
Alberto Pettorossi

Techniques for Searching,

Parsing, and Matching

Second Edition

ARACNE

Contents

Preface 7

Chapter 1. Preliminary Definitions on Languages and Grammars 9
1.1. Free Monoids and Languages 9
1.2. Formal Grammars 10

Chapter 2. Exploring Search Spaces 17
2.1. Exploring Linear Search Spaces 17
2.2. Backtracking Algorithms 21
2.3. Visiting Trees While Looking for Good Nodes 29

Chapter 3. Chop-and-Expand Parsers for Context-Free Languages 35
3.1. Chop-and-Expand Context-Free Parser in a Functional Language 35
3.2. Chop-and-Expand Context-Free Parser in Java 39
3.3. Chop-and-Expand Context-Free Parser in a Logic Language 50

Chapter 4. Parsers for Deterministic Context-Free Languages: LL(k) Parsers 51
4.1. Introduction to LL(k) Parsing 51
4.2. LL(1) Parsers 53
4.3. LL(k) Parsers (for k≥1) 62

Chapter 5. Parsers for Deterministic Context-Free Languages: LR(k) Parsers 75
5.1. Introduction to LR(k) Parsing 75
5.2. LR(0) Parsers 77
5.3. SLR(1) Parsers 87
5.4. LR(1) Parsers 90
5.5. LALR(1) Parsers 104
5.6. Time and Space Complexity Results on Context-Free Parsing 115
5.7. Conventions for LL(k) and LR(k) parsing 115
5.8. Subclasses of Context-free Languages 115

Chapter 6. Parsers for Operator Grammars and Parser Generators 123
6.1. Operator-Precedence Parsers 123
6.2. Use of Parser Generators 128

Chapter 7. Visits of Trees and Graphs and Evaluation of Expressions 147
7.1. Depth First Visit of Trees 147
7.2. Evaluator of Boolean Expressions 157
7.3. A Theorem Prover for the Propositional Calculus 168
7.4. Encoding of n-ary Trees Using Binary Trees 181
7.5. Minimal Spanning Tree of an Undirected Graph 197

5

6 CONTENTS

Chapter 8. Path Problems in Directed Graphs 209
8.1. Matrix Multiplication Algorithms 209
8.2. Comparing Matrix Multiplication Algorithms 211
8.3. Fast Boolean Matrix Multiplication 212
8.4. IC-Semirings and Path Problems in Directed Graphs 213
8.5. Transitive Closure in Directed Graphs: the Reachability Problem 215
8.6. Reducing Transitive Closure to Boolean Matrix Multiplication 216
8.7. Transitive Closure in IC-Semirings: the Shortest Path Problem 219
8.8. Single Source Shortest Paths in Directed Graphs 220
8.9. From Nondeterministic Finite Automata to Regular Expressions 231

Chapter 9. String Matching 233
9.1. Knuth-Morris-Pratt Pattern Matching 233
9.2. String Matching in Prolog 243

Chapter 10. Appendices 245
10.1. Simple Prolog Programs and Parsing Sentences in Prolog 245
10.2. Decidability Results for LL(k) and LR(k) Grammars and Languages 249

List of Algorithms and Programs 251

Index 253

Bibliography 259

Preface

These lecture notes present some basic techniques for: (i) exploring search spaces,
(ii) parsing context-free languages, and (iii) matching patterns in strings. These
techniques are taught in a course on Automata, Languages, and Translators at the
University of Roma “Tor Vergata”. We assume that the reader is familiar with the
basic notions of Automata Theory and Formal Languages. These notions can be
found in many books such as [9, 10, 21].

Some of the algorithms we have presented in these notes are written in Java 1.5
and some others in Prolog. For the Java language the reader may refer to the Java
Tutorial at http://java.sun.com/docs/books/tutorial/. (Recall that this Java
version allows the use of parametrized types, also called generics.) All Java programs
have been compiled using the Java compiler 1.5.0 13 running under Mac OS X 10.4.11
Darwin 8.11.1.

For the Prolog language the reader may refer to [5]. The Prolog language incor-
porates a backtracking mechanism which is very often required for exploring search
spaces and solving parsing and matching problems.

Acknowledgements

I would like to thank my colleagues at the Department of Informatics, Systems, and
Production of the University of Roma “Tor Vergata”. I am also grateful to my students
and my co-workers Lorenzo Clemente, Corrado Di Pietro, Fulvio Forni, Fabio Lecca,
Maurizio Proietti, and Valerio Senni for their support and encouragement.

Many thanks to the Aracne Publishing Company for its helpful cooperation.
Roma, September 2008

In the second edition we have corrected a few mistakes and we have improved
Chapter 5 and Chapter 9.
Roma, September 2009

Alberto Pettorossi
Department of Informatics, Systems, and Production
University of Roma “Tor Vergata”
Via del Politecnico 1,
I-00133 Roma, Italy
email: pettorossi@info.uniroma2.it
URL: http://www.iasi.cnr.it/~adp

7

CHAPTER 1

Preliminary Definitions on Languages and Grammars

In this chapter we recall some preliminary definitions of formal languages. Let us
consider a countable set V of elements, called symbols. The set V is also called the
alphabet.

1.1. Free Monoids and Languages

The free monoid over (or generated by) the set V is the set V ∗ consisting of all finite
sequences of symbols in V , that is,

V ∗ = {v1 . . . vn |n ≥ 0 and for each 0 ≤ i ≤ n, vi ∈ V }.

The unary operation ∗ (pronounced ‘star’) is called Kleene closure, or ∗closure (pro-
nounced ‘star closure’). Sequences of symbols are also called words or strings. The
length of a sequence w = v1 . . . vn, where for i = 1, . . . , n, vi ∈ V , is n. The length
of w is also denoted |w|. The sequence of length 0 is called the empty sequence (or
empty word or empty string) and it is denoted by ε.

Given two sequences w1 and w2 in V ∗ their concatenation, denoted w1 ! w2 or
w1w2, is the sequence in V ∗ defined by recursion on the length of w1 as follows:

w2 if w1 = ε
v1((v2 . . . vn) ! w2) if w1 = v1v2 . . . vn, for some symbols v1v2 . . . vn, with n>0.

We have that the length of w1 ! w2 is the length of w1 plus the length of w2. Concate-
nation is an associative binary operation on V ∗ whose neutral element is the empty
sequence.

Any set of sequences which is a subset of V ∗ is called a language (or a formal
language) over the alphabet V .

Given two languages A and B, their concatenation, denoted A ! B or simply A B,
is defined as follows:

A ! B = {w1 ! w2 |w1 ∈ A and w2 ∈ B}.

Concatenation of languages is associative and its neutral element is the singleton {ε}.
For reasons of simplicity, when A is a singleton, say {w}, the concatenation A ! B
will also be written as w ! B or simply w B. Analogously for B, instead of A.

We have that: V ∗ = V 0 ∪V 1 ∪V 2 ∪ . . .∪V k ∪ . . ., where for each i ≥ 0, V k is the
set of all sequences of length k of symbols in V , that is, for each k ≥ 0,

V k = {v1 . . . vk | for i = 1, . . . , k, vi ∈ V }.

Obviously, V 0 = {ε}, V 1 = V , and for i, j ≥ 0, V i ! V j = V j ! V i = V i+j . By V + we
denote V ∗ − {ε}. The unary operation + (pronounced ‘plus’) is also called positive
closure or +closure (pronounced ‘plus closure’).

The set V 0 ∪ V 1 is also denoted by V 0,1.

9

10 1. PRELIMINARY DEFINITIONS ON LANGUAGES AND GRAMMARS

Given an element a in a set V ,

(i) a∗ denotes the set of all finite sequence of zero or more a’s (thus, a∗ is an abbre-
viation for {a}∗),

(ii) a+ denotes the set of all finite sequence of one or more a’s (thus, a+ is an
abbreviation for {a}+),

(iii) a 0,1 denotes the set {ε, a} (thus, a 0,1 is an abbreviation for {a} 0,1), and

(iv) aω denotes the infinite sequence made out of all a’s.

Given a word w, for any k≥0, the prefix of w of length k, denoted w k, is defined
as follows:

w k = {w if 0≤ |w|≤k
u if w = u v for some u, v ∈ V ∗, and |u|=k.

In particular, for any w, we have that: w 0 = ε and w |w| = w.

From now on, unless otherwise specified, when referring to an alphabet, we will
assume that it is a finite set of symbols.

1.2. Formal Grammars

Let us begin by recalling the following notions. For other notions of automata
theory and formal language theory the reader may refer to [10, 21].

Definition 1.2.1. [Formal Grammar] A formal grammar (or a type 0 grammar,
or a grammar, for short) is a 4-tuple 〈VT , VN , P, S〉, where:

(i) VT is a finite set of symbols, called terminal symbols,

(ii) VN is a finite set of symbols, called nonterminal symbols or variables, such that
VT ∩ VN = ∅,

(iii) P is a finite set of pairs of strings, called productions (or type 0 productions),
each pair 〈α, β〉 being denoted by α → β, where α ∈ (VT ∪VN)+ and β ∈ (VT ∪VN)∗,
and

(iv) S is an element of VN , called axiom or start symbol.

The set VT is called the terminal alphabet. The set VN is called the nonterminal
alphabet. The set V = VT ∪VN is called the alphabet of the grammar. In a production
α → β, α is called the left hand side (lhs, for short) and β is called the right hand
side (rhs, for short).

Given a grammar G = 〈VT , VN , P, S〉 we may define a set of elements in V ∗
T , called

the language generated by G, as we now indicate.
Let us first introduce the binary relation →G ⊆ V ∗×V ∗ which is defined as follows:

for every sequence α ∈ V + and every sequence β, γ, and δ in V ∗,

γαδ →G γβδ iff there exists a production α → β in P .

For any k≥ 0, the k-fold composition of the relation →G is denoted →k
G. Thus, for

instance, for every sequence σ0 ∈ V + and every sequence σ2 ∈ V ∗, we have that:

σ0 →2
G σ2 iff there exists σ1 ∈ V + such that σ0 →G σ1 and σ1 →G σ2.

The transitive closure of →G is denoted →+
G. The reflexive, transitive closure of →G

is denoted →∗
G. When the grammar G is understood from the context, we will feel

1.2. FORMAL GRAMMARS 11

free to omit the subscript G, and instead of writing →G , →k
G, →+

G, and →∗
G, we will

simply write →, →k, →+, and →∗, respectively.

Definition 1.2.2. [Language Generated by a Grammar] Given a grammar
G = 〈VT , VN , P, S〉, the language generated by G, denoted L(G), is the set

L(G) = {w |w ∈ V ∗
T and S →∗

G w}.

The elements of the language L(G) are said to be the words or the strings generated
by the grammar G.

A language generated by a type 0 grammar is said to be a type 0 language. For
productions, grammars, and languages, the term ‘unrestricted’ is often used instead
of the term ‘type 0’.

Definition 1.2.3. [Language Generated by a Nonterminal Symbol of a
Grammar] Given a grammar G = 〈VT , VN , P, S〉, the language generated by the
nonterminal A ∈ VN , denoted LG(A), is the set

LG(A) = {w |w ∈ V ∗
T and A →∗

G w}.

We will write L(A), instead of LG(A), when the grammar G is understood from the
context.

Definition 1.2.4. [Type 1, Context-Sensitive, Type 2, and Type 3 Pro-
duction] (1) Given a grammar G = 〈VT , VN , P, S〉 we say that a production is of
type 1 iff (1.1) either it is of the form α → β, where α ∈ (VT ∪VN)+, β ∈ (VT ∪VN)+,
and |α| ≤ |β|, or it is S → ε, and (1.2) if the production S → ε is in P then the
axiom S does not occur on the right hand side of any production.

(cs) Given a grammar 〈VT , VN , P, S〉, we say that a production in P is context-sensitive
iff (cs.1) either it is of the form u A v → u w v, where u, v ∈ V ∗, A ∈ VN , and
w ∈ (VT ∪ VN)+, or it is S → ε, and (cs.2) if the production S → ε is in P then the
axiom S does not occur on the right hand side of any production.

(2) Given a grammar G = 〈VT , VN , P, S〉 we say that a production in P is of type 2
(or context-free) iff it is of the form α → β, where α ∈ VN and β ∈ V ∗.

(3) Given a grammar G = 〈VT , VN , P, S〉 we say that a production in P is of type 3
(or regular, or right linear) iff it is of the form α → β, where α ∈ VN and β ∈
VT VN ∪ VT ∪ {ε}.

Definition 1.2.5. [Type 1, Context-Sensitive, Type 2, and Type 3 Gram-
mar and Language] A grammar is of type 1, context-sensitive, of type 2 (or context-
free), and of type 3 (or regular, or right linear) iff all its productions are of type 1,
context-sensitive, of type 2, and of type 3, respectively.

A type 1, context-sensitive, type 2 (or context-free), and type 3 (or regular or right
linear) language is the language generated by a type 1, context-sensitive, type 2, and
type 3 grammar, respectively.

One can show that for each type 1 grammar there exists an equivalent context-
sensitive grammar, and vice versa. Thus, the notions of type 1 and context-sensitive

12 1. PRELIMINARY DEFINITIONS ON LANGUAGES AND GRAMMARS

languages coincide. For this reason, instead of saying ‘a language of type 1’, we will
also say ‘a context-sensitive language’ and vice versa.

One can also show that for each type 3 (or regular, or right linear) grammar
there exists an equivalent grammar whose productions are all of the form α → β,
where α ∈ VN and β ∈ VNVT ∪ VT ∪ {ε}. These grammars are said to be left linear
grammars.

Given a grammar G = 〈VT , VN , P, S〉, an element of V ∗ is called a sentential form
of G.

The following fact is an immediate consequence of the definitions.

Fact 1.2.6. Given a grammar G = 〈VT , VN , P, S〉 and a word w ∈ V ∗
T , we have

that w belongs to L(G) iff there exists a sequence 〈α1, . . . ,αn〉 of n (> 1) sentential
forms such that:

(i) α1 = S,

(ii) for every i = 1, . . . , n−1, there exist γ, δ ∈ V ∗ such that αi = γαδ, αi+1 = γβδ,
and α → β is a production in P , and

(iii) αn = w.

Let us now introduce the following concepts.

Definition 1.2.7. [Derivation of a Word and Derivation of a Sentential
Form] Given a grammar G = 〈VT , VN , P, S〉 and a word w ∈ V ∗

T in L(G), any
sequence 〈α1,α2, . . . ,αn−1,αn〉 of n (> 1) sentential forms satisfying Conditions (i),
(ii), and (iii) of Fact 1.2.6 above, is called a derivation of the word w from S in the
grammar G. A derivation 〈S,α2, . . . ,αn−1, w〉 is also written as:

S → α2 → . . . → αn−1 → w.

If there is a derivation from S to w, we have that S →+ w and S →∗ w.
A derivation of a sentential form ϕ ∈ V ∗ from S in the grammar G is any sequence

〈α1,α2, . . . ,αn−1,αn〉 of n (≥1) sentential forms such that Conditions (i) and (ii) of
Fact 1.2.6 hold and αn =ϕ. That derivation is also written as:

S → α2 → . . . → αn−1 → ϕ.
If there is a derivation from S to ϕ, we have that S →∗ ϕ.

Definition 1.2.8. [Derivation Step] Given a derivation 〈α1, . . . ,αn〉 of n (≥1)
sentential forms, for any i = 1, . . . , n−1, the pair 〈αi,αi+1〉 is called a derivation step
from αi to αi+1 (or a rewriting step from αi to αi+1). A derivation step 〈αi,αi+1〉 is
also denoted by αi → αi+1.

Given a sentential form γαδ for some γ, δ ∈ V ∗ and α ∈ V +, if we apply the
production α → β, we perform the derivation step γαδ → γβδ.

Given a context-free grammar G and a word w, a derivation α0 → α1 → . . . → αn

in G, where α0 = S and αn = w, is said to be a leftmost derivation of w from S
iff for i = 0, . . . , n−1, in the derivation step αi → αi+1 the sentential form αi+1 is
obtained from the sentential form αi by replacing the leftmost nonterminal symbol
occurring in αi. A derivation step αi → αi+1 in which we get the sentential form αi+1

by replacing the leftmost nonterminal symbol in αi, is also denoted by αi →lm αi+1

(the subscripts lm stands for leftmost).

1.2. FORMAL GRAMMARS 13

Analogous definitions are assumed by replacing the word ‘leftmost’ by the word
‘rightmost’. In particular, a rightmost derivation is a derivation where at each step we
replace the rightmost nonterminal symbol of the sentential form at hand. A rightmost
derivation step is usually denoted by →rm (the subscripts rm stands for rightmost).

Example 1.2.9. Let us consider the grammar with axiom E and whose produc-
tions are:

E → E + T
E → T
T → T × F
T → F
F → (E)
F → a

Let us also consider the following three derivations D1, D2, and D3, where for each
derivation step αi → αi+1, we have underlined in the sentential form αi the nonter-
minal symbol which is replaced in that step:

D1 : E →lm E + T →lm T + T →lm F + T →lm a + T →lm a + F →lm a + a

D2 : E →rm E + T →rm E + F →rm E + a →rm T + a →rm F + a →rm a + a

D3 : E →lm E + T →rm E + F →lm T + F →rm T + a →lm F + a →lm a + a

We have that:
derivation D1 is a leftmost derivation,
derivation D2 is a rightmost derivation, and
derivation D3 is neither a rightmost nor a leftmost derivation. "

Theorem 1.2.10. Given a context-free grammar G, for every word w ∈ L(G)
there exists a leftmost derivation of w and a rightmost derivation of w.

Proof. By structural induction on the derivation tree of w. "

For context-free grammars we can associate a derivation tree, also called a parse
tree, with every derivation of a word w from the axiom S.

Given a context-free grammar G = 〈VT , VN , P, S〉 and a derivation of a word w
from the axiom S, that is, a sequence α1 → α2 → . . . → αn of n (>1) sentential forms
such that α1 = S and αn = w (see Definition 1.2.7 on page 12), the corresponding
derivation tree T is constructed by applying the following two rules.

Derivation Tree Rule (1). The root of T is a node labeled by S.

Derivation Tree Rule (2). For i = 1, . . . , n−1, we consider in the given derivation

α1 → α2 → . . . → αn

the i-th derivation step αi → αi+1. Let us assume that in the i-th derivation step we
have applied the production A → β, where:

(i) A ∈ VN ,
(ii) β = c1 . . . ck, for some k ≥ 0, and
(iii) for j = 1, . . . , k, we have that cj ∈ VN ∪ VT .

14 1. PRELIMINARY DEFINITIONS ON LANGUAGES AND GRAMMARS

Thus, αi = γAδ and αi+1 = γβδ for some γ and δ in (VT ∪ VN)∗. In the derivation
tree constructed so far, we consider the leaf node, say (i, labeled by the symbol A
which is replaced by β in that derivation step. That node (i is identified by the fact
that γ is the left-to-right concatenation of the labels of the leaves to the left of (i in
the derivation tree constructed so far.

If k≥1 then we generate k son nodes of the node (i and they will be labeled, from
left to right, by c1, . . . , ck, respectively. (Obviously, after the generation of these k
son nodes, the leaf node (i will no longer be a leaf node and will become an internal
node of the new derivation tree.)

If k=0 then we generate one son node of the node (i. The label of that new node
will be the empty word ε.

We have that at the end of the application of Rule 2 the left-to-right concatenation
of the labels of all the leaves of the resulting derivation tree T is the word w.

The word w is said to be the yield of the derivation tree T .

Example 1.2.11. Let us consider the grammar with axiom S and whose produc-
tions are:

S → a A S
S → a
A → S bA
A → b a
A → S S

Let us also consider the following derivation D of the word a a b b a a:

D : S → a A S → a S bA S → a a bA S → a a b b a S → a a b b a a

(1) (2) (3) (4) (5)

where in each sentential form αi we have underlined the nonterminal symbol which
is replaced in the derivation step αi → αi+1. The corresponding derivation tree
is depicted in Figure 1.2.1. In the derivation D the numbers below the underlined
nonterminal symbols denote the correspondence between the derivation steps and the
nodes with the same number in the derivation tree of Figure 1.2.1. "

Now let us introduce the following definitions.

Definition 1.2.12. [Unfold of a Context-Free Production] Let us consider
a context-free grammar G = 〈VT , VN , P, S〉. Let A and B be elements of VN and
α, β1, . . . , βn, γ be elements of (VT ∪ VN)∗. Let A → αBγ be a production in P , and
B → β1 | . . . | βn, for n≥0, be all the productions in P whose left hand side is B.

The unfolding of B in A → αBγ with respect to P (or the unfolding of B in
A → αBγ by using P , or simply, the unfolding of B in A → αBγ) is the replacement
of the production:

A → αBγ

by the n productions:

A → αβ1γ
· · ·
A → αβnγ.

1.2. FORMAL GRAMMARS 15

S

a A S

S b A

(1)

(2) (5)

(3) (4) a

a b a

Figure 1.2.1. A derivation tree for the word a a b b a a and the gram-
mar given in Example 1.2.11 on the facing page. This tree corresponds
to the derivation D: S → aA S → aS bAS → aabAS → aabbaS →
aabbaa. The numbers, from 1 to 5, associated with the nonterminal
symbols in the nodes of the tree, denote the correspondence between
the nonterminal symbols and the five derivation steps of D.

Definition 1.2.13. [Fold of a Context-Free Production] Let us consider a
context-free grammar G = 〈VT , VN , P, S〉. Let A and B be elements of VN and
α, β1, . . . , βn, γ be elements of (VT ∪ VN)∗. Let A → αβ1γ | . . . |αβnγ, for n≥ 1, be
some productions in P whose left hand side is A, and B → β1 | . . . | βn be all the
productions in P whose left hand side is B.

The folding of β1, . . . , βn in A → αβ1γ | . . . |αβnγ with respect to P (or sim-
ply, the folding of β1, . . . , βn in A → αβ1γ | . . . |αβnγ) is the replacement of the n
productions:

A → αβ1γ
· · ·
A → αβnγ

by the production:

A → αBγ.

Definition 1.2.14. [Useful Symbol and Useless Symbol] Given a context-
free grammar G = 〈VT , VN , P, S〉 a symbol X ∈ VT∪VN is useful iff S →∗

G αXβ →∗
G w

for some α, β ∈ (VT ∪ VN)∗ and w ∈ V ∗
T . A symbol is useless iff it is not useful.

Definition 1.2.15. [Reduced Grammar] A context-free grammar is said to be
reduced if it has no useless symbols.

Definition 1.2.16. [Nullable Symbol] Given a context-free grammar G, we
say that a nonterminal symbol A is nullable iff A →∗

G ε.

Definition 1.2.17. [Production for a Nonterminal Symbol] A production
of the form A → β, with A ∈ VN and β ∈ (VT ∪ VN)∗, is said to be a production for
the nonterminal symbol A.

Definition 1.2.18. [Left Recursive Context-Free Production and Left
Recursive Context-Free Grammar] Let us consider a context-free grammar G =

16 1. PRELIMINARY DEFINITIONS ON LANGUAGES AND GRAMMARS

〈VT , VN , P, S〉. We say that a production in P is left recursive if it is the form:
A → Aα with A ∈ VN and α ∈ V ∗. A context-free grammar is said to be left recursive
if there exists a nonterminal symbol A such that for some α, β, γ ∈ (VT ∪ VN)∗ we
have that: (i) S →∗ αAβ, and (ii) A →+ Aγ.

If a reduced, context-free grammar G has a left recursive production, then G is
left recursive.

CHAPTER 2

Exploring Search Spaces

In this chapter we introduce the reader to some algorithms and techniques for ex-
ploring search spaces. In particular, we will consider:
(i) the technique for exploring linear search spaces represented as arrays (or linear
lists),
(ii) the backtracking technique for exploring general search spaces represented as
graphs, and
(iii) the depth first and breadth first algorithms for exploring tree-like search spaces
with the objective of finding leaves satisfying a given property.

The presentation of these algorithms can be viewed as an introduction to the
parsing algorithms which we will consider in the following chapters. Indeed, we will
see that every parsing algorithm performs the exploration of a search space. (Actually,
every algorithm perfoms the exploration of a suitably defined search space.)

2.1. Exploring Linear Search Spaces

In this section we will indicate how to explore a linear search space represented as an
array. As a typical example of this technique, now we present the following elementary
program Sum for summing up the elements of a given array A of length n≥1.

We assume that the elements of the array are all integers. The array A can also
be viewed as a finite function from the set {1, . . . , n} to the set of integers.

Here is the Program Sum.

Program Sum

{n ≥ 1} : precondition

i := 0; sum := 0; establishing the invariant I.

I ≡ {sum =
∑i

j=1 A[j] ∧ i ≤ n} : invariant I

while i < n do i := i + 1; working towards termination and
sum := sum + A[i] re-establishing the invariant I.

od (I ∧ ¬(i<n)) → postcondition

{sum =
∑n

j=1 A[j]} : postcondition

Let us make the following comments of the structure of this program.

(i) The program is made out of two initialization statements followed by a while-
loop. As indicated by Kleene’s Normal Form Theorem, the structure of this program
is universal, in the sense that every Turing computable function can be computed
via a unique while-loop (apart from a preliminary evaluation of a primitive recursive

17

18 2. EXPLORING SEARCH SPACES

function and then, at the end of the while-loop, a subsequent evaluation of a primitive
recursive function).

(ii) The computation of the while-loop is characterized by the invariant I which
holds before the execution of the while-loop, after every execution of the body of the
while-loop, and at the end of the execution of the while-loop.

The reader may easily check that, indeed, the initialization statements establish
the invariant I and, in our case, they do so in a trivial way because if n≥1, we have
that (0 =

∑0
j=1 A[j]) ∧ 0 ≤ n.

In the body of the while-loop, once the value of i has been increased by 1, in order
to re-establish the invariant we need to modify the value of the variable sum and to
increase it by A[i]. Finally, when we exit from the while-loop and thus, it is no longer
the case that i < n, the invariant should imply the postcondition sum =

∑n
j=1 A[j],

and indeed, this is the case.

(iii) Termination of the while-loop is guaranteed by the fact that at every execution
of the body of the while-loop, i is increased by 1 and thus, sooner or later, it will be
the case that i < n does not hold and the execution of the while-loop terminates.
Thus, as indicated by the usual approach to termination, there exists a function,
namely λi. n−i, which decreases at every execution of the body of the while-loop and
it bounded from below by the value 0 because i cannot become larger than n.

Now, let us suppose that, instead of summing up all the elements of an array,
we want to visit a given array A for finding out whether or not one of its elements
satisfies a given property (or predicate) prop : Σ → {true, false}, where Σ is the set
from which the elements of the array A are taken. Thus, when viewing the array A
of n (≥ 1) elements as a finite function, we have that A : {1, . . . , n} → Σ. In order
to perform the visit of the array A we can use the following Linear Search program
which is a simple variant of the Sum program on page 17.

{n ≥ 1} Program for Linear Search
i := 0; res := false;

I = {res =
∨i

j=1 prop(A[j]) ∧ i ≤ n}
while i < n do i := i + 1;

res := res ∨ A[i]
od

{res =
∨n

j=1 prop(A[j])}

Starting from this program Linear Search, now we derive a more efficient Linear
Search program by applying some simple transformations. In particular, we may use
the following properties:

(i) true ∨ x = true,
(ii) false ∨ x = x, and
(iii) we may halt when we find an element A[i] of A such that prop(A[i]) is true.

We derive the following program:

2.1. EXPLORING LINEAR SEARCH SPACES 19

i := 0; res := false;
{false =

∨i−1
j=1 prop(A[j]) ∧ (if i ≥ 1 then res = prop(A[i])) ∧ i ≤ n}

while i < n ∧ ¬res do i := i + 1;
res := prop(A[i])

od

By replacing i by a new identifier, also named i, which gets the value of the old i
increased by 1, we derive the following program:

i := 1; res := false;
while i ≤ n ∧ ¬res do i := i + 1; res := prop(A[i−1]) od

Now we can avoid the use of the index i−1 by anticipating, so to speak, the access
to the array A. We swap the two instructions in the body of the while-loop and we
get:

i := 1; res := false;
while i ≤ n ∧ ¬res do res := prop(A[i]); i := i+1 od

In order to avoid accessing the element A[n+1] which is not defined, we may use
the cand operator and we get the following Program P1. Recall that ‘a cand b’ is
equivalent to ‘if a then b else false’, and thus, b is not evaluated if a is false.

{n ≥ 1} Program P1
i := 1; res := false;
while i ≤ n cand ¬prop(A[i]) do i := i + 1 od;
if i ≤ n then res := true

{res =
∨n

j=1 prop(A[j])}

We can transform Program P1 by using conditional rewrite rules and recursion,
and we get the following Program P2:

{n ≥ 1} Program P2
i := 1;
search(i): (1) i ≤ n ∧ ¬prop(A[i]) → search(i+1)

(2) i ≤ n ∧ prop(A[i]) → res := true
(3) i > n → res := false

{res =
∨n

j=1 prop(A[j])}

We will not formally define here the operational semantics of the conditional
rewrite rules which we have used in the above Program P2. It will suffice to say that,
in order to perform search(i), if it is the case that i ≤ n ∧ ¬prop(A[i]) holds then
Rule (1) tells us to perform search(i+1), that is, to apply again one of the three rules
either (1), or (2), or (3), having increased the value of i by one unit.

The equivalence between Program P1 and Program P2 is shown in the following
Exercise 2.1.1.

20 2. EXPLORING SEARCH SPACES

Exercise 2.1.1. (i) Show that P1 terminates iff P2 terminates.
Hint. Both programs terminate iff i > n ∨ (∃i 1 ≤ i ≤ n ∧A[i] = true).

(ii) Show that if P1 terminates then (P1 sets res to the boolean value b iff P2 sets
res to the same boolean value b).

Now we want to present a different kind of search of a linear search space. We
call it State Dependent Linear Search. In this kind of search we want to visit an
array, say A, whose elements are taken from a set Σ, for finding out whether or not
one of its elements satisfies a given property (or predicate) prop, but this time the
truth value of prop depends on both: (i) a state q belonging to a set Q of states, and
(ii) the element of the array which is currently visited.

The visit of the array A begins in the initial state q0 ∈ Q and any time a new
element of the array is visited, we get to a new state which is computed by the so
called next-state function δ : Q×Σ → Q. The function δ depends on the previous
state and the element of the array which is currently visited. Thus, we have:
(i) an array A whose elements are taken from a set Σ,
(ii) an initial state q0 ∈ Q,
(iii) a next-state function δ : Q×Σ → Q, and
(iv) a property prop : Q×Σ → {true, false}.

We want a procedure which gives us the value true iff there exist a state q and an
element ai in the array A such that prop(q, ai) = true.

Here is the program for the State Dependent Linear Search.

{n ≥ 1} Program for State Dependent Linear Search
i := 1;
q := q0;
st-search(q, i): (1) i ≤ n ∧ ¬prop(q, A[i]) → st-search(δ(q, A[i]), i+1)

(2) i ≤ n ∧ prop(q, A[i]) → res := true
(3) i > n → res := false

{res =
∨n

j=1 prop(δ(. . . δ(δ(q0, A[1]), A[2]) . . . , A[j−1]), A[j])}

By using the result of the above Exercise 2.1.1 which shows the equivalence be-
tween Program P1 and Program P2, we get the following program which is equivalent
to the program for the State Dependent Linear Search:

i := 1; q := q0; res := false
while i ≤ n cand ¬prop(q , A[i]) do q := δ(q , A[i]); i := i+1 od;
if i ≤ n then res := true

Exercise 2.1.2. Write a program to check whether or not in a given array there
is an element which is equal to the sum of all the preceding elements.

Solution. Instantiating the above State Dependent Linear Search program, we get:

i := 1; sum := 0; res := false
while i ≤ n cand ¬(sum = A[i]) do sum := sum + A[i]; i := i+1 od;
if i ≤ n then res := true

"

2.2. BACKTRACKING ALGORITHMS 21

2.2. Backtracking Algorithms

Backtracking is a method for visiting all the nodes of a given tree starting from
its root, when at each node we know:
(i) the list of all the son nodes which are assumed to be ordered in a linear order,
which is the left-to-right order of the elements of the list,
(ii) a pointer p which identifies the node of that list which should be visited next,
and
(iii) the father node, if any.

When reasoning about our programs and also in our pictures below, we assume
that the head of every list of nodes is ‘to the left’ of all the other elements of the list.
When we visit a list of nodes, we first visit its head and then, recursively, we visit
the tail of the list. In what follows we will also use the following terminology. Given
a list of son nodes, (i) the head of the list is said to be oldest son node, and (ii) the
node, if any, which is immediately to the right of the given node m in the list, is said
to be the immediately younger brother node of m, or the next node after m.

The general idea of the backtracking algorithms can be explained as follows [6].
When the visit of a given node n of a tree is completed (and, thus, also the visits of

all the descendant nodes of that node n are completed), the visit of the tree continues
by performing the visit of the subtree, if any, which is rooted at the node which is the
immediately younger brother node of n. If that immediately younger brother node
of n does not exist, then the visit of the father node of the node n is completed.

Thus, by applying the backtracking technique, the visit of the tree search space is
the preorder visit, that is, at each node of the tree we first visit that node and then,
recursively, we make the preorder visit of each node in the list of the son nodes of
that node. The son nodes of that list are visited according to the left-to-right order
of the elements of the list.

The following program, called Dispositions.java, uses the backtracking tech-
nique, implemented as a recursion inside a do-while loop, for computing all the dis-
positions of length D whose elements are taken from the set {1, . . . , B} of B elements.
In particular, if B = 2, that program computes in increasing order the following se-
quence of tuples each of which is made out of D elements (thus, for instance, the first
tuple has D occurrences of 1’s, the second tuple has D−1 occurrences of 1’s and 1
occurrence of 2, and the last tuple has D occurrences of 2’s):

〈1, 1, . . . , 1, 1〉, 〈1, 1, . . . , 1, 2〉, 〈1, 1, . . . , 2, 1〉, 〈1, 1, . . . , 2, 2〉, . . . ,
. . .,

〈1, 2, . . . , 2, 2〉, 〈2, 1, . . . , 1, 1〉, . . . , 〈2, 2, . . . , 1, 1〉 . . . , 〈2, 2, . . . , 2, 2〉

The program Dispositions.java has the structure that we have indicate in Fig-
ure 2.2.1 on the following page (see also Figure 2.2.2 on page 23). In that program
we have that:
(i) the first local choice identifies the oldest son node of the given initial node,
(ii) « to make the next local choice » is to increment the value of the index of breadth
ib, that is, to move the pointer p one position to the right along the list of son nodes,
(iii) « to go down the tree » is to increment by 1 the value of the index of depth id,
that is, to begin the visit of a son node,

22 2. EXPLORING SEARCH SPACES

/* procedure generate() */
void generate();
begin
select the first local choice;

do (α): make the local choice; (β): down the tree (global value);
if deepest level reached then do the leaf operation else generate()
(β ′): up the tree (global value) (α′): remove local choice;
select the next local choice;

while there is one more local choice to make;
end

/* main program */
id = 0; generate();

Figure 2.2.1. Structure of a backtracking algorithm. The ‘local
choice’ refers to the index of breadth ib and the ‘global value’ refers to
the index of depth id.

(iv) « to go up the tree » is to decrement by 1 the value of id, that is, to go to the
father node for beginning the visit of the immediately younger brother node, if any,
and
(v) « to remove the local choice » is the step we have to make before making the next
local choice (see the above Point (ii)).

By removing the local choice we complete the visit of the node, say n, which is
our current local choice, and then, the next local choice, if any, can be made and the
visit of the immediately younger brother node of n, if any, begins by executing one
more time the body of the do-while loop.

For the index of breadth ib we have that: 1 ≤ ib ≤ B, and for the index of depth
id we have that: 0 ≤ id≤ D. The deepest level is reached when id = D.

Notice that « to make the local choice » does not increase the value of ib.
When the deepest level is reached, instead of going below a leaf node with id = D,
we perform an operation associated with that leaf. That leaf operation, in general,
depends on some global data structure which is manipulated while the visit of the
tree progresses. In the case of the program Dispositions.java that global structure
is the array arrayDisp.

The removal of the local choice, denoted by (α′), may not be necessary if the
action of making the next local choice is performed destructively. This means that if
the action of making a choice is done by assigning a value to a variable (as it is in
our case, because we assign a value to the variable ib) then the action of making a
new local choice automatically removes the old value of that variable (in our case the
variable ib) and thus, automatically removes the local choice which was previously
made. This is why in Figure 2.2.2 on the facing page there is no reference to the
action (α′).

2.2. BACKTRACKING ALGORITHMS 23

! •

! •
•

!

•
•
•
•

"
"

"
"

"
"

#
#

#
#

#
##

$
$

$
$

$
$

$$
%

%
%

%
%

%
%

%
%

%
%% &

&
&

&
&

&
&

&
&

&
&

&

$
$

$
$

$$'

$
$

$
$

$$'

down the tree
(β)

$
$

$
$

$$(

$
$

$
$

$$(

up the tree
(β′)

!!(α)
1 2 B

))

do the leaf operation

"
"

""
*

**
+

+
+

+
,

,
,

depth:
(global value)

id = 0

id = 1

id = D−1

...

local choices:
ib = 1, 2, . . . , B...
horizontal move:
by do-while

vertical move:
by recursion
on generate()

...

!

!

"#

Figure 2.2.2. Visit of a tree of nodes by backtracking, starting from
the topmost node. The dots (•) in the pictures of the array on the left
represent the local choices which have been already made.

In the program Dispositions.java listed on page 24 we have that D=3 and B=2,
and the dispositions of length 3 whose elements are taken from the set {1, . . . , B},
that is, {1, 2}, are the 8 (= BD) sequences: 111, 112, 121, 122, 211, 212, 221, 222.
When computing these sequences we get the tree of nodes depicted in Figure 2.2.3.
The nodes of that tree are visited using the program Dispositions.java, starting
from the root node a, in the following depth first order (which realizes the so called
preorder traversal of the tree): a, b, d, h, i, e, j, k, c, f, (, m, g, n, and o.

a : −−−

b : 1−− c : 2−−

d : 11− e : 12− f : 21− g : 22−

h : 111 i : 112 j : 121 k : 122 (: 211 m : 212 n : 221 o : 222

1 2

1 2 1 2

1 2 1 2 1 2 1 2

Figure 2.2.3. The tree of nodes when computing the 8 dispositions
of length 3 of the elements 1 and 2, from 111 to 222. The dispositions
are at the leaves.

24 2. EXPLORING SEARCH SPACES

/**
* ==
* Backtracking: DISPOSITIONS
* Filename: "Dispositions.java"
*
* A disposition is a sequence of length D whose elements (not necessarily
* distinct) are taken from a set of B elements.
* ==
*/

public class Dispositions {
private int id = 0;
private final int D = 3;
private final int B = 2;
private int[] arrayDisp = new int[D];// by default: initially the elements

// of arrayDisp are all 0’s
private void printar(int[] array, int size) {

for (int k=0; k<size; k++) {System.out.print(array[k]+" ");}
System.out.println();

}
private void generate() {

int ib=1;
do {arrayDisp[id]=ib; id++;

if (id==D) {printar(arrayDisp,D);} else generate();
id--;
ib++;}

while (ib <= B);
}

public static void main(String[] args) {
Dispositions disp = new Dispositions();
disp.generate();

}
}
/**
* input: output:
* --
* javac Dispositions.java
* java Dispositions
* 1 1 1
* 1 1 2
* 1 2 1
* 1 2 2
* 2 1 1
* 2 1 2
* 2 2 1
* 2 2 2
* --
*/

Now we present a program, called Combinations.java, for computing all the
combinations of B (≥ 1) elements taken in groups of cardinality D, with 1≤D≤B.
They are also called the B-over -D combinations. The number of B-over-D combinations

is the value of the binomial coefficient
(
B

D

)
, that is,

B!
(B−D)! D! .

The program Combinations.java is a variant of the program Dispositions.java
(see page 24) in the sense that in this case the local choices that can be made, depend
on some global information. Indeed, the computation of the B-over-D combinations
can be viewed as the computation of the dispositions of length D whose elements are
taken from the set {1, . . . , B} with the following constraint:

2.2. BACKTRACKING ALGORITHMS 25

« if an element has been already used for making a local choice at an ancestor
node, then it cannot be used again for making a local choice at the current
node.»

In order to recall all the choices made at the ancestor nodes, one can show that,
since a combination of D elements is stored in the array arrayComb of D elements, it is
enough to test whether or not ((id == 0) || (ib > arrayComb[id-1])) holds.
(We leave it to the reader the proof of this simple fact.) The identifier ib, with
1≤ ib≤ B, is the index of breadth and id, with 0≤ id≤ D-1, is the index of depth
(see also Figure 2.2.2 on page 23). In our case, in order to recall all the choices made
at the ancestor nodes, we could have also used a boolean vector.

/**
* ==
* Backtracking: COMBINATIONS
* Filename: "Combinations.java"
*
* Combinations are dispositions, where the order of the elements
* is NOT significant. In the dispositions the order is significant.
*
* The combinations of ‘B over D’ are the different SETS (not sequences) of
* the B elements taken in groups of cardinality D.
* The B elements are assumed to be: 1,...,B.
* The combinations will be presented in lexicographic order, that is,
* X_1,...,X_D comes before Y_1,...,Y_D iff there exists k, with 0<=k<D,
* such that X_1 = Y_1, ..., X_k = Y_k, X_{k+1} < Y_{k+1}.
*
* In order to compute the combinations of ‘B over D’ we use a backtraking
* algorithm which takes into account some global information to know
* whether or not a given element can be used for making the current
* local choice. That global information depends on previous local choices
* made at the nodes which are ancestors of the node where the current
* local choice is made.
* ==
*/

public class Combinations {
private int id = 0;
private final int B = 4; // B should be positive
private final int D = 2; // D should be positive and D <= B
private int[] arrayComb = new int[D];// by default: initially the elements

// of arrayComb are all 0’s
private void printar(int[] array, int size) {

for (int k=0; k<size; k++) {System.out.print(array[k]+" ");}
System.out.println();

}

private void generate() {
int ib=1;
do {// ------ For id == 0 the first element is always ok.

// ------ Combinations are generated in ‘increasing order’:
// this is due to the test (ib > arrayComb[id-1]) below.
if ((id == 0) || (ib > arrayComb[id-1]))

{arrayComb[id] = ib; id++;
if (id == D) {printar(arrayComb,D);} else generate();
id--;};

ib++;}
while (ib <= B);

}

26 2. EXPLORING SEARCH SPACES

public static void main(String[] args) {
Combinations comb = new Combinations();
comb.generate();

}
}
/**
* input: output:
* --
* javac Combinations.java
* java Combinations
* 1 2
* 1 3
* 1 4
* 2 3
* 2 4
* 3 4
* --
*/

Finally, we present a program, called Queens.java, for solving the n-queens prob-
lem [6]. This program implements a backtracking algorithm which can easily be
understood because it is a variant of the algorithm we have presented in the pro-
gram Combinations.java (see page 25). This variant is based on the fact that when
making the local choices, we have to comply with the following constraint:

«when making any local choice, we have to determine whether or not the can-
didate local choice is available, that is, we have to determine whether or not
the following global condition holds: the new queen to be placed on the board,
is not under attack of any other queen already placed on the board. »

Attacks to a queen can come from a queen which is either in the same column, or in the
same up-diagonal, or in the same down-diagonal. No attack to a queen can come from
a queen on the same row simply because, by construction, every queen is placed on a
different row (see Figure 2.2.4 on page 28). The columns taken by the queens on the
board are identified by the value false in the array col[0, . . . , m−1]. Analogously
for the up-diagonals and the down-diagonals for which we use the boolean arrays
up[0, . . . , 2(m−1)] and down[0, . . . , 2(m−1)], respectively.

A new queen can be placed in column k, up-diagonal u, and down-diagonal d iff
the corresponding elements of the arrays col, up, and down, that is, col[k], up[u],
and down[d], are all true. Once a queen is placed in that position, all those elements
are set to false, meaning that that position is no longer available for a subsequent
queen to be placed on the board. All the elements of the arrays col, up, and down

are initialized to true meaning that all positions are available for the first queen.
In our program Queens.java which we now present, the number of queens is stored

in the variables nqueens and m.
/**
* ==
* Backtracking: n QUEENS
* Filename: "Queens.java"
*
* From: E.W. Dijkstra: ’A Short Introduction to the Art of Programming’.
* EWD 316 August 1971. The command line for executing this program is:
* java Queens n (n should be at least 1)
* The queens are placed from top to bottom, one for each row.
* ==
*/

2.2. BACKTRACKING ALGORITHMS 27

public class Queens {
int nq = 0; // index of queen to be placed in the current solution.

// See generate().
int nqueens, nqueens1;
int[] arrayQ;
boolean[] col, up, down;

// constructor of the class Queens
Queens(int[] arrayQ, boolean[] col, boolean[] up,

boolean[] down, int nqueens) {
this.nqueens = nqueens;
this.nqueens1 = nqueens-1;
this.arrayQ = arrayQ;
this.col = col;
this.up = up;
this.down = down;

}
/**
* --
* In Dijkstra: up is an array [-(nqueens-1)..nqueens-1] of booleans.
* We have indicated the indexes he used in the comments below:// up[index]
* We increased Dijkstra’s indexes by nqueens1, which is nqueens-1.
* --
*/
private void printar(int[] arrayA, int size) {

for (int k=0; k<size; k++) {System.out.print(arrayA[k]+" ");}
System.out.println();}

private void generate()
{int h=0;
do {if (!(col[h] || up[nq+h] || down[nq-h+nqueens1])) // up[nq-h]

{arrayQ[nq]=h; col[h]=true; up[nq+h]=true; // up[nq-h]
down[nq-h+nqueens1]=true; nq=nq+1;
if (nq==nqueens) {printar(arrayQ,nqueens);} else generate();
nq=nq-1;col[h]=false; up[nq+h]=false; // up[nq-h]
down[nq-h+nqueens1]=false;};

h=h+1;}
while (h != nqueens);}

//---
public static void main(String[] args) {

int m=0; // m is the number of queens. See the field nqueens.
try {m = Integer.parseInt(args[0]);

if (m <= 0) {throw new Exception();}
} catch (Exception e) {

System.out.print("The number of queens should be >= 1.");
System.out.println(" By default we assume 1 queen only.");
m=1;

}
System.out.println("Number of queens = "+m);
int[] arrayQ = new int[m]; // integer array [0..m-1]
boolean[] col = new boolean[m]; // boolean array [0..m-1]
boolean[] up = new boolean[2*m-1]; // boolean array [0..2(m-1)]
boolean[] down = new boolean[2*m-1]; // boolean array [0..2(m-1)]

Queens queens = new Queens(arrayQ, col, up, down, m);
queens.generate();
}

}

28 2. EXPLORING SEARCH SPACES

/**
* input: output:
* --
* javac Queens.java
* Java Queens 6
* Number of queens = 6
* 1 3 5 0 2 4
* 2 5 1 4 0 3
* 3 0 4 1 5 2
* 4 2 0 5 3 1
* --
*/

h

h

Q

0

col :

up :

down :

F

F

0

nq+h

2∗(nqueens−1)

F

0

nq−h+nqueens−1

2∗(nqueens−1)

arrayQ :

0

nq :

nqueens−1

Figure 2.2.4. The queen Q in position [nq,h], that is, in row
nq and column h, forces the following values, where F stands for
false: col[h] = F, up[nq+h] = F, and down[nq-h+nqueens-1] = F.
These false values tell us the column, the up-diagonal, and the down-
diagonal which are taken by that queen. These positions are not avail-
able for a different queen. The array col is from col[0] to
col[nqueens-1].

2.3. VISITING TREES WHILE LOOKING FOR GOOD NODES 29

2.3. Visiting Trees While Looking for Good Nodes

In this section we will present some algorithms for visiting trees with the objective of
finding ‘good’ nodes, that is, nodes which satisfy a given property (or predicate) p.
We assume that the trees are generated in a dynamic fashion, in the sense that any
given tree is specified by: (i) its root node, and (ii) a function f which for each node
of the tree, returns the list of its son nodes. Any such function f will be called a
tree-generating function. We assume that the nodes of the trees we will consider, are
of type α. We also assume that:
(i) the predicate p is a function whose type is: α → bool , where bool = {true, false},
and
(ii) the tree-generating function f is a function whose type is: α → αlist , where α list
denotes the type of the lists whose elements are of type α.

In what follows the infix append function between two lists is denoted by <>.
Thus, <> has type: (α list) × (α list) → (α list).

2.3.1. Depth First Visit of Trees: Basic Version.

Now we present a function, called existsev (short for exists eventually), which given:
(i) a predicate p, (ii) a tree-generating function f , and (iii) a list L of nodes, returns
true if there exists a node n in L which is the root of the tree, say tn, generated by
the function f such that in tn there exists a node m such that p(m) = true, otherwise
it returns false.

The correctness of the algorithm we will give for evaluating the function existsev
is based on the assumption that for any node n the tree which is rooted in n is finite.
This finiteness assumption is required because given any node n, the tree rooted in
n is generated and visited in a depth first manner (see the line marked with (†)).

If a node is the root of an infinite tree (because of the particular tree-generating
function f which is given), then the evaluation of existsev may not terminate even if
in that infinite tree there exists a node which satisfies p.

The existsev function is defined as follows. (In the first line we have given its type
and in the other lines we have given its definition.)

existsev : (α → bool) × (α → α list) × (α list) → bool
existsev p f L = if L=[] then false

else if p(hd(L)) then true
else existsev p f (f(hd(L)) <> tl(L)) (†)

Let us consider a predicate p, a tree-generating function f , and a node n. Suppose
that f generates a finite tree rooted in n. Then we have that there exists a node m in
the tree rooted in n generated by f such that p(m)= true iff existsev(p, f, [n]) = true .
The inductive proof of this statement is left to the reader.

The following example illustrates the behaviour of the function existsev while
performing the depth first visit of a tree of natural numbers (thus, in this example
the type α is the type of the natural numbers.)

30 2. EXPLORING SEARCH SPACES

Example 2.3.1. Let N denote the set of natural numbers. Let us consider the
predicates p : N → bool and odd : N → bool , and the tree-generating function f
defined as follows:

p(x) = x=25
odd(0) = false
odd(1) = true
odd(n+1) = not(odd(n))
f(x) = [x+4, x+5] if x<25 and odd(x)
f(x) = [x+5] if x<25 and not(odd(n))
f(x) = [] otherwise

The search space is the tree of natural numbers depicted in Figure 2.3.1. In that
figure we have also depicted the first six frontiers which are determined by the depth
first visit of the tree, as we will explain below. The other frontiers are depicted on
Figure 2.3.2 on the facing page.

: (i)
: (ii)
: (iii)
: (iv)
: (v)
: (vi)

7

11 12

15 16 17

19 20 21 21 22

23 24 25 25 26 25 26 27

27 28 29

Figure 2.3.1. The tree generated from the initial node 7 by applying
the tree-generating function f of Example 2.3.1. We have also depicted
the first six frontiers of the depth first visit of the tree.

Every recursive call of the function existsev is of the form: existsev p f l, where the
predicate p and the function f do not change, while the list l of natural numbers
which is initially [7] (because 7 is the root of the tree), changes as follows for each
new recursive call (see also the frontiers depicted on Figure 2.3.1 and Figure 2.3.2 on
the next page):

(i) : [7]
(ii) : [11, 12]
(iii) : [15, 16, 12]
(iv) : [19, 20, 16, 12]
(v) : [23, 24, 20, 16, 12]
(vi) : [27, 28, 24, 20, 16, 12]

2.3. VISITING TREES WHILE LOOKING FOR GOOD NODES 31

(vii) : [28, 24, 20, 16, 12]
(viii) : [24, 20, 16, 12]
(ix) : [29, 20, 16, 12]
(x) : [20, 16, 12]
(xi) : [25, 16, 12]

Note that the head of the last list [25, 16, 12] is 25 and, since p(25) is true, the
execution of the function existsev stops. As the reader may verify, this sequence of
eleven lists of nodes is the sequence of the frontiers of the tree, which are determined
by the depth first visit of the tree with root 7. Indeed, in each successive call of
the function existsev, the leftmost element of the list is replaced by its son nodes.
In Figure 2.3.1 on the facing page we have depicted the first frontier [7] (the node
7 is the initial node), the second frontier [11, 12], the third frontier [15, 16, 12], . . .,
until the sixth frontier which is [27, 28, 24, 20, 16, 12]. The other frontiers, from the
seventh frontier which is [28, 24, 20, 16, 12], until the eleventh one which is [25, 16, 12],
are shown in Figure 2.3.2. "

: (vii)
: (viii)
: (ix)
: (x)
: (xi)

7

11 12

15 16 17

19 20 21 21 22

23 24 25 25 26 25 26 27

27 28 29

Figure 2.3.2. The frontiers, from the seventh one to the eleventh one,
of the depth first visit of the tree generated from the initial node 7 by
applying the tree-generating function f of Example 2.3.1 on the facing
page.

2.3.2. Depth First Visit of Trees: Burstall’s Version.

In this section we present a different algorithm for visiting trees in a depth first
manner. It has been suggested to us by R. M. Burstall.

As in the previous Section 2.3.1, we are given a predicate p, a tree-generating
function f , and a node n. Suppose that f generates a finite tree rooted in n. The
following function existsev1(p, f, n) returns true iff in the tree rooted in n and gener-
ated from n by the function f there exists a node m such that p(m) = true, otherwise
it returns false.

As for the function existsev which is defined on page 29, the correctness of the
existsev1 function is based on the assumption that for any node n, the tree rooted

32 2. EXPLORING SEARCH SPACES

in n, is finite. This assumption is necessary because the tree rooted in n is generated
and visited in a depth first manner (see the line marked with (††)).

Given a predicate p and a list L of nodes, the function exists(p, L) returns true if
in the list L there exists a node m such that p(m) is true, otherwise it returns false.

The functions existsev1 and exists are defined as follows.

existsev1 : (α → bool) × (α → α list) × α → bool
existsev1 p f x = if p(x) then true

else exists (existsev1 p f) f(x) (††)

exists : (α → bool) × (α list) → bool
exists p L = if L=[] then false

else if p(hd(L)) then true
else exists p tl(L)

Note that in the above function we use the partial application technique: the predicate
which is the first argument of the function exists in the line marked with (††), is the
result of the application of the function existsev1 (which is of arity 3) to the predicate
p and the function f . Thus, at line (††) the type of existsev1 p f is α → bool , which
is the type of a predicate on nodes, and the type of f(x) is α list , which is the type
of a list of α’s.

Note 2.3.2. The functions existsev and existsev1 are equivalent in the sense that
for any given predicate p of type α → bool , any tree generating function f of type
α → αlist , and any given initial node n of type α, we have that:

existsev p f [n] = existsev1 p f n. "

As we will see in more detail in Chapter 3, one can use this depth first visit
algorithm for parsing strings (or words) generated by formal grammars. Here is
an example where we consider the regular grammar G with axiom P and whose
productions are:

P → b P → bQ Q → a Q → aQ

We want to check whether or not the string ba belongs to the language L(G) generated
by G. We can do so by constructing a tree whose root node is the pair 〈P, ba〉 of
the axiom P and the string-to-parse ba. The nodes of that tree are constructed by
applying at any node 〈σ1, σ2〉, where σ1 is a sentential form and σ2 is a string of
terminal symbols, either (i) the chop operation, or (ii) the expand operation, which
we will describe below.

The construction of the tree finishes when a node of the form 〈ε, ε〉 is constructed,
and this fact indicates that the string ba belongs to the language generated by G.
Indeed, one can show that, in general, given a grammar H with axiom S, and a
string σ, we have that σ ∈ L(H) iff the node 〈ε, ε〉 belongs to the tree constructed
from the root node 〈S, σ〉. Here is the description of the chop and expand operations.

(i) The chop operation is applied at a node of the form 〈aσ1, aσ2〉, where a is
a terminal symbol, and it constructs the single son node 〈σ1, σ2〉. Thus, the chop
operation consists in deleting the leftmost terminal symbol of both components of
the pair in the node, if they are the same terminal symbol.

2.3. VISITING TREES WHILE LOOKING FOR GOOD NODES 33

#
#

##-

))

$
$

$$'

#
#

##-

))

$
$

$$'

expand P : P → b | bQ

chop b chop b

expand Q: Q → a | aQ

chop a chop a

〈P, ba〉

〈b, ba〉 〈bQ, ba〉

〈ε, a〉 〈Q, a〉

〈aQ, a〉〈a, a〉

. . .
〈Q, ε〉〈ε, ε〉

false

true

Figure 2.3.3. The tree of nodes which shows that the string ba is
generated by the grammar G with axiom P and whose productions
are: P → b | bQ, Q → a | aQ.

(ii) The expand operation is applied at a node of the form 〈Aσ1, σ2〉, where A
is a nonterminal symbol, and it constructs the list of the son nodes of that node
which is [〈α1σ1, σ2〉, . . ., 〈αnσ1, σ2〉], if α1, . . . ,αn are the right hand sides of all
the productions of the given grammar whose left hand side is A. Thus, the expand
operation is based on the replacement in all possible ways of the leftmost nonterminal
symbol of the sentential form of the node. For instance, given the node 〈P, ba〉, the
expand operation constructs the list [〈b, ba〉, 〈bQ, ba〉] of son nodes, because for the
symbol P in the grammar G we have the two productions P → b and P → bQ.

Figure 2.3.3 shows the tree with root 〈P, ba〉 which is generated by the chop and
expand operations. The fact that in that tree there is the node 〈ε, ε〉 indicates that
the string ba belongs to the language generated by G.

The construction of the tree which we have described above in terms of the chop
and expand operations, can also be described in terms of a suitable tree-generating
function f . We leave the definition of that tree-generating function to the reader.
The predicate p which tells us when we have found the node 〈ε, ε〉, may be defined
as follows: for any given node 〈σ1, σ2〉, we have that p(〈σ1, σ2〉)= true iff σ1 =σ2 =ε.

2.3.3. Breadth First Visit of Trees.

In this section we present a third algorithm for visiting trees. The visit is performed in
a breadth first manner and thus, in order to ensure the correctness of this algorithm,
we do not need the hypothesis that the tree generated from any given node by the
given tree-generating function, is finite.

Given a function f with type α → αlist and a list L of elements of type α, the
function flatmap(f, L) returns the concatenation of the lists produced by applying
the function f to every element of L.

34 2. EXPLORING SEARCH SPACES

The function exists is the one we have presented on page 32.
The function bf-existsev (short for breadth first exists eventually) is very similar

to the function existsev presented on page 29. They have the same type. However,
in the case of the function bf-existsev, the tree is generated and visited in a breadth
first manner (see the line marked with (†††)). Indeed, at each recursive call of the
function bf-existsev, we construct the list of the son nodes of all nodes occurring in
the list of the previous call of bf-existsev. Thus, the tree is generated level-by-level,
by generating the nodes at distance k+1 from the root, only after the generation of
all nodes at distance k, for any k≥0.

The functions flatmap, exists, and bf-existsev are defined as follows.

bf-existsev : (α → bool) × (α → α list) × (α list) → bool
bf-existsev p f L = if L=[] then false

else if exists p L then true
else bf-existsev p f (flatmap f L) (†††)

exists : (α → bool) × (α list) → bool
exists p L = if L=[] then false

else if p(hd(L)) then true
else exists p tl(L)

flatmap : (α → α list) × (α list) → (α list)
flatmap f L = if L=[] then []

else (f(hd(L)) <> (flatmap f tl(L))

Note that the functions existsev and bf-existsev may not terminate if starting from a
given node, the iterated application of the function f generates an infinite tree.

Exercise 2.3.3. Show that the following function definition of existsev is not
correct:
existsev p f L = if exists p L then true

else existsev p f (f(hd(L)) <> tl(L))
Hint : Consider the case when L=[]. "

Exercise 2.3.4. Show that the following function definition for bf-existsev is not
correct:
bf-existsev p f L = if L=[] then false

else if p(hd(L)) then true
else bf-existsev p f (flatmap f L)

Hint : Some nodes are used for generating their son nodes, but for them we never test
whether or not p holds. "

Exercise 2.3.5. Show that the following function definition for bf-existsev is not
correct:
bf-existsev p f L = if exists p L then true

else bf-existsev p f (flatmap f L)
Hint : Consider the case when L=[]. "

CHAPTER 3

Chop-and-Expand Parsers for Context-Free Languages

In this chapter we illustrate the Chop-and-Expand parser for context-free languages
in a functional language (similar to Standard ML [17]), an imperative language
(Java 1.5), and a logic language (Prolog [5]). The idea of this parser is to perform a
depth first visit of tree-like search space as indicated in Chapter 2. This parser works
for context-free grammars which are not left recursive, that is, grammars in which
no nonterminal symbol A exists such that: (i) S →∗ αAβ for some α, β ∈ (VT ∪VN)∗,
and (ii) A →+ Aγ for some γ ∈ (VT ∪ VN)∗ (see Definition 1.2.18 on page 15). If
the given grammar is left recursive, the Chop-and Expand parser may not be able to
explore via the depth first search the whole search space and, thus, parsing may not
terminate.

The reader will find in the companion book [21] the description of two general
algorithms which work for any context-free grammar (left recursive or not left recur-
sive): (i) the Cocke-Younger-Kasami parser, and (ii) the Earley parser.
We will not describe these algorithms here.

3.1. Chop-and-Expand Context-Free Parser in a Functional Language

As indicated in Section 2.3.2 on page 31, in order to solve a parsing problem in the
case of context-free grammars, we have to explore a search space which is a tree,
whose root node is made out of the pair 〈S, string-to-parse〉, where S is the axiom
of the grammar and string-to-parse holds the input string to be parsed.

Below we present a program written in a functional language which performs
the chop-and-expand parsing of a string generated by a context-free grammar G =
〈VT , VN , P, S〉. We use the recursive function exists which takes two arguments: (i) a
list of states, also called nodes, and (ii) a context-free grammar which is not left
recursive.

The list of states represents the current frontier of the tree which must be visited
with the objective of finding in the tree a state of the form 〈ε, ε〉 (where ε is the empty
string). The context-free grammar tells us how to construct the tree to be visited
starting from its root, and indeed, by using that grammar we can construct, as we
will see below, the son states of any given state by applying the function expand.

The portion of the tree which is strictly above the current frontier, has been
already visited and no state of the form 〈ε, ε〉 exists in that portion of the tree.

Contrary to the function shown on page 32, the function exists presented here is
a first order function (and not a higher-order function, because none of its arguments
is a function or a predicate). This first order function exists has the advantage of
allowing us to derive a chop-and-expand parser written in Java (see page 41) by a
straightforward translation.

35

36 3. CHOP-AND-EXPAND PARSERS FOR CONTEXT-FREE LANGUAGES

Now we indicate: (i) the conventions, (ii) the variables, and (iii) the data struc-
tures which are used in our first order function exists.

Any list of characters is written as a list and also as a string. For instance,
[b,c,c] is also written as bcc. Given a list (, the head function hd(() and the tail
function tl(() are defined as usual. Thus, we have that hd(bcc) = b and tl(bcc) = cc.
In particular, for any character c, the list [c] made out of that character only, is also
written as the string c. The empty string is denoted by ε. The type of the list of
characters is called char list. It is also called string.

In what follows, when we write lists we will separate their members by either
commas or blanks.

Pairs are denoted by using the angle brackets ‘〈’ and ‘〉’. For instance, the pair of
the strings b and cb is denoted by 〈b,cb〉.

The type of the lists of states is also called state list. The type of the lists of
strings is also called string list. This type is also called right-hand-sides when the
elements of the lists denote the right hand sides of all the productions for a given
nonterminal symbol. For instance, given a context-free grammar whose productions
for the nonterminal symbol P are P → b and P → aQQ, the list [b, aQQ] has type
right-hand-sides.

Given a nonterminal symbol, say P, and the productions for it, say P → b and
P → aQQ, these productions can be grouped together and represented as the pair
〈P, [b, aQQ]〉 whose type is symbol×right-hand-sides.

The type of the lists of symbol×right-hand-sides pairs is called (symbol×right-
hand-sides) list. This type is also called grammar when the first components of the
pairs of the list are all distinct symbols. For instance, given the context-free grammar
whose productions are:

P → b P → aQQ Q → ε Q → b Q → bP

it can be represented as the list of pairs [〈P, [b, aQQ]〉, 〈Q, [ε, b, bP]〉] which has
type grammar. Each element in that list is a pair of a nonterminal symbol and the
list of the right hand sides of all the productions for that nonterminal symbol.

