Point (ii) of Definition 10, P 0 �→ · · · �→ P n is a reverse-implication-based
sequence of programs, and by Point (iii) of Definition 10, P n is decreasing. Hence, by
Theorem 6 we have that M(P 0) ⊆ M(P n) and M(P0) = M(Pn). Thus, we have proved
the following total correctness result for transformation sequences constructed by using the
clause replacement rule.

Corollary 3 (Total Correctness of Transformation Sequences) Let P 0 �→ · · · �→ P n be a
transformation sequence constructed by applying the clause replacement rule of Defini-
tion 10. Then:

(1) M(P 0) ⊆ M(P n), and
(2) M(P0) = M(Pn).

Note that in the transformation sequence P 0 �→ · · · �→ P n of Corollary 3, the programs
P0, . . . ,Pn are not required to be univocal and, in particular, they are not required to be
terminating.

Corollary 3 supports a methodology for program transformation which consists of the
following steps (see also Fig. 1). Given an initial program P0, in order to derive a program
Pn such that M(P0) = M(Pn),

(1) first, we choose a well-founded ordering (W,�) and an annotation α which is well-
founded w.r.t. � (thus, the annotated program P 0 = α(P0) is decreasing w.r.t. �);

Fig. 1 Program Transformation
via Well-Founded Annotations. α

is a well-founded annotation
w.r.t. a given well-founded
ordering. π is the projection
function



Higher-Order Symb Comput (2008) 21: 193–234 213

(2) then, we construct a transformation sequence P 0 �→ · · · �→ P n where, for k = 0, . . . ,

n−1, P k+1 is derived from P k by applying the clause replacement rule of Definition 10
and replacing a set Γ k of annotated clauses in P k by a new set Δk , such that every
clause in Δk is decreasing w.r.t. �; and

(3) finally, we apply the projection π to P n, thereby erasing the annotation terms and the
annotation formulas from P n.

We conclude this section by giving an example of application of Corollary 3. Note that
the total correctness of the transformation sequence considered in this example cannot be
shown by using in a straightforward way the results of Sect. 2.

Example 9 Let us consider the following program R1:

C1: reach(X,X) ←
C2: reach(X,Z) ← reach(X,Y ) ∧ arc(Y,Z)

C3: arc(a, a) ←
C4: arc(b, b) ←

The following equivalence holds:

M(R1) |= ∀X∀Z(∃Y (reach(X,Y ) ∧ arc(Y,Z)) ↔ ∃Y (arc(X,Y ) ∧ reach(Y,Z)))

Hence, the following clause:

C5: reach(X,Z) ← arc(X,Y ) ∧ reach(Y,Z)

is equivalent to clause C2 in M(R1), that is, M(R1) |= {C2} ⇔ {C5}. Thus, by applying
the clause replacement rule for ordinary programs (see Definition 4) we get the transfor-
mation sequence R1 �→ R2, where R2 is the program derived from R1 by replacing clause
C2 by clause C5. Unfortunately, we cannot apply Corollary 2 of Sect. 2 to prove the total
correctness of R1 �→ R2, because R2 is not univocal. Indeed, reach(a, b) ∈ gfp(TR2) and
reach(a, b) �∈ lfp(TR2) and, therefore, lfp(TR2) �= gfp(TR2).

Let us now use the method based on well-founded annotations to prove the total correct-
ness of R1 �→ R2. We consider the following annotated program R1, obtained by applying
the annotation α1 considered in Example 7:

C1: reach(X,X)〈K〉 ←
C2: reach(X,Z)〈K〉 ← K > M + N ∧ reach(X,Y )〈M〉 ∧ arc(Y,Z)〈N〉
C3: arc(a, a)〈K〉 ←
C4: arc(b, b)〈K〉 ←

R1 is decreasing w.r.t. >. We have that:

M(R1) |= ∀K∀X∀Z(∃M∃N∃Y (K > M + N ∧ reach(X,Y )〈M〉 ∧ arc(Y,Z)〈N〉) ↔
∃M∃N∃Y (K > M + N ∧ arc(X,Y )〈M〉 ∧ reach(Y,Z)〈N〉))
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and, therefore, M(R1) |= {C2} ⇔ {C5}, where C5 is the following annotated clause:

C5: reach(X,Z)〈K〉 ← K > M + N ∧ arc(X,Y )〈M〉 ∧ reach(Y,Z)〈N〉
Moreover, C5 is decreasing w.r.t. > and, thus, by applying the clause replacement rule of
Definition 10 we derive the transformation sequence R1 �→ R2, where R2 = (R1 − {C2}) ∪
{C5}. By Corollary 3, R1 �→ R2 is totally correct.

4 Unfold/fold transformation rules for annotated programs

In this section we use the results presented in Sect. 3 to prove the total correctness of program
sequences constructed by applying suitable variants of the usual unfolding, folding, and goal
replacement rules. These three rules are collectively called unfold/fold transformation rules
and the program sequences constructed by using the unfold/fold transformation rules are
called unfold/fold transformation sequences. We will show that the unfold/fold transforma-
tion rules are instances of the clause replacement rule for annotated programs presented
in Definition 10, and thus, the total correctness of unfold/fold transformation sequences
is guaranteed by Corollary 3. In particular, a totally correct unfold/fold transformation se-
quence from program P0 to program Pn can be constructed, by following the three-step
methodology described at the end of Sect. 3, as follows:

(1) first, we choose a well-founded ordering (W,�) and an annotation α over (W,�), such
that the annotated program P 0 = α(P0) is decreasing w.r.t. �;

(2) then, we construct an unfold/fold transformation sequence P 0 �→ · · · �→ P n where, for
k = 0, . . . , n − 1, program P k+1 is derived from program P k by applying any one of
the unfold/fold transformation rules for annotated programs (which, as shown below,
preserve decreasingness); and

(3) finally, we apply the projection π to P n thereby erasing the annotation terms and the
annotation formulas from P n.

The unfold/fold transformation rules for annotated programs are very similar to the un-
fold/fold transformation rules for ordinary programs and, indeed, for any transformation
sequence P 0 �→ · · · �→ P n constructed by applying the unfold/fold transformation rules for
annotated programs, the transformation sequence P0 �→ · · · �→ Pn can be constructed by
applying the usual unfold/fold transformation rules for ordinary programs. However, the
unfold/fold transformation rules for annotated programs also ensure that decreasingness is
preserved. Indeed, if Γ k is a set of clauses which are decreasing w.r.t. �, then the clauses
in the set Δk derived from Γ k by applying a transformation rule are all decreasing w.r.t. �,
whenever suitable applicability conditions based on the annotation formulas hold.

Now we show how the unfold/fold transformation sequences are constructed by using
unfold/fold transformation rules for annotated programs. Given an unfold/fold transforma-
tion sequence P 0 �→ · · · �→ P k , for some k ≥ 0, program P k+1 is derived from program
P k by applying one of the three transformation rules: R1 (unfolding), R2 (folding), and R3
(goal replacement), which are defined below. As already mentioned is Sect. 2, for reasons of
simplicity, among the transformation rules here we do not include the definition introduction
rule [28]. This simplifying assumption is made also in [11, 24, 29].

The presentation of the transformation rules is parametric with respect to an arbitrarily
chosen well-founded ordering W = (W,�). We assume that the initial annotated program
P 0 of the unfold/fold transformation sequence P 0 �→ · · · �→ P k is annotated over W and is



Higher-Order Symb Comput (2008) 21: 193–234 215

decreasing with respect to �. We also assume that P 0 and P k have no variables in com-
mon. This assumption is not restrictive because we can always rename the variables of an
annotated program without changing its least W-model. In fact, we will feel free to rename
variables whenever needed.

Rule R1 (Unfolding) Let C: H ← c ∧ GL ∧ A ∧ GR be a clause of the annotated program
P k . Let

C1: H 1 ← c1 ∧ G1

· · ·
Cm: Hm ← cm ∧ Gm

with m ≥ 0, be all clauses of program P 0 such that, for i = 1, . . . ,m, A is unifiable with Hi

via a most general unifier ϑi . By unfolding clause C w.r.t. atom A we derive the clauses

D1: (H ← c ∧ c1 ∧ GL ∧ G1 ∧ GR)ϑ1

· · ·
Dm: (H ← c ∧ cm ∧ GL ∧ Gm ∧ GR)ϑm

and from program P k we derive program P k+1 = (P k − {C}) ∪ {D1, . . . ,Dm}.

Basically, the unfolding rule for annotated programs is like the usual, totally correct un-
folding rule for definite logic programs. Note, however, that we cannot unfold an annotated
clause with respect to an annotation formula (such as c in clause C above), but only with
respect to an annotated atom. The following lemma, whose proof is given in the Appendix,
shows that the unfolding rule is a particular case of the clause replacement rule for annotated
programs.

Lemma 4 Let P 0 �→ · · · �→ P k be an unfold/fold transformation sequence whose programs
are annotated over the well-founded ordering W = (W,�). Let C be a clause in the an-
notated program P k , and let D1, . . . ,Dm be the clauses derived by unfolding C w.r.t. an
annotated atom in its body, as described in Rule R1. Then:

(1) M(P 0) |= {C} ⇔ {D1, . . . ,Dm}, and
(2) D1, . . . ,Dm are decreasing w.r.t. �.

Note that, by Lemma 3, Point (1) of Lemma 4 implies M(P0) |= {C} ⇒ {D1, . . . ,Dm}, that
is, Condition (i) of Definition 10.

