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Preface

In these lecture notes we present a few basic approaches to the definition of the
semantics of programming languages. In particular, we present: (i) the operational
semantics and the axiomatic semantics for a simple imperative language, and (ii) the
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order, typed functional languages. We then present some basic techniques for proving
properties of imperative, functional, and concurrent programs. We closely follow the
presentation done in the book by Glynn Winskel [19].
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CHAPTER 1

Propositional Calculus, Predicate Calculus, and Peano

Arithmetics

In this chapter we briefly recall the main concepts of Propositional Calculus (see
Section 1), Predicate Calculus (see Section 2 on page 14), and Peano Arithmetics
(see Section 3 on page 19). For more details the reader may refer to [12] or other
classical books on Mathematical Logic.

1. Propositional Calculus

Let us introduce the syntax of Propositional Calculus by defining: (i) the set of
variables, (ii) the set of formulas, (iii) the axioms, and (iv) the deduction rule.

1.1. Syntax of Propositional Calculus.

Let N denote the set of natural numbers. The set Vars of variables of the Proposi-
tional Calculus is defined as follows:

Vars = {Pi | i ∈ N}
The set of formulas is defined as follows:

ϕ ::= P | ¬ϕ | ϕ1 → ϕ2

where P ∈ Vars and ϕ, ϕ1, and ϕ2 are formulas. The connectives ∧ (and), ∨
(or), and ↔ (if and only if) can be expressed in terms of ¬ and →, as usual. We
assume the following decreasing order of precedence among connectives: ¬ (strongest
precedence), ∧, ∨, →, ↔ (weakest precedence).

Parentheses can be used for overriding precedence. If the precedence among
operators is the same, then we assume left associativity.

For instance, (i) ¬P1 ∧ P2 stands for (¬P1) ∧ P2, and (ii) P1 → P2 → P1 stands
for (P1 → P2) → P1.

Axiom Schemata. We have the following three axiom schemata for all formulas ϕ, ψ,
and χ:

1. ϕ → (ψ → ϕ)

2. (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))

3. (¬ϕ → ¬ψ) → (ψ → ϕ)

Deduction Rule. Given the formulas ϕ and ϕ → ψ we get the new formula ψ via the
following deduction rule, called Modus Ponens. It is usually represented as follows:

ϕ ϕ→ψ

ψ
(Modus Ponens)

A formula which is above the horizontal line of the deduction rule is said to be a
premise of the rule. A formula which is below the horizontal line of the deduction

11



12 1. PROPOSITIONAL CALCULUS, PREDICATE CALCULUS, AND PEANO ARITHMETICS

rule is said to be a conclusion of the rule. A conclusion of a rule is said to be a direct
consequence of the premises of the rule.

We have the following definition.

Definition 1.1. [Theorem] We say that a formula ϕ is a theorem, and we write
& ϕ, iff there exists a sequence ϕ1, . . . , ϕn of formulas such that: (i) ϕn = ϕ, and
(ii) each formula in the sequence is either an instance of an axiom schema or it is
derived by Modus Ponens from two preceding formulas of the sequence.

In order to define the semantics of the Propositional Calculus we need to introduce
the notions of: (i) the set of variables in a formula, and (ii) the variable assignment.

Given a formula ϕ, the set vars(ϕ) of variables in ϕ is defined by structural induction
as follows: for every variable P and every formula ϕ, ϕ1, ϕ2,

vars(P ) = {P}
vars(¬ϕ) = vars(ϕ)
vars(ϕ1 → ϕ2) = vars(ϕ1)∪ vars(ϕ2)

A variable assignment σ is a function from V ⊆Vars to {true, false}. Thus, a variable
assignment with domain V is a set of pairs, each of which is of the form 〈P, b〉, with
P ∈ V and b ∈ {true, false}. A pair of the form 〈P, b〉 is called an assignment to P .

Let Assignments denote the set of all variable assignments.

There are other presentations of the Propositional Calculus where, instead of a
deduction rule only (that is, the Modus Ponens), one introduces more inference rules.
These rules allow us to derive new formulas from old ones and provide a natural
understanding of how the logical connectives of the Propositional Calculus behave.
Now we present ten of these inference rules. Among them there is the Modus Ponens
rule and, thus, it is not difficult to show that these ten rules are complete (see
Theorem 1.2 on the next page).

Let us first introduce the entailment relation.
Given a set Γ of formulas and a formula ϕ, Γ & ϕ denotes the existence of a

sequence of formulas such that each of them is in Γ or it is derived from previous for-
mulas in the sequence by a rule listed below (see Rules (1)–(10)). Note the overloaded
use of the operator & which is now used as a binary operator.

When Γ & ϕ we say that Γ entails ϕ. We also say that ϕ is inferred from Γ.
As for any formal system, we have the following properties: for any set of formu-

las Γ and ∆, for any formula ϕ,

(A.1) if ϕ ∈ Γ then Γ & ϕ,
(A.2) if Γ ⊆ ∆ and Γ & ϕ then ∆ & ϕ,
(A.3) Γ & ϕ iff there exists a finite subset Φ of Γ such that Φ & ϕ, and
(A.4) if ∆ & ϕ and for all ψ ∈ ∆, Γ & ψ, then Γ & ϕ.

Here are the inference rules for the entailment relation which hold for all formu-
las ϕ, ψ, and ρ.

(1) True axiom
{} & ϕ ∨ ¬ϕ

(2) False axiom
{} & ¬(ϕ ∧ ¬ϕ)
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(3) Reductio ad absurdum (negation introduction)
{ϕ, ψ → ¬ϕ} & ¬ψ

(4) Double negation elimination
{¬¬ϕ} & ϕ

(5) Conjunction introduction
{ϕ, ψ} & ϕ ∧ ψ {ϕ, ψ} & ψ ∧ ϕ

(6) Conjunction elimination
{ϕ ∧ q} & ϕ {ϕ ∧ q} & q

(7) Disjunction introduction
{ϕ} & ϕ ∨ ψ {ψ} & ϕ ∨ ψ

(8) Disjunction elimination
{ϕ ∨ ψ, ϕ → ρ, ψ → ρ} & ρ

(9) Modus Ponens (conditional elimination)
{ϕ, ϕ → ψ} & ψ

(10) Conditional proof (conditional introduction)
If {ϕ} & ψ then {} & ϕ → ψ

Rule 10 is a conditional rule: it asserts the existence of a new pair of the entailment
relation from the existence of an old pair. Note that the other direction of the
implication of Rule (10) can be proved as follows.

(i) {} & ϕ → ψ (given)
(ii) {ϕ} & ϕ (by (A.1) above)
(iii) {ϕ} & ϕ → ψ (by (A.2) above)
(iv) {ϕ} & ψ (by (ii), (iii), (A.4), and Modus Ponens)

We have the following fact.

Theorem 1.2. A formula ϕ is a theorem of the Propositional Calculus iff {} & ϕ.

Thus, given a formula ϕ of the Propositional Calculus we may test whether or
not ϕ is a theorem by using the above Theorem 1.2. However, the presence of many
inference rules make the test a bit difficult. In order to overcome this difficulty, in
Section 10 on page 54 we will present a method based on rewriting rules.

1.2. Semantics of Propositional Calculus via the Semantic Function.

The semantic function !_" of the Propositional Calculus takes a formula ϕ and a
variable assignment σ with finite domain V such that vars(ϕ) ⊆ V , and returns an
element in {true, false}.

The function !_" is defined by structural induction as follows: for every variable P
and every formula ϕ, ϕ1, ϕ2,

!P " σ = σ(P )

!¬ϕ" σ = not !ϕ" σ

!ϕ1 → ϕ2" σ = !ϕ1" σ implies !ϕ2" σ
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Example 1.3. !P1 → P2" {〈P1, false〉, 〈P2, true〉} = true.

Example 1.4. !P1 → P2" {〈P1, false〉, 〈P2, true〉, 〈P4, true〉} = true.

Definition 1.5. [Tautology] We say that a formula ϕ is a tautology, and we
write |= ϕ, iff for every variable assignment σ with domain vars(ϕ), we have that
!ϕ" σ = true.

A tautology is also called a valid formula. The negation of a valid formula is said
to be an unsatisfiable formula. A formula that is not unsatisfiable is said to be a
satisfiable formula.

We have the following important result which gives us an algorithm for checking
(in exponential time) whether or not a formula ϕ is a theorem by checking whether or
not ϕ is a tautology. Indeed, we can check whether or not a formula ϕ is a tautology
by checking whether or not for every variable assignment σ with domain vars(ϕ), we
have that !ϕ" σ = true.

Note that if there are n distinct variables in a formula ϕ, then there are 2n

distinct variable assignments with domain vars(ϕ). Thus, the checking algorithm
has an exponential time bound.

Theorem 1.6. [Completeness Theorem for the Propositional Calculus]
For all formulas ϕ, & ϕ iff |= ϕ.

1.3. Semantics of Propositional Calculus via the Satisfaction Relation.

In this section we present the semantics of the Propositional Calculus via a binary
relation |= ⊆ Assignments × Formulas, called the satisfaction relation.

A pair 〈σ, ϕ〉 in the relation |= will be denoted by σ |= ϕ, and when σ |= ϕ holds
we say that the variable assignment σ satisfies ϕ.

For every variable assignment σ, every variable P , every formula ϕ, ϕ1, ϕ2, we
define σ |= ϕ by structural induction as follows:

σ |= P iff σ(P )= true

σ |= ¬ϕ iff not σ |= ϕ

σ |= ϕ1 → ϕ2 iff σ |= ϕ1 implies σ |= ϕ2 (that is, (not σ |= ϕ1) or σ |= ϕ2)

The following fact establishes the equivalence between this semantics and the seman-
tics of the Propositional Calculus we have defined in Section 1.2.

Fact 1.7. For every formula ϕ, for every variable assignment σ with domain
vars(ϕ), we have that: !ϕ" σ= true iff σ |= ϕ.

As a consequence, we get the following equivalent definition of a tautology:

a formula ϕ is a tautology, and we write |= ϕ, iff for every variable assignment σ with
domain vars(ϕ), we have that σ |= ϕ.

2. Predicate Calculus

This section is devoted to the syntax and the semantics of the First Order Predicate
Calculus (Predicate Calculus, for short) [12].
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2.1. Syntax of Predicate Calculus.

The set Vars of variables of the Predicate Calculus is a denumerable set defined as
follows:

Vars = {x, y, z, . . . }
The set of the function symbols (with arity r ≥ 0) is a finite, or denumerable, or
empty set of symbols, defined as follows:

{f, s, . . .}
Function symbols of arity 0 are called constants.

The set of the predicate symbols (with arity r ≥ 0) is a finite or denumerable,
non-empty set of symbols, defined as follows:

{p, q, . . .} (finite or denumerably many predicate symbols).

The symbols true and false are two predicate symbols of arity 0.

The set of terms is constructed as usual from variables and function symbols of
arity r (≥0) applied to r (≥0) terms.

The set of atoms (or atomic formulas) are constructed from predicate symbols of
arity r (≥0) applied to r (≥0) terms.

The set of formulas of the Predicate Calculus is defined as follows, where x ∈ Vars,
A ∈ atomic formulas, and ϕ, ϕ1, ϕ2 ∈ formulas:

ϕ ::= A | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 → ϕ2 | ϕ1 ↔ ϕ2 | ∃x. ϕ | ∀x. ϕ

We will feel free to write ∃xϕ, or ∃x, ϕ, instead of ∃x. ϕ. The scope of the quantifier
∃x in the formula ∃xϕ is ϕ. Analogously for the quantifier ∀x, instead of ∃x.

We assume the following decreasing order of precedence among connectives and
the quantifiers: ¬ (strongest precedence), ∧, ∨, ∀x, ∃x, →, ↔ (weakest precedence).
Parentheses can be used for overriding precedence. If the precedence among operators
is the same, then we assume left associativity.

In order to define the semantics of the Predicate Calculus now we introduce the
notions of: (i) the set of variables in a formula ϕ, denoted vars(ϕ), and (ii) the set
of free variables in a formula ϕ, denoted vars(ϕ).

For any variable x, any function symbol f , any predicate symbol p, any term t1, . . . , tn,
any formula ϕ, ϕ1, ϕ2, we have that:

vars(x) = {x}
vars(f(t1, . . . , tn)) = vars(t1) ∪ . . .∪ vars(tn) (for terms)
vars(p(t1, . . . , tn)) = vars(t1) ∪ . . .∪ vars(tn) (for atomic formulas)
vars(¬ϕ) = vars(ϕ)
vars(ϕ1 ∨ ϕ2) = vars(ϕ1)∪ vars(ϕ2)
vars(ϕ1 ∧ ϕ2) = vars(ϕ1)∪ vars(ϕ2)
vars(ϕ1 → ϕ2) = vars(ϕ1)∪ vars(ϕ2)
vars(ϕ1 ↔ ϕ2) = vars(ϕ1)∪ vars(ϕ2)
vars(∃x. ϕ) = vars(ϕ) ∪ {x}
vars(∀x. ϕ) = vars(ϕ) ∪ {x}
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For any variable x, any function symbol f , any predicate symbol p, any term t1, . . . , tn,
any formula ϕ, ϕ1, ϕ2, we have that:

freevars(x) = {x}
freevars(f(t1, . . . , tn)) = freevars(t1) ∪ . . .∪ freevars(tn) (for terms)
freevars(p(t1, . . . , tn)) = freevars(t1) ∪ . . .∪ freevars(tn) (for atomic formulas)
freevars(¬ϕ) = freevars(ϕ)
freevars(ϕ1 ∨ ϕ2) = freevars(ϕ1)∪ freevars(ϕ2)
freevars(ϕ1 ∧ ϕ2) = freevars(ϕ1)∪ freevars(ϕ2)
freevars(ϕ1 → ϕ2) = freevars(ϕ1)∪ freevars(ϕ2)
freevars(ϕ1 ↔ ϕ2) = freevars(ϕ1)∪ freevars(ϕ2)
freevars(∃x. ϕ) = freevars(ϕ)−{x}
freevars(∀x. ϕ) = freevars(ϕ)−{x}

A formula ϕ is said to be closed if freevars(ϕ) = ∅.
An occurrence of a variable in a formula ϕ is said to be a bound occurrence in ϕ

iff it is (i) either the occurrence x of the quantifier ∀x in ϕ, (ii) or the occurrence x
of the quantifier ∃x in ϕ, (iii) or it is an occurrence of the variable x in the scope of
a quantifier ∀x or ∃x.

An occurrence of a variable in a formula ϕ is said to be a free occurrence if it is
not bound.

A variable which has a free occurrence in a formula ϕ is said to be a free variable
of ϕ.

A variable which has a bound occurrence in a formula ϕ is said to be a bound
variable of ϕ.

When we write ϕ(x1, . . . , xn) we mean that some (maybe none) of the free vari-
ables of the formula ϕ are in the set {x1, . . . , xn}.

Note that it may be the case that: (i) some of the variables in {x1, . . . , xn} do
not occur free in ϕ, and (ii) some of the free variables of ϕ are not in {x1, . . . , xn}.

Given the terms t1, . . . , tn, by ϕ(t1, . . . , tn) we denote the formula ϕ(x1, . . . , xn)
where all free occurrences, if any, of the variables x1, . . . , xn have been replaced by
t1, . . . , tn, respectively.

A term t is free for x in ϕ(x) if (i) no free occurrence of the variable x in ϕ(x)
occurs in the scope of a quantifier ∀x or ∃x, and (ii) x is a variable of t. This means
that if t is substituted for all free occurrences, if any, of the variable x in ϕ(x),
then no occurrence of a variable in t becomes a bound occurrence in the resulting
formula ϕ(t).

In the Predicate Calculus we have the following axiom schemata and deduction
rules.

Axiom Schemata. We have the following five axiom schemata for all formulas ϕ, ψ,
and χ and for all terms t:

1. ϕ → (ψ → ϕ)

2. (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))

3. (¬ϕ → ¬ψ) → (ψ → ϕ)

4. (∀xϕ(x)) → ϕ(t) if the term t is free for x in ϕ(x)

5. (∀x (ϕ → ψ) → (ϕ → (∀xψ)) if x is not a free variable in ϕ
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Deduction Rules. We have the following two deduction rules:

ϕ ϕ→ψ

ψ
(Modus Ponens)

ϕ

∀xϕ
(Generalization)

As in the Propositional Calculus, a conclusion of a rule is said to be a direct conse-
quence of the premises of the rule.

