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the coherent state parameters
o classical Fisher matrix for
he quantum Fisher matrix of
‘tor of 2).

NTS

ut of King’s College, Univer-
academic year 1999-2000 and
exciting private seminars on

sties, Lecture Notes in Statistics,
. Statistics, Chapman and Hall,

pringer-Verlag, Berlin (1993).
).

73 (1996).

nd 39, 49-68 (1997). _

. Fisher Metric in Finite Dimen-
math-ph/9910031.

iantum Mechanics and quantum
i quant-ph/9809052.

rge ensembles”, preprint quant-

pann H., “Quantum State recon-
$/9805020.
1227-4239 (1999).

Monotone Metrics on Statistical
Manifolds of Density Matrices by
Geometry of Non-Commutative

L?*-Spaces
Paolo Gibilisco*, Tommaso Isolat

“Dipartimento di Matemalica, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129
Torino, Italy, and Centro Vito Volterra, Universita di Roma “Tor Vergata”.
E-moil: gibilisco@polito.it.
" Dipartimento di Matematica, Universita di Roma “Tor Vergata”, via della Ricerca Scientifica.
1-00133 Roma, Italy. Email: isola@mat.uniroma?.it

Abstract. Using an integral decomposition of non-commutative monotone metrics we
show that each monotone metric described by the Petz classification theorem is related
to the geometry of a suitable non-commutative L%-space. This exactly reproduces and
generalizes the commutative case where the unique monotone metric (Chentsov theo-
rem about Fisher-Rao metric) is classically related to the commutative L2-geometry.

INTRODUCTION

The concept of monotone metric for parametric statistical manifolds has been
introduced by Chentsov [3,4] and further developed by Petz [14]. There are two
fundamental results: i) the Chentsov uniqueness theorem [2,3]; ii) the Petz classi-
fication theorem [14]. The first theorem says that in the commutative case there
exists a unique monotone metric (up to a scalar factor) and that this metric co-
incides with the well-known Fisher-Rao metric. In the non-commutative case the
situation is, as usual, more complicated and richer. This means that there is 1o
uniqueness and that we have an infinite family of different monotone metrics. The
classification theorem by Petz shows that there is a natural bijection between the
family of monotone metrics and the family of operator monotone functions.

It is well-known that the Fisher-Rao metric can be related to the geometry of
commutative [,2-spaces [5]. The purpose of this paper is to answer the following
question: which non-commutative monotone metrics arise from the geometry of
non-commutative L*-spaces (following the line of the commutative case)? Such a
question is relevant for at least three reasons: i) it is natural to ask which features
of the commutative case survive in the non-commutative one; ii) to interpret some
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norms and scalar products as L?-norms and scalar products opened the way to the
recently established non-parametric version of information geometry [6,16,17]; iii)
it has been proved [6,8] in the commutative case that a-geometries for @ € (—1,1)
are related to the geometry of LP-spaces where p = —I—E; The classic work of Amari
shows that the Riemannian Fisher-Rao metric induces the O-connection. It is rea-
sonable therefore to hope that one may associate, using suitable non-commutative
LP-spaces, a family of a-connections to those non-commutative monotone metrics
that are associated to L2-type metrics [8].

The purpose of this note is to show that there is a general positive answer, given
by Theorem 12, to the question formulated above. This means the following. Let
P, be the probability simplex in R™ and T,,Pn be the tangent space at p € Py,
and let us identify R" with L?(m), where mn is the counting measure on . ]
If one defines M,(v); := pivi, p € Pn, v € T, P, then the Chentsov Theorem can
be rephrased by saying that “cach” monotone metric turns into an isometry the
linear map v € T,P, — 1\{1;’1’/2(1;) € L?*(m), and that this property characterises
monotone metrics.

Now let D,, be the manifold of invertible density matrices. 50 that 7,D,,. p € Dy,
is the space of hermitian, traceless matrices, and denote by L*(7) the Hilbert
space of all n by n matrices endowed with the scalar product given by the
normalised trace 7. Define L,(A) = pA, R,(A) = Ap, and for any sym-
metric measure g on [0,1] define M, 2?2 T,D, — M, := LA{0, 11, g L2 (E)),
by M2 = [gy((1 = )L, + sR,)"V2du(s). Then Theorem 12 shows that
each noncommubative monotone metric turns into an isometry the linear map

AeTD, — A/[,,fll,‘/'z(/l) € H,. by a suitable measure j. and that this property

characterises monotone metrics. In this sense M/:l’/'z appears Lo be a nonconunuta-
tive analogue of the division by the square root, and L2([0. 1], pi: L*(7)) an analogue

of L*(m).
In the last section we discuss the possible relevance of this result to the non-
commutative theory of a-connections.