Rule R2 (Folding) Let

C1: H ← c1 ∧ G1

· · ·
Cm: H ← cm ∧ Gm

with m ≥ 1, be clauses in P 0 and, for a substitution ϑ , let

D1: K ← d ∧ c1ϑ ∧ GL ∧ G1ϑ ∧ GR

· · ·
Dm: K ← d ∧ cmϑ ∧ GL ∧ Gmϑ ∧ GR
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be clauses in P k . Suppose that the following conditions hold:

1. there exists no clause in P 0 − {C1, . . . ,Cm} whose head is unifiable with Hϑ ;
2. for i = 1, . . . ,m and for every variable U in the set vars(ci ∧ Gi) − vars(H): (i) Uϑ is

a variable not occurring in {K,d,GL,GR}, and (ii) Uϑ does not occur in the term V ϑ ,
for any variable V occurring in ci ∧ Gi and different from U ; and

3. W |= ∀(d → K � (GL ∧ Hϑ ∧ GR)).

By folding clauses D1, . . . ,Dm using clauses C1, . . . ,Cm we derive the clause

E: K ← d ∧ GL ∧ Hϑ ∧ GR

and from program P k we derive program P k+1 = (P k − {D1, . . . ,Dm}) ∪ {E}.

The only difference between the folding rule for annotated programs and the usual, par-
tially correct folding rule for definite logic programs consists in the extra Condition 3. This
extra condition ensures that the annotated clause E derived by folding is decreasing w.r.t. �.

The following Lemma 5 (together with Lemma 3) shows that, like the unfolding rule, also
the folding rule is a particular case of the clause replacement rule for annotated programs.
The proof is given in the Appendix.

Lemma 5 Let P 0 �→ · · · �→ P k be an unfold/fold transformation sequence whose programs
are annotated over the well-founded ordering W = (W,�). Let C1, . . . ,Cm be clauses in
P 0, let D1, . . . ,Dm be clauses in P k , and let E be the clause derived by folding D1, . . . ,Dm

using C1, . . . ,Cm, as described in Rule R2. Then:

(1) M(P 0) |= {D1, . . . ,Dm} ⇔ {E}, and
(2) E is decreasing w.r.t. �.

The goal replacement rule for annotated programs consists in replacing a conjunction
of the form c1 ∧ G1 occurring in the body of a clause of P k , by a new conjunction of
the form c2 ∧ G2. As already mentioned, we want to present this goal replacement rule as
a particular case of the clause replacement rule for annotated programs, so that the total
correctness of the unfold/fold transformation sequences will easily follow from Corollary 3.
Thus, Conditions (i), (ii), and (iii) of Definition 10 should be satisfied when performing a
goal replacement.

Condition (i) and (ii) of Definition 10 are ensured by suitably quantified implications
which correspond to Conditions (i) and (ii) of the definition of replacement law (see Def-
inition 11 below). Condition (iii) of Definition 10 is ensured by Condition (δ) of the goal
replacement Rule R3 below.

In Definition 11 we will use the following notation. Given a set X = {X1, . . . ,Xm} of
variables, ∀X is a shorthand for ∀X1 · · · ∀Xm and analogously for ∃X.

Definition 11 (Replacement Law) Let c1, c2 be annotation formulas, let G1,G2 be anno-
tated goals, and let X ⊆ vars({c1, c2,G1,G2}) be a set of variables. We say that the replace-
ment law c1 ∧ G1 ⇒X c2 ∧ G2 holds in P 0 iff the following conditions hold:

(i) M(P0) |= ∀X′(∃Y ′G1 ← ∃Z′G2) and
(ii) M(P 0) |= ∀X(∃Y (c1 ∧ G1) → ∃Z(c2 ∧ G2))

where: (1) G1 and G2 are the goals π(G1) and π(G2), respectively, (2) X′ = X ∩
vars({G1,G2}), (3) Y ′ = vars(G1)−X′, (4) Z′ = vars(G2)−X′, (5) Y = vars(c1 ∧G1)−X,
and (6) Z = vars(c2 ∧ G2) − X.
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By using Lemma 3 and Condition (ii) of Definition 11, it can be shown that M(P0) |=
∀X′(∃Y ′G1 ↔ ∃Z′G2), which corresponds to one of the applicability conditions of the goal
replacement rule for definite programs given in [28].

Let us consider again the program R1 given in Example 9 and its annotated version R1.
The following replacement law holds in the annotated program R1:

(Swap) K > M + N ∧ reach(X,Y )〈M〉 ∧ arc(Y,Z)〈N〉 ⇒{K,X,Z}

K > M + N ∧ arc(X,Y )〈M〉 ∧ reach(Y,Z)〈N〉
Indeed, as already mentioned, we have that:

M(R1) |= ∀K∀X∀Z(∃M∃N∃Y (K > M + N ∧ reach(X,Y )〈M〉 ∧ arc(Y,Z)〈N〉)
→ ∃M∃N∃Y (K > M + N ∧ arc(X,Y )〈M〉 ∧ reach(Y,Z)〈N〉))

and

M(R1) |= ∀X∀Z(∃Y (reach(X,Y ) ∧ arc(Y,Z)) ← ∃Y (arc(X,Y ) ∧ reach(Y,Z))).

In the next section we will present a method, called unfold/fold proof method, for proving
that a replacement law holds in an annotated program.

Rule R3 (Goal Replacement) Let C: H ← c ∧ c1 ∧ GL ∧ G1 ∧ GR be a clause of the
annotated program P k and suppose that the replacement law λ: c1 ∧ G1 ⇒X c2 ∧ G2 holds
in P 0, where X = vars({H,c,GL,GR}) ∩ vars({c1,G1, c2,G2}). Suppose also that:

(δ) W |= ∀((c ∧ c2) → H � (GL ∧ G2 ∧ GR))

By goal replacement using law λ, from clause C we derive the clause D : H ← c ∧ c2 ∧
GL ∧ G2 ∧ GR and from program P k we derive program P k+1 = (P k − {C}) ∪ {D}.

The goal replacement Rule R3 for annotated programs differs from the usual, partially
correct goal replacement rule for definite logic programs because of Condition (δ). This
condition ensures that the annotated clause D derived by goal replacement is decreasing
w.r.t. �. (The notion of replacement law for definite logic programs can be obtained from
the notion of replacement law for annotated programs by replacing: (i) c1 and c2 by true,
and (ii) G1 and G2 by G1 and G2, respectively. Thus, X′ = X, Y ′ = Y , and Z′ = Z.)

The following lemma, whose proof is given in the Appendix, shows that also the goal
replacement rule is a particular case of the clause replacement rule for annotated programs.

Lemma 6 Let P 0 �→ · · · �→ P k be an unfold/fold transformation sequence whose programs
are annotated over the well-founded ordering W = (W,�). Let C be a clause in P k and let
D be a clause derived from C by goal replacement, as described in Rule R3. Then:

(1) M(P0) |= {C} ⇒ {D},
(2) M(P 0) |= {C} ⇐ {D}, and
(3) D is decreasing w.r.t. �.

An application of the goal replacement rule is given in the above Example 9. Indeed, the
derivation of clause C5 from clause C2 can be viewed as an application of Rule R3 based
on the fact that the above replacement law (Swap) holds in R1.
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Note that a particular application of the goal replacement rule allows us to replace in the
body of a clause of the form H ← c ∧ c1 ∧ G the annotation formula c1 by an annotation
formula c2 provided that the following two conditions are satisfied:

(A1) W |= ∀X(∃Yc1 → ∃Zc2)

where: (i) X = vars({H,c,G}) ∩ vars({c1, c2}), (ii) Y = vars(c1) − X, and (iii) Z =
vars(c2) − X, and

(A2) W |= ∀((c ∧ c2) → H � G).

Indeed, Conditions (A1) and (A2) imply Conditions (i) and (ii) of Definition 11 and Condi-
tion (δ) of Rule R3, when both G1 and G2 are the empty conjunction true and GL ∧ GR is
G. This particular replacement of annotation formulas will be called annotation weakening.
For instance, by annotation weakening, the clause

p(A)〈X〉 ← X > Y ∧ Y > Z ∧ q(A)〈Z〉

can be replaced by the clause

p(A)〈X〉 ← X > Z ∧ q(A)〈Z〉

The following example illustrates the construction of an unfold/fold transformation se-
quence of annotated programs.