Let us also introduce the following definition (see also the entailment relation in
the Propositional Calculus on page 12).

Definition 2.1. [Derivation (or Proof)] Given a set Γ of formulas and a
formula ϕ, a derivation (or a proof ) of ϕ from Γ, denoted Γ & ϕ, is a sequence of
formulas ending with ϕ, such that each of formula in the sequence is either
(i) a formula in Γ, or
(ii) an axiom, that is, an instance of an axiom schema, or
(iii) it can be obtained by using the Modus Ponens rule from two preceding formulas
of the sequence, or
(iv) it can be obtained by using the Generalization rule from a preceding formula of
the sequence.

We write Γ, ϕ & ψ to denote Γ ∪ {ϕ} & ψ.

Definition 2.2. [Theorem] We say that a formula ϕ is a theorem iff ∅ & ϕ.

When Γ=∅, Γ & ϕ is also written as & ϕ.

Given two formulas ϕ and ψ occurring in a derivation from Γ, we say that ψ
depends on ϕ iff either ψ is ϕ or there exists a formula σ such that ψ is a direct
consequence of σ and σ depends on ϕ.

Theorem 2.3. [Deduction Theorem] (i) If Γ & ϕ → ψ then Γ, ϕ & ψ. (ii) Let us
assume that in a derivation of ψ from Γ∪{ϕ}, whenever we apply the Generalization
rule to a formula, say χ, whereby deriving ∀xχ, either (ii.1) χ does not depend on ϕ
or (ii.2) x does not belong to freevars(ϕ). If Γ, ϕ & ψ then Γ & ϕ → ψ.

2.2. Semantics of Predicate Calculus.

In order to define the semantics of the Predicate Calculus we start off by introducing
the notion of an interpretation.

An interpretation I is defined as follows.
(1) We take a non-empty set D, called the domain of the interpretation.
(2) To each function symbol of arity r (≥ 0) we assign a function from Dr to D. (The
elements of Dr are r-tuples of elements in D.) To each constant symbol we assign an
element of D.
(3) To each predicate symbol of arity r (≥ 0) we assign an r-ary relation, that is, a
subset of Dr. To true we assign the subset of D0, which is D0 itself, that is, the set
{〈〉} whose only element is the tuple 〈〉 with 0 components. To false we assign the
subset of D0 which is the empty set, denoted ∅, as usual.

A variable assignment σ is a function from Vars to D. Given an interpretation I
and a variable assignment σ, we assign an element d of D to every term t as follows:
(i) if t is a variable, say x, then d = σ(x), and
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(ii) if t is f(t1, . . . , tr) then d = fI(d1, . . . , dr), where fI is the function from Dr to D
assigned to f by I, and 〈d1, . . . , dr〉 is the r-tuple of Drassigned to 〈t1, . . . , tr〉 by I.

In this case we say that d is the element of D assigned to t by I and σ.

Given an interpretation I, a variable assignment σ, and a formula ϕ, we define the
satisfaction relation, denoted I, σ |= ϕ, by structural induction as follows. (In this
definition, by σ[d/x] we denote the variable assignment which is equal to σ except
that σ(x) = d.) For all interpretation I, all variable assignment σ, all formulas ϕ
and ψ, we have that:

I, σ |= true
I, σ |= p(t1, . . . , tr) for every atom p(t1, . . . , tr) iff the r-tuple 〈v1, . . . , vr〉 belongs to

the relation assigned to p by I, where for i = 1, . . . , r, vi is the
element of D assigned to ti by I and σ

I, σ |= ¬ϕ iff not (I, σ |= ϕ)
I, σ |= ϕ ∧ ψ iff I, σ |= ϕ and I, σ |= ψ
I, σ |= ϕ ∨ ψ iff I, σ |= ϕ or I, σ |= ψ

I, σ |= ϕ → ψ iff I, σ |= ϕ implies I, σ |= ψ (that is, (not I, σ |= ϕ) or I, σ |= ψ)
I, σ |= ∃xϕ iff there exists d in D such that I, σ[d/x] |= ϕ
I, σ |= ∀xϕ iff for all d in D we have that I, σ[d/x] |= ϕ

If I, σ |= ϕ holds, we say that the interpretation I for the variable assignment σ
satisfies ϕ, or ϕ is true in the interpretation I for the variable assignment σ.

Note that for every I and σ we have that I, σ |= true, because 〈〉 belongs to {〈〉},
and it is not the case that I, σ |= false, because 〈〉 does not belong to the empty
set ∅.

We say that a formula ϕ is satisfiable iff there exist I and σ such that I, σ |= ϕ.
A formula ϕ is unsatisfiable iff it is not satisfiable.

We say that ϕ is true in an interpretation I or I is a model of ϕ, and we write
I |= ϕ, iff for all σ we have that I, σ |= ϕ.

Definition 2.4. [Logically Valid Formulas] We say that a formula ϕ is logi-
cally valid (or valid, for short) and we write |= ϕ, iff for every interpretation I and
every variable assignment σ we have that I, σ |= ϕ.

Theorem 2.5. For every interpretation I and for every formula ϕ we have that
I |= ϕ iff I |= ∀xϕ. (Note that it does not matter whether or not x occurs in ϕ.)

The following theorem establishes the correspondence between the relation & and
the relation |=.

Theorem 2.6. [Gödel Completeness Theorem] For every set Γ of closed
formulas and for every formula ϕ, we have that Γ & ϕ iff Γ |= ϕ. In particular,
& ϕ iff |= ϕ, that is, the theorems of the predicate calculus are precisely the logically
valid formulas.
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3. Peano Arithmetics

In this section we present the syntax of Peano Arithmetics. Peano Arithmetics is
a First Order Predicate Calculus with: (i) the extra axiom schemata E1 and E2
(these axiom schemata make the Predicate Calculus to be a Predicate Calculus with
equality), and (ii) the extra axiom schemata PA1 through PA9 listed below [12].

Here are the axioms E1 and E2.

E1. ∀x (x=x)
E2. for every formula ϕ(x, x), ∀x∀y (x=y → (ϕ(x, x) → ϕ(x, y)))

The formula ϕ(x, y) denotes the formula ϕ(x, x) where some free occurrences of
the variable x have been replaced by y and y is free for x in ϕ(x, x). Thus, ϕ(x, y)
may or may not have a free occurrence of x. (Recall that by our convention, when
we write the formula ψ(x) we do not mean that x actually occurs free in ψ(x).

As a consequence of axioms E1 and E2, one can show that the equality predicate
= enjoys: (i) reflexivity, (ii) symmetry, (iii) transitivity, and (iv) substitutivity, that
is, ∀x∀y (x=y → (ϕ(x, x) ↔ ϕ(x, y))).

Let us consider the following extra function symbols: (i) the nullary constant 0,
called zero, (ii) the unary function s, called successor, (iii) the binary function +,
called plus, and (iv) the binary function ×, called times.

Here are the axioms PA1–PA9.

PA1. ∀x∀y ∀z (x=y → (x=z → y=z))

PA2. ∀x∀y (x=y → (s(x)=s(y)))

PA3. ∀x 0 1= s(x)

PA4. ∀x∀y (s(x)=s(y) → x=y)

PA5. ∀x x + 0 = x

PA6. ∀x∀y x + s(y) = s(x + y)

PA7. ∀x x × 0 = 0

PA8. ∀x∀y x × s(y) = (x × y) + x

PA9. For any formula ϕ(x),
(
ϕ(0) ∧ ∀x (ϕ(x) → ϕ(s(x)))

)
→ ∀xϕ(x)

Note that: (i) PA1 is a consequence of E1, and (ii) PA2 is a consequence of E1 and
E2. PA9 is called the principle of mathematical induction (see also Section 1.1 on
page 59). It stands for an infinite number of axioms, one axiom for each formula
ϕ(x). (We leave to the reader to prove that the formulas of Peano Arithmetics are
as many as the natural numbers.)

A set T of formulas is said to be a consistent (or a consistent theory) iff it does
not exist any formula ϕ such that both T & ϕ and T & ¬ϕ hold. A set T of formulas
is said to be an inconsistent (or an inconsistent theory) iff it is not consistent. We
have that a set T of formulas is inconsistent iff T & false.

A formula ϕ is said to be undecidable in a set T of formulas iff neither T & ϕ nor
T & ¬ϕ holds.

A set T of formulas is said to be complete (or a complete theory) iff for any closed
formula ϕ, either T & ϕ or T & ¬ϕ holds or both. Thus, given a set T of formulas, if
T is inconsistent then T is complete.
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The following theorem establishes the incompleteness of the set of theorems of
Peano Arithmetics [12].

Theorem 3.1. [Gödel-Rosser Incompleteness Theorem] If the set PA of all
theorems of Peano Arithmetics is consistent, then there exists a closed formula which
is undecidable in PA.

Notation 3.2. When writing quantified formulas we will feel free to use familiar
abbreviations. In particular, given the variables x and y ranging over the natural
numbers, we will write x≤y, instead of ∃z. x+z=y, and we will write ∀x, 0≤x<k,
p(x, k), instead of ∀x. (0≤x ∧ x<k) → p(x, k). !

4. Some Mathematical Notations

In the sequel we will consider the following sets and notations.

Natural numbers and integer numbers. The set of natural numbers is {0, 1, 2, . . .} and
is denoted by ω. We will feel free to denote the set of the natural numbers also as
N≥0. By N we denote, unless otherwise specified, the set {. . . ,−2,−1, 0, 1, 2, . . .} of
the integer numbers.

Function notation. A function which, given the two arguments x and y, returns the
value of the expression e, is denoted by λx.λy. e, or λx, y. e, or λ(x, y). e. In this case
we say that that function is denoted by using the lambda notation.

The application of the function f to the argument x is denoted by (f x) or f(x)
or simply f x, when no confusion arises.

Rules for the lambda notation. When using the lambda notation for denoting func-
tions, we consider the following rules.

(i) α-rule (change of bound variables). The expression λx.e[x], where e[x] denotes
an expression with zero or more occurrences of the variable x (those occurrences
are free in e[x] and bound in λx.e[x]), is the same as λy.e[y], where: (i) y is a
variable not occurring in e[x], and (ii) e[y] denotes the expression e[x] where all
the free occurrences of x in e[x] have been replaced by y. For instance, λx.x+1
and λy.y+1 both denote the familiar successor function on natural numbers.

(ii) β-rule. The expression (λx.e) t is the same as the expression e[t/x], that is, the
expression e where the free occurrences of x have all been replaced by the expres-
sion t. For instance, (λx.x+1) 0 = 0+1.

(iii) η-rule. The expression λx.(e x), where x does not occur free in the expression e,
is the same as e. For instance, λx.(f x) = f , that is, the function which given x
as input, returns f x as output, is the same as the function f .

Scope and variables in lambda terms. In the lambda term λx.t the subterm t is said
to be the scope of λx. We say that the binder λ in λx.t binds the variable x. In what
follows we will feel free to simply say ‘term’, instead of ‘lambda term’.

An occurrence of a variable x is said to be bound in a term t iff either it is the
occurrence of x in λx.t or it occurs in the scope of an occurrence of λx in t. An
occurrence of a variable is said to be free iff it is not bound. A variable x is said to
be bound (or free) in a term t iff there is an occurrence of x which is bound (or free)
in t.
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Note that in the term t =def f(x, λx.g(x)) the variable x is both bound and free,
but obviously, each occurrence of x is either bound or free. The only free occurrence
of x in t is the first argument of f .

Given the terms t1, . . . , tn, for n ≥ 1, by vars(t1, . . . , tn) we denote the set of
variables occurring in those terms. Given term t, (i) by freevars(t), or FV (t), we
denote the set of variables which are free in t, and (ii) by boundvars(t) we denote the
set of variables which are bound in t. A term t is said to be closed iff freevars(t) = ∅,
otherwise the term is said to be open.

Here is the definition of the set FV (t) of the free variables of a term t.

FV (x) = {x} for all variables x
FV (a) = {} for all constants a
FV (t1t2) = FV (t1) ∪ FV (t2)
FV (λx.t) = FV (t)−{x}

A term is said to be ground iff that term does not have any occurrence of a variable.
Given a term t, where x1, . . . , xm are the distinct variables occurring free in t, the

closure of t is the term λx1, . . . , xm.t.

Substitution in lambda terms. The substitution of the lambda term u for the variable x
into the lambda term t is denoted by t [x/u], and it is defined as follows (in [5] the
authors write [u/x] t, instead of t [x/u]).

We assume that there exists a countable set V of variables. Given two variables x
and y in V , by x 1≡ y we mean that x is syntactically different from y.

For all variables x, y, for all terms t, t1, t2, and u, we have that:

x [x/t] = t
a [x/t] = a for all constants or variables a different from x
(t1t2)[x/u] = ((t1[x/u]) (t2[x/u]))
(λx.t) [x/u] = λx.t
(λy.t) [x/u] = λy.(t [x/u]) if x 1≡ y and (y 1∈FV (u) or x 1∈FV (t))
(λy.t) [x/u] = λz.((t[y/z/])[x/u]) if x 1≡ y and (y∈FV (u) and x∈FV (t)), (†)

where z is a variable in V which is not in (t u)

The basic ideas behind this definition of a substitution, are the following ones:
(i) a free variable in the term u should be free also in the term t[x/u],
(ii) the name of a bound variable is insignificant, so that the term λx.t should be

equal to the term λy.(t [x/y]), and
(iii) the substitution only affect the free occurrences of a variable. In particular, if

x 1≡ y and x 1∈FV (t) then (λy.t) [x/u] = λy.(t [x/u]) = λy.t.
In some books, in order to make the substitution to be a deterministic operation, it is
assumed that the countable set V of variables is totally ordered and, in Condition (†)
above, the sentence: ‘z is the first variable in V which is not in (t u)’ is used, instead
of: ‘z is a variable in V which is not in (t u)’.

This notion of substitution is used throughout the book and, in particular, in
the Local Model Checker of Section 5 on page 295 (see the clauses for the predicate
subst(vax(X),V,T,NT) which denotes the substitution of the value (or term) V for
the variable X into the term T, thereby getting the new term NT).
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Function composition and iterated composition. Given two functions f and g, their
composition, denoted f ◦ g, is the function, if any, such that for all x, (f ◦ g)(x) =
f(g(x)). Obviously, for the composition of f and g to be defined we need the range
of g to be included in the domain of f .

Given a function f : D → D, we define for any n ∈ ω, the function fn, called the
n-iterated composition of the function f , as follows: for all d ∈ D,

f 0(d) = d

fn+1(d) = f(fn(d))

Thus, f 0 is the identity function and f 1 =f . Obviously, we have that for all d ∈ D,
f(fn(d)) = fn(f(d)).

Function updating. By f [y0/x0] we mean the function which is equal to f , except
that in x0 where it takes the value y0, that is:

f [y0/x0] (x) =def

{
y0

f(x)
if x=x0

if x 1=x0

Binary relations. Given a set A, the identity binary relation on A, denoted IA, is the
following set of pairs: {〈a, a〉 | a ∈ A}.

Given the sets A, B, and C, and the binary relations ρ ⊆ A×B and σ ⊆ B×C,
the relational composition of ρ and σ, denoted ρ ; σ, is the set

{〈a, c〉 | ∃b ∈ B. 〈a, b〉∈ρ ∧ 〈b, c〉∈σ}
which is a subset of A×C.

Given a binary relation ρ, ρ+ denotes its transitive closure and ρ∗ denotes its
reflexive, transitive closure.

Recursive sets and recursive enumerable sets. Let us consider a finite or denumerable
alphabet Σ. Given a set A ⊆ Σ∗, we say that A is recursive iff there exists a Turing
Machine M such that: for each word w ∈ Σ∗, (i) M terminates, and (ii) M accepts
w iff w ∈ A.

We say that A ⊆ Σ∗ is recursive enumerable (r.e., for short) iff there exists a
Turing Machine M such that for each word w ∈ Σ∗, M accepts w iff w ∈ A.

We say that A can be enumerated (possibly with repetition) iff there exists a
Turing Machine M such that: (i) for each natural number n, returns an element
of A, and (ii) for each element a ∈ A, there exists a natural number n such that M
on input n returns a. In this case we say that the Turing Machine M provides an
enumeration of the set A.

One can show that a set A ⊆ Σ∗ is recursive enumerable iff either A is empty
or A can be enumerated.