THE FISHER-RAO METRIC AND THE CHENTSOV
UNIQUENESS THEOREM

Denote by P, = {p € R* : YL pi = Lipi > 0,1 = 1,....n} the probability

simplex in R” and by S the sphere of radius 2 in R". Define a function A : P, = S
1

by A(p); = 2p7 and consider the Riemannian structure that S induces on P, by

this embedding. Let p(¢) be a curve on P,. We transport this curve on S by

the embedding A and determine the induced Riemannian metric. As L A(p(t)): =

;i(t)%(pi(t)), we get

d s O d g o d ’
12 A = > (AP®))" = > @) (E(pi(t))> :

{=1 =1
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Now let m be the counting measure on {1,...,n}, so that L?(m) can be identified

with R"™ with the usual scalar product. Then the Fisher-Rao metric is induced by
the linear isomorphism v — ’—ﬁ that identifies the tangent space of P, at p, TPy
\'

{v € R": T v; = 0}, with the tangent space of the unit sphere S%(m) C L*(m) at

the point \/p. T’ 5(S?(m)) = {u € L*(m) : (u. VvP) = 0}, where (u,v) := S0 wv;
denotes the scalar product of R”.

Recall that a monotone metric is a tamily {9p :p € P,,n € N} of inner products
on 1T, P,, such that gr,(Tu, Tu) < gp(u.u), for any stochastic map 7' : R" — R,
Define (M,(v)); = pivs. i = 1., .., n. We may formulate the

Theorem 1. Chentsov uniqueness theorem. There exists a unique (up to a
scalar factor) monotone metric on T,P,. This metric is the scalar product that
turns into an isometry the linear map

vel,P, = M‘;’U‘Q(u) e L%(m).

Proof. Evidently

1 IAr=-1/20. N ar—1/27.
Z ;U,"U,/‘i = (M, / (v), M, (w)).

The proof of monotonicity can be found in [2,3]. &

OPERATOR MONOTONE FUNCTIONS AND
CHENTSOV-MOROZOVA FUNCTIONS.

Let us recall [1] that a function f : (0,00) — R is called operator monotone
if for any n € N, any A, B € M,(C) such that 0 < A < B, the inequalities
0 < f(A) < f(B) hold. By Lowner’s results they can be represented in integral
form. To make expressions compact, let us introduce the notation

_z(l+1t)

)= , for . t>0.
oz, t) e or >0 >0

For fixed # > 0 the function ¢(z.t) is bounded and continuous on the extended
half-line [0, cc].
Theorem 2. ( [12] p. 208-9) The map m — f, defined by

flz) = /[0 Oo]qﬁ(x,t)dm(t), for = >0,
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establishes an affine isomorphism from the class of positive Radon measures on
[0, 00] onto the class of operator monotone functions.

Remark. In the above representation one has f(0) = inf, f(z) = m({0}) and
inf, ﬂ}l = m({c0}).

Some other operator monotone functions are associated with a given opera-
tor monotone function f ( [12] p. 213-4), among them the lransposec function,
f'(z) == xf(x™"), and the dual function, L) = ?(IT) These transformations are

involutive, that is f" = f. f** = f. Moreover f is said to be symmetric if F= J.

We need a different representation for the operator monotone functions. It is
hased on the following result.

Lemma 3. (see [11]) Define g : {0.1] — [0,00] by g(s) = %5, 5 € [0.1). and
g(1) = oo. Let A C [0,1] and 3 C [0,00] be measurable sets and let j¢ be a positive
Radon measure on [0. 1] and i a positive Radon measure on [0, o0]. The formulae
m,(B) = u(g™H(B)), pm(A) = m{g(A)), establish a bijection hetween the class
of positive Radon measures on [0.1] and the class of positive Radon measures on
[0, c0]. Moreover, if h is an integrable function w.r.t. m. then

/‘ h{t)ydm(t) = / h(g(s))dpm(s).
J{0.20] J10,1]

Proposition 4. The map o — [, defined by

£

flx) = / e 1 () for o >0,
‘ a1 (1 —s)e + s ’

establishes a bijection between the class of positive Radou measures on (0. 1] and

the class of operator monotone functions.