Example 10 Let us consider the following annotated program P 0, where we use the well-
founded annotation α2 over N of Example 7:

1. p(a)〈X〉 ←
2. p(A)〈X〉 ← X > X1 ∧ X > X2 ∧ t (A,B)〈X1〉 ∧ p(B)〈X2〉
3. q(b)〈X〉 ←
4. q(A)〈X〉 ← X > X1 ∧ r(A)〈X1〉
5. r(A)〈X〉 ← X > X1 ∧ X > X2 ∧ t (A,B)〈X1〉 ∧ q(B)〈X2〉
6. s(A)〈X〉 ← X > X1 ∧ p(A)〈X1〉
7. s(A)〈X〉 ← X > X1 ∧ q(A)〈X1〉

By unfolding clause 6 w.r.t. p(A)〈X1〉, we get:

8. s(a)〈Y 〉 ← Y > Y1

9. s(C)〈Y 〉 ← Y > Y1 ∧ Y1 > Y2 ∧ Y1 > Y3 ∧ t (C,D)〈Y2〉 ∧ p(D)〈Y3〉
Thus, P 1 is (P 0 − {6})∪ {8,9}. By two applications of the unfolding rule, from clause 7 we
derive:

10. s(b)〈Y 〉 ← Y > Y1

11. s(C)〈Y 〉 ← Y > Z ∧ Z > Y1 ∧ Y1 > Y2 ∧ Y1 > Y3 ∧ t (C,D)〈Y2〉 ∧ q(D)〈Y3〉
Thus, P 3 is (P 0 −{6,7})∪{8,9,10,11}. Now, by annotation weakening from clauses 9 and
11 we derive:

12. s(C)〈Y 〉 ← Y > Y2 ∧ Y > Y1 ∧ Y1 > Y3 ∧ t (C,D)〈Y2〉 ∧ p(D)〈Y3〉
13. s(C)〈Y 〉 ← Y > Y2 ∧ Y > Y1 ∧ Y1 > Y3 ∧ t (C,D)〈Y2〉 ∧ q(D)〈Y3〉
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By the above two transformation steps we get program P 5 which is (P 0 − {6,7}) ∪
{8,12,10,13}. Now, Conditions 1, 2, and 3 of the folding rule are verified by taking:
(i) ϑ to be the substitution {X/Y1,X1/Y3,A/D}, and (ii) d to be the annotation formula
Y > Y2 ∧ Y > Y1. By folding clauses 12 and 13 using clauses 6 and 7 we derive the clause:

14. s(C)〈Y 〉 ← Y > Y2 ∧ Y > Y1 ∧ t (C,D)〈Y2〉 ∧ s(D)〈Y1〉
which is decreasing w.r.t. >. The final program is P 6 = (P 0 − {6,7}) ∪ {8,10,14}. By
Theorem 7 we have that M(P0) = M(P6), where P0 = π(P 0) and P6 = π(P 6).

The total correctness of the transformation sequences constructed by applying Rules R1,
R2, and R3 readily follows from the fact that these rules are particular cases of the clause
replacement rule for annotated programs and Corollary 3.

Theorem 7 (Total Correctness of Unfold/Fold Transformation Sequences) Let
P 0 �→ · · · �→ P n be an unfold/fold transformation sequence. Then:

(1) M(P 0) ⊆ M(P n), and
(2) M(P0) = M(Pn).

Proof For k = 0, . . . , n − 1, the annotated program P k+1 is derived from P k by the appli-
cation of a transformation rule among R1, R2, and R3. Then, for some sets Γ k and Δk of
annotated clauses, we have that P k+1 = (P k − Γ k) ∪ Δk . By Lemmata 4, 5, and 6, we have
the following properties:

(1) M(P0) |= Γk ⇒ Δk ,
(2) M(P 0) |= Γ k ⇐ Δk , and
(3) Δk is decreasing w.r.t. �.

Thus, P 0 �→ · · · �→ P n can be viewed as a transformation sequence constructed by using the
clause replacement rule of Definition 10 and, by Corollary 3, we have that: (1) M(P 0) ⊆
M(P n), and (2) M(P0) = M(Pn). �

5 Unfold/fold proofs of replacement laws

In this section we describe a method which can be used to prove that a replacement law
holds in an annotated program. (Recall that, in order to apply the goal replacement rule, we
have to show that a suitable replacement law does hold.) Our method constructs the proof
of the given replacement law by using the transformation rules presented in Sect. 4 and,
thus, it is an extension to annotated programs of the unfold/fold proof method presented
in [20] in the case of ordinary programs. We will use the term unfold/fold proof method also
for the method for annotated programs presented in this section. The basic idea behind the
unfold/fold proof method is that when we transform a program into a new one by using
semantics preserving rules, we also prove an implication (or equivalence) between predicate
definitions with respect to the given semantics.

Let us consider the replacement law λ: c1 ∧G1 ⇒X c2 ∧G2. For reasons of simplicity, we
assume that X = {V,N} where V is an ordinary variable and N is an annotation variable.
The generalization to the case where V and N are tuples of variables, instead of single
variables, is straightforward. In order to prove that λ holds in the annotated program P , the
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unfold/fold proof method works as follows. First we introduce two new predicates new1 and
new2 defined by the following two clauses:

D1: new1(V )〈N〉 ← c1 ∧ G1

D2: new2(V )〈N〉 ← c2 ∧ G2

Then we construct two unfold/fold transformation sequences of the forms:

P ∪ {D1} �→ · · · �→ Q

P ∪ {D2} �→ · · · �→ R

such that the following two conditions hold:

1. Program R can be obtained from program Q by renamings of predicates and variables;
2. The unfold/fold transformation sequence P ∪{D2} �→ · · · �→ R is equivalence-based (not

only reverse-implication-based, as guaranteed by the use of the transformation rules of
Sect. 4).

Now we introduce the notion of syntactic equivalence between programs, which formalizes
the above Condition 1. Then we will give a simple condition which ensures that Condition 2
is indeed satisfied.

Given a set Preds of predicate symbols, a predicate renaming over Preds is a bijective
mapping ρ : Preds → Preds. Two annotated programs Q and R are syntactically equivalent
if there exist: (i) a variant Q

′
of Q, and (ii) a predicate renaming ρ over the set of predicate

symbols occurring in Q ∪ R, such that R is obtained from Q
′

by replacing every predicate
symbol p occurring in Q by ρ(p). Syntactic equivalence implies semantic equivalence, as
stated by the following lemma, whose straightforward proof is omitted.

Lemma 7 If program Q is syntactically equivalent to program R via a predicate renaming
ρ then, for every predicate p occurring in Q, ground ordinary term t , and ground annotation
term w, p(t)〈w〉 ∈ M(Q) iff ρ(p)(t)〈w〉 ∈ M(R).

Let us now introduce a restricted version of the goal replacement Rule R3 of Sect. 4,
called symmetric goal replacement, such that every unfold/fold transformation sequence
constructed by applying the unfolding, folding, and symmetric goal replacement rules, is
an equivalence-based transformation sequence. Given an annotated program P , we say that
the replacement law c1 ∧ G1 ⇒X c2 ∧ G2 holds symmetrically in P if in Definition 11
Conditions (i) and (ii) are replaced by the following stronger condition:

(ii′) M(P) |= ∀X(∃Y (c1 ∧ G1) ↔ ∃Z(c2 ∧ G2))

(Recall that, by Lemma 3, Condition (ii′) implies Condition (i) of Definition 11.) An appli-
cation of the symmetric goal replacement rule consists in an application of the goal replace-
ment Rule R3 using a replacement law that holds symmetrically in the initial program P 0 of
the unfold/fold transformation sequence. An unfold/fold transformation sequence is said to
be symmetric iff it is constructed by applications of the unfolding and folding rules and/or
by symmetric applications of the goal replacement rule.

If P 0 �→ · · · �→ P n is a symmetric unfold/fold transformation sequence, then we not only
have that M(P0) = M(Pn), like for any unfold/fold transformation sequence (see Theo-
rem 7), but we also have that M(P 0) = M(P n), as shown by the following lemma.
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Lemma 8 Let P 0 �→ · · · �→ P n be a symmetric unfold/fold transformation sequence. Then
M(P 0) = M(P n).

Proof For k = 0, . . . , n−1, P k+1 = (P k −Γ k)∪Δk , where Γ k and Δk are sets of annotated
clauses such that, by Lemmata 4, 5, 6, and Condition (ii′) the following properties hold:

(1) M(P 0) |= Γ k ⇔ Δk , and
(2) Δk is decreasing w.r.t. �.

Thus, P 0 �→ · · · �→ P n is an equivalence-based sequence of programs and P n is decreasing
w.r.t. �. By Theorems 2, 3, and 5, we have that M(P 0) = M(P n). �

Now we are able to show the soundness of our unfold/fold proof method.

Theorem 8 (Soundness of the Unfold/Fold Proof Method) Let P be an annotated program
and let c1 ∧ G1 ⇒X c2 ∧ G2 be a replacement law. Let us consider the following two anno-
tated clauses:

D1: new1(V )〈N〉 ← c1 ∧ G1

D2: new2(V )〈N〉 ← c2 ∧ G2

where X = {V,N}, V is an ordinary variable, and N is an annotation variable. Suppose
that there exist an unfold/fold transformation sequence of the form:

P ∪ {D1} �→ · · · �→ Q

and a symmetric unfold/fold transformation sequence of the form:

P ∪ {D2} �→ · · · �→ R

such that Q is syntactically equivalent to R. Then the replacement law λ: c1 ∧ G1 ⇒X

c2 ∧ G2 holds in P .