CHAPTER 2

Introduction to Operational and Denotational Semantics

In this chapter we present a few examples of the operational semantics and the deno-
tational semantics of simple languages. In particular, we present: (i) the structural
operational semantics for arithmetic expressions (Section 1), (ii) the operational se-
mantics based on transition systems for an imperative language (Section 2 on page 25)
and a functional language (Section 3 on page 27), and (iii) the denotational semantics
for binary strings (Section 4 on page 30).

1. Structural Operational Semantics

One can specify the operational semantics of arithmetic expressions by providing
rules for their evaluation. Following the style of the so called structured operational
semantics rules à la Plotkin [17], the evaluation rules can take the form of deduction
rules as we now specify.

Let us assume the following syntax of the set AddAexp of the additive arithmetic
expressions.

n ∈ N≥0 N≥0 ::= {0, 1, . . .} (natural numbers)

e ∈ AddAexp e ::= n | (e + e)

We introduce the following three deduction rules (actually, rule R3 is an axiom be-
cause it has no premises) which allow us to establish whether or not the relation
→⊆ AddAexp × AddAexp holds between any two arithmetic expressions.

R1.
e → e1

(e + e2) → (e1 + e2)

R2.
e → e1

(n + e) → (n + e1)

R3. (n1 + n2) → n where n is the sum of n1 and n2

We say that the arithmetic expression e evaluates to n (or the semantics value of e is
n), and we write e →∗ n, where →∗ is the reflexive, transitive closure of →, iff e →∗ n
may be deduced using the rules R1, R2, and R3. Note that according to those rules,
given any arithmetic expression, in any of its subexpressions, we first evaluate the
left summand and then the right summand.

For instance, the evaluation relation ((1+ (2+3))+ (4+5)) →∗ 15 holds because
we have the following deductions (α), (β), (γ), and (δ) (over the right arrow → we
indicate the deduction rule which has been applied):

23
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(α)

(2+3)
R3→ 5

(1+(2+3))
R2→ (1+5)

((1+(2+3))+(4+5))
R1→ ((1+5)+(4+5))

(β)
(1+5)

R3→ 6

((1+5)+(4+5))
R2→ (6+(4+5))

(γ)
(4+5)

R3→ 9

(6+(4+5))
R2→ (6+9)

(δ) (6+9)
R3→ 15

Here is a different set of deduction rules for establishing the relation →⊆ AddAexp×
AddAexp:

R1.
e → e1

(e + e2) → (e1 + e2)

R2.1
e → e2

(e1 + e) → (e1 + e2)

R3. (n1 + n2) → n where n is the sum of n1 and n2

Note that for any arithmetic expression e, rules R1, R2, and R3 allow one proof
only of the relation e → n for some n, while the rules R1, R2.1, and R3 allow
more than one proof, in general. In that sense we may say that rule R1, R2, and
R3 force a deterministic evaluation of any given expression e, while rules R1, R2.1,
and R3 do not force a deterministic evaluation. Indeed, for instance, we have both
(1+2)+(3+4) → 3+(3+4) and (1+2)+(3+4) → (1+2)+7.

When the evaluation is not deterministic, we have the problem of establishing
whether or not the evaluation enjoys the confluence property, which we now define
for an arbitrary binary relation ρ on a given set A.

Definition 1.1. [Confluence] We say that a binary relation ρ ⊆ A×A for some
set A, is confluent iff for every x, -, r ∈ A, if x ρ∗ - and x ρ∗ r then there exists z ∈ A
such that - ρ∗ z and r ρ∗ z.

Let us also consider the following properties which are necessary to establish
Proposition 1.5 below. These properties will be considered again in the context of
the rewriting systems in Section 9 on page 39.
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Definition 1.2. [Termination] We say that a binary relation ρ ⊆ A × A for
some set A, terminates iff there is no infinite sequence a0, a1, a2, . . . of elements in A
such that for all i≥0, ai ρ ai+1.

If ρ terminates we also say that ρ is terminating, or strongly terminating, or
noetherian.

Definition 1.3. [Normal Form] Given a binary relation ρ ⊆ A × A for some
set A, we say that v is a normal form of a ∈ A iff a ρ∗ v and there is no element
v1 ∈ A such that v ρ v1.

Theorem 1.4. [Uniqueness of Normal Form] Consider a binary relation ρ ⊆
A × A for some set A, such that ρ is confluent and terminating. For all a, -, r ∈ A,
if (i) a ρ∗ -, (ii) a ρ∗ r, (iii) it does not exist -1 ∈ A such that - ρ -1, and (iv) it does
not exist r1 ∈ A such that r ρ r1, then - = r.

Proof. By the confluence property, if (i) and (ii) hold then there exists z ∈ A
such that - ρ∗ z and r ρ∗ z. By (iii) and (iv) we have that - = z and r = z. Thus,
- = r. !

We have the following proposition which states that the structural operational
semantics defines a function, that is, for all additive arithmetic expression e, for all
natural numbers n1 and n2, if e →∗ n1 and e →∗ n2 then n1 = n2.

Proposition 1.5. [Functionality of the Structural Operational Seman-
tics] The evaluation relation → defined by the deduction rules R1, R2, and R3, is
confluent, terminating, and enjoys the uniqueness of normal form property. The same
properties hold for the evaluation relation, also denoted →, defined by the deduction
rules R1, R2.1, and R3.

2. Operational Semantics: The SMC Machine

In this section we specify the operational semantics of a simple imperative language
using a transition system following the approach suggested by Peter Landin [8].

In Section 3 on page 27 we will provide the operational semantics of a more
complex programming language where recursive function calls are allowed.

Here are the syntactic domains of the simple imperative language we now consider.

n ∈ N (Integer Numbers) N = {. . . ,−2,−1, 0, 1, 2, . . .}
X ∈ Loc (Locations or Memory Addresses) Loc = {X0, X1, . . . , Xi, . . .}
op ∈ Aop (Arithmetic Operators) Aop = {+,−,×}
rop ∈ Rop (Relational Operators) Rop = {<,≤, =,≥, >}
bop ∈ Bop (Binary Boolean Operators) Bop = {∧,∨,⇒}

Let Operators denote the set {+,−,×} ∪ {<,≤, =,≥, >} ∪ {¬,∧,∨,⇒} of the
arithmetic, relational, and boolean operators. All operators have arity 2, except the
negation operator ¬ which has arity 1.

We also have the following derived syntactic domains.
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a, a1, a2 ∈ Aexp a ::= n | X | a1 op a2 (Arithmetic expressions)

b, b1, b2 ∈ Bexp b ::= true | false | a1 rop a2 (Boolean expressions)

| ¬b | b1 bop b2

p, p0, p1, p2 ∈ Com p ::= skip | X := a | p1; p2 (Commands)

| if b then p1 else p2

| while b do p0

Let Constants denote the set N ∪ {true, false}, and let Phrases denote the set
Aexp ∪ Bexp ∪ Com.

The operational semantics is specified as a transition relation, denoted −→, subset
of State×State , where an element of the set State is a triple of the form 〈S, M, C〉,
where:

(i) S, called value stack, is a stack whose elements are taken from the set Phrases,

(ii) M , called memory, is a function from the natural numbers N≥0 to Constants,
and

(iii) C, called control stack, is a stack whose elements are taken from the set Phrases
∪ Operators ∪{¬, assign, if ,while}. (Note that skip ∈ Phrases.)

Both the value stack and the control stack are assumed to grow to the left and, thus,
a " s denote the stack s after pushing the element a on top of it. By M [n/i] we denote
the memory M whose location i contains the value n. By M(i) we denote the value
stored in the location Xi in the memory M . Thus, M [n/i](i) = n.

Here are the rules for the transition relation −→. They are said to specify the
SMC machine.

R1. 〈S, M, c "C〉 −→ 〈c "S, M, C〉 for each c in Constants

R2. 〈S, M, Xi "C〉 −→ 〈M(i) " S, M, C〉 for each location Xi ∈ Loc

R3. 〈S, M, skip "C〉 −→ 〈S, M, C〉

R4. 〈S, M, (Xi :=a) "C〉 −→ 〈Xi "S, M, a "assign " C〉

R5. 〈S, M, (c1; c2) "C〉 −→ 〈S, M, c1 " c2 "C〉

R6. 〈S, M, (if b then c1 else c2) "C〉 −→ 〈c2 " c1 "S, M, b " if "C〉

R7. 〈S, M, (while b do c0) "C〉 −→ 〈c0 " b "S, M, b "while "C〉

R8. 〈S, M,¬ b " C〉 −→ 〈S, M, b "¬ "C〉

R9. 〈b " S, M,¬ "C〉 −→ 〈b′ "S, M, C〉
where b′ is the semantic value which is the negation of b, that is, if b is true (or
false) then b′ is false (or true, respectively).

R10. 〈S, M, (a1 op a2) "C〉 −→ 〈S, M, a1 " a2 "op " C〉
and, analogously, for each relational operator rop and binary boolean opera-
tor bop.
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R11. 〈m "n "S, M, op " C〉 −→ 〈(n op m) "S, M, C〉
where op is the semantic operator corresponding to the arithmetic operator op,
and, analogously, for each relational operator rop and binary boolean opera-
tor bop.

R12. 〈n "Xi " S, M, assign "C〉 −→ 〈S, M [n/i], C〉
R13. 〈true " c2 " c1 "S, M, if "C〉 −→ 〈S, M, c1 "C〉
R14. 〈false " c2 " c1 " S, M, if "C〉 −→ 〈S, M, c2 "C〉
R15. 〈true " c0 " b "S, M,while "C〉 −→ 〈S, M, (c0;while b do c0) "C〉
R16. 〈false " c0 " b " S, M,while "C〉 −→ 〈S, M, skip " C〉

Note that the relation −→ is deterministic, that is, for all triples t1, t2, t3 in State, if
t1 −→ t2 and t1 −→ t3 then t2 = t3.

We may also define an evaluation function, named eval, from Com × Memory
to Memory, where Memory is the set of all functions from N≥0 to Constants, as
follows: for all commands c and memories M and M ′,

eval(c, M) = M ′ iff 〈nil , M, c "nil〉 −→∗ 〈nil , M ′, nil〉
where nil denotes the empty value stack and the empty control stack and −→∗ denotes
the reflexive, transitive closure of −→. Obviously, the function eval is a partial
function because (the rewriting induced by) the relation −→ may not terminate (see
Definition 1.2 on page 25).

Note that the syntax of our simple imperative language can be expressed via a
context-free grammar while, in general, in order to express the semantics of our
language, we need a type 0 grammar. The need for a type 0 grammar is due to the
fact that in our language we can denote any Turing computable function from N≥0

to N≥0.

3. Operational Semantics: The SECD Machine

In this section we will give the operational semantics of a recursive Algol-like language
following Peter Landin’s approach [8]. As in Section 2 on page 25, the operational
semantics is based on a transition system from old tuples to new tuples.

Let us consider a language with the following basic sets.

n ∈ N (Integer Numbers) N = {. . . ,−2,−1, 0, 1, 2, . . .}
x ∈ Var (Variables) Var = {x0, x1, . . . , xi, . . .}
f ∈ Fvar (Function Variables) Fvar = {f0, f1, . . . , fi, . . .}
op ∈ Aop (Arithmetic Operators) Aop = {+,−,×}

We have the following derived set of terms.

t, t0, t1, t2, tai
∈ Term t ::= n | x | t1 op t2 | if t0 then t1 else t2

| fi(t1, . . . , tai
)
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where when evaluating the term if t0 then t1 else t2, we evaluate the left arm if
t0 = 0 and the right arm if t0 1= 0. This convention avoids the introduction of the
boolean values true and false and we can do with integer numbers only.

We also have a set of declarations of the form





f1(x1, . . . , xa1
) = d1

...
fk(x1, . . . , xak

) = dk

where the di’s are terms. Each declaration is related to a function variable fi in Fvar.
We assume that all the declarations are well-formed. In particular, we assume that,
for i=1, . . . , k, all variables occurring in di belong to the set {x1, . . . , xai

}.
For instance, for the familiar Fibonacci function we have the following declaration:

fib(x) = if x then 1 else

if x−1 then 1 else fib(x−1) + fib(x−2)

The operational semantics is specified as a transition relation, denoted −→, subset of
State×State , where an element of the set State is a 4-tuple of the form 〈S, E, C, D〉,
where:

(i) S, called value stack, is a stack whose elements are taken from the set Term,

(ii) E, called environment, is a list of bindings, that is, a list of pairs and each pair
is of the form [x, n],

(iii) C, called control stack, is a stack whose elements are taken from the set Term
∪ Fvar ∪ Aop ∪ {if}, and

(iv) D, called dump, is a stack whose elements are, recursively, 4-tuples of the form
〈S, E, C, D〉.

For all variables x∈Var, for all integers n∈N , the pair [x, n] is said to bind x to n.

All stacks are assumed to grow to the left and, thus, a " s denote the stack s after
pushing the element a on top of it.

In the definition of the operational semantics we use the following auxiliary con-
stant nil and functions lookup and decl :

(i) nil denotes either the empty stack S, or the empty environment E, or the empty
control C, or the empty dump D (the context will tell the reader which of those
empty structures is denoted by any given occurrence of nil);

(ii) lookup(x, E), which given a variable x∈Var and an environment E, returns the
integer in N to which x is bound;

(iii) decl(fi), which given a function variable fi∈Fvar, returns the term which occurs
on the right hand side of the declaration of fi .

Here are the rules for the transition relation −→. They are said to specify the
SECD machine.

These rules define a call by-value semantics in the sense that, before applying a
function, we evaluate all its arguments. As already mentioned, when evaluating the
term if t0 then t1 else t2 we first evaluate the subterm t0 and then the left arm t1
if t0 =0, and the right arm t2 if t0 1=0.
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For reasons of simplicity, we have assumed that the declarations of the function
variables in Fvar are kept outside the 4-tuple 〈S, E, C, D〉. Indeed, those declarations
are accessed via the decl function, so that, for instance, if we have the declaration
fi(x1, . . . , xai

) = di then decl(fi) = di. (Alternatively, one could have stored all the
declarations in the environment E at the expense of replicating those fixed declara-
tions any time a new dump D is constructed.)

R1. 〈S, E, n "C, D〉 −→ 〈n "S, E, C, D〉 for each n ∈ N

R2. 〈S, E, x "C, D〉 −→ 〈lookup(x, E) "S, E, C, D〉 for each variable x ∈ Var

R3. 〈S, E, (t1 op t2) "C, D〉 −→ 〈t2 " t1 "S, E, op "C, D〉

R4. 〈m "n " S, E, op " C, D〉 −→ 〈(n op m) "S, E, C, D〉
where op is the semantic operator corresponding to the arithmetic operator op

R5. 〈S, E, (if t0 then t1 else t2) "C, D〉 −→ 〈t2 " t1 "S, E, t0 " if " C, D〉

R6. 〈0 " t2 " t1 "S, E, if "C, D〉 −→ 〈S, E, t1 "C, D〉

R7. 〈n " t2 " t1 "S, E, if " C, D〉 −→ 〈S, E, t2 " C, D〉 for n 1= 0

R8. 〈S, E, fi(t1, . . . , tai
) "C, D〉 −→ 〈S, E, t1 " . . . " tai

" fi "C, D〉 for each fi ∈ Fvar

R9. 〈nai
" . . . "n1 "S, E, fi " C, D〉

−→ 〈nil , [x1, n1] " . . . " [xai
, nai

] "nil , decl(fi) "nil , 〈S, E, C, D〉〉

R10. 〈n "S, E, nil , 〈S ′, E ′, C ′, D′〉〉 −→ 〈n "S ′, E ′, C ′, D′〉

As for the SMC machine, we have that the relation −→ is deterministic, that is, for
all 4-tuples t1, t2, t3 in State, if t1 −→ t2 and t1 −→ t3 then t2 = t3.

We may also define for any given set of declarations, an evaluation function, named
eval, from Term to N as follows: for all terms t without occurrences of variables, for
all n∈N ,

eval(t) = n iff there exists an environment E such that
〈nil , nil , t "nil , nil〉 −→∗ 〈n, E, nil , nil〉

where −→∗ denotes the reflexive, transitive closure of −→. Obviously, the function
eval is a partial function because (the rewriting induced by) the relation −→ may
not terminate (see Definition 1.2 on page 25).

Exercise 3.1. Provide the transition relation of the SECD machine for the call-
by-name regime in which the arguments of a function are not evaluated before the
application of the function itself. The reader may want to look first at the operational
semantics that we will give on Section 4 on page 173.