In Table 1 on page 37 we show the syntactic categories of the identifiers occurring
in the function exists and some examples of these syntactic categories. As usual, we
write the terminal symbols and the nonterminal symbols using lower case and upper
case letters, respectively.

The variable sf whose type is char list (also called sentform in Table 1), stores
the value of a sentential form. A state, that is, a node of the tree, is a pair of a
sentential form and a string of terminal symbols. We have that a descendant of a
state 〈σ1, σ2〉 is the state 〈ε, ε〉 iff the sentential form σ1 generates the string σ2 of
terminal symbols.

The function rhs (short for right hand sides) takes in input a nonterminal symbol,
that is, an element of type char , and produces in output the list of the right hand
sides of the productions in the given grammar whose left hand side is the given
nonterminal symbol. The type of the function rhs is: char → ((char list) list), which
can also be written as: char → (string list) or as: char → right-hand-sides.

3.1. CHOP-AND-EXPAND CONTEXT-FREE PARSER IN A FUNCTIONAL LANGUAGE 37

Types of identifiers. Examples. (a and b are terminals.
P, Q, and R are nonterminals.)

• Sentential form (with terminal and nonterminal symbols).
sentform sf : char list PRb

• String (with terminal symbols only).
string s : char list bb

• State.
〈sentform sf, string s〉 : state 〈PRb, bb〉

• List of states.
stl : state list [〈PRb, bb〉 〈bPQ, ab〉]

• The right hand sides of the productions for the same nonterminal symbol.
rhs : char → (char list) list Given the productions P → b | aQQ

we have that: rhs(P) = [b, aQQ]

• Grammar as a list of pairs. Each pair is made out of a nonterminal symbol and
the list of all the right hand sides of the productions for that symbol.
gr : (symbol×right-hand -sides) list The grammar with the productions

P → b | aQQ and Q → ε | b | bP is repre-
sented as: [〈P, [b, aQQ]〉 〈Q, [ε, b, bP]〉]

Table 1. Types and examples of the identifiers occurring in the func-
tion exists. The members of the lists of states and the members of the
lists of productions are separated by blanks (not by commas).

Note that our representation of a context-free grammar as a list of 〈symbol, right-
hand -sides〉 pairs makes it easy to evaluate the function rhs. Indeed, (i) no two
pairs in the list which represents a grammar have the same nonterminal symbol as
their first component, and (ii) for each element of the form 〈A, Rs〉 in the list which
represents a grammar, we have that: rhs(A) = Rs .

Given a list of states which is the frontier of a tree to be visited, the function
expand allows us to produce the new frontier of the expanded tree to be visited. This
new frontier is obtained by replacing the leftmost state in the given list of states (that
is, the head of the list of states) by its son states. These son states are generated
according to the given context-free grammar by using sthe function expand, as we
now indicate.

Let the frontier of the given tree be the state list h : T , where the state h is the
pair of the form 〈Aσ, s〉, for some nonterminal A ∈ VN , string σ ∈ (VT ∪ VN)∗, and
string s ∈ V ∗

T . Then the frontier of the new tree is:

[〈α1σ, s〉, . . .,〈αnσ, s〉] <> T

38 3. CHOP-AND-EXPAND PARSERS FOR CONTEXT-FREE LANGUAGES

where A → α1 | . . . |αn are all the productions of the given context-free grammar
whose left hand side is A, and <> denotes the infix append operation on lists. The
function expand has the following type:

expand : (char list) list × char list × char list → state list

that is, expand : right-hand-sides ×sentform × string → state list , and it is defined
as follows

expand(rhs(A), σ, s) = [〈α1σ, s〉, . . .,〈αnσ, s〉].

For instance, given the two productions P → b | aQQ and the state list stl which is
[〈PRb, bb〉 〈bPQ, ab〉], after the execution of the statement

new-stl = expand(rhs(P), Rb, bb) <> tl(stl)

we get that a new value for new-stl which is

[〈bRb, bb〉 〈aQQRb, bb〉 〈bPQ, ab〉]

Here is the code of the function exists for the Chop-and-Expand parser for a
context-free grammar which is not left recursive. terminal(x) and nonterminal(x) are
predicates which return true iff x is a terminal or a nonterminal symbol, respectively.
The function exists has the following type:

exists : state list × grammar → bool

where, as already mentioned, the type grammar is (symbol×right-hand-sides) list.

Chop-and-Expand Parser
exists stl gr =
if stl=[] then false
else let hd(stl)=〈sf, s〉 in

if sf =ε and s=ε then true
else if sf 2=ε and nonterminal(hd(sf)) then (†)

begin // expand

new-stl = expand(rhs(hd(sf)), tl(sf), s);
exists new-stl gr
end

else if sf 2=ε and s 2=ε and terminal(hd(sf)) and hd(sf)=hd(s) then (††)
exists (〈tl(sf), tl(s)〉 : tl(stl)) gr // chop

else exists tl(stl) gr

Note that in line (††) above, the condition ‘and terminal(hd(sf))’ is not necessary.
We have added it for reasons of symmetry with respect to the above line (†).

The initial call of the function exists is of the form:

exists [〈S, string-to-parse〉] given-grammar

where S is the axiom of the given-grammar and the first argument of the function
exists is a list of states which consists of one state only, and that state is the pair
〈S, string-to-parse〉.

3.2. CHOP-AND-EXPAND CONTEXT-FREE PARSER IN JAVA 39

3.2. Chop-and-Expand Context-Free Parser in Java

In this section we list the two Java programs: List.java and CFParser.java, which
realize the context-free parsing using the Chop-and-Expand algorithm illustrated in
Section 2.3.2 on page 31 and Section 3.1 on page 35.

The C++ versions of these programs can be found in [19, page 69]. A similar
version of the program List.java can be found (with the same name) in Section 7.4
on page 186.

/**
* ===
* Generic Class List <T> (class used for parsing)
* Filename: "List.java"
*
* Every object of the class List<T> is a list of elements of type T.
* The following methods are available:
*
* cons(T d), head(), tail(), isSingleton(), isEmpty(), makeEmpty(),
* copy(), and listPrint().
*
* Also cloneCopy() is available if we uncomment line (***) below and
* comment the previous line.
* Note that tail() is destructive.
* After a tail operation, if we need the original value of the list, we
* should reconstruct it by ‘consing’ the head of the list.
* ===
*/

import java.util.*; // needed for using ArrayList<T> and Iterator

public class List<T> { // it is ok if we do not use cloneCopy()

// public class List<T> implements Cloneable { // (***) In order to use
// cloneCopy(), uncomment this line and comment the previous one.

private ArrayList<T> list;

public List() { // constructor
list = new ArrayList<T>();

}

public void cons(T datum) { // the head of the list is to the right,
list.add(datum); // not to the left.

}

public T head() { // the head of the list is to the right.
if (list.isEmpty()) // It is the last element: >------------+

{System.out.println("Error: head of empty list!");};// |
T obj = list.get(list.size() - 1); // <-------------------------+

return obj; // get(int i) is a method of ArrayList<T>
}

public void tail() { // destructive tail() method
if (list.isEmpty())

{System.out.println("Error: tail of empty list!");};
list.remove(list.size() - 1);

} // size() is a method of ArrayList<T>

40 3. CHOP-AND-EXPAND PARSERS FOR CONTEXT-FREE LANGUAGES

public boolean isSingleton() {
return list.size() == 1; // size() is a method of ArrayList<T>

}

public boolean isEmpty() {
return list.isEmpty(); // isEmpty() is a method of ArrayList<T>

}

/**
* ---------------- Examples of isEmpty() --------------------------------
*
* System.out.println(new List<Integer>().isEmpty()); prints true
* System.out.println(new List().isEmpty()); prints true
* List <Integer> v = new List();
* System.out.println(v.isEmpty()); prints true
* System.out.println(v == null); prints false
* ---
*/

public void makeEmpty() {
list.clear(); // clear() is a method of ArrayList<T>

}

// -------------------------- Printing a list ----------------------------
// We assume that an element of the list has a toString() method.
public void listPrint() {

System.out.print("[");
for (Iterator iter = list.iterator(); iter.hasNext();) {

System.out.print((iter.next()).toString() + " ");
};

System.out.print("]");
}

// -------------------------- Making a copy of a list without clone() ----
public List<T> copy() {

List<T> copyList = new List<T>();
for (Iterator<T> iter = list.iterator(); iter.hasNext();) {

copyList.list.add(iter.next());
};
return copyList;

}

// -------------------------- Making a copy of a list with clone() -------
public List<T> cloneCopy() { // see (***) above

try { List<T> copyList = (List<T>)super.clone();
copyList.list = (ArrayList<T>)list.clone();
return copyList;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

}
/**
* ---
* If we have the program fragment:
*
* Integer k = new Integer(6);
* List<Integer> la = new List<Integer>();
* la.cons(k);

3.2. CHOP-AND-EXPAND CONTEXT-FREE PARSER IN JAVA 41

* System.out.print("\nla: "); la.listPrint();
* List<Integer> lb = new List<Integer>();
* la.cons(new Integer(4));
* la.cons(9); // Java 1.5: we can write: 9, instead of: new Integer(9)
* lb = la.cloneCopy();
* System.out.print("\nlb: "); lb.listPrint();
* System.out.print("\nla: "); la.listPrint();
*
* After compilation we get:
* Note: ./List.java uses unchecked or unsafe operations.
* Note: Recompile with -Xlint:unchecked for details.
*
* When running the program we get:
* la: [6]
* lb: [6 4 9]
* la: [6 4 9]
* ---
* Note: the head of the list is to the right.
* ---
*/

/**
* ===
* CHOP-AND-EXPAND PARSER FOR CONTEXT FREE GRAMMARS
* Filename:"CFParser.java". Thanks to R. M. Burstall and E. W. Dijkstra.
*
* ---
* --- TYPES ---
* List<char> = String
* State = <sentential_form, string>
* List<State> = list of states
* Rsides = list of String : list of right hand sides
* SyRs = <Sy,Rs> = <char:symbol, Rsides:Rs = its right hand sides>
* Gram = List<SyRs> : list of SyRs pairs (type of a grammar)
* ---
*
* We use GENERIC TYPES to avoid the redefinition of the functions
* head(), tail(), cons(), isEmpty(), makeEmpty() for:
*
* - list of String (type: List<String>). It is the type of the list of all
* right hand sides of a nonterminal. This type is also called: Rsides.
* - list of States (type: List<State>)
* - list of SyRs (type: List<SyRs>). It is the type of a grammar. It is
* the type of the list of <nonterminal, list of its right hand sides>.
* This type is also called: Gram.
* Redefinition of functions is necessary for printing and appending lists
* of different types.
* ---
* The input grammar is given as a string named ’gg’ of type ’Gram’,
* according to the following productions:
*
* character ::= ’a’..’d’ | ’f’..’z’ | ’A’..’Z’
* (’e’ is reserved: see below)
* charlist ::= character | character charlist (that is, String)
* Rsides ::= ’e’ | charlist | charlist ’|’ Rsides
* SyRs ::= char ’>’ Rsides
* grammar ::= syRs | syRs ’;’ grammar
*
* The empty productions, also called epsilon-rules, are allowed.

42 3. CHOP-AND-EXPAND PARSERS FOR CONTEXT-FREE LANGUAGES

* The character ’e’ is reserved for denoting the right hand side of an
* empty production, that is, the empty charlist.
*
* For instance:
* gg="P>b|aQQ;Q>e|b|bP" stands for: P->b, P->aQQ, Q->e, Q->b, Q->bP
* In P>b|aQQ;Q>e|b|bP we have that:
* _/ aQQ is a string: "aQQ"
* ___/ b|aQQ is a list of elements of type String, i.e., an Rsides.
* It is: ["b", "aQQ"]
* _____/ P>b|aQQ is a SyRs, i.e., a pair of a symbol and its
* right hand sides. It is: <P, ["b", "aQQ"]>
* The axiom of the grammar is the nonterminal of the left hand side
* of the first production of the grammar.
*
* The string to parse is the string named ’stp’, and
* ’stp’ is either a non-empty sequence of characters from the set
* {’a’,...,’d’,’f’,...,’z’} or ’stp’ is the empty sequence named ’e’.
*
* -------------------- ASSUMPTIONS ON THE INPUT ---------------------------
* (1) When writing the input grammar, the productions relative to the same
* nonterminal should be grouped together. For instance, we have to
* write "P>a|aQQ" (instead of "P>a;P>aQQ").
* (2) The input strings to parsed should be written according to the above
* rules we have stated for ’stp’.
*
* ---
* The grammar should not be left recursive, that is, it should not be the
* case that a nonterminal A exists such that A r ->* A s, for some strings
* r and s of terminal and/or nonterminal symbols of the grammar.
*
* ---
* The function ’parseString’ is used both for:
* (1) getting one of the alternatives of the right hand sides of the
* productions, and
* (2) generating the list ’stringtoparse’ of characters from the string
* ’stp’.
* In both cases, in fact, we look for a list of characters.
*
* ---
* The context-free parser works by exploring in a depth first fashion all
* possible words generated by the grammar and consistent with the
* character at hand in the string to parse.
*
* ---
* There is a global variable ’traceon’. If it is set to ’true’ then one
* can see the various steps through the execution of the program, and in
* particular, the sequence of the lists of states which are generated
* during the depth first visit of search space.
*
* ---
* After performing a tail() operation on a list we need to reconstruct
* the list which, otherwise, is modified (see statement marked by (***)).
* ===
*/

import java.util.*;

// ---

3.2. CHOP-AND-EXPAND CONTEXT-FREE PARSER IN JAVA 43

// string with an index pointing at the next available character.

class IndexString {
public String string;
public int index;

public IndexString(String string) { // constructor
this.string = string;
this.index = 0;

}

public void back(){
index--;

}

public char getCh() {
char x;
if (index < string.length()) { x = string.charAt(index); }
else x = ’$’; index++; return x;

}
}

//--
// state : <String:sentential_form, String:input_string>
class State {

public String sentForm;
public String inString;

public State() {
this.sentForm = "";
this.inString = "";

}
// state : printing function

// for reasons of readability the empty string is printed as "e"
public void statePrint() {

String sentForm1 = sentForm.equals("") ? "e" : sentForm;
String inString1 = inString.equals("") ? "e" : inString;
System.out.print("(" + sentForm1 + ", " + inString1 + ")");

}
// ------------------------
// List<State> : append function

public static List<State> stAppend(List<State> list1,
List<State> list2) {

List<State> stl = new List<State>();
if (list1.isEmpty()) {stl = list2.copy(); return stl;}
else {State st = list1.head(); list1.tail();

stl = stAppend(list1,list2); stl.cons(st);
list1.cons(st); // reconstructing the list list1 (***)
return stl;}

}
// ------------------------
// List<State> : printing functions

public static void stlPrintNE(List<State> L) {
if (!L.isEmpty())

{State h = L.head(); h.statePrint(); L.tail();
if (!L.isEmpty()) {System.out.print(" ");}; stlPrintNE(L);
L.cons(h); //reconstructing the list L of states (***)

};
}

44 3. CHOP-AND-EXPAND PARSERS FOR CONTEXT-FREE LANGUAGES

public static void stlPrint(List<State> L) {
if (L.isEmpty()){System.out.print(" []");}
else {System.out.print(" ["); stlPrintNE(L); System.out.print("]");}

}
}

// ---
// SyRs: <char:symb (left hand side), List<String>:rhss (right hand sides)>
class SyRs {

public char symb;
public List<String> rhss;

public SyRs() {
this.symb = ’-’;
this.rhss = null;

}
// ------------------------
// List<String> = Rsides:printing functions

public static void rPrintNE(List<String> L) {
if (!L.isEmpty()) {

String h = L.head();
if (h.equals("")) {System.out.print("e");}
else {System.out.print(h);};
L.tail();
if (!L.isEmpty()) {System.out.print(" | ");};
rPrintNE(L);
L.cons(h); // reconstructing the list L (***)

}
}

public static void rPrint(List<String> L) {
if (L.isEmpty()) {System.out.print("<>");}
else {System.out.print(" "); rPrintNE(L); System.out.print(" ");}

}
// ------------------------
// SyRs : printing function

public static void SyRsPrint(SyRs r) {
System.out.print(r.symb + " -> "); rPrint(r.rhss);
}

}
// ---
// Gram : List<SyRs> (it is the type of a grammar)

class Gram {
public List<SyRs> gg;

public Gram() {
this.gg = new List<SyRs>();

}
// ------------------------
// List<SyRs> = Gram: printing functions

public static void printGramNE(List<SyRs> L) {
if (!L.isEmpty())

{SyRs h = L.head(); SyRs.SyRsPrint(h);
System.out.print("\n"); L.tail();
if (!L.isEmpty()) {System.out.print(" ");}; printGramNE(L);
L.cons(h);

}
}

3.2. CHOP-AND-EXPAND CONTEXT-FREE PARSER IN JAVA 45

public static void printGram(List<SyRs> L) {
if (L.isEmpty()) {System.out.print("{ }");}
else {System.out.print("{ "); printGramNE(L); System.out.print("}");}

}
}

// ---
public class CFParser {
//--

// Making the grammar from the string gg
public static String parseString(IndexString f) {

char x = f.getCh();
String chl;
if ((’a’<=x && x<=’z’)||(’A’<=x && x<=’Z’))

{ chl = x + parseString(f); }
else { chl = ""; };
return chl;

}

// ---
public static List<String> parseRsides(IndexString f) {
List<String> rs = new List<String>();
String chl2 = parseString(f); f.back();
// this is the case of the epsilon production
if (chl2.equals("e")) {chl2 = "";};
char x = f.getCh();
// x can be either ’;’ or ’$’ or ’|’. No other characters are possible.
if ((x==’;’) || (x==’$’)) {rs.cons(chl2); return rs; }
else { // here we have: x==’|’

rs = parseRsides(f); rs.cons(chl2); return rs; }
}

// ---
public static SyRs parseprod(IndexString f) {
SyRs sRs1 = new SyRs(); sRs1.symb = f.getCh();
char x = f.getCh();
if (x!=’>’) {System.out.print("Error in production.\n");};
List<String> rs1 = new List<String>();
rs1 = parseRsides(f); sRs1.rhss=rs1; return sRs1;

}

// ---
public static List<SyRs> parseGram(IndexString f)

throws RuntimeException {
SyRs sRs1 = parseprod(f); f.back();
char x = f.getCh();
// x can be either ’;’ or ’$’. No other characters are possible.
if (x==’$’) { List<SyRs> gram1 = new List<SyRs>(); gram1.cons(sRs1);

return gram1; }
else if (x==’;’) {List<SyRs> gram2 = new List<SyRs>();

gram2 = parseGram(f); gram2.cons(sRs1);
return gram2; }

else { throw new RuntimeException("Error parseGram!"); }
}

//--

46 3. CHOP-AND-EXPAND PARSERS FOR CONTEXT-FREE LANGUAGES

// trace function

public static void trace(boolean traceon, String s, List<State> stl) {
if (traceon)

{System.out.print("\n" + s +":\n"); State.stlPrint(stl);};
}

//--
// visiting the search space: constructing new lists of states

public static List<String> rightSides(char s, List<SyRs> gr)
throws RuntimeException {

if (gr.isEmpty())
{ throw new RuntimeException ("No production for "+ s +

" in the grammar.\n");}
else {SyRs sR = new SyRs(); sR = gr.head();

if (sR.symb == s) { return sR.rhss; }
else {List<String> rs = new List<String>();

gr.tail(); rs = rightSides(s,gr);
gr.cons(sR); //reconstructing the grammar gr (***)
return rs; }

}
}

//--
// final function

public static boolean isFinal(State st) {
return (st.sentForm.equals("")) && (st.inString.equals(""));

}

//--
// chop function

public static void chop(State st) { // st : the state st is modified
st.sentForm = st.sentForm.substring(1, st.sentForm.length());
st.inString = st.inString.substring(1, st.inString.length());

}
//--
// expand function

public static List<State> expand(List<String> rs, String v, String w) {
State st = new State();
List<State> stl = new List<State>();
if (rs.isEmpty()) { stl.makeEmpty(); return stl; }
else {String cs = rs.head();

rs.tail(); stl = expand(rs,v,w);
rs.cons(cs); // reconstructing the list rs (***)
st.sentForm = cs.concat(v);
st.inString = w;
stl.cons(st); return stl; }

}

//--
// exists function
//
// This code is directly derived from the code of the exists function
// in functional style.
//

3.2. CHOP-AND-EXPAND CONTEXT-FREE PARSER IN JAVA 47

private static boolean exists (boolean traceon, List<State> stl1,
List<SyRs> gr) {

if (stl1.isEmpty()) { return false; }
// depth first visit of the search space

else {State st1 = new State(); st1 = stl1.head();
String st1sentForm = st1.sentForm;
String st1inString = st1.inString;

if (isFinal(st1)) { return true; }
else if (!(st1sentForm.equals("")) &&

(’A’<=st1sentForm.charAt(0)) && (st1sentForm.charAt(0)<=’Z’))
{List<State> stl2 = new List<State>();
List<String> rs = new List<String>();
stl1.tail();
rs = rightSides(st1sentForm.charAt(0),gr);

// first character chopped
st1sentForm = st1sentForm.substring(1, st1sentForm.length());
stl2 = expand(rs,st1sentForm,st1inString);
stl1 = State.stAppend(stl2,stl1);
trace(traceon,"expand",stl1); // tracing
return exists(traceon,stl1,gr);}

else if (!(st1sentForm.equals("")) && !(st1inString.equals(""))
&& (((’a’<=st1sentForm.charAt(0)) && (st1sentForm.charAt(0)<=’d’)) ||

((’f’<=st1sentForm.charAt(0)) && (st1sentForm.charAt(0)<=’z’)))
&& (st1sentForm.charAt(0) == st1inString.charAt(0)))

{chop(st1); stl1.tail(); stl1.cons(st1);
trace(traceon,"chop",stl1); // tracing
return exists(traceon,stl1,gr);}

else {stl1.tail();
trace(traceon,"fail",stl1); // tracing
return exists(traceon,stl1,gr);}

}
}

//--
// main program

public static void main(String[] args) {
System.out.print("1: " + new List().isEmpty());
System.out.print("2: " + new List<Integer>().isEmpty());

/** --
* gg : given-grammar
* stp : string-to-parse
* ---
*/

String gg ="P>b|aQQ;Q>e|b|bP"; // example 0 (with an empty production)
String stp="ab"; // true
boolean traceon = true; // variable for tracing the execution

//--
// From the string gg to the List<SyRs> gr0.
// We first construct the IndexString f from the String gg.
// gr0 is the grammar encoded by the given string gg.
//--

IndexString f = new IndexString(gg);
List<SyRs> gr0 = new List<SyRs>();

48 3. CHOP-AND-EXPAND PARSERS FOR CONTEXT-FREE LANGUAGES

char axiom = gg.charAt(0);
if ((’A’<=axiom) && (axiom<=’Z’))

{System.out.print("\nThe input grammar is ");
System.out.print("(\"e\" denotes the empty string in the rhs):\n");
gr0 = parseGram(f);

/**
* ---
* In order to avoid parsing, the above statement ’gr0 = parseGram(f);’ can
* be replaced by the following statements (erase the *’s, please):
*
* SyRs Prs = new SyRs(); Prs.symb=’P’; // P
* String chl1P = "b"; // b
* String chl2P = "aQQ"; // |aQQ
* List<String> rsP = new List<String>();
* rsP.cons(chl2P); rsP.cons(chl1P); // b|aQQ
* Prs.rhss = rsP; // P>b|aQQ
*
* SyRs Qrs = new SyRs(); Qrs.symb=’Q’; // Q
* String chl1Q = ""; // e
* String chl2Q = "b"; // |b
* String chl3Q = "bP"; // |bP
* List<String> rsQ = new List<String>();
* rsQ.cons(chl3Q); rsQ.cons(chl2Q); rsQ.cons(chl1Q);
* // e|b|bP
* Qrs.rhss = rsQ;
* //gr0 corresponding to gg="P>b|aQQ;Q>e|b|bP"
* gr0.cons(Qrs); gr0.cons(Prs);
* ---
*/

Gram.printGram(gr0); }
else System.out.print("Not a grammar in input.");

System.out.print("\n\nThe axiom is " + axiom + ".\n");

State st = new State();
st.sentForm = axiom + ""; // from char to String (of length 1).
st.inString = stp;
List<State> stl = new List<State>();
stl.cons(st);

System.out.print("The initial list of states is:\n");
State.stlPrint(stl);
boolean ans = exists(traceon,stl,gr0);

System.out.print("\n\nThe following string of characters:\n ");
System.out.print(stp + "\nis ");
if (!ans) {System.out.print("NOT ");};
System.out.print("generated by the given grammar.\n");
} // end of main

}

/**
* When printing the statelist the head is to the left.
* input: output:
* ---
* javac CFParser.java
* java CFParser

3.2. CHOP-AND-EXPAND CONTEXT-FREE PARSER IN JAVA 49

*
* The input grammar is ("e" denotes the empty string in the rhs):
* { P -> b | aQQ
* Q -> e | b | bP
* }
*
* The axiom is P.
* The initial statelist is:
* [(P, ab)]
* expand:
* [(b, ab) (aQQ, ab)]
* fail:
* [(aQQ, ab)]
* chop:
* [(QQ, b)
* expand:
* [(Q, b) (bQ, b) (bPQ, b)]
* expand:
* [(e, b) (b, b) (bP, b) (bQ, b) (bPQ, b)]
* fail:
* [(b, b) (bP, b) (bQ, b) (bPQ, b)]
* chop:
* [(e, e) (bP, b) (bQ, b) (bPQ, b)]
*
* The following string of characters:
* ab
* is generated by the given grammar.
* ---

*/
/**
* Examples already prepared:
* String gg="P>b|aQQ;Q>e|b|bP"; // example 0 - with empty production
* String stp="a"; // true
* String stp="abaa"; // false
* String stp="aba"; // true

* String gg="P>a|aQ;Q>b|bP"; // example 1
* String stp="ab"; // true
* String stp="ababa"; // true
* String stp="aaba"; // false

* String gg="P>a|bQ;Q>b|aQ"; // example 2
* String stp="baab"; // true
* String stp="bbaaba"; // false

* String gg="S>aB|bA;A>bAA|a|aS;B>aBB|b|bS";// same numbers of a’s and b’s
* String stp="bbabaaab"; // true
* String stp="babaaab"; // false

* String gg="S>a|aAS;A>SbA|ba|SS"; // example 2.7 of Hopcroft-Ullman
* String stp="aabaaa"; // true
* String stp="aabba"; // false
* String stp="aabbaa"; // true
* ---
*/

50 3. CHOP-AND-EXPAND PARSERS FOR CONTEXT-FREE LANGUAGES

3.3. Chop-and-Expand Context-Free Parser in a Logic Language

Here is a logic program which realizes a Chop-and-Expand Parser.

Chop-and-Expand Parser
1. parse(G, [], []) ←
2. parse(G, [A|X], [A|Y]) ← terminal(A), parse(G, X, Y) // CHOP

3. parse(G, [A|X], Y) ← nonterminal(A), member(A→B, G), // EXPAND

append(B, X, Z), parse(G, Z, Y)
4. member(A, [A|X]) ←
5. member(A, [B|X]) ← member(A, X)
6. append([], L, L) ←
7. append([A|X], Y, [A|Z]) ← append(X, Y, Z)

Together with these seven clauses we also need the clauses which define the terminal
symbols and the nonterminal symbols. Recall that in logic programming [A|X] repre-
sents the list whose head is the element A and whose tail is the list X. In particular,
if [A|X] = [2, 3, 1, 1] then A = 2 and X = [3, 1, 1]. All constants in Prolog should
begin with a lower case letter, so that, in particular, the axiom S is represented by
the character s.

The first argument of parse is a context-free grammar, the second argument is
a list of terminal symbols and nonterminal symbols (that is, a sentential form), and
the third argument is a word represented as a list of terminal symbols. We assume
that context-free grammars are represented as lists of productions of the form x→y,
where x is a nonterminal symbol and y is a list of terminal and nonterminal symbols.

We have that parse(G, [s], W) holds iff from the symbol s we can derive the
word W using the grammar G, that is, W is a word of the language generated by G.

Example 3.3.1. Let us consider the context-free grammar G = 〈{a, b}, {S},
{S→aSb, S→ab}, S〉. It is represented by the clauses:

terminal(a) ←
terminal(b) ←
nonterminal(s) ←

together with the list [s→ [a, s, b], s→ [a, b]] which represents its productions. The
left hand side of the first production is assumed to be the start symbol s. For this
grammar G the query ← parse([s → [a, s, b], s → [a, b]], [s], [a, a, b, b]) evaluates to
true, and this means that the word aabb belongs to the language generated by G.

Note that in the clause member(A, [B|X]) ← member(A, X), we do not re-
quire that A is different from B. Indeed with this clause, the query of the form
← member(A, l), where A is a variable and l is a ground list, generates by backtrack-
ing all members of the list l with their multiplicity. "

More examples of Prolog programs for parsing words generated by grammars can
be found in Section 10.1 on page 245.

CHAPTER 4

Parsers for Deterministic Context-Free Languages:
LL(k) Parsers

In this chapter we will present the so called LL(k) parsers for deterministic
context-free languages. We assume that the reader is familiar with the basic notions
of context-free languages and context-free grammars which can be found in classical
books such as [9, 10]. In particular, we assume that the reader knows the notions of
unfolding and folding of context-free productions we have given in Definitions 1.2.12
(on page 14) and 1.2.13 (on page 15).

Unless otherwise specified, VT , VN , and S denote respectively, the set of terminal
symbols, the set of nonterminal symbols, and the start symbol of the grammars we
will consider. By V we denote the set VT ∪ VN .

4.1. Introduction to LL(k) Parsing

The LL(k) parsers are algorithms for parsing the languages which are generated
by the LL(k) grammars (see Definition 4.1.1 below). In those grammars we assume
the following hypotheses.

Hypotheses for LL(k) Parsing, for k≥0.

(i) No useless symbols occur in the productions.
(ii) ε-productions may be present for the start symbol or other symbols of VN .
(iii) The symbol $ does not belong to VT ∪ VN .
(iv) The input string in V ∗

T to be parsed is terminated by $.

We begin by giving the formal definition of an LL(k) grammar, for any k ≥ 0.
Recall that, as indicated on page 10, given a string w and a natural number k ≥ 0,
the prefix w k of length k of the string w is defined as follows:

w k = { w if |w| ≤ k
u if w = uv for some u, v ∈ V ∗ and |u|=k.

Definition 4.1.1. [LL(k) Grammar] For any k ≥ 0, a context-free grammar
(possibly with ε-productions) is an LL(k) grammar if for any x, y, z ∈ V ∗

T and for
any α, β, γ ∈ (VN ∪ VT)∗, we have that:

if (1) S →∗
lm xAα →lm xβα →∗

lm xy and

(2) S →∗
lm xAα →lm xγα →∗

lm xz and

(3) y
k

= z k

then β=γ.

51

52 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

Note that (1) and (2) are two leftmost derivations of two (possibly different) words
xy and xz.

Definition 4.1.2. [LL(k) Language] For any k ≥ 0, an LL(k) language is a
language such that there exists an LL(k) grammar which generates it.

In what follows we will also need the following definition of a strong LL(k) grammar.

Definition 4.1.3. [Strong LL(k) Grammar] For any k≥0, a context-free gram-
mar (possibly with ε-productions) is a strong LL(k) grammar if for any x1, x2, y, z ∈
V ∗

T and for any α1,α2, β, γ ∈ (VN ∪ VT)∗ we have that:

if (1) S →∗
lm x1Aα1 →lm x1βα1 →∗

lm x1y and

(2) S →∗
lm x2Aα2 →lm x2γα2 →∗

lm x2z and

(3) y
k

= z k

then β=γ.

Note that (1) and (2) are two leftmost derivations of two (possibly different) words
x1y and x2z.

One can show the following fact (see also Fact 4.3.15 on page 73).

Fact 4.1.4. [LL(0) Grammar and LL(0) Language] Any LL(0) grammar or
strong LL(0) grammar generates a language L ⊆ V ∗

T which is either the empty set of
words or it consists of one word only.

As a consequence of this fact, Fact 4.2.11 on page 58, and Theorem 4.3.17 on
page 73, we have that the parsing problem when we deal with LL(0) grammars, or
strong LL(0) grammars, or LL(0) languages, is trivial. Thus, unless otherwise spec-
ified, when referring to LL(k) grammars (or languages) or strong LL(k) grammars
(or languages), we will assume that k is greater than or equal to 1.

An LL(k) parser, also called a k-predictive parsing algorithm, is a deterministic
pushdown automaton (see Figure 4.1.1 on the facing page) which once initialized,
performs its moves according to a table T , called a parsing table, as we will indicate.

If the string to parse is the string w, the string given in input to the parsing
pushdown automaton is w $. The initial configuration of the stack is the string: S $
and S is at the top of the stack. Recall that, unless otherwise specified, we assume
that the stack is represented as a string with the top symbol on the left.

Definition 4.1.5. [Words Accepted by LL(k) Parsers] A word w is accepted
by an LL(k) parser, for k≥1, if the parser, starting from the configuration in which:
(i) the input tape holds the word w $, (ii) the head of the input tape (or input head)
points at the leftmost symbol of w, and (iii) the stack holds S $, being S the top of
the stack, eventually reaches the configuration where: (i) the head of the input tape
points at $, and (ii) the top of the stack is $ and no other symbols are on the stack.

Note that when presenting the LL(k) parsers, some textbooks use different conven-
tions. For instance, some authors do not use the symbol $ at the bottom of the stack
and do not add the symbol $ at the right end of the input string.

4.2. LL(1) PARSERS 53

.

)

!

/ !

$S

w1 w2 wn $

: stack

The head moves
from left to right

top of the stack parsing table T

(depicted for LL(1) parsing)

$a

S

A

. . .

b . . .−+

n
o
n
te

rm
in

a
ls

terminals

LL(k) parser using
the parsing table T : !

: the input string is the string to be parsed
terminated by $

Figure 4.1.1. A deterministic pushdown automaton for LL(k) pars-
ing, with k ≥ 1. The string to be parsed is w1w2 . . . wn. Initially, the
stack has two symbols only: (i) S on top of the stack, and (ii) $ at the
bottom of the stack. The input string is the string to be parsed with
the extra final symbol $. We have depicted the parsing table T for
the LL(1) parsers. For the LL(k) parsers, with k > 1, different tables
should be used.

4.2. LL(1) Parsers

In this section we will study the LL(1) parsers and the LL(1) grammars. In these
parsers the parsing automaton depicted in Figure 4.1.1 makes its moves according to
a table T , called the parsing table, which is a matrix whose rows are labeled by the
nonterminal symbols in VN , and whose columns are labeled by the terminal symbols
in VT . In the table T there is also one extra column which is labeled by the symbol $.

A move of the parsing automaton is either a chop move or an expand move. These
moves are specified as follows (see also Figure 4.2.1 on the following page).

chop move:
if the input head is pointing at a terminal symbol, say a, and the same
symbol a is at the top of the stack, then the input head is moved one cell
to the right and the stack is popped;

expand move:
if the input head is pointing at a terminal symbol, say a, and the top of the
stack is a nonterminal symbol, say A, then the stack is popped and a new
string α1α2 . . .αn, with αi ∈ V , for i = 1, . . . , n, is pushed onto the stack if
the production A → α1α2 . . .αn is at the entry (A, a) of the parsing table
T (thus, after this move the new top symbol of the stack will be α1).

54 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

.

)

.

)

.

)

.

)

before :

stack

input string

after :

$a

$

a

expand A with production A → B1B2 . . . Bk

. $

before :

chop a

stack

input string

after :

$

. . . b . . . $a

a Z . . .

!

!

/

$

. . . a b . . . $

. . .Z

. . .

ZAB1 B2 Bk $Z

Figure 4.2.1. The chop move and the expand move of an LL(1) parser.
a and b are symbols in VT and Z is a symbol in VT ∪ VN ∪ {$}.

In order to explain how to construct the parsing table T of the parsing automaton
for the language generated by an LL(1) grammar, we need the following notions of
First1 and Follow 1 [2].

We first introduce the notion of First1(x).
For every x ∈ V , First1(x) is the set of the terminal symbols in VT beginning any

string β such that x →∗ β, with the stipulation that First1(x) should have the extra
element ε iff either x is ε or x is a nullable nonterminal symbol (see Definition 1.2.16
on page 15).

We can compute the value of First1(x) as indicated by the following definition.
Note that for every x ∈ V , the definition of First1(x) depends, in general, on the
definition of First1(y) for all y ∈ V .

Definition 4.2.1. [The Set First1(x) for Symbols] Let us consider a context-
free grammar, possibly with ε-productions. First1 is a function from V ∪ {ε} to the
set of all subsets of VT ∪ {ε}. For every x ∈ V ∪ {ε}, First1(x) is the smallest subset
of VT ∪ {ε} defined as follows:

4.2. LL(1) PARSERS 55

(i) First1(ε) = {ε}.

(ii) For a ∈ VT , First1(a) = {a}.

(iii) For A ∈ VN ,First1(A) is a set of terminal symbols which is initialized to ∅
and is modified according to the following rule.

For each production A→B1B2 . . . Bk−1Bk,
where: (1) k≥0, and (2) for i=1, . . . , k, Bi ∈ VT ∪ VN ,

add the elements of First1(B1) − {ε} and
if B1 →∗ ε then add the elements of First1(B2) − {ε} and
if B1B2 →∗ ε then add the elements of First1(B3) − {ε} and
· · ·

if B1B2 . . . Bk−1 →∗ ε then add the elements of First1(Bk) − {ε} and
if B1B2 . . . Bk−1Bk →∗ ε then add ε.

Note that if B1B2 . . . Bk →∗ ε then A →∗ ε and ε ∈First1(A). The following fact is
a straightforward consequence of the definition of the function First1.

Fact 4.2.2. For any A ∈ VN , if A →∗ ε then the empty string ε ∈First1(A). In
particular, if A → ε then ε ∈First1(A).

In Definition 4.2.1 we have stipulated that First1(x) is the smallest subset of
VT ∪ {ε} satisfying Conditions (i), (ii), and (iii). The reason for that stipulation is
that, since First1(x) may depend on itself (and, this happens, for instance, when in
the given grammar there is a production of the form A → AB), there could be more
than one subset of VT ∪ {ε} satisfying Conditions (i), (ii), and (iii).

We can extend the above definition of the function First1 from elements in V ∪{ε}
to strings in V ∗, by defining a new function, also called First1, from V ∗ to the set of
all subsets of VT ∪ {ε} as follows.

Definition 4.2.3. [The Set First1(α) for Strings] Let us consider a context-
free grammar, possibly with ε-productions. First1 is a function from V ∗ to the set of
all subsets of VT ∪ {ε}, such that for all x ∈ V and α ∈ V ∗,

(i) First1(ε) = {ε}

(ii) First1(xα) = if x →∗ ε then (First1(x) − {ε})∪ First1(α)
else First1(x)

where First1(x) on the right hand side is defined as in Definition 4.2.1 on the facing
page.

Fact 4.2.4. For any string α ∈ V ∗, we have that ε ∈ First1(α) iff α →∗ ε.

Now we define the set Follow 1(A) for any nonterminal A.
For any nonterminal A ∈ VN , Follow 1(A) is the smallest subset of VT ∪ {$} which

includes every symbol occurring in a sentential form derived from S $ immediately to
the right of A, that is, for all α, β ∈ V ∗ and b ∈ VT ∪ {$},

if S $ →∗ αAbβ then b ∈Follow 1(A).

Definition 4.2.5. [The Set Follow 1(A) for Nonterminals] Let us consider
a context-free grammar with axiom S, possibly with ε-productions. Follow 1 is a

56 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

function from VN to the set of all subsets of VT ∪ {$} such that for each nonterminal
A ∈ VN , Follow 1(A) is the smallest subset of VT ∪ {$} which satisfies the following
rules.

Rule (i). If the nonterminal A is the axiom S then $ ∈ Follow 1(A);

Rule (ii). If there is a production B → αAβ with α, β ∈ V ∗ and β →∗ ε
then Follow 1(B) ⊆ Follow 1(A);

Rule (iii). If there is a production B → αAβ with α, β ∈ V ∗,
then (First1(β) − {ε}) ⊆ Follow1(A).

Note that for every A ∈ VN , the definition of Follow 1(A) depends, in general, on the
definition of Follow 1(B) for all B ∈ VN , and the definition of First1(x) for all x ∈ V .

Note also that the premises of Rules (ii) and (iii) are not mutually exclusive,
because the premise of Rule (iii) may hold independently of the fact that β →∗ ε or
β 2→∗ ε. If β = ε then Rule (iii) is superfluous because its conclusion says that ∅ ⊆
Follow1(A).

In Definition 4.2.5 we have stipulated that Follow 1(x) is the smallest subset (and
not any subset) of VT ∪ {$} satisfying Rules (i), (ii), and (iii). The reason for that
stipulation is that, since Follow 1(x) may depend on itself (and, this happens, for
instance, when in the given grammar there is a production of the form A → BA),
there could be more than one subset of VT ∪ {$} satisfying Rules (i), (ii), and (iii).

Rule (i) of Definition 4.2.5 on the previous page is motivated by the fact that we
have stipulated that the string given in input to the parsing automaton, is the string
to be parsed followed by the symbol $. We have that Follow 1(S) = {$} if S does not
occur on the right hand side of any production.

In order to motivate Rule (ii) and, in particular, the inclusion Follow 1(B) ⊆
Follow 1(A), let us consider the grammar with axiom S and the following produc-
tions:

S → Bb B → A A → Aa | b

This grammar generates the language ba∗b. (Indeed, A and B generate the lan-
guage ba∗.) For this grammar, since there is the production B → A, we have that
Follow 1(B) = {b} and Follow 1(A) = {a, b}, as one can see from the derivation
S → Bb → Ab → Aab → bab.

Note that, as a particular instance of Rule (iii), we have that if there is a produc-
tion B → αAxβ with α, β ∈ V ∗, x ∈ V , and x 2→∗ ε then First1(x) ⊆ Follow 1(A).
This is a consequence of Fact 4.2.4 on the preceding page.

The following fact is a straightforward consequence of the definition of the function
Follow1.

Fact 4.2.6. For any A ∈ VN , the empty string ε 2∈ Follow 1(A).

Note that in the theory of LL(k) parsing we do not consider augmented grammars
(see Definition 5.1.3 on page 76) and thus, in particular, we consider neither the new
start symbol S ′ nor the extra production S ′ → S $.

In the case of an LL(1) parser the table T is constructed as follows.

4.2. LL(1) PARSERS 57

Algorithm 4.2.7. Constructing the LL(1) parsing table for a given LL(1) gram-
mar G.

For each production A → α of G with A ∈ VN and α ∈ (VT ∪ VN)∗,

Rule (1): if a ∈First1(α) then we place A → α in row A and column a of the table T ,
and
Rule (2): if ε ∈First1(α) then for each b ∈Follow 1(A) we place A → α in row A
and column b of the table T . Note that, in particular, Rule (2) is applied if α = ε,
because in that case ε ∈First1(α).

One of the columns of the LL(1) parsing table is labeled by $ because we stipulate
that $ ∈ Follow 1(S), where as usual, S is the axiom of the grammar.

Note that given any context-free grammar G, we can construct a parsing table T
by using this Algorithm 4.2.7. One can show that if an entry of the parsing table T
is multiply defined (that is, more than one production must be placed in the same
entry of the table T) then the given grammar G is not an LL(1) grammar.

Once the parsing table T has been constructed, it can be used by the deterministic
pushdown automaton of Figure 4.1.1 on page 53 for parsing any given input string w $.
We have the following fact which we state without proof.

Fact 4.2.8. Let us consider the parsing automaton of Figure 4.1.1 on page 53
and let us assume that it is working using the table T . Initially, the stack of the
automaton has the string S $ (with S as top symbol and $ on the bottom of the
stack) and the input string is w $.
(i) If that automaton should use an entry of T without any production, then the
input string w does not belong to the language generated by the given grammar G.
(ii) If the input head of that automaton points at the symbol $ in the input string
and the top of the stack is $ (in this case it could make a chop move of $), then the
input string w is accepted by the parsing automaton and w belongs to the language
generated by the given grammar G.

We have the following theorem.

Theorem 4.2.9. [LL(1) Grammars and LL(1) Languages] The LL(1) gram-
mars are those which generate languages whose words are accepted by the deter-
ministic pushdown automaton of Figure 4.1.1 on page 53, with the parsing table
constructed as indicated by Algorithm 4.2.7.

The following result which we also state without proof, characterizes the LL(1) gram-
mars and the strong LL(1) grammars.

Theorem 4.2.10. [LL(1) Grammars and Strong LL(1) Grammars] (i) A
context-free grammar G is an LL(1) grammar iff for every pair of distinct productions
A → α and A → β with α 2= β, and for every string w A σ such that S →∗

lm w A σ
with w ∈ V ∗

T and σ ∈ V ∗, we have that:

First1(ασ)∩First1(β σ) = ∅.

58 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

(ii) A context-free grammar G is a strong LL(1) grammar iff for every pair of distinct
productions A → α and A → β with α 2= β, we have that:

First1(αFollow 1(A))∩First1(β Follow 1(A)) = ∅.

As a consequence of this theorem we have the following fact.

Fact 4.2.11. [Equivalence of LL(1) Grammars and Strong LL(1) Gram-
mars] The notions of an LL(1) grammar and a strong LL(1) grammar coincide.

Example 4.2.12. [An LL(1) Grammar and Its LL(1) Parsing Table] Let us
consider the grammar G with axiom S and whose productions are:

S → aAb | b
A → a | bSA

We have that:

First1(aAb) = {a}, First1(b) = {b}, First1(a) = {a}, First1(bSA) = {b}.

The parsing table is:

a b $

S S → aAb S → b

A A → a A → bSA

In Figure 4.2.2 on the facing page we have depicted the sequence of the input string
and stack configurations while parsing the string a b b a b $. (That sequence from
configuration (1) to configuration (10) is divided into three subsequences, each of
them to be read from left to right.) The black triangle ! indicates the symbols at
hand in the input string and the top of the stack (as usual in our pictures of this
section, in every stack configuration the top of the stack is the leftmost symbol).

In the last configuration of Figure 4.2.2 we have that both the top of the stack and
the input head are pointing at the symbol $. Thus, the given string a b b a b belongs
to the language generated by the grammar G. "

Example 4.2.13. [LL(1) Parsing of Arithmetic Expressions] Let us consider
the context free grammar G with axiom E and the following productions:

E → E + T | T
T → T × F | F
F → (E) | a

This grammar is left recursive and thus, for all k ≥ 0 it is not LL(k) (see [3, page
344]). If we want to use an LL(k) parsing algorithm we have to look for an equivalent
grammar which is not left recursive. One such context free grammar is the following
grammar G̃ (with ε-productions):

E → T Ẽ Ẽ → ε | + T Ẽ
T → F T̃ T̃ → ε | × F T̃
F → (E) | a

The grammar G̃ can be obtained from the grammar G by avoiding the left recursion
and using ε-productions. The grammar G̃ is an LL(1) grammar as shown by the

4.2. LL(1) PARSERS 59

input
string:

a b b a b $
!

a b b a b $
!

a b b a b $
!

a b b a b $
!

(1)
expand S

−→ (2)
chop a

−→ (3)
expand A

−→ (4)

stack: S $
!

a A b $
!

A b $
!

b S A b $
!

a b b a b $
!

a b b a b $
!

a b b a b $
!

chop b
−→ (5)

expand S
−→ (6)

chop b
−→ (7)

S A b $
!

bA b $
!

A b $
!

a b b a b $
!

a b b a b $
!

a b b a b $
!

expand A
−→ (8)

chop a
−→ (9)

chop b
−→ (10)

a b $
!

b $
!

$
!

Figure 4.2.2. LL(1) parsing of the string a b b a b $. The given gram-
mar has axiom S and the following productions: S → a A b | b,
A → a | b S A. The black triangle # indicates the symbol at hand
in the input string and the top of the stack (which is the leftmost
symbol of the stack).

LL(1) parsing table depicted in Figure 4.2.3 on the next page. In order to construct
that parsing table, we have first to compute the First1 sets and the Follow1 sets.
They are:

First1(ε) = {ε}
First1(T Ẽ) = {(, a} First1(+T Ẽ) = {+} First1(Ẽ) = {ε, +}
First1(F T̃) = {(, a} First1(×F T̃) = {×} First1(T̃) = {ε,×}
First1((E)) = {(} First1(a) = {a} First1(F) = {(, a}

Follow 1(E) = {), $} Follow 1(Ẽ) = {), $} Follow 1(F) = {×, +,), $}
Follow 1(T) = {+,), $} Follow 1(T̃) = {+,), $}

Figure 4.2.4 on the following page shows the sequence of input string and stack
configurations while parsing the arithmetic expression a (thus, the input string is
a $) according to the grammar G̃. "

60 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

a () + × $

E E → T Ẽ E → T Ẽ

Ẽ Ẽ → ε Ẽ → +T Ẽ Ẽ → ε

T T → F T̃ T → F T̃

T̃ T̃ → ε T̃ → ε T̃ → ×F T̃ T̃ → ε

F F → a F → (E)

Figure 4.2.3. LL(1) parsing table for the grammar with axiom E and
productions: E → TẼ, Ẽ → ε | +TẼ, T → F T̃ , T̃ → ε | ×F T̃ ,
F → (E) | a.

input
string:

a $
!

a $
!

a $
!

a $
!

(1)
expand E

−→ (2)
expand T

−→ (3)
expand F

−→ (4)

stack: E $
!

TẼ $
!

F T̃ Ẽ $
!

aT̃ Ẽ $
!

a $
!

a $
!

a $
!

chop a
−→ (5)

expand eT
−→ (6)

expand eE
−→ (7)

T̃ Ẽ $
!

Ẽ $
!

$
!

Figure 4.2.4. LL(1) parsing of the string a $ according to the gram-
mar G̃ with axiom E and productions: E → TẼ, Ẽ → ε | +TẼ,
T → F T̃ , T̃ → ε | ×F T̃ , F → (E) | a. The black triangle #

indicates the symbol at hand in the input string and the top of the
stack (which is the leftmost symbol of the stack).

With reference to Example 4.2.13 above, note that the following grammar H , which
is not left recursive and has no ε-productions, is not LL(1):

E → T | T Ẽ Ẽ → +T | + T Ẽ
T → F | F T̃ T̃ → ×F | × F T̃
F → (E) | a

This grammar H can be obtained from the given grammar G by eliminating the left
recursion without using ε-productions (thus, grammar H is equivalent to grammars

4.2. LL(1) PARSERS 61

G and G̃). To show that grammar H is not LL(1), let us consider the following
grammar which is a simplified version of H . This grammar has axiom T and the
productions:

T → F | F T̃ T̃ → ×F | × F T̃
F → (T) | a

We have that:

First1(F) = First1(F T̃) = {(, a} First1(×F) = First1(×F T̃) = {×}
First1((T)) = {(} First1(a) = {a}

We get the following parsing table (there is no need to compute the Follow 1 sets
because ε does not occur in any of the First1 sets):

a () × $

T T → F
T → F T̃

T → F
T → F T̃

T̃ T → ×F
T → ×F T̃

F F → a F → (T)

Grammar H is not LL(1) because in this table there exists an entry which has more
than one production (actually, there are three entries). "

Example 4.2.14. [A Grammar Which is Not LL(1)] Let us consider the gram-
mar G whose axiom is S and whose productions are:

S → ε | a bA
A → S a a | b

We have that:

First1(ε) = {ε} First1(a bA) = {a} First1(S) = {ε, a}
First1(S a a) = {a} First1(b) = {b}

Follow 1(S) = {$, a} Follow 1(A) = {$, a}

The parsing table is:

a b $

S
S → a bA

S → ε
S → ε

A A → S a a A → b A → S a a

The given grammar is not LL(1) because in this parsing table for the symbol S on
the top of the stack and the input symbol a, there are two productions. "

62 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

4.3. LL(k) Parsers (for k≥1)

In this section we consider the general case of LL(k) parsers and LL(k) grammars,
with k ≥ 1.

We first need the following definition which is a generalization of Definition 4.2.1
on page 54.

Definition 4.3.1. [The Set Firstk(α)] Let us consider a context-free grammar,
possibly with ε-productions. For k ≥ 0, Firstk is a function from V ∗ to the set of all
subsets of V 0

T ∪ V 1
T ∪ V 2

T ∪ . . . ∪ V k
T , that is, {ε} ∪ VT ∪ V 2

T ∪ . . .∪ V k
T . Given a string

α ∈ V ∗, we have that:

Firstk(α) =def {w | (α →∗ w β and w ∈ V k
T and β ∈ V ∗

T) or
(α →∗ w and w ∈ V i

T for some 0≤ i<k)}.

For any α ∈ V ∗ and β ∈ V ∗
T , we have that: (i) if α →∗ β then First0(α) = {ε} , and

(ii) for any k ≥ 1, ε ∈ Firstk(α) iff α →∗ ε.

We will also need the following binary operation on languages.

Definition 4.3.2. [k-bounded Concatenation] Given two languages L1 and
L2, their k-bounded concatenation, denoted 4k, for any k≥1, is defined as follows:

L1 4k L2 = {w | (|w| ≤ k and w ∈ L1 !L2) or (|w|=k and ∃z, wz ∈ L1 !L2)}.

where the concatenation operation ‘ ! ’ on languages is defined as usual (see Chapter 1).

For instance, given the languages L1 = {ε, abb} and L2 = {b, bab}, we have that:

L1 ! L2 = {b, bab, abbb, abbbab} and

L1 42 L2 = {b, ba, ab}.

Note that in L1 4k L2 with k≥1, there may be words whose length is less than k.

Now we will describe how the LL(k) parsing is performed, for any k≥1.

Supposed we are given a string v to be parsed and an LL(k) grammar G. Suppose
also that we have parsed a proper prefix p of the given string v, that is, v = p u for
some u ∈ V +

T and the input head is pointing at the leftmost symbol of u. We assume
that the sentential form we have generated so far is: p A z, for some z ∈ V ∗, that is,
all symbols in p have been chopped and the stack is holding A z $ with the top of the
stack pointing at A.

In order to determine the production for expanding A, the parser uses a parsing
table which is constructed as we will indicate, after the construction of some other
tables, each of which is parameterized by: (i) a nonterminal symbol, and (ii) a lan-
guage subset of V ∗

T $0,1. A table named T and whose parameters are the nonterminal
B and the language L, will be denoted by T [B, L].

The table T [B, L] can be represented as a matrix whose rows have three compo-
nents (or columns):

(i) the first one is a word w in V ∗
T $ 0,1,

(ii) the second one is a production for B, and

4.3. LL(K) PARSERS (FOR K ≥1) 63

(iii) the third one is a list of sets of words which depends on: (iii.1) the production
for B which is the second component, and (iii.2) the language L. Each set in this list
of sets of words is called a local follow sets for B.

The rows of table T [B, L] are constructed by considering the productions for B.
For each one of these productions, say B → α, we first compute the set of words:

Firstk(α) 4k L

and we then construct a row of the table T [B, L] of the form:

w B → α M

for each word w in Firstk(α) 4k L. In each of these rows M is a list of set of words
such that:

(i) if α ∈ V ∗
T then M = [], and

(ii) if α is of the form: x0 B1x1 . . . Bmxm, with m≥0, and for h=0, . . . , m, xh ∈ V ∗
T ,

and for i=1, . . . , m, Bi ∈ VN , then M = [Y1, . . . , Ym], where for i=1, . . . , m,

Yi =Firstk(xi Bi+1xi+1 . . . Bmxm) 4k L.

The first table to be constructed is T [S, {$}].

When constructing the various tables, we maintain a set of tables to be con-
structed. Thus, initially, that set of tables to be constructed has exactly one element
which is the table T [S, {$}].

At the end of the construction of a table, say T [B, L], we update that set of tables
to be constructed as follows. For each row of the table T [B, L] of the form:

w B → x0 B1x1 . . . Bmxm [Y1, . . . , Ym]

where: (i) w ∈ V ∗
T , (ii) m≥1, (iii) for h=0, . . . , m, xh ∈ V ∗

T , and (iv) for i=1, . . . , m,
Bi ∈ VN , we add to the set of tables to be constructed the m tables T [Bi, Yi], for
i=1, . . . , m.

The process of constructing tables terminates when we have constructed all the
tables which occur in the set of tables to be constructed.

At that point we can construct the parsing table for the LL(k) parsing for k ≥ 1.
In that parsing table the rows are indexed by the parameters of the tables we have
constructed (thus, the rows are as many as those tables), and the columns are indexed
by the words in V 0 $ ∪ V 1 $ ∪ . . . ∪ V k−1 $ ∪ V k (recall that V 0 $ is equal to {$}).
The entry of the parsing table in row [Bi, Yi] and column w is the second component
of the row of table T [Bi, Yi] whose first component is w.

Thus,
(i) the index [Bi, Yi] of each row of the parsing table consists of the symbol Bi on the
top of the stack and the string Yi which is equal to Firstk(σi), where σi is the string
of the symbols below the top of the stack, and
(ii) the index w of each column of the parsing table is the string of at most k (≥ 1)
symbols to the right of the input head (which is pointing at the leftmost symbol
of w).

64 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

Now we will give an example of the construction of the tables in the case of an
LL(2) context-free grammar G. This example will clarify the rules we have given
above for the general case of the LL(k) parsing, for any k≥1.

Example 4.3.3. Let us consider the following grammar G with axiom S and
whose productions are:

S → aAaa | bAba A → b | ε

The construction of the LL(2) parsing table will show that this grammar is an LL(2)
grammar.
• Construction of the initial table T [S, {$}].
For S we have the two productions: S → aAaa and S → bAba. For each of them,
say S → α, we have compute the set of words:

First2(α) 42 {$}.

Thus, we have:

First2(aAaa) 42 {$} = {ab, aa}42 {$} = {ab, aa}

First2(bAba) 42 {$} = {bb}42 {$} = {bb}

From these values we get the three rows of the table T [S, {$}]. We have that:

T [S, {$}]:

ab S → aAaa L1

aa S → aAaa L2

bb S → bAba L3

where the lists L1, L2, and L3 of set of words are defined as follows:

L1 = [First2(aa) 42 {$}] = [{aa}]

(Note that aa is the word in V ∗
T which follows A in the right hand side of the pro-

duction S → aAaa, and there is only the nonterminal symbol A in aAaa).

L2 = [First2(aa) 42 {$}] = [{aa}]
L3 = [First2(ba) 42 {$}] = [{ba}]

(Note that ba is the word in V ∗
T which follows A in the right hand side of the production

S → bAba and there is only the nonterminal symbol A in bAba.)

Thus, we get the following table T [S, {$}]:

T [S, {$}]:

ab S → aAaa [{aa}]

aa S → aAaa [{aa}]

bb S → bAba [{ba}]

Having constructed this table, we insert in the set of tables to be constructed the
following two tables:

T [A, {aa}] and T [A, {ba}].

Note that either the first row or the second row of table T [S, {$}] forces us to insert
table T [A, {aa}] in the set of tables to be constructed.

4.3. LL(K) PARSERS (FOR K ≥1) 65

• Construction of the table T [A, {aa}].
For A we have the two productions: A → b and A → ε. Thus, we have that:

First2(b) 42 {aa} = {ba}
First2(ε) 42 {aa} = {aa}

From these values we get the two rows of the table T [A, {aa}]. We have that:

T [A, {aa}]:
ba A → b M1

aa A → ε M2

where the lists M1 and M2 of sets of words are both empty because in the right hand
sides of the productions A → b and A → ε there are no nonterminal symbols. Thus,
we get the following table T [A, {aa}]:

T [A, {aa}]:
ba A → b []

aa A → ε []

After the construction of this table we do not add any new table to the set of tables to
be constructed because in the right hand sides of the productions A → b and A → ε
there are no nonterminal symbols.
• Construction of the table T [A, {ba}].
For A we have the two productions: A → b and A → ε. Thus, we have that:

First2(b) 42 {ba} = {bb}
First2(ε) 42 {ba} = {ba}

From these values we get the two rows of the table T [A, {ba}]. We have that:

T [A, {ba}]:
bb A → b N1

ba A → ε N2

where the lists N1 and N2 of sets of words are both empty because in the right hand
sides of the productions A → b and A → ε there are no nonterminal symbols. Thus,
we get the following table T [A, {ba}]:

T [A, {ba}]:
bb A → b []

ba A → ε []

After the construction of this table we do not add any new table to the set of tables to
be constructed because in the right hand sides of the productions A → b and A → ε
there are no nonterminal symbols.
• Construction of the parsing table.
Having constructed the three tables T [S, {$}], T [A, {aa}], and T [A, {ba}], we can
construct the LL(2) parsing table. We have depicted it in Figure 4.3.1 on the following
page.

In the following Figure 4.3.2 on the next page we have shown the sequence of the
input string and stack configurations when parsing the string b b a $. The symbol !

66 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

a a a b b a b b a $ b $ $

[S, {$}] S → aAaa S → aAaa S → bAba

[A, {aa}] A → ε A → b

[A, {ba}] A → ε A → b

Figure 4.3.1. The LL(2) parsing table for the grammar with axiom S
and productions: S → aAaa | bAba and A → b | ε.

indicates the symbol at hand in the input string (that is, the position of the input
head) and the top of the stack (as usual in this section, in every stack configuration
the top of the stack is the leftmost symbol).

input
string:

b b a $
!

b b a $
!

b b a $
!

b b a $
!

(1)
expand S

−→ (2)
chop b

−→ (3)
expand A

−→ (4)

stack: S $
!

bA b a $
!

A b a $
!

b a $
!

b b a $
!

b b a $
!

chop b
−→ (5)

chop a
−→ (6)

a $
!

$
!

Figure 4.3.2. LL(2) parsing of the string b b a $. The given gram-
mar with axiom S has the following productions: S → aAaa | bAba,
A → b | ε. The symbol ! indicates the symbol at hand in the input
string and the top of the stack (which is the leftmost symbol).

Note that the expansion of S (see configurations (1) and (2) in Figure 4.3.2) is
done using the production S →bAba because: (i) below S on the stack there is $,
and (ii) the symbols in the position of the input head and at its right are b b (see the
entry at row [S, {$}] and column b b of the parsing table depicted in Figure 4.3.1).
The expansion of A is done using the production A → ε because: (i) below A on the
stack there are the symbols b a, and (ii) the symbols in the position of the input head
and at its right are b a (see the entry at row [A, {ba}] and column b a of the parsing
table depicted in Figure 4.3.1).

In the final configuration (6) in Figure 4.3.2 we have that both the input head
and the top of the stack are pointing at the symbol $. Thus, the given string b b a
belongs to the language generated by the grammar G. "

4.3. LL(K) PARSERS (FOR K ≥1) 67

We have the following property of the LL(k) parsing, for any k≥1.

LL(k) Parsing, for k ≥ 1.

The production which has to be applied by the Chop-and-Expand parser for
expanding the nonterminal A is uniquely determined by (see also Figure 4.3.3):

(i) A itself,
(ii) the leftmost k symbols of z (or z itself if |z|<k), and
(iii) the leftmost k symbols of u (or u itself if |u|<k).

(The reader may want to look also at what we will state on page 68 with reference
to strong LL(k) grammars.)

S

p zA

leftmost
derivationsentential form

p A z :

p
input string

p u $: u

Followk(A) : first k symbols of z

u k : first k symbols of u

$
β

Figure 4.3.3. LL(k) parsing, for k ≥ 1. The derivation from S to
p A z is a leftmost derivation.

Now in order to state Theorem 4.3.5 on the next page, we define for any nonter-
minal A and for any k≥1, the set Follow k(A).

Definition 4.3.4. [The Set Follow k(A)] Let us consider a context-free grammar
with axiom S, possibly with ε-productions. For any k ≥ 1, Follow k is a function
from VN to the set of all subsets of V ∗$ 0,1. For any A ∈ VN , Follow k(A) is the
smallest set such that for any string w ∈ (V 0$ ∪ V 1$ ∪ V 2$ ∪ . . . ∪ V k−1$ ∪ V k),

if S $ →∗ αAβ for some α ∈ V ∗ and β ∈ V ∗$ and w ∈ Firstk(β)

then w ∈Follow k(A).