Proof From the definition of replacement law (see Definition 11) and from the fact that the
predicates new1 and new2 are defined by clauses D1 and D2, respectively, it follows that
the replacement law λ holds in P iff the following two properties hold for every ground
ordinary term t and ground annotation term w:

(I1) new1(t) ∈ M(P ∪ {D1}) if new2(t) ∈ M(P ∪ {D2})
(I2) new1(t)〈w〉 ∈ M(P ∪ {D1}) only if new2(t)〈w〉 ∈ M(P ∪ {D2})

Now we show that indeed Properties (I1) and (I2) hold. Since there exists an unfold/fold
transformation sequence P ∪{D1} �→ · · · �→ Q, by Theorem 7 we have that M(P ∪{D1}) =
M(Q) and M(P ∪ {D1}) ⊆ M(Q). Thus,

(J1) new1(t) ∈ M(P ∪ {D1}) iff new1(t) ∈ M(Q)

(J2) new1(t)〈w〉 ∈ M(P ∪ {D1}) only if new1(t)〈w〉 ∈ M(Q)

Since program Q is syntactically equivalent to program R via the predicate renaming ρ such
that ρ(new1) = new2, by Lemma 7 we have that:

(K1) new1(t) ∈ M(Q) iff new2(t) ∈ M(R)

(K2) new1(t)〈w〉 ∈ M(Q) iff new2(t)〈w〉 ∈ M(R)
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Now, since P ∪ {D2} �→ · · · �→ R is a symmetric unfold/fold transformation sequence, by
Lemma 8 we have that M(P ∪ {D2}) = M(R) and M(P ∪ {D2}) = M(R). Thus,

(L1) new2(t) ∈ M(R) iff new2(t) ∈ M(P ∪ {D2})
(L2) new2(t)〈w〉 ∈ M(R) iff new2(t)〈w〉 ∈ M(P ∪ {D2})

and we have proved Properties (I1) and (I2). Actually, we have proved also the converse of
Property (I1). �

Note that in the proof of Theorem 8 we have indeed used the hypothesis that P ∪{D2} �→
· · · �→ R is a symmetric unfold/fold transformation sequence, and thus, it is an equivalence-
based transformation sequence. In particular, Property (L2) holds if P ∪{D2} �→ · · · �→ R is
equivalence-based, but it may not hold for an arbitrary unfold/fold transformation sequence.

As an example of application of the unfold/fold proof method, we prove the replacement
law (Swap) considered in Sect. 4.

Example 11 Let us consider again the annotated program R1 given in Example 9 and let
us prove that the replacement law (Swap) holds in R1. By applying the unfold/fold proof
method we introduce the following two clauses:

D1: new1(X,Z)〈K〉 ← K > M + N ∧ reach(X,Y )〈M〉 ∧ arc(Y,Z)〈N〉
D2: new2(X,Z)〈K〉 ← K > M + N ∧ arc(X,Y )〈M〉 ∧ reach(Y,Z)〈N〉

Now we construct two symmetric transformation sequences R1 ∪ {D1} �→ · · · �→ Q and
R1 ∪ {D2} �→ · · · �→ R, where Q and R are syntactically equivalent. Note that, actually,
for the unfold/fold proof of the replacement law (Swap) it is not needed that R1 ∪ {D1} �→
· · · �→ Q be symmetric. Indeed, by constructing two symmetric transformation sequences
we prove both (Swap) and the following inverse replacement law:

(Inv-Swap) K > M + N ∧ arc(X,Y )〈M〉 ∧ reach(Y,Z)〈N〉 ⇒{K,X,Z}

K > M + N ∧ reach(X,Y )〈M〉 ∧ arc(Y,Z)〈N〉
Let us now show how the first transformation sequence R1 ∪ {D1} �→ · · · �→ Q is con-
structed. By unfolding clause D1 w.r.t. reach(X,Y )〈M〉, by replacing annotation formulas
by equivalent ones, and by renaming variables, we derive the following two clauses:

E1: new1(X1,Z1)〈K1〉 ← K1 > M1 ∧ arc(X1,Z1)〈M1〉
E2: new1(X1,Z1)〈K1〉 ← K1 >M1 + N1 ∧ M1 > M2 + N2 ∧ reach(X1, Y1)〈M2〉

∧ arc(Y1, Y2)〈N2〉 ∧ arc(Y2,Z1)〈N1〉
By folding clause E2 using clause D1 we derive:

E3: new1(X1,Z1)〈K1〉 ← K1 > M1 + N1 ∧ new1(X1, Y2)〈M1〉 ∧ arc(Y2,Z1)〈N1〉
The final program Q of the first transformation sequence is R1 ∪ {E1,E3}. Let us now con-
struct the second transformation sequence R1 ∪ {D2} �→ · · · �→ R. By unfolding clause D2

w.r.t. reach(Y,Z)〈N〉, by replacing annotation formulas by equivalent ones, and by renam-
ing variables, we derive the following clauses:

F 1: new2(X1,Z1)〈K1〉 ← K1 > M1 ∧ arc(X1,Z1)〈M1〉



Higher-Order Symb Comput (2008) 21: 193–234 223

F 2: new2(X1,Z1)〈K1〉 ← K1 >M1 + N1 ∧ M1 > M2 + N2

∧ arc(X1, Y1)〈M2〉 ∧ reach(Y1, Y2)〈N2〉
∧ arc(Y2,Z1)〈N1〉

By folding clause F 2 using clause D2 we derive:

F 3: new2(X1,Z1)〈K1〉 ← K1 > M1 + N1 ∧ new2(X1, Y2)〈M1〉 ∧ arc(Y2,Z1)〈N1〉
The final program R of the second transformation sequence is R1 ∪ {F 1,F 3}. We have that
R is syntactically equivalent to Q via the predicate renaming that maps new1 to new2, new2
to new1, and it is the identity on the other predicate symbols occurring in Q ∪ R.

Let us observe that the applications of the goal replacement rule during the construction
of the two transformation sequences shown above are symmetric. Indeed, they consist of
replacements of annotation formulas by equivalent ones.

6 An extended example

In this section we revisit an example of program transformation taken from [24]. The au-
thors of [24] justify that transformation by a rather intricate proof of the total correctness of
the transformation sequences. Now we show that the total correctness of the program trans-
formation of that example can easily be established by our well-founded annotation method.
Let us consider the following program P :

1. thm(X) ← gen(X) ∧ test(X)

2. gen([]) ←
3. gen([0|X]) ← gen(X)

4. test(X) ← canon(X)

5. test(X) ← trans(X,Y ) ∧ test(Y )

6. canon([]) ←
7. canon([1|X]) ← canon(X)

8. trans([0|X], [1|X]) ←
9. trans([1|X], [1|Y ]) ← trans(X,Y )

where we have that thm(X) holds iff X is a list of 0’s that can be transformed into a list
of 1’s by repeated applications of trans(X,Y ). Given the list X, the predicate trans(X,Y )

generates the list Y by replacing the leftmost 0 in X by 1.
We want to prove that the formula ∀X(thm(X) ↔ gen(X)) is true in the least Herbrand

model of program P . As a special case of the unfold/fold proof method, the truth of this
formula can be established by constructing a totally correct transformation sequence from
program P into a program Q where the predicates thm and gen are defined by two syntac-
tically equivalent sets of clauses. Let us see how we construct this transformation sequence
by applying our rules of Sect. 4.

Let us consider the well-founded annotation α1 introduced in Example 7. By applying α1

we get the following annotated program P :

1a. thm(X)〈N〉 ← N > N1 + N2 ∧ gen(X)〈N1〉 ∧ test(X)〈N2〉
2a. gen([])〈N〉 ←
3a. gen([0|X])〈N〉 ← N > N1 ∧ gen(X)〈N1〉
4a. test(X)〈N〉 ← N > N1 ∧ canon(X)〈N1〉



224 Higher-Order Symb Comput (2008) 21: 193–234

5a. test(X)〈N〉 ← N > N1 + N2 ∧ trans(X,Y )〈N1〉 ∧ test(Y )〈N2〉
6a. canon([])〈N〉 ←
7a. canon([1|X])〈N〉 ← N > N1 ∧ canon(X)〈N1〉
8a. trans([0|X], [1|X])〈N〉 ←
9a. trans([1|X], [1|Y ])〈N〉 ← N > N1 ∧ trans(X,Y )〈N1〉

Now, let us construct a totally correct transformation sequence by using our rules of Sect. 4.
By applying several times the unfolding rule, from clause 1a we derive:

10a. thm([])〈N〉 ← N ≥ 3
11a. thm([0|X])〈N〉 ← N > N1 + N2 + 4 ∧ gen(X)〈N1〉 ∧ canon(X)〈N2〉
12a. thm([0|X])〈N〉 ← N > N1 + N2 + N3 + 4 ∧ gen(X)〈N1〉 ∧ trans(X,Y )〈N2〉

∧ test([1|Y ])〈N3〉
The replacement law

test([1|Y ])〈N3〉 ⇒{Y,N3} (N3 ≥ N4 ∧ test(Y )〈N4〉)
holds in P (see the unfold/fold proof of this law in the Appendix) and, moreover,

N |= ∀((N > N1 + N2 + N3 + 4 ∧ N3 ≥ N4) → (N > N1 ∧ N > N2 ∧ N > N4)).

Thus, we may apply the goal replacement rule and we replace clause 12a by the following
clause:

13a. thm([0|X])〈N〉 ← N > N1 + N2 + N3 + 4 ∧ N3 ≥ N4 ∧ gen(X)〈N1〉
∧ trans(X,Y )〈N2〉 ∧ test(Y )〈N4〉

By folding clauses 11a and 13a using clauses 4a and 5a we get:

14a. thm([0|X])〈N〉 ← N > N1 + N5 + 3 ∧ gen(X)〈N1〉 ∧ test(X)〈N5〉
Finally, by folding clause 14a using clause 1a, we derive:

15a. thm([0|X])〈N〉 ← N > N6 + 2 ∧ thm(X)〈N6〉
The final annotated program is (P − {1a}) ∪ {10a,15a}. By applying the projection π we
erase the annotations from clauses 10a and 15a and we get:

10. thm([]) ←
15. thm([0|X]) ← thm(X)

Thus, the final program is Q = (P −{1})∪{10,15}. By Theorem 7 of Sect. 4 the transforma-
tion of P into Q is totally correct. In Q the predicates thm and gen are defined by two sets of
clauses (namely, clauses 10, 15 and clauses 2, 3, respectively) which are syntactically equiv-
alent and, therefore, as mentioned above, we may conclude that ∀X(thm(X) ↔ gen(X)) is
true in the least Herbrand model of P .