Exercise 3.2. Write a Prolog program which implements the SECD machine.
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4. Denotational Semantics for the Evaluation of Binary Numerals

In this section we give a simple example of how to define the denotational semantics
of binary strings as natural numbers. We follow the technique proposed by Scott and
Strachey in 1971 (see, for instance, [18]).

We have the syntactic domain Bin of the binary strings, where b ∈ Bin:

b ::= 0 | 1 | b 0 | b 1

with the concatenation operation which we have denoted by juxtaposition. We choose
the semantic domain to be the set of the natural numbers N≥0 with the nullary
constructor zero, denoted 0, the unary constructor successor, denoted s , and the
multiplication operation, denoted ×. Thus, the natural numbers will be denoted by
0, s(0), s(s(0)), . . .

The denotational semantics is given by the semantic function !_" (pronounced
fat square brackets) from Bin to N≥0 defined as follows, where b ∈ Bin:

!0" = 0

!1" = s(0)

!b 0" = s(s(0)) × !b" (recall that !b 0" is 2×!b")

!b 1" = s
(
s(s(0)) × !b"

)
(recall that !b 1" is (2×!b")+1)

Note that in the equation !0" = 0, the 0 on the left is a string belonging to the
syntactic domain Bin, while the 0 on the right is a natural number belonging to the
semantic domain N≥0.

The definition of the function !_" provided by the above four equations specifies
a single mathematical function from Bin to N≥0 because that definition is given by
induction on the structure of the elements of Bin. (Actually, !_" is a homomorphism
from Bin to N≥0.) This fact is a consequence of the Recursion Theorem (see Section 2
on page 74).



CHAPTER 3

Introduction to Sorted Algebras and Rewriting Systems

In this chapter we introduce the notion of a sorted algebra and we study some theories
based on equations between terms. We closely follow the presentation given in [7].
We also present the basic concepts on rewriting systems and termination proofs.

1. Syntax of Sorted Algebras

First, we define the syntax of a sorted algebra, that is, an algebra with so called typed
operators.

We consider a finite set S of sorts. They are a finite collection of identifiers. For
instance, S = {integer,boolean}.

From a given set of sorts we get a set of types, whose generic element t is of the
form:

t ::= s | s1 × . . . × sn → s

where s, s1, . . . , sn ∈ S. Thus, a type is a sequence of one or more sorts. The rightmost
sort s of a type t of the form either s or s1 × . . . × sn → s is said to be the sort of
any element generated by any operator of type t.

A typed signature (or signature, for short) is a set Σ of typed operators, that is,
operators with types. A type signature defines the syntax of a sorted algebra, or
algebra, for short.

We will assume that every given signature is sensible, that is, every sort occurring
in the type of an operator in Σ, is generated by an operator in Σ.

For instance, given the set of sorts S = {integer,boolean} and the typed signa-
ture Σ = {0, s , +, True, False, eq} with the following typed operators:

0 : integer
s : integer → integer
+ : integer × integer → integer
True : boolean
False : boolean
eq : integer × integer → boolean

we have that Σ is a sensible signature.
Given the set of sorts S = {integer,boolean} and the signature Σ = {True,

False, eq} with the following typed operators:

True : boolean
False : boolean
eq : integer × integer → boolean

we have that Σ is not a sensible signature, because no element of sort integer can
be generated by an operator in Σ.

31
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2. Semantics of Sorted Algebras

Now we consider the semantics of a sorted algebra by introducing the notion of a
Σ-algebra.

A Σ-algebra is a pair 〈A,F〉, where: (i) A is a family of sets such that for each
sort s ∈ S, there exists a set As, called the carrier of sort s, and (ii) F is a family of
functions such that for each F ∈ Σ,
(ii.1) if the type of F is s then FF is an element of As, and
(ii.2) if the type of F is s1 × . . .× sn → s then FF is a total function in (As1 × . . .×
Asn) → As, where, as usual, S1 ×S2 denotes the cartesian product of the sets S1 and
S2, and S1 → S2 denotes the set of all functions from S1 to S2.

For instance, given the set {integer,boolean} of sorts and the signature Σ =
{0, s , +, True, False, eq}, we have the following Σ-algebra called Arith.

The Σ-algebra Arith
Ainteger is N (that is, the set of the natural numbers),
Aboolean is {true, false},
0 is the natural number 0 ∈ N ,
s is the usual successor function succ from N to N ,
+ is the usual function sum from N×N to N ,
True is true,
False is false, and
eq(m, n) is the function such that if m=n then true else false.

3. Initial (or Free) Algebras

Among all possible Σ-algebras, there is a Σ-algebra, called the free Σ-algebra, or the
initial Σ-algebra. In this algebra, (i) for each sort s, the carrier of sort s is the set
of all finite ordered trees with nodes labeled by elements in Σ, and (ii) the functions
associated with the operators are defined as follows: for each operator F ∈ Σ,
(ii.1) if the type of the operator F is s then FF is F , that is, a leaf with label F , and
(ii.2) if the type of operator F is s1×. . .×sn → s then FF is λx1, . . . , xn. F (x1, . . . , xn),
that is, a node with label F with n child nodes that are recursively defined from the
n arguments x1, . . . , xn, respectively.

The union of the carriers of the free Σ-algebra, denoted T (Σ), is called the set of
ground terms (or words, or abstract syntax trees) over Σ.

For instance, given the set {integer,boolean} of sorts and the signature Σ =
{0, s , +, True, False, eq}, the free Σ-algebra is defined as follows:

(i) Ainteger is the set IntegerTerms, whose generic element t is of the form:

t ::= 0 | s(t) | t1 + t2

where t, t1, t2 ∈ IntegerTerms,

(ii) Aboolean is the set BooleanTerms, whose generic element b is of the form:

b ::= True | False | eq(t1, t2)

where t1, t2 ∈ IntegerTerms, and the functions associated with the operators in Σ are
the following ones.
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- The function associated with the nullary operator 0 returns a tree which is a leaf
with label 0.
- The function associated with the unary operator s returns, for every argument t,
a root node with label s and a single child node which is the tree returned by the
function associated with the top operator of t.
- The function associated with the binary operator + returns, for all arguments t1
and t2, a root node labeled by + with two child nodes which are returned by the
function associated with the top operators of t1 and t2, respectively.

Analogous definitions specify the functions associated with the operators True,
False, and eq .

The expert reader will note that the union of the carriers of the free Σ-algebra is
the so called Herbrand Universe generated from the symbols in Σ.

Given the signature Σ = {0, s , +, True, False, eq}, the set T (Σ) is IntegerTerms ∪
BooleanTerms. For instance, the following ground terms, viewed as trees, belong to
T (Σ): (i) 0+s(0), (ii) s(0+s(s(0))), and (iii) eq(s(0)+0, 0).

4. Variables

We may have variables occurring in terms as we now specify. We consider for each
sort s ∈ S, a countable set Vs of variables of type s. We then consider the set
T (Σ ∪ V), where V =

⋃
s∈S Vs, made out of the terms which can be constructed by

considering the typed variables as typed operators of arity 0.
For instance, 0 + s(x) is a term in T (Σ ∪ V), where Σ = {0, s , +, True, False, eq}

and x ∈ Vinteger.
A term without variables is said to be a ground term.

5. Morphisms

Given two Σ-algebras 〈A1,F1〉 and 〈A2,F2〉, a Σ-morphism (or a morphism, for short)
is a family of total functions, one total function hs for each sort s ∈ S, such that:
(i) hs : A1s → A2s, and
(ii) for each operator F ∈ Σ with type s1 × . . . × sn → s, we have that:

for all a1, . . . , an ∈ A1s×. . .×A1s, hs(F1 F (a1, . . . , an))=F2F (hs1(a1), . . . , hsn(an)).

We have the following theorems.

Theorem 5.1. [Initiality of the Free Algebra] Let 〈A,F〉 be the initial
Σ-algebra. For any other Σ-algebra 〈A′,F ′〉 there exists a unique Σ-morphism from
〈A,F〉 to 〈A′,F ′〉.

Theorem 5.2. [Universality of the Free Algebra] Let 〈A,F〉 be a Σ-algebra.
Every variable assignment ν : V → A can be extended in a unique way to a
Σ-morphism, also named ν, from T (Σ ∪ V) to 〈A,F〉.
For instance, if ν(X)=s(0) then ν(X+0)=s(0) +0.

A Σ-morphism from T (Σ∪V) to T (Σ∪V) which extends a variable assignment,
is called a substitution. An equivalent definition of a substitution will be given in
Section 9 (see Definition 9.1 on page 40). In that section (i) the set of operators is
denoted by F , instead of Σ, (ii) the set of variables is denoted by Vars, instead of V,
and (iii) the set of terms is denoted by T (F ∪ Vars), instead of T (Σ ∪ V).
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Given a Σ-algebra 〈A,F〉, a binary relation ∼⊆ A×A is said to be a Σ-congruence
over A iff (i) ∀a, b ∈ A if a ∼ b then a and b have the same sort, and (ii) for each
operator F ∈ Σ with type s1 × . . . × sn → s, we have that:

∀a1, b1, . . . , an, bn ∈ A, (a1 ∼ b1, . . . , an ∼ bn) ⇒ FF (a1, . . . , an) ∼ FF (b1, . . . , bn).

6. Equations, Validity, Satisfiability, and Variety

A Σ-equation (or equation, for short) is a pair 〈t1, t2〉 of terms in T (Σ∪V) such that
t1 and t2 have the same sort. Usually, the Σ-equation 〈t1, t2〉 is written as t1 = t2.

Definition 6.1. [Validity of Σ-equations] Given a Σ-algebra 〈A,F〉 and a
Σ-equation t1 = t2, we say that t1 = t2 is valid in 〈A,F〉, or t1 = t2 holds in 〈A,F〉,
or 〈A,F〉 is a model of t1 = t2, and we write 〈A,F〉 |= t1 = t2, iff for every variable
assignment ν : V → A, we have that ν(t1) = ν(t2).

A set E of Σ-equations holds in a Σ-algebra 〈A,F〉 iff every equation in E holds
in 〈A,F〉.

Thus, when equations involve variables, those variables should be understood as
universally quantified in front.

For instance, for the Σ-algebra Arith defined on page 32 we have that Arith |=
x + y = y + x holds, that is, the operator + is commutative, because the function
sum on the natural numbers is commutative (see Theorem 1.3 on page 60).

Definition 6.2. [Satisfiability of Σ-equations] Given a Σ-algebra 〈A,F〉 and
a Σ-equation t1 = t2, we say that t1 = t2 is satisfiable in 〈A,F〉 iff there exists a
variable assignment ν such that ν(t1) = ν(t2).

We say that a Σ-equation t1 = t2 is satisfiable in a class C of Σ-algebras iff there
exists a Σ-algebra 〈A,F〉 ∈ C such that t1 = t2 is satisfiable in 〈A,F〉.

Let us consider a signature Σ and a Σ-algebra A. For reasons of simplicity, here
and in what follows the Σ-algebra 〈A,F〉 is also denoted by A only.

Let us consider the binary relation =A defined as follows: for all t1, t2 ∈ T (Σ∪V),
t1 =A t2 iff A |= t1 = t2. The relation =A is a Σ-congruence over T (Σ ∪ V).

Definition 6.3. [Variety] Given a set E of Σ-equations, the variety of E is the
class of Σ-algebras, denoted M(Σ, E), or simply M(E), which are models of E . That
is, for each equation t1 = t2 ∈ E , we have that M(E) |= t1 = t2 iff for each Σ-algebra A
in M(E), A |= t1 = t2 holds.

M(E) is never empty because, as we will see below, there is a Σ-algebra, called
Sort , which is a model of every set E of equations. The Σ-algebra Sort is defined as
follows: for each sort s, the carrier of sort s is the singleton {s}, and for each operator
F ∈ Σ,
(1) if the type of the operator F is s then FF is s, and
(2) if the type of operator F is s1 × . . . × sn → s then FF is λx1, . . . , xn. s.

Every variable x of sort s, that is, every x ∈ Vs, is assigned the value s. Thus,
every term in T (Σ ∪ V) is given a value in the set S of sorts.

Now the Σ-algebra Sort is a model of every given set E of equations, because we
have assumed that in every Σ-equation t1 = t2 the terms t1 and t2 should have the
same sort.
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Let us consider the following set E+ of equations for the function symbol +:

{ x + 0 = x, x + s(y) = s(x + y) } (E+)

Let us also consider the set {integer,boolean} of sorts and the signature Σ =
{0, s , +, True, False, eq}. We have the following Σ-algebra called Arith1.

The Σ-algebra Arith1

Ainteger is Nred ∪ Nblue = {0red , 1red , 2red , . . . , 0blue , 1blue , 2blue , . . .} (that is, two
colored copies of the set of the natural numbers),

Aboolean is {true, false},
0 is 0red ,
s is the usual successor function succ from Nred ∪ Nblue to Nred ∪ Nblue such that

color is preserved (for instance, succ(1red) = 2red and succ(0blue) = 1blue),
+ is the usual function sum from (Nred ∪Nblue)×(Nred ∪Nblue) to Nred ∪Nblue such

that the color of the left operand is preserved (for instance, sum(2red , 1blue) =
3red),

True is true,
False is false, and
eq(ma, nb) is the function such that if m = n then true else false (for instance,

eq(4red , 4blue) = true and eq(3red , 4red ) = false).

Both Arith and Arith1 are models of the set E+ of equations.

However, we have that: Arith1 1|= x+y = y+x. Indeed, for instance, we have that
sum(1red , 0blue) = 1red and sum(0blue , 1red ) = 1blue . Thus, M(E+) 1|= x + y = y + x.

We have that: M(E+) |= 0 + sn(0) = sn(0), for all n ≥ 0. The easy proof by
induction on n, using the Equations E+, is left to the reader. Note that in Arith1 we
have that, for every n ∈ N , sn(0) is nred .

However, M(E+) 1|= 0+ y = y, because we have that Arith1 1|= 0+ y = y. Indeed,
sum(0red , 0blue) = 0red .

Exercise 6.4. Show by induction that for all m, n≥0, we have that

M(E+) |= sm(0) + sn(0) = sn(0) + sm(0)

that is, commutativity of + holds for ground terms.

7. Validity Problem and Word Problem

In what follows we will consider the so called validity problem which consists in
deciding whether or not, given a class C of Σ-algebras and a Σ-equation t1 = t2, for
some terms t1 and t2 of the same sort in the free Σ-algebra T (Σ ∪ V), we have that
A |= t1 = t2, for all Σ-algebras A ∈ C.

We will also consider the word problem which consists in deciding whether or not,
given a Σ-algebra A and a Σ-equation t1 = t2, for some terms t1 and t2 of the same
sort in the free Σ-algebra T (Σ), we have that A |= t1 = t2.

Note that the terms t1 and t2 are ground terms in the word problem, while they
may contain variables in the validity problem.

Obviously, the word problem is an instance of the validity problem.
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Definition 7.1. [Congruence =E Associated with a Set E of Equations]
Given a set E of Σ-equations, the equational theory =E is the finest Σ-congruence
over T (Σ ∪ V) which contains, for all equations t1 = t2 in E , for all substitutions σ,
every pair 〈σ(t1), σ(t2)〉, which is also written as σ(t1) =E σ(t2).

Recall that, given any Σ-algebra, a Σ-congruence is an equivalence relation on
T (Σ ∪ V) which is preserved by every operator in Σ.

Thus, an equational theory is a set of theorems each of which is an equality
between two (not necessarily ground) terms.

The equations in E are also called the axioms of the equational theory =E .
For any given term t1 and t2 of the free Σ-algebra T (Σ∪V), we have that t1 =E t2

holds iff it can be derived by the following proof system.

The equational theory =E

R1.
t1 =E t2

if t1 = t2 ∈ E

R2.
t1 =E t2

σ(t1) =E σ(t2)
for any substitution σ

R3.
t1 =E t2

t[t1/p] =E t[t2/p]
for any term t ∈ T (Σ ∪ V) and any position p in t

In rule R3 of that proof system, for all terms t, t1 ∈ T (Σ ∪ V), by t[t1/p] we denote
the term t whose subterm at position p has been replaced by the subterm t1. We do
not formally define the notion of a position here. The following properties and the
following Example 7.2 will suffice.