Proof.

(- = . (. ) d ] &= ' o sVdi.(s) =
f(x) ./{o.mg(J)(lz"l)dlll(‘[) /[0‘1](,)(l,_(/(»),d/lm(s)

{1+ 2= 7
= —(-_‘%Q(i/l'm('q) = / *——,—*—— ({/I,,,,(H).
pa =+ 0. T+s

o

In the above correspondence we write f = f, or p = juy to indicate that f, is
the operator monotone function associated with  or, conversely, that iy 1s the
measure associated with f.

Corollary 5. ( [21] p. 474) The map u+ f, defined by

1 1
flz) /[0,11 (1-8)z+s

dyi(s) for >0
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establishes a bijection between the class of positive Radon measures on [0,1] and
the class of operator monotone functions.
Proof. For each operator monotone function f one has

1 1

1 T 1
f(z) Tz (=) = T /[0,1} (1-s)z+s dyags(s) = /[0.1} (

l—s)a+s Apudie)

&

Definition 6. With each operator monotone function f one associates the so-

called Chentsov-Morozova function

. 1 ;
celo,y) = ——— for z.y> 0.
ol (3)

Proposition 7. The map 1 — ¢ *), defined by

3

1 ’

(e, y) = - v dp(s), for z.y>0
(z,y) Jioay (L — s)r + sy His) /

establishes a bijection between the class of positive Rad

the class of Chentsov-Morozova functions.

Proof. By the Corollary 5 we have

on measures on [0.1] and

1 1

” l ~ l
L Y) = —~ = ~ i (s :/ e G (5
ol uf (3) v «/io.u (=545 ¥ 01 (1= )+ sy 1

&b
Note that f is symmetric iff cy (or pis) is, i.e. it satisfies clr.y) = cly. ) (or

dp(s) = dp(1 — 5)). .

THE MAIN RESULT

Let 7 be the normalised trace on M, (C), and let D, := {4 e My(C): 4 >
0,7(A) = 1} be the set of density matrices. The tangent space to D, at p € D,
can be naturally identified with {A € M, (C) : A = A", 7(A) = 0}. Similarly to the
commutative case, a symmetric monotone metric is a family {g,: p€ D,,n e N}
of inner products on T,D,, such that p € D, — 9o(A, A) € [0, c0)
forany A € T,D,,, and 91o(T A, T A) < g,(A, A), for any stochastic (
positive, trace preserving) map 7 : M,(C) — M, (C)

is continuous,
Le. completely
Theorem 8. Petz classification theorem. There exists

a bijective correspondence
between symmetric monotone metrics and symmetric op

erator monotone functions

133




£+ (0,00) — (0,00), which is given by g,(4,B) = 7(Acs(Lp, R,)(B)), for A,
B € T,D,, where c; is the CM-function associated with f.
We want to give a different description of the Petz classification theorem. So let

us start with some definitions.

Definition 9. Denote by L2(7) the vector space M, (C) endowed with the inner
product (4, B) = 7(A*B). For any p € D,, s € [0,1], define the operators
L,(A) = pA, R,(A) = Ap, and M, := (1 - s5)L, + sR,. Then L,, R,, M, are
posmw invertible linear operators on L*(7).

Definition 10. Set H, := L*(7). s € [0.1], and, for any symuetric positive

Radon measure g on [0, 1], set

H, = /w Hodpu(s) =
J[0,1]

and M, := [i§ 1 M, sdpe(s).

Therefore H,, is endowed with the inner product (A, B) = [3(A(s). B(s))dp(s).
if A:5e[0,1] = A(s) € L*(7). and analogously for 1.

Definition 11. Let x be a symmetric positive Radon measure on {0. 1. The
p-metric on 7, D,, denoted by (.} pp- is the inner product on T, D,, which turns
into an isometry the linear map

LA([0. 1), dye; L¥(7)) = L2([0, 1), dp) @ L2 (7).