7 Related work and conclusions

We have proposed a general transformation rule, called clause replacement, which general-
izes the familiar unfolding, folding, and goal replacement transformations of definite logic
programs. Then we have introduced a method for proving the total correctness of the clause
replacement rule. Our method is based on program annotations, which are functions that add
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suitable arguments to the predicates occurring in a given program. In particular, we have in-
troduced well-founded annotations, which ensure that the annotated program is terminating
and, thus, it has a unique fixpoint [3]. Note that annotated logic programs can be considered
as a generalization of the instrumented SOS rules introduced in [26], because SOS rules [21]
can be viewed as particular logic programs.

Our proof method uses the unique fixpoint principle, which has been first introduced
for proving properties of recursive equation programs (see [9] for a brief presentation and
more bibliographic references) and it has also been extended to inductive definitions [22].
The unique fixpoint principle generalizes McCarthy’s recursion induction principle [18] by
replacing the requirement that a set of equations (viewed as rewriting rules) terminate, by the
requirement that this set of equations has a unique solution in a suitable semantic domain.

However, our proof method is more general than the unique fixpoint method. Indeed, in
order to prove the total correctness of the transformation of program P into program Q, the
unique fixpoint method requires that the immediate consequence operator TQ has a unique
fixpoint, while according to Theorem 6 of Sect. 3, we only need to derive from the annotated
program P an annotated program Q such that TQ has a unique fixpoint (and this is ensured
by the fact that Q is decreasing and, thus, terminating). Note, however, that in order to apply
the well-founded annotation method, TQ need not have a unique fixpoint and, in particular,
Q need not be terminating (see, for instance, Example 9 of Sect. 3).

We claim that our unfold/fold proof method is also more general than the improve-
ment method [25, 26], in the sense that if the total correctness of a transformation can
be proved by the improvement method, then it can also be proved by our method, and
not vice versa, as we now show in the particular case where the transformation is per-
formed by using the goal replacement Rule R3 (see Sect. 4). Suppose that, by applying
Rule R3, an annotated clause of the form C: H 〈X〉 ← c1(X,X1) ∧ A1〈X1〉 is replaced by
an annotated clause of the form D: H 〈X〉 ← c2(X,X2) ∧ A2〈X2〉. Suppose also that, as
required by the hypotheses of Theorem 7, clause C is decreasing w.r.t. a suitable well-
founded ordering �, that is, W |= ∀(c1(X,X1) → X � X1). Let X � Y be defined as
(X � Y ∨ Y = X). By adapting the definitions of [25, 26] to our context, we have that the
replacement of C by D is an improvement iff c2(X,X2) is of the form c1(X,X1)∧X1 � X2

and A1〈X1〉 ⇒{X1}∪vars({A1,A2}) X1 � X2 ∧ A2〈X2〉 holds in the initial program P 0 of the
transformation sequence, that is, for every ground instance a1〈w1〉 of A1〈X1〉 belonging
to M(P 0), there exists a ground instance a2〈w2〉 of A2〈X2〉 in M(P 0) such that w1 � w2.
Since C is decreasing w.r.t. �, if the replacement of C by D is an improvement, then Con-
dition (δ) of Rule R3 is fulfilled, that is, W |= ∀(c2(X,X2) → X � X2). Thus, the total
correctness of this replacement is a consequence of our well-founded annotation method.
However, the opposite implication is not true, that is, there exists a goal replacement which
satisfies Condition (δ) of Rule R3, and it is not an improvement. Indeed, with reference to
the formalization of the notion of improvement considered above, it is possible to find a
replacement such that, for a suitable well-founded ordering �, we have that X � X1 and
X � X2, and it is not the case that X1 � X2.

As already mentioned, the clause replacement rule presented here is more general than
the unfolding, folding, and goal replacement rules for definite programs presented in the
landmark paper by Tamaki and Sato [28] and in subsequent papers (see, for instance, [5, 11,
13, 24, 29]).

Recall that, as already discussed in the Introduction, the total correctness of the unfold-
ing, folding, and goal replacement rules presented in [11, 13, 24, 28, 29] is ensured if suit-
able (rather complex) proof measures do not increase when these rules are applied during
the construction of a transformation sequence. The fact that a given proof measure does not
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increase can be viewed as an improvement in the sense of [25, 26]. (Actually, the basic idea
underlying the improvement method has been strongly influenced by early work in the field
of logic program transformation.) Thus, the general argument used above to claim that our
proof method is more powerful than the improvement method, can also be used to claim
that our unfolding, folding, and goal replacement rules of Sect. 4 are more powerful than
the unfolding, folding, and goal replacement rules presented in [11, 13, 24, 28, 29], in the
sense that there are transformations that can be performed by our rules and cannot be proved
correct by showing that a given proof measure does not increase.

In practice, when we limit ourselves to the use of the unfolding and folding rules pre-
sented in [11, 13, 24, 28, 29] (that is, we do not use the goal replacement rule), we may avoid
checking that the given proof measure does not increase, and we may, instead, analyze the
transformation sequence and check that each application of the folding rule is preceded by
suitable applications of the unfolding rule. However, if we also use the goal replacement
rule, the verification that the given proof measure does not increase cannot be avoided and,
unfortunately, no general method is proposed in [11, 13, 24, 28, 29] to do this verification.

Note also that, unlike [11, 13, 24, 28, 29], our conditions for the total correctness of a
transformation sequence constructed by using the unfolding, folding, and goal replacement
rules of Sect. 4, do not depend on the results of an analysis of the transformation sequence
and can be checked by proving that suitable first order formulas hold in the least W-model
of the initial annotated program of the transformation sequence.

The unfolding and folding rules presented in [5] do not depend on proof-theoretic condi-
tions, like the ones in [11, 13, 24, 28, 29]. Instead, the applicability condition of the folding
rule is based on a property, called semantic delay, of the immediate consequence operator
associated with the program to be transformed. Let us briefly recall the notion of semantic
delay in the simple case where the semantics of the program is defined as its least Herbrand
model and the application of the folding rule consists in replacing a ground atom A1 in
the body of a clause of a program P by a new ground atom A2. The semantic delay of A2

with respect to A1 is the least integer number n such that, for every natural number m, if
A1 ∈ T m

P (∅) then A2 ∈ T m+n
P (∅). A sufficient condition for the total correctness of folding is

that the semantic delay of A2 with respect to A1 is not positive.
The notion of semantic delay can be extended to other semantics and more complex

replacements. In particular, in [6] Bossi et al. consider general logic programs with Fit-
ting’s three-valued semantics and introduce the simultaneous replacement transformation
rule, which simultaneously replaces n (> 0) conjunctions of literals, each of which occurs
in the body of a clause. Then in [6] it is shown that if each conjunction of literals is replaced
by an equivalent (with respect to Fitting’s semantics) new conjunction of literals and the se-
mantic delay of each new conjunction with respect to the corresponding old conjunction is
not positive, then the initial and the transformed program have the same Fitting three-valued
model.

When restricted to definite programs the simultaneous replacement rule is less general
than our clause replacement rule. Indeed, the unfolding rule is not an instance of the simulta-
neous replacement rule, while it is an instance of the clause replacement rule. Moreover, the
equivalence with respect to the least Herbrand model does not imply the equivalence with
respect to Fitting’s semantics (while the opposite implication holds) and, thus, some clause
replacements may not be performed by simultaneous replacements. Finally, similarly to [11,
13, 24, 28, 29], in [6] Bossi et al. do not provide any method to prove that the semantic de-
lay is not positive, while by using our method based on well-founded annotations, the total
correctness of a clause replacement can be shown by proving suitable first order formulas.
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Various notions of termination have been considered in [4, 8, 14] to prove the total cor-
rectness of transformations of logic programs. Let us briefly describe how the results of
these papers are related to the method presented here.

In [8] Cook and Gallagher present a result which ensures the total correctness of the goal
replacement rule based on the termination of the programs derived by applying this rule.
This result is generalized by our Corollary 2 in Sect. 2. Indeed, our clause replacement rule
is more general than the goal replacement rule and the uniqueness of fixpoint is a more
general property than termination. Thus, the result by Cook and Gallagher suffers from the
same limitation as our Corollary 2, in that it cannot be used to prove the total correctness
of a transformation when the derived program is not terminating. In particular, the total
correctness of the transformation of the reachability program presented in Example 9 cannot
be proved by using the results in [8]. To overcome this limitation is, indeed, one of the main
motivations of our paper, and our method based on well-founded annotations allows us to
prove the correctness of a transformation sequence even if the final program in the sequence
is not terminating.

In [4] Bossi and Etalle prove that the unfolding and folding transformation rules for
general logic programs presented in [27] preserve acyclicity, and this property implies the
termination of each program of a transformation sequence. In the case of definite programs,
the results presented here are strictly more general than the ones presented in [4] because:
(i) the unfolding and folding rules considered in [4] are particular cases of our clause re-
placement rule, and (ii) similarly to [8], the results in [4] cannot be used to prove the total
correctness of a transformation that produces a non-terminating (thus, non-acyclic) program
(consider, once again, our reachability Example 9).