Given a term t, the set P (t) of the positions of t is a set of words, each of which
is of the form, where n ∈ N−{0}:

p ::= ε | p.n

The position ε is the position of the top operator of the given term. Thus, for all
terms t, t1 ∈ T (Σ ∪ V), we have that t[t1/ε] is t1.

Obviously, if p.n ∈ P (t) then: (i) p ∈ P (t), and (ii) for all m ∈ N−{0} such that
m<n, we have that p.m ∈ P (t).

Example 7.2. In Figure 1 on the facing page we have depicted the term 0+s(x),
its positions, and the term (0+s(x)) [(s(0)+y) / 2], which is 0+(s(0)+y). !

We have the following theorem.

Theorem 7.3. [Birkhoff Theorem] Given a set E of Σ-equations and two
terms t1 and t2 of the free Σ-algebra T (Σ ∪ V), we have that M(E) |= t1 = t2
iff t1 =E t2.
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Figure 1. (α) The term 0+s(x). (β) The set {ε, 1, 2, 2.1}, depicted
as a tree, of the four positions of the term 0+ s(x). (γ) The term
(0+s(x)) [(s(0)+y)/2] which denotes the term 0+s(x) whose subterm
at position 2 has been replaced by s(0)+y.

Thus, given a set E of Σ-equations, an equation holds in the variety of E iff it can
be derived from E by substitution (see rule R2 above) and replacement of equals by
equals (see rule R3 above).

Proposition 7.4. [Semidecidability of the Validity Problem for a Recur-
sive Set of Equations] If the given set E of Σ-equations is recursive, then there
exists a recursively enumerable procedure to decide the validity problem in the va-
riety of E , that is, the problem to establish whether or not, given any two terms t1
and t2, M(E) |= t1 = t2 holds is semidecidable.

Proof. It is based on: (i) Theorem 7.3 on the preceding page, and (ii) the proof
system for the equational theory =E with the proof rules R1, R2, and R3 (see page 36).
First, note that the sets of (i) axioms, (ii) terms, (iii) substitutions, and (iv) positions
can all be enumerated (enumerable sets are defined on page 22). Also the sets of all
sequences of expressions of the form (i)–(iv) can be enumerated. Now, since: (1) a
substitution of many variables can be realized by a sequence of substitutions of single
variables, and (2) all sequences of 〈term , position〉 pairs can be enumerated (using a
dove-tailing technique), we have that all sequences of instances of Rule R2 or Rule R3,
can be enumerated. Then, all trees whose internal nodes are instances of Rule R2
or Rule R3 and whose leaves are instances of Rule R1, can be enumerated. These
trees denote proofs of equalities of the form t1 =E t2 when using the proof system
for =E . As a consequence, the set of all valid equalities t1 =E t2 can be enumerated,
and semidecidability follows. !

Definition 7.5. [Initial Σ-Algebra Generated by a Set of Equations]
Given a set E of Σ-equations, the initial Σ-algebra generated by E , denoted I(Σ, E),
or simply I(E), is the quotient of the initial algebra T (Σ) by the Σ-congruence
=E ⊆ T (Σ ∪ V) × T (Σ ∪ V), when =E is restricted to the ground terms, that is,
when=E is restricted to T (Σ) × T (Σ).

There exists a unique Σ-morphism from I(E) to any Σ-algebra in M(E).
A substitution σ : V → T (Σ) is said to be a ground substitution (see also page 40).

Theorem 7.6. I(E) |= t1 = t2 iff for every ground substitution σ : V → T (Σ) we
have that σ(t1) =E σ(t2).
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Thus, given a set E of Σ-equations, the problem of checking whether or not a given
Σ-equation t1 = t2 holds in I(E) is equivalent to the problem of checking whether or
not all the ground instances of t1 = t2 hold in M(E), that is, I(E) |= t1 = t2 holds
iff M(E) |= σ(t1) = σ(t2) holds for all ground substitutions σ.

While M(E) |= t1 = t2 can be established by the proof system of page 36,
unfortunately, there is no a similarly simple proof system for establishing whether or
not I(E) |= t1 = t2 holds.

We have that equational reasoning is complete for solving the word problem in the
initial Σ-algebra, that is, by using: (i) substitution, and (ii) replacement of equals by
equals (see rules R2 and R3 on page 36) we can solve the problem of checking whether
or not, given a set E of equations and two ground terms t1 and t2, I(E) |= t1 = t2
holds.

If t1 and t2 are not ground, we may be able to check whether or not I(E) |= t1 = t2
holds by using induction on the structure of T (Σ). However, there is no general
induction schema which is powerful enough to establish equalities between non-ground
terms.

Let us consider the signature Σ = {0, s , +, True, False, eq} and the Σ-equations E+

(see page 35). The E+-equivalence classes, which are the elements of I(E+) of sort
integer are the natural numbers N . Indeed, we have that:

[0] = {0, 0+0, 0+(0+0), . . .}
[s(0)] = {s(0), 0+s(0), s(0)+0, 0+(0+s(0)), . . .}
[s(s(0))] = {s(s(0)), 0+s(s(0)), 0+(0+s(s(0))), s(s(0))+0, s(0)+s(0), . . .}
. . .

where the equivalence class of the element x is denoted by [x].
However, if we consider all the elements of I(E+), both of sort integer and sort

boolean, we have that there are E+-equivalence classes which are not elements of
{[0], [s(0)], . . .} ∪ {[True], [False]}. Indeed, in particular, it is not the case that
eq(0, 0) =E+ True, and thus, eq(0, 0) 1∈ [True]. Similarly, eq(0, 0) 1∈ [eq(s(0), s(0))],
eq(0, s(0)) 1∈ [False], while eq(0, s(0)) ∈ [eq(0, s(0)+0)].

Exercise 7.7. Show by induction that for all x, y ∈ T (Σ), I(E+) |= x+y = y+x,
that is, commutativity of + holds for ground terms in the initial Σ-algebra generated
by E+.

Remark 7.8. Σ-algebras provide a mathematical understanding of the notions of
classes and objects encountered in object-oriented languages such as Java. A set E of
Σ-equations provides the semantics of the terms by associating with each term t its
equivalence class, that is, the set of all terms t′ such that t =E t′ (see Definition 7.1
on page 36).

8. Unification and Matching Problems

In this section we introduce the notions of unification and matching which will be
useful in the sequel.

Let us first introduce the following definition. Given a term t, by vars(t) we
denote the set of variables occurring in t.
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Definition 8.1. [Unification Modulo Equations or E-unification] Given a
signature Σ, two terms t1 and t2 in T (Σ ∪ V), and a set E of Σ-equations, we say
that t1 and t2 are E-unifiable (or unifiable modulo the set E of Σ-equations) iff there
exists a substitution σ : V → T (Σ ∪ V) such that σ(t1) =E σ(t2).

A substitution σ such that σ(t1) =E σ(t2) is called an E-unifier of t1 and t2.
We say that an E-unifier σ of t1 and t2 is away from the set W of variables such

that vars(t1) ∪ vars(t2) ⊆ W iff Vσ ∩ W = ∅, where Vσ is the set vars(σ(t1)) ∪
vars(σ(t2)).

For instance, given the equations E+ on page 35, the terms x+0 and y have the
E+-unifier σ such that σ(x)=y (because y+0=y). They also have the E+-unifier σ
such that σ(x)=σ(y)=0. An E+-unifier away from {x, y} is the substitution σ such
that σ(x)=σ(y)=z.

The unification problem consists in deciding whether or not, given two terms t1
and t2 in T (Σ ∪ V) and a set E of Σ-equations, there exists a substitution σ : V →
T (Σ ∪ V) such that σ(t1) =E σ(t2).

In particular, if E is the set of Peano axioms, the unification problem is equivalent
to the Hilbert tenth problem and, thus, it is undecidable (take t1 to be a polynomial
and t2 to be 0). If from Peano axioms we exclude the two axioms for multiplication
and we keep the two axioms for addition, we get a theory called Presburger Arith-
metics, which is known to be a decidable theory. Thus, the unification problem in
the Presburger Arithmetics is decidable.

Unification has been studied also in the case of higher order languages, but we
will not discuss this issue here. For the expert reader we only recall that monadic
second-order E-unification is a decidable problem, while second-order E-unification
is, in general, an undecidable problem [7, page 12].

We introduce also the following notion.

Definition 8.2. [Matching Modulo Equations or E-matching] Given a sig-
nature Σ, two terms t1 and t2 in T (Σ ∪ V), and a set E of Σ-equations, we say that
t1 E-matches (or matches modulo the equations E) t2 iff there exists a substitution
σ : V → T (Σ ∪ V) such that σ(t1) =E t2 [7, page 12].

A substitution σ such that σ(t1) =E t2 is called an E-matcher of t1 and t2.

For instance, an E+-matcher of x+0 and y is a substitution σ such that σ(x)=y.

9. Rewriting Systems

In this section we introduce the notion of a rewriting system which will be useful in
the sequel (see, for instance, Example 6.13 on page 186 and Section 7 on page 192).

Let F be a finite set of symbols with arity n (≥ 0). Let Vars be a countable set
of variables (with arity 0). Let T (F ) be the set of terms constructed from symbols
in F . The elements of T (F ) are said to be ground terms. Let T (F ∪Vars) be the
set of terms constructed from symbols in F and variables in Vars. The elements
of T (F ∪Vars) with at least one occurrence of a variable are said to be non-ground
terms.

Obviously, T (F ) ⊂ T (F∪Vars).
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Given an expression e, the set of variables occurring in e is denoted by vars(e).
Likewise, given a set E of expressions, the set of variables occurring in E is denoted
by vars(E).

A rewriting system (or a term rewriting system) Σ over T (F ∪Vars) is a finite
set {〈-k, rk〉 | 1 ≤ k ≤ K} of pairs of terms in T (F ∪Vars), whose variables range
over T (F ). A pair 〈-k, rk〉, also called a rule or a rewriting rule, is more often written
as -k −→ rk. For any k, with 1≤k≤K, we assume that vars(rk) ⊆ vars(-k).

Definition 9.1. [Substitution] A substitution ϑ is a total function from the
finite set V ⊆ Vars of variables to T (F∪Vars). The set V is said to be the domain
of the substitution ϑ and it is denoted by dom(ϑ). The range of ϑ, denoted rng(ϑ),
is the set {ϑ(x) | x ∈ dom(ϑ)}.

Given a substitution ϑ, for any x ∈ dom(ϑ), a pair 〈x, ϑ(x)〉, also denoted x/ϑ(x),
is said to be a binding of the substitution ϑ. An identity binding is a binding of the
form x/x, for some x ∈ Vars. We assume that the substitutions do not include
identity bindings, that is, for any given substitution ϑ, for all x ∈ dom(ϑ), ϑ(x) 1= x.

A substitution ϑ is said to be ground iff for all x∈dom(ϑ), ϑ(x) is a term in T (F ).
Unless otherwise specified, we will assume that every substitution ϑ is in solved

form, that is, dom(ϑ) ∩ vars(rng(ϑ)) = ∅.
Given a term t and a substitution ϑ such that vars(t) is included in the domain

of ϑ, the application of the substitution ϑ to the term t returns the term, denoted t ϑ
or ϑ(t), which is obtained from t by replacing every variable x ∈ vars(t), by the term
ϑ(x). The term t ϑ is said to be an instance of t or the ϑ-instance of the term t.

Given the substitutions ϑ = {x1/t1, . . . , xn/tn} and σ = {y1/s1, . . . , ym/sm},
their composition, denoted ϑσ, is the substitution obtained from {x1/t1σ, . . . , xn/tnσ,
y1/s1, . . . , ym/sm} by deleting: (i) the identity bindings, and (ii) every binding yi/si,
for i = 1, . . . , m, such that yi ∈ {x1, . . . , xn}.

For instance, given the substitutions ϑ = {x/v, y/w} and σ = {v/y, w/y, x/a},
we have that ϑσ = {x/y, v/y, w/y} which is obtained from the set {x/y, y/y, v/y,
w/y, x/a} of bindings by deleting: (i) the identity binding y/y, and (ii) the binding
x/a because x ∈ dom(ϑ).

Note that dom(ϑσ) may be a proper superset of dom(ϑ) and it may be a proper
subset of dom(ϑ) ∪ dom(σ).

Definition 9.2. [Unifier and Most General Unifier] Let us consider any two
terms t1 and t2. Let W be vars(t1)∪ vars(t2). A substitution ϑ with domain V ⊆ W
is said to be a unifier of t1 and t2 iff t1 ϑ = t2 ϑ. The substitution ϑ is said to be a
most general unifier of t1 and t2 iff for any other unifier ρ of t1 and t2, there exists a
substitution σ such that ρ = ϑσ.

Let us consider the set of symbols F = {a, b}. Let the arity of a be 0 and the
arity of b be 2. Let x, y, z, and w be variables. Let us also consider the terms
t1 =def b(b(z, x), b(a, w)) and t2 =def b(b(z, a), y).

The substitutions ρ = {x/a, y/b(a, a), z/a, w/a} and ϑ = {x/a, y/b(a, w)} are
unifiers of t1 and t2. ϑ is a most general unifier and we have that ρ = ϑ {z/a, w/a}.
The substitution ρ is a ground substitution and ϑ is not.
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Definition 9.3. [Matching Substitution] A unifier ϑ of two terms t1 and t2 is
said to be a matching substitution if either t1 ϑ = t2 or t2 ϑ = t1, that is, the variables
of the domain of ϑ occur either in t1 only or in t2 only. If t1 ϑ = t2, we say that t1
matches t2 according to (or via) the substitution ϑ (or the matcher ϑ), and likewise,
if t2 ϑ = t1, we say that t2 matches t1 according to the substitution ϑ.

The matching substitution ϑ = {y/b(a, x)} is such that b(a, y) ϑ = b(a, b(a, x)).
There is no matching substitution ϑ such that b(x, a) ϑ = b(a, y) or b(x, a) = b(a, y) ϑ.
There is no ground matching substitution ϑ such that b(a, y) ϑ = b(a, b(a, x)).

Definition 9.4. [Associative-Commutative Unifier and Matcher] An as-
sociative-commutative unifier (or AC-unifier, for short) ϑ of two terms t1 and t2 is a
unifier of t1 and t2 in which we assume that some symbols in t1 and t2 are associative
and commutative. An associative-commutative unifier ϑ of two terms t1 and t2 is
said to be an associative-commutative matcher (or AC-matcher, for short) of t1 and
t2 if t1ϑ = t2.

For instance, let us consider the set of symbols F = {0, s, +} with the arities 0,
1, and 2, respectively. Let us also assume that + is associative and commutative.
A most general AC-unifier of the term t1 =def (0 + s(0)) + x and the term t2 =def

s(0) + (s(y) + 0) is the matching substitution {x/s(y)}. That substitution is an
AC-matcher of t1 and t2.

Let us consider a rewriting system Σ = {-k −→ rk | 1≤k≤K} over T (F∪Vars).
Given a term t1 we can derive a term t2 by applying once the k-th rewriting rule of Σ
iff (i) -k matches t1 (or a subterm s of t1) according to a substitution ϑ, that is,
-kϑ = t1 (or -kϑ = s, respectively), and (ii) t2 is obtained from t1 by replacing t1 (or
by replacing s in t1, respectively) by rk ϑ. In this case we write t1 −→k t2 and we
say that the terms t1 and t2 are in the rewriting relation −→k, or t1 can be rewritten
into t2 using the k-th rewriting rule.

When it is understood from the context or it is irrelevant, we will feel free to omit
the subscript k and we will simply write −→, instead of −→k.

Definition 9.5. [Rewriting Relation] We associate with every rewriting sys-
tem Σ = {-k −→ rk | 1≤k≤K} a rewriting relation −→⊆ T (F∪Vars)×T (F∪Vars)
which is

⋃
1≤k≤K −→k.

As usual, (i) −→+ denotes the transitive closure of −→, (ii) −→∗ denotes the
reflexive, transitive closure of −→, and (iii) ←→∗ denotes the symmetric closure
of −→∗.

For any j ≥ 0, we define by induction on j, the binary relation −→ j, called the
j-fold composition of −→, as follows:

−→0 =def IT (F∪Vars), that is, the identity relation on T (F∪Vars), and

−→ j+1 =def −→ j;−→, for all j≥0.

It is easy to see that for all j≥0, −→ j;−→ is equal to −→ ;−→ j.