Thus, by definition, for every nonterminal A ∈ VN , Follow k(A) is a set of words w
in V 0$ ∪ V 1$ ∪ V 2$ ∪ . . . ∪ V k−1$ ∪ V k which occur in a sentential form derived
from S $ immediately to the right of A.

We have that for any k ≥ 1 and A ∈ VN , the empty string ε is not an element of
Follow k(A).

Note that contrary to Definition 4.2.5 on page 55, where we have given an al-
gorithm for the construction of the set Follow 1(A), in the above Definition 4.3.4 we
did not provide an algorithm that, for any k ≥ 1, given the productions of an LL(k)
grammar, constructs the set Follow k(A).

68 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

The following result which we state without proof, characterizes the LL(k) gram-
mars and the strong LL(k) grammars for any k ≥ 1 [3, page 342].

Theorem 4.3.5. [LL(k) Grammars and Strong LL(k) Grammars] (i) A con-
text-free grammar G is an LL(k) grammar iff for every pair of distinct productions
A → α and A → β with α 2= β, and for every string w A σ such that S →∗

lm w A σ,
we have that:

Firstk(α σ)∩Firstk(β σ) = ∅.

(ii) A context-free grammar G is a strong LL(k) grammar iff for every pair of distinct
productions A → α and A → β with α 2= β, we have that:

Firstk(α Follow k(A))∩Firstk(β Follow k(A)) = ∅.

Example 4.3.6. The grammar G with axiom S and the following productions:

S → aAaa | bAba A → b | ε

is an LL(2) grammar as the above Example 4.3.3 shows, but it is not a strong LL(2)
grammar. Indeed, we have that:

Follow2(A)) = {aa, ba} and

First2(bFollow2(A))∩First2(εFollow2(A)) = {ba, bb} ∩ {aa, ba} = {ba} 2= ∅.

We leave it to the reader to check the following facts which we state without proofs.

Fact 4.3.7. The rules we have given above for constructing the parsing table for
LL(1) parsing, can be obtained by instantiating for k = 1 the rules for LL(k) parsing
for k≥1.

Fact 4.3.8. [LL(k) Languages Can Be Generated by Strong LL(k) Gram-
mars] For any k ≥ 0, if a language L has an LL(k) grammar then L has a strong
LL(k) grammar.

In view of this fact, if we consider the strong LL(k) grammar which generates a
given LL(k) language L, then the language L can parsed by using a Chop-and-Expand
parser whose expansion steps satisfy the following property.

Strong LL(k) Parsing, for k ≥ 1.

The production which has to be applied by the Chop-and-Expand parser for
expanding the nonterminal A is uniquely determined by:

(i) A itself, and
(ii) the first k symbols of the input string which are to the right of the last

symbol which has been chopped (or the whole string to the right of that
symbol, if there are less than k symbols to the the right of it).

The reader may want to look also at what we stated on page 67, where the Chop-and-
Expand LL(k) parsing process has been described with respect to LL(k) grammars,
rather than strong LL(k) grammars.

4.3. LL(K) PARSERS (FOR K ≥1) 69

Fact 4.3.9. [From LL(k) Grammars to LL(k+1) Grammars in Greibach
Normal Form] Let L be a language that can be generated by an LL(k) grammar for
some k≥0. Then: (i) L−{ε} can be generated by an LL(k+1) grammar in Greibach
normal form, and (ii) L can be generated by an LL(k+1) grammar G in Greibach
normal form and we have to consider also the production S → ε iff ε ∈ L [3, page
362].

In the following two examples the reader may see in action the techniques for produc-
ing from an LL(1) grammar an equivalent LL(2) grammar in Greibach normal form.
These techniques constitute the basis for the proof of the above Fact 4.3.9. Without
loss of generality, we assume that the given LL(1) grammar has no unit productions,
that is, productions of the form A → B, for some A, B ∈ VN [21].

Example 4.3.10. [From LL(1) Grammars to LL(2) Grammars in Greibach
Normal Form: Example 1] Let us consider the LL(1) grammar G with axiom S
and the following productions:

S → AB
A → aA | ε
B → bA | ε

This grammar G is, indeed, an LL(1) grammar, as the reader may verify, because the
LL(1) parsing table is as follows:

a b $

S S → AB S → AB S → AB

A A → aA A → ε A → ε

B B → bA B → ε

This table is constructed after computing the following sets: First1(S) = {a, b, ε},
First1(A) = {a, ε}, First1(B) = {b, ε}, First1(AB) = {a, b, ε}, Follow 1(S) = {$},
Follow 1(A) = {b, $}, and Follow 1(B) = {$}.

We want to derive a grammar in Greibach normal form which is equivalent to G.
In that equivalent grammar we allow also the production S → ε if ε ∈ L(G). In our
case, indeed, we have the production S → ε because ε ∈ L(G).

We start from the axiom S and we perform leftmost unfolding steps (that is,
we unfold the leftmost nonterminals of the sentential forms), thereby producing new
sentential forms from old ones. We stop these unfolding steps when we get: either

(H1) ε, or
(H2) a terminal symbol a ∈ VT , or
(H3) a string of the form aσ1 . . .σn, for some n≥1, where a ∈ VT , and

for i = 1, . . . , n, we have that σi ∈ VT V ∗
N ∪ {S}.

One can show that by doing so, we always construct a finite tree of sentential forms
(see Figure 4.3.4 on the next page for the case of our grammar G). Every leaf of that
tree allows us to generate, as we will indicate, a production of a grammar in Greibach
normal form equivalent to G.

70 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

S

AB

aAB B

aaAB aB bA ε

a bA a b aA b

aAB

aaAB aB

a bA a

Ã → aAB

bA

baA b

B̃ → bA

aA

aaA a

C̃ → aA

Figure 4.3.4. Trees of sentential forms obtained by unfolding the left-
most nonterminals. The given grammar has axiom S and productions:
S → AB, A → aA | ε, B → bA | ε. The nullable symbols are S,
A, and B. We have indicated within boxes the productions which are
generated by the roots of the trees of sentential forms whose root is not
the axiom S.

Note that, since we perform only leftmost unfolding steps, the decomposition of the
sentential form into a sequence of the form aσ1 . . . σn satisfying the Condition (H3)
above, may not be unique. For instance, abAS can be decomposed either into the
two substrings: a and bAS, or into the three substrings: a, bA, and S.

Then we apply the following Tree Closure Rule.

Tree Closure Rule.
For each leaf where Condition (H3) holds, for i = 1, . . . , n, with n≥ 1, and for
every σi which is not a terminal symbol and is different from S, we will construct
a new tree of sentential forms whose root is σi and whose nodes are obtained from
the root by performing leftmost unfolding steps until at each leaf one of the above
two Conditions (H2) or (H3) becomes true.
(Note that Condition (H1) can never become true because σi ∈ VT V ∗

N .)

The leaves of these new trees we will construct, may determine the construction
of more trees of sentential forms, because we have to apply the above Tree Closure
Rule until all leaves of all trees of sentential forms are either:

(i) ε, or
(ii) a terminal symbol, or
(iii) a string of the form aσ1 . . .σn, for some n≥1, where a ∈ VT , and

for i = 1, . . . , n, each substring σi is the label of the root of a tree.

Having terminated the constructions of all these trees, we consider for each tree with
root σ different from S, a new nonterminal Aσ and we introduce a production of the

4.3. LL(K) PARSERS (FOR K ≥1) 71

form Aσ → σ. We also introduce a production of the form Aa → a, where Aa is a
new nonterminal symbol, for each leaf of a tree which is made out of the terminal
symbol a only.

We then perform all possible folding steps, both at the roots and at the leaves
of the trees we have constructed, by using the productions of the form Aσ → σ or
Aa → a we have introduced. In particular, a leaf with the sentential form aσ1 . . .σn,
with n≥0, is replaced by the leaf with the sentential form aAσ1

. . . Aσn
.

Finally, we get the desired productions of the grammar in Greibach normal form
by considering for every root-to-leaf path in every tree, a production of the form
A → γ, where A is the label of the root and γ is the label of the leaf.

In the case of our grammar G above, starting from the trees of sentential forms
depicted in Figure 4.3.4 on the facing page, we first introduce the following three
productions (see the roots, different from S, of the trees of Figure 4.3.4):

Ã → aAB
B̃ → bA
C̃ → aA

Then, by using these productions, we perform the folding steps at the leaves and at
the roots of those trees (see the underlined substrings in Figure 4.3.4 on the preceding
page). Finally, from the root-to-leaf paths of those trees, after the folding steps, we
get the following productions in Greibach normal form (see also Figure 4.3.5):

S → aÃ | aB̃ | a | bC̃ | b | ε
Ã → aÃ | aB̃ | a
B̃ → bC̃ | b
C̃ → aC̃ | a

S

ε

a b

aÃ

aB̃ bC̃

Ã

aÃ

aB̃ a

B̃

bC̃ b

C̃

aC̃ a

Figure 4.3.5. Root-to-leaf paths of the trees of Figure 4.3.4 on the
preceding page after performing the folding steps.

Note that no unit productions are generated. We leave it to the reader to check that
these productions belong to an LL(2) grammar. "

The following example is a bit more complex than the above Example 4.3.10 on
page 69, in the sense that the sentential forms of some of the leaves will be viewed as

72 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

concatenations of the form aσ1 . . .σn with n>1, while in Example 4.3.10 we always
had n=1.

Example 4.3.11. [From LL(1) Grammars to LL(2) Grammars in Greibach
Normal Form: Example 2] Let us consider the LL(1) grammar G1 with axiom T
and the following productions:

T → F T ′

T ′ → ε | × F T ′

F → (T) | a
(G1)

This grammar G1 is an LL(1) grammar which can be derived from the following left
recursive grammar G2 (which is not an LL(1) grammar) with productions:

T → F | T × F
F → (T) | a

(G2)

Starting from the axiom T of the grammar G1, by performing some unfolding steps
by using the productions of the grammar G1 itself, according to the rules described
in the above Example 4.3.10 on page 69, we get the three trees of sentential forms
depicted in Figure 4.3.6.

T

F T ′

(T) T ′ a T ′

a a×F T ′

) T ′

))×F T ′

R →) T ′

×F T ′

×(T) T ′ × a T ′

B → ×F T ′

a T ′

a×F T ′

A → a T ′

a

Figure 4.3.6. Trees of sentential forms obtained by unfolding the left-
most nonterminals. The given grammar has axiom T and productions:
T → FT ′, T ′ → ε | ×FT ′, F → (T) | a. The only nullable symbol
is T ′. We have indicated within boxes the productions which are gen-
erated by the roots of trees of sentential forms whose root is not the
axiom T .

Note that: (i) the string ×(T)T ′ has been viewed as the concatenation ×σ1σ2σ3

where σ1 = (, σ2 = T , and σ3 =)T ′, and (ii) the string ×aT ′ has been viewed as the
concatenation ×σ1 where σ1 =aT ′.

Then we introduce the four productions:

4.3. LL(K) PARSERS (FOR K ≥1) 73

R →) T ′

B → ×F T ′

P → (
A → a T ′

In particular, (i) the production P → (comes from σ1 = (in ×(T)T ′ = ×σ1σ2σ3,
and (ii) the production A → aT ′ comes from σ1 =aT ′ in ×aT ′ = ×σ1.

Then if we perform the folding steps by using these productions, we get from the
root-to-leaf paths of the trees of Figure 4.3.6 on the preceding page, the grammar G3

which has the following productions in Greibach normal form:

T → (T R | a | a B
R →) |) B
B → ×P T R | ×A
P → (
A → a | a B

(G3)

No unit productions are generated, and since the axiom T is not nullable, we do not
have the production T → ε. We leave it to the reader to check that the grammar G3

is an LL(2) grammar (see, in particular, the productions for B). "

Fact 4.3.12. For any k≥0, there are languages which are generated by an LL(k+1)
grammar and cannot be generated by any LL(k) grammar.

Fact 4.3.13. [Decidability of Equivalence for LL(k) grammars] For any
k≥0, it is decidable whether or not two LL(k) grammars are equivalent, that is, they
generate the same language.

Fact 4.3.14. [Grammars in Greibach Normal Form and LL(1) Grammars
and Languages] If a grammar G is in Greibach normal form and for each nonter-
minal A and terminal a, there exists at most one production of the form A → aα for
some α ∈ V ∗

N and the only ε-production allowed is S → ε, then G is LL(1).

Recall that in any LL(1) grammar we allow ε-productions for each nonterminal
symbol and, thus, the class of such grammars properly includes the class of the
grammars in Greibach normal form mentioned in the above Fact 4.3.14.

As already mentioned, we have the following result.

Fact 4.3.15. [LL(0) Languages] A language L ∈ LL(0) iff L = ∅ or L is a
singleton.

Fact 4.3.16. [4, page 689] [Grammars in Chomsky Normal Form and LL(k)
Grammars and Languages] For any k≥0, every LL(k) language has an LL(k+1)
grammar in Chomsky normal form.

Theorem 4.3.17. [Hierarchy of LL(k) Grammars and Languages] For every
k ≥ 0, (i) the class of the LL(k) grammars is properly contained in the class of the
LL(k + 1) grammars, and (ii) the class of the LL(k) languages is properly contained
in the class of the LL(k + 1) languages.

74 4. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LL(K) PARSERS

Fact 4.3.18. [LL(k) Languages Contained in LR(1) Languages] For every
k≥0, the class of the LL(k) languages is properly contained in the class of the LR(1)
languages [22] (see also Section 5.8 on page 115).

Since, as we will state in the following Section 5.1, the class of the LR(1) lan-
guages coincides with the class of the deterministic context-free languages, we have
the following consequence of Fact 4.3.18: every language which is generated by an
LL(k) grammar, for some k ≥ 0, is a deterministic context-free language, and there
exists a proper subclass C of the deterministic context-free languages such that for
every language L in C there is no k ≥ 0 such that L can be generated by an LL(k)
grammar.

Fact 4.3.19. [LL(k) Languages Contained in LR(1) Languages: an Exam-
ple] The language L = {anbn |n ≥ 1} ∪ {ancn |n ≥ 1} is a deterministic context-free
language (and, thus, an LR(1) language) and there is no k ≥ 0 such that L is an
LL(k) language [4, page 689].

One can show that the language L = {anbn |n ≥ 1} ∪ {ancn |n ≥ 1} is an LR(1)
language by using the techniques we will present in the following Section 5.1.

The following fact is an immediate consequence of the Kleene Theorem (see, for
instance, [21, page 42]).

Fact 4.3.20. [Regular Languages and LL(1) Grammars] Every regular lan-
guage has an LL(1) grammar.

CHAPTER 5

Parsers for Deterministic Context-Free Languages:
LR(k) Parsers

In this chapter we will present the so called LR(k) parsers for deterministic
context-free languages.

5.1. Introduction to LR(k) Parsing

The LR(k) parsers, for any k≥0, are algorithms for parsing the languages which
are generated by the LR(k) grammars which are defined as follows [3, pages 372-373].

Definition 5.1.1. [LR(k) Grammar. Version 1] For any k≥0, a context-free
grammar G = 〈VT , VN , P, S〉, possibly with ε-productions and without any occurrence
of the start symbol S on the right hand side of any production, is an LR(k) grammar
if for $ 2∈ VT , for every sentential form αβγ ∈ (VT ∪ VN)∗, there exists a rightmost
derivation of the form:

S $k →∗
rm αA γ $k →rm αβ γ $k

where: (i) the symbol $ occurs only on the rightmost positions of every sentential
form, (ii) A ∈ VN , and (iii) the substring β which replaces A, can be determined by
knowing the leftmost k symbols of γ $k (see also Figure 5.4.9 on page 103).

Here is an equivalent definition of the LR(k) grammars [3, page 372].

Definition 5.1.2. [LR(k) Grammar. Version 2] For any k≥0, a context-free
grammar G = 〈VT , VN , P, S〉, possibly with ε-productions and without any occurrence
of the start symbol S on the right hand side of any production, is an LR(k) grammar
if for $ 2∈ VT , for any w, x, y ∈ V ∗

T , for any α, β, γ ∈ (VT ∪VN)∗, and for any A, B ∈ VN ,

if (1) S →∗
rm αA w →rm αβ w and

(2) S →∗
rm γ B x →rm α β y and

(3) w k = y
k

then α=γ, A=B, and x=y. "

Note that in the case of the rightmost derivations in Conditions (1) and (2) of the
above definition, the production which is applied in the last step is A → β.

Note also that given a context-free grammar G = 〈VT , VN , P, S〉, we can avoid
every occurrence of the start symbol S on the right hand side of the productions, by
considering the new, equivalent grammar G′ = 〈VT , VN ∪ {S ′}, P ∪ {S ′ → S}, S ′〉,
where S ′ is a new start symbol. It is easy to see that L(G) = L(G′) because the
language generated by the symbol S in G is equal to the language generated by the
symbol S ′ in G′.

75

76 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

In what follows we will introduce a few algorithms for parsing various subclasses
of context-free languages. In particular, we will introduce an algorithm for parsing
languages generated by:

(i) LR(0) grammars (see page 77),
(ii) SLR(1) grammars (see page 87),
(iii) LR(1) grammars (see page 90), and
(iv) LALR(1) grammars (see page 104).

Unless otherwise specified, in this section we assume that VT , VN , and S denote,
respectively, the set of the terminal symbols, the set of nonterminal symbols, and the
start symbol. As usual, we will use the symbol V to denote the set VT ∪ VN .

When presenting the LR(k) parsers, for any given context-free grammar G =
〈VT , VN , P, S〉, we consider its augmented version which is defined as follows.

Definition 5.1.3. [Augmented Context-free Grammars] Given a context-
free grammar G = 〈VT , VN , P, S〉 with start symbol S, its augmented grammar, call
it G′ = 〈VT ∪ {$}, VN ∪ {S ′}, P ′, S ′〉, is the grammar obtained by considering: (i) the
new start symbol S ′ 2∈ VN , (ii) a new terminal symbol $ 2∈ VT , and (iii) the extra
production S ′ → S $, that is, P ′ = P ∪ {S ′ → S $}. In some cases we will assume
that the extra production is S ′ → S, instead of S ′ → S $. We will always indicate
whether in the augmented grammar the extra production is S ′ → S $ or S ′ → S (see
also Table 2 on page 116).

We have the following fact.

Fact 5.1.4. [Languages Generated by Grammars and Augmented Gram-
mars] The language L(G) generated by a context-free grammar G is equal to the
language L(G′) generated by the augmented grammar G′ if G′ has the extra produc-
tion S ′ → S, while if G′ has the extra production S ′ → S $ then L(G′) = L(G) $.

For the grammars we consider when presenting the LR(k) parsers we assume the
following hypotheses.

Hypotheses for LR(k) Parsing, for k≥0.

(i) The start symbol S (or S ′ in case of augmented grammars) does not occur
on the right hand side of any production.

(ii) No useless symbols occur in the productions.

(iii) ε-productions may be present for the start symbol or any other symbols
of VN .

(iv) The symbol $ does not belong to the set VT ∪ VN .

(v) The input string to be parsed is terminated by the symbol $ which can occur
only at the right end of the input string.

(vi) The symbol $ does not occur on the right hand side of any production with
the exception that it may occur in the production S ′ → S $, from the new
start symbol S ′ of the augmented grammar.

5.2. LR(0) PARSERS 77

5.2. LR(0) Parsers

In this section we will study the LR(0) parsers and the LR(0) grammars. In these
parsers the parsing automaton we have depicted in Figure 5.2.1 on the following page,
makes its moves according to a table T which is a matrix whose rows are labeled by
the states of a finite automaton M we will define, and whose columns are labeled by
the terminal symbols inVT , $, and the nonterminal symbols in VN of the given LR(0)
grammar. The columns labeled by the elements in VT ∪ {$} constitute the so called
action part of the table, while the columns labeled by the elements in VN constitute
the so called goto part of the table.

In the sequel we need the following definition.

Definition 5.2.1. [Item and Complete Item] Given a context-free gram-
mar G = 〈VT , VN , P, S〉, a production of G with an extra dot in any position in
the right hand side, is called an item of G. Thus, a production whose right hand side
has length n may give rise to n+1 items. In particular, a production of the form
A → ε, where A is a nonterminal symbol and ε is the empty string, may give rise to
the following item only: A → ! (whose right hand side consists of the dot only).

An item is said to be complete if it is of the form A → β ! , where β ∈ (VT ∪VN)∗,
that is, the dot is at the rightmost position.

Example 5.2.2. The context-free grammar G with axiom S and whose produc-
tions are:

1. S → SA 2. S → A 3. A → aSb 4. A → ab

gives rise to the following twelve items:

S → ! SA S → !A A → ! aSb A → ! ab

S → S !A S → A ! A → a !Sb A → a ! b

S → SA ! A → aS ! b A → ab !

A → aSb !

Among those items we have four complete items which are those within rectangles.

Now we present an algorithm in five steps which given an LR(0) context-free
grammar, constructs a table T which is needed for specifying the parsing automaton
of Figure 5.2.1 on the next page. Then, we will explain how, once that table has been
constructed, we can use that automaton for performing the LR(0) parsing, that is,
we will explain how that automaton can parse any given word and check whether or
not it belongs to the language generated by the given LR(0) context-free grammar.

In order to fix our ideas, each step of the algorithm will be illustrated using a run-
ning example which refers to the context-free grammar G of the above Example 5.2.2.

Algorithm 5.2.3. Constructing the LR(0) Parsing Table.

We are given a context-free grammar G = 〈VT , VN , P, S〉 and we want to construct
the LR(0) parsing table for the automaton of Figure 5.2.1 on the next page.

Step (1). First we consider the augmented grammar G′ = 〈VT ∪{$}, VN∪{S ′}, P ′, S ′〉,
where the set P ′ of productions is P ∪ {S ′ → S $}. As usual, we assume that $ 2∈ VT

78 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

.

)

!

/ !

q0

w1 w2 wn $

: stack

The head moves
from left to right

top of the stack parsing table T

(depicted for LR(0) or LR(1) parsing)

a

q0

q1

. . .

b + − . . . $ S A B . . .

st
a
te

o
n

to
p

o
f
th

e
st

a
ck

action

terminals

goto

nonterminals

LR(k) parser using
the parsing table T : !

: the input string is the string to be parsed
terminated by $

Figure 5.2.1. A deterministic pushdown automaton for LR(k) pars-
ing, with k ≥ 0. The string to be parsed is w1w2 . . . wn. Initially, the
stack has one symbols only: the initial state q0 at the bottom of the
stack. The input string is the string to be parsed with the extra final
symbol $. We have depicted the parsing table T for LR(0) or LR(1)
parsers. For the LR(k) parsers, with k ≥ 2, different parsing tables
should be used.

and S ′ 2∈ VN . For example, in the case of the grammar G with axiom S and whose
productions are:

1. S → SA 2. S → A 3. A → aSb 4. A → ab

we consider the augmented grammar G′ = 〈VT ∪ {$}, VN ∪ {S ′}, P ′, S ′〉 with axiom
S ′ and whose productions are:

0. S ′ → S $ 1. S → SA 2. S → A 3. A → aSb 4. A → ab

Remark 5.2.4. Note that if: (i) there is only one production for the start sym-
bol S of a given grammar H and (ii) S does not occur on the right hand side of any
production of H , then we can take the augmented grammar H ′ to be H itself, where
in the only production for S we have added a final symbol $. "

Step (2). For each production in G′ of the form A → α1α2 . . .αn, where n≥ 0 and
for i=1, . . . , n, αi ∈ VT ∪ VN ∪ {$} (obviously, only αn can be $), we construct the
associated big production as the following linear graph made out of n+1 nodes and
n arcs:

A→ !α1α2 . . .αn A→α1 !α2 . . .αn . . . A→α1α2 . . .αn !
α1 α2 αn

In particular, if the production is A → ε (in this case n=0) then the associated big
production is the following graph with one node only (recall that ! ε = ε ! = !):

5.2. LR(0) PARSERS 79

A → !

Note also that in a big production: (i) the leftmost node is an item of the grammar G′

of the form A → !α1 . . .αn with A ∈ VN and for i = 1, . . . , n, we have that αi ∈
VT ∪VN ∪{$}, and (ii) any other node is an item of the grammar G′ with the dot in a
different position, and (iii) the rightmost node is a complete item of the grammar G′.

In a big production the arc from a node m to a node n is labeled by the symbol
in VT ∪ VN ∪ {$} which in the node m occurs on the right of the dot and in the node
n occurs on the left of the dot.

Step (3). We consider the graph made out of all the big productions of the grammar G′

we have constructed at Step (2). Then, for every nonterminal A, B ∈ VN ∪ {S ′} and
strings α, β, γ ∈ (VT ∪ VN ∪ {$})∗, we add an arc labeled by ε from every node whose
label is an item of the form A → α !Bβ to every node whose label is the item B→ ! γ.
These ε-arcs may relate either nodes into two different big productions or nodes of
the same big production.

In the case of our augmented grammar G′, at the end of Step (3) we get the graph
of Figure 5.2.2.

S ′ → !S $ S ′ → S ! $ S ′ → S $!

S → !SA S → S !A S → SA !

S → !A S → A !

A → ! aSb A → a !Sb A → aS ! b A → aSb !

A → ! ab A → a ! b A → ab !

S $

S A

A

a S b

a b

εε

ε ε ε

εεεε

ε

Figure 5.2.2. The graph of the big productions with the ε-arcs for the
grammar G′ with axiom S ′ and productions: 0. S ′ → S $, 1. S → SA,
2. S → A, 3. A → aSb, 4. A → ab. Each big production is depicted
as a sequence of nodes which are horizontally aligned.

Step (4). By applying the Powerset Construction Procedure (see, for instance, [21])
to the graph of the big productions obtained at the end of Step (3), we get a finite
automaton. Let that finite automaton be called M .

80 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

In the case of our augmented grammar G′, at the end of Step (4) we get the finite
automaton of Figure 5.2.3.

q0 :
S ′ → ! S $
S → !S A
S → !A

A → ! aSb
A → ! ab q1 :

S ′ → S ! $
S → S ! A

A → ! aSb
A → ! ab

q2 : S → A !

q3 :

A → a !Sb
A → a ! b
S → !SA
S → !A

A → ! aSb
A → ! ab

q6 :
A → aS ! b
S → S !A

A → ! aSb
A → ! ab

q5 : S → SA !

q7 : A → ab ! q8 : A → aSb !

q4 : S ′ → S $!

S

a

$
A

A

b

a
A

A

b

S

a

a

Figure 5.2.3. The finite automaton M for the LR(0) parsing of the
grammar G′ with axiom S ′ and productions: 0. S ′ → S $, 1. S → SA,
2. S → A, 3. A → aSb, 4. A → ab. The label of each state is a set
of items which is computed by the Powerset Construction Procedure
from the graph of Figure 5.2.2 on the preceding page.

Recall that as a result of the Powerset Construction, each state of M is labeled
by a set of items of the grammar G′. The initial state of M is the one which has in its
label the item of the leftmost node of the big production associated with S ′ → S $,
that is, the item S ′ → !S $. The items in the states of the automaton M include those
of the grammar G and the three extra items S ′ → !S $, S ′ → S ! $, and S ′ → S $! ,
which are generated by the production S ′ → S $ of the augmented grammar G′.

The final state is the one which has in its label the item S ′ → S $! . (As usual we
write double lines around the final states.) As indicated in Remark 5.2.4 on page 78,
if the augmented grammar is equal to the given grammar with axiom S such that:
(i) the only production for S is S → α, with α ∈ V ∗, and (ii) S does not occur on
the right hand side of any production, then the initial state is the one which has in
its label the item S → !α $ and the final state is the one which has in its label the
item S → α $! .

Step (5). The LR(0) parsing table T is then constructed from the automaton M as
follows. The meaning of the various entries of that table will be clarified when we will
describe the behaviour of the parsing automaton of Figure 5.2.1 on page 78 which
uses that parsing table.

5.2. LR(0) PARSERS 81

(5.1) For each transition qi qj
a where a is terminal symbol different

from $,
we insert in the element T [qi, a] which is in the action part of the table T , the entry
sh qj (short for shift qj). This means that the parsing automaton should take the
input symbol a at hand, push it on the stack, and push the state qj on the stack.
Then the new input symbol at hand is the one to the right of the previous symbol a
at hand. This action of the parsing automaton is called a shift action.

(5.2) For the transition qi qj
$

we insert in the element T [qi, $] which is in the action part of the table T , the entry
acc (short for accept). This means that the parsing automaton should accept the
given input string. This action of the parsing automaton is called the accept action.

(5.3) For each transition qi qj
A with the nonterminal symbol A,

we insert in the element T [qi, A] which is in the goto part of the table T , the entry
qj. This means that the parsing automaton should push on the stack the state qj

(see the following Step (5.4)). This action of the parsing automaton is called a goto
action.

(5.4) For each complete item A → α1 . . .αn ! for some n ≥ 0, where the αi’s are
symbols in VT ∪ VN , in the label of a state qi,
we insert in each element of row qi in the action part of the table T , the entry red p
(short for reduce production p), where p is the number identifying the production
A → α1 . . .αn of the grammar G′. This means that the parsing automaton should re-
place the string α1qα1

. . .αnqαn
which is on the stack (the top element being state qαn

)
by the nonterminal A. This action of the parsing automaton is called a reduce action.

In the case of our augmented grammar G′ at the end of Step (5) we get the parsing
table T of Figure 5.2.4 on the next page. The numbers which identify the productions
of the grammar G′ are necessary for identifying the reduce actions, and they are as
follows:

0. S ′ → S $ 1. S → SA 2. S → A 3. A → aSb 4. A → ab

Now let us explain how the parsing table T is used by the parsing automaton of
Figure 5.2.1 on page 78 for performing the LR(0) parsing. Initially, the stack has the
initial state q0 only. Then the parsing automaton reads the input string (which is
terminated by the symbol $), one symbol at a time from left to right, and it performs
the actions as indicated by the table T . If the top of the stack is the state q and the
input symbol is a, for any a ∈ VT ∪ {$}, then the parsing automaton considers the
entry T [q, a]. There are three cases.

Case (1): shift and goto. If T [q, a] = sh q′, then the parsing automaton pushes the
symbol a from the input string on the stack, and then it pushes the state q′ on the
stack.

Case (2): accept. If T [q, a] = acc, then the parsing automaton accepts the whole
input string.

82 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

action goto

a b $ S A

q0 sh q3 q1 q2

q1 sh q3 acc q5

q2 red 2 red 2 red 2

q3 sh q3 sh q7 q6 q2

q4 red 0 red 0 red 0

q5 red 1 red 1 red 1

q6 sh q3 sh q8 q5

q7 red 4 red 4 red 4

q8 red 3 red 3 red 3

where:

0. S ′ → S $

1. S → SA

2. S → A
3. A → aSb

4. A → ab

Figure 5.2.4. LR(0) parsing table T for the grammar G′ with ax-
iom S ′ and productions: 0. S ′ → S $, 1. S → SA, 2. S → A,
3. A → aSb, 4. A → ab. It has been derived from the finite automa-
ton of Figure 5.2.3 on page 80. The row for state q4 can be eliminated,
because in state q1, when $ is read, the input string is accepted.

Case (3): reduce and goto. If T [q, a] = red p, where p is the number identifying the
production A → α1 . . .αn (with αi ∈ VT ∪ VN ∪ {$}, for i = 1, . . . , n) of the grammar
G′, then the parsing automaton pops from the stack the whole string α1qα1

. . .αnqαn

(the top of the stack being the state qαn
). This leaves a state, say q̃, on the top of

the stack. Then the parsing automaton pushes A on the stack and then pushes also
the state T [q̃, A]. Thus, after every reduce action the parsing automaton performs a
goto action.

The behaviour of the parsing automaton we have described, satisfies the following
property: every symbol α in VT ∪ VN ∪ {$} on the stack has above itself a state of
the automaton M . We call that state the cover state of the symbol α.

Figure 5.2.5 on the facing page shows the behaviour of the automaton of Fig-
ure 5.2.1 on page 78 using the LR(0) parsing table of Figure 5.2.4 on page 82, while
parsing the input string a a b a b b $ which is read from left to right. The symbol #

points at the input character at hand. The stack grows and shrinks at the right end,
and the symbol # points at the top of the stack. In that figure time flows, so to speak,
from top to bottom in the sense that, for any i≥0, the 〈stack, input〉 configuration
at time i+1 is generated by the 〈stack, input〉 configuration at time i according to the
actions described in the last column, which we named the shift / reduce-goto column.

In the literature, for every state q of the automaton M and for every symbol
a ∈ VT ∪ {$}, the entry T [q, a] is also called ‘action(q, a)’, and for every A ∈ VN , the
entry T [q, A] is also called ‘goto(q, A)’ (see also Figure 5.2.5 on the facing page).

With reference to Figure 5.2.5, the reader should note that the sequence of stack
configurations shows in reverse the rightmost derivation of the input string when it

5.2. LR(0) PARSERS 83

time
stack (the
top is marked
by #)

input (the
symbol at hand
is marked by #)

shift / reduce-goto

0
#
q0

#
a a b a b b $ action(q0, a) = sh q3

1 q0 a
#
q3 a

#
a b a b b $ action(q3, a) = sh q3

2 q0 a q3 a
#
q3 a a

#
b a b b $ action(q3, b) = sh q7

3 q0 a q3 a q3 b
#
q7 a a b

#
a b b $

action(q7, a) = red 4 (A → ab)
goto(q3, A) = q2

4 q0 a q3 A
#
q2 a a b

#
a b b $

action(q2, a) = red 2 (S → A)
goto(q3, S) = q6

5 q0 a q3 S
#
q6 a a b

#
a b b $ action(q6, a) = sh q3

6 q0 a q3 S q6 a
#
q3 a a b a

#
b b $ action(q3, b) = sh q7

7 q0 a q3 S q6 a q3 b
#
q7 a a b a b

#
b $

action(q7, b) = red 4 (A → ab)
goto(q6, A) = q5

8 q0 a q3 S q6 A
#
q5 a a b a b

#
b $

action(q5, b) = red 1 (S → SA)
goto(q3, S) = q6

9 q0 a q3 S
#
q6 a a b a b

#
b $ action(q6, b) = sh q8

10 q0 a q3 S q6 b
#
q8 a a b a b b

#
$

action(q8, $) = red 3 (A → aSb)
goto(q0, A) = q2

11 q0 A
#
q2 a a b a b b

#
$

action(q2, $) = red 2 (S → A)
goto(q0, S) = q1

12 q0 S
#
q1 a a b a b b

#
$ action(q1, $) = accept

Figure 5.2.5. The sequence of configurations of the parsing automa-
ton of Figure 5.2.1 on page 78 while parsing the string a a b a b b $ us-
ing the LR(0) parsing table of Figure 5.2.4 on the facing page for the
grammar G′ with axiom S ′ and productions: 0. S ′ → S $, 1. S → SA,
2. S → A, 3. A → aSb, 4. A → ab.

84 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

is accepted. In our case, in fact, by looking at the reduce action, we get the following
rightmost derivation of a a b a b b $ from the axiom S ′:

S ′ →rm (12) S $ →rm (11) A $ →rm (10) a S b $ →rm

→rm (8) a S A b $ →rm (7) a S a b b $ →rm (4) a A a b b $ →rm

→rm (3) a a b a b b $.

Since, according to our conventions production 0 of the grammar G′ is S ′ → S $, and
the symbol $ occurs in this production only, we have that the entry red 0 is never
present in the sequence of configurations of the parsing automaton of Figure 5.2.1 on
page 78, such as those we have depicted in Figure 5.2.5 on the preceding page.

Moreover, in the LR(0) parsing table we can always elminate the row correspond-
ing to the final state, because in that state, when $ is read, the input string is accepted
(see Step (5.2) of Algorithm 5.2.3 on page 77). For example, the row for state q4 in
Table 5.2.4 on page 82 can be eliminated. Therefore, in Step (5.4) of Algorithm 5.2.3
(see page 81) we could require that the state qi be not final and we could eliminate
from the LR(0) parsing table the row corresponding to the final state.

Now let us make a few remarks on Algorithm 5.2.3 for constructing the LR(0)
parsing table.

Remark 5.2.5. [Reduce action is independent of the input symbol] The reduce
action does not depend on the input symbol at hand. For instance, in table T of
Figure 5.2.4 on page 82 for the state q2 we have that: T [q2, a] = T [q2, b] = T [q2, $] =
red 2. Analogously, for the states q4, q5, q7, and q8. "

Remark 5.2.6. [Multiple actions] One can show that if during the construction
of the table T we have to place more than one action in a given entry or, in particular,
more than one complete item occurs as the label of a state of the finite automaton M ,
then the augmented grammar G′ which has been derived from the given grammar G,
is not LR(0) [10]. This means that the language L(G′) = L(G) $ which is generated
by the grammar G′ cannot be parsed using the LR(0) parsing algorithm.

If we have to place more than one action in a given entry of the table T , we
say that there is a conflict. Depending on the actions simultaneously present in the
same entry, a conflict can be either a shift-shift conflict, or a shift-reduce conflict, or
reduce-reduce conflict. "

Remark 5.2.7. [Undefined entry] If during the parsing process of the input word
w $, the pushdown automaton of Figure 5.2.1 on page 78 when using the table T ,
finds an undefined entry, then w $ is not in the LR(0) language L(G′) generated by
the augmented grammar G′ and thus, the word w is not in the language generated
by the given grammar G. "

One can show that the following is an alternative definition of LR(0) grammars.
This definition is based on the construction of the finite automaton M of Step (4) of
Algorithm 5.2.3 on page 77 [10, page 252].

Definition 5.2.8. [LR(0) Grammar and LR(0) Language] A context-free
grammar G is an LR(0) grammar if

5.2. LR(0) PARSERS 85

(i) the start symbol does not occur in the right hand side of any production, and
(ii) in every state of the automaton M of Step (4) of Algorithm 5.2.3 on page 77 if
there is a complete item of G then in that state no other complete item occurs nor
any item with a terminal symbol immediately to the right of the dot.

A language is an LR(0) language if it is generated by an LR(0) grammar.

Now we give an example of a grammar which is an LR(0) grammar and it is not
LL(k) for any k≥0.

Example 5.2.9. [An LR(0) Grammar] Let us consider the grammar G with
axiom S and whose productions are:

S → A | B
A → aAb | 0
B → aBbb | 1

The language generated by this grammar is:

L = {an 0 bn | n ≥ 0} ∪ {an 1 b2n | n ≥ 0}.

The grammar G is LR(0) and it is not LL(k) for any k ≥ 0.

Now we will present a few results which we state without proof. First, we recall
the following definitions (see [21, Section 3.3]).

Definition 5.2.10. [Prefix-Free Language] A language L is said to be prefix -
free (or to enjoy the prefix property) iff no word in L is a proper prefix of another
word in L, that is, for every word u ∈ L, the word uv for v 2= ε is not in L.

Definition 5.2.11. [Deterministic Pushdown Automaton] A pushdown au-
tomaton 〈Q,Σ,Γ, q0, Z0, F, δ〉 is said to be a deterministic pushdown automaton (or
a dpda, for short) iff
(i) ∀q ∈ Q, ∀Z ∈ Γ, if δ(q, ε, Z) 2= {} then ∀a ∈ Σ, δ(q, a, Z) = {} (that is, no
other moves are allowed when an ε-move is allowed), and
(ii) ∀q ∈ Q, ∀Z ∈ Γ, ∀x ∈ Σ ∪ {ε}, δ(q, x, Z) is either {} or a singleton (that is, if
a move is allowed, then that move can be made in one way only, that is, there exists
only one next configuration for the dpda).

Definition 5.2.12. [Deterministic Context-Free Language] A context-free
language L is said to be a deterministic context-free language iff it is accepted by a
deterministic pushdown automaton by final state, that is, for each word w ∈ L, the
deterministic pushdown automaton, starting from the input string w $ and the initial
state q0, eventually reaches a final state, having read all the symbols of w $.

Definition 5.2.13. [Language Accepted by a Parsing Pushdown Automa-
ton] Let us consider the parsing automaton A of Figure 5.2.1 on page 78, with its
parsing table T . That table specifies the moves of A for each symbol in input and
each symbol on the top of the stack. An input word w is accepted by the automa-
ton A if starting from the configuration where: (i) w is the string to be read with the
extra symbol $ at the right end (that is, initially the input head points at the leftmost
symbol of w), and (ii) the initial state q0 is on the stack, then A eventually performs
the accept action. The language accepted by a parsing pushdown automaton A with
table T is the set of input words accepted by A.

86 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

Let us consider an algorithm P which given a context-free grammar G, constructs
its augmented grammar G′ and the parsing table TG′ for the parsing automaton A of
Figure 5.2.1 on page 78. Depending on the augmented grammar G′, the algorithm P
may or may not generate a table TG′ such that the language accepted by the parsing
automaton A using the parsing table TG′, is equal to L(G′).

In particular, one can show that the augmented grammar G′ is an LR(0) grammar
iff Algorithm 5.2.3 on page 77 produces a table such that the language accepted by
the parsing automaton A is equal to L(G′) [10].

Now we define the language which is accepted by an algorithm for constructing
parsing tables.

Definition 5.2.14. [Language Accepted by an Algorithm for Construct-
ing Parsing Tables] Let us consider an algorithm P that, given a context-free
grammar G, constructs the augmented grammar G′ and the parsing table TG′ for the
parsing automaton A of Figure 5.2.1 on page 78. We say that the algorithm P accepts
the language L if L is the language accepted by the parsing automaton A when it
uses the parsing table TG′.

The following Theorems 5.2.15 and 5.2.16, which we state without proof, provide
two alternative definitions of the class of the LR(0) languages and relate the class of
deterministic context-free languages to the class of the LR(0) languages.

Theorem 5.2.15. The class of the LR(0) languages is the class of the context-free
languages which are accepted by Algorithm 5.2.3 on page 77. (Thus, it is appropriate
to call Algorithm 5.2.3 an algorithm for constructing LR(0) parsing tables.)

Theorem 5.2.16. [LR(0) Languages and Deterministic Context-Free Lan-
guages] (i) The class of the LR(0) languages is the class of deterministic context-free
languages which enjoy the prefix property [10, pages 121 and 260]. (ii) A language
L ⊆ Σ∗ is a deterministic context-free language iff L $, with $ not in VT , can be
generated by an LR(0) grammar [10, page 260].

5.2.1. Avoiding the Powerset Construction.

Algorithm 5.2.3 on page 77 for constructing the LR(0) parsing tables, can be replaced
by the following algorithm which, given a context-free grammar, first constructs the
corresponding augmented grammar G′, then constructs the deterministic finite au-
tomaton M , and finally constructs the LR(0) parsing table.

After the construction of the augmented grammar G′, the construction of the
automaton M is done by applying the following rules for generating: (i) states,
(ii) sets of items in the labels of the states, and (iii) arcs.

Initialization Rule. The initial state q0 of the finite automaton M has its set of
items initialized by the item S ′ → !S $.

Closure Rule (1). For any A, B ∈ VN and α, β, γ ∈ V ∗,
if in the label of a state there is an item of the form A → α !Bβ then we add to
that label all items of the grammar G′ of the form: B → ! γ.

5.3. SLR(1) PARSERS 87

Closure Rule (2). For any A1, . . . , An, B ∈ VN and α1, β1, . . . ,αn, βn ∈ V ∗,
if all the items in the label of a state p with the dot immediately to the left of
the nonterminal B are: A1 → α1 !Bβ1, . . . , An → αn !Bβn, for some n>0, then
we add to M a new state, call it q, such that: (i) there is an arc with label B
from the state p to the state q, and (ii) the label of q includes A1 → α1B !β1, . . . ,
An → αnB !βn.

Closure Rule (3). For any a ∈ VT , A1, . . . , An ∈ VN , and α1, β1, . . . ,αn, βn ∈ V ∗,
if all the items in the label of a state p with the dot immediately to the left of the
terminal a are: A1 → α1 ! aβ1, . . . , An → αn ! aβn, for some n>0, then we add to
M a new state, call it q, such that: (i) there is an arc with label a from the state
p to the state q, and (ii) the label of q includes A1 → α1a ! β1, . . . , An → αna !βn.

Those rules allow us to construct the deterministic finite automaton M without con-
structing the so called big productions and without applying the Powerset Construc-
tion Procedure. From M we then construct the LR(0) parsing table T as indicated
in Step (5) of Algorithm 5.2.3 on page 77. "

5.3. SLR(1) Parsers

In this section we will describe a new algorithm for constructing the parsing ta-
ble of the automaton of Figure 5.2.1 on page 78. This algorithm is a variant of
Algorithm 5.2.3 on page 77 for constructing LR(0) parsing tables. It provides the
definition of a subclass of the deterministic context-free languages, called SLR(1)
(short for Simple LR(1)) languages, as specified by the following definition.

Definition 5.3.1. [SLR(1) Languages] A language is an SLR(1) language iff it
is accepted by the following Algorithm 5.3.2 (this notion of acceptance is given in
Definition 5.2.14 on the preceding page).

Here is the algorithm for constructing SLR(1) parsing tables.

Algorithm 5.3.2. Constructing the SLR(1) Parsing Table.

Given a context-free grammar G, we first consider its augmented grammar G′. Then,
in order to fill the entries of the SLR(1) parsing table T for the parsing automaton
of Figure 5.2.1 on page 78, we use the Algorithm 5.2.3 on page 77 for constructing
LR(0) parsing tables, with the following rule (5.4*), instead of rule (5.4) on page 81:

(5.4*) for every state q of the deterministic finite automaton M ,

if there exists in q a complete item A → α ! , for some A ∈ VN and α ∈ V ∗,

then for every terminal symbol a of the set Follow 1(A), we insert in the entry T [q, a]
of the parsing table the reduce action red p, where p identifies the production A → α
of the augmented grammar G′.

88 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

If by using this algorithm we fill some entries of the table T by either (i) a shift action
(in the action columns), or (ii) a reduce action (in the action columns), or (iii) a goto
action (in the goto columns), and no more than one action is placed in every entry of
that table, then the augmented grammar G′ is said to be an SLR(1) grammar. Note
that the parameter 1 in the qualifier ‘SLR(1)’ is due to the fact that in our algorithm
we have used the set Follow 1(A), rather than the set Follow k(A), for some k>1.

Here is an example of an SLR(1) grammar and the construction of corresponding
parsing table according to Algorithm 5.3.2 on the preceding page.

Example 5.3.3. [SLR(1) Parsing: An Example] Let us consider the following
augmented grammar:

0. E ′ → E $

1. E → E + T
2. E → T

3. T → T × F
4. T → F

5. F → (E)
6. F → a

The finite automaton constructed at the end of Step (4) by Algorithm 5.2.3 on page 77
is shown in Figure 5.3.1 on the facing page.

The parsing table constructed from the finite automaton of Figure 5.3.1, is shown
in Figure 5.3.2 on page 90. To construct that table we have first to compute the
following Follow 1 sets:

Follow 1(E) = {+,), $}, Follow 1(T) = {+, ×,), $}, Follow 1(F) = {+, ×,), $}

Note that, contrary to the LR(0) parsing tables, in the SLR(1) parsing tables we may
have in the same row both a reduce action and a shift action (which, obviously, are
placed in different columns). In particular, state q9 shows that the given grammar is
not an LR(0) grammar. In state q9, by using one symbol of lookahead on the input
string, we do the following actions:

(i) if the lookahead symbol is ×, then we perform a shift action by placing × on
the top of the stack, and we look for an F , because of the item T → T ! ×F in which
the symbol × is followed by F , and otherwise,

(ii) if the lookahead symbol is different from × and belongs to Follow 1(E), then
we perform a reduce action by reducing production 1 which is: E → E+T . Indeed, in
state q9 we have only the complete item E → E+T ! , besides the item T → T !×F .

Note that the row for state q12 can be eliminated because in state q1, when $ is
read, the input string is accepted and, thus, state q12 is never reached.

Now we give an example of a grammar which is not SLR(1).

Example 5.3.4. [A Grammars Which Is Not SLR(1)] Let us consider the
grammar with axiom S and the following productions:

1. S → L = R 2. S → R 3. L → ∗R 4. L → a 5. R → L

5.3. SLR(1) PARSERS 89

q0 :

E ′ → !E $
E → ! E+T
E → ! T
T → !T×F
T → !F

F → ! (E)
F → ! a

q1 :
E ′ → E ! $
E → E ! +T

q2 :
E → T !

T → T ! ×F

q3 : T → F !

q4 :

F → (!E)
E → !E+T
E → !T
T → ! T×F
T → ! F

F → ! (E)
F → ! a

q5 : F → a !

q6 :
E → E+ !T
T → !T×F
T → !F

F → ! (E)
F → ! a

q7 :
T → T×!F
F → ! (E)
F → ! a

q8 :
F → (E !)
E → E ! +T

q9 :
E → E+T !

T → T ! ×F

q10 : T → T×F !

q11 : F → (E) !

q12 : E ′ → E $!
E

TF
(

$

+

×

E

F

T

a

(

T

F

(+(a

F

)

×

a

a

Figure 5.3.1. The finite automaton for the SLR(1) parsing of the
grammar with axiom E ′ and productions: 0. E ′ → E $, 1. E → E+T ,
2. E → T , 3. T → T×F , 4. T → F , 5. F → (E), 6. F → a. The
label of each state is a set of items and it is generated by the Powerset
Construction Procedure starting from the graph of the big productions
whose construction is left to the reader (see Algorithm 5.2.3 on page 77
for constructing the LR(0) parsing tables).

Its augmented grammar has axiom S ′ and the extra production S ′ → S $. The
language generated by this grammar is that of the so called left-values and right-
values of assignments. In this language the string ∗R denotes the content of the
location R.

If we apply Algorithm 5.2.3 on page 77 for constructing the LR(0) parsing table,
we get a state with items: S → L ! =R and R → L ! (see state q3 in Figure 5.3.3
on page 91). We also have that Follow 1(L) = {=} and Follow 1(R) = {=}.

Thus, in the SLR(1) parsing table for that state q3 and terminal symbol ‘=’, we
should insert according to Algorithm 5.3.2 on page 87, both a shift action (because

90 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

action goto

a + × () $ E T F

q0 sh q5 sh q4 q1 q2 q3

q1 sh q6 acc

q2 red 2 sh q7 red 2 red 2

q3 red 4 red 4 red 4 red 4

q4 sh q5 sh q4 q8 q2 q3

q5 red 6 red 6 red 6 red 6

q6 sh q5 sh q4 q9 q3

q7 sh q5 sh q4 q10

q8 sh q6 sh q11

q9 red 1 sh q7 red 1 red 1

q10 red 3 red 3 red 3 red 3

q11 red 5 red 5 red 5 red 5

q12 red 0

where:

0. E ′ → E $
1. E→E+T

2. E→T

3. T →T×F

4. T →F

5. F →(E)

6. F →a

Figure 5.3.2. SLR(1) parsing table for the grammar with axiom E ′

and productions: 0. E ′ → E $, 1. E → E + T , 2. E → T ,
3. T → T×F , 4. T → F , 5. F → (E), 6. F → a. It has
been derived from the automaton of Figure 5.3.1 on the previous page.
The row for state q12 can be eliminated because in state q1, when $ is
read, the input string is accepted.

of the symbol ‘=’) and a reduce action (because R → L ! is a complete item and the
symbol ‘=’ is an element of Follow 1(R)). Then we would have a so called shift-reduce
conflict and, thus, the given grammar is not SLR(1).

5.4. LR(1) Parsers

In this section we describe a new algorithm for constructing the parsing table of the
automaton of Figure 5.2.1 on page 78. This algorithm is similar to Algorithm 5.2.3
on page 77 (which was used for constructing LR(0) parsing tables) and provides
the definition of a subclass of the deterministic context-free languages, the so called
LR(1) languages. Actually, one can show (see Theorem 5.4.12 on page 103) that
every deterministic context-free language admits an LR(1) grammar which generates
it.

Algorithm 5.4.1. Constructing the LR(1) Parsing Table.

Given a context-free grammar G = 〈VT , VN , P, S〉 we want to construct the LR(1)
parsing table for the parsing automaton of Figure 5.2.1 on page 78.

5.4. LR(1) PARSERS 91

q0 :
S ′ → !S $
S → !L=R
S → !R

L → ! ∗ R
L → ! a
R → !L

q1 : S ′ → S ! $

q3 :
S → L ! =R
R → L !

q4 : S → R !

q5 :
L → ∗ !R
R → !L

L → ! ∗R
L → ! a

q6 :

S → L= !R
R → !L
L → ! ∗ R
L → ! a

q7 : L → ∗R !

q8 : R → L !

q9 : L → a !

q10 : S → L=R !

q2 : S ′ → S $!
S $

R

L

∗
a

=

a
L

L
R

∗

R

∗

Figure 5.3.3. The finite automaton for the grammar with axiom S ′

and productions: 0. S ′ → S $, 1. S → L=R, 2. S → R, 3. L → ∗R,
4. L → a, 5. R → L. The label of each state is generated by the
Powerset Construction Procedure (see Algorithm 5.2.3 on page 77).
State q3 shows that this grammar is not an SLR(1) grammar.

Step (1). First we consider the augmented grammar G′ = 〈VT ∪{$}, VN∪{S ′}, P ′, S ′〉,
where the set P ′ of productions is P∪{S ′ → S}. We assume that $ 2∈ VT and S ′ 2∈ VN .
We have that the start symbol S ′ of the augmented grammar does not occur on the
right hand side of any production of the augmented grammar.

For instance, in the case of the grammar G with axiom S and the three productions

1. S → C C 2. C → c C 3. C → d

we consider the following augmented grammar G′:

0. S ′ → S 1. S → C C 2. C → c C 3. C → d

Remark 5.4.2. Note that when the production for the start symbol S of the
grammar G is one only, and S does not occur on the right hand side of any production
of G, then we can take the augmented grammar G′ to be G itself. "

Step (2). We construct a set P of big productions with lookahead sets as we now
indicate. A big production with a lookahead set is a linear graph like the one described
in Step (2) of Algorithm 5.2.3 on page 77 for constructing LR(0) parsing tables, but
in the label of each node of the graph there is also a set of symbols in VT ∪{$}, called
the lookahead set.

The construction of the set P of big productions with lookahead sets is done
incrementally by applying to the following Rules (2.1) and (2.2).

92 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

Initialization Rule 2.1
Initially, the set P consists of one big production only. It is the following one with
lookahead set {$}:

S ′ → !S, {$} S ′ → S ! , {$}S

If the only production for the axiom S is S → α1 . . .αn, where n ≥ 0 and for
i = 1, . . . , n, αi ∈ VT ∪ VN and S does not occur on the right hand side of any
production, and we take the augmented grammar G′ to be G itself, then the set P
consists of the following big production with lookahead set {$}:

S→ !α1α2 . . .αn, {$} S→α1!α2 . . .αn, {$} . . . S→α1α2 . . .αn!, {$}
α1 α2 αn

Closure Rule 2.2
For every node in the graph constructed so far, of the form:

B → α !A β, L where A, B ∈ VN and α, β ∈ V ∗, and for every production

A → γ, with γ = γ1 . . . γn, for n ≥ 0, where the γi’s belong to VT ∪ VN , in the
augmented grammar G′, we add to the set P the following big production:

A→ ! γ1γ2 . . . γn, L′ A→γ1!γ2 . . . γn, L′ . . . A→γ1γ2 . . . γn!, L′γ1 γ2 γn

whose lookahead set L′ is defined as follows:

L′ = if β = ε then L
if β 2= ε and β →∗ ε then L ∪ (First1(β)−{ε})
if β 2= ε and β 2→∗ ε then First1(β)

Step (3). We consider the graph constructed at Step (2), made out of all the big
productions with lookahead sets. Then, for every nonterminal A, B ∈ VN and strings
α, β, γ ∈ (VT ∪ VN)∗, and for all lookahead sets L and L′, we add an arc labeled by ε
from every node of the form:

B → α !Aβ, L to every node of the form: A → ! γ, L′

Step (4). By applying the Powerset Construction Procedure (see, for instance, [21]) to
the graph of the big productions with lookahead sets obtained at the end of Step (3),
we get a finite automaton. Let that finite automaton be called M . The initial state

of M is the one which has in its label the item S ′ → !S, {$} . The final state of M

is the one which has in its label the item S ′ → S ! , {$} . Note that by the Powerset

Construction the label of each state of M is a set of items of the grammar G′, each
item being associated with its lookahead set.

In what follows, by abuse of language, we will feel free to say ‘an item’, instead
of ‘an item with its lookahead set’.

If the only production for the axiom S is S → α1 . . .αn, where n ≥ 0 and for
i = 1, . . . , n, αi ∈ VT ∪ VN and S does not occur on the right hand side of any

5.4. LR(1) PARSERS 93

production, and we take the augmented grammar G′ to be G itself, then the initial

state of M is the one which has in its label the item S→!α1α2 . . .αn, {$} and the

final state of M is the one which has in its label the item S→α1α2 . . .αn ! , {$} .

Step (5). The LR(1) parsing table T is then constructed from the automaton M as
follows.

(5.1) For each transition qi qj
a where a is a terminal symbol,

we insert in the element T [qi, a] which is in the action part of the table T , the entry
sh qj (short for shift qj). This means that the parsing automaton of Figure 5.2.1 on
page 78 should take the input symbol a at hand, push it on the stack, and push the
state qj on the stack. Then the new input symbol at hand is the one to the right of
the previous symbol a at hand. This action of the parsing automaton is called a shift
action.

(5.2) For the final state qi with the item S ′ → S ! , {$} ,

we insert in the element T [qi, $] which is in the action part of the table T , the entry
acc (short for accept). This means that the parsing automaton of Figure 5.2.1 should
accept the given input string. This action of the parsing automaton is called the
accept action.

Recall that in the final state qi, instead of the item S ′ → S ! , {$} , we have the

item S → α1 . . .αn ! , {$} , for some n≥0 and the αi’s in VT ∪ VN , if according to

Remark 5.4.2 on page 91, we take the augmented grammar to be the given grammar
itself, because in the given grammar: (i) there is only one production for the start
symbol S, and (ii) S does not occur on the right hand side of any production.

(5.3) For each transition qi qj
A with the nonterminal A,

we insert in the element T [qi, A] which is in the goto part of the table T , the entry
qj. This means that the parsing automaton of Figure 5.2.1 should push on the stack
the state qj (see Point (5.4) below). This action of the parsing automaton is called a
goto action.

(5.4) For each complete item A→α1 . . .αn ! , L , for some n≥0, where the αi’s are

symbols in VT ∪ VN , in the label of a state qi which is not final,
we insert for each a ∈ L, in row qi and column a, in the action part of the table T ,
the entry red p (short for reduce production p), where p is the number identifying the
production A → α1 . . .αn of the grammar G′. This means that the parsing automaton
of Figure 5.2.1 should replace the string α1qα1

. . .αnqαn
which is on the stack (the top

element being state qαn
) by the nonterminal A. This action of the parsing automaton

is called a reduce action.

94 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

Having constructed the LR(1) parsing table, we can use the pushdown automaton of
Figure 5.2.1 on page 78 with that table, for parsing a given input word w. Initially,
the stack has the initial state q0 only, and the input string is w $. Then the pushdown
automaton works by using the LR(1) parsing table as it were an LR(0) parsing table.

Remark 5.4.3. [Multiple actions] As for LR(0) grammars, also in the case of the
LR(1) grammars, if we have to place more than one action in an entry of the LR(1)
parsing table (that is, we have conflicts), then the language generated by the given
grammar cannot be parsed by using a pushdown automaton which uses that table
and the augmented grammar G′ which has been derived from the given grammar G,
is not LR(1). "

Remark 5.4.4. [Undefined entry] If during the process of parsing a given input
word w $, the pushdown automaton requires an entry of the table, but that entry
is empty, then the word w does not belong to the language generated by the aug-
mented grammar G′ and w does not belong to the language generated by the given
grammar G. "

Remark 5.4.5. When applying Algorithm 5.4.1 on page 90, in any state, for

any n≥2, we can replace n items of the form: A→γ, L1 , . . ., A→γ, Ln , where

A ∈ VN and γ ∈ (VT ∪ VN)∗ ∪ { ! } ∪ (VT ∪ VN)∗ (that is, γ is a string of terminal or
nonterminal symbols with a dot ! at the beginning, or in between, or at the end),

by a unique item of the form: A→γ, L1 ∪ . . . ∪ Ln . Indeed, this replacement does

not modify the outcome of that algorithm (see Step (5.4) on page 93). "

Note that in the LR(1) parsing table there is no column labeled by S ′ because
no arc in the graph representing the finite automaton M constructed at the end of
Step (4) of Algorithm 5.4.1 on page 90, has label S ′.

We leave it to the reader to check that, if the axiom of the augmented gram-
mar is S ′ and the axiom of the given grammar is S, when the action accept is per-
formed, then the pushdown automaton is in the final state q whose label has the item

S ′ → S ! , {$} , the input symbol at hand is $, and the stack is of the form (the

top being the state q):

q0 S q

If, according to Remark 5.4.2 on page 91, we take the augmented grammar to be the
given grammar itself, so that the only production for the axiom S is S → α1 . . .αn,
for some n ≥ 0 and the αi’s in VT ∪ VN , then when the action accept is per-
formed, the pushdown automaton is in the final state q whose label has the item

S → α1 . . .αn ! , {$} , the input symbol at hand is $, and the stack is of the form

(the top being the state q):

5.4. LR(1) PARSERS 95

q0 α1 qr . . . qs αn q

Note that Algorithm 5.4.1 on page 90 for constructing LR(1) parsing tables is analo-
gous to Algorithm 5.2.3 on page 77 for constructing LR(0) parsing tables and avoids
the use of the Powerset Construction by using, instead, an Initialization Rule (see
Rule 2.1 on page 92) and a Closure Rule (see Rule 2.2 on page 92).

The following fact states a property which is enjoyed by the lookahead sets of the
items of the LR(1) grammars.

Fact 5.4.6. [Lookahead Sets and Follow 1 Sets] For any item of the form

B → α !β, L , with B ∈ (VN ∪ {S ′}) and α, β ∈ (VT ∪ VN)∗, we have that:

L ⊆ Follow 1(B).

Proof. The proof is by cases.

Case (1). For the item S ′ → !S, {$} where S ′ is the axiom of the augmented

grammar and the production S ′ → S is the only production for S ′, we get the thesis
because Follow1(S ′) = {$}.

Case (2). For the item B → α ! Aβ, L with β 2=ε and β→∗ ε, we have to consider

items of the form A → . . . , L′ , where L′ = L∪ (First1(β) − {ε}) . The thesis

follows from the following Points (2.1) and (2.2).
Point (2.1). By induction hypothesis we have that: L ⊆ Follow1(B). We also have
that Follow1(B) ⊆ Follow1(A), by definition of Follow 1 if β 2= ε and β →∗ ε (see
Definition 4.2.5 on page 55). Thus, L ⊆ Follow1(A).
Point (2.2). We have that: (First1(β)− {ε}) ⊆ Follow1(A), by definition of Follow 1

if β 2=ε and β→∗ ε.

Case (3). For the item B → α ! Aβ, L with β 2=ε and β 2→∗ ε, we have to consider

items of the form A → . . . , L′ , where L′ = First1(β). The thesis follows because

First1(β) − {ε}) = First1(β) (recall that, when β 2→∗ ε, we have that ε 2∈ First1(β))
and (First1(β)−{ε})⊆Follow1(A) (by definition of Follow 1 if β 2=ε and β 2→∗ ε). "

One can show that the following is an alternative definition of LR(1) grammars.
The proof of this fact is based on Algorithm 5.4.1 on page 90 and can be found in [10,
page 263].

Definition 5.4.7. [LR(1) Grammar and LR(1) Language] A context-free
grammar G is an LR(1) grammar iff
(i) the start symbol does not occur in the right hand side of any production, and
(ii) if in the label of a state of the automaton M of Step (4) of Algorithm 5.4.1
for constructing the LR(1) parsing tables, there is a complete item of the form

A → α ! , L (recall that the label of a state is a set of items, each item being associ-

96 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

ated with its lookahead set), then (ii.1) for any other complete item B → β ! , M in

the same label, M∩L = ∅, and (ii.2) for any other incomplete item B → β ! aγ, M ,

with a ∈ VT ∪ {$} in the same label, we have that a 2∈ L.
A language is an LR(1) language if it is generated by an LR(1) grammar.

Now we will present two examples of LR(1) parsing.