In [14] the correctness of the unfold/fold program transformations is proved under the
additional hypothesis that they preserve existential termination. A program P is said to be
existentially terminating with respect to an atom A iff there exists a finite SLD-tree for
P ∪ {¬A} with either a success branch or all failure branches. However, no method is given
in [14] to check whether or not existential termination is preserved by a program transforma-
tion, while the well-founded annotation method presented here provides first order formulas
to be checked for proving the total correctness of transformation sequences.

From a practical point of view, the main advantage of using the transformation rules
proposed in this paper is that, as already mentioned, the correctness of a transformation
sequence is guaranteed by the validity of suitable first-order annotation formulas, instead
of proof-theoretic or semantics-based conditions, and the validity of these formulas can be
checked by using available theorem provers. For the sake of generality, we have assumed
that annotation formulas are arbitrary first-order formulas. However, in practice, as shown by
our examples, linear constraints over natural numbers are sufficient to deal with a large class
of program transformations. Even though the validity problem for this class of constraints is
NP-complete, some tools that work efficiently in most practical cases have been developed
(see, for instance, [23]).

In order to make use of our transformation rules in practice, one has to choose a suit-
able well-founded ordering � and a suitable annotation function for the initial program of a
transformation sequence. In Sect. 4 the presentation of the rules is parametric with respect to
this well-founded ordering � and this annotation function, but in general a suitable choice
is needed to be able to derive a final annotated program which is decreasing w.r.t. �. The
well-founded orderings and the annotation functions given in the examples of this paper
are quite powerful in practice. However, more sophisticated well-founded orderings may
be needed, depending on the specific applications of the transformation rules. These so-
phisticated orderings can be constructed by using well-established techniques developed for
proving termination of Term Rewrite Systems [10].
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Due to its generality, we believe that our approach can easily be extended to other logic
programming languages and, in particular, to normal logic programs. This extension can be
based on the fact that the immediate consequence operator of an acyclic normal logic pro-
gram has a unique fixpoint. Thus, we may construct a totally correct transformation from
program P0 to program Pn by the following three steps: (i) we construct from P0 an an-
notated program P 0, (ii) we transform the annotated program P 0 into an acyclic annotated
program P n, and (iii) we erase the annotations from P n, thereby getting Pn. Note that, if
at Step (i) we construct an acyclic annotated program, then we can use the transformation
rules that preserve acyclicity considered in [4] to perform Step (ii).

Finally, we would like to note that the notion of total correctness considered in this paper
is different from the one used in the case of imperative programs, where a program is said
to be totally correct with respect to a given specification iff its input-output relation satisfies
the specification and, moreover, the program terminates (see, for instance, [17]). In fact, as
already mentioned, the transformation of program P into program Q can be totally correct
even if Q is not terminating. However, in order to prove that the transformation of P into
Q is totally correct we transform an annotated program P into a terminating annotated
program Q. In this sense we may say that the program Q is totally correct with respect to
the specification provided by the program P . Similarly to the proofs of total correctness
for imperative programs based on the axiomatic approach [17], also the derivation of the
terminating program Q is performed by proving first order implications and suitable well-
founded ordering relations.
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Appendix

In this Appendix we will use the following notation. Given a substitution ϑ = {X1/t1, . . . ,

Xn/tn}, by dom(ϑ) we denote the set of variables {X1, . . . ,Xn}. Given a set V of variables,
by ϑ � V we denote the substitution {X/t | X/t ∈ ϑ and X ∈ V }.

Proof of Lemma 1 For reasons of simplicity we assume that Γ1 is of the form:

{p(t1) ← B1, . . . , p(tm) ← Bm}
and Γ2 is of the form:

{p(u1) ← D1, . . . , p(un) ← Dn}
The general case where the heads of the clauses have several predicate symbols of arbitrary
arities is a straightforward extension.

It follows directly from Definitions 1 and 2 and from the definition of Herbrand interpre-
tation that I |= Γ1 ⇒ Γ2 iff the following property, called IMP, holds.

Property IMP: for every ground term x, for every j , with 1 ≤ j ≤ n, such that

I |= ∃Z1 · · · ∃Zk(x = uj ∧ Dj)

where {Z1, . . . ,Zk} = vars(uj ) ∪ vars(Dj ), there exists i, with 1 ≤ i ≤ m, such that

I |= ∃Y1 · · · ∃Yh(x = ti ∧ Bi)
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where {Y1, . . . , Yh} = vars(ti) ∪ vars(Bi).

Let us prove the only-if part of the lemma. Assume that Property IMP holds. Now, let
us take a ground instance (p(uj ) ← Dj)ϑ of a clause in Γ2 such that I |= Djϑ and ϑ is a
ground substitution of the form {Z1/z1, . . . ,Zk/zk}. Let x be the ground term ujϑ . We have
that I |= ∃Z1 · · · ∃Zk(x = uj ∧ Dj) and, thus, by Property IMP, for some i, with 1 ≤ i ≤ m,
we have that I |= ∃Y1 · · · ∃Yh(x = ti ∧Bi). By the definition of Herbrand interpretation, there
exists a ground substitution η of the form {Y1/y1, . . . , Yh/yh}, such that I |= (x = ti ∧ Bi)η.
Thus, there exists a ground instance (p(ti) ← Bi)η of a clause in Γ1 which has the same
head as (p(uj ) ← Dj)ϑ (because tiη is identical to ujϑ , which is x) and I |= Biη.

Let us now prove the if part of the lemma. Assume that for every ground instance C2

of a clause in Γ2 such that I |= bd(C2) there exists a ground instance C1 of a clause in Γ1

such that hd(C1) = hd(C2) and I |= bd(C1). Now, let us consider a ground term x and a
clause p(uj ) ← Dj in Γ2 such that I |= ∃Z1 · · · ∃Zk(x = uj ∧ Dj). By definition of Her-
brand interpretation there exists a ground substitution ϑ = {Z1/z1, . . . ,Zk/zk} such that x

is identical to ujϑ and I |= Djϑ . Thus, there exists a ground instance (p(uj ) ← Dj)ϑ of a
clause in Γ2 such that I |= Djϑ . By hypothesis, there exists a ground instance (p(ti) ← Bi)η

of a clause in Γ1 such that: (i) η is a ground substitution of the form {Y1/y1, . . . , Yh/yh},
(ii) (p(ti) ← Bi)η has the same head as (p(uj ) ← Dj)ϑ , and (iii) I |= Biη. By (ii), tiη is
identical to ujϑ , which is x. Therefore, I |= ∃Y1 · · · ∃Yh(x = ti ∧ Bi) and we have proved
that Property IMP holds. �

Proof of Lemma 3 Suppose that M(P) |= Γ 1 ⇒ Γ 2. Without loss of generality we as-
sume that Γ1 and Γ2 are sets of clauses for a single predicate p. By Definition 2, M(P) |=
∀U∀X(ϕ2 → ϕ1), where:

(i) U is a set {U1, . . . ,Uh} of ordinary variables,
(ii) X is an annotation variable,

(iii) if (Γ 1) is of the form p(U1, . . . ,Uh)〈X〉 ← ϕ1,
(iv) ϕ1 is of the form ∃V1∃Y1(c1 ∧G1)∨ · · · ∨ ∃Vm∃Ym(cm ∧Gm), where, for i = 1, . . . ,m,

Vi is the set of ordinary variables occurring in Gi and not in U , and Yi is the set of
annotation variables occurring in ci ∧ Gi and different from X,

(v) if (Γ 2) is of the form p(U1, . . . ,Uh)〈X〉 ← ϕ2, and
(vi) ϕ2 is of the form ∃W1∃Z1(d1 ∧Q1)∨ · · ·∨ ∃Wn∃Zn(dn ∧Qn), where, for i = 1, . . . , n,

Wi is the set of ordinary variables occurring in Qi and not in U , and Zi is the set of
annotation variables occurring in di ∧ Qi and different from X.

We want to show that M(P) |= Γ1 ⇒ Γ2, that is, by Definition 2, M(P) |= ∀U(ϕ2 → ϕ1),
where:

(vii) ϕ1 is of the form ∃V1G1 ∨ · · · ∨ ∃VmGm, and
(viii) ϕ2 is of the form ∃W1Q1 ∨ · · · ∨ ∃WnQn.