AeT,D, = M;2(A) € H,,

4 [N

hoere M-1/2 1/
where M/ = [r) M, 2dp(s).
Theorem 12. The family of g-metrics coincides with the family of symmetric

monotone metrics classified by the Petz theorem.
Proof. By the Petz theorem each monotone metric has the form g,(A. B) =
7(Ac(L,, R,)(B)). Therefore we get the conclusion by the following calculation

2.8

(A, B)yy = / (MY2(A), M7Y2(B))du(s) =
.go.L
_ A MY BWduls) = | ) e oyl
7/[&1;@1 M (B))dpls) /{m]r(q(u $)L, + sR,) "M (B))duis)

=7 (A </ (1 =s)L, + -S'Rp)l(l[l,(s')> (B)) = 7(Ac,(L,, R,)(B))-
[0.1]
&

The integral decomposition on which Theorem 12 is based has been sketched by
Uhlmann in [21].
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A DIFFERENT APPROACH

One could also follow a different approach, choosing as a noncommutative ana-
logue of M, a different interpolation, namely M5 = L})‘SR';, for s € [0,1], as
suggested by one of the forms of the BKM monotone metric. We need some pre-
liminaries.

Proposition 13. Let v be a symmetric positive Radon measure on [0,1]. The

formula |
[ = f o'
/{0,1]

defines a map from the family of positive Radon measures on [0,1] to the class of
operator monotone functions. The map is not surjective.
Proof. Tt is well-known [11] that [*(z) = j'[o‘”.t:[(l/)'(:l)‘ where £ : [0,1] — [0.c0),
is increasing and left-continuous. and 3(0) = 0. Besides, it is easy to prove that
there are g, : [0.1] — [0.00) increasing, left-continuous, and piccewise constant
functions, such that 3, — /3 uniformly in [0, 1]. As for any fixed 2 € [0, 00). the
function ¢ € [0,1] — ' € [0,00) is continuous and bounded, by means of Helly's
theorem we get f“(z) = lim,_ .. Sfolx), where f,(z) = fol xtdfB,(t). Moreover,
itk e N, A= A" € M,(C) with spectrum contained in [0,1], then f7(A) =
lim, . f,(A). Indeed, if A = SF L Aie; is its spectral decomposition, then f¥(A) =
f:l frN)ei = &8 limy, JulAi)e; = limy o fo(A4). Now it is easy to see that
fu is an operator monotone function. being a linear combination with positive
coefficients of functions =%, which are operator monotone [1]. Finally if £ € IN.
A, B € M(C). are such that 0 < A < B we get fY(A) = lim, o fo(A) <
limy, o0 fu(B) = f(B), which proves that f¥ is operator monotone.
As for the last statement. the function 25 which is operator monotone [1] and
gives the largest monotone metric, is not in the range of the map, because, if v is
not a multiple of the Dirac measure at 0, any [* is such that lim, o f%(z) = oo,
otherwise f” is constant. &

Corollary 14. The formula

Aay) = /IO l](J:’_ﬁ,z/)’l(lz/(t)

defines a map from the family of positive Radon measures on [0,1] to the class of
CM-functions. The map is not surjective.

Definition 15. Let v be a symmetric positive Radon measure on [0.1]. The
v-metric on 7, D, denoted by (-, )/”) is the inner product on T,D,, which turns into
an isometry the linear map

Ae T/)Dn — [‘;];1}/2(,4> S H,”

where M1/ = [i® M 1/2du(s),
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Theorem 16. The family of v-metrics is a proper subset of the family of mono-
tone metrics classified by the Petz theorem.
Proof. By definition

(A4, By = [ (M, M2(4). M, (B))dv(s) =

CRT

_ / (A M, H(B)dv(s) = / (AL 1) (B))dw(s)
/10.1] ' Jio.1

~r(a(] (L)) () = (A B (B
0.1

Therefore the conclusion follows from the previous results.

UNIFORMLY CONVEX BANACH SPACES

The purpose of this section is to review some results on the geometry of uniformly

convex Banach spaces. needed in the sequel. We refer to [8] for full proofs and

consider only real Banach spaces. Denote by X the dual space of X and by S the
unit sphere of X. If L € X and » € X we wrife (b0 = Lz,
Definition 17. We say that = is orthogonal to y, and denote it by x Ly, if

Izl < ||z + Ayl], for any A € R. Moreover, if A X, L Ameans z Ly for any

y e A
Definition 18. The duality mapping J : X — thsets(;\"‘) is defined by /()
{ve X (ve) = lzl]? = ||[v||>}. We say that X has the duality map property if J

is single-valued. In this case we set £ := J(x).