Example 5.4.8. [LR(1) Parsing: Example 1] Let us consider the grammar G
with axiom S and the following productions:

1. S → C C 2. C → c C 3. C → d

The augmented grammar G′ is:

0. S ′ → S 1. S → C C 2. C → c C 3. C → d

Note that for the grammar G we can take the augmented grammar G′ to be G itself,
because there is only one production for S and S does not occur on the right hand
side of any production in G.

The graph of the big productions with the lookahead sets is depicted in Fig-
ure 5.4.1 on the facing page.

Note the item S → ! C C, {$} in the second row from above, has an ε-arc both

to the item C → ! c C, {c, d} in the third row and to the item C → ! d, {c, d} in

the fifth row, both with lookahead set {c, d}, because C 2→∗ ε and First1(C) = {c, d}.
From the graph of Figure 5.4.1 the Powerset Construction Procedure constructs

the finite automaton depicted in Figure 5.4.2 on page 98.

From that automaton we get the LR(1) parsing table of Figure 5.4.3 on page 99.
Figure 5.4.4 on page 99 shows the behaviour of the automaton of Figure 5.2.1 on
page 78, while parsing the input string d c d $ which is read from left to right. In
Figure 5.4.4 we use the same conventions of Figure 5.2.5 on page 83 and, in particular,
the symbol # points at the input character at hand. The stack grows and shrinks at
the right end, and the symbol # points at the top of the stack. "

5.4. LR(1) PARSERS 97

S ′ → !S, {$} S ′ → S ! , {$}

S → !CC, {$} S → C !C, {$} S → CC ! , {$}

C → ! c C, {c, d} C → c !C, {c, d} C → c C ! , {c, d}

C → ! c C, {$} C → c !C, {$} C → c C ! , {$}

C → ! d, {c, d} C → d ! , {c, d}

C → ! d, {$} C → d ! , {$}

S

ε

C C

ε
ε

ε

ε

C

ε

c

ε

c

ε

ε

C

d

d

Figure 5.4.1. The graph of the big productions with lookahead
sets and ε-arcs for the grammar G′ with axiom S ′ and productions:
0. S ′ → S, 1. S → C C, 2. C → c C, 3. C → d. Each big produc-
tion with its lookahead set is depicted as a sequence of nodes which are
horizontally aligned.

98 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

q0 :

S ′ → !S, {$}
S → !C C, {$}
C → ! c C, {c, d}
C → ! d, {c, d}

q2 :
S →C ! C, {$}
C → ! c C, {$}
C → ! d, {$}

q3 :
C →c !C, {c, d}
C → ! c C, {c, d}
C → ! d, {c, d}

q4 : C → d ! , {c, d}

q6 :
C →c !C, {$}
C → ! c C, {$}
C → ! d, {$}

q5 : S → C C ! , {$}

q7 : C → d ! , {$}

q8 : C → c C ! , {c, d}

q9 : C → c C ! , {$}

q1 : S ′ → S ! , {$}S

C
cd

d

C

C

c

d

C

d

c

c

Figure 5.4.2. The finite automaton M for the LR(1) parsing of the
grammar G′ with axiom S ′ and productions: 0. S ′ → S, 1. S → C C,
2. C → c C, 3. C → d. The label of each state is a set of items which
is computed by the Powerset Construction Procedure from the graph
of Figure 5.4.1.

5.4. LR(1) PARSERS 99

action goto

c d $ S C

q0 sh q3 sh q4 q1 q2

q1 acc

q2 sh q6 sh q7 q5

q3 sh q3 sh q4 q8

q4 red 3 red 3
q5 red 1
q6 sh q6 sh q7 q9

q7 red 3
q8 red 2 red 2
q9 red 2

where:

0. S ′ → S

1. S → C C

2. C → c C

3. C → d

Figure 5.4.3. LR(1) parsing table for the grammar G′ with axiom S ′

and productions: 0. S ′ → S, 1. S → C C, 2. C → c C, 3. C → d.
It has been derived from the automaton of Figure 5.4.2 on page 98.

time
stack (the
top is marked
by #)

input (the
symbol at hand
is marked by #)

shift / reduce-goto

0
#
q0

#
d c d $ action(q0, d) = sh q4

1 q0 d
#
q4 d

#
c d $

action(q4, c) = red 3 (C → d)
goto(q0, C) = q2

2 q0 C
#
q2 d

#
c d $ action(q2, c) = sh q6

3 q0 C q2 c
#
q6 d c

#
d $ action(q6, d) = sh q7

4 q0 C q2 c q6 d
#
q7 d c d

#
$

action(q7, $) = red 3 (C → d)
goto(q6, C) = q9

5 q0 C q2 c q6 C
#
q9 d c d

#
$

action(q9, $) = red 2 (C → c C)
goto(q2, C) = q5

6 q0 C q2 C
#
q5 d c d

#
$

action(q5, $) = red 1 (S → C C)
goto(q0, S) = q1

7 q0 S
#
q1 d c d

#
$ action(q1, $) = accept

Figure 5.4.4. Sequence of configurations of the pushdown automaton
of Figure 5.2.1 on page 78 while parsing the string d c d $ using the
LR(1) parsing table of Figure 5.4.3, for the grammar G′ with axiom S ′

and productions: 0. S ′ → S, 1. S → C C, 2. C → c C, 3. C → d.

100 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

Example 5.4.9. [LR(1) Parsing: Example 2] Let us consider the grammar G
with axiom A and the following productions:

1. A → B A 2. A → ε 3. B → a B 4. B → b

The augmented grammar G′ with axiom S is:

0. S → A 1. A → B A 2. A → ε 3. B → a B 4. B → b

(Note that for reasons of simplicity, we have used the symbol S, instead of S ′.)
The language generated by this grammar is (a∗b)∗. The graph of the big pro-
ductions with the lookahead sets is depicted in Figure 5.4.5. Note that the item

A → ! B A, {$} has an ε-arc both to the item B → ! a B, {$,a,b} and to the

item B → ! b, {$,a,b} , both with lookahead set {$, a, b}, because A → ε and

First1(B) = {a, b}.

S → !A, {$} S → A ! , {$}

A → !BA, {$} A → B !A, {$} A → BA ! , {$}

A → ! , {$}

B → ! a B, {$,a,b} B → a !B, {$,a,b} B → a B ! , {$,a,b}

B → ! b, {$,a,b} B → b ! , {$,a,b}

A

A

B

b

ε

ε

ε

ε

ε

ε

B

ε

a

ε

Figure 5.4.5. The graph of the big productions with lookahead
sets and ε-arcs for the grammar G′ with axiom S and productions:
0. S → A, 1. A → B A, 2. A → ε, 3. B → a B, 4. B → b. Each
big production with its lookahead set is depicted as a sequence of nodes
which are horizontally aligned.

The Powerset Construction Procedure constructs from the graph of Figure 5.4.5
the finite automaton depicted in Figure 5.4.6 on the facing page.

From that automaton we get the LR(1) parsing table of Figure 5.4.7 on the facing
page. Figure 5.4.8 on page 102 shows the behaviour of the pushdown automaton of
Figure 5.2.1 on page 78 while parsing the input string a a b b $ which is read from left
to right using the parsing table of Figure 5.4.7 on the facing page. In Figure 5.4.8 we
use the same conventions of Figure 5.2.5 on page 83 and, in particular, the symbol #

points at the input character at hand. The stack grows and shrinks at the right end,
and the symbol # points at the top of the stack. "

5.4. LR(1) PARSERS 101

q0 :
S → !A, {$}
A → ! B A, {$}
A → ! , {$}

B → ! a B, {$,a,b}
B → ! b, {$,a,b}

q2 :
A → B !A, {$}
A → !B A, {$}
A → ! , {$}

B → ! a B, {$,a,b}
B → ! b, {$,a,b}

q3 :
B →a !B, {$,a,b}
B → ! a B, {$,a,b}
B → ! b, {$,a,b}

q4 : B → b ! , {$,a,b}

q6 : B → a B ! , {$,a,b}

q5 : A → B A ! , {$}

q1 : S → A ! , {$}A

a

A

B

b

B

b

a

b

B

a

Figure 5.4.6. The finite automaton M for the LR(1) parsing of the
grammar G′ with axiom S and productions: 0. S → A, 1. A → B A,
2. A → ε, 3. B → a B, 4. B → b. The label of each state is a set
of items which is computed by the Powerset Construction Procedure
from the graph of Figure 5.4.5 on the preceding page.

action goto

a b $ A B

q0 sh q3 sh q4 red 2 q1 q2

q1 acc

q2 sh q3 sh q4 red 2 q5 q2

q3 sh q3 sh q4 q6

q4 red 4 red 4 red 4

q5 red 1

q6 red 3 red 3 red 3

where:

0. S → A
1. A → B A

2. A → ε

3. B → a B

4. B → b

Figure 5.4.7. LR(1) parsing table for the grammar G′ with axiom S
and productions: 0. S → A, 1. A → B A, 2. A → ε, 3. B → a B,
4. B → b. It has been derived from the finite automaton of Figure 5.4.6.

102 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

time
stack (the
top is marked
by #)

input (the
symbol at hand
is marked by #)

shift / reduce-goto

0
q0
#

a a b b $
action(q0, a) = sh q3

1
q0 a q3

#

a a b b $
action(q3, a) = sh q3

2
q0 a q3 a q3

#

a a b b $
action(q3, b) = sh q4

3
q0 a q3 a q3 b q4

#

a a b b $
#

action(q4, b) = red 4 (B → b)
goto(q3, B) = q6

4
q0 a q3 a q3 B q6

#

a a b b $
#

action(q6, b) = red 3 (B → a B)
goto(q3, B) = q6

5
q0 a q3 B q6

#

a a b b $
#

action(q6, b) = red 3 (B → a B)
goto(q0, B) = q2

6
q0 B q2

#

a a b b $
action(q2, b) = sh q4

7
q0 B q2 b q4

#

a a b b $
#

action(q4, $) = red 4 (B → b)
goto(q2, B) = q2

8
q0 B q2 B q2

#

a a b b $
#

action(q2, $) = red 2 (A → ε)
goto(q2, A) = q5

9
q0 B q2 B q2 A q5

#

a a b b $
#

action(q5, $) = red 1 (A → B A)
goto(q2, A) = q5

10
q0 B q2 A q5

#

a a b b $
#

action(q5, $) = red 1 (A → B A)
goto(q0, A) = q1

11
q0 A q1

#

a a b b $
action(q1, $) = accept

Figure 5.4.8. Sequence of configurations of the pushdown automa-
ton of Figure 5.2.1 on page 78 while parsing the string a a b b $ using
the LR(1) parsing table of Figure 5.4.7 on the preceding page, for the
grammar G′ with axiom S and productions: 0. S → A, 1. A → B A,
2. A → ε, 3. B → a B 4. B → b.

Now we state the following results concerning the LR(k) grammars and LR(k)
languages. For the proofs the interested reader may refer to [3, 4, 10].

Theorem 5.4.10. [Hierarchy of LR(k) Grammars] For any k≥0, the class of
the LR(k) grammars is properly contained in the class of the LR(k + 1) grammars.

Theorem 5.4.11. [Collapse of LR(k) Languages for k≥1] (i) The class LR(0)
of languages is properly contained in the class of the LR(1) languages. (ii) For any
k ≥ 1, the class of LR(k) languages is equal to the class of LR(k + 1) languages (see
also Fact 5.8.10 on page 121).

5.4. LR(1) PARSERS 103

Theorem 5.4.12. [LR(1) Grammars, LR(1) Languages, and Deterministic
Context-free Languages] (i) A language L is a deterministic context-free language
iff there exists k ≥ 1 such that L is generated by an LR(k) grammar. (ii) A language L
is a deterministic context-free language iff it is generated by an LR(1) grammar.
(Point (ii) is a consequence of Point (i) and Theorem 5.4.11.)

Theorem 5.4.13. [LR(1) Grammars in Chomsky and Greibach Normal
Form] (i) Every deterministic context-free language has an LR(1) grammar in Chom-
sky normal form. (ii) Every deterministic context-free language has an LR(1) gram-
mar in Greibach normal form [4, page 708].

The following result refers to LR(k) grammars and has been already mentioned
with respect to LR(k) languages (see Fact 4.3.18 on page 74). Reduced grammars
have been introduced in Definition 1.2.15 on page 15.

Theorem 5.4.14. [Reduced LL(k) Grammars Are Properly Included in
Reduced LR(k) Grammars] For any k ≥ 0, the class of reduced LL(k) grammars
is properly contained in the class of reduced LR(k) grammars [23, page 248].

Let us close this section by recalling a property of the LR(k) parsers when they make
either a shift action or a reduce-goto action.

LR(k) Parsing, for k≥0.

The action to take by the LR(k) parser (either a shift action or a reduce-goto
action) is uniquely determined by (see Figure 5.4.9):

(i) the top of the stack, which is either a state or a symbol in VT ∪ VN ∪ {$},
(ii) the leftmost k (≥0) symbols of z (or z itself if |z|<k), and
(iii) the current symbol u 1 and the leftmost k (≥0) symbols of u (or u itself

if |u|<k).

S

p zA

rightmost
derivationsentential form

p A z :

p
input string

p u $: u

Followk(A) : first k symbols of z

u k : first k symbols of u

$
β

Figure 5.4.9. LR(k) parsing, for k≥0. Note that, if k=0, the action
of the LR(0) parser is a function of the current symbol which is pointed
by the input head, that is, the symbol u 1. The derivation from S to
p A z is a rightmost derivation.

104 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

5.5. LALR(1) Parsers

In this section we will study the class of LALR(1) grammars and we will present
a technique for parsing the languages generated by those grammars. Basically,
LALR(1) parsing is like LR(1) parsing, but it uses parsing tables which are de-
rived by compaction from the LR(1) parsing tables. There are algorithms for directly
constructing the tables for LALR(1) parsing without first constructing the tables for
LR(1) parsing [2, page 242], but we do not consider them here.

The compaction of an LR(1) parsing table which makes it an LALR(1) parsing
table is performed, as we now indicate, on the finite automaton from which the table
is derived.

Algorithm 5.5.1. Constructing the LALR(1) Parsing Table.

Given a context-free grammar G = 〈VT , VN , P, S〉, where VT = {a1, . . . , ar} and
VN = {A1, . . . , As}, we consider its augmented grammar G′ with the new start sym-
bol S ′, and the finite automaton M which can be constructed from G′ by applying
Algorithm 5.4.1 on page 90 for constructing the LR(1) parsing tables.

Then, we replace as long as possible (and maybe no times) any subset {q1, . . . , qn}
of the states of M of the form

q1 :
item1, L11

· · ·
itemm, L1m

qn :
item1, Ln1

· · ·
itemm, Lnm

, . . . ,

(that is, any subset of states with the same first component) by the following single
state q1...n

q1,...,n :
item1, L11 ∪ . . . ∪ Ln1

· · ·
itemm, L1m ∪ . . . ∪ Lnm

After each of these replacements which can be viewed as ‘fusions of states’, we readjust
the arcs, that is, we replace, for all k = 1, . . . , n, (i) any arc from a state qk by an arc
from the new state q1...n, and (ii) any arc to a state qk by an arc to the new state q1...n.

Each of the above replacements of states in the finite automaton M , corresponds
in the LR(1) parsing table T to the replacement of a set {q1, . . . , qn} of rows of the
form

action goto

a1 . . . ar $ A1 . . . As

q1 : T [1, a1] . . . T [1, ar] T [1, $] T [1, A1] . . . T [1, As]

...
...

...
...

...
...

qn : T [n, a1] . . . T [n, ar] T [n, $] T [n, A1] . . . T [n, As]

5.5. LALR(1) PARSERS 105

where some of the T [i, j] entries may be absent, by the following single row q1...n

action goto

a1 . . . ar $ A1 . . . As

T [1, a1], T [1, ar], T [1, $], T [1, A1], T [1, As],

q1...n :
..., . . .

...,
...,

..., . . .
...,

T [n, a1] T [n, ar] T [n, $] T [n, A1] T [n, As]

where in each position of the row q1...n we have kept one copy only for each distinct
entry, in the sense that for each column j = a1, . . . , ar, $, A1, . . . , As, and for each
i1, i2 = 1, . . . , n, we have that T [i1, j] 2= T [i2, j].

At the end of all these row replacements, if in the resulting parsing table T for
each row i and for each column j = a1, . . . , ar, $, A1, . . . , As, there exists at most one
element (that is, there are no conflicts), then the parsing table T is said to be an
LALR(1) parsing table.

In this case, that is, in the case when there are no conflicts, the augmented
grammar G′ is an LALR(1) grammar and the language generated by G′ is an LALR(1)
language.

Remark 5.5.2. [Multiple actions] As for LR(1) grammars, if we have to place
more than one action in an entry of the LALR(1) parsing table, then there are
conflicts and the language generated by the given grammar cannot be parsed by
using a pushdown automaton which uses that table, and the augmented grammar G′

which has been derived from the given grammar G, is not an LALR(1) grammar.

Remark 5.5.3. [Undefined entry] If during the process of parsing a given input
word w $, the pushdown automaton requires an entry of the LALR(1) parsing table,
but that entry is empty, then the word w does not belong to the language generated
by the augmented grammar G′ and w does not belong to the language generated by
the given grammar G.

Example 5.5.4. [LALR(1) Parsing: Example 1] In this example we construct
the LALR(1) parsing table starting from the LR(1) parsing table of Figure 5.4.3 on
page 99 relative to Example 5.4.8 on page 96. We have already constructed that
LR(1) parsing table for the augmented grammar G′:

0. S ′ → S 1. S → C C 2. C → c C 3. C → d

For LALR(1) parsing we have the finite automaton of Figure 5.5.1 on the next page,
instead of the finite automaton of Figure 5.4.2 on page 98, and we have the LALR(1)
parsing table of Figure 5.5.2 on page 107, instead of the LR(1) parsing table of
Figure 5.4.3 on page 99.

The states of the finite automaton of Figure 5.4.2 on page 98 which have been
fused are:

106 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

(i) states q3 and q6, fused into the state q36,

(ii) states q4 and q7, fused into the state q47, and

(iii) states q8 and q9, fused into the state q89. "

q0 :

S ′ → !S, {$}
S → !C C, {$}
C → ! c C, {c, d}
C → ! d, {c, d}

q2 :
S → C ! C, {$}
C → ! c C, {$}
C → ! d, {$}

q36 :
C →c !C, {$,c,d}
C → ! c C, {$,c,d}
C → ! d, {$,c,d}

q5 : S → C C ! , {$}

q47 :C → d ! , {$,c,d}

q89 :C → c C ! , {$,c,d}

q1 : S ′ → S ! , {$}S

Cd
c

C

c

d

C

d

c

Figure 5.5.1. The finite automaton for the LALR(1) parsing of the
grammar G′ with axiom S ′ and productions: 0. S ′ → S, 1. S → C C,
2. C → c C, 3. C → d.

The fusion of the states which is performed by Algorithm 5.5.1 on page 104 does
not create conflicts in the goto part of the parsing table because in that part the
entries depend only on the first components of the LR(1) items which are all equal
in the states which are fused.

One can show [2, page 237] that when applying Algorithm 5.5.1 for constructing
the LALR(1) parsing tables, never shift-reduce conflicts may be produced, because
shift actions depend on the first components of the LR(1) items only. On the contrary,
reduce-reduce conflicts may be produced.

One can also show [2, page 239–240] that for any input word which belongs to the
language L(G′) generated by the augmented grammar G′, the LALR(1) parser mimics
the corresponding LR(1) parser, in the sense that, with reference to Example 5.5.4
on page 105, it goes through the states q36, q47, and q89 iff the LR(1) parser goes
through the states (q3 or q6), (q4 or q7), and (q8 or q9), respectively.

One can show that for any input word w which does not belong to the language
L(G′), the behaviour of the LR(1) parser and the corresponding LALR(1) parser, if
there exists one, are similar, in the sense that after the LR(1) parser has detected

5.5. LALR(1) PARSERS 107

action goto

c d $ S C

q0 sh q36 sh q47 q1 q2

q1 acc

q2 sh q36 sh q47 q5

q36 sh q36 sh q47 q89

q47 red 3 red 3 red 3

q5 red 1

q89 red 2 red 2 red 2

where:

0. S ′ → S
1. S → C C

2. C → c C

3. C → d

Figure 5.5.2. LALR(1) parsing table for the grammar G′ with axiom
S ′ and productions: 0. S ′ → S, 1. S → C C, 2. C → c C, 3. C → d.
It has been derived from the automaton of Figure 5.5.1 on the facing
page.

an error, the LALR(1) parser may do some extra reduce actions (but not extra shift
actions) and then it will also detect an error.

Example 5.5.5. [LALR(1) Parsing: Example 2] Let us consider the following
grammar G:

1. S→aA 2. S→bB 3. A→ε 4. A→cAd 5. B→ε

and its augmented version G′:

0. S ′ → S 1. S→aA 2. S→bB 3. A→ε 4. A→cAd 5. B→ε

By applying Algorithm 5.4.1 on page 90 for constructing the LR(1) parsing tables,
we get the finite automaton of Figure 5.5.3 on the next page and the LR(1) parsing
table of Figure 5.5.4 on page 109. By applying Algorithm 5.5.1 on page 104 for
constructing the LALR(1) parsing tables from the LR(1) parsing tables, we get the
finite automaton of Figure 5.5.5 on page 109 and the LALR(1) parsing table of
Figure 5.5.6 on page 110 (see also [23, pages 34,60]).

The states of the finite automaton of Figure 5.5.3 on the following page which
have been fused are:

(i) states q6 and q9, fused into the state q69,

(ii) states q7 and q10, fused into the state q7 10, and

(iii) states q8 and q11, fused into the state q8 11. "

108 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

q0 :
S ′ → !S, {$}
S → ! a A, {$}
S → ! bB, {$}

q2 :
S →b !B, {$}
B → ! , {$}

q3 :
S →a !A, {$}
A → ! , {$}
A → ! c A d, {$}

q4 :S → bB ! , {$}

q6 :
A →c !A d, {$}
A → ! , {d}
A → ! c A d, {d}

q9 :
A →c !A d, {d}
A → ! , {d}
A → ! c A d, {d}

q5 :S → a A ! , {$}

q7 :A → c A ! d, {$} q8 :A → c A d ! , {$}

q10 :A → c A ! d, {d} q11 :A → c A d ! , {d}

q1 : S ′ → S ! , {$}S

a B

c

A

A d

c

A d

b

c

Figure 5.5.3. The finite automaton for the LR(1) parsing of the gram-
mar G′ with axiom S ′ and productions: 0. S ′ → S, 1. S → a A,
2. S → bB, 3. A → ε, 4. A → c A d, 5. B → ε.

5.5. LALR(1) PARSERS 109

action goto

a b c d $ S A B

q0 sh q3 sh q2 q1

q1 acc

q2 red 5 q4

q3 sh q6 red 3 q5

q4 red 2

q5 red 1

q6 sh q9 red 3 q7

q7 sh q8

q8 red 4

q9 sh q9 red 3 q10

q10 sh q11

q11 red 4

where:

0. S ′ → S

1. S → aA

2. S → bB
3. A → ε

4. A → cAd

5. B → ε

Figure 5.5.4. LR(1) parsing table for the grammar G′ with axiom S ′

and productions: 0. S ′ → S, 1. S → a A, 2. S → bB, 3. A → ε,
4. A → c A d, 5. B → ε. It has been derived from the automaton of
Figure 5.5.3 on the preceding page.

q0 :
S ′ → !S, {$}
S → ! a A, {$}
S → ! bB, {$}

q2 :
S →b !B, {$}
B → ! , {$}

q3 :
S →a !A, {$}
A → ! , {$}
A → ! c A d, {$}

q4 :S → bB ! , {$}

q69 :
A→c !Ad, {$,d}
A→ ! , {d}
A→ ! cAd, {d}

q5 :S → a A ! , {$}

q7 10 :A→cA ! d, {$,d} q8 11 :A→cAd ! , {$,d}

q1 : S ′ → S ! , {$}S

a B

c

A

A d

b

c

Figure 5.5.5. The finite automaton for the LALR(1) parsing of the
grammar G′ with axiom S ′ and productions: 0. S ′ → S, 1. S → a A,
2. S → bB, 3. A → ε, 4. A → c A d, 5. B → ε.

110 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

action goto

a b c d $ S A B

q0 sh q3 sh q2 q1

q1 acc

q2 red 5 q4

q3 sh q69 red 3 q5

q4 red 2

q5 red 1

q69 sh q69 red 3 q7 10

q7 10 sh q8 11

q8 11 red 4 red 4

where:

0. S ′ → S

1. S → a A

2. S → bB

3. A → ε
4. A → c A d

5. B → ε

Figure 5.5.6. LALR(1) parsing table for the grammar G′ with axiom
S ′ and productions: 0. S ′ → S, 1. S → a A, 2. S → bB, 3. A → ε,
4. A → c A d, 5. B → ε. It has been derived from the automaton of
Figure 5.5.5 on the preceding page.

5.5. LALR(1) PARSERS 111

Example 5.5.6. [LALR(1) Parsing: Example 3] Let us consider the augmented
grammar G′:

0. S ′ → S 1. S→L = R 2. S→R 3. L→∗R 4. L→a 5. R→L

By applying Algorithm 5.4.1 on page 90 we get the finite automaton of Figure 5.5.7
and the LR(1) parsing table of Figure 5.5.8 on the next page.

By applying Algorithm 5.5.1 on page 104 for constructing the LALR(1) parsing
table from the LR(1) parsing table, we have to make no changes to that parsing
table and thus, the table of Figure 5.5.8 is also the LALR(1) parsing table of the
grammar G′. "

q0 :

S ′ → ! S, {$}
S → !L=R, {$}
S → !R, {$}
L → ! ∗R, {$,=}
L → ! a, {$,=}
R → ! L, {$}

q2 :
S →L ! =R,{$}
R →L! , {$}

q3 :S →R ! , {$}

q4 :

L→∗!R, {$,=}
R→ !L, {$,=}
L→ ! ∗R, {$,=}
L→ !a, {$,=}

q6 :

S→L= !R, {$}
R→ !L, {$}
L→ ! ∗R, {$}
L→ !a, {$}

q5 :L → a ! , {$,=}

q7 :L→∗R ! , {$,=}

q8 :R → L ! , {$,=}

q9 :S→L=R ! , {$}

q1 : S ′ → S ! , {$}S

∗
a

R

=

R

a
L

L

R

L
a

∗

∗

Figure 5.5.7. The finite automaton for the LR(1) parsing of the gram-
mar G′ with axiom S ′ and productions: 0. S ′ → S, 1. S → L = R,
2. S → R, 3. L → ∗R, 4. L → a, 5. R → L. This automaton is
also the LALR(1) parsing automaton for this grammar G′.

112 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

action goto

a = ∗ $ S L R

q0 sh q5 sh q4 q1 q2 q3

q1 acc

q2 sh q6 red 5

q3 red 2

q4 sh q5 sh q4 q8 q7

q5 red 4 red 4

q6 sh q5 sh q4 q8 q9

q7 red 3 red 3

q8 red 5 red 5

q9 red 1

where:

0. S ′ → S

1. S → L = R

2. S → R
3. L → ∗R
4. L → a

5. R → L

Figure 5.5.8. LR(1) parsing table for the augmented grammar G′

with axiom S ′ and productions: 0. S ′ → S, 1. S → L=R, 2. S → R,
3. S → ∗R, 4. L → a, 5. R → L. This table is also the LALR(1) pars-
ing table for this grammar G′. It has been derived from the automaton
of Figure 5.5.7 on the previous page.

Example 5.5.7. [LALR(1) Parsing: Example 4] Let us consider the grammar
G with axiom S and the following productions:

1. S → B B a 2. B → B b 3. B → b

Since the axiom S has one production only and S does not occur on the right hand
side of any production, we can take the given grammar G to be the augmented
grammar of G itself.

By applying Algorithm 5.4.1 on page 90 for constructing the LR(1) parsing tables
and recalling that First1(B) = {c}, we get the finite automaton of Figure 5.5.9 on the
next page and the LR(1) parsing table of Figure 5.5.10 on the facing page. By apply-
ing Algorithm 5.5.1 on page 104 for constructing the LALR(1) parsing tables from
the LR(1) parsing tables, we get the finite automaton of Figure 5.5.11 on page 114
and the LALR(1) parsing table of Figure 5.5.12 on page 114.

The states of the finite automaton of Figure 5.5.9 on the facing page which have
been fused are:

(i) states q4 and q5, fused into the state q45, and

(ii) states q6 and q7, fused into the state q67. "

5.5. LALR(1) PARSERS 113

q0 :
S→ !BBa, {$}
B → !B b, {c}
B → ! c, {c}

B → !B b, {b}
B → ! c, {b}

q1 :
S →B !Ba, {$}
B →B ! b, {c}
B →B ! b, {b}

B → ! B b, {a}
B → ! c, {a}
B → ! B b, {b}
B → ! c, {b}

q2 :
S →B B ! a, {$}
B →B ! b, {a}
B →B ! b, {b}

q4 :
B →c ! , {c}
B →c ! , {b}

q5 :
B →c ! , {a}
B →c ! , {b}

q6 :
B →B b ! , {c}
B →B b ! , {b}

q7 :
B →B b ! , {a}
B →B b ! , {b}

q3 : S→B B a ! , {$}

B

c

B
c

b

ab

Figure 5.5.9. The finite automaton for the LR(1) parsing of the gram-
mar G with axiom S and productions: 1. S → B B a, 2. B → B b,
3. B → b.

action goto

a b c $ B

q0 sh q4 q1

q1 sh q6 sh q5 q2

q2 sh q3 sh q7

q3 acc

q4 red 3 red 3

q5 red 3 red 3

q6 red 2 red 2

q7 red 2 red 2

where:

1. S → B B a

2. B → B b

3. B → c

Figure 5.5.10. LR(1) parsing table for the grammar G with axiom S
and productions: 1. S → B B a, 2. B → B b, 3. B → b. It has been
derived from the finite automaton of Figure 5.5.9.

114 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

q0 :
S→ !BBa, {$}
B → !B b, {c}
B → ! c, {c}

B → !B b, {b}
B → ! c, {b}

q1 :
S →B !Ba, {$}
B →B ! b, {c}
B →B ! b, {b}

B → ! B b, {a}
B → ! c, {a}
B → ! B b, {b}
B → ! c, {b}

q2 :
S →B B ! a, {$}
B →B ! b, {a}
B →B ! b, {b}

q45 :
B →c ! , {a}
B →c ! , {b}
B →c ! , {c}

q67 :
B →B b ! , {a}
B →B b ! , {b}
B →B b ! , {c}

q3 : S→B B a ! , {$}

B

c
Bb

a

c

b

Figure 5.5.11. The finite automaton for the LR(1) parsing of the
grammar G with axiom S and productions: 1. S → B B a, 2. B → B b,
3. B → b.

action goto

a b c $ B

q0 sh q4 q1

q1 sh q6 sh q5 q2

q2 sh q3 sh q7

q3 acc

q45 red 3 red 3 red 3

q67 red 2 red 2 red 2

where:

1. S → B B a

2. B → B b

3. B → c

Figure 5.5.12. LALR(1) parsing table for the grammar G with axiom
S and productions: 1. S → B B a, 2. B → B b, 3. B → b. It has
been derived from the finite automaton of Figure 5.5.11.

5.8. SUBCLASSES OF CONTEXT-FREE LANGUAGES 115

5.6. Time and Space Complexity Results on Context-Free Parsing

In Table 1 we give the measures of the time-complexity and the space-complexity
for testing a grammar and constructing a parser for the following subclasses of
context-free grammars: LL(1) grammars, SLR(1) grammars, LR(1) grammars, and
LALR(1) grammars [23, page 400]. In that table the size n of the given input gram-
mar is assumed to be the total number of occurrences of symbols in its productions.

deterministic time for
testing a grammar

deterministic time for
constructing the parser

size of
the parser

LL(1) O(n2) O(2n2 +4 log n) O(2n2 + 2 log n)

SLR(1) O(n2) O(2n+ 3 log n) O(2n+ 2 log n)

LR(1) O(n3) O(2n2 +4 log n) O(2n2 + 2 log n)

LALR(1) O(2n+ 3 log n) O(2n+ 3 log n) O(2n+ 2 log n)

Table 1. Deterministic time and space complexities (that is, time and
space taken by a deterministic Turing Machine) for testing a grammar
of size n and for constructing a parser of various classes of grammars:
LL(1), SRL(1), LR(1), and LALR(1).

We have that to test an arbitrary context-free grammar G for the SLR(k) property,
that is, to test whether or not, given an arbitrary context-free grammar G, there exists
k≥0 such that G is SLR(k) it takes deterministic polynomial time in the size of G.
We also have that the problem of testing whether or not given an arbitrary context-
free grammar G, there exists k≥0 such that G is an LALR(k) grammar (or G is not
an LALR(k) grammar), is PSPACE-complete in the size of G [23, page 398].

5.7. Conventions for LL(k) and LR(k) parsing

In Table 2 on the following page below we recall some hypotheses we made con-
cerning the parsing of various kinds of LL(k) languages and LR(k) languages and, in
particular:

(i) the use of a rightmost, new symbol $ in the input string,
(ii) the use of augmented grammars with the production of the axiom,
(iii) the initial stack configuration, and
(iv) the lookahead sets.

Obviously, when we consider augmented grammars, we have that the new axiom S ′

does not occur on the right hand side of any production.

5.8. Subclasses of Context-free Languages

This section is devoted to the illustration of Figure 5.8.1 on page 119 in which we
consider various subclasses of the context-free languages and their relationships. We
will also discuss some other relationships among subclasses of context-free languages.

116 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

input
string

augmented
grammar

production
of the axiom

initial
stack

lookahead
set

LL(k) ended by $ no axiom S S $
#

none

LR(0) and SLR(1) ended by $ yes
axiom S ′

add: S ′ → S $
q0
#

none

LR(1) and LALR(1) ended by $ yes
axiom S ′

add: S ′ → S
q0
#

{$}

Table 2. Our conventions on the input string, the augmented gram-
mar with the production of the axiom, the initial stack configuration
(q0 is the initial state), and the lookahead set for various classes of
context-free grammars.

We have already seen on page 85 that the grammar G with axiom S and the
following productions:

S → A | B A → a A b | 0 B → a B b b | 1

is LR(0) and it is not LL(k), for any k ≥ 0. This fact shows the proper contain-
ment between the deterministic context-free languages and the union of the LL(k)
languages, for all k≥0, as indicated in Figure 5.8.1.

The following notion is necessary for presenting Fact 5.8.2 below. It relates
SLR(k) grammars and LR(k) grammars.

Definition 5.8.1. [Structurally Equivalent Grammars] Two unambiguous
context-free grammars G1 and G2 are said to be structurally equivalent iff L(G1) =
L(G2) and for every word w ∈ L(G1) (which is equal to L(G2)) the derivation trees
of w in G1 and G2 are the same except, possibly, for the labeling of the nodes with
nonterminal symbols.

For instance, the following two grammars G1 and G2 are structurally equivalent:
(i) the grammar G1 has axiom S and productions

S → Ac | bA

A → ε

(ii) the grammar G2 has axiom S and productions

S → Ac | bB

A → ε

B → ε

Indeed, in particular, for the word b we have the following two derivation trees which
differ only for the labeling of a node with a nonterminal symbol.

5.8. SUBCLASSES OF CONTEXT-FREE LANGUAGES 117

In the grammar G1 : S

A

b ε

In the grammar G2 : S

B

b ε

Fact 5.8.2. For any k ≥ 0, any context-free grammar G can be transformed into
a structurally equivalent grammar which is SLR(k) iff G is LR(k) [23, page 84].

Note that, an ambiguous grammar may generate a deterministic context-free lan-
guage. Consider, for instance, the grammar G with axiom S and productions:

S → A | a

A → a

It is an ambiguous grammar, but its language L(G) = {a} is a deterministic context-
free language (because it is a regular language) and it has an LR(0) parser [23,
page 45].

Now we will present some hierarchies of grammars (and languages) which are all
subclasses of the context-free grammars (and languages). Unless otherwise specified,
we will assume that the grammars are all reduced (see Definition 1.2.15 on page 15).

Let us first recall the different ways in which one can present a class of grammars,
and indeed in this book various classes of grammars has been introduced in these
different ways.

Possible presentations of classes of grammars.

A class of grammars can be introduced by either:

(i) providing the rules for constructing their productions (for instance, the class of
context-free grammars has been defined by stipulating that their productions
are of the form: A → σ, where A ∈ VN and σ ∈ (VT ∪ VN)∗), or

(ii) giving some conditions which should be satisfied by their derivations (for in-
stance, the class of the LR(k) grammars has been introduced in Definition 5.1.2
on page 75 in that way), or

(iii) presenting an algorithm for parsing the languages generated by the grammars
of the class, and giving some conditions on that algorithm (for instance, the
class of LR(0) grammars has been introduced in Definition 5.2.8 on page 84 in
that way).

Every class of grammars defines a class of languages in the sense that, given a class A
of grammars, the corresponding class of languages is made out of all languages L
such that there exists a grammar in the class A which generates L. For instance, the
class of the LR(1) languages is made out of all languages L such that there exists an
LR(1) grammar which generates L.

We say that a class A of grammars is contained in a class B of grammars, and
we write A ⊆ B, if every grammar of the class A is also a grammar of the class B.
We say that a class A of languages is contained in the class B of languages, and we

118 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

write A ⊆ B, if for every language L in A there is a grammar G of the class B which
generates L.

We have the following hierarchy of grammars and languages. As usual, (i) A = B
means A ⊆ B and B ⊆ A, and (ii) A ⊂ B means A ⊆ B and A 2= B.

Hierarchy of grammars. For any k>1:

LL(0) ⊂ LL(1) ⊂ . . . ⊂ LL(k) ⊂ LL(k+1) ⊂ . . . ⊂ LR(1) ⊂ . . . ⊂ LR(k)

Hierarchy of grammars:

LR(0) = SLR(0) ⊂ SLR(1) ⊂ LALR(1) ⊂ LR(1)

Hierarchy of languages. For any k≥1:

LL(0) ⊂ LL(1) ⊂ . . . ⊂ LL(k) ⊂ LL(k+1) ⊂ . . . ⊂ LR(1) =. . . = LR(k)

Some of the above results have been presented in Theorem 4.3.17 on page 73. We
also have that:

(i) L ∈ LL(0) iff L = ∅ or there exists a word w such that L = {w} (that is, L is a
singleton), and

(ii) L ∈ LR(0) implies that L = {ε} or ε 2∈ L [9, page 352].

Figure 5.8.1 on the facing page shows the relationships among various subclasses of
context-free languages. Recall that: (i) for every deterministic context-free language
there exists a context-free grammar which is unambiguous, (ii) for all k ≥ 0, any
LR(k) grammar is unambiguous, and (iii) if a word w has two distinct parse trees,
then it has two distinct parse trees which are generated by leftmost derivations (or,
equivalently, rightmost derivations).

Fact 5.8.3. [Relationships Between SLR(k) Grammars and LALR(k)
Grammars] The class of SLR(0) grammars coincides with the class of LALR(0)
grammars. For k≥1 the class of SLR(k) grammars is properly contained in the class
of LALR(k) grammars.

Example 5.8.4. The grammar with axiom S and productions

S → Ac | bA | bc

A → ε

is an LALR(1) grammar which is not SLR(k) for any k≥0 [23, page 72].

Fact 5.8.5. [Relationships Between LALR(k) Grammars and LR(k)
Grammars] The class of LALR(0) grammars coincides with the class of LR(0) gram-
mars. For k≥1 the class of LALR(k) grammars is properly contained in the class of
LR(k) grammars.

5.8. SUBCLASSES OF CONTEXT-FREE LANGUAGES 119

Context-free languages

They are accepted by PDA’s by final state or by empty stack.
{aibjck | (i = j or j = k) and i, j, k ≥ 1} is a nondeterministic context-free,
inherently ambiguous language.

⊃ Non-inherently ambiguous context-free languages

{ak bm | (m=k or m=2k) and k≥1 and m≥1} is a nondeterministic context-
free, non-inherently ambiguous language. A non-ambiguous grammar with
axiom S which generates this language is:
S → L |R L → a L b | a b R → a R b b | a b b

In Figure 5.8.2 on the next page we have depicted a pda which accepts this
language by final state.

⊃ LR(k) languages with k≥1 (Deterministic context-free languages)

They are accepted by deterministic PDA’s by final state. For any determin-
istic context-free language L, there exists k≥1 such that L can be generated
by an LR(k) grammar. For all k ≥ 0, a language which is generated by an
LR(k) grammar, can be generated by an LR(1) grammar. For all k ≥ 0,
every LR(k) grammar is unambiguous. For any deterministic context-free
language L, the language L $, with $ 2∈ VT , can be generated by an LR(0)
grammar. The class of LR(1) languages is strictly larger than the union, for
all k≥0, of the classes of the LL(k) languages [22].
{anbn |n≥1} ∪ {ancn |n≥1} is an LR(1) language.

⊃ LL(k) languages with k≥1

For any k ≥ 0, the class of LL(k) languages is the class of languages generated
by LL(k) grammars. In this class of grammars ε-productions are allowed for
each nonterminal symbol. For any k ≥ 0, the class of languages generated
by LL(k+1) grammars properly includes the class of languages generated by
LL(k) grammars.
S → aAb | b A → a | bSA is an LL(1) grammar.

⊃ Simple languages

Languages generated by grammars in Greibach normal form such that for
each nonterminal A no two productions of the form A → aα and A → a β
exist, for some a ∈ VT and some α, β ∈ (VT ∪ VN)∗, with α 2= β. In this class
of grammars the only ε-production allowed is S → ε.

⊃ LL(0) languages A language is LL(0) iff it is empty or it is a singleton.

Figure 5.8.1. Hierarchy of subclasses of context-free languages. All
containments ⊃ are proper. We allow ε-productions of the form A → ε
with A ∈ VN . We assume without loss of generality, that the start
symbol S does not occur on the right hand side of any production.

120 5. PARSERS FOR DETERMINISTIC CONTEXT-FREE LANGUAGES: LR(K) PARSERS

q0

q1

q2

q3 q4

a, Z0

bZ0

a, Z0

b bZ0

b, b
ε

b, b

ε
ε, Z0 Z0

a, b b b

a, b b b b

b, b ε

Figure 5.8.2. A nondeterministic pda which accepts by final state the
language L generated by the grammar with axiom S and productions:
S → L | R, L → a L b | a b, R → a R b b | a b b. We have that:
L = {ak bm | (m = k or m = 2k) and k ≥ 1 and m ≥ 1}. An arc from
state qi to state qj with label ‘x, Z w’ means that the pda moves from
state qi to state qj if: (i) the symbol x is read from the input, (ii) the
top of the stack is Z, and (iii) the string w is pushed onto the stack so
that the leftmost symbol of w will be the new top of the stack. In this
move if x 2= ε then the input head moves one character to the right,
otherwise it does not move.

Example 5.8.6. The grammar with axiom S and productions

S → aAa | bAb | aBb | bBa

A → c

B → c

is an LR(1) grammar which is not LALR(k) for any k≥0.

Fact 5.8.7. [Hierarchy of the LR(k) Grammars] For all k≥0, the grammar
with axiom S and the productions

S → abkc | Abkd

A → a

is an LR(k+1) grammar which is not an LR(k) grammar [23, page 53].

Fact 5.8.8. [Relationships Between LR(k) Grammars and SLR(k) Gram-
mars] For any k≥0, any language generated by an LR(k) grammar can be generated
by an SLR(k) grammar [23, page 75].

Fact 5.8.9. [Relationships Between the Classes of SLR(k) Languages,
LR(k) Languages, and LALR(k) Languages] For every k ≥ 0, we have that
the classes of SLR(k) languages, LR(k) languages, and LALR(k) languages are all
equal. [23, page 84].

5.8. SUBCLASSES OF CONTEXT-FREE LANGUAGES 121

Fact 5.8.10. [Computable Collapse of LR(k) Languages for k≥1 to LR(1)
Languages and SLR(1) Languages] (i) For any k>1, given any LR(k) grammar G
there exists an equivalent LR(1) grammar G1 which is Turing computable from G
(see also Theorem 5.4.11 on page 102). (ii) Given any LR(1) grammar G1 it can be
transformed in a Turing computable way into an equivalent SLR(1) grammar [23,
page 84].

As a consequence of the above facts we have also the following fact.

Fact 5.8.11. Any deterministic context-free language can be generated by an
SLR(1) grammar.

We state without proof also the following results.

Fact 5.8.12. (i) A language L is an LR(0) language iff (i.1) it is an LR(1) lan-
guage, and (i.2) for all u, v, x if u ∈ L and ux ∈ L and v ∈ L and then vx ∈ L [23].
(ii) Given an LR(0) language L if u ∈ L and ux ∈ L then ux∗ ∈ L.

Fact 5.8.13. [Regular Expressions in Right Hand Sides of Context-Free
Grammars] Every context-free grammar whose productions have their right hand
sides written as regular expressions over the alphabet VT ∪ VN , can be transformed
into an equivalent context-free grammar whose productions have their right hand
sides written, as usual, as strings in (VT ∪ VN)∗. This transformation can be done in
linear time with respect to the size of the given grammar [23, page 116].

For instance, the grammar whose axiom is E and whose productions are:

E → T (+T)∗

T → F (×F)∗

F → a + (E)

(G1)

can be transformed into the equivalent grammar whose axiom is E and whose pro-
ductions are:

E → T | E + T

T → F | T × F

F → a | (E)

(G2)

Obviously, during this transformation one should be careful about the use of over-
loaded symbols because, for instance, the symbols which are used for writing regular
expressions, such as +, (, and), may also be used as terminal symbols of the given
grammar. For instance, in the case of our grammar G1 above, the round parentheses (
and) are symbols for writing regular expressions in the productions E → T (+T)∗

and T → F (×F)∗, while they are terminal symbols in the production F → a + (E).

CHAPTER 6

Parsers for Operator Grammars and Parser Generators

In this chapter we will present the parsers for operator grammars and we will
show how to make use of the parser generators for generating parsers.

6.1. Operator-Precedence Parsers

Let us introduce the following concept of an operator grammar.

Definition 6.1.1. [Operator Grammar] An operator grammar is a context-free
grammar without ε-productions such that there are no two consecutive nonterminals
on the right hand side of the productions.

We have the following fact whose proof is based on the existence of a procedure for
generating an equivalent operator grammar from any given unambiguous context-free
grammar [3].

Fact 6.1.2. Every context-free language L is such that L− {ε} can be generated
by an operator grammar.

Instead of presenting the general theory of parsing languages which are generated
by operator grammars, we now present an example of parsing a particular expression
language, which is generated by an operator grammar where each operator has an
associated precedence. This notion of precedence is the usual notion of precedence
used in Mathematics so that, for instance, the expression 5 + 2 × 4 is evaluated
to 13 and not to 28, because × has a higher precedence than +. In the literature
the operator grammars whose operators have an associated precedence are called
operator-precedence grammars and the techniques for parsing those grammars are
referred to as operator-precedence parsing techniques.

Let us consider the operator-precedence grammar with axiom E and the following
four productions:

E → E + E | E × E | E ↑ E | a

where, as usual, +, ×, and ↑ denote sum, product, and exponentiation, respectively.
We first introduce the following augmented grammar G′ with axiom E ′ so to place

every generated word between two occurrences of the symbol $ which is assumed not
to be in VT ∪ VN . Thus, in G′ we introduce the extra production E ′ → E. Then
we also introduce the following parsing table which encodes the precedence among
the operators +, ×, and ↑, the symbol $, and the identifier a of the given grammar:

123

124 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

T :

! right
left !

a + × ↑ $

a > > > >

+ < > < < >

× < > > < >

↑ < > > < >

$ < < < <

This table T can be generated from the given grammar G′ as we will indicate below.
We have that: (i) the rows and the columns of that table are labeled by the terminal
symbols of the grammar G′, (ii) the symbols < and > denote the precedence relation
between operators, and (iii) the fact that, for instance, × as a higher precedence with
respect to +, is denoted in the table T by the two entries: + <× and ×> +, as
indicated by the subtable:

. . . + × . . .

. . .

+ <

× >

. . .

Now we will see how the table T is used for parsing a given word w of the language
generated by G′.

Let us consider, for instance, the word w = a+a×a. We add two extra $ symbols
as a first and last character of w and we get $ a + a × a $. Then we add the symbol
< or the symbol > between any two symbols of $ w $ according to the table T .

We get: $ < a > + < a > × < a > $ (for instance, we have: $ < a because in the
table T at row $ and column a we have the symbol <, and we have: + < a because
in the table T at row + and column a we have the symbol <).

Then the parsing process can be described as a left-to-right move from the left-
most $ until a symbol > is found, followed by a right-to-left move until a symbol
< is found. Then the string between the symbols < and > (and including them) is
reduced according to the grammar at hand and we erase also the symbols < and >.

Then we proceed by a new left-to-right move until a symbol > is found, followed
by a new right-to-left move until a symbol < is found. Again the string between the
symbols < and > is reduced. We continue with these left-to-right and right-to-left
moves and reductions, until all <’s and >’s have been erased.

At that point the first phase of the parsing process terminates. In the case of our
grammar G′, we get from $ w $ = $ a + a × a $ the following sequence of sentential
forms:

6.1. OPERATOR-PRECEDENCE PARSERS 125

1. $ < a > + < a > × < a > $
2. reducing < a >: $E + < a > × < a > $
3. reducing < a >: $E + E× < a > $
4. reducing < a >: $E + E ×E $

Then a second phase of the parsing process begins. We forget about the derived
nonterminal symbols, E in our case, and we use again the table T to insert <’s and
>’s in the sentential form at hand. In our case by forgetting E, we get: $ +× $, and
after the insertion of the <’s and >’s we get: $ < + < × > $.

Now we proceed as in the first phase of the parsing process and we perform a
left-to-right move from the leftmost $ until a symbol > is found, followed by a right-
to-left move until a symbol < is found. Then we reduce that part of the sentential
form which is identified by the substring between the two symbols < and > which
have been found.

We repeat this process again by forgetting nonterminals, adding <’s and >’s,
performing moves, and reducing substrings until we are left only with the string $ $.
In our case we get:

5. $ < + < × > $
6. reducing < × > : $ < +E $
7. forgetting E : $ < + $
8. adding > : $ < + > $
9. reducing <+> : $ E $

10. forgetting E : $ $

By recalling the sequence of reductions we can reconstruct the parse tree of the given
word w. In our case we get the following parse tree:

Parse tree for

a + a × a

E

E

E E E

a + a × a

Now we list some heuristics for filling the table T . More can be found in [2,
Chapter 4]. Empty entries in the table T denote errors and, during the parsing
process, on those entries we have to invoke suitable error recovery routines.

(1) If an operator × has higher priority than an operator +, we have the following
subtable:

+ ×

+ <

× >

(2) If an operator + has the same priority as an operator −, we have the following
subtable:

126 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

+ −

+ >

− >

This table enforces a left associative parsing, that is, for instance, a− a + a is parsed
as (a− a) + a.

(3) If we want an operator to be right associative (such as, for instance, the expo-
nentiation operator, denoted ↑), we have the following subtable:

↑

↑ <

The reader may easily verify that, indeed, this subtable enforces a right associative
parsing, that is, for instance, a ↑ a ↑ a is parsed as a ↑ (a ↑ a). Analogously, we use >
if we want an operator to be left associative.

By using the table T we get the following two parse trees for the words a + a + a
and a ↑ a ↑ a, respectively.

Parse tree for

a + a + a

E

E

E E E

a + a + a

Parse tree for

a ↑ a ↑ a

E

E

E E E

a ↑ a ↑ a

Instead of using the parsing table T which takes quadratic space with respect to the
number of operators in the grammar, we may sometimes use two functions which we
call the left function, denoted (, and the right function, denoted r. To store those
functions it takes linear space only.

In the rest of this section, by abuse of language when we say ‘operator’ we mean
any element of the set Op ∪ {$, a} which labels a row or a column of the table T .

The left function and the right function are used, instead of the parsing table
T , as follows. For instance, given two operators α and β, in order to know whether
α < β or α > β, we compare the values of ((α) and r(β), and

(i) if ((α) < r(β) then we have α < β, and

(ii) if ((α) > r(β) then we have α > β.

Now we illustrate how to derive the left function and the right function, if they
exist, from a parsing table T [2, page 209] in the case when between two operators
there may be only either the precedence relation < or the precedence relation >. The
interested reader may look at [2, Chapter 4] to see how to deal with the case in which
extra relations, besides < and >, exist between two operators of operator-precedence
grammars.

The derivation of the left function and the right function is based on a graph
which is constructed as follows.

6.1. OPERATOR-PRECEDENCE PARSERS 127

For each operator α of the grammar we introduce two nodes: (α and rα. For each
pair of operators α and β, if α > β then we draw an edge from (α to rβ, and if α < β
then we draw an edge from rβ to (α.

If the graph we have constructed has a cycle than the left function and the right
function do not exist. If the graph has no cycle, then for each operator α, ((α) is the
length of the longest path in the graph starting from (α, and r(α) is the length of the
longest path in the graph starting from rα.

For instance, in the case of the given expression grammar with operators +,×, ↑, $,
and a, we get the following graph:

ra(a

(↑r↑

r×(×

(+r+

r$($

In this drawing of the graph for each operator α, the position of the node (α and
the position of the node rα has been chosen for minimizing the number of the edge
crossings. As the reader may verify, in our case we get the following values for the
left function and the right function:

a + × ↑ $

left function (: 6 2 4 4 0
right function r: 5 1 3 5 0

For instance, the entry 6 for ((a) is due to the path (in bold in the graph above):

(a → r↑ → (↑ → r× → (+ → r+ → ($

which is the longest path in the graph starting from (a and it has, indeed, 6 edges.
In case when we have also the binary operators − (minus) and / (divide), and the
round brackets, as usual for arithmetic expressions, we get the following values for
the left function and the right function [2, page 209]:

a + − × / ↑ () $

left function (: 6 2 2 4 4 4 0 6 0
right function r: 5 1 1 3 3 5 5 0 0

As already mentioned, more information on the operator-precedence grammars and
their parsing procedures can be found in [2, Chapter 4].

128 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

6.2. Use of Parser Generators

In this section we illustrate the use of the parser generator Bison [7] and also the
use of the lexical analyzer generator Flex [18]. More information on these tools can
be found in http://dinosaur.compilertools.net/. We will end this section by
providing some suggestions for constructing parsers in practical cases.

All programs of this section have been executed using: (i) the Bison version 1.28
(GNU), (ii) the Flex version 2.5, and (iii) the C++ compiler i686-apple-darwin8-gcc-
4.0.1, under the operating system Mac OS X 10.4.11.

6.2.1. Generation of Parsers Using Bison.

Bison is a parser generator, that is, a program which given a description of a gram-
mar, produces a C or a C++ program that parses words of the language generated
by that grammar. In particular, Bison is a parser generator for LALR(1) context-free
grammars and it is compatible with Yacc (acronym for ‘Yet Another Compiler Com-
piler’) [11], a well-known parser generator for LALR(1) grammars, to which people
usually refer when mentioning work in the area of compiler -compilers. Compiler-
compilers are programs which given a description of the syntax of a programming
language, automatically generate compilers for that language.

Bison is compatible with Yacc in the sense that almost all grammar descriptions
which can be given in input to Yacc for producing a correct parser, can also be given
in input to Bison which will also produce a correct parser.

For reasons of simplicity, we will not discuss here the behaviour of Bison when:
(i) the given grammar is not an LALR(1) grammar, or (ii) the given grammar is an
ambiguous grammar, or (iii) the word to be parsed does not belong to the language
generated by the given grammar. For these issues the interested reader may refer
to [7] for the case of Bison, and to [2, page 261–266] for the case of Yacc.

Let us see how to use the parser generator Bison by presenting a few examples.

Example 6.2.1.

Generating a parser for a simple LALR(1) language.

Let us consider the following grammar G whose axiom is S and whose productions
are: 1. S → C C 2. C → c C 3. C → d

In order to get a parser for the language L(G) generated for this grammar by Bison, we
have first to prepare a file whose extension is ‘.y’. Let that file be called grammar.y.
It should be structured in three parts separated by %% as follows:

declarations
%%
productions and semantic actions
%%
lexical analyzer and auxiliary C or C++ functions

For instance, in the case of our grammar G, we prepare the following file.

6.2. USE OF PARSER GENERATORS 129

/**
* ===
* Use of Bison: an LALR(1) grammar
* Filename: "grammar.y"
*
* S -> C C ’\n’
* C -> ’c’ C | ’d’
*
* S is the axiom. ’c’ and ’d’ are the characters c and d, respectively.
* ’\n’ is the carriage-return character. ’\t’ is the tab character.
* ===
*/

%{
#include <stdio.h> /* needed for using printf */

%}
%% /* Grammar and Semantic Actions.

* The semantic value is the number of characters. */
S: C C ’\n’ { printf ("--> result: %d\n", $1 + $2); }
;
C: ’c’ C { $$ = 1 + $2; }

| ’d’ { $$ = 1; }
;
%%
/* --- Lexical Analyzer ---- */
/* The lexical analyzer returns the numeric code of the character read.
* It skips all blanks and tabs. */

int yylex (void) {
int k;
/* Skip blanks and tabs. */
while ((k = getchar ()) == ’ ’ || k == ’\t’) ;
/* Return the numeric code k of a char read. */
return k;

}
/* ---
* input: output:
* ---
* $ bison grammar.y
* $ cc grammar.tab.c -ly -o grammar
* $./grammar
* ccd cccd
* --> result: 7
* $./grammar
* cdcdd
* parse error
* -- */

In the first part of the file grammar.y, that is, the declarations part, besides
some comments, we have only the command ‘#include <stdio.h>’. That com-
mand is required for using the printing function printf (see the second part of the
file grammar.y).

In the second part we write the productions of the grammar. The nonterminal of
the left hand side of the first production is assumed to be the axiom of the grammar.
Each production is associated with a C++ command (or, in general, a sequence of
C++ commands) which specifies the so-called semantic actions. In our case, we have
chosen that the semantic actions compute the number of c’s and d’s which occur in
the given string to parse.

130 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

Due to the presence of semantic actions, Bison produces, from a given grammar,
‘more’ than a simple parser. Indeed, it produces a translator which, when given in
input a word of the language generated by the given grammar, constructs an output
value (as it is done by the so-called attribute grammars [13]). In the specifications
of the semantic actions: (i) the identifier $$ denotes the value associated with the
nonterminal in the left hand side of a production, and (ii) $n denotes the value
associated with the nonterminal occurring on the n-th position on the right hand side
of the production.

For instance, for the production C → c C (which is written as C: ’c’ C), the
associated semantic action ‘$$ = 1 + $2’ computes for the nonterminal C on the left
hand side a value which is one unit more than the value computed for the nonter-
minal C on the right hand side (which occurs in the second position, being the first
position that of the character ’c’). Indeed, since we want to count the number of
the c’s and d’s in the string to parse, when we encounter a ’c’, we have to add 1 to
that number.

In the third part of the file grammar.y we write the lexical analyzer, called
yylex(), that is, a piece of code for passing to the parser a terminal at a time.
In our case a terminal is any character, excluding blank and tab (see the code of
yylex()).

The functions printf and getchar are used in the second part and the third part
of the file grammar.y.

The function int printf(const char * format, x) prints its second argument
x as indicated by the string format specified in its first argument. In particular,
(i.1) if format is "%d\n" then x is printed as a decimal integer,
(i.2) if format is "%g\n" then x is printed as the shorter between a decimal floating
point value or as a mantissa-exponent value, and
(i.3) if format is "%s\n" then x is printed as a string of characters.

The newline character \n has the effect that, after printing x the next printing
action will take place on the next line.

The function int getchar(void) returns the next character from the standard
input as an integer value of type int.

Having prepared the file grammar.y, if we issue the following three commands
(where $ denotes the system prompt):

$ bison grammar.y
$ cc grammar.tab.c -ly -o grammar
$./grammar

and we give in input a word w ∈ L(G), then we will get in output the value specified
by the semantic actions. The option ‘-ly’ in the second command invokes suitable
library routines for the C++ compiler. In our case, if we input the word w is ‘ccd
cccd’, then we get the number of characters different from blank and tab which are
present in ‘ccd cccd’, that is, 7. In particular, as indicated in the comment lines at
the end of the file grammar.y, we get:

ccd cccd (typed in input)
--> result: 7 (obtained in output)

6.2. USE OF PARSER GENERATORS 131

input word

output

grammar.y grammar.tab.cBison C++ grammar

Figure 6.2.1. Generation of a parser using Bison for the grammar
description in the file grammar.y. The suffixes ‘.y’ and ‘.tab.c’ cannot
be modified. If the input word is: ccd cccd then the output is:
--> result: 7.

In Figure 6.2.1 we have depicted the process of generating a parser using Bison as we
have indicated above.

Remark 6.2.2. When invoking Bison, if we add the option ‘-v’, that is, we
type the command ‘bison -v grammar.y’, instead of ‘bison grammar.y’, we will
also get in output a file named grammar.output with a description of the finite
automaton which directs the LALR(1) parsing. Indeed, for our grammar G above,
we get the following file which: (1) associates the rule numbers 1, 2, and 3 to the
three productions S → C C, C → c C, and C → d, respectively, and (ii) describes
the finite automaton represented in Figure 5.5.1 on page 106:
Grammar
rule 1 S -> C C ’\n’
rule 2 C -> ’c’ C
rule 3 C -> ’d’

... omissis ...
state 0

’c’ shift, and go to state 1
’d’ shift, and go to state 2
S go to state 7
C go to state 3

state 1
C -> ’c’ . C (rule 2)
’c’ shift, and go to state 1
’d’ shift, and go to state 2
C go to state 4

state 2
C -> ’d’ . (rule 3)
$default reduce using rule 3 (C)

state 3
S -> C . C ’\n’ (rule 1)
’c’ shift, and go to state 1
’d’ shift, and go to state 2
C go to state 5

state 4
C -> ’c’ C . (rule 2)
$default reduce using rule 2 (C)

state 5
S -> C C . ’\n’ (rule 1)
’\n’shift, and go to state 6

132 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

state 6
S -> C C ’\n’ . (rule 1)
$default reduce using rule 1 (S)

state 7
$ go to state 8

state 8
$ go to state 9

state 9
$default accept

As the reader may verify, we have that the initial state 0 corresponds to state q0

of Figure 5.5.1 on page 106 and, similarly, state 1 corresponds to state q36, state 2
corresponds to state q47, state 3 corresponds to state q2, state 4 corresponds to state
q89, state 5 corresponds to state q5, and state 7 corresponds to state q1.

In the above file grammar.output we have a description of the finite automaton
of Figure 5.5.1 on page 106, but there are also the extra states 6, 8, and 9 which do
not occur in that figure. The reason for these extra states is as follows:
(i) state 6 is due to the fact that in the actual representation of the grammar G the
production S → C C is terminated by the newline character ‘\n’ and so a transition
from state 5 to a new state 6 is required, and
(ii) states 8 and 9 are due to the fact that in LALR(1) parsers we actually use
augmented grammars with the extra production S ′ → S, where S ′ is the new axiom
symbol. In our case this extra production requires a transition from state 7 to state 8
and from state 8 to state 9 (for more details on this point the reader may refer to the
Bison manual [7]).

Remark 6.2.3. When invoking Bison, if we add the option ‘-y’, that is, we
type the command ‘bison -y grammar.y’, instead of ‘bison grammar.y’, then Bison
behaves like Yacc in the sense that we will get in output a file named y.tab.c, instead
of grammar.tab.c. Then, in our case, after the command ‘cc y.tab.c -ly’, we will
get in output the file named a.out, instead of the file named grammar.

Example 6.2.4.

Generating a parser for an expression calculator.

The following example illustrates the use of Bison in the presence of: (i) tokens,
(ii) priorities of operators, and (iii) the yyerror routine which deals with the errors
which may occur during parsing.

Let us consider the following grammar whose axiom is line and whose productions
are:

line → ε | line \n | line expr \n

expr → NUMBER | expr + expr | expr − expr | expr ∗ expr | expr / expr

| − expr | expr ^ expr | (expr)

where: (i) ε is the empty word, (ii) \n is the newline character, (iii) +, −, ×, /,
∗, and ^ denote addition, subtraction, multiplication, division, and exponentiation,
respectively, and (iv) NUMBER is a token string and it will be introduced below. We

6.2. USE OF PARSER GENERATORS 133

have to construct the following file, named calculator.y, to be given in input to
Bison.