Let α be a ground substitution with dom(α) = U , and suppose that M(P) |= ϕ2α. Hence
there exist i ∈ {1, . . . , n} and a ground substitution βi such that dom(βi) = Wi and
M(P) |= Qiαβi . Let Qi be a conjunction of atoms of the form A1 ∧ · · · ∧ Ak . Thus,
for r = 1, . . . , k, Arαβi ∈ M(P). Let Qi be a conjunction of annotated atoms of the
form A1〈N1〉 ∧ · · · ∧ Ak〈Nk〉, where N1, . . . ,Nk are distinct annotation variables. Since
N1, . . . ,Nk are distinct variables, by Proposition 2 there exists a ground substitution γi

such that dom(γi) = {N1, . . . ,Nk} and, for r = 1, . . . , k, Ar〈Nr〉αβiγi ∈ M(P). Thus,
M(P) |= Qiαβiγi . Moreover, since dom(γi) = {N1, . . . ,Nk}, by Definition 8, there exists
a ground substitution δi such that dom(δi) = vars(di) − {N1, . . . ,Nk} and W |= diγiδi .
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Therefore, M(P) |= diγiδi ∧ Qiαβiγi . Since di = diαβi (because dom(αβi) ∩ vars(di) = ∅)
and Qiαβiγi = Qiαβiγiδi (because Qiαβiγi is a ground goal), we have that M(P) |=
(di ∧ Qi)αβiγiδi . Hence, M(P) |= ∃Wi∃Zi(di ∧ Qi)αη, where η = δi � {X}, and thus,
M(P) |= ϕ2αη. Since M(P) |= ∀U∀X(ϕ2 → ϕ1), we have that M(P) |= ϕ1αη. Thus,
there exist j ∈ {1, . . . ,m} and two ground substitutions ϑj ,λj such that: (i) dom(ϑj ) = Vj ,
(ii) dom(λj ) = Yj , and (iii) M(P) |= (cj ∧ Gj)αηϑjλj . Hence, M(P) |= Gjαηϑjλj and,
by Proposition 1, since (dom(η)∪ dom(λj ))∩ vars(Gj ) = ∅, we have that M(P) |= Gjαϑj .
Therefore, M(P) |= ∃V1G1α ∨ · · · ∨ ∃VmGmα, and thus, we have that M(P) |= ϕ1α. �

Proof of Lemma 4 Let C be a clause of the form H ← c ∧ GL ∧ A ∧ GR and let C1: H 1 ←
c1 ∧ G1, . . . ,Cm: Hm ← cm ∧ Gm, with m ≥ 0, be all the clauses of program P 0 such that,
for i = 1, . . . ,m, A is unifiable with Hi via a most general unifier ϑi . Then, for i = 1, . . . ,m,
Di is a clause of the form (H ← c ∧ ci ∧ GL ∧ Gi ∧ GR)ϑi .

Proof of (1). We will first give the proof of M(P 0) |= {C} ⇒ {D1, . . . ,Dm} and then the
proof of M(P 0) |= {C} ⇐ {D1, . . . ,Dm}.

In order to prove M(P 0) |= {C} ⇒ {D1, . . . ,Dm}, by Lemma 1 it is enough to prove that,
for i = 1, . . . ,m, for every ground instance Diσi of clause Di such that M(P 0) |= bd(Diσi),
there exists a ground instance Cτ of C such that hd(Cτ) = hd(Diσi) and M(P 0) |= bd(Cτ).

Let Diσi be a clause of the form (H ← c ∧ ci ∧ GL ∧ Gi ∧ GR)ϑiσi such that M(P 0) |=
(c ∧ ci ∧ GL ∧ Gi ∧ GR)ϑiσi and, therefore, M(P 0) |= (c ∧ GL ∧ GR)ϑiσi and M(P 0) |=
(ci ∧ Gi)ϑiσi . Let (H i ← ci ∧ Gi)ϑiσiτi be a ground instance of Ci , where τi is a ground
substitution such that dom(τi) = vars(H i) − vars(ci ∧ Gi). Since (ci ∧ Gi)ϑiσiτi = (ci ∧
Gi)ϑiσi (because (ci ∧ Gi)ϑiσi is ground), M(P 0) |= (ci ∧ Gi)ϑiσi , and Hi ← ci ∧ Gi is
true in M(P 0), we have that M(P 0) |= Hiϑiσiτi . Since ϑi is a unifier of A and Hi , we
have that Aϑiσiτi = Hiϑiσiτi and M(P 0) |= Aϑiσiτi . Let us consider the clause Cϑiσiτi ,
which is of the form Hϑiσi ← cϑiσi ∧GLϑiσi ∧Aϑiσiτi ∧GRϑiσi , because Hϑiσi , cϑiσi ,
GLϑiσi , and GRϑiσi are ground and, thus, Hϑiσiτi = Hϑiσi , cϑiσiτi = cϑiσi , GLϑiσiτi =
GLϑiσi , and GRϑiσiτi = GRϑiσi . We have that Cϑiσiτi is a ground instance of C such that:
(i) hd(Cϑiσiτi) = hd(Diσi) and (ii) M(P 0) |= bd(Cϑiσiτi).

Now we prove that M(P 0) |= {C} ⇐ {D1, . . . ,Dm}. By Lemma 1 it is enough to prove
that, for every ground instance Cσ of C such that dom(σ ) = vars(C) and M(P 0) |=
bd(Cσ), there exists i ∈ {1, . . . ,m} and a ground instance Diτi of Di such that dom(τi) =
vars(Di), hd(Diτi) = hd(Cσ), and M(P 0) |= bd(Diτi).

Let Cσ be a clause of the form (H ← c∧GL ∧A∧GR)σ such that M(P 0) |= (c∧GL ∧
A ∧ GR)σ . We have that M(P 0) |= Aσ and, since M(P 0) is a fixpoint of TP 0

, there exists a

ground instance (H i ← ci ∧ Gi)σi of a clause Ci ∈ P 0, whose head Hi is unifiable with A,
such that: (i) Aσ = Hiσi and (ii) M(P 0) |= (ci ∧ Gi)σi . Since vars(C) ∩ vars(Ci) = ∅, we
may assume that dom(σ ) ∩ vars(Ci) = ∅. Thus, we have that: Aσσi = Aσ (because Aσ is
a ground annotated atom) = Hiσi = Hiσσi (because dom(σ ) ∩ vars(Hi) = ∅), that is, σσi

is a unifier of A and Hi . Since ϑi is the most general unifier of A and Hi , it follows that
σσi = ϑiτi for some ground substitution τi . Let us now consider the clause Di of the form
(H ← c ∧ ci ∧ GL ∧ Gi ∧ GR)ϑi . We have that Diτi is a ground instance of Di such that:
(i) hd(Diτi) = hd(Cσ) and (ii) M(P 0) |= bd(Diτi). Indeed, we have that: (i) hd(Diτi) =
Hϑiτi = Hσσi (because ϑiτi = σσi ) = Hσ (because Hσ is a ground annotated atom)
= hd(Cσ), and we have that: (ii.a) bd(Diτi) is (c∧ci ∧GL ∧Gi ∧GR)ϑiτi , (ii.b) M(P 0) |=
(c ∧ GL ∧ GR)ϑiτi , because M(P 0) |= (c ∧ GL ∧ GR)σ and (c ∧ GL ∧ GR)σ = (c ∧ GL ∧
GR)σσi (because (c ∧ GL ∧ GR)σ is a ground annotated formula) = (c ∧ GL ∧ GR)ϑiτi

(because σσi = ϑiτi ), and (ii.c) M(P 0) |= (ci ∧Gi)ϑiτi , because M(P 0) |= (ci ∧Gi)σi and
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(ci ∧Gi)σi = (ci ∧Gi)σσi (because dom(σ )∩ vars(ci ∧Gi) = ∅) = (ci ∧Gi)ϑiτi (because
σσi = ϑiτi ).

Proof of (2). Let us consider a clause Di ∈ {D1, . . . ,Dm} of the form (H ← c ∧ ci ∧
GL ∧ Gi ∧ GR)ϑi . By hypothesis, the clause C of the form H ← c ∧ GL ∧ A ∧ GR is
decreasing w.r.t. �, that is, W |= ∀(c → H � (GL ∧A∧GR)) and, therefore, W |= ∀((c →
H � (GL ∧A∧GR))ϑi). Let us now consider the clause Ci ∈ P 0 of the form Hi ← ci ∧Gi .
Since every clause of P 0 is decreasing w.r.t. �, we have that W |= ∀(ci → Hi � Gi) and,
therefore, W |= ∀((ci → Hi � Gi)ϑi). Since Aϑi = Hiϑi , by transitivity of �, we conclude
that W |= ∀((c ∧ ci → H � (GL ∧ Gi ∧ GR))ϑi), that is, Di is decreasing w.r.t. �. �

Proof of Lemma 5 For i = 1, . . . ,m, Ci is a clause in P 0 of the form H ← ci ∧ Gi and Di

is a clause in P k of the form K ← d ∧ ciϑ ∧GL ∧Giϑ ∧GR , where ϑ is a substitution such
that Conditions 1–3 of Rule R2 are satisfied. The clause E derived by folding D1, . . . ,Dm

using clauses C1, . . . ,Cm is of the form K ← d ∧ GL ∧ Hϑ ∧ GR .
Proof of (1). We will first give the proof of M(P 0) |= {D1, . . . ,Dm} ⇒ {E} and then the

proof of M(P 0) |= {D1, . . . ,Dm} ⇐ {E}.
In order to prove M(P 0) |= {D1, . . . ,Dm} ⇒ {E}, by Lemma 1 it is enough to prove that,

for every ground instance Eσ of E such that dom(σ ) = vars(E) and M(P 0) |= bd(Eσ),
there exist i ∈ {1, . . . ,m} and a ground instance Diτi of Di such that dom(τi) = vars(Di),
hd(Diτi) = hd(Eσ), and M(P 0) |= bd(Diτi).