Definition 19. We say that X has the projection propertyif for any closed convex
M ¢ X and any = € X there is a unique m € M s.t. ||z — m|| =inf{|jlx -zl : 2 €
M} = d(z. M). In this case we define (1) = m.

Definition 20. X is uniformly conver if for any ¢ > 0 there is 0 > 0 s.t.

z.y € S¥ and ||ZY|| > 1 — 4 implies ||z — yl| <e.
Proposition 21. Let X and X be uniformly convex Banach spaces. Then
i) X has the projection property.
ii) X has the duality map property.
iii) z L ker(z).
i) If M := ker(Z), then ma(v) = v — 2;7;—))1:
Now recall that if M is a Banach manifold and ' C M is a submanifold. then
for any p € A there is a splitting of the tangent space oM =T,N®V and a
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N C M is a submanifold, then
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projection operator m, : T,M — T, /. Moreover if there is a connection V on M,
one gets a connection V' on the submanifold A/, by setting V' :=mo V.

Proposition 22. Let X, X be uniformly convex Banach spaces. Then
1) S is a Banach submanifold of X .
i) Ty S~ the tangent space to SN at 2 € S can be identified with ker(z).
ii4) The projection operator 7, T, X — T,S% is given by T (v) = v — (T.v)x.
Using this projection, the trivial counection on X induces

a connection on SV
which we call the natural connection on S¥.

We may rephrase the content of this section by saying that if X', X
convex then X is “almost an Hilbert space”.
then the natural connection on ¥

are uniformly
Note that if X is an Hilbert space,
is just the Levi-Civita connection on the sphere.

a-CONNECTIONS FOR COMMUTATIVE STATISTICAL
MANIFOLDS
In this section we summarise some of the rosults of [6] in tl

setting of the previous section. Let
following

1e light of the abstract
(X. A 1) be a measure space. We give the
Definition 23. If o« € (—=1.1), set P = 1%)” Lg = La(X, A p) = {u: X —
R :wis A-measurable, [\ |ufPdy < oc}, for p & [1,00). The unit sphere is denoted
by S7:={f € Lg : |lufl, = 1}. Puo={p€lg:p>0[p=1}. Forany peP,
we set F2 = Li(p) := {u € L (X. A pp) : Jxupdpe =0} If p > 1 we define j by
L1

Lyl

» D

A calculation shows that the duality map is given by u ¢ A = =
i]u“i"”sgnufu]% € L. Therefore. if p < Pu. we have that p'? € S and
pLr = pl/‘17 € S7. The spaces Ly are uniformly convex. so the results ol the
previous section are applicable.  For the tangent space of SP at p'" we have
TSP = {u € L : [upPdy = 0}. We denote by V? the natural connection
on S” induced by the trivial connection on L. Observe that the isometric isomor-
phism 12 :u € LE (X, A, 1) — up~ /7 ¢ LR (X. A, pp) sets up a bijection between
T1/»S? and Lj(p).

Let N C P, be a statistical model, equipped with a structure of a differential
manifold. Consider the bundle-connection pair on S given by the tangent bundle
and the natural connection (757, VP). Making use of the Amari embedding A“ :
pEN = p/P e 5P we may construct the pull-back ((A%)*T'S?, (A*)*VP) of the
bundle-connection pair (7'S?, V?) to A/. This means that the fibre over p € NV of
the pull-back bundle is given by 7’ 1757, Consider now Fo := U ~F%. Using the
’ g Yy P [4S] P g
{amily of isomorphisms 1%, p € N, it is possible to identify F* with the pull-back
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bundle (A%)*T'SP. One can also transfer the pull-back connection (A*)*V? using
this isomorphism. We denote by V¢ this last connection on the bundle F¢.