/**
* ===
* Use of Bison: an expression calculator
* Filename: "calculator.y"
*
* ===
*/

%{
#define YYSTYPE double /* YYSTYPE is the type of yylval */
#include <stdio.h> /* needed for using printf */
#include <ctype.h> /* needed for NUMBER */
#include <math.h> /* needed for using pow (exponential) */

%}

/* Precedence of operators is determined by the sequence of lines.
* For instance, * ties more than +, and ^ ties more than UMINUS. */

%token NUMBER

/* PRECEDENCE */
%left ’+’ ’-’ /* left associative: 2-1-1 = (2-1)-1 weakest */
%left ’*’ ’/’ /* left associative | */
%left UMINUS /* left associative | */
%right ’^’ /* right associative: 2^3^2 = 2^(3^2) strongest */

%%
/* Grammar for input to calculator and Semantic Actions. */

line: // empty production //
| line ’\n’
| line expr ’\n’ { printf ("--> result: %.10g\n", $2);}

// | error ’\n’ { yyerror(": bad line!\n"); } // <-- ERR
/* uncomment this line ERR if parsing should continue upon error */
;
expr: NUMBER { $$ = $1; } // default action //

| expr ’+’ expr { $$ = $1 + $3; }
| expr ’-’ expr { $$ = $1 - $3; }
| expr ’*’ expr { $$ = $1 * $3; }
| expr ’/’ expr { $$ = $1 / $3; }
| ’-’ expr %prec UMINUS { $$ = - $2; } // unary minus //
| expr ’^’ expr { $$ = pow($1,$3); } // exponentiation //
| ’(’ expr ’)’ { $$ = $2; }

;
%%

/* ----- Lexical Analyzer ------ */
/* The lexical analyzer returns a double floating point number
* on the stack and the token NUMBER, or the numeric code of
* the character read, if not a number. It skips all blanks and tabs. */

int yylex (void) {
int k;
/* Skip blanks and tabs. */
while ((k = getchar ()) == ’ ’ || k == ’\t’) ;

134 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

/* Process numbers. */
if (k == ’.’ || isdigit (k))

{ ungetc (k, stdin);
scanf ("%lf", &yylval); /* value of token */
return NUMBER; /* type of token */

}
/* Return the numeric code k of a char read. */
return k;

}

/* Function needed if line ERR above is uncommented */
/* Called by yyparse on error. */
int yyerror (char const *s) {

printf ("%s", s);
}

/* ---
* input: output:
* ---
* $ bison calculator.y
* $ cc calculator.tab.c -ly -o calculator
* $./calculator
* 3.2^2.3
* --> result: 14.51593284
* b
* parse error: bad line! // if line ERR is uncommented
* 3+2
* --> result: 5
* -- */

In the first part of the file calculator.y we have, together with the command
‘#include <stdio>.h’ which is needed for using the function printf, also the com-
mands:
(i) ‘#include <ctype>.h’ which is needed for using token strings which are of the
form NUMBER, and
(ii) ‘#include <math>.h’ which is needed for using the function pow which performs
the exponentiation.

All these commands are included between the delimiters %{ and %}. Between these
delimiters we also have the command ‘#define YYSTYPE double’ which specifies the
type of the variable yylval which is used by Bison for returning the value of a token
(see below). Outside the delimiters %{ and %} in the first part of the file calculator.y
there are also:
(i) the token declarations, and
(ii) the declarations of precedence between operators.

In our case we have the declaration of the token NUMBER. As specified by the third
part of the file calculator.y, a token NUMBER is generated by the lexical analyzer
yylex() from a sequence of non-blank and non-tab characters read from the standard
input, by using the functions unget and scanf which we will present below.

A token NUMBER is a string generated by the following grammar (which is equiva-
lent to a regular grammar):

6.2. USE OF PARSER GENERATORS 135

NUMBER → digit+ | digit∗ ! digit+ | digit+
! digit∗

digit → 0 | . . . | 9

(Note that in view of Fact 5.8.13 on page 121 we have allowed ourselves to use regular
expressions in the right hand sides of the productions.)

In general, the lexical analyzer returns: (i) a value which is stored in the vari-
able yylval, and (ii) a type of that value which is the name of the token. In our
case the type is NUMBER and it corresponds to a double number in C++, that is,
a double-precision floating point number as specified by the command ‘#define
YYSTYPE double’ in the first part of the file calculator.y.

Tokens are generated by the lexical analyzer yylex() by calling the function
scanf. However, before calling scanf the lexical analyzer calls the function unget
for taking into account the last character read by the function getchar which was
required for skipping blanks and tabs.

The function int ungetc(int character, FILE * stream) puts back the first
argument character into the second argument stream, and it puts is back into the
same position where the last character was read from the stream. When the next
reading operation from the stream is performed, one gets that character. Note,
however, that the physical content of the stream is not modified by the execution of
the function ungetc: only the next reading operation is affected.

The function int scanf(const char * format, &x) reads a sequence of char-
acters from the standard input. That sequence has to be understood as a value
according to the first argument format. Then that value is stored in the location x.
For instance, given in input 28.7 and having defined yylval as a double-precision
floating point number by the command ‘#define YYSTYPE double’, the function
call scanf("%lf", &yylval) assigns to the variable yylval a number which will be
printed as 28.700000 when using the command printf("%lf",yylval) (lf stands
for long float).

Analogously, given in input the string abca, scanf("%s", str) generates a string
str whose value is abca.

Ambiguity of the grammar is resolved by adding priorities to the operators. These
are specified in the first part of the file calculator.y after the part between the
delimiters %{ and %}. In particular, we write the command %left op1 for specifying
that the operator op1 is left associative, and we write the command %right op2 for
specifying that the operator op2 is right associative.

The precedence between operators is established by their relative order in the list
of commands which specifies the associativity of the operators: the operator with the
weakest precedence is listed first, and the operator with strongest precedence is listed
last. The unary minus ‘-’ is denoted by the identifier UMINUS and its precedence is
indicated by the position of UMINUS in the list of precedences. In our case unary
minus ties more than the binary minus, also denoted as ‘-’. For instance, the value
of -6-4 is -10 (not -2), because it is equal to (-6)-4.

In the third part of the file calculator.y we write the function yyerror. This
function is invoked when a parsing error occurs. In our case, when a parsing error

136 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

occurs, the parser skips symbols until the next ‘\n’ (the newline character) is encoun-
tered and then, after printing an error message as specified by the semantic action,
if any, the parser continues as no error had occurred. In our case, we can type a new
input line with a new expression to be evaluated.

At the end of the file calculator.y we have listed, as lines of comments, some ex-
amples of execution of the executable file named calculator. For the input 3.2^2.3
we get in output: ––> result: 14.51593284, and for the input b we get in output:
parse error: bad line!

Example 6.2.5.

Generating a parser for a simple assignment language.

The following example illustrates: (i) the use of Flex [18] as a generator of lexical
analyzers which can be used in conjunction with Bison, and (ii) the use of a symbol
table during parsing.

The lexical analyzer, also called a scanner, or a tokenizer, produced by Flex passes
to Bison a token at a time, so that Bison can perform the successive parsing phase
according to a given LALR(1) grammar. Flex is a lexical analyzer generator similar
to Lex [15].

In order to produce a lexical analyzer we have first to prepare for Flex a file
whose extension is ‘.lex’. As in the case of Bison, that file is structured in three
parts separated by %%. In the first part there are declarations, in the second part
there are productions and semantic actions, and in the third part there are auxiliary
functions. Each production takes the form of a regular expression.

Flex generates as output a C++ program named lex.yy.c, which defines a func-
tion yylex(). Once the program lex.yy.c is compiled, if from the standard input
(or a given input file) yylex() recognizes a word which belongs to the language de-
noted by a regular expression of the list of productions, then yylex() executes the
corresponding semantic actions.

If we use Flex in conjunction with Bison, the corresponding semantic action re-
turns a value for the variable yylval and a type identifying the token which has been
recognized (in our example either the token VARIABLE or the token NUMBER).

The grammar we will consider in this example is a grammar which defines a simple
programming language of assignments.

line → ε | line expr \n | line VARIABLE := expr \n

expr → NUMBER | VARIABLE | expr + expr | expr − expr | expr ∗ expr | expr/expr

|− expr | expr ^ expr | (expr)

where: (i) ε is the empty word, (ii) \n is the newline character, (iii) +, −, ×, /, ∗,
and ^ denote addition, subtraction, multiplication, division, and exponentiation, re-
spectively, (iv) NUMBER is a double-precision floating point number, and (v) VARIABLE
is a single character variable identifier in the set {a, . . . , z}.

There are three files to be prepared:
(i) one for Bison, which we name fSAL.y (the extension .y is mandatory),

6.2. USE OF PARSER GENERATORS 137

(ii) one for Flex, which we name fSAL.lex (the extension .lex is mandatory), and
(iii) one for operating on the symbol table storing the values of the variables. We
name this file fSAL.h (the extension .h is mandatory).

In Figure 6.2.2 on page 139 we have depicted the process of generating a parser
using Bison in conjunction with the lexical analyzer generator Flex.

Let us first consider the file fSAL.y which we now list.
/**
* ===
* Use of Bison: a simple assignment language SAL (1)
* Filename: "fSAL.y"
*
* Parser with Lexical Analyzer. Running Flex and then Bison.
* This file uses the file: "fSAL.lex"
*
* Note: variables have names made out of one character only.
* ===
*/

%{
#include <stdio.h>
#include <math.h> /* needed for using pow (exponential) */
#include "fSAL.h" /* needed for using putVar, getVar, and printTable */

/* see file "fSAL.lex":
* structure for information on VARIABLE’s and NUMBER’s */

struct tokenInfo
{ char *name; /* the name of a NUMBER is assumed to be NULL */

double value; /* the initial value of a VARIABLE is assumed to be 0 */
};
%}

%union { struct tokenInfo ti; } // type of yylval
%token <ti> VARIABLE // VARIABLE is a token of type ti
%token <ti> NUMBER // NUMBER is a token of type ti
%type <ti> expr // expr has type ti

%token ASSIGN_SYMB PLUS MINUS MULTIPLY DIVIDE POWER OPEN CLOSED NEWLINE

%left PLUS MINUS /* left associative */
%left MULTIPLY DIVIDE /* left associative */
%left UMINUS /* left associative */
%right POWER /* right associative */

%%
line: // empty production //

| line expr NEWLINE
{ printf("--> result: %.10g\n", $2.value); }

| line VARIABLE ASSIGN_SYMB expr NEWLINE
{ putVar($2.name, $4.value); }

// | error NEWLINE {yyerror(": bad input line!\n");} // <-- ERR
/* uncomment this line ERR if parsing should continue upon error. */

;
expr: NUMBER { $$ = $1; }

| VARIABLE { if (getVar($1.name) != NULL) {
$$.value = (getVar($1.name))->value; }

}

138 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

| expr PLUS expr { $$.value = $1.value + $3.value; }
| expr MINUS expr { $$.value = $1.value - $3.value; }
| expr MULTIPLY expr { $$.value = $1.value * $3.value; }
| expr DIVIDE expr { $$.value = $1.value / $3.value; }
| MINUS expr %prec UMINUS { $$.value = - $2.value; }
| expr POWER expr { $$.value = pow($1.value,$3.value); }
| OPEN expr CLOSED { $$.value = $2.value; }
;

%%
#include "lex.yy.c"
/* Function needed if the above line ERR is uncommented */
int yyerror (char const *s) {

printf ("%s", s);
}
/* ---
* Execution tests with the line "ERR" (in this file "fSAL.y") and the two
* lines "SYMB_TABLE" (in the file "fSAL.h") uncommented: we notify errors
* and we print the Symbol Table after inserting new values for the
* variables.
* input: output:
* ---
* $ flex fSAL.lex
* $ bison fSAL.y (or: bison -v fSAL.y)
* $ cc fSAL.tab.c -ly -o fSAL
* $./fSAL
* b := 3
* Symbol Table after putVar: (b,3) nil
* a := 2
* Symbol Table after putVar: (b,3) (a,2) nil
* c:=2+a
* Symbol Table after putVar: (b,3) (a,2) (c,4) nil
* a:=1
* Symbol Table after putVar: (b,3) (a,1) (c,4) nil
* a+b^(-2+c)
* --> result: 10 // 1+3^2 = 10
* b3
* parse error: bad input line!
* 2+b
* --> result: 5
* -- */

The value of the variable yylval is not a double-precision floating point number
as in the previous Example 6.2.1 on page 128, but it is a pointer to a structure named
tokenInfo. That structure has two fields: (i) a name and (ii) a value.
(i) For a token VARIABLE the structure tokenInfo stores the name of the variable
and its value (which is initialized to 0), and
(ii) for a token NUMBER the structure tokenInfo stores the fictitious name NULL and
the numeric value of the token NUMBER.

The %union declaration specifies the list of the possible types of the variable yylval.
In our case we have one type only: ti which is the type of the structure tokenInfo.

In the first part of the file fSAL.y we also have the list of the tokens which
are returned by Flex (see the file fSAL.lex). For instance, OPEN denotes the open
parenthesis ‘(’.

6.2. USE OF PARSER GENERATORS 139

fSAL.lex lex.yy.c

input lines

output

fSAL.y fSAL.tab.cBison C++ fSAL

Flex

included in

Figure 6.2.2. Generation of a parser using Bison, in conjunction with
the lexical analyzer generator Flex, for the grammar description in the
file fSAL.y. The name lex.yy.c and the suffixes ‘.lex’, ‘.y’, and
‘.tab.c’ cannot be modified. If the input lines are: a:=1 and 2+a
then the output is: --> result: 3.

In the second part of the file fSAL.y we have the productions and the associated
semantic actions. Note that, since the values of the variable yylval are instances of
the structure tokenInfo, we need to refer to the fields .name and .value. If a line
is an expression expr, the semantic action prints the value of that expression. If the
line is an assignment of the form a:=expr, the semantic action initializes a record (or
updates the record) for the variable a with the value of the expression expr using the
command ‘putVar($2.name, $4.value)’. If a record for the variable a is already
present in the symbol table, then the value of the record for a is updated with the
value of the expression expr.

If the expression is a VARIABLE token, say a, the semantic action looks in the
symbol table for a structure tokenInfo whose name field is a, if any, and returns the
value field of that structure.

In the third part of the file fSAL.y we have specified the lexical analyzer. The
specification is not done via the definition of the function yylex(). It is done, instead,
via the command ‘#include "lex.yy.c"’ which has the effect of including the lexical
analyzer lex.yy.c generated by Flex.

Here is the file fSAL.lex. When it is given in input to Flex, we get in output the
file lex.yy.c to be included in the file fSAL.y.

/**
* ===
* Use of Bison: a simple assignment language SAL (2)
* file: "fSAL.lex" (flex_SimpleAssignmentLanguage)
*
* This file has to be given in input to Flex which will produce in output
* the file "lex.yy.c" which contains the code of the lexical analyzer
* (also called the scanner).
*
* The file "lex.yy.c" has to be included in the file "fSAL.y"
* which is processed by Bison.
* ------

140 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

* This version of the lexical analyzer is NOT for STAND ALONE use.
* ===
*/

%{
#include <string.h> /* needed for using char *strdup(const char *str) */
%}

%%
[a-z] { yylval.ti.value = 0;

/* yytext contains the matched character in [a-z] */
yylval.ti.name = (char *) strdup(yytext);
return VARIABLE;

}
[0-9]+|[0-9]*\.[0-9]+|[0-9]+\.[0-9]* {

/* yytext contains the matched number */
yylval.ti.value = atof(yytext); /* from string to double */
yylval.ti.name = NULL;
return NUMBER;

}
:= return ASSIGN_SYMB;
\+ return PLUS;
\- return MINUS;
* return MULTIPLY;
\/ return DIVIDE;
\^ return POWER;
\(return OPEN;
\) return CLOSED;
\n return NEWLINE;
[\t] ; /* nothing to return in case of blank or tab */

/* . (dot) matches any input character except \n */
. printf("Invalid character.\n");

%%
int yywrap() { // Flex terminates after processing the input file
return 1;

}
/* ---
* input: output:
* ---
* $ flex fSAL.lex
* $ bison fSAL.y (or: bison -v fSAL.y)
* $ cc fSAL.tab.c -ly -o fSAL
* $./fSAL
* 3+2
* --> result: 5
* -- */

As in the case of the file with extension ‘.y’ to be given in input to Bison, the file
fSAL.lex is structured in three parts separated by %%. As already mentioned,
(i) in the first part there are declarations,
(ii) in second part there is a list of regular expressions and semantic actions which
are self-explanatory, and
(iii) in the third part of the file fSAL.lex there is the function yywrap which is
required for making Flex to terminate when the input file has been processed.

Let us note only the following few points concerning the file fSAL.lex.

6.2. USE OF PARSER GENERATORS 141

(i) When a character of the set {a, . . . , z} is found, it is recognized as the name of a
variable. A tokenInfo structure is constructed with name field which is the character
found (stored in the variable yytext) and a value field initialized to 0. Then a token
VARIABLE is returned.

(ii) When a string in the language denoted by the regular expression

digit+ + digit∗ ! digit+ + digit+
! digit∗

is recognized as double-precision floating point number, a tokenInfo structure is
constructed with the fictitious name field NULL and and a value field initialized to the
value produced by atof(yytext).

The function double atof(const char * str), given a string of characters, pro-
duces the corresponding floating point value. For instance, double w = atof("43.3")
produces a double-precision floating point number w whose value will be printed, by
using printf("%f",w), as 43.3.

Then a token NUMBER is returned.

(iii) \+ denotes the symbol ‘+’.

(iv) [\t] denotes a regular expression which matches either the blank symbol ‘ ’
(note the blank symbol between ‘[’ and ‘\t’) or the tab symbol ‘\t’.

(v) The dot ‘.’ denotes a regular expression which matches any symbol except the
newline symbol ‘\n’.

Now we list the file fSAL.h which is required for manipulating the symbol table
which contains a record for each variable.

/**
* ==
* Use of Bison: a simple assignment language SAL (3)
* Filename: "fSAL.h"
* This file is required by "fSAL.y" (which is input to Bison)
* It contains the code for the Symbol Table for variables
* with the auxiliary functions: printTable, getVar, and putVar.
* ===
*/

#include <stdlib.h>
#include <string.h> /* for using strlen, strcpy, and strcmp */

/* ---
* varRec: a record for a variable in the Symbol Table */

struct varRec /* this structure is a record for a variable */
{ char *name; /* the name of the variable */

double value; /* the value of the variable is a double */
struct varRec *next;

/* a pointer to the next record of the Symbol Table */
};
typedef struct varRec varRecType;

/* --
* varTable and lastRec are global variables initialized to NULL.
* varTable points to the first varRec of the Symbol Table.
* lastRec points to the last varRec of the Symbol Table. */

varRecType *varTable = NULL;
varRecType *lastRec = NULL;

142 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

/*
* varTable lastRec
* | |
* | +------+-------+-------+ +--->+------+-------+------+
* +--->| name | value | next--|---->...----->| name | value | NULL |
* +------+-------+-------+ +------+-------+------+
*
* --- */

/* printTable prints the Symbol Table. */
void printTable(varRecType *T) {

if (T==NULL) {printf(" nil");}
else {printf(" (%s",T->name); printf(",%g",T->value); printf(")");

printTable(T->next);};
};
/* --- */
/* getVar returns a pointer to the record of the argument variable name. */

varRecType *getVar(char *varName) {
varRecType *ptr=NULL;

for (ptr = varTable; ptr != NULL; ptr = (varRecType *) ptr->next) {
// strcmp(s1,s2) returns 0 iff the string s1 is equal to the string s2
if (strcmp(ptr->name, varName) == 0)

return ptr;
}
return NULL;

};
/* --- */
/* Given a variable name and a value, putVar updates the value in the
* record of that variable in the Symbol Table. If there is no record
* for that variable in the Symbol Table, putVar initializes a new
* record for that variable using the given value.
* --- */

varRecType *putVar(char *varName, double varValue) {
varRecType *ptr = getVar(varName);

if (ptr == NULL) {
ptr = (varRecType *) malloc (sizeof(varRecType));

if (varTable == NULL) { //If varTable == NULL the Symbol Table is empty
varTable = ptr;
lastRec = ptr;

} else lastRec->next = ptr; // new record at the end of the list.

ptr->name = (char *) malloc(strlen(varName) + 1);
strcpy(ptr->name, varName);
ptr->value = varValue;
ptr->next = (varRecType *) NULL;
lastRec = ptr;

} else { ptr->value = varValue;
}

// printf("Symbol Table after putVar:"); // <-- SYMB_TABLE
// printTable(varTable); printf("\n"); // <-- SYMB_TABLE

return ptr;
};
/* --- */

6.2. USE OF PARSER GENERATORS 143

The symbol table is a list of structures each of which, called varRec, contains the
information relative to a variable.

A structure varRec has three fields:

(i) a field name for the name of the variable,
(ii) a field value for the numeric value of the variable, and
(iii) a field next which has a pointer to the next structure in the list.

The pointer to the first structure of the list is varTable and the pointer to the last
structure in the list is lastRec. Both are initialized to NULL. The field next of the
record pointed by lastRec is always NULL.

6.2.2. Generation of Lexical Analyzers Using Flex.

In this section we see how Flex can be used for generating a lexical analyzer in a stand-
alone mode, that is, without necessarily providing an input to Bison for generating
a parser. We will see this use of Flex through an example. Let us assume that we
want to construct a lexical analyzer for a simple assignment language similar to that
of Example 6.2.5 on page 136.

The tokens to be recognized are:

(i) single character variable names in the set {a,...,z}
(ii) integer numbers as a sequence of 1 or more digits in the set {0,...,9}
(iii) :=
(iv) +
(v) *
(vi) \n (newline)
(vii) ‘ ’ (blank)
(viii) \t (tab).

When tokens are recognized they will not be returned to Bison as in Example 6.2.5
on page 136, but they will be printed out by a printf(...) command.

Below we list a file, called faSAL.lex, which can be given in input to Flex for pro-
ducing of the desired lexical analyzer. This file is structured in three parts separated
by %% as follows:

declarations
%%
productions and semantic actions
%%
auxiliary C or C++ functions and main program

/**
* ===
* SIMPLE ASSIGNMENT LANGUAGE
* Filename: "faSAL.lex" (faSAL = flex_alone_SimpleAssignmentLanguage)
*
* Lexical Analyzer for the input to "fSAL.y" in STAND ALONE mode.
*
* ------
* This version of the lexical analyzer is for STAND ALONE use.
* ===
*/

144 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

%{
#include <stdlib.h>
#include <stdio.h>
#include <string.h> // needed for using char *strdup(const char *str)

struct tokenInfo
{ char *name;

int value;
};

struct tokenInfo yylval;
%}

%%
[a-z] { yylval.value = 0;

/* yytext contains the matched character in [a-z] */
yylval.name = (char *) strdup(yytext);
printf("VARIABLE: %s\n", yylval.name);

}
[0-9]+ { /* yytext contains the matched number in [0-9]+ */

yylval.value = atoi(yytext); /* from string to int */
yylval.name = NULL;
printf("INTEGER: %d\n", yylval.value);

}
:= printf("ASSIGN_SYMB\n");
\+ printf("PLUS\n");
* printf("MULTIPLY\n");
\n printf("NEWLINE\n");
[\t] ; /* nothing to return in case of blank and tab */

/* . (dot) matches any input character except \n */
. printf("Invalid character.\n");
%%
int yywrap() { // Flex terminates after processing the input file
return 1;

}
int main() {

yylex();
}
/* ---
* Compiling and executing in STAND ALONE mode.
* input: output:
* ---
* $ flex faSAL.lex
* $ cc lex.yy.c -o faSAL
* $./faSAL
* 3:=8a
* // This is not a valid expression, but the scanner works
* // correctly and the tokens are recognized in a correct way.
* INTEGER: 3
* ASSIGN_SYMB
* INTEGER: 8
* VARIABLE: a
* NEWLINE
* -- */

In Figure 6.2.3 on the next page we have represented the process of generating a
lexical analyzer using Flex as we have illustrated above.

6.2. USE OF PARSER GENERATORS 145

input line

output

faSAL.lex lex.yy.cFlex C++ faSAL

Figure 6.2.3. Generation of a lexical analyzer using Flex for the
grammar description in the file faSAL.y. The suffix ‘.lex’ and the
name lex.yy.c cannot be modified. If the input line is: 3:= then the
output are the three lines: INTEGER: 3, ASSIGN_SYMB, and NEWLINE.

With respect to the file fSAL.lex that we have presented in Example 6.2.5 on
page 139, the reader will note in the above file faSAL.lex:

(i) the introduction of the definition of the structure tokenInfo and
(ii) the declaration of the type ‘struct tokenInfo’ of the variable yytext. This

variable stores the string which matches the pattern of a production during the lexical
analysis.

Variables are treated as in Example 6.2.5 on page 136, while numbers are now
integer numbers, rather than double-precision floating point numbers. Given a string
of characters, the function int atoi(const char * str) produces the correspond-
ing integer value. For instance, int n = atoi("52") produces the integer number n
whose value is 52. Note that the lexical analyzer works correctly also for inputs which
are not legal expressions of Example 6.2.5. For instance, if we issue the following three
commands (where $ denotes the system prompt):

$ flex faSAL.lex
$ cc lex.yy.c -o faSAL
$./faSAL

and then we type in input the string 8c:=\n, (that is, 8c:= followed by the newline
character), we will get the following output:

INTEGER: 8
VARIABLE: c
ASSIGN_SYMB
NEWLINE

Finally, in the file fSAL.lex we have the main function main() which consists only
of the function call yylex() which performs the lexical analysis.

6.2.3. Suggestions for Constructing Parsers.

We close this section by providing suggestions for constructing parsers in some prac-
tical cases.

The first suggestion for constructing parsers is to use a parser generator, such as
Yacc or Bison [7, 11]. If we decide not to use a parser generator, we have the choice
between constructing either (1) a top-down parser, or (2) a bottom-up parser. This

146 6. PARSERS FOR OPERATOR GRAMMARS AND PARSER GENERATORS

choice depends on the manipulations we have to make after the parse tree has been
generated by the parser (see [4, Chapter 9]).

Case (1). If we choose to construct a top-down parser then an LL(1) parser is recom-
mended. In this case we transform the grammar, if possible, into an LL(1) grammar
and then we produce the parsing table for the LL(1) grammar we have generated. We
may also try to reduce the size of the LL(1) parsing table by applying the techniques
indicated in [4, page 662].

Case (2). If we choose to construct a bottom-up parser then an LALR(1) parser is
recommended (or an SLR(1) parser, if possible).

CHAPTER 7

Visits of Trees and Graphs and Evaluation of Expressions

In this chapter we will consider a few programs for parsing expressions and visiting
trees and graphs. In particular, we will consider programs for: (i) parsing strings
written according to a given context-free grammar, and then visiting the trees they
denote, (ii) parsing and evaluating boolean expressions, and (iii) testing whether or
not propositional formulas are tautologies.

We will also describe an algorithm for encoding n-ary trees using binary trees,
and two algorithms proposed by E. W. Dijkstra: (i) an algorithm which given an
undirected, connected, weighted graph, constructs one of its minimal spanning trees,
and (ii) an algorithm which given a directed, connected, weighted graph, and one of
its nodes p, constructs all paths from the node p to every other node of the graph.

7.1. Depth First Visit of Trees

The program presented in this section: (i) first, parses a given input string denoting
a tree, (ii) then, generates an internal form of that tree, and (iii) finally, visits that
tree in a depth first manner according to the so called postorder traversal (not the
preorder traversal we have described on page 23). In particular, for a binary tree
we first visit the left son node, then the right son node, and finally, the root node.
The productions of the context-free grammar which generates the input string are
the following ones:

tree ::= char | - char tree | (tree char tree)
char ::= ’0’ | ’1’ |...| ’9’

The axiom is tree. No blank characters are allowed before, in between, and after
the input string.

A string which is a single character c, denotes a leaf with the character c. A string
of the form ‘- c s’ denotes a node with the character c and a single son node denoted
by the string s (short for son node). A string of the form ‘(l c r)’ denotes a node
with the character c, a left son node denoted by the string l (short for left son node),
and a right son node denoted by the string r (short for right son node). For instance,
(57-62) denotes the tree

7

5 6

2

The internal tree which corresponds to a given input string, is printed as a string
which is generated by the following productions with axiom tree:

tree ::= n | (n.tree) | (tree.n.tree)
n ::= 0 | 1 |...| 9

147

148 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

(i) The first production tree ::= n is for the case of a leaf, (ii) the second production
tree ::= (n.tree) is for the case of a unary tree, and (iii) the third production
tree ::= (tree.n.tree) is for the case of a binary tree. For instance, the tree
denoted by the string (57-62), is printed as: (5.7.(6.2))

If we issue the following two commands:

javac DepthFirstVisit.java
java DepthFirstVisit

we get the following sentence in output:

Input a tree according to the grammar given in the program, please.

Then, if we type the following input string (note the absence of blank characters):

(-231(-564-78))

we get:
Tree in input:
((2.3).1.((5.6).4.(7.8)))

Depth first visit of the tree:
3 2 6 5 8 7 4 1

Indeed, the string (-231(-564-78)) denotes the tree:

1

2

3

4

5

6

7

8

whose depth first visit is given by the sequence: 3 2 6 5 8 7 4 1.
Remark 7.1.1. [Terminology for Nodes and Trees] In our context here, we

will consider the words ‘node’ and ‘tree’ as interchangeable, because every node in a
tree can be viewed as the root of the subtree rooted in that node (see also Remark 7.4.1
on page 181).

In the class DepthFirstVisit of the program below, we have that the expression
Character.getNumericValue(c)

is the same as c-48, and returns the integer value corresponding to the character c
representing that value. For instance, the integer value corresponding to the character
’8’ is 8 (= 56−48).

Here is the program for parsing a string denoting a tree and computing the first
depth visit of that tree.

/**
* ===
* DEPTH FIRST VISIT OF A TREE
* Filename: "DepthFirstVisit.java"
*
* Grammar G for the input tree:
* tree ::= char | - char tree | (tree char tree)
* char ::= ’0’ | ’1’ | ... | ’9’
* Grammar for printing the input tree:
* tree ::= n | (n.tree) | (tree.n.tree)
* n ::= 0 | 1 | ... | 9

7.1. DEPTH FIRST VISIT OF TREES 149

* No blanks are allowed before, in between, and after the input string.
* A tree is input as a string generated by the grammar G and then
* it is visited in the depth first manner.
* ===
*/

import java.io.*;
/**
* ===
* Class which constructs a Node
*
* This class is used for constructing a Node of a binary tree.
* By default, a Node is a binary node.
*
* A Node can be extended for constructing a Node which is
* either a binary node, or a unary node, or a leaf node.
* ===
*/

class Node {
public Object value; // value field
public Node left; // reference to the left child node
public Node right; // reference to the right child node

/**
* @param v : value at the node
* @param l : reference to the left child node
* @param r : reference to the right child node
*/ // constructor of a node
public Node(Object v, Node l, Node r) {

if (v == null) throw new IllegalArgumentException();
value = v;
left = l;
right = r;

}
}
/**
* ===
* Class which constructs a binary node with two child nodes
* ===
*/

class BinaryNode extends Node {
// constructor of a binary node

/**
* @param v : value at the node
* @param l : reference to the left child node
* @param r : reference to the right child node
*/
public BinaryNode(Object v, Node l, Node r) {

super(v, l, r);
}

/**
* @return a string representing the tree whose root is the given node
*/
public String toString(){

return "("+ left.toString() +"."+ value +"."+ right.toString() +")";
}

}

/**
* ===

150 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

* Class which constructs a unary node with one child node
* ===
*/

class UnaryNode extends Node {
// constructor of a unary node

/**
* @param v : value at the node
* @param child : reference to the child node
*/

public UnaryNode(Object v, Node child) {
super(v, child, null);

}
/**
* @return a string representing the tree whose root is the given node
*/

public String toString() {
return "(" + value + "." + left.toString() + ")";

}
}
/**
* ===
* Class which constructs a leaf node
* ===
*/

class LeafNode extends Node {
// constructor of a leaf

/**
* @param v : value at the node
*/
public LeafNode(Object v) {

super(v, null, null);
}

/**
* @return a string representing the leaf node
*/
public String toString() {

return "" + value;
}

}

/**
* ===
* Class ParseException
* ===
*/

class ParseException extends Exception {

// constructor of a new instance of ParseException
public ParseException() {

super("Parse exception!");
}

}
// ---
public class DepthFirstVisit {
// ===

/**

7.1. DEPTH FIRST VISIT OF TREES 151

* This class DepthFirstVisit transforms the input string into a tree
* of type Node.
* The string encodes the tree as indicated by the grammar G.
* @param string: the string which encodes the given tree
* @return the root of the tree generated by the parsing
* @throws IOException or ParseException
*/

// stringReader is a sequence of characters, which are read one
// at a time, by the method read() of the class StringReader

public static Node parse(BufferedReader stringReader)
throws IOException, ParseException {

char c = (char)stringReader.read();
if ((’0’ <= c) && (c <= ’9’)) {

return new LeafNode(new Integer(Character.getNumericValue(c)));
} else
if (c == ’-’) {

char c2 = (char)stringReader.read();
Integer value = new Integer(Character.getNumericValue(c2));
Node childTree = parse(stringReader);
UnaryNode node = new UnaryNode(value, childTree);
return node;

} else
if (c == ’(’) {

Node leftTree = parse(stringReader);
char c2 = (char)stringReader.read();
Integer value = new Integer(Character.getNumericValue(c2));
Node rightTree = parse(stringReader);
BinaryNode node = new BinaryNode(value, leftTree, rightTree);
c2 = (char)stringReader.read();
return node;

} else {
throw new ParseException();
}

}
/** Depth first visit of the given tree
* @param tree : tree to be visited in a depth first manner
* @return the sequence of nodes which is the depth first visit of
* the given tree
*/
public static String depthFirstVisit(Node tree) {

StringBuffer buffer = new StringBuffer();
// ---------------------- RECURSIVE VERSION ------------------------------
if (tree instanceof LeafNode) { //

buffer.append(((LeafNode)tree).value + " "); //
} else //
if (tree instanceof UnaryNode) { //

buffer.append(depthFirstVisit(((UnaryNode)tree).left) //
+ tree.value + " "); //

} else //
if (tree instanceof BinaryNode) { //

buffer.append(depthFirstVisit(((BinaryNode)tree).left) //
+ depthFirstVisit(((BinaryNode)tree).right) //
+ tree.value + " "); //

}; //
// ---------------------- END OF RECURSIVE VERSION -----------------------

return buffer.toString();
}

// ---
public static void main(String[] args) throws IOException {

152 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

System.out.println("Input a tree according to the grammar given "
+ "in the program, please.");

Node tree = null;
try {
tree = parse(new BufferedReader(new InputStreamReader(System.in)));
} catch (IOException e) {

e.printStackTrace();
} catch (ParseException pex) {

System.out.println(pex.getMessage());
}
if (tree != null) {

System.out.println("\nTree in input:\n" + tree);
System.out.println("\nDepth first visit of the tree:");
System.out.println(depthFirstVisit(tree));

}
}

}

/**
* input: output:
* ---
* javac DepthFirstVisit.java
* java DepthFirstVisit
*
* Input a tree according to the grammar given in the program, please.
* (-231(-564-78))
*
* Tree in input:
* ((2.3).1.((5.6).4.(7.8)))
*
* Depth first visit of the tree:
* 3 2 6 5 8 7 4 1
* ---
*/

The following program is like the above one: it parses a string denoting a tree and
computes the first depth visit of that tree, but it uses a graphical interface. It can
be run by typing the following three commands:

javac DepthFirstVisit.java
javac DepthFirstVisitGUI.java
java DepthFirstVisitGUI

/**
* ===
* DEPTH FIRST VISIT OF A TREE
* with a Graphical User Interface
* Filename: "DepthFirstVisitGUI.java"
*
* This program should be compiled after the compilation of the program
* DepthFirstVisit.java.
* See also the initial comments in the file DepthFirstVisit.java
*
* This program uses the class DepthFirstVisit in the file named
* DepthFirstVisit.java. The file DepthFirstVisit.java should be stored
* in the same folder where this file DepthFirstVisitGUI.java is stored.
*
* To get a dialog window with font size 14 (instead of 28): set the
* boolean variable bw (short for big_window) to false (see line ***)
* ===

7.1. DEPTH FIRST VISIT OF TREES 153

*/
import java.io.*;
import javax.swing.JFrame;
import java.awt.Font; // needed for changing fonts

// --
public class DepthFirstVisitGUI extends JFrame {

/** Creates new form DepthFirstVisitGUI */
public DepthFirstVisitGUI() {

initComponents();
}
/** This method initComponents() is called from within the constructor
* to initialize the form.
*/

private void initComponents() {//GEN-BEGIN:initComponents
jLabel1 = new javax.swing.JLabel();
jLabel2 = new javax.swing.JLabel();
jLabel3 = new javax.swing.JLabel();
jLabel4 = new javax.swing.JLabel();
txInput = new javax.swing.JTextField();
txOutTree = new javax.swing.JTextField();
txOutDPF = new javax.swing.JTextField();
btParse = new javax.swing.JButton();
menuBar = new javax.swing.JMenuBar();
fileMenu = new javax.swing.JMenu();
exitMenuItem = new javax.swing.JMenuItem();

// ---

boolean bw = true; // true (false) for big (small) window. ***
Font sansSerifFont =

bw ? (new Font("SansSerif",Font.PLAIN,28)):
(new Font("SansSerif",Font.PLAIN,14));

// ---
txInput.setFont(sansSerifFont);
txOutTree.setFont(sansSerifFont);
txOutDPF.setFont(sansSerifFont);

getContentPane().setLayout(null);
setTitle("DEPTH FIRST VISIT OF A TREE");
setLocationRelativeTo(null);
addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent evt) {
exitForm(evt);

}
});

// ---
jLabel1.setBackground(new java.awt.Color(255, 255, 150));
jLabel1.setFont(sansSerifFont);
jLabel1.setText("<HTML>\n<PRE>\n"
+" Grammar for the input tree:\n"
+" tree ::= char | - char tree |"
+" (tree char tree)\n"
+" char ::= ’0’ | ’1’ | ... | ’9’\n"
+" Grammar for the internal tree:\n"
+" tree ::= n | (n.tree) | (tree.n.tree)\n"
+" n ::= 0 | 1 | ... | 9\n"
+"<PRE>\n</HTML>");

jLabel1.setVerticalAlignment(javax.swing.SwingConstants.TOP);
jLabel1.setOpaque(true);

154 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

getContentPane().add(jLabel1);
if (bw) {jLabel1.setBounds(10, 10, 1080, 190);}

else {jLabel1.setBounds(5, 5, 525, 95);}
// ---

jLabel2.setFont(sansSerifFont);
jLabel2.setText("Input Tree:");
getContentPane().add(jLabel2);
if (bw) {jLabel2.setBounds(20, 208, 180, 32);}

else {jLabel2.setBounds(10, 104, 90, 16);}
getContentPane().add(txInput);
if (bw) {txInput.setBounds(270, 208, 810, 40);}

else {txInput.setBounds(140, 104, 380, 20);}
// ---

jLabel3.setFont(sansSerifFont);
jLabel3.setText("Internal Tree:");
getContentPane().add(jLabel3);
if (bw) {jLabel3.setBounds(20, 288, 200, 32);}

else {jLabel3.setBounds(10, 144, 110, 16);}
txOutTree.setBackground(new java.awt.Color(25, 255, 25));
getContentPane().add(txOutTree);
if (bw) {txOutTree.setBounds(270, 288, 810, 40);}

else {txOutTree.setBounds(140, 144, 380, 20);}
// ---

jLabel4.setFont(sansSerifFont);
jLabel4.setText("Depth First Visit:");
getContentPane().add(jLabel4);
if (bw) {jLabel4.setBounds(20, 368, 280, 32);}

else {jLabel4.setBounds(10, 184, 140, 16);}
txOutDPF.setBackground(new java.awt.Color(25, 255, 25));
getContentPane().add(txOutDPF);
if (bw) {txOutDPF.setBounds(270, 368, 810, 50);}

else {txOutDPF.setBounds(140, 184, 380, 20);}
// ---

btParse.setFont(sansSerifFont);
btParse.setText("Parse and Visit");
btParse.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
btParseActionPerformed(evt);
}

});
getContentPane().add(btParse);
if (bw) {btParse.setBounds(340, 440, 576, 52);}

else {btParse.setBounds(240, 210, 138, 25);}
// ---

fileMenu.setText("FILE_MENU");
exitMenuItem.setText("Exit");
exitMenuItem.addActionListener(

new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {

exitMenuItemActionPerformed(evt);
}

});

fileMenu.add(exitMenuItem);// adding a File Menu with an Exit button
menuBar.add(fileMenu); //
setJMenuBar(menuBar); //

java.awt.Dimension screenSize =
java.awt.Toolkit.getDefaultToolkit().getScreenSize();

if (bw) {setBounds((screenSize.width-944)/2,

7.1. DEPTH FIRST VISIT OF TREES 155

(screenSize.height-700)/2, 1095, 600);}
else {setBounds((screenSize.width-944)/2,

(screenSize.height-700)/2, 544, 300);}
} //GEN-END:initComponents

private void btParseActionPerformed(java.awt.event.ActionEvent evt) {
//GEN-FIRST:event_btParseActionPerformed
// Add your handling code here:

Node tree = null;
try { // from String to StringReader and to BufferedReader

BufferedReader inputline
= new BufferedReader(

new StringReader(txInput.getText()));
tree = DepthFirstVisit.parse(inputline);

} catch (IOException e) {
e.printStackTrace();
txOutTree.setText("IOException!");

} catch (ParseException pex){
txOutTree.setText(pex.getMessage());

}
if (tree != null) {

txOutTree.setText(tree.toString());
txOutDPF.setText(DepthFirstVisit.depthFirstVisit(tree));

}
} //GEN-LAST:event_btParseActionPerformed

private void exitMenuItemActionPerformed(
java.awt.event.ActionEvent evt) {

//GEN-FIRST:event_exitMenuItemActionPerformed
System.exit(0);

} //GEN-LAST:event_exitMenuItemActionPerformed

/** Exit the Application */
private void exitForm(java.awt.event.WindowEvent evt) {

//GEN-FIRST:event_exitForm
System.exit(0);

} //GEN-LAST:event_exitForm
/**
* @param args the command line arguments
*/

public static void main(String args[]) {
new DepthFirstVisitGUI().show();

}
// Variables declaration - do not modify //GEN-BEGIN:variables
private javax.swing.JMenuItem exitMenuItem;
private javax.swing.JMenu fileMenu;
private javax.swing.JLabel jLabel1;
private javax.swing.JLabel jLabel2;
private javax.swing.JLabel jLabel3;
private javax.swing.JLabel jLabel4;
private javax.swing.JMenuBar menuBar;
private javax.swing.JTextField txInput;
private javax.swing.JTextField txOutTree;
private javax.swing.JTextField txOutDPF;
private javax.swing.JButton btParse;
// End of variables declaration //GEN-END:variables

}
/**
* input: output:
* ---

156 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

* javac DepthFirstVisit.java // This compilation is needed
* javac DepthFirstVisitGUI.java
* java DepthFirstVisitGUI
*
* (see figures below)
* ---
*/

After typing the string (-231(-564-78)) we have:

/Users/adp/Desktop/ADP/TEACHING/LECTURE_NOTES_adp2004/AutomataLanguageTranslators/L

Then by clicking the button ‘Parse and Visit’ we get:

/Users/adp/Desktop/ADP/TEACHING/LECTURE_NOTES_adp2004/AutomataLanguageTranslators/L

7.2. EVALUATOR OF BOOLEAN EXPRESSIONS 157

7.2. Evaluator of Boolean Expressions

The program presented in this section: (i) first, parses a given input string denoting
a boolean expression, (ii) then, generates the internal tree which represents that
expression, and (iii) finally, returns the value of that boolean expression by evaluating
every node of that internal tree.

In this section, as concrete instances of boolean expressions, we will take the
formulas of the propositional calculus built out of the atoms true and false and
the operators ¬, ∨, ∧, and →, which, respectively, denote negation, disjunction,
conjunction, and implication.

The productions of the context-free grammar which generates the input string are
the following ones:

b ::= c | c>b (b is a boolean expression)
c ::= l | l+c |lxc (c is a condition)
l ::= a | -l (l is a literal)
a ::= ’t’ | ’f’ | (b) (a is an atom)

The axiom is b. ’t’ stands for true, ’f’ stands for false, - denotes negation,
+ denotes disjunction, x denotes conjunction, and > denotes implication. We assume
that: (i) + and x bind more than >, and (ii) - binds more than + and x. We also
assume right associativity for subexpressions involving + and x. Parentheses override
priorities. No blanks are allowed before, in between, and after the input string.

For instance, the string -t>f+t denotes the boolean expression

¬ true → (false ∨ true)

The internal tree which corresponds to the input string is then printed as a string
which is generated by the following productions from the axiom b:

b ::= true | false | (-b) | (b + b) | (b x b) | (b > b)

For instance, the boolean expression ¬true → (false ∨ true) is printed as

((-true) > (false + true))

If we execute the following two commands:

javac BooleanExpression.java
java BooleanExpression

we get the following sentence in output:

Input a boolean expression according to the given grammar, please.

Then, if we type the following input string (note the absence of blank characters):

t>(f+f)+-tx-f

we get:

Parse tree of the boolean expression:
(true > ((false + false) + ((-true) x (-false))))

Value of the boolean expression:
false

Indeed, we have that the string t>(f+f)+-tx-f represents according to our conven-
tions, the boolean expression true → ((false ∨ false) ∨ (¬ true ∧ ¬ false)).

That boolean expression can be depicted as a tree as follows:

158 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

→

true ∨

∨ ∧

false false ¬ ¬

true false

Its value is: false.
The following program parses and evaluates boolean expressions.

/**
* ==
* EVALUATOR OF BOOLEAN EXPRESSIONS
* Filename: "BooleanExpressionEvaluator.java"
*
* Grammar G for the input boolean expression b:
*
* boolean expressions b ::= c | c>b <-- bexprParse
* conditions c ::= l | l+c | lxc <-- condParse
* literals l ::= a | -l <-- litParse
* atoms a ::= ’t’ | ’f’ | (b) <-- atomParse
*
* ’t’ stands for true, ’f’ stands for false, - denotes negation,
* + denotes disjunction, x denotes conjunction, and > denotes implication.
* The grammar should not be left recursive.
* Internal tree:
* -------------
* b ::= true | false | (-b) | (b x b) | (b + b) | (b > b)
* (Leaf) (Leaf) (Unary) (Binary) (Binary) (Binary)
* Output value:
* ------------
* value ::= true | false
* ------------
* Priorities: + and x bind more than >
* - binds more than + or x
* Right associativity for + and x
* Parentheses override priorities.
* No blanks are allowed before, in between, and after the input string.
*
* A boolean expression is given in input as a string generated by
* the grammar G and then it is parsed and evaluated.
* The word ’node’ is assumed to be equivalent to the word ’tree’.
*
* ---------
* If "C2 extends C1" then the class C2 has the methods of the class C1.
* This may not be desirable, but it allows the use of objects of the class
* C1 and then the use of "instanceof" to test whether or not an object of
* the class C1 is indeed of the class C2.
*
* ---------
* Line (1) below checks whether or not the input boolean expression is
* terminated by a carriage-return ’\n’.
* ===
*/

import java.io.*;
/**

7.2. EVALUATOR OF BOOLEAN EXPRESSIONS 159

* ===
* Class which constructs a Node
* This class is used for constructing a Node of a binary tree.
* By default, a Node is a binary node.
* A Node can be extended for constructing a Node which is
* either a binary node, or a unary node, or a leaf node.
* ===
*/

class Node {
public Object value; // value field
public Node left; // reference to the left child node
public Node right; // reference to the right child node

// constructor
/**
* @param v : value at the node
* @param l : reference to the left child node
* @param r : reference to the right child node
*/ // constructor of a binary node
public Node(Object v, Node l, Node r) {

if (v == null) throw new IllegalArgumentException();
value = v;
left = l;
right = r;

}
}
/**
* ===
* Class which constructs a binary node with two child nodes
* ===
*/

class BinaryNode extends Node {
/** // constructor of binary node
* @param v : value at the node
* @param l : reference to the left child node
* @param r : reference to the right child node
*/
public BinaryNode(Object v, Node l, Node r) {

super(v, l, r);
}

/**
* @return a string representing the tree whose root is the given node
*/
public String toString(){

return "("+ left.toString() +" "+ value +" "+ right.toString() +")";
}

}
/**
* ===
* Class which constructs a unary node with one child node
* ===
*/

class UnaryNode extends Node {
/** // constructor of unary node
* @param v : value at the node
* @param child : reference to the child node
*/

public UnaryNode(Object v, Node child) {
super(v, child, null);

}
/**

160 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

* @return a string representing the tree whose root is the given node
*/

public String toString() {
return "(" + value + left.toString() + ")";

}
}

/**
* ===
* Class which constructs a leaf node
* ===
*/

class LeafNode extends Node {
/** // constructor of a leaf
* @param v : value at the node
*/
public LeafNode(Object v) {

super(v, null, null);
}

/**
* @return a string representing the leaf node
*/
public String toString() {

return "" + value;
}

}
/**
* ===
* Class ParseException
* ===
*/

class ParseException extends Exception {
// constructor of a new instance of ParseException

public ParseException() {
super("parse exception!");

}
}
/**
* ===
* Class EvalException
* ===
*/

class EvalException extends Exception {
// constructor of a new instance of EvalException

public EvalException() {
super("eval exception!");

}
}

// ---
public class BooleanExpressionEvaluator {
// ===

/**
* This class BooleanExpressionEvaluator transforms the input string
* into a tree of type Node.
* The string encodes the tree as indicated by the grammar G.
* @param string: the string which encodes the given tree
* @return the root of the tree generated by the parsing
* @throws IOException or ParseException or EvalException.
*/

public static char c; // static field.

7.2. EVALUATOR OF BOOLEAN EXPRESSIONS 161

// inputLine is a sequence of characters,
// which are read one at a time, by
// the method read() of the class StringReader

public static Node bexprParse(BufferedReader inputLine)
throws IOException, ParseException {

Node node1 = condParse(inputLine);
if (c == ’>’) {

c = (char)inputLine.read();
Node node2 = bexprParse(inputLine);
return new BinaryNode(new Character(’>’), node1, node2);

} else { return node1; }
}

public static Node condParse(BufferedReader inputLine)
throws IOException, ParseException {

Node node1 = litParse(inputLine);
if (c == ’x’) {

c = (char)inputLine.read();
Node node2 = condParse(inputLine);
return new BinaryNode(new Character(’x’), node1, node2);

} else
if (c == ’+’) {

c = (char)inputLine.read();
Node node2 = condParse(inputLine);
return new BinaryNode(new Character(’+’), node1, node2);

} else { return node1; }
}

public static Node litParse(BufferedReader inputLine)
throws IOException, ParseException {

Node node = null;
if (c == ’-’) {

c = (char)inputLine.read();
Node node1 = litParse(inputLine);
node = new UnaryNode(new Character(’-’), node1);

} else { node = atomParse(inputLine); };
return node;

}

public static Node atomParse(BufferedReader inputLine)
throws IOException, ParseException {

Node node1 = null;
if ((c == ’t’) || (c == ’f’)) {

node1 = new LeafNode(new Boolean((c==’t’)?true:false));
c = (char)inputLine.read();
return node1;

} else {
if (c==’(’) {

c = (char)inputLine.read();
node1 = bexprParse(inputLine);
if (c==’)’) { c = (char)inputLine.read(); }// reads past ’)’
else { throw new ParseException(); };
return node1;
};

};
throw new ParseException();

}

// ---

162 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

/** Evaluation of the tree which represents the input boolean expression
* @param tree : tree to be evaluated
* @return the boolean value of the tree
*/
public static boolean evalTree(Node tree)

throws EvalException {

// ---------------------- RECURSIVE VERSION --------------------------------

if (tree instanceof LeafNode) { //
return ((Boolean)((LeafNode)tree).value).booleanValue(); //

} else //
if (tree instanceof UnaryNode) { //

return !(evalTree(((UnaryNode)tree).left)); //
} else //
if (tree instanceof BinaryNode) { //

boolean left = evalTree(((BinaryNode)tree).left); //
boolean right = evalTree(((BinaryNode)tree).right); //
if (((Character)(((BinaryNode)tree).value)).charValue() == ’+’)//

{ return left || right; } else //
if (((Character)(((BinaryNode)tree).value)).charValue() == ’x’)//

{ return left && right; } else //
if (((Character)(((BinaryNode)tree).value)).charValue() == ’>’)//

{ return (!left) || right; } else { //
throw new EvalException(); //
} //

} else { //
throw new EvalException(); //
} //

// ---------------------- END OF RECURSIVE VERSION -------------------------
}

// ---
public static void main(String[] args)

throws IOException, ParseException {

System.out.println("Input a boolean expression according to the "
+ "given grammar, please.");

Node tree = null;
try { // from String to StringReader and to BufferedReader

BufferedReader inputLine =
new BufferedReader(new InputStreamReader(System.in));

c = (char)inputLine.read();
tree = bexprParse(inputLine);
if (c != ’\n’) { throw new ParseException(); }; // <--- (1)

} catch (IOException e) {
e.printStackTrace();
System.out.println("IOException!");

} catch (ParseException pex) {
System.out.println(pex.getMessage());
return;

};
// ------

if (tree != null) {
System.out.println("\nParse tree of the boolean expression:\n"

+ tree);
System.out.println("\nValue of the boolean expression:");

try {

7.2. EVALUATOR OF BOOLEAN EXPRESSIONS 163

System.out.println(evalTree(tree));
} catch (EvalException evalex) {

System.out.println(evalex.getMessage());
}
}

}
}

/**
* input: output:
* ---
* javac BooleanExpressionEvaluator.java
* java BooleanExpressionEvaluator
*
* Input a boolean expression according to the given grammar, please.
* t>(f+f)+-tx-f
*
* Parse tree of the boolean expression:
* (true > ((false + false) + ((-true) x (-false))))
*
* Value of the boolean expression:
* false
* ---
*/

The following program is like the above one: it parses and evaluates boolean expres-
sions, but it uses a graphical interface. It can be run by typing the following three
commands:

javac BooleanExpressionEvaluator.java
javac BooleanExpressionEvaluatorGUI.java
java BooleanExpressionEvaluatorGUI

/**
* ===
* EVALUATOR OF BOOLEAN EXPRESSIONS
* with a Graphical User Interface
* Filename: "BooleanExpressionEvaluatorGUI.java"
*
* This program should be compiled after the compilation of the program
* BooleanExpressionEvaluator.java.
* See also the initial comments of the file BooleanExpressionEvaluator.java
*
* This program uses the class BooleanExpressionEvaluator in the file named
* BooleanExpressionEvaluator.java. The file BooleanExpressionEvaluator.java
* should be stored in the same folder where this file
* BooleanExpressionEvaluatorGUI.java is stored.
*
* To get a dialog window with font size 14 (instead of 28): set the
* boolean variable bw (short for big_window) to false (see line ***)
* ===
*/

import java.io.*;
import javax.swing.JFrame;
import java.awt.Font; // needed for changing fonts

// --
public class BooleanExpressionEvaluatorGUI extends JFrame {

164 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

/** Creates new form BooleanExpressionEvaluatorGUI */
public BooleanExpressionEvaluatorGUI() {

initComponents();
}
/** This method initComponents() is called from within the constructor
* to initialize the form. */

private void initComponents() {//GEN-BEGIN:initComponents
jLabel1 = new javax.swing.JLabel();
jLabel2 = new javax.swing.JLabel();
jLabel3 = new javax.swing.JLabel();
jLabel4 = new javax.swing.JLabel();
txInExpr = new javax.swing.JTextField();
txOutExpr = new javax.swing.JTextField();
txOutVal = new javax.swing.JTextField();
btParse = new javax.swing.JButton();
menuBar = new javax.swing.JMenuBar();
fileMenu = new javax.swing.JMenu();
exitMenuItem = new javax.swing.JMenuItem();

// ---
boolean bw = true; // true (false) for big (small) window. ***
Font sansSerifFont =

bw ? (new Font("SansSerif",Font.PLAIN,28)):
(new Font("SansSerif",Font.PLAIN,14));

// ---
txInExpr.setFont(sansSerifFont);
txOutExpr.setFont(sansSerifFont);
txOutVal.setFont(sansSerifFont);

getContentPane().setLayout(null);
setTitle("EVALUATION OF A BOOLEAN EXPRESSION");
setLocationRelativeTo(null);
addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent evt) {
exitForm(evt);

}
});

// ---
jLabel1.setBackground(new java.awt.Color(255, 255, 150));
jLabel1.setFont(sansSerifFont);
jLabel1.setText("<HTML>\n<PRE>\n"
+" Grammar for the input boolean expression b:\n"
+" b ::= c | c>b c ::= l | l+c | lxc l ::= a | -l\n"
+" a ::= ’t’ | ’f’ | (b)\n"
+" ’t’ stands for true. ’f’ stands for false.\n"
+" Internal tree: \n"
+" b ::= true | false | (-b) | (b + b)\n"
+" | (b x b) | (b > b)\n"
+" Evaluation of the boolean expression:\n"
+" true | false\n"
+"<PRE>\n</HTML>");
jLabel1.setVerticalAlignment(javax.swing.SwingConstants.TOP);
jLabel1.setOpaque(true);
getContentPane().add(jLabel1);
if (bw) {jLabel1.setBounds(10, 10, 1164, 288);}

else {jLabel1.setBounds(5, 5, 582, 144);}
// ---

jLabel2.setFont(sansSerifFont);
jLabel2.setText("Input Expression:");
getContentPane().add(jLabel2);
if (bw) {jLabel2.setBounds(20, 336, 312, 40);}

7.2. EVALUATOR OF BOOLEAN EXPRESSIONS 165

else {jLabel2.setBounds(10, 168, 156, 20);}
getContentPane().add(txInExpr);
if (bw) {txInExpr.setBounds(280, 336, 800, 50);}

else {txInExpr.setBounds(10, 168, 156, 20);}
// ---

jLabel3.setFont(sansSerifFont);
jLabel3.setText("Internal Tree:");
getContentPane().add(jLabel3);
if (bw) {jLabel3.setBounds(20, 416, 312, 40);}

else {jLabel3.setBounds(10, 208, 156, 20);}
txOutExpr.setBackground(new java.awt.Color(25, 255, 25));
getContentPane().add(txOutExpr);
if (bw) {txOutExpr.setBounds(280, 416, 800, 50);}

else {txOutExpr.setBounds(140, 208, 400, 25);}
// ---

jLabel4.setFont(sansSerifFont);
jLabel4.setText("Evaluation:");
getContentPane().add(jLabel4);
if (bw) {jLabel4.setBounds(20, 496, 280, 32);}

else {jLabel4.setBounds(10, 253, 140, 16);}
txOutVal.setBackground(new java.awt.Color(25, 255, 25));
getContentPane().add(txOutVal);
if (bw) {txOutVal.setBounds(280, 496, 800, 50);}

else {txOutVal.setBounds(140, 253, 400, 25);}
// ---

btParse.setFont(sansSerifFont);
btParse.setText("Parse and Evaluate");
btParse.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
btParseActionPerformed(evt);
}

});
getContentPane().add(btParse);
if (bw) {btParse.setBounds(460, 596, 388, 50);}

else {btParse.setBounds(230, 288, 194, 26);}
// ---

fileMenu.setText("FILE_MENU");
exitMenuItem.setText("Exit");
exitMenuItem.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
exitMenuItemActionPerformed(evt);
}

});
fileMenu.add(exitMenuItem);// adding a File Menu with an Exit button
menuBar.add(fileMenu); //
setJMenuBar(menuBar); //
java.awt.Dimension screenSize =

java.awt.Toolkit.getDefaultToolkit().getScreenSize();
if (bw) {setBounds((screenSize.width-944)/2,

(screenSize.height-700)/2, 1112, 748);}
else {setBounds((screenSize.width-944)/2,

(screenSize.height-700)/2, 556, 374);}
} //GEN-END:initComponents
private void btParseActionPerformed(java.awt.event.ActionEvent evt) {

//GEN-FIRST:event_btParseActionPerformed
// Add your handling code here:
// This part is like the main of the class BooleanExpressionEvaluator
// in the file BooleanExpressionEvaluator.java.

Node tree = null;
try {// from String to StringReader and to BufferedReader. Added

166 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

// an extra ’\n’ at the end of the input for terminating the
// input as in the BooleanExpressionEvaluator class.

BufferedReader inputLine
= new BufferedReader(

new StringReader((txInExpr.getText()) + ’\n’));
BooleanExpressionEvaluator.c = (char)inputLine.read();
tree = BooleanExpressionEvaluator.bexprParse(inputLine);
if (BooleanExpressionEvaluator.c != ’\n’)

{ throw new ParseException(); };
} catch (IOException e) {

e.printStackTrace();
txOutExpr.setText("IOException!");

} catch (ParseException pex){
txOutExpr.setText(pex.getMessage());
return;

} // ------
if (tree != null) {

txOutExpr.setText(tree.toString());
try { txOutVal.setText(

(BooleanExpressionEvaluator.evalTree(tree))?"true":"false");
} catch (EvalException evalex) {

System.out.println(evalex.getMessage());
}
}

} //GEN-LAST:event_btParseActionPerformed
private void

exitMenuItemActionPerformed(java.awt.event.ActionEvent evt) {
//GEN-FIRST:event_exitMenuItemActionPerformed

System.exit(0);
} //GEN-LAST:event_exitMenuItemActionPerformed
/** Exit the Application */
private void exitForm(java.awt.event.WindowEvent evt) {

//GEN-FIRST:event_exitForm
System.exit(0);

} //GEN-LAST:event_exitForm
/**
* @param args the command line arguments */

public static void main(String args[]) {
new BooleanExpressionEvaluatorGUI().show();

}
// Variables declaration - do not modify //GEN-BEGIN:variables
private javax.swing.JMenuItem exitMenuItem;
private javax.swing.JMenu fileMenu;
private javax.swing.JLabel jLabel1;
private javax.swing.JLabel jLabel2;
private javax.swing.JLabel jLabel3;
private javax.swing.JLabel jLabel4;
private javax.swing.JMenuBar menuBar;
private javax.swing.JTextField txInExpr;
private javax.swing.JTextField txOutExpr;
private javax.swing.JTextField txOutVal;
private javax.swing.JButton btParse;
// End of variables declaration //GEN-END:variables

}
/**
* input: output:
* ---
* javac BooleanExpressionEvaluator.java // This compilation is needed
* javac BooleanExpressionEvaluatorGUI.java
* java BooleanExpressionEvaluatorGUI

7.2. EVALUATOR OF BOOLEAN EXPRESSIONS 167

*
* (see figures below)
* ---
*/

After typing the string t>(f+f)+-tx-f we have:

/Users/adp/Desktop/ADP/TEACHING/LECTURE_NOTES_adp2004/AutomataLanguageTranslators/L

Then by clicking the button ‘Parse and Evaluate’ we get:

/Users/adp/Desktop/ADP/TEACHING/LECTURE_NOTES_adp2004/AutomataLanguageTranslators/L

168 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

7.3. A Theorem Prover for the Propositional Calculus

The program presented in this section: (i) first, parses a given input string denoting
a propositional formula, (ii) then, generates the internal tree which represents that
formula, and (iii) finally, tells us whether or not that formula is a tautology. In case
it is not a tautology the program returns the values of the propositional variables for
which the given formula evaluates to false.

The productions of the context-free grammar which generates the input string are
the following ones:

p ::= c | c>p (p is a propositional formula)
c ::= l | l+c |lxc (c is a condition)
l ::= a | -l (l is a literal)
a ::= ’0’ | ... | ’9’ | (p) (a is an atom)

The axiom is p. The propositional variables are denoted by the characters ’0’, ...,
’9’, and thus, we assume that there are at most ten of them.

As in Section 7.2 on page 157, - denotes negation, + denotes disjunction, x denotes
conjunction, and > denotes implication. For reasons of brevity, we will also write true
as t and false as f. We assume that: (i) + and x bind more than >, and (ii) - binds
more than + and x. We also assume right associativity for subexpressions involving
+ and x. Parentheses override priorities. No blank characters are allowed before, in
between, and after the input string.