Let Eσ be a clause of the form (K ← d ∧ GL ∧ Hϑ ∧ GR)σ and suppose that
M(P 0) |= (d ∧ GL ∧ Hϑ ∧ GR)σ . Let us consider the following substitutions: η = ϑ �
vars(H) and, for i = 1, . . . ,m, γi = ϑ � (vars(ci ∧ Gi) − vars(H)). By Condition 2 of
Rule R2, γi is of the form: {U1/W1, . . . ,Uni

/Wni
}, where W1, . . . ,Wni

are distinct vari-
ables not occurring in E. Let ρi be the substitution {W1/U1, . . . ,Wni

/Uni
}. The follow-

ing two properties hold: (C1) Hϑ = Hη and (C2) (ci ∧ Gi)η = (ci ∧ Gi)ϑρi . Since
M(P 0) |= (d ∧ GL ∧ Hϑ ∧ GR)σ , we also have that M(P 0) |= Hϑσ and, by Property
C1, M(P 0) |= Hησ . Since M(P 0) is a fixpoint of TP 0

and, by Condition 1 of Rule R2, all

clauses of P 0 whose head is unifiable with Hϑ are in {C1, . . . ,Cm}, there exist a clause Ci :
H ← ci ∧Gi in {C1, . . . ,Cm} and a ground substitution ν such that M(P 0) |= (ci ∧Gi)ησν

where dom(ν) = vars(ci ∧Gi)−vars(H). We have that: (ci ∧Gi)ησν = (ci ∧Gi)ϑρiσν (by
Property C2) = (ci ∧Gi)ϑσρiν (because no variable occurs simultaneously in ρi and σ ) and,
therefore, M(P 0) |= (ci ∧Gi)ϑσρiν. Since (d ∧GL ∧GR)σ is a ground goal and M(P 0) |=
(d ∧GL ∧GR)σ , we also have that M(P 0) |= (d ∧GL ∧GR)σρiν and, therefore, M(P 0) |=
(ciϑ ∧ d ∧ GL ∧ Giϑ ∧ GR)σρiν. Let us now consider the substitution τi = σρiν. We
have that: hd(Diτi) = Kσρiν = Kσ (because Kσ is a ground atom) = hd(Eσ) and
M(P 0) |= bd(Diτi).

Now we prove that M(P 0) |= {D1, . . . ,Dm} ⇐ {E}. By Lemma 1, it is enough to prove
that, for i = 1, . . . ,m, for every ground instance Diσi of Di such that M(P 0) |= bd(Diσi),
there exists a ground instance Eτ of E such that hd(Eτ) = hd(Diσi) and M(P 0) |= bd(Eτ).

Let Diσi be a clause of the form (K ← d ∧ ciϑ ∧ GL ∧ Giϑ ∧ GR)σi and suppose that
M(P 0) |= (d ∧ ciϑ ∧ GL ∧ Giϑ ∧ GR)σi . Let (H ← ci ∧ Gi)ϑσiτi be a ground instance
of Ci , where dom(τi) = vars(H) − vars(ci ∧ Gi). Since M(P 0) |= H ← ci ∧ Gi , we have
that M(P 0) |= (d ∧ GL ∧ Hϑ ∧ GR)σiτi . Now, let us consider the clause Eσiτi of the form
(K ← d ∧ GL ∧ Hϑ ∧ GR)σiτi . We have that: (i) hd(Eσiτi) = Kσiτi = Kσi (because Kσi

is a ground annotated atom) = hd(Diσi) and (ii) M(P 0) |= bd(Eσiτi).
Proof of (2). Straightforward from Condition 3 of Rule R2. �

Proof of Lemma 6 Let C be an annotated clause of the form H ← c ∧ c1 ∧ GL ∧
G1 ∧ GR . Suppose that the replacement law c1 ∧ G1 ⇒X c2 ∧ G2 holds in P 0, where



232 Higher-Order Symb Comput (2008) 21: 193–234

X = vars({H,c,GL,GR}) ∩ vars({c1,G1, c2,G2}). Then, the clause D derived by goal re-
placement is of the form H ← c ∧ c2 ∧ GL ∧ G2 ∧ GR .

Proof of (1). C is a clause of the form H ← GL ∧ G1 ∧ GR and D is a clause of the
form H ← GL ∧ G2 ∧ GR . We will prove that for every ground instance Dσ of D such that
M(P0) |= bd(Dσ), there exists a ground instance Cτ of C such that hd(Cτ) = hd(Dσ) and
M(P0) |= bd(Cτ). Then, by Lemma 1, M(P0) |= {C} ⇒ {D}.

Let Dσ be a clause of the form (H ← GL ∧ G2 ∧ GR)σ and suppose that M(P0) |=
(GL ∧G2 ∧GR)σ . Then M(P0) |= G2σ and, since the replacement law c1 ∧G1 ⇒X c2 ∧G2

holds in P 0, by Condition (i) of Definition 11, we have that: M(P0) |= (∃Y ′G1σ) ← G2σ ,
where Y ′ = vars(G1σ) − vars((H,GL,GR)σ). Thus, there exists a ground substitution η

such that dom(η) = Y ′ and M(P0) |= G1ση. Therefore, M(P0) |= (GL ∧ G1 ∧ GR)ση.
Let us now consider the ground instance Cση: (H ← GL ∧ G1 ∧ GR)ση of C. We have
that: hd(Cση) = Hση = Hσ (because Hσ is a ground atom) = hd(Dσ) and M(P0) |=
bd(Cση).

Proof of (2). We show that, for every ground instance Cσ of C such that M(P 0) |=
bd(Cσ), there exists a ground instance Dτ of D such that hd(Dτ) = hd(Cσ) and M(P 0) |=
bd(Dτ). Then, by Lemma 1, M(P 0) |= {C} ⇐ {D}.

Let Cσ be a clause of the form (H ← c ∧ c1 ∧ GL ∧ G1 ∧ GR)σ and suppose that
M(P 0) |= (c ∧ c1 ∧ GL ∧ G1 ∧ GR)σ . Then M(P 0) |= (c1 ∧ G1)σ and, since the re-
placement law c1 ∧ G1 ⇒X c2 ∧ G2 holds in P 0, by Condition (ii) of Definition 11,
we have that: M(P 0) |= (c1 ∧ G1)σ → ∃Z(c2 ∧ G2)σ , where Z = vars(c2 ∧ G2) −
vars((H, c,GL,GR)σ). Thus, there exists a ground substitution η such that dom(η) = Z

and M(P 0) |= (c2 ∧ G2)ση. Therefore, M(P 0) |= (c ∧ c2 ∧ GL ∧ G2 ∧ GR)ση. Let us
now consider the ground instance Dση: (H ← c ∧ c2 ∧ GL ∧ G2 ∧ GR)ση of D. We have
that: hd(D)ση = Hση = Hσ (because Hσ is a ground annotated atom) = hd(Cσ) and
M(P 0) |= bd(Dση).

Proof of (3). Straightforward from Condition (δ) of Rule R3. �

Proof of the Replacement Law of Sect. 6 We want to prove that the replacement law

τ : test([1|X])〈N〉 ⇒{X,N} N ≥ N1 ∧ test(X)〈N1〉
holds in the annotated program P considered in Sect. 6. (Note that we have renamed the
annotation variables.) We start off by introducing the following two clauses:

D1: new1(X)〈N〉 ← test([1|X])〈N〉
D2: new2(X)〈N〉 ← N ≥ N1 ∧ test(X)〈N1〉

Let us construct a transformation sequence from P ∪ {D1}. By unfolding, from clause D1

we get:

E1: new1(X)〈N〉 ← N > N1 ∧ N1 > N2 ∧ canon(X)〈N2〉
E2: new1(X)〈N〉 ← N > N1 + N2 ∧ N1 > N3 ∧ trans(X,Y )〈N3〉 ∧ test([1|Y ])〈N2〉

By annotation weakening and variable renaming we get:

E3: new1(X)〈N〉 ← N > N1 ∧ canon(X)〈N1〉
E4: new1(X)〈N〉 ← N > N1 + N2 ∧ trans(X,Y )〈N1〉 ∧ test([1|Y ])〈N2〉
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By folding clause E4 using clause D1 we derive:

E5: new1(X)〈N〉 ← N > N1 + N2 ∧ trans(X,Y )〈N1〉 ∧ new1(Y )〈N2〉
The final program of the transformation sequence starting from P ∪ {D1} is P ∪ {E3,E5}.
Now we construct a symmetric transformation sequence starting from P ∪{D2}. By unfold-
ing clause D2 we derive:

F 1: new2(X)〈N〉 ← N ≥ N1 ∧ N1 > N2 ∧ canon(X)〈N2〉
F 2: new2(X)〈N〉 ← N ≥ N1 ∧ N1 > N2 + N3 ∧ trans(X,Y )〈N2〉 ∧ test(Y )〈N3〉

By symmetric applications of the goal replacement rule, consisting in the replacement of
annotation formulas by equivalent ones (in particular, here we use the equivalence N |=
∀(N1 > N2 + N3 ↔ ∃N4(N1 > N2 + N4 ∧ N4 ≥ N3))), and by variable renaming, we get:

F 3: new2(X)〈N〉 ← N > N1 ∧ canon(X)〈N1〉
F 4: new2(X)〈N〉 ← N > N1 + N2 ∧ N2 ≥ N3 ∧ trans(X,Y )〈N1〉 ∧ test(Y )〈N3〉

By folding clause F4 using clause D2 and by variable renaming, we derive:

F 5: new2(X)〈N〉 ← N > N1 + N2 ∧ trans(X,Y )〈N1〉 ∧ new2(Y )〈N2〉
The final program of the transformation sequence starting from P ∪ {D2} is P ∪ {F 3,F 5}.
Since P ∪{D1} is syntactically equivalent to P ∪{D2}, we have proved that the replacement
law τ holds in P . �
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