In order to state a few termination properties which we will be useful in the sequel
(see, for instance, Example 6.13 on page 186), now we introduce the following notions
and results [2].
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Definition 9.6. [Well-founded Set] An ordered set (A, >) is said to be well-
founded iff there is no infinite descending sequence of elements of A such that a1 >
a2 > . . . > an > . . .

Definition 9.7. [Strong Termination of a Rewriting System] A rewriting
system Σ is said to be strongly terminating (or terminating, or noetherian) with
respect to a set of terms T (F ) iff for all terms t ∈ T (F ) there is no infinite sequence
of terms t1 −→ t2 −→ . . . −→ tn −→ . . . such that: (i) t1 is t, and (ii) for all p≥ 0
there exists k such that tp −→k tp+1 (that is, the term tp can be rewritten into the
term tp+1 by using the k-th rewriting rule of Σ).

Theorem 9.8. [Undecidability of Strong Termination] Given a rewriting
system it is undecidable whether or not it is strongly terminating. If we assume
that the rewriting system is ground (that is, no variables occur in its rules) then
termination is decidable [7, page 16].

Given a set A, we denote by M(A) the set of the multisets built out of the
elements of A. For instance, {1, 3, 2, 1, 3} is a multiset of natural numbers, that is,
{1, 3, 2, 1, 3} ∈ M(N), where N is the set of natural numbers.

A multiset in M(A) is also denoted as a set of pairs in A × N . The second
component of each pair is a natural number which specifies the so called copy number
of the first component of the pair. For example, the multiset {1, 3, 2, 1, 3} is also
denoted by the set {〈1, 0〉, 〈3, 0〉, 〈2, 0〉, 〈1, 1〉, 〈3, 1〉}, where, in particular, 〈1, 0〉 and
〈1, 1〉 indicate that in the multiset {1, 3, 2, 1, 3} there are two occurrences of the
element 1, a first one with copy number 0 and a second one with copy number 1.

Copy numbers are assumed to satisfy the following condition:

for all multisets M ∈ M(A), for all 〈a, n〉 ∈ A ×N , if there exists a pair 〈a, n+1〉 in
M then in M there exists the pair 〈a, n〉.

In particular, for all multisets M ∈ M(A), for all 〈a, n〉 ∈ A × N , if 〈a, n〉 ∈ M
then 〈a, 0〉 ∈ M .

Let : denote the disjoint union of multisets. For instance, {1, 3, 2, 1, 3}:{3, 2, 2} =
{1, 3, 2, 1, 3, 3, 2, 2}.

Let ≡ denote the syntactic identity of terms.

Definition 9.9. [Permutation Equivalence] Let us consider a set F of sym-
bols. Let f ∈ F be a symbol of arity m. Given any two terms s, t ∈ T (F ), we
say that s ≡ f(s1, . . . , sm) is permutation equivalent to t ≡ f(t1, . . . , tm), and we
write s ∼ t, iff there exists a permutation 〈π(1), π(2), . . . , π(m)〉 of 〈1, 2, . . . , m〉 such
that, for i = 1, . . . , m, si ∼ tπ(i). (Obviously, for i = 1, . . . , m, in order to establish
si ∼ tπ(i) we may use a permutation different from π. Indeed, the arity of the top
operators of si and tπ(i) may be different from m.)

Definition 9.10. [Multiset Order] Given an ordered set (A, >), the multiset
extension of the order > is an order, denoted ;, on the set M(A) defined as follows:
∀M, N ∈ M(A), M1 ;M2 iff ∃X, Y, Z ∈ M(A), M1 = Z : X and M2 = Z : Y and
∀y∈Y , ∃x∈X, x>y.

For instance, {5, 5, 4, 1} ; {5, 5, 3, 2, 3} by taking X = {4, 1}, Y = {3, 2, 3}, and
Z ={5, 5}.
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In the following definition we generalize the notion of a multiset order.

Definition 9.11. [Multiset Order Based on an Equivalence] Given an or-
dered set (A, >) and an equivalence relation ∼ on A, the multiset extension ;∼ of

the order > based on the equivalence ∼ is a multiset extension of > according to
the above Definition 9.10 on the facing page, where: (i) the multiset M2 is equal to
f(Z): Y , and (ii) f is a bijection from A×N to A×N such that (here, we represent
multisets as sets of pairs using the copy numbers):

∀〈z, n〉∈Z, ∃z1∈A, z ∼ z1 and f(〈z, n〉) = 〈z1, n〉.

For instance, let us consider:
(i) the set T of terms whose syntax is defined as follows, where s is the successor
function on natural numbers:

t ::= 0 | s(t) | t + t

(for reasons of simplicity we will also write k, instead of sk(0)),
(ii) the equivalence ∼ based on the commutativity of +, that is, ∀x, y, x+y ∼ y+x,
and
(iii) the order > defined by the proper subterm relation, modulo ∼. For instance,
(2+0)+1 > 0+2, because 2+0 is a subterm of (2+0)+1 and 2+0 ∼ 0+2.

We have that: {0+2, 0+1} ;∼ {2+0, 0, 1, 0} because, with reference to Defini-

tion 9.11, we can take: Z = {0+2}, f(〈0+2, 0〉) = 〈2+0, 0〉 (here we have indicated
the elements 0+2 and 2+0 with their copy number 0), X = {0+1}, and Y ={0, 1, 0}.

Theorem 9.12. Given an ordered set (A, >), (i) if > is irreflexive and transitive
then ; is irreflexive and transitive, and (ii) (A, >) is well-founded iff (M(A),;) is
well-founded.

Definition 9.13. [Recursive Path Order] Let us consider an irreflexive, tran-
sitive order ! on a set F of symbols and the permutation equivalence ∼ over T (F ).
The recursive path order > (rpo, for short) over the set T (F ) associated with !

and ∼, is recursively defined as follows: for any given term s ≡ f(s1, . . . , sm) and
t ≡ g(t1, . . . , tn), we have that: s > t iff s 1∼ t and

either f ! g and for i = 1, . . . , n, s>ti (rpo 1)

or f ≡ g and there exists a permutation π of 〈1, . . . , m〉 such that (rpo 2)

{s1, . . . , sm} ;∼ {tπ(1), . . . , tπ(m)} (in this case m=n>0)

or for some i = 1, . . . , m, (si >t or si∼t), (rpo 3)

where ;∼ is the multiset extension of the order > based on the permutation equiva-

lence ∼.

Theorem 9.14. An ordered set (F, !) is well-founded iff (T (F ), >), where > is
the rpo over T (F ) associated with ! and the permutation equivalence ∼, is well-
founded.

Definition 9.15. [Simplification Order] An irreflexive, transitive order > over
a set T (F ) of terms is said to be a simplification order iff for any term t, t′ ∈ T (F ),
for any f ∈ F ,
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(i) t > t′ implies f(. . . , t, . . .) > f(. . . , t′, . . .), and

(ii) f(. . . , t, . . .) > t.

(monotonicity)

(subterm)

The proof of the following theorem can be found in [2].

Theorem 9.16. Given a set F of symbols with arity, the recursive path order >
over a set T (F ) of terms associated with an irreflexive, transitive order ! on F and
the permutation equivalence ∼, is a simplification order.

Theorem 9.17. [Strong Termination (Dershowitz)] Let F be a finite set
of symbols with arity and Vars be a countable set of variables. Let us consider a
rewriting system Σ = {-k −→ rk | 1 ≤ k ≤ K} over T (F ∪Vars). If there exists a
simplification order > such that for any ground substitution ϑ whose domain is the
set of variables occurring in

⋃
1≤k≤K -k, we have that ϑ(-k) > ϑ(rk) for k = 1, . . . , K,

then Σ is strongly terminating with respect to T (F ).

Now we present a different sufficient condition for establishing strong termination
of a rewriting system. First we need the following definitions.

Definition 9.18. [Lexicographic Order] Given an ordered set (A, >), a lex-
icographic order >lex on A×A associated with >, is defined as follows: for any
a1, a2, b1, b2 ∈ A, 〈a1, a2〉 >lex 〈b1, b2〉 iff a1 >b1 or (a1 =b1 and a2 >b2).

The lexicographic order can be extended to tuples as follows: 〈a1, a2, . . . , ak〉 >lex

〈b1, b2, . . . , bk〉 iff there exists i, with 0≤ i<k, such that for j = 1, . . . , i, aj = bj and
ai+1 >bi+1.

For instance, 〈2, 0, 1, 3〉 >lex 〈2, 0, 0, 1〉 (in this case k=4 and i=2).

Theorem 9.19. Given an ordered set (A, >), if > is well-founded then the lexi-
cographic order >lex on A×A associated with >, is well-founded.

Definition 9.20. [Bounded Lexicographic Recursive Path Order] Let us
consider an irreflexive, transitive order ! on a set F of symbols. The bounded lex-
icographic recursive path order > (bl-rpo, for short) over the set T (F ) associated
with !, is recursively defined as follows: for any given term s ≡ f(s1, . . . , sm) and
t ≡ g(t1, . . . , tn), we have that: s > t iff s 1≡ t and

either f ! g and for i = 1, . . . , n, s>ti (bl-rpo 1)

or f ≡ g and 〈s1, . . . , sm〉 >lex 〈t1, . . . , tn〉 with m=n>0 and (bl-rpo 2.1)
for i = 1, . . . , m, s>ti (bl-rpo 2.2)

or for some i = 1, . . . , m, si >t or si≡t, (bl-rpo 3)

where >lex denotes the lexicographic order associated with >.
An alternative definition of a bounded lexicographic recursive path order can be

obtained by replacing Condition (bl-rpo 2.2) by a semantic condition of the form:

for i = 1, . . . , m, ![s"]#![ti"], (bl-rpo 2.2*)

where ![_"] is a semantic function from T (F,Vars) to a well-founded ordered set (D,#).

Theorem 9.21. [Strong Termination (Kamin-Lévy)] Let F be a finite set
of symbols with arity and Vars be a countable set of variables. Let us consider a
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rewriting system Σ = {-k −→ rk | 1 ≤ k ≤ K} over T (F ∪Vars). If there exists a
bounded lexicographic recursive path order > such that for any ground substitution ϑ
whose domain is the set of variables occurring in

⋃
1≤k≤K -k, we have that ϑ(-k) >

ϑ(rk) for k = 1, . . . , K, then Σ is strongly terminating with respect to T (F ).

Proof. It is based on the fact that the bounded lexicographic recursive path
order > over a set T (F ) of terms associated with an irreflexive, transitive order !

on F , is a simplification order. Thus, by Theorem 9.17 on the facing page, we get
the thesis. !

Now we will introduce some important concepts and results about term rewriting
systems. Some of these concepts will be used in Section 10 where we will present an
algorithm for checking whether or not a formula of the Propositional Calculus is a
valid formula (that is, a tautology) [6]. In particular, we will extend to the rewriting
relation associated with a rewriting system, the concepts presented at the end of
Section 1 (see page 24).

Let F be a finite set of symbols with arity and Vars be a countable set of variables.
Let Σ = {-k −→ rk | 1≤k≤K} be a rewriting system over T (F∪Vars) and −→ the
rewriting relation associated with Σ.

Definition 9.22. [Confluence] We say that the rewriting relation −→ is con-
fluent iff for every p, -, r ∈ T (F∪Vars), if p −→∗ - and p −→∗ r then there exists
q ∈ T (F∪Vars) such that - −→∗ q and r −→∗ q.

An equivalent definition is the following one.

Definition 9.23. [Church-Rosser Property] We say that the rewriting rela-
tion −→ is Church-Rosser iff for every -, r ∈ T (F ∪Vars), if - ←→∗ r then there
exists q ∈ T (F∪Vars) such that - −→∗ q and r −→∗ q.

Definition 9.24. [Strong Termination] We say that the rewriting relation −→
is strongly terminating (or terminating, or noetherian) iff there is no infinite sequence
p0, p1, p2, . . . of terms in T (F∪Vars) such that for all i≥0, pi −→ pi+1.

As an instance of the well-founded induction rule (see Section 1.6 on page 72), we
have the following noetherian induction rule, which, given a set S, allows us to prove
a property of all its elements.

Let us consider a set S and a binary, terminating relation −→⊆ S×S. Thus, by
definition, there is no infinite sequence x0, x1, x2, . . . of elements in S such that for all
i≥0, xi −→ xi+1. Let P (x) be a predicate on S. Here is the noetherian induction
rule where, as usual, −→+ denotes the transitive closure of −→.

(Noetherian Induction)

∀x∈S. (∀y. (x−→+ y ⇒P (y))) ⇒ P (x)

∀x∈S. P (x)

We will use this induction rule in the proof of Theorem 9.28 on the following page.
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Definition 9.25. [Normal Form and Reduction] We say that a term v is in
normal form (or irreducible) w.r.t. a rewriting system Σ iff there is no element v1

such that v −→ v1. We say that v is a normal form of u w.r.t. a rewriting system
Σ iff u −→∗ v and there is no element v1 such that v −→ v1. By u ↓ we denote a
normal form of u. (Note that, in general, for any given term u there is more than
one normal form of u.)

For any given term u, when its normal form is unique, the computation of the
normal form u↓ is called the reduction of u, and to reduce a term u means to compute
its normal form.

Theorem 9.26. [Uniqueness of Normal Form] If a rewriting relation is con-
fluent and strongly terminating then for all u ∈ T (F ∪Vars), then there exists a
unique v ∈ T (F∪Vars) such that v is a normal form of u.

Definition 9.27. [Local Confluence] We say that −→ is locally confluent iff
for all p, -, r ∈ T (F∪Vars), if p −→ - and p −→ r then there exists q ∈ T (F∪Vars)
such that - −→∗ q and r −→∗ q.

Theorem 9.28. [Newman Theorem] Let us consider a rewriting system whose
rewriting relation −→ is strongly terminating. Then −→ is confluent iff −→ is locally
confluent.

Proof. (⇒) Obvious. (⇐) We assume local confluence, that is, we assume that
∀x, y, z ∈ T (F ∪Vars), if x −→ y and x −→ z then there exists t ∈ T (F ∪Vars)
such that y −→∗ t and z −→∗ t. In order to show confluence, we have to show that
∀x ∈ T (F∪Vars). P (x), where the predicate P (x) is defined as follows:

P (x) =def ∀y, z ∈ T (F∪Vars). ∃t ∈ T (F∪Vars).(
(x −→∗ y ∧ x −→∗ z) ⇒ (y −→∗ t ∧ z −→∗ t)

)

In order to prove ∀x ∈ T (F ∪Vars). P (x), since −→ is terminating, by noetherian
induction it is enough to show ∀x ∈ T (F∪Vars).

(
∀u. (x −→+ u ⇒ P (u)) ⇒ P (x)

)
.

Thus, (i) we take any x ∈ T (F∪Vars), (ii) we assume:

(H) ∀u. (x −→+ u ⇒ P (u))

and (iii) we have to show P (x).
In order to show P (x), (i) we take any y, z ∈ T (F ∪Vars), (ii) we assume that

x −→∗ y and x −→∗ z, that is, we assume that there exist m≥0 and n≥0 such that
x −→m y and x −→n z, and (iii) we have to show that there exists t ∈ T (F∪Vars)
such that y −→∗ t and z −→∗ t.

Now there are three cases.
Case (i): m=0. In this case y≡x and we take t≡z.
Case (ii): n=0. In this case z≡x and we take t≡y.
Case (iii): m 1=0 and n 1=0. In this case there exist y1 and z1 such that x −→ y1 −→∗ y
and x −→ z1 −→∗ z. By local confluence there exists u such that y1 −→∗ u and
z1 −→∗ u (see Figure 2 on the next page).

By Hypothesis (H), we have that: (i) there exists v such that y −→∗ v and
u −→∗ v, and (ii) there exists w such that u −→∗ w and z −→∗ w. Since u −→∗ v
and u −→∗ w, by Hypothesis (H), there exists t such that v −→∗ t and w −→∗ t.
Thus, from y −→∗ v and v −→∗ t, by transitivity, we get:

(A) y −→∗ t.
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Figure 2. Graphical representation of the proof of Newman Theorem.

From z −→∗ w and w −→∗ t, by transitivity, we get:
(B) z −→∗ t.

Having proved Properties (A) and (B), the proof of the theorem is completed. !

In Newman Theorem above the hypothesis that rewriting relation −→ be strongly
terminating is necessary. Indeed, the following example shows that if a rewriting
system is not strongly terminating then local confluence does not imply confluence.
Consider the four rewriting rules: (i) a −→ b, (ii) a −→ c, (iii) b −→ a, and
(iv) b −→ d. We have that a has two normal forms c and d, because a −→+ c,
a −→+ d, and c and d cannot be rewritten.