For instance, the string 1x3+1 denotes the propositional formula P1 ∧ (P3 ∨ P1)
where we have used the propositional variables P1 and P3, instead of ’1’ and ’3’,
respectively.

The internal tree which corresponds to the input string is then printed as a string
which is generated by the following productions from the axiom p:

p ::= d | (-p) | (p + p) | (p x p) | (p > p)
d ::= 0 | 1 |...| 9

Note that the propositional variables ’0’, . . ., ’9’ are printed as the digits 0, . . .,
9, respectively . For instance, the propositional formula P1 ∧ (P3 ∨ P1) is printed as
(1 x (3 + 1)). If we execute the following two commands:

javac PropositionalTheoremProver.java
java PropositionalTheoremProver

we get the following sentence in output:

Input a propositional formula according to the given grammar, please.
The variables should be between 0 and 3.

The value 3 is due to the fact that in our implementation we have set the value of
the variable DIM (which tells us the maximum number of the propositional variables
which may occur in the input formula) to 4. Thus, our propositional variables are:
’0’, ’1’, ’2’, and ’3’. The value of DIM can be changed by the programmer and in
our implementation it is a positive integer which it can be at most 10.

Then, if we type the following input string (note the absence of blank characters):

0>(1+1)+-0x-2

we get:

7.3. A THEOREM PROVER FOR THE PROPOSITIONAL CALCULUS 169

Parse tree of the propositional formula:
(0 > ((1 + 1) + ((-0) x (-2)))))

Is it a tautology? NO.
The falsity assignment is:

0=true; 1=false; 2=false; 3=false;

Indeed, the string (0 > ((1 + 1) + ((-0) x (-2)))) represents, according to our
conventions, the propositional formula P0 → ((P1 ∨ P1) ∨ (¬P0 ∧ ¬P2)), where we
have used the propositional variables P0, P1, and P2, instead of ’0’, ’1’, and ’2’,
respectively. That propositional formula can be depicted as a tree as follows:

→

P0 ∨

∨ ∧

P1 P1 ¬ ¬

P0 P2

The value of that formula is false if P0 =true, and P1 = P2 = false.
Here is the program for parsing a given propositional formula and checking whether

or not it is a tautology.

/**
* ===
* PROPOSITIONAL THEOREM PROVER
* Filename: "PropositionalTheoremProver.java"
*
* Grammar G for the input propositional formula p:
*
* propositional formulas p ::= c | c>p <-- propParse
* conditions c ::= l | l+c | lxc <-- condParse
* literals l ::= a | -l <-- litParse
* atoms a ::= ’0’ | ... | ’9’ | (p) <-- atomParse
*
* Propositional variables are named: ’0’, ..., ’9’.
* The value of DIM is set to the maximum number of propositional variables
* which are actually present in any given formula.
* If DIM = 4, then the variables are: ’0’, ’1’, ’2’, and ’3’.
* (see line (1) below). DIM should be at most 10.
* - denotes negation, + denotes disjunction, x denotes conjunction, and
* > denotes implication.
* Internal tree:
* -------------
* p ::= 0 | ... | 9 | (-p) | (p x p) | (p + p) | (p > p)
* (Leaf) (Leaf) (Unary) (Binary) (Binary) (Binary)
*
* Output value of a propositional formula:
* ---------------------------------------
* value ::= true | false
* ------------
* Priorities: + and x bind more than >
* - binds more than + or x

170 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

* Right associativity for + and x
* Parentheses override priorities.
* No blanks are allowed before, in between, and after the input string.
* The propositional formula in input should be a string generated by
* the grammar G and then it is parsed and evaluated for all assignments
* of the propositional variables.
*
* The word ’node’ is assumed to be equivalent to the word ’tree’.
* ---------
* If "C2 extends C1" then the class C2 has the methods of the class C1.
* This may not be desirable, but it allows the use of objects of the class
* C1 and then the use of "instanceof" to test whether or not an object of
* the class C1 is indeed of the class C2.
* ---------
* Line (1) below depends on the number of propositional variables.
* Line (2) below checks whether or not the input propositional formula is
* terminated by a carriage-return ’\n’.
* ===
*/

import java.io.*;
/**
* ===
* Class which constructs a Node
*
* This class is used for constructing a Node of a binary tree.
* By default, a Node is a binary node.
* A Node can be extended for constructing a Node which is
* either a binary node, or a unary node, or a leaf node.
* ===
*/

class Node {
public Object value; // value field
public Node left; // reference to the left child node
public Node right; // reference to the right child node

// constructor
/**
* @param v : value at the node
* @param l : reference to the left child node
* @param r : reference to the right child node
*/ // constructor of a binary node
public Node(Object v, Node l, Node r) {

if (v == null) throw new IllegalArgumentException();
value = v;
left = l;
right = r;

}
}
/**
* ===
* Class which constructs a binary node with two child nodes
* ===
*/

class BinaryNode extends Node {
/** // constructor of binary node
* @param v : value at the node
* @param l : reference to the left child node
* @param r : reference to the right child node
*/
public BinaryNode(Object v, Node l, Node r) {

super(v, l, r);
}

7.3. A THEOREM PROVER FOR THE PROPOSITIONAL CALCULUS 171

/**
* @return a string representing the tree whose root is the given node
*/
public String toString(){

return "("+ left.toString() +" "+ value +" "+ right.toString() +")";
}

}

/**
* ===
* Class which constructs a unary node with one child node
* ===
*/

class UnaryNode extends Node {
/** // constructor of unary node
* @param v : value at the node
* @param child : reference to the child node
*/

public UnaryNode(Object v, Node child) {
super(v, child, null);

}
/**
* @return a string representing the tree whose root is the given node
*/

public String toString() {
return "(" + value + left.toString() + ")";

}
}

/**
* ===
* Class which constructs a leaf node
* ===
*/

class LeafNode extends Node {
/** // constructor of a leaf
* @param v : value at the node
*/
public LeafNode(Object v) {

super(v, null, null);
}

/**
* @return a string representing the leaf node
*/
public String toString() {

return "" + value;
}

}
/**
* ===
* Class ParseException
* ===
*/

class ParseException extends Exception {
// constructor of a new instance of ParseException

public ParseException() {
super("parse exception!");

}
}

172 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

/**
* ===
* Class EvalException
* ===
*/

class EvalException extends Exception {
// constructor of a new instance of EvalException

public EvalException() {
super("eval exception!");

}
}
// ---
public class PropositionalTheoremProver {
// ===

/**
* This class PropositionalTheoremProver transforms the input string
* into a tree of type Node.
* The string encodes the tree as indicated by the grammar G.
* @param string: the string which encodes the given tree
* @return the root of the tree generated by the parsing
* @throws IOException or ParseException or EvalException.
*/

// Three static fields of the class PropositionalTheoremProver
// DIM: maximum number of the distinct variables
// in the propositional formula

public static final int DIM = 4; // <--- (1)
// At most DIM propositional variables in the
// propositional formula. By default, every
// element of tValues is initialized to "false"

public static boolean [] tValues = new boolean [DIM];

public static char c;
// inputLine is a sequence of characters,
// which are read one at a time, by
// the method read() of the class StringReader

public static Node propParse(BufferedReader inputLine)
throws IOException, ParseException {

Node node1 = condParse(inputLine);
if (c == ’>’) {

c = (char)inputLine.read();
Node node2 = propParse(inputLine);
return new BinaryNode(new Character(’>’), node1, node2);

} else { return node1; }
}

public static Node condParse(BufferedReader inputLine)
throws IOException, ParseException {

Node node1 = litParse(inputLine);
if (c == ’x’) {

c = (char)inputLine.read();
Node node2 = condParse(inputLine);
return new BinaryNode(new Character(’x’), node1, node2);

} else
if (c == ’+’) {

c = (char)inputLine.read();
Node node2 = condParse(inputLine);
return new BinaryNode(new Character(’+’), node1, node2);

} else { return node1; }
}

7.3. A THEOREM PROVER FOR THE PROPOSITIONAL CALCULUS 173

public static Node litParse(BufferedReader inputLine)
throws IOException, ParseException {

Node node = null;
if (c == ’-’) {

c = (char)inputLine.read();
Node node1 = litParse(inputLine);
node = new UnaryNode(new Character(’-’), node1);

} else { node = atomParse(inputLine); };
return node;

}

public static Node atomParse(BufferedReader inputLine)
throws IOException, ParseException {

Node node1 = null;
if ((’0’ <= c) && (c <= ’9’)) {

// from the character to the integer: -48 //
node1 = new LeafNode(new Integer(Character.getNumericValue(c)));
c = (char)inputLine.read();
return node1;

} else {
if (c==’(’) {

c = (char)inputLine.read();
node1 = propParse(inputLine);
if (c==’)’) { c = (char)inputLine.read(); } // reads past ’)’
else { throw new ParseException(); };
return node1;
};

};
throw new ParseException();

}

// ---
/** Evaluation of the tree which represents the input boolean expression
* @param tree : tree to be evaluated
* @return the boolean value of the tree
*/
public static boolean evalTree(Node tree)

throws EvalException {
// ---------------------- RECURSIVE VERSION --------------------------------
if (tree instanceof LeafNode) { //

return tValues[(Integer)(((LeafNode)tree).value)]; //
} else //
if (tree instanceof UnaryNode) { //

return !(evalTree(((UnaryNode)tree).left)); //
} else //
if (tree instanceof BinaryNode) { //

boolean left = evalTree(((BinaryNode)tree).left); //
boolean right = evalTree(((BinaryNode)tree).right); //
if (((Character)(((BinaryNode)tree).value)).charValue() == ’+’)//

{ return left || right; } else //
if (((Character)(((BinaryNode)tree).value)).charValue() == ’x’)//

{ return left && right; } else //
if (((Character)(((BinaryNode)tree).value)).charValue() == ’>’)//

{ return (!left) || right; } //
}; //
throw new EvalException(); //

// ---------------------- END OF RECURSIVE VERSION -------------------------
}

// ---

174 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

public static void main(String[] args)
throws IOException, ParseException {

boolean answer = true;
boolean bval = true;
System.out.println("Input a propositional formula according to the "

+ "given grammar, please.");
System.out.println("The variables should be between 0 and "

+ (DIM-1) +".");
Node tree = null;
try { // from String to StringReader and to BufferedReader

BufferedReader inputLine =
new BufferedReader(new InputStreamReader(System.in));

c = (char)inputLine.read();
tree = propParse(inputLine);
if (c != ’\n’) { throw new ParseException(); }; // <--- (2)

} catch (IOException e) {
e.printStackTrace();
System.out.println("IOException!");

} catch (ParseException pex) {
System.out.println(pex.getMessage());
return;

};
// ------ (begin 0) ------

if (tree != null) {
System.out.println("\nParse tree of the propositional formula:\n"

+tree);
System.out.print("\nIs it a tautology? ");

/** --
* The following fragment computes the dispositions for tValues[0],...,
* tValues[DIM-1] from false,...,false to true,...,true until we finds
* a disposition which makes bval == false, if any. In that case the given
* formula is NOT a tautology. If, otherwise, all dispositions make
* bval == true, then the given formula is a tautology.
* -- */

for (int i = 0; i < (int)Math.pow(2,DIM); i++) {
try {

bval = evalTree(tree);
} catch (EvalException evalex) {

System.out.println(evalex.getMessage());
};
if (!bval) { answer = false; break; }
else {

for (int k = 0; k < DIM; k++) {
if (tValues[k]) { tValues[k] = false; }
else { tValues[k] = true; break; }

}
}

};
// --

if (answer) { System.out.println("YES."); } else {
System.out.println("NO.\nThe falsity assignment is:\n");
for (int k = 0; k < DIM; k++) {

System.out.print(k + "=" + tValues[k] + "; ");};
System.out.println();

}
// --

}
// ------ (end 0) ------
}

}

7.3. A THEOREM PROVER FOR THE PROPOSITIONAL CALCULUS 175

/**
* input: output:
* ---
* javac PropositionalTheoremProver.java
* java PropositionalTheoremProver
*
* Input a propositional formula according to the given grammar, please.
* The variables should be between 0 and 3.
* 0>1>0
*
* Parse of the propositional formula:
* (0 > (1 > 0))
*
* Is it a tautology? YES.
* ---
* Input a propositional formula according to the given grammar, please.
* The variables should be between 0 and 3.
* 0>-1
*
* Parse of the propositional formula:
* (0 > (-1))
*
* Is it a tautology? NO.
* The falsity assignment is:
*
* 0=true; 1=true; 2=false; 3=false;
* ---
* Input a propositional formula according to the given grammar, please.
* The variables should be between 0 and 3.
* 0>(1+1)+-0x-2
*
* Parse tree of the propositional formula:
* (0 > ((1 + 1) + ((-0) x (-2))))
*
* Is it a tautology? NO.
* The falsity assignment is:
*
* 0=true; 1=false; 2=false; 3=false;
* ---
*/

The following program is like the above one: it parses a given propositional formula
and checks whether or not it is a tautology, but it uses a graphical interface. It can
be run by typing the following three commands:

javac PropositionalTheoremProver.java
javac PropositionalTheoremProverGUI.java
java PropositionalTheoremProverGUI

/**
* ===
* PROPOSITIONAL THEOREM PROVER
* with a Graphical User Iterface
* Filename: "PropositionalTheoremProverGUI.java"
*
* This program should be compiled after the compilation of the program
* PropositionalTheoremProver.java.
*
* See also the initial comments of the file PropositionalTheoremProver.java

176 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

*
* This program uses the class PropositionalTheoremProver in the file named
* PropositionalTheoremProver.java. The file PropositionalTheoremProver.java
* should be stored in the same folder where this file
* PropositionalTheoremProverGUI.java is stored.
* ------------
* Lines (1) below depend on the number of propositional variables.
* Line (2) below checks whether or not the input propositional formula
* is terminated by a carriage-return ’\n’.
* ------------
* To get a dialog window with font size 14 (instead of 28): set the
* boolean variable bw (short for big_window) to false (see line ***)
* ===
*/

import java.io.*;
import javax.swing.JFrame;
import java.awt.Font; // needed for changing fonts

// --
public class PropositionalTheoremProverGUI extends JFrame {

/** Creates new form PropositionalTheoremProverGUI */
public PropositionalTheoremProverGUI() {

initComponents();
}
/** This method initComponents() is called from within the constructor
* to initialize the form.
*/

private void initComponents() {//GEN-BEGIN:initComponents
jLabel1 = new javax.swing.JLabel();
jLabel2 = new javax.swing.JLabel();
jLabel3 = new javax.swing.JLabel();
jLabel4 = new javax.swing.JLabel();
txInForm = new javax.swing.JTextField();
txParsedForm = new javax.swing.JTextField();
txAnswTaut = new javax.swing.JTextField();
btParse = new javax.swing.JButton();
menuBar = new javax.swing.JMenuBar();
fileMenu = new javax.swing.JMenu();
exitMenuItem = new javax.swing.JMenuItem();

getContentPane().setLayout(null);
setTitle("PROPOSITIONAL THEOREM PROVER");
setLocationRelativeTo(null);
addWindowListener(new java.awt.event.WindowAdapter() {

public void windowClosing(java.awt.event.WindowEvent evt) {
exitForm(evt);

}
});

// ---
boolean bw = true; // true (false) for big (small) window. ***
Font sansSerifFont =

bw ? (new Font("SansSerif",Font.PLAIN,28)):
(new Font("SansSerif",Font.PLAIN,14));

// ---
txInForm.setFont(sansSerifFont);
txParsedForm.setFont(sansSerifFont);
txAnswTaut.setFont(sansSerifFont);

// ---

7.3. A THEOREM PROVER FOR THE PROPOSITIONAL CALCULUS 177

jLabel1.setBackground(new java.awt.Color(255, 255, 150));
jLabel1.setFont(sansSerifFont);
jLabel1.setText("<HTML>\n<PRE>\n"
+" Grammar for the input propositional formula p:\n"
+" prop: p ::= c | c>p cond: c ::= l | l+c | lxc\n"
+" lit: l ::= a | -l"
+" atom: a ::= ’0’ | ... | ’3’ | (p)\n" // <--- (1)
+" Internal tree: p ::= 0 | ... | 3 | (-p) | (p x p)\n"// <--- (1)
+" | (p + p) | (p > p)\n"
+" Abbreviations: f/false t/true -/not x/and +/or >/implies"
+"<PRE>\n</HTML>");
jLabel1.setVerticalAlignment(javax.swing.SwingConstants.TOP);
jLabel1.setOpaque(true);
getContentPane().add(jLabel1);

if (bw) {jLabel1.setBounds(10, 10, 1200, 190);}
else {jLabel1.setBounds(5, 5, 565, 97);}

// ---
jLabel2.setFont(sansSerifFont);
jLabel2.setText("Input Formula:");
getContentPane().add(jLabel2);
if (bw) {jLabel2.setBounds(20, 208, 200, 32);}

else {jLabel2.setBounds(10, 104, 130, 16);}
getContentPane().add(txInForm);
if (bw) {txInForm.setBounds(280, 208, 860, 40);}

else {txInForm.setBounds(130, 104, 430, 20);}
// ---

jLabel3.setFont(sansSerifFont);
jLabel3.setText("Parsed Formula:");
getContentPane().add(jLabel3);
if (bw) {jLabel3.setBounds(20, 288, 220, 32);}

else {jLabel3.setBounds(10, 144, 130, 16);}
txParsedForm.setBackground(new java.awt.Color(25, 255, 25));
getContentPane().add(txParsedForm);
if (bw) {txParsedForm.setBounds(280, 288, 860, 40);}

else {txParsedForm.setBounds(130, 144, 430, 20);}
// ---

jLabel4.setFont(sansSerifFont);
jLabel4.setText("Is it a tautology?");
getContentPane().add(jLabel4);
if (bw) {jLabel4.setBounds(20, 368, 280, 32);}

else {jLabel4.setBounds(10, 184, 140, 16);}
txAnswTaut.setBackground(new java.awt.Color(25, 255, 25));
getContentPane().add(txAnswTaut);
if (bw) {txAnswTaut.setBounds(280, 368, 860, 50);}

else {txAnswTaut.setBounds(130, 184, 430, 20);}
// ---

btParse.setFont(sansSerifFont);
btParse.setText("Parse and Evaluate");
btParse.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
btParseActionPerformed(evt);
}

});
getContentPane().add(btParse);
if (bw) {btParse.setBounds(430, 440, 576, 52);}

else {btParse.setBounds(240, 215, 158, 26);}
// ---

fileMenu.setText("FILE_MENU");

178 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

exitMenuItem.setText("Exit");
exitMenuItem.addActionListener(new java.awt.event.ActionListener() {

public void actionPerformed(java.awt.event.ActionEvent evt) {
exitMenuItemActionPerformed(evt);
}

});
fileMenu.add(exitMenuItem);// adding a File Menu with an Exit button
menuBar.add(fileMenu); //
setJMenuBar(menuBar); //
java.awt.Dimension screenSize =

java.awt.Toolkit.getDefaultToolkit().getScreenSize();
if (bw) {setBounds((screenSize.width-1300)/2,

(screenSize.height-700)/2, 1160, 590);}
else {setBounds((screenSize.width-444)/2,

(screenSize.height-300)/2, 580, 300);}
} //GEN-END:initComponents

private void btParseActionPerformed(java.awt.event.ActionEvent evt) {

// GEN-FIRST:event_btParseActionPerformed
// Add your handling code here:
// This part is like the main of the class PropositionalTheoremProver
// in the file PropositionalTheoremProver.java.

boolean answer = true;
boolean bval = true;
int DIM = PropositionalTheoremProver.DIM; // <--- (1)
Node tree = null;
try { // from String to StringReader and to BufferedReader.

// Added an extra ’\n’ at the end of the input for
// terminating the input as in the
// PropositionalTheoremProver class.

BufferedReader inputLine
= new BufferedReader(

new StringReader((txInForm.getText()) + ’\n’));
PropositionalTheoremProver.c = (char)inputLine.read();
tree=PropositionalTheoremProver.propParse(inputLine);// <--- (2)
if (PropositionalTheoremProver.c != ’\n’)

{ throw new ParseException(); };
} catch (IOException e) {

e.printStackTrace();
txParsedForm.setText("IOException!");

} catch (ParseException pex){
txParsedForm.setText(pex.getMessage());
return;

};

// ------ (begin Parse and Evaluate)
if (tree != null) {

txParsedForm.setText(tree.toString());

// --
for (int i = 0; i < (int)Math.pow(2,DIM);

i++) {
try {

bval = PropositionalTheoremProver.evalTree(tree);
} catch (EvalException evalex) {

txAnswTaut.setText(evalex.getMessage());
};
if (!bval) { answer = false; break; }

7.3. A THEOREM PROVER FOR THE PROPOSITIONAL CALCULUS 179

else {
for (int k = 0; k < DIM; k++) {

if (PropositionalTheoremProver.tValues[k])
{ PropositionalTheoremProver.tValues[k] = false; }

else { PropositionalTheoremProver.tValues[k] = true;
break; }

}
}

};
// --

if (answer) { txAnswTaut.setText("YES."); } else {
String outstring = "NO. False if: ";
for (int k = 0; k < DIM; k++) {
outstring = outstring + k + "="

+ ((PropositionalTheoremProver.tValues[k])?"t; ":"f; ");}
txAnswTaut.setText(outstring);

}

// --
}
// ------ (end Parse and Evaluate)

} //GEN-LAST:event_btParseActionPerformed

private void
exitMenuItemActionPerformed(java.awt.event.ActionEvent evt) {

//GEN-FIRST:event_exitMenuItemActionPerformed
System.exit(0);

} //GEN-LAST:event_exitMenuItemActionPerformed

/** Exit the Application */

private void exitForm(java.awt.event.WindowEvent evt) {
//GEN-FIRST:event_exitForm

System.exit(0);
} //GEN-LAST:event_exitForm

/**
* @param args the command line arguments
*/

public static void main(String args[]) {
new PropositionalTheoremProverGUI().show();

}

// Variables declaration - do not modify //GEN-BEGIN:variables
private javax.swing.JMenuItem exitMenuItem;
private javax.swing.JMenu fileMenu;
private javax.swing.JLabel jLabel1;
private javax.swing.JLabel jLabel2;
private javax.swing.JLabel jLabel3;
private javax.swing.JLabel jLabel4;
private javax.swing.JMenuBar menuBar;
private javax.swing.JTextField txInForm;
private javax.swing.JTextField txParsedForm;
private javax.swing.JTextField txAnswTaut;
private javax.swing.JButton btParse;
// End of variables declaration //GEN-END:variables

}

180 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

/**
* input: output:
* ---
* javac PropositionalTheoremProver.java // This compilation is needed
* javac PropositionalTheoremProverGUI.java
* java PropositionalTheoremProverGUI
*
* (see figures below)
* ---
*/

After typing the string 0>(1+1)+-0x-2 we have:

/Users/adp/Desktop/ADP/TEACHING/LECTURE_NOTES_adp2004/AutomataLanguageTranslators/L

Then by clicking the button ‘Parse and Evaluate’ we get:

/Users/adp/Desktop/ADP/TEACHING/LECTURE_NOTES_adp2004/AutomataLanguageTranslators/L

7.4. ENCODING OF N-ARY TREES USING BINARY TREES 181

7.4. Encoding of n-ary Trees Using Binary Trees

Before formalizing the problem of encoding n-ary trees using binary trees, let us first
present the following three data structures which are used in that formalization:

(i) binary trees with objects of type T in the nodes,
(ii) n-ary trees with objects of type T in the nodes, and
(iii) lists of n-ary trees with objects of type T in the nodes.

For reasons of brevity, instead of saying ‘binary trees with objects of type T in the
nodes’, we will also say: ‘binary trees with nodes of type T’. Analogous terminology
will also be used for n-ary trees and lists of n-ary trees.

Remark 7.4.1. [Terminology for Nodes and Trees] When referring to trees,
we will equivalently use the term ‘node’ and ‘tree’, because every node in a tree
denotes the subtree rooted in that node (see also Remark 7.1.1 on page 148).

Binary Trees with Nodes of Type T

Let V denote the set of objects of type T. We define the set B of the binary trees with
objects of type T in the nodes, to be the solution of the following domain equation
(see [20, pages 107–124]):

B = 1 + B×V ×B (1)

The empty binary tree in the domain 1 is the element e ∈ B, and a non-empty binary
tree in the domain B×V×B is a triple (lb, v, rb), where: v ∈ V is an object of type T,
and lb and rb are two binary trees in B with objects of type T. These two trees are
said to be the left and right subtrees, respectively, of the given binary tree (lb, v, rb).

In the Java 1.5 implementation which we will present below, we have that:
(•) the empty binary tree e with nodes of type T is constructed by the nullary con-
structor BinNode<T>() by using the command

new BinNode<T>(), and

(•) the non-empty binary tree (lb, v, rb) with nodes of type T is constructed by the
ternary constructor BinNode<T>(lb,v,rb) by using the command

new BinNode<T>(lb,v,rb)

where v is an object of type T, and lb and rb denote two already constructed binary
trees with nodes of type T. The selector which tests whether or not a binary tree
with nodes of type T is empty, is:

isEmpty()

Thus, for instance, in the case of binary trees with nodes of type Integer we have
that

new BinNode<Integer>().isEmpty() returns true.
Here is a program which constructs binary trees with nodes of type T.
/**
* ===
* Class which constructs a binary node with two child nodes
* Filename: "BinNode.java"
*
* Binary trees with nodes of type T are internally represented as follows:
*
* bt<T> ::= e | (bt<T>, val, bt<T>) where val is of type T
*

182 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

* e is the empty binary node
* constructors: new BinNode<T>() | new BinNode<T>(-,-,-)
* selector: new BinNode<T>().isEmpty() is true (the BinNode<T> is e)
*
* ------------
* constructing e: new BinNode()
*
* constructing an non-empty binary node of type Integer, which is
* 7 with empty child nodes:
*
* new BinNode<Integer>(new BinNode<Integer>(),7, new BinNode<Integer>())
*
* Notice that Java 1.5 accepts: 7, instead of: new Integer(7).
* ===
*/

public class BinNode<T> {

private T value; // value field of type T
private BinNode left; // reference to the left child node
private BinNode right; // reference to the right child node

public BinNode () { // constructor 1: empty BinNode e
this.value = null; // for constructor 1: this.left == null is true

} // for constructor 1: this.right == null is true

/*
* Constructor of a Node with:
* - value v,
* - parameters l and r, which are references to the left and right
* child nodes, respectively.
*/

public BinNode (BinNode l, T v, BinNode r) { // constructor 2
this.left = l;
this.value = v;
this.right = r;

}

/**
* @return the value.
*/

public T getValue() {
return value;

}

/**
* @return the left child node.
*/

public BinNode getLeftChild(){
return left;

}

/**
* @return the right child node.
*/

public BinNode getRightChild(){
return right;

}
/**
* @return true iff the value of the BinNode is the null reference.
*
* Each of the following prints: true

7.4. ENCODING OF N-ARY TREES USING BINARY TREES 183

* System.out.print(new BinNode().isEmpty());
* System.out.print(new BinNode<Integer>().isEmpty());
* System.out.print(new BinNode(null,null,null).isEmpty());
* System.out.print(new BinNode<Integer>(null,null,null).isEmpty());
*
* The following two instructions:
* BinNode<Integer> b = null;
* System.out.println(b.isEmpty());
* give a NullPointerException
*/

public boolean isEmpty() {
return value == null;

}
/**
* This method prints the tree whose root is the given node.
* We assume that ‘value’ can be printed as a string.
*/
public void binNodePrint(){

if (value == null) {System.out.print("e");}
else {
System.out.print("("); left.binNodePrint();
System.out.print(" "+value+" ");
right.binNodePrint(); System.out.print(")");
}

}
}
// ---

n-ary Trees with Nodes of Type T

Let V denote the set of objects of type T. We define the set T of the n-ary trees with
objects of type T in the nodes, to be the solution of the following domain equations:

T = 1 + V ×Tlist
Tlist = 1 + T×Tlist

(2)

The empty n-ary tree with nodes of type T in the domain 1 is the element E ∈ T , and
a non-empty n-ary tree with nodes of type T in the domain V ×Tlist is a pair (v, L),
where: v ∈ V is an object of type T, and L ∈ Tlist is a list of n-ary trees with nodes
of type T, which is constructed as indicated on page 186.

In the Java 1.5 implementation which we will present below, we have that:
(•) the empty n-ary tree E with nodes of type T is constructed by the nullary con-
structor NaryNode<T>() by using the command

new NaryNode<T>(), and

(•) the non-empty n-ary tree (v, L) with nodes of type T is constructed by the binary
constructor NaryNode<T>(v,L) by using the command

new NaryNode<T>(v,L)

where v is an object of type T and L is a list of n-ary trees with nodes of type T. The
selector which tests whether or not an n-ary tree with nodes of type T is empty, is:

isEmpty()

Thus, for instance, in the case of n-ary trees with nodes of type Integer we have
that

new NaryNode<Integer>().isEmpty() returns true.

184 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

Here is a program which constructs n-ary trees with nodes of type T.

/**
* ===
* Class which constructs an n-ary node with a list of child nodes
* Filename: "NaryNode.java"
*
* N-ary trees with nodes of type T are internally represented as follows:
*
* nt<T> ::= E | (val, list_nt<T>) where val is of type T
*
* E is the empty n-ary tree.
* list_nt<T> is a list of n-ary trees with nodes of type T.
* constructors: new NaryNode<T>() | new NaryNode<T>(-,-)
* selector: new NaryNode<Integer>().isEmpty() is true
* (indeed, the NaryNode<Integer> is E)
* ---------
* Lists of n-ary trees are internally represented as follows:
*
* list_nt<T> ::= [] | nt<T> : list_nt<T>
*
* cons is denoted by the infix ‘:’. In the implementation using ArrayList
* the last element which is cons-ed is to the right (not to the left).
*
* constructors: new List<T>() | l.cons(nt) where l is a list of n-ary trees
* of type <T> and nt is an n-ary tree of type <T>
* selector: new List<Integer>().isEmpty() is true
* (indeed, the List<Integer> is [])
* ---
* constructing E: new NaryNode<Integer>()
*
* constructing a non-empty n-ary node of type Integer, which is
* 8 with an empty list of child nodes:
*
* new NaryNode<Integer>(8, new List<NaryNode<Integer>>())
*
* Notice that Java 1.5 accepts: 8, instead of: new Integer(8).
* ===
*/

import java.util.*; // needed for using ArrayList<T> and Iterator

public class NaryNode<T> {

private T value; // value of the n-ary node of type T
private List <NaryNode<T>> list; // list of child nodes

/*
* Constructor of a Node with:
* - value v,
* - parameter l, which is a reference to the list of child nodes.
*/

public NaryNode () { // constructor 1: empty NaryNode E
this.value = null; // for constructor 1: this.list == null is true

}

public NaryNode (T value, List<NaryNode<T>> list) { // constructor 2
this.value = value; // for: NaryNode <Integer> n1
this.list = list; // = new NaryNode(1,new List())

} // n1.list.isEmpty() is true

7.4. ENCODING OF N-ARY TREES USING BINARY TREES 185

/**
* @return the list of child nodes.
*/

public List <NaryNode<T>> getListOfChildren(){
return list;

}

/**
* @return the value at the node.
*/

public T getValue(){
return value;

}

/**
* @return true iff the value is the null reference.
*
* The following two instructions:
* System.out.println(new NaryNode().isEmpty());
* System.out.println(new NaryNode(null,null).isEmpty());
* both return true.
*/

public boolean isEmpty() {
return value == null;

}

/**
* This method prints the tree whose root is the given node.
* We assume that ‘value’ can be printed as a string.
*/
public void naryNodePrint(){

if (value == null) { System.out.print("E"); } // empty n-ary tree
else { System.out.print(value+" [");

for (int i=list.size()-1; i>=0; i--) {
((NaryNode)(list.get(i))).naryNodePrint();
if (i > 0) {System.out.print(", ");}
};

System.out.print("]");
}

}
}
/**
* ---
* We have that:
*
* NaryNode <Integer> n0 = new NaryNode();
* System.out.println(n0.list == null); // prints: true
* System.out.println((n0.list).isEmpty());// raises a NullPointerException!
*
* System.out.println(new NaryNode().isEmpty()); // prints: true
* System.out.println(new NaryNode<Integer>().isEmpty()); // prints: true
*
* NaryNode <Integer> n1 = new NaryNode(1,new List());
* System.out.println(n1.list == null); // prints: false
* System.out.println(n1.list.isEmpty()) // prints: true
* ---
*/

186 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

Lists of n-ary Trees with Nodes of Type T

The lists of n-ary trees with objects of type T are elements of the domain Tlist which
has been defined by the domain equations (2) on page 183. For any type T, the
empty list of n-ary trees with nodes of type T in the domain 1 is the element [], and
a non-empty list of n-ary trees with nodes of type T is a pair h : H, where:

(i) h ∈ T is an n-ary tree with nodes of type T,
(ii) ‘:’ denotes the infix cons operation on lists, and
(iii) H ∈ Tlist is a list of n-ary trees with nodes of type T.

In the Java 1.5 implementation of the lists with nodes of trees of type T which we
will present below, we have that:
(•) the empty list [] of n-ary trees with nodes of type T is constructed by the nullary
constructor List<NaryNode<T>>() by using the command

new List<NaryNode<T>>(), and

(•) the non-empty list of n-ary trees with nodes of type T is constructed from an
already constructed, shorter list H of n-ary trees with nodes of type T, by cons-ing
onto it an n-ary tree nt with nodes of type T by using the following command:

H.cons(nt)

The selector which tests whether or not a list of n-ary trees with nodes of type T is
empty, is:

isEmpty()

Thus, for instance, in the case of lists of n-ary trees with nodes of type Integer we
have that

new List<NaryNode<Integer>>().isEmpty() returns true,
because new List<NaryNode<Integer>>() is the empty list [] of n-ary trees with
nodes of type Integer.

Here is the program List.java which is the Java 1.5 implementation of the
generic class of the lists of elements of type T. It is similar to the program, also called
List.java, presented in Section 3.2 on page 39 where the reader may found some
examples of use of the methods of the generic class List.

/** ==
* Generic Class List <T> (class used for encoding trees)
* Filename: "List.java"
*
* Every object of the class List<T> is a list of elements of type T.
* The following methods are available:
* cons(T d), head(), tail(), size(), get(int i), isSingleton(),
* isEmpty(), makeEmpty(), copy(), and listPrint().
* Also cloneCopy() is available if we uncomment line (***) below and
* comment the previous line.
*
* Notice that the tail() method is destructive.
* After a tail operation, if we need the original value of the list, we
* should reconstruct it by ‘consing’ the head of the list.
* ---------------------
* Lists of elements nt of type T are internally represented as follows:
*
* list_nt<T> ::= [] | nt<T> : list_nt<T>
*
* cons is denoted by the infix ‘:’. In the implementation using ArrayList

7.4. ENCODING OF N-ARY TREES USING BINARY TREES 187

* the last element which is cons-ed is to the right (not to the left).
*
* constructors: new List<T>() | l.cons(t) where l is a list of objects
* type <T> and t is an object of type <T>
* selector: new List<Integer>().isEmpty() is true
* (indeed, the List<Integer> is [])
* new List().isEmpty() is true
* ---------------------
* List la = new List(); la.cons(3); la.listPrint(); // prints: [3]
* List lb = new List<Integer>();
* lb.cons(6); lb.listPrint(); // prints: [6]
* ===
*/

import java.util.*; // needed for using ArrayList<T> and Iterator

public class List<T> { // it is ok if we do not use cloneCopy()

// public class List<T> implements Cloneable { // (***) In order to use
// cloneCopy(), uncomment this line and comment the previous one.

private ArrayList<T> list;

public List() {
list = new ArrayList<T>();// constructor

}

public void cons(T datum) { // the head of the list is to the right,
list.add(datum); // not to the left.

}

public T head() { // the head of the list is to the right.
if (list.isEmpty()) // It is the last element: >----------------+

{System.out.println("Error: head of empty list!");};// |
T obj = list.get(list.size() - 1); // <----------------------+

return obj; // get(int i) is a method of ArrayList<T>
}

public void tail() { // destructive tail() method
if (list.isEmpty())

{System.out.println("Error: tail of empty list!");};
list.remove(list.size() - 1);

}

public int size() {
return list.size(); // size() is a method of ArrayList<T>

}

public T get(int i) { // 0 <= i <= size() - 1
return list.get(i); // get(int i) is a method of ArrayList<T>

}

public boolean isSingleton() {
return list.size() == 1;

}

public boolean isEmpty() {
return list.isEmpty(); // isEmpty() is a method of ArrayList<T>

}

188 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

public void makeEmpty() {
list.clear(); // clear() is a method of ArrayList<T>

}

// -------------------------- Printing a list ----------------------------
// We assume that an element of the list has a toString() method.

public void listPrint() {
if (!isEmpty()){
System.out.print("[");
for (Iterator iter = list.iterator(); iter.hasNext();) {

System.out.print((iter.next()).toString() + " ");
};

System.out.print("]");
}
else {System.out.print("[]");}

}
// -------------------------- Making a copy of a list without clone() ----
// -------------------------- The given list is NOT destroyed. -----------
public List<T> copy() {

List<T> copyList = new List<T>();
for (Iterator<T> iter = list.iterator(); iter.hasNext();) {

copyList.list.add(iter.next());
};
return copyList;

}
// -------------------------- Making a copy of a list with clone() -------
// -------------------------- The given list is NOT destroyed. -----------
public List<T> cloneCopy() { // see (***) above

try { List<T> copyList = (List<T>)super.clone();
copyList.list = (ArrayList<T>)list.clone();
return copyList;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

}
/* -- */

Solving the Encoding Problem

Let us consider the set N of the natural numbers. In what follows by B and T we
denote, respectively, the set of the binary trees and n-ary trees with natural numbers
in the nodes which we have defined on pages 181 and 183.

Every n-ary tree in T can be encoded into a binary tree in B via the encod-
ing function Kin : T → B, and can be decoded from a binary tree via the de-
coding function Hin : B → T . These two functions, which are defined in the
Java program EncodingTrees.java listed on page 189, are such that for every n-
ary tree nt, we have that: Hin(Kin(nt)) = nt. In order to execute the program
EncodingTrees.java we need the following Java programs:

(i) BinNode.java,
(ii) NaryNode.java, and
(iii) List.java,

which implement, respectively, (i) the binary trees in B with nodes of type T (see
page 181), (ii) the n-ary trees in T with nodes of type T (see page 183), and (iii) the

7.4. ENCODING OF N-ARY TREES USING BINARY TREES 189

lists in Tlist of elements of type T, for some type parameter T (see page 186). The
actual type of those trees and lists is given by instantiating the type parameter T, as
allowed in Java 1.5. For instance, in the case of lists, if we instantiate the type T to
<NaryNode <Integer>>, we get the lists of n-ary trees with nodes of type Integer.

In the program EncodingTrees.java an n-ary tree with nodes of type Integer
to be encoded into a binary tree with nodes of type Integer, is given as a string nt
generated by the following productions:

nt ::= E | ne_nt
ne_nt ::= m | m (ne_list)
ne_list ::= ne_nt | ne-nt , ne_list

where: (i) E is the empty n-ary tree, (ii) comma and parentheses are terminal sym-
bols, and (iii) m is any integer number in the set {...,-2,-1,0,1,2,...}. In this
representation we have used the notions of an ne_nt (that is, a non-empty n-ary
tree) and ne_list (that is, a non-empty list of non-empty n-ary trees). This choice
of using non-empty n-ary trees has the advantage that a node with value m and no
son nodes, can be given in input as the string m, rather than the longer string m ([]).

The internal representation of an n-ary tree nt is done according to domain equa-
tions (2) (see page 183), that is, it is generated by the following productions:

nt ::= E | m (list)
list ::= [] | nt : list

where we have used the empty list [] and the infix cons operation denoted ‘:’.

Here is a program for encoding n-ary trees into binary trees and decoding binary
trees back to n-ary trees by using the functions Kin and Hin.

/**
* ===
* ENCODING n-ARY TREES INTO BINARY TREES
* Filename: "EncodingTrees.java"
*
* This program defines the encoding method Kin from n-ary trees to binary
* trees. It also defines an inverse method Hin such that
* for every n-ary tree nt, we have that Hin(Kin(nt)) = nt.
* Grammar of the input n-ary tree nt:
* n-ary tree: nt ::= E | ne_nt
*
* non-empty n-ary tree: ne_nt ::= m | m(ne_list)
*
* non-empty list of non-empty n-ary trees:
* ne_list ::= ne_nt | ne_nt , list_list
*
* where: E is the empty n-ary tree,
* m can be any integer in {...,-2,-1,0,1,2,...}
* Comma and parentheses are terminal symbols.
* ---
* The internal representations of binary trees, n-trees, and lists of n-ary
* trees are provided by objects of the classes: BinNode, NaryNode, and List
* ===
*/

import java.io.*;
import java.util.*; // needed for using ArrayList<T> and Iterator
/**

190 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

* ===
* Class ParseException
* ===
*/

class ParseException extends Exception {
// constructor of a new instance of ParseException

public ParseException() {
super("parse exception!");

}
};
public class EncodingTrees {
/**
* ---
* In order to define the encoding and decoding functions Kin, K, Hin, and H
* which are given below, we use the following representation of binary
* trees and n-ary trees. These representations make use of the ternary
* constructor b(-,-,-) and the binary constructor T(-,-). These
* constructors are used only for this purpose and in the comments below.
*
* binary tree: bt = e | b(bt1,n,bt2)
* n-ary tree: nt = E | T(n,list_nt) (list_nt is the list of sons of n)
* list_nt = [] | nt : list_nt
*
* e is the empty binary tree
* E is the empty n-ary tree
* n is a natural number
* ---
* +++ Kin : nt -> bt // Kin encodes an nt into a bt
* --- Kin(E) = e
* --- Kin(T(n,l)) = K(T(n,l),[])
*
* +++ K : nt x list_nt -> bt // nt is not equal to E
* --- K(T(n,[]),[]) = b(e,n,e) // ex: node 9
* --- K(T(n,[]),h:l) = b(e,n,K(h,l)) // ex: node 2
* --- K(T(n,h:l),[]) = b(K(h,l),n,e) // ex: node 4
* --- K(T(n,h:l),h1:l1) = b(K(h,l),n,K(h1,l1))// ex: node 3
* ---
*/

public static BinNode<Integer> Kin (NaryNode<Integer> nt) {
if (nt.isEmpty()) { return new BinNode(); }
else { return K(nt, new List <NaryNode<Integer>> ());}

}

public static BinNode<Integer> K (NaryNode <Integer> nt,
List <NaryNode <Integer>> lnt) {

if (nt.getListOfChildren().isEmpty() && lnt.isEmpty())
{ return new BinNode(new BinNode(), nt.getValue(), new BinNode());}

else if (nt.getListOfChildren().isEmpty() && !lnt.isEmpty())
{ NaryNode<Integer> hd1 = lnt.head();

lnt.tail();
BinNode<Integer>

res = new BinNode(new BinNode(), nt.getValue(), K(hd1, lnt));
lnt.cons(hd1); // restoring the list
return res; }

else if (!nt.getListOfChildren().isEmpty() && lnt.isEmpty())
{ NaryNode<Integer> hd2 = (nt.getListOfChildren()).head();

(nt.getListOfChildren()).tail();
BinNode<Integer>

7.4. ENCODING OF N-ARY TREES USING BINARY TREES 191

res = new BinNode(K(hd2, nt.getListOfChildren()),
nt.getValue(),
new BinNode());

(nt.getListOfChildren()).cons(hd2); // restoring the list
return res; }

else { NaryNode<Integer> hd3 = (nt.getListOfChildren()).head();
(nt.getListOfChildren()).tail();
NaryNode<Integer> hd4 = lnt.head();
lnt.tail();
BinNode<Integer>

res = new BinNode(K(hd3, nt.getListOfChildren()),
nt.getValue(),
K(hd4, lnt));

(nt.getListOfChildren()).cons(hd3); // restoring the list
lnt.cons(hd4); // restoring the list
return res;

}
}

/**
* ---
* +++ Hin : bt -> nt
* --- Hin(e) = E
* --- Hin(b(bt1,n,e)) = T(n,H(bt1)) //bt1 may be equal to e
*
* +++ H : bt -> list_nt
* --- H(e) = []
* --- H(b(bt1,n,bt2)) = T(n,H(bt1)) : H(bt2)//bt1 and bt2 may be equal to e
* ---
*/

public static NaryNode <Integer> Hin (BinNode <Integer> bt) {
if (bt.isEmpty()) { return new NaryNode(); }
else { return new NaryNode(bt.getValue(), H(bt.getLeftChild()));}

}

public static List <NaryNode <Integer>> H (BinNode <Integer> bt) {

if (bt.isEmpty())
{ return new List(); }

else { NaryNode<Integer>
hd = new NaryNode(bt.getValue(), H(bt.getLeftChild()));

List <NaryNode<Integer>> lnt = new List();
lnt = H(bt.getRightChild());
lnt.cons(hd);
return lnt; }

}
// ---------------- parsing the input n-ary node ---------------------------

public static char c;
// inputLine is a sequence of characters,
// which are read one at a time, by
// the method read() of the class StringReader

public static NaryNode <Integer> nodeParse(BufferedReader inputLine)
throws IOException, ParseException {

NaryNode <Integer> node1 = new NaryNode();
if (c == ’E’) { c = (char)inputLine.read(); return node1; } else
if ((’0’ <= c) && (c <= ’9’)) {

int v = c-48;
node1 = new NaryNode(v, new List());
c = (char)inputLine.read();
if (c == ’(’) {

192 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

c = (char)inputLine.read();
List <NaryNode <Integer>> listNodes = listNodeParse(inputLine);
node1 = new NaryNode(v, listNodes);
if (c==’)’) { c = (char)inputLine.read(); } // reads past ’)’
else { throw new ParseException(); };
return node1;
}
else { return node1; }

}; throw new ParseException();
}

public static List <NaryNode <Integer>> listNodeParse(
BufferedReader inputLine)
throws IOException, ParseException {

List <NaryNode <Integer>> listNodes = new List();
NaryNode <Integer> node1 = nodeParse(inputLine);
if (c == ’,’) {

c = (char)inputLine.read();
listNodes = listNodeParse(inputLine);

};
listNodes.cons(node1);
return listNodes;

}
// ---------------- end of parsing ---
// ---------------- main ---

public static void main(String [] args) {

System.out.println("Input an n-ary tree nt according to the given "
+ "grammar, please.");

NaryNode <Integer> nNode = new NaryNode();
BinNode <Integer> bNode = new BinNode();
try { // from String to StringReader and to BufferedReader

BufferedReader inputLine =
new BufferedReader(new InputStreamReader(System.in));

c = (char)inputLine.read();
nNode = nodeParse(inputLine);
if (c != ’\n’) { throw new ParseException(); };

} catch (IOException e) {
e.printStackTrace();
System.out.println("IOException!");

} catch (ParseException pex) {
System.out.println(pex.getMessage());
return;

};
// ------
System.out.print("\nParsing of the n-ary tree:\n nt = ");
nNode.naryNodePrint();
System.out.print("\nBy applying Kin "

+ "we get the encoding binary tree:\n bt = ");
bNode = Kin(nNode);
bNode.binNodePrint();
NaryNode <Integer> nNode1 = new NaryNode();
nNode1 = Hin(bNode);
System.out.print("\nBack to the n-ary tree nt using Hin:\n"

+" nt = ");
nNode1.naryNodePrint();
System.out.println();

}
}

7.4. ENCODING OF N-ARY TREES USING BINARY TREES 193

/**
* input: output
* ---
* javac EncodingTrees.java
* java EncodingTrees
* Input an n-ary tree nt according to the given grammar, please.
* E
*
* Parsing of the n-ary tree:
* nt = E
* By applying Kin we get the encoding binary tree:
* bt = e
* Back to the n-ary tree nt using Hin:
* nt = E
*
* ---
* 1(2)
*
* Parsing of the n-ary tree:
* nt = 1 [2 []]
* By applying Kin we get the encoding binary tree:
* bt = ((e 2 e) 1 e)
* Back to the n-ary tree nt using Hin:
* nt = 1 [2 []]
*
* ---
* 1(2,3(5,6),4(7(9),8))
*
* Parsing of the n-ary tree:
* nt = 1 [2 [], 3 [5 [], 6 []], 4 [7 [9 []], 8 []]]
* By applying Kin we get the encoding binary tree:
* bt = ((e 2 ((e 5 (e 6 e)) 3 (((e 9 e) 7 (e 8 e)) 4 e))) 1 e)
* Back to the n-ary tree nt using Hin:
* nt = 1 [2 [], 3 [5 [], 6 []], 4 [7 [9 []], 8 []]]
*
* --------
* that is: nt bt
*
* 1 1
* / | \ Kin / \
* 2 3 4 -----> 2 e
* /| | \ <----- / \
* 5 6 7 8 Hin e 3
* | / \
* 9 5 4
* /| |\
* e 6 7 e
* /| |\
* e e 9 8
* /| |\
* e e e e
*
* ---
*/

We have the following properties.

(1) In T(n,list-nt), that is, in NaryNode(n,list-nt) we have that list-nt is the
list of the son nodes, if any, of the node n in the left-to-right order.

194 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

(2) In K(t,lt) the list lt is the list of the brother nodes, if any, of the node t in the
left-to-right order.

(3) The first argument of K is never equal to the empty n-ary tree E. The proof of
this property is based on the fact that for each call of K(T(n,l1),l2), the tree E is
a member of neither the list l1 nor the list l2. The easy proof by computational
induction is left to the reader.

Exercise 7.4.2. Define the domain B′ of the binary trees and the domain T ′

of the n-ary trees to be the solutions of the following domain equations, where N
denotes the set of natural numbers and Tlist ′ denotes the domain of the list of the
n-ary trees in T ′:

B′ = 1 + N + B′×N×B′

T ′ = 1 + N + N×Tlist ′

Tlist ′ = 1 + T ′×Tlist ′

Define the functions Rin : T ′ → B′ and Sin : B′ → T ′ such that for every n-ary
tree nt we have that: Sin(Rin(nt)) = nt.
Hint: A possible implementation of these domains is as follows:

/**
* --
* binary tree: bt = e | l(n) | b(bt1,n,bt2)
* n-ary tree: nt = E | L(n) | T(n,list_nt)
* list_nt = [] | nt : list_nt
* --
*/

Here are some examples of how the functions Rin and Sin should behave:

n-ary tree NT1 binary tree BT1

Rin

Sin

!
/

1

2 3 4

5 6 7 8

9

1

2 e

e 3

5 4

6e 7 e

89

The following picture shows that: Rin(T(L(1),[L(3)])) = b(l(3),1,e).

n-ary tree NT2 binary tree BT2

Rin

Sin

!
/

1

3

1

3 e

7.4. ENCODING OF N-ARY TREES USING BINARY TREES 195

The following picture shows that: Rin(L(1)) = l(1).

n-ary tree NT3 binary tree BT3
Rin

Sin

!
/1 1

Here are the definitions of the functions Rin and Sin. They use the auxiliary functions
R and S, respectively.

The example nodes 2, . . . , 9 which we will consider in the comments of these
auxiliary definitions, refer to the n-ary tree NT1 and the binary tree BT1 we have
depicted above.

+++ Rin : nt -> bt // Rin encodes a nt into a bt
--- Rin(E) = e
--- Rin(L(n)) = l(n)
--- Rin(T(n,l)) = R(T(n,l),[]) // empty list of brothers of t

+++ R : nt x list_nt -> bt // list_nt is the list of brothers of nt
--- R(L(n),[]) = l(n) // example: node 9
--- R(L(n),a:l) = b(e,n,R(a,l)) // example: node 5
--- R(T(n,a:l),[]) = b(R(a,l),n,e) // example: node 4
--- R(T(n,a:l),a1:l1) = b(R(a,l),n,R(a1,l1)) // example: node 3

+++ Sin : bt -> nt
--- Sin(e) = E
--- Sin(l(n)) = L(n)
--- Sin(b(bt1,n,e)) = T(n,S(bt1)) // bt1 is not equal to e

+++ S : bt -> list_nt
--- S(l(n)) = [L(n)] // nodes 6, 9, and 8:

// leaves with no younger brothers.
--- S(b(e,n,bt1)) = L(n) : S(bt1) // nodes 2 and 5:

// leaves with younger brothers.
--- S(b(bt1,n,e)) = [T(n,S(bt1)] // node 4.
--- S(b(bt1,n,bt2) = T(n,S(bt1)) : S(bt2)// nodes 3 and 7.

We have the following properties.
(1) The first argument of R is never equal to the empty n-ary tree E. The proof of this
property is based on the fact that for each call of R(T(n,l1),l2) and R(L(n),l2),
the tree E is a member of neither the list l1 nor the list l2. The easy proof by
computational induction is left to the reader.
(2) Let us assume that Sin takes as input a binary tree which can be obtained as the
result of applying Rin to an n-ary tree. Then, in the above equations defining the
function S (the ones preceded by –--’s) , the trees bt1 and bt2 are not equal to the
empty binary tree e. "

We will end this section by providing the definitions of the binary trees and the n-ary
trees in Pascal and C++. In Pascal using variant records, binary trees are realized
by the following type definition:

196 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

type B = ^cell;
cell = record case tag : (no_son, two_sons) of

no_son: ();
two_sons: (value: integer; lson, rson: B)

end;

In C++ binary trees are realized by the following class definition:

class cell {
public :

int value; cell* lson; cell* rson;
cell(int v, cell* l, cell* r) : value(v), lson(l), rson(r) { };

};
typedef cell* B;

Exercise 7.4.3. Define in Pascal and in C++ the domain B of the binary trees
which are solutions of the following domain equation, where N denotes the set of
natural numbers:

B = 1 + N + B×N×B "

In Pascal using variant records n-ary trees are realized by the following type definition:

type T = ^Tcell;

Tlist = ^Tlistcell;
Tcell = record case tag : (empty, non_empty) of

empty: ();
non_empty: (atom: integer; next: Tlist)

end;
Tlistcell = record case tag : (emptyl, non_emptyl) of

emptyl: ();
non_emptyl: (value: T; sons: Tlist)

end;

We could have also defined the record Tlistcell as follows:

Tlistcell = record value: T; sons: Tlist end;

In this case: (i) a pointer to Tlistcell implements an element of the domain T×Tlist
(see page 183), and (ii) the NULL pointer implements the element of the domain 1 in
the equation Tlist = 1 + T×Tlist (see again page 183).

In C++ n-ary trees are realized by the following class definition:

class Tlistcell;
typedef Tlistcell* Tlist;
class Tcell {
public : int atom; Tlist next;

Tcell(int at, Tlist nx) : atom(at), next(nx) { };
};
typedef Tcell* T;
class Tlistcell {
public : T value; Tlist sons;

Tlistcell(T val, Tlist ss) : value(val), sons(ss) { };
};

7.5. MINIMAL SPANNING TREE OF AN UNDIRECTED GRAPH 197

Exercise 7.4.4. Define in Pascal and in C++ the domain T of the n-ary trees
which are solutions of the following domain equations, where N denotes the set of
natural numbers and Tlist denotes the domain of the list of the n-ary trees in T :

T = 1 + N + N×Tlist
Tlist = 1 + T×Tlist "

7.5. Minimal Spanning Tree of an Undirected Graph

In this section we describe an algorithm for constructing a minimal spanning tree
of an undirected, connected, weighted graph with N nodes. The weight (also called
length) of any arc is an integer which can be either positive or null or negative. The
lengths can be non-Euclidean, in the sense that if the arc i j has length dij and
the arc j k has length djk then the length dik of the arc i k, if it exists, need not
be related to the values of dij and djk. The length of an arc i j is also called the
distance from node i to node j (which is equal to the distance from node j to node i
because the graph is undirected). There could be cycles with total negative length.
In the adjacency matrix N×N which represents the lengths of the arcs of the graph,
the entry ‘∞’ at row i and column j, for i, j = 0, . . . , N−1, denotes the absence of
the arc from node i to node j. We assume that there is no arc from node i to node i
itself, for i = 0, . . . , N−1, but in the adjacency matrix at row i and column i, we
have put the value 0 (because 0 is the neutral element for addition).

In the program below, for simplicity reasons, we have assumed that the lengths
are all non-negative integers, and we have encoded the absence of an arc by the
value ‘−1’.

An brute force algorithm for constructing a minimal spanning tree of an undi-
rected, connected, weighted graph consists in: (i) constructing all possible spanning
trees, and then (ii) taking a minimal one. This obvious algorithm is very inefficient
because, by Caley’s formula, there are NN−2 distinct spanning trees of a given undi-
rected, connected graph with N nodes. In Figure 7.5.1 on the following page we have
depicted the 16 spanning trees of a graph with four nodes placed at the vertexes of a
square and the six arcs connecting every pair of nodes. Such graphs with all possible
arcs are called clicks.

Now we will present an algorithm which is much more efficient than the brute force
one. This efficient algorithm was first proposed by R. C. Prim and independently by
E.W.Dijkstra. We will call this algorithm the Minimal Spanning Tree algorithm, or
MST algorithm, for short.

The basic idea of the algorithm which is as follows. We start from a node, say p,
of the given graph whose nodes can be colored either red or blue. We assume that
initially all nodes are blue, except for the chosen node p which is red. Then we choose
a blue node, say q, which is connected to node p by an arc which has a minimal length
among all the arcs which have node p as one of their two vertexes. We color red this
second node q. By doing so we have a first red arc between p and q which will be
part of the minimal spanning tree to be constructed. We proceed by acquiring in the
red part of the graph a new blue node which will then be colored red together with
the arc which connects this new red node to the red part, until all nodes are colored
red.

198 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

G :

← (α)

← (β)

(µ)

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

Figure 7.5.1. The 16 (= 44−2) spanning trees of a undirected, con-
nected graph G with four nodes. The spanning trees of rows (α) and
(β) are mirrow images (modulo the names of the nodes) w.r.t. the line
(µ).

Thus, during the execution of the algorithm the given graph of which we must
compute a minimal spanning tree, is divided into two parts: (i) a red part, called Red ,
for which we have already computed a minimal spanning tree, and (ii) a blue part,
called Blue, from which we have to choose a node which will become red and by doing
so, a new arc is added to the minimal spanning tree to be computed.

Ties of the length of the arcs can be resolved in any way we like, and this is why
through this algorithm we actually compute a minimal spanning tree, rather than the
minimal spanning tree. (Obviously, for all minimal spanning trees the total length
of the arcs is the same.) In what follows, for reasons of simplicity, we will free to say
‘the minimal spanning tree’, instead of ‘a minimal spanning tree’. Similarly, we will
feel free to say ‘the shortest arc’, instead of ‘a shortest arc’. The correctness of the
MST algorithm can be derived, as illustrated in [6], from the following three points.
Point (i). The local optimum is a global optimum.

Point (ii). The use of the function inversion technique.

Point (iii). The use of an (N−1)×2 array.

Point (i). The local optimum is a global optimum.

This fact allows us to derive a greedy algorithm for computing the spanning tree which
we compute ‘by addition of nodes’, as described above.

Suppose that V is the shortest arc connecting a red node to a blue node (see
Figure 7.5.2 on the next page).

7.5. MINIMAL SPANNING TREE OF AN UNDIRECTED GRAPH 199

Red part

Blue part

expanding
the Red part

V V ′

Figure 7.5.2. Construction of a minimal spanning tree. The Red part
shows the portion of the final minimal spanning tree for the points
which now are red. The Blue part shows the portion of the final minimal
spanning tree for the points which now are blue.

This arc V must be an arc of the spanning tree. We prove this fact by contra-
diction. Let us assume that: (i) a different arc, call it V ′, instead of V , is in the
minimal spanning tree connecting a red node to a blue node, and (ii) the weight of
V ′ is greater than the weight of V . Call T ′ this pretending minimal spanning tree
which includes the arc V ′, instead of the arc V . Now from the tree T ′ we construct
a different spanning tree T which is shorter than T ′ by replacing the arc V ′ by the
arc V . Indeed, (i) T connects all nodes of the graph because the blue node of V is
connected to the blue node of V ′, and (ii) T is a tree because no loops are generated
by the substitution of V ′ by V , because if a loop is generated, it should go through
another arc from the red nodes to the blue nodes and there is no such arc, simply
because we took the arc V ′ away.

At this point the structure of the algorithm is as follows, where we called violet
an arc which has a red node and a blue node. Recall that N is the number of nodes
in the given undirected graph.

color red one node and color blue all the remaining nodes;
while the number of red nodes is less than N do

begin Step (1). Select the shortest violet arc.
Step (2). Color it red and color red its blue node.

end

Point (ii). The use of the function inversion technique.

The choice of the shortest violet arc can be done in two ways: either (ii.1) for each
red node we compute the shortest arc from it to a blue node, and then we take the
shortest arc among these minimal arcs, one for each red node, or (ii.2) for each blue
node we compute the shortest arc from it to a red node, and then we take the shortest
arc among these minimal arcs, one for each blue node.

200 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

R1 R2 R3

B1 B2 B3

min(3, 4, 7) = 3 min(2, 6, 5) = 2 min(7, 5, 9) = 5

min(3 , 2 , 5) = 2

7

4 6

7 5

93

2

5

Red part

Blue part

Figure 7.5.3. Computation of the minimal arc connecting the Red
part to the Blue part. The arcs with thicker lines are the so called
ultraviolet arcs. There is exactly one ultraviolet arc for each blue node.
Given a blue node its ultraviolet arc is the shortest arc from that blue
node to a red node. We did not draw every arc: more arcs may be
present within the Red part or the Blue part.

Since the given graph is undirected, these two choices are both correct. However,
from a complexity point of view they are not equivalent, because we are computing
the spanning tree by making the Red part larger, while the Blue part is shrinking.
Indeed, in the case of Choice (ii.2), when a blue node becomes red, the computation
of the shortest arc for each blue node requires one comparison only, while in the case
of Choice (ii.1), when a blue node becomes red, the computation of the shortest arc
for each blue node requires a number of comparisons which is the product ‘current
number of red nodes’× ‘current number of blue nodes’.

This technique which looks at the distances for each blue node towards to red
nodes, instead of looking at the distances from each red node towards the blue nodes,
is called function inversion. The word ‘inversion’ comes from the fact that we are
extending the Red part, while looking at the distances from each blue node.

In Figure 7.5.3 we show how the computation of the shortest violet arc is done
in the case of three red nodes: R1, R2, and R3, and three blue nodes: B1, B2, and
B3. First, we compute the shortest violet arc for the node B1, the node B2, and
the node B3. These three shortest arcs, which are called ultraviolet arcs, are drawn
with thicker lines in that figure. The ultraviolet arc of a blue node is the shortest
arc which connects that blue node to a red node. Then we compute the shortest arc
among these three shortest ultraviolet arcs. In our case it is the arc from node B2 to
node R1 whose length is 2. When the node B2 becomes red, we have to recompute:
(•) the ultraviolet arc for the node B1, that is, the shortest violet arc from the blue
node B1 to the Red part (this is done by comparing the length of the ultraviolet arc
B1 R1 with the length of the arc B1 B2, if any), and

7.5. MINIMAL SPANNING TREE OF AN UNDIRECTED GRAPH 201

(•) the ultraviolet arc for the node B3, that is, the shortest violet arc from the blue
node B3 to the Red part (this is done by comparing the length of the arc B3 R2
with the length of the arc B3 B2, if any).

Note that, instead of saying ‘the shortest violet (or ultraviolet) arc’ we should say
‘a shortest violet (or ultraviolet) arc’ because there may be ties. Indeed, as already
mentioned, Algorithm 7.5.1 for computing minimal spanning trees is a nondetermin-
istic algorithm and computes a minimal spanning tree.

Thus, while the computation of the minimal spanning tree progresses, in order
to make Choice (ii.2), for each node which is presently blue, we have to store its
ultraviolet arc and the length of this ultraviolet arc. This is done by keeping an array
of ultraviolet arcs as described in Point (iii) below.

We have the following version of the algorithm.

Algorithm 7.5.1.

Computation of a Minimal Spanning Tree of an Undirected Graph. (Dijkstra’s MST
algorithm)

color red one node and color blue all the remaining nodes;
while the number of red nodes is less than N do

begin Step (1). Select the shortest ultraviolet arc.
Step (2). Color it red and color red its blue node, say P.