Theorem 24. [6] Consider the bundle-connection pair (F¢, V%), a € (—1,1),
on the statistical manifold AN. Then V® coincides with the Amari-Chentsov -

connection.
Proof. One obtains

l+ao., 11—
Ve = Ay g eV (1)

where Y™ and V¢ are the usual mixture and expounential connections defined by
xlogx S "
zlogr and Lg® (see [6]

parallel transport on the mixture and exponential bundles Lg
for details). &

It is useful to emphasize the new aspects that this theorem introduces into in-

formation geometry. [First of all, it solves the longstanding problem of an infi-
nite dimensional theory for a-geometries (note that we may discuss orthogonality,
projections, etc. also in a non-Riemannian, non-Hilbertian setting). Moreover -
connections appear as LP-connections in a disguised form (a new result even in the
parametric case). Following this line of thought we want to stress that equality (1)
should be seen as a theorem and not as a definition. In this sense the parametric
case could be seriously misleading: indeed the a-connections are not defined on the
tangent space, in general. but on a suitable a-bundle (this point is still overlooked
even in some recent papers). In addition oue should note that the problem of dif-
ferent geodesics intersecting at right aneles cannot be solved naively. Iu general
these geodesics will be on two different manifolds (the target manifolds of different
embeddings of the densities) such that a duality pairing exists between the two
tangent bundles. A theory of this type has been outlined in [7] and this can prob-
ably also be the right approach in the non-commutative setting (see the work of
Streater [18,19] where the use of +1 and -1 geodesics is of great importance in the
theory of statistical dynamnics). But probably the most important aspect 1s that
e construction from an abstract point of view (that is for uni-
) so that this kind of fanily of dual geometries should appear
vy of LP-type spaces. We have discussed this approach in a
arametric generalisation of

one can see the whol
formly convex spaces
whenever one has a famil
previous paper [8] regarding a non-comrmutative non-p
the a-connections.

NORMS OF L’-TYPE AND a-CONNECTIONS
ASSOCIATED TO MONOTONE METRICS

A general approach to noncommutative a-connections is still missing, even
though a number of different points of view exist [8-10,13]. But now Theorem
192 shows that each monotone metric can be obtained by an L? scalar product.
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Moreover, motivated by Theorem 24 and by the considerations of the previous sec-
tion, we suggest that one should try to construct a-geometries associated with an
arbitrary monotone metric by the construction of an LP-norm associated with that
monotone metric. What follows is a tentative first step in that direction.

Let (£, |- ||) be a Banach space and denote by £(E) the set of continuous linear
operators on E, and by GL(E) the subset of the invertible ones. If T € L(E),
we may define a new Banach space (B, - ||7), where |[v]|z := ||T||. Morcover. if
T € GL(E), then T~ (E, || - ||) = (E.|| - ||z) is an isometric isomorphisn.

Now let L”(7) be the matrix von Neumann-Schatten class, that is M, (C) endowed
with the norm [|Al], := 7(|A]")"?, and consider T := MYP € L(LP(7)). Therefore,
we may consider the norm [[All = [|T(A)|l, = (v(|M )P (A)P)P, for A € M, (1).
Analogously. if we set T := JWI{Q', we have the norms [|Al]; = (T('Ej/i’;”(ﬁl)lp))1/"'.
So we may define the Banach spaces L7(p), 1= (M, (R),|| - ||7), and L(p)* :=
(M, (). ]| - l7). The latter spaces are the matrix version of the spaces introchiced
by Trunov and Zolotarev [20,22] and studied by several authors.

In the construction of commutative c-connections the isomorphism u € LP(p) —
wp'? € LP(r) is fundamental; it allows one to identify TpSP with the space Lij(p)
of p-integrable p-centred random variables. The operator A € LP(p), — M/Ej_’;.”(.'l) €
L?(7) could play the same role. If p = 2, we may identify L*(p), = jlm] L2 (p)dpls)
with L2([0,1], di) ® L*(7), by means of the operator [‘011 J\v/[})_ﬁzzl/a(s). For example
the proof of Theorem 12 can be reformulated using M;‘/% instead of A/[/;f',f’g and
L2(p), instead of L2([0, 1], dp)® L2(7). In a similar way one may consider L2(p)" =
/(01; L*(p)*dv(s) (this kind of inner product has been introduced by Petz and Toth
(15]) and accordingly give a diflerent, proof of Theorem 16.

In view of the above considerations, we conjecture that it could be possible to
assoclate with an arbitrary monotone metric a family of a-connections. using a
kind of direct integral of the Banach spaces LP(p),. s € [0, 1], with respect to a
positive Radon measure 1 on [0, 1].
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