Definition 9.29. [Critical Pairs] Let us consider a rewriting system Σ =
{-k −→ rk | 1≤k≤K}. Let us consider two (not necessarily distinct) rules -1 −→ r1

and -2 −→ r2 of Σ and let us assume, without loss of generality, that they do not
have variables in common. This can be achieved by suitable renaming of variables.
Let us also assume that a non-variable subterm u of -1 is unifiable with -2 with a
most general unifier ϑ. Let -1[u ← r2] denote the term -1 where the subterm u is
replaced by r2. Then we say that the pair 〈r1 ϑ, -1[u ← r2] ϑ〉 is a critical pair of Σ.

For instance, let us consider the following two rewriting rules, whose function
symbols are f, g, h, k, a, m and whose variables are x, y, z:

1. f(x, g(x, h(y))) −→ k(x, y)

2. g(a, z) −→ m(z)

Since g(x, h(y)) and g(a, z) are unifiable via the most general unifier {x/a, z/h(y)},
we get the following two rewritings:

f(a, g(a, h(y))

k(a, y)

f(a, m(h(y)))

1.

2.

and the critical pair: 〈k(a, y), f(a, m(h(y)))〉.
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A critical is unique up to a permutation. Indeed, for the results of our interest
here, the order of the components of a critical pair is not significant and, thus, a
critical pair 〈t1, t2〉 will also be denoted by 〈t2, t1〉.

Theorem 9.30. [Knuth-Bendix Theorem] Given a rewriting system Σ, the
associated rewriting relation −→ is locally confluent iff for every critical pair 〈p, q〉
of Σ, we have that p ↓ ≡ q ↓, that is, there exists a normal form of p which is
syntactically identical to a normal form of q.

Thus, a rewriting relation −→ is locally confluent if there are no critical pairs
in Σ. Note that in this Theorem 9.30 strong termination of Σ is not required.

Definition 9.31. [Linear Term] A term is said to be linear if every variable
occurs in it at most once.

Definition 9.32. [Left Linear Rewriting System] A rewriting system Σ is
said to be left linear if for every rule - −→ r in Σ, we have that - is a linear term.

Theorem 9.33. [Huet Theorem] Consider a left linear rewriting system Σ. If
for every critical pair 〈p, q〉, we have that either p ‖−→ q or q ‖−→ p, where ‖−→ denotes
the parallel rewriting of disjoint subterms using rules in Σ, then Σ is confluent.

This theorem tells us that any left linear rewriting system without critical pairs
is confluent (see, for instance, the Ackermann rewriting system of Definition 6.11 on
page 184).

Definition 9.34. [Canonical or Complete Rewriting System] A rewriting
system whose rewriting relation −→ is confluent and strongly terminating, is said to
be canonical (or complete).

Theorem 9.28 on page 46 and Theorem 9.30 give us a method for deciding within
the set T (F∪Vars) of terms, equality modulo a given set E of equations, denoted =E ,
as we now specify.

Consider a set E of equations over T (F∪Vars).

Remark 9.35. Note that in every set of equations, we assume that, for any two
terms t1 and t2 in T (F∪Vars),
(i) no equation of the form t1 = t1 exists, and
(ii) t1 = t2 and t2 = t1 are two ways of denoting the same equation.

Recall also that ≡ denotes syntactic identity of terms. !

Consider any two terms t1 and t2 in T (F∪Vars). In order to decide whether or not
t1 =E t2, we may construct a canonical rewriting system R using the Knuth-Bendix
Completion algorithm which we now present (see Figure 3 on the next page).

In this algorithm and in what follows, for any term t ∈ T (F∪Vars), by R(t) we
denote the unique normal form of t obtained by applying any number of times the
rewriting rules of the current value of R.



9. REWRITING SYSTEMS 49

Knuth-Bendix Completion.
Input : a (possibly empty) finite set E of equations.

R := ∅;
while E 1= ∅ do select an equation t1 = t2 in E ;

n1 := R(t1); n2 := R(t2);

if n1≡n2 then E := E−{t1 = t2} else

if α: vars(n2)⊆vars(n1) then 〈- :=n1, r :=n2〉 or

if β: vars(n1)⊆vars(n2) then 〈- :=n2, r :=n1〉;
if ¬(α ∨ β) then stop with failure else

let RE := {-′→r′ ∈ R | -′ or r′ contains an instance of - as a subterm} and
RR := (R−RE) ∪ {-→r} in

if RR is not strongly terminating then stop with failure else

R := RR;
E := (E−{t1 = t2}) ∪ {-′=r′ | -′→r′ ∈ RE}

∪ {p=q | 〈p, q〉 is a critical pair of RR}

od

Output : a canonical rewriting system R such that

∀t1, t2 ∈ T (F ∪ Vars), t1 =E t2 iff R(t1)≡R(t2).

Figure 3. Knuth-Bendix Completion algorithm.

The following points may help the reader to understand the Knuth-Bendix Comple-
tion algorithm.

(i) A new equation is generated by a critical pair: this situation occurs when an
instance of a term of an equation that can be rewritten into two different ways (in
a non-variable position) by the rewriting rules obtained so far (possibly the same
rule).

(ii) Before processing an equation, we simplify it by applying the rewriting rules
obtained so far, and if we get the trivial equation t = t we discard it, and

(iii) We orient every equation so to guarantee strong termination.

In the Knuth-Bendix Completion algorithm we have that:

(i) the operator or denotes a nondeterministic choice and, thus, if we have that
vars(n1) = vars(n2), we can equivalently put either (i.1) 〈- := n1, r := n2〉 or
(i.2) 〈- :=n2, r :=n1〉,
(ii) the choice between (i.1) and (i.2), that is, the choice of the orientation of the
equation, is important because strong termination of the rewriting system RR may
depend on that choice,

(iii) the ordering which allows us to show strong termination of the rewriting sys-
tem RR, is determined, in general, according to the rewriting system RR itself,
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(iv) the instance of - can be generated by the identity substitution (that is, can be -
itself) and the subterm relation need not be a proper subterm relation (that is, the
instance of - can be identical to -′ or r′),

(v) in the definition of RE it is not correct to replace: « -′ or r′ contains an instance
of - as a subterm» by: « -′ contains an instance of - as a subterm», because if
vars(n1)=vars(n2) we may introduce in the rewriting system R either the rewriting
rule n1 → n2 or the rewriting rule n2 → n1, and

(vi) we can get rid of the set RR and we can replace RR by R (and delete the
assignment R := RR). In our presentation of the algorithm we kept the set RR

because it helps clarifying the examples below. (Note that the set RR also occurs in
the presentation of [7], where it is named R′′.)

For the computations of the critical pairs of RR, we note that:

(i) they can be computed incrementally, that is, we can take into account at each
execution of the body of the while-do loop the new rewriting rule - −→ r only, and

(ii) there is no need to consider any critical pair 〈p, q〉 such that for the current
rewriting system R, we have that R(p) ≡ R(q), because the associated equation
p=q will be deleted during a subsequent execution of the body of the while-do loop.

If the algorithm stops with failure it means that, starting from E , it does not
construct a canonical rewriting system R such that ∀t1, t2 ∈ T (F ∪ Vars), t1 =E t2
iff R(t1)≡R(t2).

Note that the algorithm may fail also because it keeps on generating new rewriting
rules and, therefore, a canonical rewriting system R is never constructed.

Having constructed from E the canonical term rewriting system R by the Knuth-
Bendix Completion algorithm, we have that, for any terms t1, t2 ∈ T (F ∪ Vars),

(i) if t1 = t2 ∈ E then R(t1) ≡ R(t2)

(ii) if -→r ∈ R then - =E r, and

(iii) t1 =E t2 iff R(t1)≡R(t2) [7, page 21].

Thus, we have a decision procedure for the validity problem in M(E) and also a
decision procedure for the word problem in I(E).

Now we present the derivation of a canonical term rewriting system for the group
axioms using the Knuth-Bendix Completion algorithm.

We start off from the following usual (non-commutative) group equality axioms
with the associative operation +, the unit 0, and the inverse operation i of arity 1
(see also [7, page 33]):

E1. 0 + x = x
E2. i x + x = 0
E3. (x + y) + z = x + (y + z)

Initially, we have that: R=∅ and E={E1, E2, E3}.
Every step of the derivation corresponds to one execution of the body of the

while-do of the Knuth-Bendix Completion. At every step, after the selection of an
equation Ej of the form either t1 = t2 or t2 = t1, we denote by Rk the rewriting rule of
the form R(t1) −→ R(t2), where R is the current rewriting system. Symmetrically,
given a rewriting rule Rk of the form t1 −→ t2, by Ek we denote the associated
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equation t1 = t2. Thus, after the selection of an equation Ek, in order to get the
rewriting rule Rk, we have to choose an orientation and we have to compute the
normal forms of the two terms of the equation.

The orientations of the equations have been chosen so to get strongly terminating
rewriting systems. We leave it to the reader to check that termination property holds
because the following measure µ(t) of a term t decreases its lexicographic value when
replacing a left hand side of an equation by the corresponding right hand side (since
rules R16 and R3 do not decrease the size of the term t, the first component of µ(t)
is required for rule R16 and the second one is required for rule R3):

µ(t) =def 〈number of i’s above +’s,
multisets of sizes of left operands of +,
size(t)〉.

On Table 1 on the following page we have listed the various rewriting rules which are
computed by the algorithm.

Step 1. Select E1. R1: 0 + x −→ x
RE =∅; RR={R1};
E={E2, E3}.

Step 2. Select E2. R2: i x + x −→ 0
RE =∅; RR={R1, R2};
E={E3}.

Step 3. Select E3. R3: (x + y) + z −→ x + (y + z)
RE =∅; RR={R1, R2, R3};
E={} ∪ {E4}, where:

E4: 0 + y = i x + (x + y), because: (i x + x) + y −〈−→R2 0 + y
−→R3 i x + (x + y)

Step 4. Select E4. R4: i x + (x + y) −→ y
RE =∅; RR={R1, R2, R3, R4};
E={} ∪ {E5, E6, E7}, where:

E5: i 0 + x = x, because: i 0 + (0 + x) −〈−→R1 i 0 + x
−→R4 x

E6: i i x + 0 = x, because: i i x + (i x + x) −〈−→R2 i i x + 0
−→R4 x

E7: i i x + y = x + y, because: i i x + (i x + (x + y)) −〈−→R4 i i x + y
−→R4 x + y

Step 5. Select E5. R5: i 0 + x −→ x
RE =∅; RR={R1, R2, R3, R4, R5};
E={E6, E7} ∪ {E8}, where:

E8: i i 0 + x = x, because: i i 0 + (i 0 + x) −〈−→R4 i i 0 + x
−→R5 x

Step 6. Select E6. R6: i i x + x0 −→ x
R′=∅; RR={R1, R2, R3, R4, R5, R6};
E={E7, E8} ∪ {E9}, where:

E9: 0 = i i i x + x, because: i i i x + (i i x + 0) −〈−→R4 0
−→R6 i i i x + x
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R1. 0 + x −→ x

R2. i x + x −→ 0

R3. (x + y) + z −→ x + (y + z)

R4. i x + (x + y) −→ y

R5. i 0 + x −→ x deleted at Step 13

R6. i i x + 0 −→ x replaced at Step 10 by: R6′. x + 0 −→ x

R7. i i x + y −→ x + y deleted at Step 15

R8. i i 0 + x −→ x deleted at Step 14

R9. i i i x + x −→ 0 deleted at Step 9

R10. i 0 −→ 0

R11. i i x −→ x

R12. x + i x −→ 0

R13. x + (i x + y) −→ y

R14. x + (y + i(x + y)) −→ 0 deleted at Step 20

R15. x + i(y + x) −→ i y deleted at Step 22

R16. i(y + x) −→ i x + i y

Table 1. Rewriting rules computed by the Knuth-Bendix Completion
algorithm starting from the group equality axioms: E1: 0 + x = x,
E2: i x + x = 0, and E3: (x + y) + z = x + (y + z).

Step 7. Select E7. R7: i i x + y −→ x + y
RE ={R6}; RR={R1, R2, R3, R4, R5, R7};
E={E8, E9} ∪ {E6}.

Step 8. Select E8. R8: i i 0 + x −→ x
R′=∅; R′′={R1, R2, R3, R4, R5, R7, R8};
E={E9, E6} ∪ {E10}, where:

E10: 0 = i 0, because: i i 0 + i 0 −〈−→R2 0
−→R7 i 0

Step 9. Select E9. R9: i i i x + x −→ 0
Since i i i x + x −→R7 i x + x −→R2 0, rule R9 is deleted.
RR={R1, R2, R3, R4, R5, R7, R8};
E={E6, E10}.

Step 10. Select E6. R6′: x + 0 −→ x (because i i x + 0 −→R7 x + 0)
RE =∅; RR={R1, R2, R3, R4, R5, R7, R8, R6′};
E={E10} ∪ {E11}, where:

E11: i i x = x + 0, because: i i x + 0 −〈−→R6′ i i x
−→R7 x + 0
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Step 11. Select E10. R10: i 0 −→ 0
RE ={R5, R8}; RR={R1, R2, R3, R4, R7, R6′, R8};
E={E11, E5, E8}.

Step 12. Select E11. R11: i i x −→ x (because x + 0 −→R6′ x)
RE ={R7}; RR={R1, R2, R3, R4, R6′, R10, R11};
E={E5, E8, E7} ∪ {E12, E13}, where:

E12: 0 = x + i x, because: i i x + i x −〈−→R2 0
−→R11 x + i x

E13: y = x + (i x + y), because: i i x + (i x + y) −〈−→R4 y
−→R11 x + (i x + y)

Step 13. Select E5. R5: i 0 + x −→ x
Since i 0 + x −→R10 0 + x −→R1 x, rule R5 is deleted.
RR={R1, R2, R3, R4, R6′, R10, R11};
E={E8, E7, E12, E13}.

Step 14. Select E8. R8: i i 0 + x −→ x
Since i i 0 + x −→R10 i 0 + x −→R10 0 + x −→R1 x, rule R8 is deleted.
RR={R1, R2, R3, R4, R6′, R10, R11};
E={E7, E12, E13}.

Step 15. Select E7. R7: i i x + y −→ x + y
Since i i x + y −→R11 x + y, rule R7 is deleted.
RR={R1, R2, R3, R4, R6′, R10, R11};
E={E12, E13}.

Step 16. Select E12. R12: x + i x −→ 0
RE ={}; RR={R1, R2, R3, R4, R6′, R10, R11, R12};
E={E13} ∪ {E14}, where:
E14: x + (y + i(x + y)) = 0, because:

(x + y) + i(x + y) −〈−→R3 x + (y + i(x + y))
−→R12 0

Step 17. Select E13. R13: x + (i x + y) −→ y
RE ={}; RR={R1, R2, R3, R4, R6′, R10, R11, R12, R13};
E={E14}.

Step 18. Select E14. R14: x + (y + i(x + y)) −→ 0
RE ={}; RR={R1, R2, R3, R4, R6′, R10, R11, R12, R13, R14};
E={} ∪ {E15}, where:
E15: x + i(y + x) = i y + 0, because:

i y + (y + (x + i(y + x))) −〈−→R4 x + i(y + x)
−→R14 i y + 0

Step 19. Select E15. R15: x + i(y + x) −→ i y (because i y + 0 −→R6′ i y)
RE ={R14}; RR={R1, R2, R3, R4, R6′, R10, R11, R12, R13, R15};
E={E14} ∪ {E16}, where:

E16: i(y+x) = i x+i y, because: i y + (y + (x + i(y + x))) −〈−→R4 i(y + x)
−→R15 i x + i y
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Step 20. Select E14. R14: x + (y + i(x + y)) −→ 0
Since x + (y + i(x + y)) −→R15 x + i x −→R12 0, rule R14 is deleted.
RR={R1, R2, R3, R4, R6′, R10, R11, R12, R13, R15};
E={E16}.

Step 21. Select E16. R16: i(y + x) −→ i x + i y
RE ={R15}; R′′={R1, R2, R3, R4, R6′, R10, R11, R12, R13, R16};
E={} ∪ {E15}.