Step (3). Adjust the set of ultraviolet arcs: for each blue node B,
compare the length (of its ultraviolet arc with the length m
of the arc B P which, if m < (, becomes the new ultraviolet
arc for the node B.

end

Point (iii). The use of an (N−1) × 2 array.

This array, called uvArcs in the program MST.java on page 205, keeps the ultraviolet
arcs, each arc being a pair of nodes which are stored in a row of the array. The array
uvArcs is initialized by the arcs from the chosen initial red node, say A, to the other
N−1 blue nodes. Thus, initially the array uvArcs looks like this:

Red

(1) (2)

A B
A C
A . . .
A . . .

Blue

where the left part is of red nodes and the right part is of blue nodes. Initially, the
only red node is A and all other nodes are blue nodes. The number of rows of the
array uvArcs is the number of the nodes which are initially blue, that is, N − 1.

Now let us see how the array uvArcs is modified during the computation of the
minimal spanning tree (see also Example 7.5.2 on page 203).

Suppose that we have constructed the minimal spanning tree of the subgraph
whose nodes are colored red, and supposed that the arcs of that minimal spanning

202 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

trees are stored in the upper part, named Red , of the array uvArcs. The lower part,
named Blue, of that array stores the ultraviolet arcs, one for each blue node. In the
following array uvArcs the blue nodes are C, D, and B.

Red

(1) (2)

. Red

A E

E C Blue

E D
A B

Every node which occurs in the left-upper part (that is, the nodes either in the
column (1), or in the column (2) of the Red rows) of the array uvArcs is colored
red, while every node which occur in the lower-right part (that is, the nodes in the
column (2) of the Blue rows) of the array uvArcs is colored blue. In our case the
only blue nodes are C, D, and B. Let us now consider the three steps of the body of
the while-do loop of our Algorithm 7.5.1 on the previous page.
Step (1). Select the shortest ultraviolet arc. Among the arcs in the lower part of
the array uvArcs (in our case, E C, E D, and A B) we select the arc with the
shortest length. Let us assume that it is the arc E D.
Step (2). Color it red and color red its blue node. In our case we color red the arc
E D and its blue node D. We do so by swapping the rows E D and E C. We get
the following array uvArcs where: (i) the blue part now has two arcs only, namely,
E C and A B, and (ii) the arc E D and the node D now are red and they belong
to the Red part:

Red

(1) (2)

. Red

A E
E D

E C Blue

A B

Step (3). Adjust the set of ultraviolet arcs. For each arc X Y in the set Blue of
ultraviolet arcs (that is, in the Blue rows), we compare its length (with the length
m of the arc, if any, from the blue node Y to the node D which has been colored red
at the preceding Step (2). If m<(then we write D, instead of X. If we assume that
length(D B) < length(A B) and length(D C) 2< length(E C), we get:

Red

(1) (2)

. Red

A E
E D

E C Blue

D B

7.5. MINIMAL SPANNING TREE OF AN UNDIRECTED GRAPH 203

At the end of Step (3) we have extended the red part of the given graph by one more
node (in our case the node D), having preserved the invariant that:
(•) the Red part stores the arcs of the minimal spanning tree of the subgraph whose
nodes are currently red, and
(•) the Blue part stores the ultraviolet arcs of the nodes which are currently blue,
that is, the shortest arc which connects the blue node in column (2) to a red node of
the graph.

Note also that during the computation of the minimal spanning tree, we have the
following invariant:

number-of-red -arcs +number-of-blue-nodes = N−1
where: (i) number-of-red-arcs is the current number of the arcs of the minimal span-
ning tree of the subgraph whose nodes are colored red, and (ii) number-of-blue-nodes
is the current number of the blue nodes (which is equal to the current number of the
ultraviolet arcs).

The time complexity of our algorithm O(N2) and the space complexity is O(N)
where N is the number of nodes in the given graph.

Another possible algorithm for computing a minimal spanning tree of an undi-
rected graph is Kruskal’s algorithm (see, for instance, [20, page 101]) whose worst
case time complexity is O(N2 log N), where N is the number of nodes in the given
graph and thus, the number of arcs is of order O(N2). In Kruskal’s algorithm the
extra log N factor is due to the need of sorting the arcs of the graph according to
their length.

Example 7.5.2. [Minimal Spanning Tree of an Undirected Graph] Let us
consider the undirected, connected, weighted graph of Figure 7.5.4.

A

B C

E D

4

44

3

1

3

2

2

Figure 7.5.4. A five node graph of which we compute a minimal
spanning tree starting from node A. The successive configurations of
the array storing the ultraviolet arcs are shown on page 204. The arcs
with thicker lines are those belonging to the resulting minimal spanning
tree.

We have the following symmetric matrix of distances:

A B C D E
A 0 4 ∞ ∞ 1
B 4 0 2 3 4
C ∞ 2 0 4 3
D ∞ 3 4 0 2
E 1 4 3 2 0

204 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

Let us consider node A as first red node. All other nodes are blue. Thus, we have the
following array uvArcs of ultraviolet arcs (actually, some of them are not existing,
that is, they have length ∞):

A B
A C
A D
A E

Then, we have the following sequence of pair of actions: (i) take a shortest ultraviolet
arc, and (ii) adjust the ultraviolet arcs.

(1.i) Take A E
which is a shortest
ultraviolet arc
and swap rows:

A E

A C
A D
A B

(1.ii) Adjust ultraviolet arcs
after node E became red:

A E

E C
E D
A B

(2.i) Take E D
which is a shortest
ultraviolet arc
and swap rows:

A E
E D

E C
A B

(2.ii) Adjust ultraviolet arcs
after node D became red:

A E
E D

E C
D B

(3.i) Take E C
which is a shortest
ultraviolet arc
and swap rows:

A E
E D
E C

D B

(3.ii) Adjust ultraviolet arcs
after node C became red:

A E
E D
E C

C B

Finally, we take the only available ultraviolet arc C B and we get the following
arrays uvArcs (no swap of rows is required and hence, the array is not changed):

A E
E D
E C
C B

Therefore, at the end of the MST algorithm (see Algorithm 7.5.1 on page 201) we get
the minimal spanning tree which is indicated in Figure 7.5.4 on page 203 by ticker
lines. That minimal spanning tree consists of the following four arcs:

A E, E D, E C, and C B. "

7.5. MINIMAL SPANNING TREE OF AN UNDIRECTED GRAPH 205

/**
* ===
* MINIMAL SPANNING TREE OF A UNDIRECTED GRAPH
*
* Filename: "MST.java"
*
* N is the number of nodes of the graph. We assume that N > 1. N1 is N-1.
* The element graph[i][j] holds the distance, which is an integer number,
* from node i to node j of the graph.
* The algorithm is correct also for distances which are negative, null, or
* positive, and even for non Euclidean distances, but some changes should
* be made to the code.
* We assume that for any node i, distance[i][i]=0.
* For distances which are real numbers, instead of integer numbers, we
* should write ’double’, instead of ’int’.
* The algorithm is taken from E. W. Dijkstra:
* ’A Short Introduction to the Art of Programming’, EWD 316 August 1971.
* Note. We stipulate that distance[i][i] == -1 when there is no arc from
* node i to node j. Thus, when the algorithm is used for distances which
* are negative, null, or positive, and even for non Euclidean distances,
* suitable changes are to be made (see lines -1- and -2-) because -1 can no
* longer be used for encoding the absence af an arc.
* If all distances are >= 0 then
* line -1- becomes: if (l < uvMinLength) and
* lines -2- should be suitably changed.
* ===
*/

public class MST { // MST : Minimal Spanning Tree

public static void main(String[] args) {
int N = 0; // - to be read from the input: args[0]
int initNode = 0; // - to be read from the input: args[1]

// ---------------------------------- N: number of Nodes of the graph.
// N > 1.

try {N = Integer.parseInt(args[0]);
if (N < 2) { throw new RuntimeException (); };

} catch (Exception e) {System.out.print("*** Wrong number of nodes!\n");}
// ---------------------------------- initNode: initial node.
// 0 <= initNode <= N-1.

try {initNode = Integer.parseInt(args[1]);
if ((0 > initNode) || (initNode > N-1)) {

throw new RuntimeException ();
};

} catch (Exception e) {System.out.print("*** Wrong initial node!\n");}

// ---
// MAXLENGTH: maximum length of the arcs. 1 <= length <= MAXLENGTH.

final int MAXLENGTH = 9;
// ---
// PerCentPROB: probability of connectivity. 0 < PerCentPROB <= 100.
// If PerCentPROB = k, every node is connected with probability k/100 to the
// other N-1 nodes.

final int PerCentPROB = 60;
// ---
// Generation of a random graph with N nodes.
// The length of each arc belongs to the set {1,..., MAXLENGTH}.
// Every node has (N-1) x PerCentPROB / 100 successor nodes (in average).

UGraph g =
new UGraph(N, initNode, MAXLENGTH, PerCentPROB);

206 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

g.graphPrint();
System.out.println("Every node is connected to the other nodes with " +

"probability " + PerCentPROB + " percent.");
System.out.println("The length of each arc belongs to the set {1,..., "

+ MAXLENGTH + "}.");
System.out.println("The initial node is: " + initNode);

//
int i, uvMin, p, N1 = N-1;
int l, uvMinLength; // ’double’, not ’int’, for real distances

//--
// The g.uvArcs are the ultraviolet arcs of the graph g (see Dijkstra)
//--

int k = 0;
while (k < N1) {g.uvArcs[k][0] = 0; g.uvArcs[k][1] = k+1; k++;};
k = 0;
while (k < N1) { // <<==========================

uvMin = k;
uvMinLength = g.graph[g.uvArcs[k][0]] [g.uvArcs[k][1]];//it may be -1

//--

i = k+1;
while (i < N1) { // <<--------------------+

l = g.graph[g.uvArcs[i][0]] [g.uvArcs[i][1]]; // |
if ((l < uvMinLength && l >= 0) || uvMinLength == -1) // | -1-

{ uvMin = i; uvMinLength = l; }; // |
i++; // |

}; // end of while <<--------------------+
if (uvMinLength >= 0) { // // -2-
p = g.uvArcs[uvMin][1]; // nearest blue node to red zone

//--

if (uvMin != k) {g.swap(k,uvMin);};
i = k+1;
while (i < N1) { // <<--------------------+

if ((g.graph[g.uvArcs[i][0]] [g.uvArcs[i][1]] // |
> g.graph[p] [g.uvArcs[i][1]] // |

&& g.graph[p] [g.uvArcs[i][1]] >= 0 // | -2-
) // |

|| (g.graph[g.uvArcs[i][0]] [g.uvArcs[i][1]] == -1 // | -2-
&& g.graph[p] [g.uvArcs[i][1]] >= 0) // | -2-

) { g.uvArcs[i][0] = p; }; // |
i++; // |

}; // end of while <<--------------------+
k++;
} else { break;} // // -2-

}; // end of while <<==========================
g.uvPrint(k); }

}

/**
* input:
* ---
* javac MST.java
* java MST 9 0
*
* output:
* ------
* The random undirected graph has 9 node(s) (from node 0 to node 8).
* The symmetric matrix of the arc lengths is:

7.5. MINIMAL SPANNING TREE OF AN UNDIRECTED GRAPH 207

* 0 : 0 4 7 - - - 2 4 9
* 1 : 4 0 - 1 7 - - 4 -
* 2 : 7 - 0 5 - 7 3 6 3
* 3 : - 1 5 0 - 5 8 3 4
* 4 : - 7 - - 0 8 5 4 6
* 5 : - - 7 5 8 0 - - 6
* 6 : 2 - 3 8 5 - 0 6 5
* 7 : 4 4 6 3 4 - 6 0 -
* 8 : 9 - 3 4 6 6 5 - 0
*
* Every node is connected to the other nodes with probability 60 percent.
* The length of each arc belongs to the set {1, ..., 9}.
* The initial node is: 0
*
* The arcs of the minimal spanning tree,
* starting from node 0 and reaching all reachable nodes, are:
* 0 -- 6
* 6 -- 2
* 2 -- 8
* 0 -- 1
* 1 -- 3
* 3 -- 7
* 7 -- 4
* 3 -- 5
* ---
*/

/**
* ===
* The UGraph class
* Filename: "UGraph.java"
*
* This class UGraph defines a undirected, weighted graph.
* The class UGraph is not a monitor, because not all fields are "private".
* However, the non-private fields are read, but never assigned to.
* All methods are "synchronized".
* Thus, this class UGraph is "almost" a monitor.
* For real distances, instead of integer distances, write ’double’, instead
* of ’int’.
* ===
*/

import java.util.Random;

public class UGraph {
final int N; // N = number of nodes of the graph
final int initNode; // initial node of the minimal spanning tree
static int [][] graph; // an N x N array
static int [][] uvArcs; // an N-1 x 2 array: arcs of the minimal

// spanning tree

// --------------------- beginning of constructor --------------------------

public UGraph(int N, int initNode, int MAXLENGTH, int PerCentPROB) {

/** Generation of a random, undirected graph with N nodes.
*
* The random variable randomConnect controls the connectivity:
* node i is connected with node j, for i != j, with percent
* probability PerCentPROB: 0 <= PerCentPROB <= 100
* The random variable randomLength controls the length of the arcs:
* 1 <= length of an arc <= MAXLENGTH
*/

208 7. VISITS OF TREES AND GRAPHS AND EVALUATION OF EXPRESSIONS

this.N = N;
this.initNode = initNode;
this.graph = new int [N][N];
this.uvArcs = new int [N-1][2];

Random randomConnect = new Random(); // random graph connectivity
Random randomLength = new Random(); // random arc length

// initializing the graph: -1 (printed as "-") means "unconnected node"
// graph[i][j] = m with m >= 0
// iff m is the length of the arc from node i to node j
for(int i=0;i<N;i++) {

for(int j=i;j<N;j++) {
if ((i != j) && (randomConnect.nextInt(100) < PerCentPROB))

{ graph[i][j] = 1 + randomLength.nextInt(MAXLENGTH);
graph[j][i] = graph[i][j]; // symmetric graph

}
else if (i == j) { graph[i][j] = 0; }
else { graph[i][j] = -1; graph[j][i] = -1; };// symmetric graph

}
}

}
// --------------------- end of constructor --------------------------------

// --------------------- swapping two rows of the array uvArcs -------------
public static void swap (int i, int j) {

int temp;
temp = uvArcs[i][0]; uvArcs[i][0] = uvArcs[j][0]; uvArcs[j][0] = temp;
temp = uvArcs[i][1]; uvArcs[i][1] = uvArcs[j][1]; uvArcs[j][1] = temp;

}

// --------------------- printing the graph --------------------------------
public synchronized void graphPrint () {

System.out.println("The random undirected graph has "+ N +" node(s) " +
"(from node 0 to node " + (N-1) + ").\n" +
"The symmetric matrix of the arc lengths is:");

for(int i=0;i<N;i++) {
System.out.print(i + " : ");
for(int j=0;j<N;j++) {

if (graph[i][j] < 0) { System.out.print("- "); }
else System.out.print(graph[i][j] + " ");

}; System.out.println();
}; System.out.println();

}

// --------------- printing the arcs of the minimal spanning tree ----------

public synchronized void uvPrint (int N) {
if (N==0) {System.out.println("\nThe minimal spanning tree is the "+

"initial node "+ initNode +" only.");}
else { System.out.print("\nThe arcs of the minimal spanning tree,\n" +

"starting from node " + initNode + " and reaching " +
"all reachable nodes, are: \n");

for (int k=0; k<N; k++)
{System.out.print(uvArcs[k][0] + " -- " +
uvArcs[k][1] + "\n");};}

}
}
// ---

CHAPTER 8

Path Problems in Directed Graphs

In this chapter we present some techniques for solving path problems in directed
graphs. We will first recall some algorithms for matrix multiplication because, as we
will see, matrix multiplication can be used for solving path problems, when directed
graphs are represented by adjacency matrices (see, for instance, [20, pages 8–10]).

By definition, we have that given a graph G with n nodes, its adjacency matrix
M is an n×n matrix made out of 0’s and 1’s such that for all i, j, with 1≤ i, j≤n,
M [i, j] = 1, that is, an element of M in position 〈i, j〉 is 1, iff in the graph G there
is an arc from node i to node j. In particular, M [i, i] = 1 iff there exists an arc from
node i to node i itself. We assume that the length of a path is given by the number
of its arcs. Thus, in particular, in any graph G there is a path of length 0 from any
node of G to that same node.

We have that there exists in G a path of length k (≥ 0) from node i to node j iff
the in k-th power of M , denoted Mk, the element in position 〈i, j〉, denoted Mk[i, j],
is 1.

8.1. Matrix Multiplication Algorithms

The matrix multiplication problem can be formalized as follows.

Problem 8.1.1. Matrix Multiplication.
Input : two n×n matrices of integers

A =

∣∣∣∣∣∣

a11 . . . a1n

.
an1 . . . ann

∣∣∣∣∣∣
and B =

∣∣∣∣∣∣

b11 . . . b1n

.
bn1 . . . bnn

∣∣∣∣∣∣

Output : the n×n matrix C = A×B, that is,
for every i, j = 1, . . . , n, cij =

∑
1≤k≤n aik bkj.

In the sequel we will feel free to write the multiplication of the matrices A and B as
A B, instead of A×B.

The elementary matrix multiplication algorithm is as follows.

Algorithm 8.1.2. Elementary Algorithm for Matrix Multiplication.

Given any two n×n matrices A and B, the matrix C = A×B is obtained by performing
the n multiplications and n−1 additions for each cij =

∑
1≤k≤n aik bkj, as indicated

in the specification of the Matrix Multiplication Problem (see Problem 8.1.1).

209

210 8. PATH PROBLEMS IN DIRECTED GRAPHS

This elementary algorithm takes n2(2n−1) = 2n3−n2 arithmetic operations for
n ≥ 2. Let us now consider the following algorithm for matrix multiplication.

Algorithm 8.1.3. Matrix Multiplication by Partition.

Consider the following n×n matrices A, B, and C, and the partitions of each of these
matrices into four (n/2)×(n/2) blocks:

A =

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣, B =

∣∣∣∣
B11 B12

B21 B22

∣∣∣∣, and C =

∣∣∣∣
C11 C12

C21 C22

∣∣∣∣.

Perform the 8 multiplications of (n/2)×(n/2) matrices and the 4 additions of (n/2)×
(n/2) matrices as indicated by the equalities:

C11 = A11B11 +A12B21, C12 = A11B12 +A12B22,

C21 = A21B11 +A22B21, C22 = A21B12 +A22B22.

This algorithm takes O(n3) arithmetic operations, because their number satisfies
the following recurrence relation for n≥2:

T (n) = 8T (n/2) + 4(n2/4), with A(1) = 1,

whose solution is: T (n) = 2n3 − n2.
We have also the following algorithm.

Algorithm 8.1.4. Strassen Matrix Multiplication.

Consider the following n×n matrices A, B, and C, and the partitions of each of these
matrices into four (n/2)×(n/2) blocks:

A =

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣, B =

∣∣∣∣
B11 B12

B21 B22

∣∣∣∣, and C =

∣∣∣∣
C11 C12

C21 C22

∣∣∣∣.

Perform the 7 multiplications of (n/2)×(n/2) matrices and the 10 additions of (n/2)×
(n/2) matrices (we count the subtractions as additions of negated values) indicated
by the following equalities:

m1 = (A12−A22)(B21+B22), m2 = (A11+A22)(B11+B22),

m3 = (A11−A21)(B11+B12), m4 = (A11+A12)B22,

m5 = A11(B12−B22), m6 = A22(B21−B11),

m7 = (A21+A22)B11,

Then, by performing the following 8 additions of (n/2)×(n/2) matrices, we get:

C11 = m1 + m2 −m4 + m6, C12 = m4 + m5,

C21 = m6 + m7, C22 = m2 −m3 + m5 − m7.

This algorithm due to V. Strassen in 1969 takes O(nlog2 7), which is about O(n2.81),
because their number satisfies the following recurrence relation for n ≥ 2:

A(n) = 7A(n/2) + 18(n2/4), with A(1) = 1.

8.2. COMPARING MATRIX MULTIPLICATION ALGORITHMS 211

Indeed, we have that:

A(n) = (18/4)[n + (7/4)n2 + (7/4)2n2 + . . . + (7/4)(log2 n)−1n2] + 7log2 nA(1) =

= (18n2/4)[((7/4)log2 n − 1)/((7/4)− 1)] + 7log2 n =

= 6nlog2 7 − 6n2 + nlog2 7 < 7nlog2 7.

(Recall that xlogyz = zlogyx for all x, y, z > 0 and y 2= 1.)
If n is not an exact power of 2 we can pad the given matrix with extra rows (on

the bottom) and columns (on the right) made out of all 0’s, so that it becomes an
m×m matrix, where m = 2'log2 n(.

A better method is as follows: if n is even then make a recursive call to n/2, if
n is odd then pad with one row and one column of 0’s (getting an (n+1)×(n+1)
matrix) and make a recursive call to (n+1)/2.

Following Strassen’s idea, new algorithms have being discovered which multiply
matrices even faster than O(nlog2 7). The current asymptotic upper bound is about
O(n2.55). However, we cannot hope to multiply two n×n matrices faster than O(n2),
because there are n2 elements to compute.

8.2. Comparing Matrix Multiplication Algorithms

Let us recall some definitions from Abstract Algebra for comparing the above algo-
rithms for matrix multiplication.

Definition 8.2.1. [Semiring] A semiring is an algebra (S, +, !) with carrier
set S and the two operations + and ! , such that:

(i) + is associative and commutative,
(ii) ! is associative, and
(iii) ! distributes over + on both sides, that is, for all a, b, c ∈ S,

a ! (b + c) = (a ! b) + (a ! c) and (b + c) ! a = (b ! a) + (c ! a).

An element u of S is an identity for the operation op iff

for all x ∈ S, x op u = u op x = x.

An element z of S is an absorbent element for the operation op iff

for all x ∈ S, x op z = z op x = z.

It can be shown that in any semiring:
- if an identity for + exists then it is unique,
- if an identity for ! exists then it is unique, and
- if an absorbent element for ! exists then it is unique.

Definition 8.2.2. [Semiring with 0 and 1] A semiring with 0 and 1 is a
semiring (S, +, !) with the identity for ! , denoted 1, and the absorbent element for ! ,
denoted 0, which is also the identity for +. We will write (S, +, ! , 0, 1)-semiring to
denote such a semiring.

Definition 8.2.3. [Ring] A ring is a semiring (S, +, !) where the algebra (S, +)
is a commutative group, that is, + is associative and commutative, + has an identity,
denoted 0, and every element x has an additive inverse, denoted −x, that is, for all
x ∈ S, x + (−x) = (−x) + x = 0.

212 8. PATH PROBLEMS IN DIRECTED GRAPHS

As for any group, we have that in a ring the additive inverse of any element is
unique. One can prove that in any ring the identity for + is the absorbent element
for ! , that is, for all x ∈ S, x ! 0 = 0 ! x = 0. As proved in [8], one can also show
that:

for all x ∈ S, x ! (−y) = (−x) ! y = −(x ! y) and (−x) ! (−y) = x ! y .

Definition 8.2.4. [Ring with 1] A ring (S, +, !) with the identity for ! , de-
noted 1, is said to be a ring with 1. Such a ring will be denoted by (S, +, ! , 0, 1)-ring.

Definition 8.2.5. [Field] An (S, +, ! , 0, 1)-ring is said to be a field iff ! is
commutative, and every element x different from 0, has a multiplicative inverse,
denoted x−1, that is, for all x ∈ S, x ! x−1 = x−1 ! x = 1.

Given any (S, +, ! , 0, 1)-semiring, we may consider the set, denoted Mn, of the
n×n matrices whose elements are taken from the set S. Mn is said to be the set of
the n×n matrices over the (S, +, ! , 0, 1)-semiring (or over S, for short).

Let 0n denote the n×n matrix with all 0’s, and In denote the n×n matrix which
is like 0n, except that for all i, with 1≤ i≤n, (In)ii = 1, that is, each element of the
main diagonal of In is 1.

One can show that (Mn, +n, !n, 0n, In) is a semiring with 0 and 1, denoted
(Mn, +n, !n, 0n, In)-semiring, where:
(i) +n is defined elementwise, that is, for all n×n matrices A and B, we have that
A +n B is the n×n matrix C such that for all i, j, with 1≤ i, j≤n, Cij = Aij + Bij ,
and
(ii) !n is defined as follows: for all n×n matrices A and B, we have that A !nB is
the n×n matrix C such that

for all i, j, with 1≤ i, j≤n, Cij = (Ai1 !B1j) + (Ai2 !B2j) + . . . + (Ain !Bnj).

Analogously, we have that, given any (S, +, ! , 0, 1)-ring, instead of any (S, +, ! , 0, 1)-
semiring, we get the ring with 1 of the n×n matrices over S, instead of the semiring
with 0 and 1 of the n×n matrices over S. The ring of the n×n matrices over a given
(S, +, ! , 0, 1)-ring will be denoted by (Mn, +n, !n, 0n, In)-ring.

Notice that any (Mn, +n, !n, 0n, In)-ring of matrices is not commutative even if
the corresponding (S, +, ! , 0, 1)-ring of their elements is commutative.

Fact 8.2.6. [Comparing the Matrix Multiplication Algorithms] The Ele-
mentary Algorithm and the Partition Algorithm for matrix multiplication work for
all n×n matrices whose elements are taken from any (S, +, ! , 0, 1)-semiring. Strassen
algorithm for matrix multiplication works for all n×n matrices whose elements are
taken from any (S, +, ! , 0, 1)-ring.

8.3. Fast Boolean Matrix Multiplication

If we look for an asymptotically fast method for multiplying boolean matrices, we
cannot use Strassen algorithm because the boolean values 1 and 0 with the additive
operation ∨ (that is, the least upper bound) and the multiplicative operation ∧ (that
is, the greatest lower bound), do not form a ring with 1. Indeed, there is no inverse
w.r.t. the operation ∨.

8.4. IC-SEMIRINGS AND PATH PROBLEMS IN DIRECTED GRAPHS 213

However, given two n×n boolean matrices A and B, we can multiply them together
as they were matrices of elements in Zn+1, that is, the integers modulo n+1, for n≥2,
where we consider ∨ as + (i.e., addition), and ∧ as ! (i.e., multiplication).

It can be shown that if we multiply the two n×n boolean matrices A and B
as they were matrices of elements in Zn+1, thereby getting the matrix C̃, then the
boolean matrix C = A ∧n B can be computed as follows:

for all i, j, with 1≤ i, j≤n, if C̃ij =0 then Cij =0 and if 1≤ C̃ij ≤n then Cij =1.

Thus, also boolean matrices can be multiplied within the same time complexity
(counting the number of arithmetic operations) which is required for multiplying
two integer matrices, that is, they can by multiplied with time complexity O(nlog2 7).

If, instead, we count the number of bit operations, as it is reasonable for boolean
matrices, then the time complexity is O(nlog2 7 IM (log2 n)), where IM(n) is the time
complexity for multiplying two integers, each of which being made out of n digits in
base 2. (Recall that for all i, j, with 1≤ i, j≤n, C̃ij has at most :log2(n + 1); bits,

because C̃ij is at most n.)
Recalling that by the Schönhage-Strassen method we have that

IM (n) = O(n (log2 n) log2(log2 n)),

we get that the time complexity for multiplying two n×n boolean matrices is:

O(n log2 7 (log2 n) (log2 log2 n) (log2 log2 log2 n)).

We will see below that fast algorithms for boolean matrix multiplication allow us to
construct fast algorithms for computing both the transitive closure of binary relations
and the paths between nodes in graphs.

8.4. IC-Semirings and Path Problems in Directed Graphs

In order to study path problems in labeled directed graphs it is convenient to con-
sider the n×n matrices whose elements are taken from suitable semirings, called
ic-semirings, which we will introduce in this section. We will have that the algebra
of the n×n matrices whose elements are taken from an ic-semiring, is an ic-semiring
as well.

We assume that paths of labeled directed graphs are represented as elements of
matrices associated with the graphs and, in particular, we assume that a path with
label p from node h to node k of a graph G with n nodes, is represented by the
element p taken from the semiring (S, +, ! , 0, 1) and placed in row h and column k
of an n×n matrix M associated with the graph G. Thus, for the matrix M we have
that Mhk = p.

In order to motivate our definitions below, we now list a few properties that we
want to hold for the paths of labeled directed graphs whose labels are taken from the
semiring (S, +, ! , 0, 1).

(i) Two paths from node m to node n, the first one with label p and the second one
with label q, are equal to a single path from m to n with label p + q.

(ii) For any node n1, n2, and n3, a path from n1 to n2 with label p followed by a path
from n2 to n3 with label q, is equal to a path from n1 to n3 with label p ! q.

(iii) The absence of a path from node m to node n is equal to a path from node m
to node n with label 0.

214 8. PATH PROBLEMS IN DIRECTED GRAPHS

(iv) The path of length 0 (that is, a path of no arcs) from a node to itself is equal to
a path from that node to itself with label 1.

(v) For any node n1, n2, and n3, a path from n1 to n2 with label p, followed by a
path from n2 to n3 with label q1 + q2, is equal to a path from n1 to n3 with label
(p ! q1) + (p ! q2) (this property is the distributivity of ! over +).

(vi) Two paths both with label p, between the same two nodes, are equal to a single
path with label p (this property is the idempotency of +).

(vii) A path from a node to itself with label p is equal to a path from that node to
itself with label p∗, that is, 1 + p + p ! p + p ! p ! p + . . . (this property motivates the
need for countably infinite sums).

Definition 8.4.1. [ic-semiring] An (S, +, ! , 0, 1)-semiring, that is, a semiring
with 0 and 1, is said to be idempotent complete semiring (or ic-semiring, for short)
iff
(i) + is idempotent, that is, for all x ∈ S, x + x = x, and
(ii) there are countably infinite sums, that is, there exists the value of

∑
i≥0 ai, that

is, a0 + a1 + . . . for any infinite sequence 〈a0, a1, . . .〉 of elements of S, and
(iii) ! distributes on both sides over countably infinite sums, that is,

(a0 + a1 + a2 + . . .) ! (b0 + b1 + b2 + . . .) = (a0 ! b0) + (a0 ! b1) + (a0 ! b2) + . . .
+ (a1 ! b0) + (a1 ! b1) + (a1 ! b2) + . . .
+ (a2 ! b0) + (a2 ! b1) + (a2 ! b2) + . . .
+ . . .

These semirings are called closed semirings in [1]. We prefer the name idempotent
complete semirings to recall that the operation the idempotency of + and the exis-
tence of countably infinite sums.

For ic-semirings we will use the unary postfixed operation ∗ to denote the infinite
sum of all powers, that is, for all s ∈ S, s∗ =def

∑
i≥0 si, that is, s∗ =def 1 + s +

s ! s+s ! s ! s+ . . . (recall that there is no need for parentheses among the summands,
because ! is associative). Thus, 0∗ = 1. (One can informally state this property by
saying that a loop of no path from a node m to itself is the same as the path of
length 0 from m to itself.)

Here are three examples of ic-semirings with 0 and 1.

(i) ({0, 1},∧,∨, 0, 1)-semiring, called the boolean ic-semiring, where:
x ∧ y =def if x = 1 and y = 1 then 1 else 0, and
x ∨ y =def if x = 1 or y = 1 then 1 else 0.

This ic-semiring is used for testing whether or not in a given directed graph there is
a path from node i to node j.

(ii) (R≥0∪{+∞},min, +, +∞, 0)-semiring, called the non-negative ic-semiring, where

R≥0 is the set of the non-negative reals, and for all x in R≥0 ∪ {+∞} we have that
min(x, +∞) = min(+∞, x) = x.

This ic-semiring is used for computing, given any directed graph whose arcs are
labeled by non-negative reals, the minimum distance from any node to any node of
the given graph.

8.5. TRANSITIVE CLOSURE IN DIRECTED GRAPHS: THE REACHABILITY PROBLEM 215

(iii) (REG(Σ∗),∪, ! , ∅, {ε})-semiring, called the Regular Expressions ic-semiring,
where Σ is any given finite alphabet, Σ∗ is the set of all words over Σ, that is, the
set of all sequences of symbols in Σ, and REG(Σ∗) is the set of all regular languages
over Σ.

In what follows we will denote a regular language also by its corresponding regular
expression (hence the name Regular Expressions ic-semiring for this ic-semiring).

Recall that, given two languages L1 and L2, their concatenation L1 ! L2 is defined
in terms of concatenation of words, also denoted ! , as follows:

L1 ! L2 = {w1 ! w2 |w1 ∈ L1 and w2 ∈ L2}.

This ic-semiring can be used for computing, given any directed graph whose arcs are
labeled by regular expressions, the regular expression which denotes the set of all
paths from any node to any node of the given graph.

From any given ic-semiring (S, +, ! , 0, 1) we may get, as specified in Section 8.2
on page 212, the (Mn, +n, !n, 0n, In)-semiring of the n×n matrices whose elements
are taken from the given semiring. It can be shown that (Mn, +n, !n, 0n, In)-semiring
is an ic-semiring.

Let us now look at some problems for which the matrices over ic-semirings we
have introduced, are particularly useful.

8.5. Transitive Closure in Directed Graphs: the Reachability Problem

Given a directed graph G with n nodes, the reachability problem in G consists in
testing for each pair of nodes i and j whether or not there exists a path from i to j.
We can solve this problem by considering the ic-semiring of the n×n matrices over
the boolean ic-semiring as follows.

We associate with G the n×n boolean matrix A(G), called adjacency matrix, (see,
for instance, [20, Chapter 1]) such that for all i and j with 1≤ i, j≤n,

A(G)ij =def if there is an arc from node i to node j then 1 else 0.

In particular, A(G)ii = 0 if there is no arc from node i to itself. From now on
the matrix A(G) will also be simply called A when the graph to which it refers, is
understood from the context.

We assume that A0 = In (where In is the identity matrix, that is, the n×n matrix
with all elements 0’s except those in the main diagonal which are 1’s), A1 = A, and
An+1 = An ∧n A. We have that: An+1 = A ∧n An.
The definition of the identity matrix In is based on the facts that:
(•) for all i and j with 1≤ i, j≤n, there is no path of one or more arcs from a node

i to a node j, and
(•) if i = j then node j is reachable from node i (and this fact is encoded by the

values 1’s in the main diagonal of In) else node j is not reachable from node i
(and this is encoded by the values 0’s outside the main diagonal of In).

Below we will feel free to omit writing the operators ∧n and ∧, and we will use
juxtaposition, instead. Often, for reasons of simplicity, we will also write ∧, instead
of ∧n. Analogously, we will also write ∨, instead of ∨n.

Recall that, as usual, for all i, j with 1≤ i, j≤n, we have that:

(A ∧n B)ij = (Ai1 ∧B1j) ∨ (Ai2 ∧ B2j) ∨ . . . ∨ (Ain ∧ Bnj).

216 8. PATH PROBLEMS IN DIRECTED GRAPHS

One can easily show by induction on r≥0 that Ar
ij = 1 iff in the graph G there exists

a path of length r from node i to node j. Thus, let us consider the matrix

A∗ =def In ∨A ∨ A2 ∨A3 ∨ . . . ∨ An ∨

We have that given any two nodes i and j, the node j is reachable from node i (that
is, there is a path from node i to node j) iff A∗

ij = 1. One can show that:

A∗ = In ∨ A ∨ A2 ∨ A3 ∨ . . . ∨An−1

This result follows from the fact that any path which, so to speak, touches more than
n nodes of the graph G, should touch at least twice a node of G. We also have that:

A∗ = (In ∨ A)n−1. (#1)

This result follows from the fact that A∗ = In ∨ A ∨ A2 ∨ A3 ∨ . . . ∨ An−1 and
In ∨ A ∨ A2 ∨ A3 ∨ . . . ∨ An−1 = (In ∨ A)n−1 because any path p of length k, with
0 ≤ k ≤ n−1, can be viewed as a path of length n−1 which is the concatenation of
the given path p of length k and a path of length (n−1)−k from the final node of p
to that same final node.

As a consequence of Equation (#1), the matrix A∗ can be computed by successive
squaring of (In∨A) for :log2(n−1); times. (For any real number x, by :x; we denote
the least integer m such that m ≥ x.) This takes T (n) ≤ M(n) :log2 n; steps, where
by M(n) we denoted the time complexity for boolean matrix multiplication. In the
following section we will see that the log2 n factor is actually redundant, that is,
T (n) ≤ M(n).

8.6. Reducing Transitive Closure to Boolean Matrix Multiplication

We have the following fact.

Fact 8.6.1. [Reducing Boolean Transitive Closure to Boolean Matrix
Multiplication] Given a directed graph G with n nodes, let us consider the corre-
sponding n×n adjacency, boolean matrix A, and its partition into four (n/2)× (n/2)

blocks (assume that n is even): A =

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣. We have that:

A∗ =

∣∣∣∣
A∗

11 ∨ (A∗
11 ∧ A12 ∧ E∗ ∧ A21 ∧A∗

11) A∗
11 ∧ A12 ∧E∗

E∗ ∧ A21 ∧A∗
11 E∗

∣∣∣∣ (#2)

where E = (A21 ∧ A∗
11 ∧A12) ∨ A22.

Proof. It is based on the interpretation of the matrix E and the four submatrices
in the block partition of A∗ via the diagrams of Figure 8.6.1 on the facing page and
Figure 8.6.2 on the next page.

Let A11 denote a subgraph G1 of G with n/2 nodes, and A22 denote the subgraph
G2 of G with the remaining n/2 nodes. In Figure 8.6.1 on the facing page and
Figure 8.6.2 on the next page we use the following conventions:
(i) a solid arrow denotes an arc of the graph G,
(ii) a solid double arrow in the graph G1 or G2 denotes a path of any length
(≥ 0) within the subgraph G1 or G2, respectively, and
(iii) a dashed double arrow denotes a path of any length (≥ 0) going anywhere
through the graph G.

Thus, for instance, the left upper corner of A∗, that is, A∗
11 ∨ (A∗

11 ∧ A12 ∧ E∗ ∧
A21∧A∗

11), can be interpreted as a path going from a node in G1 to a node in G1 (see

8.6. REDUCING TRANSITIVE CLOSURE TO BOOLEAN MATRIX MULTIPLICATION 217

Paths from G2 to G2 : E∗, where E = (A21 ∧A∗
11 ∧ A21) ∨A22

can be depicted as follows:

G1 G2 G2

∨

Figure 8.6.1. The set E of paths that go from the subgraph G2 to
the same subgraph G2. They provide an interpretation of the matrix
E = (A21∧A∗

11∧A12) ∨A22.

G1 G2

G1 G2

G1 G2

Paths from G1 to G2:

A∗
11∧A12∧E∗

Paths from G2 to G1:

E∗∧A21∧A∗
11

Paths from G1 to G1:

A∗
11∨

(A∗
11∧A12∧E∗∧A21∧A∗

11)

Figure 8.6.2. Three sets of paths that provide an interpretation of
the three matrices A∗

11∧A12∧E∗, E∗∧A21∧A∗
11, and A∗

11 ∨ (A∗
11∧A12∧

E∗∧A21∧A∗
11), respectively.

also Figure 8.6.2). It is either entirely inside G1 (see A∗
11) or it is inside G1 (see A∗

11)
and then it goes to G2 (see A12), it returns zero or more times to G2 (see E∗),
it returns to G1 (see A21), and finally, it continues entirely inside G1 (see A∗

11).
Analogous interpretation can be done for the other blocks of the matrix A∗ (see
again Figure 8.6.2). "

Fact 8.6.2. Let M(n) denote the time complexity for n×n boolean matrix mul-
tiplication. If M(n) = O(nα) with α>2, then the time for computing the transitive
closure of an n×n boolean matrix is T (n) = O(nα).

218 8. PATH PROBLEMS IN DIRECTED GRAPHS

Proof. From Fact 8.6.1 on page 216 we get that:

T (n) ≤ 2T (n/2) + 6M(n) + O(n2).

Thus, T (n) = O(nα) if α > 2. The factor 6 comes from the following six matrix
multiplications which are necessary for obtaining the elements of the matrix A∗:

M1 = A∗
11 ∧ A12 M2 = A21 ∧A∗

11 M3 = M1 ∧E∗

M4 = M3 ∧ M2 M5 = E∗ ∧ M2 M6 = A21 ∧M1.

If n is not a power of 2 then we can embed a given n×n boolean matrix, say A, into
an m×m boolean matrix, say D, with m being a power of 2, with m>n, which has
the form:

D =

∣∣∣∣
A 0
0 I

∣∣∣∣

where I is the (m−n)×(m−n) boolean identity matrix. Since m is not larger than 2n
the time complexity will increase of at most 23 times, which is a constant factor. "

From this Fact 8.6.2 on the previous page it follows that, in order to obtain a
fast algorithm for computing the transitive closure of a graph, we simply need a fast
algorithm for boolean matrix multiplication.

Remark 8.6.3. The matrix A∗ in Equation (#2) of the above Fact 8.6.1 on
page 216 is not symmetric with respect to the partition of the given graph G into
the two subgraphs G1 and G2 in the sense that the second row cannot be derived
from the first row by interchanging the subscripts 1 and 2 and interchanging the two
columns.

On the contrary, the following expression of the matrix A∗ is symmetric with
respect to that partition (and thus, in this expression of the matrix A∗ the second
row can be derived from the first row by interchanging the subscripts 1 and 2 and
interchanging the two columns):

A∗ =

∣∣∣∣
D∗ D∗ ∧ A12 ∧A∗

22

E∗ ∧A21 ∧ A∗
11 E∗

∣∣∣∣ (#3)

where D = (A12 ∧A∗
22 ∧ A21) ∨A11 and E = (A21 ∧ A∗

11 ∧A12) ∨ A22.

Note also that the value of E can be derived from the value of D by interchanging
the subscripts 1 and 2. Using the symmetric expression (#3), the evaluation of A∗

requires T (n) time units where T (n) satisfies the following inequation:

T (n) ≤ 4T (n/2) + 6M(n) + O(n2).

Thus, again, we have that T (n) = O(nα) if α>2. The factor 4 comes from the four
transitive closures we have to compute: E∗, D∗, A∗

11, and A∗
22. The factor 6 comes

from the following six matrix multiplications we have to perform:

M1 = A12 ∧ A∗
22 M2 = M1 ∧A21 M3 = D∗ ∧M1

M4 = A21 ∧ A∗
11 M5 = M4 ∧A12 M6 = E∗ ∧ M4. "

The proof of Fact 8.6.1 on page 216 is based only on the property that the boolean
ic-semiring is indeed an ic-semiring. Thus, if we consider directed graphs with labels
which are elements of a non-negative ic-semiring (see page 214) or a Regular Expres-
sions ic-semiring (see page 215), we have that the statements analogous to Fact 8.6.1

8.7. TRANSITIVE CLOSURE IN IC-SEMIRINGS: THE SHORTEST PATH PROBLEM 219

on page 216 and Fact 8.6.2 on page 217 hold also for the matrices whose elements
are non-negative reals or regular expressions.

The following fact shows that we can reduce the multiplication of two boolean
matrices to the computation of the transitive closure of a boolean matrix.

Fact 8.6.4. [Reducing Boolean Matrix Multiplication to Boolean Tran-
sitive Closure] Let T (n) denote the time complexity for computing the transitive
closure of an n×n boolean matrix. If T (n) = O(nα) with α > 2, then the time
complexity for the n×n boolean matrix multiplication is M(n) = O(nα).

Proof. It is easy to verify that
∣∣∣∣∣∣

0 A 0
0 0 B
0 0 0

∣∣∣∣∣∣

∗

=

∣∣∣∣∣∣

I 0 A ∧ B
0 I 0
0 0 I

∣∣∣∣∣∣

Thus, in order to multiply two given n×n boolean matrices A and B, it is enough to

compute the transitive closure of the (3n)×(3n) boolean matrix T =

∣∣∣∣∣∣

0 A 0
0 0 B
0 0 0

∣∣∣∣∣∣
. It

takes O((3n)α) time. Now O((3n)α) is equal to O(nα), and this time complexity is
the time complexity required for computing the transitive closure of an n×n boolean
matrix. Having computed that transitive closure T ∗ of the matrix T , we then consider
the top right corner of T ∗ (which is equal to A ∧B). "

8.7. Transitive Closure in IC-Semirings: the Shortest Path Problem

Given a labeled (or weighted) directed graph G with n nodes, the problem of finding
the shortest paths in G consists in finding for each pair of nodes i and j, a path with
minimum sum of the labels of its arcs. If the labels of G form a non-negative ic-
semiring (see Definition 8.4.1 on page 214), we can solve this problem by considering
the n×n matrices over that semiring as follows.

Given a labeled directed graph G with n nodes, we associate with G the n×n
matrix M(G) such that for all i and j, with 1 ≤ i, j ≤ n, M(G)ij = λ(i, j), where
λ(i, j) is the label of the arc from node i to node j. We assume that for all i and j,
with 1≤ i, j≤n, λ(i, j) = +∞ if there is no arc from node i to node j (even if i = j).

In what follows the matrix M(G) will also be called M when the graph to which
it refers, is understood from the context.

Then, for any two nodes i and j of G, we can find a path from i to j with the
minimum sum of the labels of its arcs by applying the analogous of Fact 8.6.1 on
page 216 for matrices over a non-negative ic-semiring.

Notice that in the identity matrix over the non-negative ic-semiring, each element
of the main diagonal is 0 (which is the identity for +), while every other element is
+∞ (which is the identity for min). This definition of the identity matrix for the
non-negative ic-semiring (R≥0 ∪ {+∞},min, +, +∞, 0) is based on the fact that for
all i and j, with 1≤ i, j≤n,
(•) if i = j then a shortest path from node i to node j is a path of length 0 whose
sum of the labels is 0 and, otherwise,

220 8. PATH PROBLEMS IN DIRECTED GRAPHS

(•) if i 2= j and there is no path from node i to node j then a shortest path from i
to j is assumed to have the sum of the labels equal to +∞ (because from node i it is
not possible to reach node j).

It can be shown that one can compute the shortest paths between every pair
of nodes of a labeled directed graph G by computing the transitive closure of the
matrix M over the non-negative ic-semiring of the labels of G.

We have the following fact which is analogous to Fact 8.6.2 on page 217.

Fact 8.7.1. Let M(n) denote the time complexity for multiplying n×n matrices.
If M(n) = O(nα) with α>2, then the time for computing a shortest path between any
two nodes in labeled direct graph whose labels are non-negative reals is T (n) = O(nα).

Example 8.7.2. Let us consider the labeled directed graph with three nodes
depicted in Figure 8.7.1. We have that:

min(I, M) =

∣∣∣∣∣∣

0 8 5
3 0 ∞
∞ 2 0

∣∣∣∣∣∣
and (min(I, M))∗ = (min(I, M))3−1 =

∣∣∣∣∣∣

0 7 5
3 0 8
5 2 0

∣∣∣∣∣∣
. "

1

2

3

2

5

2

8

3

Figure 8.7.1. A directed graph with non-negative labels on the arcs.

We leave it to the reader to show that if the labels of the arcs of the given directed
graph G are not taken from a non-negative ic-semiring, as for instance in the case of
labels which may have negative values, the technique based on the computation of
(min(I, M))∗ for finding the shortest paths between every pair of nodes of G, is still
correct, provided that there are no negative cycles, that is, cycles whose sum of the
labels of the arcs is a negative value.

If there are negative cycles in the given graph, the technique based on the com-
putation of (min(I, M))∗ is not correct, and we have to apply other algorithms, like
the Floyd-Warshall’s algorithm or a variant of Algorithm 8.8.1 (Dijkstra’s SSSP al-
gorithm) which we will present on page 221. If there are negative cycles, the time
complexity of those algorithms goes up to O(n3) [16, Chapter 6, page 133].

8.8. Single Source Shortest Paths in Directed Graphs

In this section we consider the problem of finding, given a labeled directed graph, the
shortest paths starting from an initial node, also called the source, to all other nodes
of the graph. This problem is called the Single Source Shortest Path problem. For
solving this problem there exists an algorithm which is faster than the one based on
the computation of the transitive closure of the adjacency matrix associated with the

8.8. SINGLE SOURCE SHORTEST PATHS IN DIRECTED GRAPHS 221

graph, which we have considered in the previous Section 8.7. We will call this faster
algorithm the Single Source Shortest Path algorithm, or SSSP algorithm, for short.

This algorithm is based on the Dynamic Programming idea. It is due to E. W. Di-
jkstra, as the algorithm we have presented in Section 7.5 for computing a minimal
spanning tree of an undirected graph (see Algorithm 7.5.1 on page 201), and it takes
O(n2) time for graphs of n nodes, if the labels on the arcs are taken from a non-
negative ic-semiring. Dijkstra’s SSSP algorithm is correct also for any labeled di-
rected graph provided that there are no negative cycles, that is, there are no cycles
with negative sum of the labels of their arcs.

Dijkstra’s SSSP algorithm can be viewed as a particular instance of the Primal-
Dual algorithm (see [16, Capter 5]) and thus, its correctness can be derived from that
of the Primal-Dual algorithm.

Note that between any two given nodes of the graph there could be more than
one path with the minimal sum of the labels of its arcs. In this case Dijkstra’s SSSP
algorithm computes one of these minimal paths. However, by abuse of language, in
what follows we will feel free to say ‘the shortest path’, instead of ‘a shortest path’.

Now, for reasons of simplicity, we will present Dijkstra’s SSSP algorithm in the
case when the labels of the arcs are non-negative reals.

Algorithm 8.8.1.
Computation of the Single Source Shortest Paths in Directed Graphs. (Dijkstra’s
SSSP algorithm)

Input : We are given a labeled, directed, connected graph G with n nodes. We are
also given a node n0 of G, called the source. No assumptions are made on the arcs
which depart from n0 or arrive at n0.
For each arc 〈p, q〉, we assume that there exists a label λ(p, q) which is a non-negative
real number. That label is also called the length of the arc.
For each node p, we assume that there exists the arc 〈p, p〉 whose label λ(p, p) is 0.

Output : for each node q in G, we compute a shortest path from node n0 to node q,
that is, a path from n0 to q with minimal length. That path has minimal sum of the
labels of its arcs, being the minimum taken over all paths from n0 to q.

A. With each node q ∈ G we associate a label Λ(q) which is the length of a shortest
path from n0 to q.

1. Λ(n0) := 0; Reach := {n0};
2. for each arc 〈n0, q〉, Λ(q) := λ(n0, q);
3. Repeat among all nodes not in Reach with a label, take a node, say p,

with minimal label Λ(p);
3.1 Reach := Reach ∪ {p};
3.2 for each arc 〈p, m〉 with m not in Reach,

if q has already a label
then (3.2.1) Λ(m) := min{Λ(p)+λ(p, m), Λ(m)}
else (3.2.2) Λ(m) := Λ(p)+λ(p, m);

222 8. PATH PROBLEMS IN DIRECTED GRAPHS

B. We find by backtracking a shortest path from node n0 to a node q ∈ G.

4. Choose any node p, different from q, such that Λ(p) = −λ(p, q) + Λ(q);
5. Recursively, find a shortest path from n0 to p.

The following points illustrate a few important facts about of the above SSSP algo-
rithm.

(i) The source node n0 can be any node of the given graph G. In particular, there
may be arcs going into the source node.

(ii) At Point 4 if there exists more than one node p , different from q, such that
Λ(p) = −λ(p, q) + Λ(q), then we may choose any one of them. If this is the case,
then there exists more than one path from n0 to q with minimal length.

(iii) If 〈n0, n1, . . . , nk−1, nk〉 is a shortest path from n0 to nk,

then Λ(nk) =
∑k−1

i≥0 λ(ni, ni+1).

(iv) This SSSP algorithm is similar to Dijkstra’s MST algorithm [6] for comput-
ing a minimal spanning tree of undirected graphs with labels on the arcs (see also
Algorithm 7.5.1 on page 201). Analogously to Dijkstra’s MST algorithm:

(•) the SSSP algorithm is a greedy algorithm, that is, the local optimum is a global
optimum (recall what has been said for the MST algorithm on page 198),

(•) according to what we have said about the MST algorithm, the nodes in Reach
may be viewed as red nodes and the nodes not in Reach may be viewed as blue
nodes, and

(•) the SSSP algorithm, after transforming a blue node p into a red node (see
Point 3.1), readjusts (see Point 3.2.1) or generates (see Point 3.2.2) the label
of each blue node m such that there exists an arc 〈p, m〉.

Now we present the invariants of the loops of the above Dijkstra’s SSSP Algo-
rithm 8.8.1. Those invariants clarify the way in which that algorithm works and are
the basis of the proof of its correctness which we leave to the reader.

The invariant of the Repeat statement at Point 3 is:
« the label of any node q in the set Reach is the length of a shortest path
from the source node n0 to q ».

The invariant at Point 3.2 is:
« each node m not in Reach such that there is an arc 〈p, m〉 with p ∈ Reach,
has a label which is the length of a shortest path 〈n0, . . . , p, m〉 from the
source node n0 to m such that the nodes n0, . . . , p are all in Reach ».

The invariant at Point 5 is:
« in a shortest path from the source node n0 to the node m, the last arc is
〈p, m〉».

The correctness of Dijkstra’s SSSP algorithm is based on the following property.
Let us assume that we have computed a shortest path from the source node n0 to

every node in a subset W of the nodes such that n0 ∈ W . Let us consider a shortest
path, say π, from the node n0 to any node y not in W such that for every node x if

8.8. SINGLE SOURCE SHORTEST PATHS IN DIRECTED GRAPHS 223

there is the arc 〈x, y〉 in G then x ∈ W . Then the path π has the property that it
goes through nodes of W (except for y itself).

Note that if at Point 3 we take a node p whose label Λ(p) is not minimal, the
algorithm is not correct.

Example 8.8.2. Given the graph of Figure 8.8.1 and the node n0, after Point 3
of Dijkstra’s SSSP algorithm we get the ‘boxed labels’ at each node. Then, having
labeled all nodes with the boxed labels, we may find by backtracking every arc whose
label is exactly the difference of the boxed labels of its nodes. By doing so (see
Points 4 and 5 of the SSSP algorithm), we get the following two sequences of values:

(i) 12
6
←− 6

1
←− 5

2
←− 3

3
←− 0 and

(ii) 12
3
←− 9

4
←− 5

2
←− 3

3
←− 0

which correspond to the following two shortest paths from node n0 to node n6 (see
the thicker arcs of the graph of Figure 8.8.1):

(i) n0 −→ n2 −→ n3 −→ n5 −→ n6 and

(ii) n0 −→ n2 −→ n3 −→ n4 −→ n6, respectively.

The total length of each of those shortest paths is 12 which is, indeed, the boxed label
of the final node n6. Note that by backtracking, from node n6 we do not go back
to node n3 (because 12−9 2=5) and, instead, we go back either to node n4 (because
12−6=6) or to node n5 (because 12−3=9). "

n0

n1

n2

n3

n4

n5

n6

0

5

3

5

6

9

12
5

8

7

9

8

3 2 1

4

3

6

Figure 8.8.1. A directed graph with non-negative labels (also called
lengths) on the arcs. The thicker arcs are those belonging to the two
shortest paths of length 12 from node n0 to node n6.

For a graph of n nodes the time complexity of Dijkstra’s SSSP algorithm is O(n2)
and this is due to the fact that: (i) the body of the Repeat statement (see Point 3)
is performed at most n times because there are at most n nodes not in Reach, and

224 8. PATH PROBLEMS IN DIRECTED GRAPHS

Worst Case Time Complexity

Shortest paths from any node to any node: O(n2.81)
(the complexity is that of matrix multiplication)

Shortest paths from a fixed node to any node: O(n2)

Shortest path from a fixed node to a fixed node: O(n2)
(it is an open problem whether or not one can do better)

Figure 8.8.2. Time complexity of the computation of the shortest
paths in directed graphs with n nodes.

(ii) for each node p not in Reach there exist at most n arcs of the form 〈p, m〉 with
m not in Reach (see Point 3.2).

Dijkstra’s SSSP algorithm shows that if we fix the initial node and the labels of
the given graph are taken from a non-negative ic-semiring, we may solve the Single
Source Shortest Path problem in O(n2) time. This is an improvement over the time
complexity for solving the shortest path problem between any two nodes. Indeed,
as we have shown in Section 8.6 on page 216, this last problem requires the same
amount of time which is needed for matrix multiplication, say O(n2.81) time (see also
Figure 8.8.2).

One may wonder whether or not it is possible to derive an even faster algorithm
for the shortest path problem when we fix both the initial node and the target node.
This is the so called Single Source Single Target Shortest Path problem. The answer,
to our knowledge, is still open, in the sense that no algorithm has been found for this
last problem which has a better time performance, in the worst case, than the best
algorithm known for the Single Source Shortest Path problem which has an O(n2)
time complexity for graphs of n nodes.

A final point is worth noticing. Let us consider an undirected graph with weights
on its arcs as a particular case of directed graph, where for each arc from node x to
node y with label w, there exists a symmetric arc from node y to node x with the
same label w. In an undirected graph any pair of directed arcs from node x to node
y and vice versa will be denoted by x y. Now, given an undirected graph G with
non-negative weights on its arcs, we have that a shortest path between two nodes
may be made out of arcs none of which belongs to the minimal spanning tree of G.
This fact is illustrated in the graph of Figure 8.8.3 on the facing page. In that figure
we use the usual convention of drawing every pair of directed arcs of an undirected
graph by a single arc without arrowheads. In Figure 8.8.3 a shortest path from node
b to node c is the arc b c with weight 3, while a minimal spanning tree of the graph
G has total weight 4 and it is made out of the arcs a b and a c.

In what follows we present a Java program which implements Dijkstra’s Sin-
gle Source Shortest Path algorithm. It is made out of two files: SSSP.java and
Graph.java, which are located in the same folder.

8.8. SINGLE SOURCE SHORTEST PATHS IN DIRECTED GRAPHS 225

a

b

c

3

2

2

Figure 8.8.3. An undirected graph with non-negative labels on the
arcs. The thicker arcs are those of the minimal spanning tree.

/**
* ==
* Single Source Shortest Path: Main Program
* Filename: "SSSP.java"
*
* This program computes a shortest path from a node to any other node
* of a weighted, directed graph. The weight of an arc is the length of the
* arc.
*
* In what follows we will feel free to say ’the shortest path’ (or ’the
* shortest distance’), instead of ’a shortest path’ (or ’a shortest
* distance’), even if the shortest path may not be unique.
*
* In the command:
* java SSSP nn in fn
* the integers nn, in, and fn denote the number of nodes, the initial
* node, and the final node, respectively.
* For instance, we should issue the command: java SSSP 5 0 3
* for a graph of 5 nodes in which we look for a shortest path from node 0
* to node 3.
* ==
*/

import java.util.ArrayList;
import java.util.Iterator;

public class SSSP { // SSSP : Single Source Shortest Path

public static int min (int a, int b) {
if (a>b) {return b;} else {return a;}

}

public static void main(String[] args) {

int N = 0; // - to be read from the input: args[0]
int initNode = 0; // - to be read from the input: args[1]
int finalNode = 0; // - to be read from the input: args[2]

// ---------------------------------- N: number of Nodes of the graph.
// N >= 1.

try {N = Integer.parseInt(args[0]);
if (N < 1) { throw new RuntimeException (); };

} catch (Exception e)
{System.out.print("*** Wrong number of nodes!\n");}

226 8. PATH PROBLEMS IN DIRECTED GRAPHS

// ---------------------------------- initNode: initial node.
// 0 <= initNode <= N-1.

try {initNode = Integer.parseInt(args[1]);
if ((0 > initNode) || (initNode > N-1)) {

throw new RuntimeException ();
};

} catch (Exception e)
{System.out.print("*** Wrong initial node!\n");}

// ---------------------------------- finalNode: final node.
// 0 <= finalNode <= N-1.

try {finalNode = Integer.parseInt(args[2]);
if ((0 > finalNode) || (finalNode > N-1)) {

throw new RuntimeException ();
};

} catch (Exception e) {System.out.print("*** Wrong final node!\n");}

// --
// MAXLENGTH: maximum length of the arcs. 1 <= length <= MAXLENGTH.

final int MAXLENGTH = 9;

// --
// PerCentPROB: probability of connectivity. 0 < PerCentPROB <= 100.
// If PerCentPROB = k, every node is connected with probability k/100 to
// the other N-1 nodes.

final int PerCentPROB = 40;

// --
// Generation of a random graph with N nodes.
// The length of each arc belongs to the set {1,..., MAXLENGTH}.
// Every node has (N-1) x PerCentPROB / 100 successor nodes (in average).

Graph g =
new Graph(N, initNode, finalNode, MAXLENGTH, PerCentPROB);

g.graphPrint();
System.out.println("Every node is connected to the other nodes with " +

"probability " + PerCentPROB + " percent.");
System.out.println("The length of each arc belongs to the set {1,..., "

+ MAXLENGTH + "}.");
System.out.println("The initial node is: " + initNode);
System.out.println("The final node is: " + finalNode);

// --
int p = g.nearestOutsideNode();

while (p >= 0) { // <<-------------------------------------+
g.reach[p] = true; // Reach = Reach U {p} // |
for (int m=0; m<N; m++) { // |

if (!g.reach[m] && g.graph[p][m] >= 0) { // |
if (g.shortestDistances[m] >= 0) // |

{g.shortestDistances[m] = // |
min (g.shortestDistances[p] + g.graph[p][m], // |

g.shortestDistances[m]);} // |
else {g.shortestDistances[m] = // |

g.shortestDistances[p] + g.graph[p][m];}; // |
}; // |

}; // |
p = g.nearestOutsideNode(); // |

} // end of while <<------------------------+

8.8. SINGLE SOURCE SHORTEST PATHS IN DIRECTED GRAPHS 227

// --

// add(0,e) inserts the element e at position 0, and shifts
// the element at position 0 and all subsequent elements to the right
// (adds 1 to their indices).

g.itinerary.add(0, new Integer(finalNode));
int m = finalNode;
while (m != initNode) { // <<-------------------------------------+

int j=0; // |
while (j == m || g.shortestDistances[j] != // |

-g.graph[j][m]+g.shortestDistances[m]) { j++;}; // |
g.itinerary.add(0, new Integer(j)); // |
m=j; // |
}; // end of while <<------------------------+

g.shortestDistancesPrint();
g.itineraryPrint();

}
}

// --

/**
* input:
* --
* javac SSSP.java
* java SSSP 5 0 3
*
* output:
* -------
*
* The random graph has 5 node(s) (from node 0 to node 4).
* The matrix of the arc lengths is:
* 0 : 0 - 9 - -
* 1 : - 0 - - 7
* 2 : - - 0 4 -
* 3 : - - 6 0 -
* 4 : - - 6 - 0
*
* Every node is connected to the other nodes with probability 40 percent.
* The length of each arc belongs to the set {1, ..., 9}.
* The initial node is: 0
* The final node is: 3
*
* The shortest distances from the initial node 0 to every node of
* the graph are (’-’ means ’unreachable node’):
* 0 - 9 13 -
*
* The nodes of the shortest path from node 0 to node 3 are:
* 0 2 3
*
* The cumulative distances of the shortest path from node 0 to node 3 are:
* 0 9 13
*
* --
*/

228 8. PATH PROBLEMS IN DIRECTED GRAPHS

/**
* ===
* The Graph class
* Filename: "Graph.java"
*
* This class Graph is not a monitor, because not all fields are "private".
* However, the non-private fields are read, but never assigned to.
* All methods are "synchronized".
* We can say that this class Graph is "almost" a monitor.
*
* In what follows we will feel free to say ’the shortest path’ (or ’the
* shortest distance’), instead of ’a shortest path’ (or ’a shortest
* distance’), even if the shortest path may not be unique.
* ===
*/

import java.util.Random;
import java.util.ArrayList;
import java.util.Iterator;

public class Graph {

final int N; // N = number of nodes of the graph
final int initNode; // 0 <= initNode <= N-1
final int finalNode; // 0 <= finalNode <= N-1
static int [][] graph; // an N x N array

// shortestDistances is an array of N integers belonging to the object
// of the class Graph

static int [] shortestDistances;
static boolean [] reach;
static ArrayList itinerary = new ArrayList();

// --------------- beginning of constructor --------------------------------

public Graph(int N, int initNode, int finalNode, int MAXLENGTH,
int PerCentPROB) {

/** Generation of a random, directed graph with N nodes.
* The random variable randomConnect controls the connectivity:
* node i is connected with node j, for i != j, with percent
* probability PerCentPROB: 0 <= PerCentPROB <= 100
* The random variable randomLength controls the length of the arcs:
* 1 <= length of an arc <= MAXLENGTH
*/

this.N = N;
this.initNode = initNode;
this.finalNode = finalNode;
this.graph = new int [N][N];
this.shortestDistances = new int [N]; // \Lambda(n) for each node n
this.reach = new boolean [N];// the Reach set
Random randomConnect = new Random(); // random graph connectivity
Random randomLength = new Random(); // random arc length

8.8. SINGLE SOURCE SHORTEST PATHS IN DIRECTED GRAPHS 229

// initializing the graph: -1 (printed as "-") means "unconnected node"
// graph[i][j] = m with m >= 0
// iff m is the length of the arc from node i to node j
for(int i=0;i<N;i++) {

for(int j=0;j<N;j++) {
if ((i != j) && (randomConnect.nextInt(100) < PerCentPROB))

{ graph[i][j] = 1 + randomLength.nextInt(MAXLENGTH); }
else if (i == j) { graph[i][j] = 0; }
else { graph[i][j] = -1; };

}
}

// initializing the array shortestDistances:
// -1 (printed as "-") means "unreached node".
// shortestDistances[i] = d with d >= 0
// iff d is the shortest distance from the initial node to node i
// computed so far.

for(int j=0;j<N;j++) shortestDistances[j] = graph[initNode][j];

// initializing the array reach
// -1 (printed as "-") means "node not in the array reach"
// initially

for(int j=0;j<N;j++) reach[j] = false; reach[initNode] = true;

// initializing the shortest path, called ‘itinerary’,
// from initNode to finalNode

ArrayList itinerary = new ArrayList();
}

// --------------- end of constructor --------------------------------------

// --------------- updating the array shortestDistances --------------------
public synchronized void shortestDistancesUpdate (int i, int distance) {

shortestDistances[i] = distance;
}

// --------------- accessing the array shortestDistances -------------------
public synchronized int shortestDistancesAt (int i) {

return shortestDistances[i];
}

// --------------- finding a p node --
// if node == -1 there is no such nearest node outside the array reach.

public synchronized int nearestOutsideNode () {
int min = -1; int node = -1;
for(int j=0; j<N; j++)

{ if (reach[j] == false && shortestDistances[j] >= 0
&& min == -1)

{ node = j; min = shortestDistances[j]; }
else
if (reach[j] == false && shortestDistances[j] >= 0

&& shortestDistances[j] < min)
{ node = j; min = shortestDistances[j]; };

};
return node;

}

230 8. PATH PROBLEMS IN DIRECTED GRAPHS

// --------------------- printing the graph --------------------------------

public synchronized void graphPrint () {
System.out.println("The random graph has "+ N +" node(s) " +

"(from node 0 to node " + (N-1) + ").\n" +
"The matrix of the arc lengths is:");

for(int i=0;i<N;i++) {
System.out.print(i + " : ");
for(int j=0;j<N;j++) {

if (graph[i][j] < 0) { System.out.print("- "); }
else System.out.print(graph[i][j] + " ");

}; System.out.println();
}; System.out.println();

}

// --------------- printing the array shortestDistances ------------------

public synchronized void shortestDistancesPrint () {
System.out.println("\nThe shortest distances from the initial node "

+ initNode + " to every node of\nthe graph " +
"are (’-’ means ’unreachable node’):");

for(int i=0;i<N;i++) {
if (shortestDistances[i] < 0) { System.out.print("- "); }
else System.out.print(shortestDistances[i] + " "); }

System.out.println();
}

// --------------- printing the array reach -------------------------------

// This method is NOT needed. This method is useful for debugging.

public synchronized void reachPrint () {
System.out.print("\nThe reach array is: \n");
for(int i=0;i<N;i++) {

if (!reach[i]) { System.out.print("- "); }
else System.out.print("1 "); };

System.out.println();
}

// --------------- printing the shortest path from initNode to finalNode ---

// the shortest path from initNode to finalNode is called ‘itinerary’
//

public synchronized void itineraryPrint () {
if (shortestDistances[finalNode] >= 0) {

System.out.println("\nThe nodes of the shortest path from node "
+ initNode + " to node "+finalNode + " are:");

for (Iterator iter = itinerary.iterator(); iter.hasNext();) {
System.out.print((iter.next()).toString() + " ");

};
System.out.println();

8.9. FROM NONDETERMINISTIC FINITE AUTOMATA TO REGULAR EXPRESSIONS 231

// --------------------

System.out.println("\nThe cumulative distances of the shortest "
+ "path from node "
+ initNode + " to node "+finalNode + " are:");

int d = 0; int i = initNode; int j = 0;

for (Iterator iter1 = itinerary.iterator(); iter1.hasNext();) {
j = ((Integer)iter1.next()).intValue();
d = d + graph[i][j]; i = j;
System.out.print(d + " ");

};
System.out.println();

// --------------------
}

else { System.out.println("There is no path from node " + initNode +
" to node " + finalNode + ".");

};
}

}
// ---

8.9. From Nondeterministic Finite Automata to Regular Expressions

Given a directed graph G of n nodes with every arc labeled by a regular expression
over an alphabet Σ (in particular, a single symbol of Σ), let us consider the problem
of finding for each pair of nodes i and j in G, the regular expression which denotes
the language made out of all words which take from node i to node j as we now
specify. A word w takes from node i to node j iff (i) w is a0 . . . am+1, where for all
i = 0, . . . , m, ai ∈ Σ, and (ii) there is a path 〈n0, n1, . . . , nm+1〉 such that: (ii.1) n0 = i,
(ii.2) nm+1 = j, and (ii.3) for all i = 0, . . . , m, ai belongs to the language denoted by
the regular expression which is the label of the arc 〈ni, ni+1〉.

This problem of finding regular expressions can be solved by applying the analo-
gous of Fact 8.6.1 on page 216 for matrices over the Regular Expressions ic-semiring
(see page 215).

Given a directed graph G with n nodes with regular expressions as labels of
the arcs, let us associate with G the n×n matrix R(G) such that for all i, j, with
1 ≤ i, j ≤ n, R(G)ij = expr(i, j), where expr(i, j) is the regular expression which
labels the arc from node i to node j.

For all i, j (not necessarily distinct), with 1 ≤ i, j ≤ n, we have that expr(i, j) = ∅
if there is no arc from node i to node j.

It can be shown that, given any pair 〈i, j〉 of nodes of the graph G, one may
compute the language made out of the words which take from i to j by computing
the transitive closure of the matrix R(G) over the Regular Expressions ic-semiring of
the labels of G.

Notice that in the identity matrix over the Regular Expressions ic-semiring each
element of the main diagonal is {ε} (which is the identity for !), while every other
element is ∅ (which is the identity for ∪). This definition of the identity matrix is
based on the facts that:

232 8. PATH PROBLEMS IN DIRECTED GRAPHS

(1) for all i and j with 1 ≤ i, j ≤ n, there is no path of one or more arcs from a
node i to a node j, and

(2) if i= j then node i is reachable from node i itself via a path of length 0 (and
this explains why {ε} is in the main diagonal of the identity matrix) else node j
is not reachable from node i (and this is why ∅ is outside the main diagonal of
the identity matrix).

For the case of matrices over the Regular Expressions ic-semiring it is not natural
to establish a fact analogous to Fact 8.6.2 on page 217, because the operations ∪ and !

cannot reasonably be considered as atomic computation steps. However, by using a
fact analogous to Fact 8.6.1 on page 216, we can prove Kleene Theorem which states
that for every finite automaton there exists an equivalent regular expression, that is,
a regular expression which denotes the language accepted by the finite automaton.
Indeed, if we assume that each element of the matrices A11, A12, A21, and A22 is
a symbol in Σ, the graph is a (deterministic or nondeterministic) finite automaton.

Let that automaton be called A. The transitive closure of

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ computes

the language from a node to any other node by using the operations ! , +, and ∗,
instead of the operations ∧, ∨, and ∗ occurring in the statement of Fact 8.6.1. Thus,
in particular, we get a regular expression from the initial state to any final state of
the finite automaton A. The regular expression denoting the language accepted by A
is the sum of all regular expressions from the initial state to a final state of A.

CHAPTER 9

String Matching

In this chapter we present two matching algorithms for testing whether or not a
pattern occurs in string. The first algorithm is a naive algorithm (see page 233)
whose Prolog implementation will be given in Section 9.2 on page 243. The second
algorithm is the Knuth-Morris-Pratt algorithm [14].

9.1. Knuth-Morris-Pratt Pattern Matching

In this section we present a pattern matching algorithm taken from [14]. This
algorithm detects all occurrences, possibly overlapped, of a substring p, called the
pattern, in a string s, called the subject.

The main idea of this algorithm is the construction of a finite automaton. We will
clarify this point in what follows. The time complexity of this algorithm is O(m+n),
where m is the length of the string s and n is the length of the substring p.

First we present the naive pattern matching algorithm which has time complexity
O(n m). It can be expressed as follows.

Algorithm 9.1.1. Naive Pattern Matcher.

Input : the subject string s[0], . . . , s[n−1] and the pattern string p[0], . . . , p[m−1]. We
assume that n ≥ 1 and m ≥ 1.
Output : a list λ = [i1, . . . , ik] of non-negative integers such that for all i in λ, we have
that p occurs in position i in the subject s, that is, for all j = 0, . . . , m−1 we have
that s[i+j] = p[j].

λ := [];
for i = 0, . . . , n−m do

occurs := true;
for j = 0, . . . , m−1 do if s[i+j] 2= p[j] then occurs := false;
if occurs then λ :=append(λ, [i]) (†)

In the instruction (†) of the external for-loop we have used the append function,
instead of the less expensive cons function, because we want that a pattern occurrence
i1 which is located in the subject string on the left of another pattern occurrence i2,
that is, i1 < i2, should be listed in λ on the left of i2.

This naive pattern matcher works by repeating, for each position in the subject
string, a test which checks whether or not the substring of the subject string starting
at that position coincides with the given pattern.

We can improve over this naive pattern matcher algorithm by using the Knuth-
Morris-Pratt pattern matcher which we now present. This algorithm improves the

233

234 9. STRING MATCHING

naive pattern matcher because, if during the process of checking an occurrence of
the pattern in the subject we find a mismatch between the character of the pattern
and the character of the subject string, then we resume the matching process not by
a right-shift of the pattern by one position only, but by performing a right-shift of
r (≥1) positions as indicated by the so called failure function which we will introduce
below.

This failure function determines the value of r by taking into account the structure
of the pattern and by doing so, it allows us to reduce the total number of character
comparisons during the matching process.

The Knuth-Marris-Pratt pattern matcher is made out of two parts which have a
very similar structure:

(i) computation of the failure function, and
(ii) computation of the occurrences of the pattern.

Algorithm 9.1.2. Knuth-Morris-Pratt Pattern Matcher.

Input : the subject string s[0], . . . , s[n−1] and the pattern string p[0], . . . , p[m−1]. We
assume that n ≥ 1 and m ≥ 1.
Output : a list λ = [i1, . . . , ik] of non-negative integers such that for all i in λ, we have
that the pattern p occurs at position i in the subject s, that is, for all j = 0, . . . , m−1
we have that s[i+j] = p[j].

Computation of the failure function: π[0], . . . , π[m−1].

π[0] := 0;
j := 0; (1.α)
for i = 1, . . . , m−1 do

while j >0 and p[j] 2= p[i] do j := π[j−1]; (1.β)
if p[j] = p[i] then j := j+1; (1.γ)
π[i] := j; (1.δ)

Computation of the occurrences of the pattern: p[0], . . . , p[m−1].

λ := [];
j := 0; (2.α)
for i = 0, . . . , n−1 do

while j >0 and p[j] 2= s[i] do j := π[j−1]; (2.β)
if p[j] = s[i] then j := j+1; (2.γ)
if j = m then begin λ := append(λ, [i−m+1]); j := π[j−1] end (2.δ)

Now we introduce the failure function π. It is represented as an array π[0, . . . , m−1]
which has the same length m as the pattern p. We first need the following notions.

9.1. KNUTH-MORRIS-PRATT PATTERN MATCHING 235

Definition 9.1.3. [Prefix and Suffix] Let us consider a pattern p[0, 1, . . . , m−1]
of length m. The non-empty prefixes of that pattern are: p[0], p[0, 1], . . ., and
p[0, 1, . . . , m−1]. For j = 0, . . . , m−1, the prefix p[0, . . . , j] is also denoted by p0j. A
proper prefix of that pattern is a prefix which is different from the pattern itself.

The suffixes of the pattern p[0, 1, . . . , m−1] are: p[0, 1, . . . , m−1], p[1, . . . , m−1],
. . ., p[m−2, m−1], p[m−1]. A proper suffix of that pattern is a suffix which is different
from the pattern itself.

Given the pattern p[0, 1, . . . , m−1], for j = 0, . . . , m−1, we have that the prefix
p0j is the sequence of the j+1 leftmost characters of the pattern. The following tables
shows the prefixes of the pattern p[0, 1, . . . , m−1]. For j = 0, the prefix p00 is the
leftmost character p[0] of the pattern.

prefixes p0j of the pattern p[0, 1, . . . , m−1] length of the prefix

j = 0 p00 = p[0] 1
j = 1 p01 = p[0, 1] 2
.

j = m−1 p0 m−1 = p[0, 1, . . . , m−1] m

Definition 9.1.4. [Failure Function] Given a pattern p of length m, its failure
function π is defined for each j = 0, . . . , m−1, and π[j] is the length of the longest
proper prefix of p0j which is also a proper suffix of p0j .

We have that:

π[0] = 0
π[1] = if p[0] = p[1] then 1 else 0

If we consider the pattern a a b a a, whose length m is 5, we get the failure function
which is represented in the following table where, for j = 0, . . . , m−1, the value of p[j]
is written in column j of the row named ‘pattern p’, and the value of π[j] is written
in column j of the row named ‘failure function π’:

p[0] p[1] p[2] p[3] p[4]
pattern p: a a b a a

failure function π: 0 1 0 1 2
π[0] π[1] π[2] π[3] π[4]

Let us explain the entries of the above table. We have that:
(i) p00 is a and the longest proper prefix of a which is also a proper suffix of a, is ε
and the length of ε is 0. Thus, π[0] = 0.
(ii) p01 is a a and the longest proper prefix of a a which is also a proper suffix of a a,
is a and the length of a is 1. Thus, π[1] = 1.
(iii) p02 is a a b and the longest proper prefix of a a b which is also a proper suffix of
a a b, is ε and the length of ε is 0. Thus, π[2] = 0.
(iv) p03 is a a b a and the longest proper prefix of a a b a which is also a proper suffix
of a a b a, is a and the length of a is 1. Thus, π[3] = 1.
(v) p04 is a a b a a and the longest proper prefix of a a b a a which is also a proper suffix
of a a b a a, is a a and the length of a a is 2. Thus, π[4] = 2.

236 9. STRING MATCHING

If all characters in the pattern p are equal, that is, p[0] = p[1] = . . . = p[m−1], then
the failure function π is such that: π[0] = 0, π[1] = 1, π[2] = 2, . . . , π[m−1] = m−1.
Thus, if we assume that the pattern p is a sequence of a’s, we get the following table,
where for j = 0, . . . , m−1, the j-th column indicates that p[j]=a and π[j]=j:

p[0] p[1] p[2] . . . p[m−1]
pattern p: a a a . . . a

failure function π: 0 1 2 . . . m−1
π[0] π[1] π[2] . . . π[m−1]

The failure function derived at the end of the first part of the Knuth-Morris-Pratt
algorithm, called Computation of the failure function, is used during the second phase,
called Computation of the occurrences of the pattern, as we now indicate.

Let us consider the above pattern a a b a a and suppose that we have found the
matching substring a a b a and we get a mismatch on the last character which should
be a. That is, s[i] 2= a. The value of j is 4. This mismatch tells us that we have to
consider a new value for j which is π[j−1] (see instruction (2.β)). In our case we get
j =1. Then, we check whether or not the current character in the subject string is a
(because p[1] is a). We fail again and we get the new value of j which is 0. Indeed,
according to the instruction (2.β), we have to take as new value of j the value of
π[j−1], that is, π[0] which is 0. At this point it is not the case that j >0, we exit the
loop of instruction (2.β), and we perform instruction (2.γ).

Since p[0] = a and s[i] 2= a and j 2= m, we increase i by 1 (which corresponds to
a shift of the pattern on the subject string by one character) and we execute again
the instructions (2.β), (2.γ), and (2.δ) with this new value of i (actually, in our case,
since j =0, the instruction (2.β) will not be executed).

The failure function for a pattern p[0] p[1] . . . p[m−1] can be represented as a
finite automaton whose states are 0, 1, . . . , m−1, m (see Figure 9.1.1 on the next
page for the failure function for the pattern a a b a a). For each k = 0, . . . , m−1, there
is a forward arc from state k to state k+1 labeled by the predicate ‘= p[k]’. For each
k = 1, . . . , m, there is a backward arc from state k to state π[k−1] labeled by the
predicate ‘2= p[k]’. The label of the backward arc from state m to state π[m−1] is
labeled by the predicate true. From state 0 there is an arc to state 0 itself labeled by
‘2= p[0]’.

This automaton is used as an acceptor of the subject string in the second part
of the Knuth-Morris-Pratt algorithm called Computation of the occurrences of the
pattern, according to the following rule:

if for the input subject string s the automaton gets from the initial state 0 to
the final state m, then there is an occurrence of the pattern p in the subject
string s.

The predicate in each arc of the automaton allows the transition iff it is satisfied by
the current character of the subject string.

For the pattern a a b a a of length m=5 the automaton which represents the failure
function is depicted in Figure 9.1.1 on the facing page. For the pattern a b a b a a a

9.1. KNUTH-MORRIS-PRATT PATTERN MATCHING 237

•

• • • • •0 1 2 3 4 5

p[0] p[1] p[2] p[3] p[4]

a a b a a

π[j] : 0 1 0 1 2

j : 0 1 2 3 4

= a = a = b = a = a

2= a

2= a 2= b

2= a

2= a
true

Figure 9.1.1. The finite automaton corresponding to the failure func-
tion for the pattern a a b a a. We have that m=5. When the characters
of the subject string are fed into this automaton for finding the oc-
currences of the pattern, we consider the next character in input only
when we make a transition with the dot •.

of length m = 7 the automaton which represents the failure function is depicted in
Figure 9.1.2 on the next page.

At each state the automaton which represents the failure function, reads the
character at hand and that character is used for making the transition to the next
state. As already stated, in the figures representing the failure functions as finite
automata, the failure function is used for drawing the backward arcs according to the
following rules:

(i) for all i, j, with i≥j, if π[i−1]=j then there is a backward arc from state i to
state j, and

(ii) there is a backward arc from state 0 to itself labeled by the negation of the
label of the arc from state 0 to state 1.

For instance, in Figure 9.1.1 we have drawn a backward arc from state 4 to state 1
because π[4−1]=1.

Now we would like to make the following two remarks.

Remark 9.1.5. When an occurrence of the pattern has been found (see, for
instance, the arc labeled by true from state 5 to state 2 in the automaton of Fig-
ure 9.1.1), the automaton representing the failure function makes a state transition
as if a failure occurred. Indeed, the pattern occurrence we have found and the next
pattern occurrence may overlap.

Remark 9.1.6. Some of the tests which the failure function forces us to make, can
be avoided because we know in advance the results of these tests. Let us consider, for
instance, the case of the failure function represented by the automaton of Figure 9.1.1.
If in state 4 we have a character of the subject which is different from a we go to
state 1 where the test ‘= a’ is bound fail and we have to go to state 0. By avoiding all

238 9. STRING MATCHING

•

• • • • • • •0 1 2 3 4 5 6 7

p[0] p[1] p[2] p[3] p[4] p[5] p[6]
a b a b a a a

π[j] : 0 0 1 2 3 1 1

j : 0 1 2 3 4 5 6

= a = b = a = b = a = a = a

2= a

2= b

2= a

2=b 2= a

2= a

2= a true

Figure 9.1.2. The finite automaton corresponding to the failure func-
tion for the pattern a b a b a a a. We have that the length m of the pat-
tern is 7. When the characters of the subject string are fed into this
automaton for finding the occurrences of the pattern, we consider the
next character in input only when we make a transition with the dot •.

redundant tests such as the test ‘= a’, we get the automaton of Figure 9.1.3, instead
of the automaton of Figure 9.1.1 on the preceding page.

•

•

•• •

• •
•

•

• • • • •

p[0] p[1] p[2] p[3] p[4]

a a b a a

0 1 2 3 4 5
= a = a = b = a = a

2= a

2= a

2= a∧ 2= b = a

2= a 2= a

= a

= b

2= a∧ 2= b

Figure 9.1.3. The finite automaton corresponding to the failure func-
tion for the pattern a a b a a. When the characters of the subject string
are fed into this automaton for finding the occurrences of the pattern,
we always consider the next character in input (indeed, all transitions
have the dot •).

Note, however, that if we use the automaton of Figure 9.1.3, instead of the one
of Figure 9.1.1, we do not improve the asymptotic time complexity of the Knuth-
Morris-Pratt algorithm (see Section 9.1.1 on the next page).

It is interesting to notice that the first part of the Knuth-Morris-Pratt algorithm
which computes the failure function, that is, the length of the longest proper prefix

9.1. KNUTH-MORRIS-PRATT PATTERN MATCHING 239

of the pattern which is also a proper suffix of pattern, is very similar to the second
part of the algorithm which computes the occurrences of the pattern in the subject
string. The only differences between the two parts are the following ones.

(i) The for-do loop in instruction (1.α) starts with i = 1 and not i = 0, because for
every pattern the value of π[0] is 0 and thus, we can skip the loop for i=0.

(ii) We record the fact that an occurrence of the pattern has been found, by inserting
in the list λ the initial position of the occurrence of the pattern in the subject string
(see instruction (2.δ)). Then we continue our matching process by looking for a new,
possibly overlapping, occurrence of the pattern, and we do so as if a matching failure
did occur. Indeed, as in the case of a failure, we update the value of j and the new
value of j is set to π[j−1].

We have that the Knuth-Morris-Pratt algorithm for the input subject

s = a a b a c a a b a a b a a

with length n=13 and the input pattern

p = a a b a a

computes the list [5, 8] of occurrence positions (see Figure 9.1.4).

0 1 2 3 4 5 6 7 8 9 10 11 12

a a b a c a a b a a b a a

Figure 9.1.4. The two occurrences at positions 5 and 8 of the pattern
a a b a a in the subject string a a b a c a a b a a b a a.

9.1.1. Time Complexity Analysis of the Knuth-Morris-Pratt Algorithm.

We start off by evaluating the time complexity for computing the failure function.
We will measure this time complexity in terms of the number of the assignments to
the variable j.

The for-loop of the computation of the failure function is performed from i=1 to
i=m−1. The while-loop at instruction (1.β) in the body of the for-loop is controlled
by the value of j which may be at most m−1 (and this case occurs when the characters
in the pattern are all equal) and at each execution of the body of the loop, as we will
prove in Lemma 9.1.7 below, the value of j can only be decreased. Thus, we conclude
that the time complexity of the computation of the failure function is O(m2).

The following analysis, based on an amortized analysis, shows that the cost of the
computation of the failure function is, in fact, O(m). First we prove the following
lemma.

Lemma 9.1.7. For all i=1, . . . , m−1, for all h=0, . . . , i, 0≤π[h]≤h and 0≤j≤ i.

Proof. By induction.
(Basis : i=1). We want to show that after the execution of instruction (1.δ) in the
first iteration of the for-loop, that is, for i=1, we have that: for h = 0, 1, 0≤π[h]≤h
and 0≤j ≤1. Indeed, since initially j =0, instruction (1.β) is not performed. Thus,
(i) by (1.γ) we have that if p[0]=p[1] then j =1 else j =0, and (ii) by (1.δ) we have

240 9. STRING MATCHING

that π[1] = j. By recalling that: (i) π[0] = 0, and (ii) if p[0] = p[1] then π[1] = 1, we
get, as desired, that 0≤π[0]≤0, 0≤π[1]≤1, and 0≤j≤1.

(Step: i>1) We assume that for all h = 0, . . . , i, 0≤π[h]≤h and 0≤ j≤ i holds for
i=k and we want to show that for all h = 0, . . . , i, 0≤π[h]≤h and 0≤ j≤ i holds
for i = k+1. By using Hoare’s triples we have to show the validity of the following
triple:

{ for h=0, . . . , k, 0≤π[h]≤h and 0≤j≤k }

while j >0 and p[j] 2= p[k+1] do j := π[j−1]; (1.β)
if p[j]=p[k+1] then j := j+1; (1.γ)
π[k+1] = j (1.δ)

{ for h=0, . . . , k+1, 0≤π[h]≤h and 0≤j≤k+1 }

We have the following two points.
Point (1). At instruction (1.β) the value of the variable j never increases and may
only decrease or remain unchanged. Indeed, by the precondition, we have that for
h = 0, . . . , k, 0≤ π[h]≤ h and thus, for h′ = 1, . . . , k+1, 0≤ π[h′−1]≤ h′ −1. As a
consequence, for h′ = 1, . . . , k+1, 0≤ π[h′−1] < h′ and the assignment j := π[j−1],
which is performed only if j is such that 1 ≤ j ≤ k and p[j] 2= p[k +1] (see the
precondition 0≤j≤k and the test of the while-loop), decreases the value of j.
Point (2). At instruction (1.γ) the variable j increases by at most one unit.

From Points (1) and (2) and the precondition 0≤j≤k, after instruction (1.δ) we
get that: 0≤j≤k+1.

In order to get the postcondition it remains to show that for h = 0, . . . , k+1, we
have that 0≤ π[h]≤ h. By the precondition and the fact that for h = 0, . . . , k, the
values of 0 ≤ π[h] ≤ h are not changed, we get that for h = 0, . . . , k, 0 ≤ π[h] ≤ h.
Moreover, we have that 0 ≤ π[k+1] ≤ k+1, because at instruction (1.δ) π[k+1] is
assigned the value of j and we have already proved that 0≤j≤k+1. This completes
the proof of the lemma. "

During the computation of the failure function, j is initially 0 and it may be
increased by at most m−1 units during the m−1 iterations of the body of the for-loop.
During the execution of the while-loop at instruction (1.β) we have that j is decreased
(by Lemma 9.1.7 on the previous page). Thus, during the whole computation of the
failure function the variable j is assigned at most 2(m−1) times, that is, the time
complexity of the failure function is O(m).

Since the first part of the Knuth-Morris-Pratt algorithm which compute the failure
function, has the same structure of the second part which computes the occurrences
of the pattern, in order to measure the time complexity of the Knuth-Morris-Pratt
algorithm we can measure the computation of two failure functions, one for a pattern
of length m and one for a pattern of length n. We conclude that the overall time
complexity of the Knuth-Morris-Pratt algorithm is O(m+n).

Note that the time complexity is still O(m+n) if we measure the number of tests
performed by the Knuth-Morris-Pratt algorithm, instead of the number of assign-
ments to j.

Indeed, for all values of j, we make an assignment to j after at most two tests,
which are: (i) j > 0, and (ii) p[j] 2= p[i]. We do not have to count the test p[j] = p[i]

9.1. KNUTH-MORRIS-PRATT PATTERN MATCHING 241

because if we know the value of the test p[j] 2=p[i] we also know the value of the test
p[j]=p[i].

It is easy to see that the same time complexity of O(m+n) for the Knuth-Morris-
Pratt algorithm holds if we measure the sum of the number of the assignments to j
and the number of tests.

9.1.2. Java Implementation of the Knuth-Morris-Pratt Algorithm.

Below we present a Java program which implements to Knuth-Morris-Pratt algorithm
for pattern matching. It runs under the Java compiler is 1.5.0-13 and Mac OS X. In
this program, instead of constructing the list λ of positions, we have printed out the
position of every occurrence of the pattern as soon as it has been computed.

The test case presented in the final comments of the program shows the values of
the variables i and j during the execution of the Knuth-Morris-Pratt algorithm for
the subject a a b a c a a b a a b a a and the pattern a a b a a which occurs at positions 5
and 8.

/**
* ===
* KNUTH-MORRIS-PRATT PATTERN MATCHER
* Filename: "KMP.java"
*
* ===
*/

public class KMP {

private static void printar(int[] array, int size) {

for (int k=0; k<size; k++) {System.out.print(array[k]+" ");}

System.out.println();
}

/**
* --
* main
* --
*/

public static void main(String[] args) {

boolean traceon = true; // traceon: tracing variable

String s, p; // s: given subject
int sl,pl; // p: pattern to search

s = "aabacaabaabaa";
p = "aabaa";

sl = s.length();
pl = p.length();

System.out.println("\nThe given subject string s of " + sl +
" elements is:\n " + s);

242 9. STRING MATCHING

System.out.println("\nThe given pattern p of "+pl+" elements is:\n "+ p);

/**
* ---
* Recall that indexing in Java begins with 0 (as in C++). Thus,
*
* stp=abcab length(stp)=5 stp.charAt(2) is c.
* index: 01234
*
* lstp1=4
* ---
*/

/**
* --
* computing the failure function pi
* --
*/

int [] pi = new int [pl]; // the length of pi is the length of the pattern
int i, j;

pi[0]=0;
j=0;
for (i=1; i<pl; i=i+1) { // <<-----------------------+

while (j>0 && p.charAt(j)!=p.charAt(i)) {j=pi[j-1];}; // |
if (p.charAt(j)==p.charAt(i)) {j=j+1;}; // |
pi[i]=j; // |

}; // end of for // <<-----------------------+

//--

System.out.print(
"\nThe failure function is given by the following array pi" +
"\nof " + pl + " elements:\n ");

printar(pi,pl); System.out.println();

//--

/**
* ---
* finding the occurrences of the pattern
* ---
*/

j=0;
for (i=0; i<sl; i=i+1) { // <<-----------------------+

while (j>0 && p.charAt(j)!=s.charAt(i)) {j=pi[j-1];}; // |
if (p.charAt(j)==s.charAt(i)) {j=j+1;}; // |
if (traceon) {System.out.println(" i="+i+" j="+j);}; // tracing // |
if (j==pl) { // |
System.out.println("The pattern occurs at position "+(i-pl+1)+"\n");// |
j=pi[j-1]; // |
}; // |

}; // end of for // <<-----------------------+
} // end of main

}

9.2. STRING MATCHING IN PROLOG 243

/**
* input: output: (with traceon == true)
* ---
* javac KMP.java
* java KMP
*
* The given subject string s of 13 elements is:
* aabacaabaabaa
*
* The given pattern p of 5 elements is:
* aabaa
*
* The failure function is given by the following array pi
* of 5 elements:
* 0 1 0 1 2
*
* i=0 j=1
* i=1 j=2
* i=2 j=3
* i=3 j=4
* i=4 j=0
* i=5 j=1
* i=6 j=2
* i=7 j=3
* i=8 j=4
* i=9 j=5
* The pattern occurs at position 5
*
* i=10 j=3
* i=11 j=4
* i=12 j=5
* The pattern occurs at position 8
*
* ---
*/

9.2. String Matching in Prolog

The following Prolog program tests whether or not a pattern P (viewed as list of
characters) occurs in a string S (also viewed as a list of characters). The pattern P
occurs in S iff in S there exists a consecutive list of characters which is a substring
of S and is equal to P .

In order to understand the way in which this program works it is enough to recall
the usual definition of the append predicate, that is, append(Xs, Ys, Zs) holds iff the
string Zs is the concatenation of the strings Xs and Ys. For instance, we have that:

append([2, 3], [4, 2], Zs) holds iff Zs = [2, 3, 4, 2]

append(Xs, [4, 4], [4, 3, 4, 4]) holds iff Xs = [4, 3].

String Matching in Prolog: basic version.

1. occur(P, S) ← append(I, R, S), append(L, P, I)
2. append([], Ys, Ys) ←
3. append([X|Xs], Ys, [X|Zs]) ← append(Xs, Ys, Zs)

244 9. STRING MATCHING

We have that occur(P, S) holds iff the pattern P occurs in the string S. Indeed,
clause 1 says that P occurs in S iff there exist three lists of characters I (short for In-
termediate), R (short for right), and L (short for left) such that both append(I, R, S)
and append(L, P, I) hold. We can depict this situation as in the following figure,
where the list I is the concatenation of the lists L and P , and the list S is the
concatenation of the lists I and R.

subject S :
L pattern P

RI

Note that, although the position of the atoms does not influence the logical mean-
ing of a clause, it may influence its operational behaviour. In particular, due to
the implementation of the append predicate in Prolog, the position of the atoms
append(I, R, S) and append(L, P, I) in the body of clause 1 should not be inter-
changed because, otherwise, the computation may not terminate.

From the length of the list L we can get the position of the pattern P in the
subject string S.

Then the various positions in which the pattern occurs in the subject, can be
obtained by using the backtracking facility available in Prolog. This can done by
using the findall predicate as indicated in the following program.

String Matching in Prolog: finding all occurrence positions.

1. occur(P, S, N) ← append(I ,R, S), append(L, P, I), length(L, N)
2. append([], Ys, Ys) ←
3. append([X|Xs], Ys, [X|Zs]) ← append(Xs, Ys, Zs)
4. length([], 0).
5. length([H|T], N1) ← length(T, N), N1 is N+1

Recall that in Prolog findall(N, Goal, Ns) returns a list Ns which represents the
multiset of all instances of the variable N such that Goal is satisfied. The variable N
should appear within the clause only in the term Goal. By submitting the query:

← findall(N , occur([a a b a a],[a a b a c a a b a a b a a], N), Ns)

we get the value [5, 8] for the variable Ns (see also Figure 9.1.4 on page 239).

CHAPTER 10

Appendices

10.1. Simple Prolog Programs and Parsing Sentences in Prolog

In this section we present a few simple Prolog programs for: (i) checking natural
numbers, (ii) sorting strings, and (iii) parsing strings.

Checking Natural Numbers.

The following program tests whether or not a given term X is a natural number in
the set {0, s(0), s(s(0)), . . .}. X is a natural number iff nat(X). The following two
clauses define the unary predicate nat(X).

Natural Numbers
1. nat(0) ←
2. nat(s(X)) ← nat(X)

For instance, we have that the query ← nat(s(s(s(0)))) evaluates to true.

Sorting Strings.

The following program sorts a given list of natural numbers. Each natural number
is an element of the set {0, 1, 2, . . .}. This program is a very slow program because
it constructs all possible permutations of the elements of the given list and then it
outputs the permutation which is ordered. Since there are n! distinct permutations
of n distinct elements, this program has worst case time complexity of order O(n!).

Recall that: (i) 2n = O(n!) and (ii) n! = O(nn), while (iii) n! 2= O(2n) and
(iv) nn 2= O(n!).

Permutation Sort
1. sort(L1, L2) ← permutation(L1, L2), sorted(L2)
2. permutation([], []) ←
3. permutation(L, [H|T])←append(U,[H|V],L), : placeH in a position inW

append(U, V, W), : break W into U and V
permutation(W, T) : take a permutation W of T

4. sorted(L) ← sorted1(0, L)
5. sorted1(N, []) ←
6. sorted1(N, [H|T]) ← N≤H, sorted1(H, T)

For instance, we have that the query ← sort([3, 2, 2, 4], L2) evaluates to true with
the variable L2 bound to [2, 2, 3, 4].

245

246 10. APPENDICES

Now we present a different Prolog program for sorting a given list of natural
numbers. This program is based on the Quicksort algorithm, and it is much faster
than the previous program, because its worst case time complexity is of order O(n2),
where n is the length of the list.

Quicksort
1. partition(H, [A|X], [A|Y], Z) ← A≤H, partition(H, X, Y, Z)
2. partition(H, [A|X], Y, [A|Z]) ← A>H, partition(H, X, Y, Z)
3. partition(H, [], [], []) ←
4. quicksort([], []) ←
5. quicksort([H|T], S) ← partition(H, T, A, B),

quicksort(A, A1), quicksort(B, B1),
append(A1, [H|B1], S)

Parsing Sentences.

The following programs show how to parse sentences generated by context-free gram-
mars. We follow the approach described in [5, Chapter 9]. Here we will not present
the general parsing methodology and the reader may refer to [5, Chapter 9] for more
information on this topic.

Let us consider the context-free grammar G with axiom sentence and the following
productions:

sentence → noun-phrase verb-phrase
noun-phrase → determiner noun
verb-phrase → verb noun-phrase
verb-phrase → verb
determiner → the
noun → apple | man
verb → eats | sings

Here is a simple Prolog program for parsing strings of the language generated by that
grammar.

Parsing Sentences. Program P1

1.1 sentence(X) ← append(Y, Z, X), noun
¯
phrase(Y), verb

¯
phrase(Z)

1.2 noun
¯
phrase(X) ← append(Y, Z, X), determiner(Y), noun(Z)

1.3 verb
¯
phrase(X) ← append(Y, Z, X), verb(Y), noun

¯
phrase(Z)

1.4 verb
¯
phrase(X) ← verb(X)

1.5 determiner([the]) ←
1.6 noun([apple]) ←
1.7 noun([man]) ←
1.8 verb([eats]) ←
1.9 verb([sings]) ←

10.1. SIMPLE PROLOG PROGRAMS AND PARSING SENTENCES IN PROLOG 247

If we want to parse, for instance, the string ‘the man eats the apple’, we have to
submit to the above Prolog program P1 the following query:

← sentence([the,man, eats , the, apple])

By evaluating that query we get the empty clause, and the trace of that evaluation
gives us the derivation tree of the given string ‘the man eats the apple’.

Here is an alternative Prolog program for parsing strings of the language generated
by the grammar G given above. It runs faster than Program P1, because it avoids
the use of append and uses, instead, the so called difference lists [24, page 283].

Parsing Sentences (Use of difference lists). Program P2

2.1 sentence(S0, S) ← noun
¯
phrase(S0, S1), verb

¯
phrase(S1, S)

2.2 noun
¯
phrase(S0, S) ← determiner(S0, S1), noun(S1, S)

2.3 verb
¯
phrase(S0, S) ← verb(S0, S1), noun

¯
phrase(S1, S)

2.4 verb
¯
phrase(S0, S) ← verb(S0, S)

2.5 determiner([the|S], S) ←
2.6 noun([apple|S], S) ←
2.7 noun([man|S], S) ←
2.8 verb([eats |S], S) ←
2.9 verb([sings|S], S) ←

For this program if we want to parse the string ‘the man eats the apple’, we have to
submit the following query:

← sentence([the,man, eats , the, apple], [])

Now we present a third Prolog program for parsing strings of the language gen-
erated by the same context-free grammar G given above. This program uses the so
called definite clause grammars (or DCG ’s) which, indeed, were introduced for mak-
ing it easier the specification and the solution of parsing problems [5, Section 9.1].
Rules 3.1–3.9 below encode the rules of the given context-free grammar. We write
each rule using the arrow ‘-->’ to separate the left hand side from the right hand
side, and we write a dot at the right end of each rule.

Parsing Sentences (Use of definite clause grammars). Program P3

3.1 sentence --> noun-phrase, verb-phrase.
3.2 noun-phrase --> determiner, noun.
3.3 verb-phrase --> verb, noun-phrase.
3.4 verb-phrase --> verb.
3.5 determiner --> [the].
3.6 noun --> [apple].
3.7 noun --> [man].
3.8 verb --> [eats].
3.9 verb --> [sings].

248 10. APPENDICES

If we want to parse the string ‘the man eats the apple’, we have to submit the following
query:

← sentence([the,man, eats , the, apple], [])

If we also want to construct the parse tree of the sentence being parsed, we need the
following program which uses a definite clause grammar with arguments:

Parsing Sentences with Parse Trees (Use of definite clause grammars).ProgramP4

4.1 sentence(st(NP ,VP)) --> noun-phrase(NP), verb-phrase(VP).
4.2 noun-phrase(np(D, N)) --> determiner(D), noun(N).
4.3 verb-phrase(vp(V,NP)) --> verb(V), noun-phrase(VP).
4.4 verb-phrase(vp(V)) --> verb(V).
4.5 determiner(d(the)) --> [the].
4.6 noun(n(apple)) --> [apple].
4.7 noun(n(man)) --> [man].
4.8 verb(v(eats)) --> [eats].
4.9 verb(v(sings)) --> [sings].

If we want to parse the string ‘the man eats the apple’ and we want to construct the
parse tree of that string, we have to submit the following query:

← sentence(X, [the,man, eats, the , apple], [])

and we get the following parse tree represented as a term bound to the variable X
(see also Figure 10.1.1):

X = st(np(d(the), n(man)), vp(v(eats), np(d(the), n(apple))))

st

np vp

d n v np

the man eats d n

the apple

Figure 10.1.1. The parse tree of the string ‘the man eats the apple’. "

10.2. DECIDABILITY RESULTS FOR LL(K) AND LR(K) GRAMMARS AND LANGUAGES 249

10.2. Decidability Results for LL(k) and LR(k) Grammars and
Languages

In this section we present some decidability and undecidability results about the
LL(k) languages and the LR(k) languages (see also [10, Section 8.5]). Some other
decidability and undecidability results concerning the context-free languages have
been reported in [21].

It is undecidable whether or not given a context-free grammar G there exist k≥0
and an LR(k) grammar G1 such that G and G1 generate the same language (see [12]
and [3, pages 397–399, Exercise 5.2.12]).

This undecidability result can be derived as follows. We have that: (i) the class
of the LR(0) languages is contained in the class of the LR(1) languages (which is
the class of deterministic context free languages), and (ii) for any k > 0 the class of
the LR(k) languages is equal to the class of the LR(1) languages. Thus, undecidabil-
ity holds because, otherwise, it would have been decidable the problem of knowing
whether or not a context free grammar is equivalent to a deterministic context-free
grammar.

It is undecidable whether or not given a context-free grammar G and a number
k≥ 0, G equivalent to an LR(k) grammar [12, pages 397–399 Exercise 5.2.12]. For
k>0 we can reason as follows. Since for any k>0, the class of the LR(k) languages is
equal to the class of the LR(1) languages (which is the class of deterministic context-
free languages), this problem is undecidable for k > 0 because otherwise, it would
have been decidable the problem of testing whether or not a context-free grammar
generates a deterministic context-free language.

It is undecidable whether or not given a context-free grammar G there exists k≥0
such that G is an LR(k) grammar [23, page 399].

We have, however, the following result.

Theorem 10.2.1. (i) It is decidable whether or not given k≥0 and a context-free
grammar G, G is an LL(k) grammar. (ii) It is decidable whether or not given k≥0
and a context-free grammar G, G is an LR(k) grammar.

The two decidable problems of this Theorem 10.2.1 are solvable in nondetermin-
istic 1-exponential time [23, page 399] when k is given in binary, that is, they are
solvable in O(2p(n)) time by a nondeterministic Turing Machine, where p(n) is a poly-
nomial on the size of the input grammar G (that is, the sum of the number of the
characters occurring in its productions) plus the size of k written in binary.

It is undecidable whether or not given a context-free grammar G, there exists
k≥ 0 such that G is an LL(k) grammar (see [22, Theorem 11] and [23, page 399]).
However, it is decidable whether or not given an LR(h) grammar G, for some h≥0,
there exists k≥ 0 such that G is an LL(k) grammar [22, Theorem 12] and [4, page
690]. (In [3, page 397] it is incorrectly stated that the latter problem is undecidable.)

It is undecidable whether or not given a context-free grammar G, there exist k≥0
and an LL(k) grammar G1 such that L(G) = L(G1) (see [22, Theorem 13] and [3,
page 361]).

250 10. APPENDICES

It is undecidable whether or not given a context-free grammar G and a number
k≥0, there exists an LL(k) grammar G1 such that L(G)=L(G1) ([22, Theorem 13]
and [3, page 361]).

Given two LL(k) grammars G1 and G2, for some k ≥ 0, it is decidable whether
or not L(G1)=L(G2) [3, page 362]. Note that if G1 is an LL(k) grammar, for some
k≥0, and G2 is an LL(h) grammar, for some h≥0, we can consider both grammars
G1 and G2 to be LL(max(k, h)) grammars.

List of Algorithms and Programs

Chapter 2. Exploring Search Spaces
Sum . 17
Linear search . 18
State dependent linear search . 20
Dispositions . 24
Combinations . 25
n-Queens . 26
Depth first visit of trees: basic version . 29
Depth first visit of trees: Burstall’s version . 32
Breadth first visit of trees . 33

Chapter 3. Chop-and-Expand Parsers for Context-Free Languages
Chop-and-Expand Parser in a functional language SML-like 38
Chop-and-Expand Parser in a Java: the class List.java 39
Chop-and-Expand Parser in a Java: CFParser.java . 41
Chop-and-Expand Parser in Prolog . 50

Chapter 4. Parsers for Deterministic Context-Free Languages: LL(k) Parsers
Construction of LL(1) parsing tables . 57
Construction of LL(2) parsing tables . 65

Chapter 5. Parsers for Deterministic Context-Free Languages: LR(k) Parsers
Construction of RL(0) parsing tables . 77
Construction of RL(0) parsing tables: avoiding the Powerset Construction . . 86
Construction of SRL(1) parsing tables . 87
Construction of RL(1) parsing tables . 90
Construction of LARL(1) parsing tables . 104

Chapter 6. Parsers for Operator Grammars and Parser Generators
Parsing using operator-precedence grammars . 124
Constructing left and right functions for operator-precedence grammars . . . 126
Generation of parsers using Bison and Flex:

parser for an LALR(1) grammar: grammar.y . 128
parser for a calculator: calculator.y . 133
parser for a simple assignment language: fSAL.y . 137
parser for a simple assignment language: fSAL.lex . 139
parser for a simple assignment language: fSAL.h . 141

Generation of lexical analyzers using Flex alone: faSAL.lex 143

Chapter 7. Visits of Trees and Graphs and Evaluation of Expressions
Depth first visit of a tree: DepthFirstVisit.java . 148

251

252 LIST OF ALGORITHMS AND PROGRAMS

Depth first visit of a tree with graphical user interface:
DepthFirstVisitGUI.java . 152

Evaluator of a boolean expression: BooleanExpressionEvaluator.java . . . 158
Evaluator of a boolean expression with user graphical interface:

BooleanExpressionEvaluatorGUI.lex . 163
Evaluator of a boolean expression: PropositionalTheoremProver.java . . . 169
Evaluator of a boolean expression with user graphical interface:

PropositionalTheoremProverGUI.lex . 175
Encoding n-ary trees into binary trees

Binary trees: the class BinNode.java . 181
n-ary trees: the class NaryNode.java . 184
List of n-ary trees: the class List.java . 186

Encoding n-ary trees into binary trees: EncodingTrees.java 189
Encoding n-ary trees into binary trees in a functional language: Rin 195
Decoding binary trees back into n-ary trees in a functional language: Sin . . 195
Computation of a minimal spanning tree of an undirected graph:

Dijkstra’s algorithm . 201
The class MST.java . 205
The class UGraph.java . 207

Chapter 8. Path Problems in Directed Graphs
Matrix multiplication

Elementary algorithm . 209
Partition algorithm . 210
Strassen’s algorithm . 210

Computation of the transitive closure of boolean matrices 216
Computation of the single source shortest paths in directed graphs:

Dijkstra’s algorithm . 221
The class SSSP.java . 225
The class Graph.java . 228

Chapter 9. String Matching
Naive pattern matcher: KMP.java . 233
Knuth-Morris-Pratt pattern matcher . 234

Computation of the failure function . 234
Computation of the occurrences of the pattern . 234

Knuth-Morris-Pratt pattern matcher: KMP.java . 241
String matching in Prolog: basic version . 243
String matching in Prolog: finding all occurrence positions 244

Chapter 10. Appendices
Permutation sort in Prolog . 245
Quicksort in Prolog . 246
Parsing of sentences in Prolog . 246

Use of difference lists . 247
Use of definite clause grammars (DCG’s) . 247
Use of definite clause grammars and generating parse trees 248

Index

(S, +, ! , 0, 1)-ring: ring with 0 and 1, 212
(S, +, ! , 0, 1)-semiring of matrices: semiring

of matrices with 0 and 1, 212
(S, +, ! , 0, 1)-semiring: semiring with 0 and

1, 211
ε-move, 85
∗closure, 9
+closure, 9
cons operation on lists, 186
k-bounded concatenation of languages, 62
k-predictive parsing algorithm, 52
n queens, 26
n-ary tree, 181, 183
n-ary trees in C++, 196
n-ary trees in Pascal, 196
Hin: decoding function, 188
Kin: encoding function, 188
B ′: a domain of binary trees, 194
B : a domain of binary trees, 181
Firstk for strings, 62
First1 for strings: First1(α), 55
First1 for symbols: First1(x), 54
Followk for nonterminal symbols, 67
Follow1 for nonterminal symbols, 55, 87, 95
LALR(1) grammars, 105
LALR(1) languages, 105
LALR(1) parsers, 105
LL(0) languages, 73
LL(1) grammars, 53, 57
LL(1) languages, 57
LL(1) parsers, 53
LL(2) parsing: an example, 64
LL(k) grammars, 51, 68
LL(k) grammars in Chomsky normal form,

73
LL(k) grammars in Greibach normal form,

69, 73
LL(k) languages, 52
LL(k) parsers (k ≥ 1), 51, 62
LR(0) complete item, 77
LR(0) grammar: an example, 85
LR(0) grammars, 84

LR(0) item, 77
LR(0) languages, 85, 86, 249
LR(0) parsers, 77
LR(1) grammars, 95
LR(1) languages, 96, 249
LR(1) parsers, 90
LR(k) grammars, 75, 249
LR(k) grammars in Chomsky normal form,

103
LR(k) languages, 249
LR(k) parsers, 75
SLR(1) grammars, 88
SLR(1) parsers, 87
Tlist ′: a domain of list of n-ary trees, 194
Tlist : a domain of lists of n-ary trees, 183
T ′: a domain of n-ary trees, 194
T : a domain of n-ary trees, 183
SLR(1) languages, 87

absorbent element, 211
accept action for LR(0) parsing, 81
accept action for LR(1) parsing, 93
adjacency matrix, 209, 215
algorithm for constructing the LALR(1)

parsing table, 104
algorithm for constructing the LL(1) parsing

table, 57
algorithm for constructing the LR(0) parsing

table, 77, 86
algorithm for constructing the LR(1) parsing

table, 90
algorithm for constructing the SLR(1)

parsing table, 87
algorithm for matching: Knuth-Morris-Pratt

version, 234
algorithm for matching: naive version, 233
algorithm for matrix multiplication:

elementary version, 209
algorithm for matrix multiplication:

partition method, 210
algorithm for matrix multiplication:

Strassen’s method, 210

253

254 INDEX

algorithm: Minimal Spanning Tree (by
Dijkstra), 201

algorithm: Single Source Shortest Path (by
Dijkstra), 221

alphabet, 9
alphabet of a grammar, 10
ambiguous grammar, 128, 135
amortized time complexity analysis, 239
atom, 157, 168
attribute grammars, 130
augmented context-free grammars, 76
axiom of a grammar, 10, 129

backtracking algorithms, 21
backtracking for shortest path algorithms,

222
backward arc, 236
bf-existsev function, 34
big production, 78, 87
big productions with lookahead sets for

LR(1) parsing, 91
binary tree, 181
binary trees in C++, 196
binary trees in Pascal, 195
Bison: parser generator, 128
blue node, 197
boolean expression, 157
boolean ic-semiring, 214
boolean multiplication and transitive closure,

216
bottom-up parser, 145, 225
breadth first visit, 33

chop move, 53
chop operation, 32
chop-and-expand parser, 35, 39, 50
click, 197
closed semiring, 214
closure rules for LR(0) parsing, 86
closure rules for LR(1) parsing, 92
Cocke-Younger-Kasami parser, 35
combinations, 25
comparison of matrix multiplication

algorithms, 209, 211
compiler-compilers, 128
complete item for LR(0) parsing, 77, 85
complete item for LR(1) parsing, 95
complete item for SLR(1) parsing, 87
concatenation of words, denoted ! , 9
condition, 157, 168
conflicts in LALR(1) parsing, 105
conflicts in LR(1) parsing, 94
conflicts in LR(0) parsing, 84
context-free grammar, 11
context-free language, 11

context-free production, 11
context-sensitive grammar, 11
context-sensitive language, 11
context-sensitive production, 11
cover state, 82

decidability of equivalence for LL(k)
grammars, 73

decoding function Hin, 188
definite clause grammar (DCG), 247
depth first visit (basic version), 29
depth first visit (Burstall’s version), 31
depth first visit of a tree, 147
derivation of a sentential form, 12
derivation of a word, 12
derivation step, 12
derivation tree, 13
descendant of a state, 36
deterministic context-free language, 85, 103
deterministic pushdown automaton:

acceptance by final state, 85
deterministic pushdown automaton (or

dpda), 85
deterministic time for constructing parsers,

115
deterministic time for testing grammars, 115
difference lists in Prolog, 247
dispositions, 24
distance between nodes, 197
domain equation for binary trees, 181
domain equations for n-ary trees, 183
domain equations for lists of n-ary trees, 183
domain B of binary trees, 181
domain B ′ of binary trees, 194
domain Tlist of lists of n-ary trees, 183
domain Tlist ′ of lists of n-ary trees, 194
domain T of n-ary trees, 183
domain T ′ of n-ary trees, 194
dpda (or deterministic pushdown

automaton), 85
dynamic programming, 221

Earley parser, 35
empty n-ary tree, 183
empty binary tree, 181
empty list, 186
empty sequence ε, 9
empty string ε, 9
empty word ε, 9
encoding function Kin, 188
encoding of n-ary trees by binary trees, 181
error recovery routine, 125
evaluator of a boolean expression, 157
exists function, 32

INDEX 255

existsev function, 29, 31
existsev1 function, 32
expand function, 35, 37
expand move, 53
expand operation, 33

failure function, 234, 235
fast boolean matrix multiplication, 212
field, 212
flatmap function, 34
Flex: lexical analyzer generator, scanner

generator, 128, 136
Floyd-Warshall’s algorithm, 220
folding, 15
formal grammar, 10
forward arc, 236
free monoid, 9
function inversion, 199, 200
fusion of states, 104

generic class List in Java, 39, 186
global optimum, 198
goto action for SLR(1) parsing, 88
goto action for LR(0) parsing, 81, 82
goto action for LR(1) parsing, 93
grammar, 10
graph: undirected, connected, weighted, 197
greedy algorithm, 198

head function hd, 36
head of the input tape, 52
hierarchy of LL(k) grammars, 73
hierarchy of LL(k) languages, 73
hierarchy of LR(k) grammars, 102
hierarchy of LR(k) languages: collapse, 102,

121

ic-semirings, 213, 214
idempotent complete semirings

(ic-semirings), 214
identity element, 211
incomplete item for LR(1) parsing, 96
index of breadth ib, 21
index of depth id, 21
input head, 52
item for LR(0) parsing, 77

Kleene closure (∗closure), 9
Kruskal’s algorithm, 203

language accepted by a parsing pushdown
automaton, 85

language accepted by an algorithm for
constructing parsing tables, 86

language accepted by LL(k) parsers, 52
language concatenation, 9, 62

language generated by a grammar, 10, 11
language generated by a nonterminal symbol

of a grammar, 11
language or formal language, 9
left associative parsing, 126
left function $, 126
left hand side of a production, 10
left linear regular grammar, 12
left recursive context-free grammar, 16
left recursive context-free production, 16
left-values, 89
leftmost derivation, 12
length of a path in a graph, 209
length of a word, 9
length of an arc, 197, 221
lexical analyzer, 130
lexical analyzer generator: Flex, 128, 136
lexical analyzer without parser generator, 143
lhs of a production, 10
Linear Search program, 18
linear search spaces, 17
lists, 186
literal, 157, 168
local follow set, 63
local optimum, 198
location, 89
lookahead set for LR(1) parsing, 91

matching algorithm: Knuth-Morris-Pratt
version, 233, 234

matching algorithm: Knuth-Morris-Pratt
version, Java implementation, 241

matching algorithm: naive version, 233
matching algorithm: naive version, Prolog

implementation, 243
matching algorithms, 233
matrix multiplication, 209
minimal spanning tree, 197
Minimal Spanning Tree (MST) algorithm (by

Dijkstra), 197, 222
MST algorithm, 197, 222
multiple action in an entry of the LR(1)

parsing table, 94
multiple actions in an entry of the LALR(1)

parsing table, 105
multiple actions in an entry of the LR(0)

parsing table, 84
multiplicative inverse, 212

natural number checking in Prolog, 245
non-empty n-ary tree, 183
non-empty binary tree, 181
non-empty list, 186
non-negative ic-semiring, 214, 219

256 INDEX

nondeterministic finite automata and regular
expressions, 231

nonterminal alphabet of a grammar, 10
nonterminal symbols, 10
nullable symbol, 15

operator grammar, 123
operator-precedence grammars, 123
operator-precedence parsers, 123

parse tree, 13
parser generator: Bison, 128
parser generator: Yacc, 128
parsing sentences in Prolog, 246
parsing table for LALR(1) parsers, 104
parsing table for LL(1) parsers, 53
parsing table for LR(0) parsers, 77
parsing table for LR(1) parsers, 90
parsing table for SLR(1) parsers, 87
path problems in directed graphs, 209, 213
pattern string, 233
Permutation Sort program, 245
plus closure (+closure), 9
positive closure (+closure), 9
postorder traversal of a tree, 147
postorder visit of a tree, 147
Powerset Construction Procedure, 79, 87, 92,

95
precedence between operators, 134, 135
precedence of an operator, 123
prefix of a string, 235
prefix of length k of a word w, 10
prefix property of a language, 85
prefix-free deterministic context-free

language, 86
prefix-free language, 85
preorder traversal of a tree, 23
preorder visit of a tree, 21
Primal-Dual algorithm, 221
production, 10
production for a nonterminal symbol, 15
proper prefix of a string, 235
proper suffix of a string, 235
propositional formula, 168
propositional variables, 168

Quicksort program, 246

reachability problem, 215
red node, 197
reduce action for LR(0) parsing, 81, 82, 84
reduce action for SLR(1) parsing, 88
reduce action for LR(1) parsing, 93
reduce-reduce conflict in LR(0) parsing, 84

reduced grammars, 15, 103
Regular Expression ic-semiring, 215, 231
regular expressions and finite automata, 231
regular grammar, 11
regular language, 11
regular production, 11
rewriting step, 12
rhs of a production, 10
rhs: right hand side function, 36
right associative parsing, 126
right function r, 126
right hand side function: rhs, 36
right hand side of a production, 10
right linear grammar, 11
right linear production, 11
right-values, 89
rightmost derivation, 13
ring, 211
ring with 0 and 1: (S, +, ! , 0, 1)-ring, 212

scanner, 136
scanner generator: Flex, 136
Schönhage-Strassen method, 213
search spaces, 17
selector, 183, 186
semantic actions, 129, 139
semiring, 211
semiring of matrices with 0 and 1:

(S, +, ! , 0, 1)-semiring of matrices, 212
semiring with 0 and 1:

(S, +, ! , 0, 1)-semiring, 211
sentential form, 12, 32, 36
shift action for SLR(1) parsing, 88
shift action for LR(0) parsing, 81
shift action for LR(1) parsing, 93
shift-reduce conflict in LR(0) parsing, 84, 90
shift-shift conflict in LR(0) parsing, 84
shortest path, 221
shortest path problem, 219
simple LR(1) (or SLR(1)) parsers, 87
Single Source Shortest Path (SSSP)

algorithm (by Dijkstra), 221
Single Source Shortest Path problem, 220
Single Source Shortest Paths in directed

graphs, 220
size of parsers, 115
sorting strings in Prolog, 245
space complexity for context-free parsing, 115
spanning tree, 197
SSSP algorithm, 221, 222
star closure (∗closure), 9
start symbol of a grammar, 10
state dependent linear search, 20
State Dependent Linear Search program, 20

INDEX 257

Strassen’s algorithm for matrix
multiplication, 210

string, 9
string-to-parse, 32
strong LL(1) grammars, 57, 58
strong LL(k) grammars, 52, 68
structurally equivalent grammars, 116
subclasses of context-free languages, 115
subject string, 233
suffix of a string, 235
Sum program, 17
symbol, 9

tail function tl, 36
terminal alphabet of a grammar, 10
terminal symbols, 10
theorem prover for the propositional

calculus, 168
time complexity for computing the shortest

paths in directed graphs, 224
time complexity for context-free parsing, 115
time complexity for multiplying boolean

matrices, 213
token, 134
tokenizer, 136
top-down parser, 145
transitive closure and boolean multiplication,

216
transitive closure in directed graphs, 215
transitive closure in ic-semirings, 219
translator, 130
tree-generating function, 29
type 0 grammar, 10

type 0 language, 11
type 0 production, 10
type 1 grammar, 11
type 1 language, 11
type 1 production, 11
type 2 grammar, 11
type 2 language, 11
type 2 production, 11
type 3 grammar, 11
type 3 language, 11
type 3 production, 11

ultraviolet arc, 200
undefined entry in the LALR(1) parsing

table, 105
undefined entry in the LR(0) parsing table,

84
undefined entry in the LR(1) parsing table,

94
unfolding, 14
useful symbol, 15
useless symbol, 15

variables, 10
variant records, 195
violet arc, 199
visiting trees, 29

weight of an arc, 197
word, 9

Yacc: parser generator, 128
yield of a derivation tree, 14

Bibliography

[1] A. Aho, J. E. Hopcroft, and J. D. Ullman. Design and Analysis of Computer
Algorithms. Addison-Wesley, 1974.

[2] A. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, 1986.

[3] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Compiling,
volume 1. Prentice Hall, 1972.

[4] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Compiling,
volume 2. Prentice Hall, 1973.

[5] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, New
York, Second edition, 1984.

[6] E. W. Dijkstra. A Short Introduction to the Art of Programming. Technical
Report, EWD 316, 1971.

[7] C. Donnelly and R. Stallman. Bison: The Yacc-compatible Parser Generator.
Technical report, Free Software Foundation, 51 Franklin Street, Boston, MA
02110-1301, USA, 30 May 2006. ISBN 1-882114-44-2.
http://www.gnu.org/software/bison/manual/index.html.

[8] J. B. Fraleigh. A First Course in Abstract Algebra. Addison -Wesley, 1977. Second
Edition.

[9] M. A. Harrison. Introduction to Formal Language Theory. Addison Wesley, 1978.
[10] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages

and Computation. Addison-Wesley, 1979.
[11] S. C. Johnson. YACC: Yet another compiler-compiler. Unix Programmer’s Man-

ual, volume 2b. AT&T, 1979. http://plan9.bell-labs.com/7thEdMan/.
[12] D. E. Knuth. On the translation of languages from left to right. Information and

Control, 8:607–639, 1965.
[13] D. E. Knuth. Semantics of context-free languages. Mathematical Systems Theory,

2:127–145, 1968. Correction: Mathematical Systems Theory, 5:95–96, 1971.
[14] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.

SIAM Journal on Computing, 6(2):323–350, 1977.
[15] M. E. Lesk and E. Schmidt. LEX – Lexical Analyzer Generator. In A. G. Hume

and M. D. McIlroy, editors, Unix Programmer’s Manual. Tenth Edition. Volume
2. AT&T Bell Laboratories, Murray Hill, NJ., 1990.

[16] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, 1982.

[17] L. C. Paulson. The foundation of a generic theorem prover. J. Automated Rea-
soning, 5:363–397, 1989.

259

260 BIBLIOGRAPHY

[18] V. Paxson, W. Estes, and J. Millaway. Flex: The Fast Lexical Analyzer. Manual
Edition 2.5.35. Technical report, The Flex Project, 10 September 2007. Available
from: http://flex.sourceforge.net/.

[19] A. Pettorossi. Programming inC++. Aracne Editrice, 2001. ISBN88-7999-323-7.
[20] A. Pettorossi. Quaderni di Informatica. Parte I. Aracne, Second edition, 2004.
[21] A. Pettorossi. Automata Theory and Formal Languages. Aracne Editrice, 2007.
[22] D. J. Rosenkrantz and R. E. Stearns. Properties of deterministic top-down pars-

ing. Information and Control, 17:226–256, 1970.
[23] S. Sippu and E. Soisalon-Soininen. Theory of Parsing, volume 2. Springer-Verlag,

1990.
[24] L. S. Sterling and E. Shapiro. The Art of Prolog. The MIT Press, Cambridge,

Massachusetts, 1994. Second Edition.