Step 22. Select E15. R15: x + i(y + x) −→ i y
Since x + i(y + x) −→R16 x + (i x + i y) −→R13 i y, rule R15 is deleted.
RR={R1, R2, R3, R4, R6′, R10, R11, R12, R13, R16};
E={}.

Since E is empty, the Knuth-Bendix Completion algorithm terminates and the canoni-
cal term rewriting system for the group axioms is given by the ten rules (see the boxed
rules in Table 1 on page 52):

R1, R2, R3, R4, R6′, R10, R11, R12, R13, and R16.

We can use this rewriting system for proving, for instance, that x+0 = 0+x. Indeed,
for the left hand side we have that: x + 0 −→R6′ x and for the right hand side we
have that: 0 + x −→R1 x.

10. Checking Tautologies of the Propositional Calculus

In this section we present a method for checking tautologies of the Propositional
Calculus [6]. This method is based on the construction of a canonical term rewriting
system constructed from the axioms of the Propositional calculus as explained in the
previous section.

In order to check whether or not a given propositional formula ϕ which uses the
operators ¬ (not), ∨ (or), ∧ (and), → (implies), and ↔ (equivalent to), is a tautology,
we first get an equivalent formula, call it ψ, which, instead of those operators, uses
the operators + (plus, or symmetric difference), and × (times, or conjunction) only.

We can derive the formula ψ from the formula ϕ by applying the following trans-
formations:

¬α ⇒ 1 + α
α ∨ β ⇒ α + β + (α × β)
α ∧ β ⇒ α × β
α → β ⇒ (α × β) + α + 1
α ↔ β ⇒ α + β + 1

In these transformations we have that:

(i) 1 stands for the predicate symbol true (see page 15), and
for all formulas α and β,

(ii) α + β is equivalent to (¬α ∧ β) ∨ (α ∧ ¬β), and

(iii) α × β is equivalent to α ∧ β.

Then, we rewrite the derived formula ψ by using the following canonical rewriting
system RPROP , where 0 stands for the predicate symbol false (see page 15).
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Canonical rewriting system RPROP for the Propositional Calculus
(+ and × are associative and commutative)

α + 0 −→ α
α + α −→ 0
α × 1 −→ α
α × α −→ α
α × 0 −→ 0
α × (β + γ) −→ (α × β) + (α × γ)

When, starting from ψ, by using this rewriting system we get an irreducible formula
(modulo associativity and commutativity of + and ×), we decide the validity, un-
satisfiability, and satisfiability of ψ (and thus, of the given equivalent formula ϕ) by
applying the following Theorem 10.1.

Theorem 10.1. [Propositional Theorem Prover via Rewritings] For every
propositional formula ψ, let us consider its irreducible formula ψ̃ using the canonical
rewriting system RPROP . Then, (i) ψ is a tautology, that is, a valid formula, iff ψ̃
is 1, (ii) ψ is an unsatisfiable formula iff ψ̃ is 0, and (iii) ψ is a satisfiable formula and
not a valid formula iff ψ̃ is neither 0 nor 1.

Example 10.2. Let us show that p ∨ (p ∧ q) ↔ p is a valid formula. Indeed, we
have that (p ∨ (p ∧ q) ↔ p) ⇒ (p × (p × q) + p + (p × q)) + p + 1, and this last
formula can be rewritten as follows (in some of these rewriting steps we have silently
applied commutativity and associativity of + and ×):

(p × (q × p) + p + (p × q)) + p + 1 {by p×p −→ p}

−→ ((p × q) + p + (p × q)) + p + 1 {by (p×q) + (p×q) −→ 0}

−→ (0 + p) + p + 1 {by p+0 −→ p}

−→ p + p + 1 {by p+p −→ 0}

−→ 0 + 1 {by p+0 −→ p}

−→ 1 !

The canonical rewriting system RPROP for the Propositional Calculus can be derived
from the equality axioms of the boolean rings by using the Knuth-Bendix Completion
algorithm as we will see below. These equality axioms are the following ones.

Axioms for Boolean Rings

α + 0 = α
α + (−α) = 0
α + α = 0
α + (β + γ) = (α + β) + γ (assoc.)
α + β = β + α (comm.)

α × 1 = α
α × α = α
α × (β × γ) = (α × β) × γ (assoc.)
α × β = β × α (comm.)
α × (β + γ) = (α × β) + (α × γ)
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where: (i) −α denotes the additive inverse of α (which is α itself as we will now
show), (ii) 0 is the additive unit, (iii) 1 is the multiplicative unit.

Here is the proof that −α=α.

α + (−α) = 0 iff {by adding α to both sides} iff α + α + (−α) = α

iff {by associativity and α+α=0} iff 0 + (−α) = α

iff {by commutativity and α+0 = α} iff −α = α.

Here is the proof that α×0=0.

α × 0 = {by α+α=0} = α × (α + α) = {by distributivity of × over +} =

= (α×α) + (α×α) = {by α+α=0} = 0.

From a given formula which uses the operators − (unary minus), + (plus) and
× (times), we can get an equivalent formula which uses, instead, the operators ¬ (not),
∨ (or), and ∧ (and), by applying the following transformations:

−α ⇒ α
α + β ⇒ (¬α ∧ β) ∨ (α ∧ ¬β)
α × β ⇒ α ∧ β

Now we derive a canonical term rewriting system for the axioms of boolean rings
using the Knuth-Bendix Completion algorithm.

We start off from the following equality axioms:

E1. α + 0 = α
E2. α + α = 0
E3. α × 1 = α
E4. α × α = α
E5. α × (β + γ) = (α × β) + (α × γ)

Initially, we have that: R=∅ and E={E1, E2, E3, E4, E5}.
Note that, with reference to the axioms of boolean rings listed on page 55, we did

not include the associativity and commutativity axioms for + and × do not occur
among the axioms E1–E5. This is not a problem because we deal with associativity
and commutativity by assuming that the notions of instance and matching have to be
understood modulo associativity and commutativity. Indeed, it has been shown that
the correctness of the Knuth-Bendix Completion algorithm also holds when, instead
of unification and matching, one uses unification and matching modulo associativity
and commutativity.

Note also that in the above axioms E1–E5 we did not include the axiom
α + (−α) = 0 either, because, as we have already proved, −α is α and, thus, the
axiom α + (−α) = 0 reduces to E2.

Termination of the canonical term rewriting system can be proved by using the
following lexicographic measure µ(t) of a term t (the first component of µ(t) is for
rule R5 which increases the size of the term t):

µ(t) =def 〈multisets of sizes of right operands of ×,
size(t)〉.
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On Table 2 we have listed the various rewriting rules which are computed by the
algorithm.

Step 1. Select E1. R1: α + 0 −→ α
RE =∅; RR={R1};
E={E2, E3, E4, E5}.

Step 2. Select E2. R2: α + α −→ 0
RE =∅; RR={R1, R2};
E={E3, E4, E5}.

Step 3. Select E3. R3: α × 1 −→ α
RE =∅; RR={R1, R2, R3};
E={E4, E5}.

Step 4. Select E4. R4: α × α −→ α
RE =∅; RR={R1, R2, R3, R4};
E={E5}.

Step 5. Select E5. R5: α × (β + γ) −→ (α × β) + (α × γ)
RE =∅; RR={R1, R2, R3, R4, R5};
E={} ∪ {E6}, where:
E6: (α × α) + (α × α) = α × 0, because:

α × (α + α) −〈−→R5 (α × α) + (α × α)
−→R2 α × 0

Step 6. Select E6. R6: α × 0 −→ 0
(because (α × α) + (α × α) −→R2 0)
RE =∅; RR={R1, R2, R3, R4, R5, R6};
E={}.

Since E is empty, the Knuth-Bendix Completion algorithm terminates and the canon-
ical term rewriting system for the axioms of boolean rings is given by the six rules:
R1, R2, R3, R4, R5, and R6 (see Table 2).

R1. α + 0 −→ α R4. α × α −→ α
R2. α + α −→ 0 R5. α × (β + γ) −→ (α + β) × (α + γ)
R3. α × 1 −→ α R6. α × 0 −→ 0

Table 2. Rewriting rules computed by the Knuth-Bendix Completion
algorithm starting from the following equality axioms for boolean rings:
E1: α + 0 = α, E2: α + α = 0, E3: α× 1 = α, E4: α×α = α, and
E5: α × (β + γ) = (α × β) + (α × γ).

In Figure 4 on the following page we present a second version of the Knuth-Bendix
Completion algorithm which is sometimes found in the literature. This version has
been proposed by Nachum Dershowitz and explicitly refers to a well-founded order-
ing, denoted >, required for showing strong termination of the canonical rewriting
system R to be constructed.
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Knuth-Bendix Completion. Version 2.
Input : (i) a (possibly empty) finite set E of equations, and

(ii) a procedure for checking whether or not t1 >t2, for a given well-founded
ordering relation > and any two terms t1, t2 ∈ T (F ∪ Vars).

R := ∅;
while E 1= ∅ do
1. Remove from E an equation, which occurs in E as M =N or N =M , such that

M > N and vars(M) ⊇ vars(N). If no such equation exists, then stop with
failure.

2. Add to R rule ρ: M →N .

3. Use R to compute the normal forms of the right hand sides of the rules in R.

4. Add to E all critical pairs generated in R by the new rule ρ.

5. (Optional Step) Remove all rules in R−{ρ} whose left hand side contains an
instance of M .

6. Use R to compute the normal forms both sides of the equations in E . Remove
any equation in E whose sides are identical.

od

Output : a canonical rewriting system R such that

∀t1, t2 ∈ T (F ∪ Vars), t1 =E t2 iff R(t1)≡R(t2).

Figure 4. Knuth-Bendix Completion algorithm. Version 2.

We are given: (i) a finite set E of equations, and (ii) a procedure for checking whether
or not t1 >t2, for a given well-founded ordering relation > and any two terms t1, t2 ∈
T (F ∪ Vars).

The procedure of Point (ii) was implicitly given in the first version of the Knuth-
Bendix Completion algorithm (see Figure 3 on page 49) and it is required for orienting
the rewriting rules so that strong termination of the rewriting system R is guaranteed.

Also for this version of Knuth-Bendix Completion algorithm, we have that when
it terminates, it generates a canonical rewriting system R for E such that

∀t1, t2 ∈ T (F ∪ Vars), t1 =E t2 iff R(t1)≡R(t2).

Remark 10.3. If we considered the equality axioms E1–E5 together with the
axiom α + (−α) = 0, then the Knuth-Bendix Completion algorithm produces the
rewriting rules R1–R6 listed in Table 2 on the preceding page together with the rule
R7: α + (−α) −→ 0. Strong termination of the rewriting system made out of the
rules R1–R7 is a consequence of the following two facts: (i) the system made out
of the rules R1–R6 is strongly terminating, and (ii) the size of the rewritten term is
reduced when applying R7. !



CHAPTER 4

Induction Rules and Semantic Domains

In this chapter we introduce: (i) some induction rules, (ii) some basic theorems, and
(iii) some mathematical domains, which will be useful in later chapters for defining
the semantics of imperative and functional programming languages.

1. Induction Rules

When we have to prove properties of finite sets we can proceed by examining their
elements one at a time. But if the sets are infinite, we cannot proceed that way,
because proofs should be finite objects. We need deduction rules which allow us to
infer properties of infinite sets.

These deduction rules are of various kinds. In this section we will consider some
of them for different kinds of infinite sets.

In this section N denotes the set of natural numbers with the nullary constructor 0
and the unary constructor successor function s from N to N . In order to avoid
confusion between the evaluation relation, denoted → (see Section 1.4 on page 64),
and the logical implication, also denoted →, in this section we will denote the logical
implication by ⇒.

1.1. Mathematical Induction.

For the set of natural numbers as axiomatized by Peano Arithmetics, we have already
seen (see page 19) the mathematical induction rule which is as follows. Let us consider
a predicate P (n) over the set N of the natural numbers. In order to prove that
∀k∈N. P (k) by mathematical induction it is enough to show:

(i) P (0) and (ii) ∀n∈N. (P (n) ⇒ P (s(n))).

This rule is denoted as follows.

(Mathematical Induction)

P (0) ∀n∈N. (P (n) ⇒ P (s(n)))

∀k∈N. P (k)

In order to avoid regressio ad infinitum, the second premise of mathematical induction
can be proved by using the generalization rule of First Order Predicate Calculus (see
page 17).

For a predicate P (m, n) with two arguments over the set N×N , the mathematical
induction rule is as follows.

59
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(Mathematical Induction with two arguments)

P (0, 0) ∀n∈N. (P (0, n) ⇒ P (0, s(n))) ∀m, n∈N. (P (m, n) ⇒ P (s(m), n))

∀h, k∈N. P (h, k)

Now we derive this rule from the mathematical induction rule for predicates with one
argument only.

Let us consider the predicate Q(m) =def ∀n∈N. P (m, n). It has one argument
only. In order to show that ∀m ∈ N. Q(m) by mathematical induction we need to
show: (i) Q(0), and (ii) ∀m∈N. Q(m) ⇒ Q(s(m)).

(i) In order to show Q(0), that is, ∀n ∈ N. P (0, n), by mathematical induction for
predicates with one argument only, we need to show:

(α) P (0, 0) and (β) ∀n∈N. (P (0, n) ⇒ P (0, s(n))).

(ii) In order to show ∀m∈N. Q(m) ⇒ Q(s(m)), that is, ∀m∈N.
(
∀n∈N. P (m, n)

)
⇒(

∀n∈N. P (s(m), n)
)
, it is enough to show:

(γ) ∀m, n∈N. (P (m, n) ⇒ P (s(m), n)),

because for all binary predicates A and B, we have that ∀m, n. (A(m, n) ⇒ B(m, n))
implies ∀m. (∀n. A(m, n)) ⇒ (∀n. B(m, n)).

This concludes the proof of the mathematical induction rule for predicates with
two arguments from the mathematical induction rule for predicates with one argu-
ment only.

Exercise 1.1. Prove by mathematical induction that, for all n≥0,

(i)
∑n

i=0 i =
n "(n+1)

2
, and (ii)

∑n
i=0 i2 =

n

3
"(n+1) "(n+

1

2
).

Exercise 1.2. Prove by mathematical induction that for all n≥1,
a1 + . . . + an

n
≥ n√a1 " . . . " an.

Now we will prove by mathematical induction with two arguments the commu-
tativity of addition, denoted +, on natural numbers. We will show the following
theorem.

Theorem 1.3. [Commutativity of Plus] For all natural numbers m and n, we
have that m+n = n+m, where the + operation is defined by primitive recursion as
follows:

(P0) ∀n. 0+n = n

(Ps) ∀m, n. s(m)+n = s(m+n)

Proof. By mathematical induction for a predicate with two arguments. We have to
prove the following three facts:

(F1) 0+0 = 0+0

(F2) ∀n. 0+n = n+0 ⇒ 0+s(n) = s(n)+0

(F3) ∀m, n. m+n = n+m ⇒ s(m)+n = n+s(m)
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Fact (F1) follows from (P0) because both sides are equal to 0. For Fact (F2) let us
consider a generic value n and the two sides 0+s(n) and s(n)+0 of the conclusion.

Now, 0+s(n) = {by (P0)} = s(n), and

s(n)+0 = {by (Ps)} =

= s(n+0)= {by inductive hypothesis (see premise 0+n=n+0 in Fact (F2))}=

= s(0+n)= {by (P0)} =

= s(n).

Since n is a generic value, by generalization (see page 17) we get Fact (F2).

Similarly, for Fact (F3) let us consider the two generic values m and n. We have
that:

s(m)+n = {by (Ps)} =

= s(m+n)= {by inductive hypothesis (see premisem+n=n+m in Fact (F3))}=

= s(n+m)= {by Lemma 1.4} =

= n+s(m).

Since m and n are generic values, by generalization we get Fact (F3). !

Lemma 1.4. For all natural numbers m and n, we have that s(m+n) = m+s(n).

Proof. We proceed by mathematical induction on the first argument m of the ad-
dition function λm, n.m+n which is defined by primitive recursion on that first
argument (see the statement of Theorem 1.3 on the preceding page). This choice of
the induction variable is crucial. Indeed, the reader may verify that a proof of this
lemma by induction on the second argument n does not go through.

(Basis) We take m=0. We have to show that for all n ∈ N , s(0+n) = 0+s(n).
This follows from the fact that by (P0) the left hand side s(0+n) and the right

hand side 0+s(n) are both equal to s(n).

(Step) We assume that for all m, n ∈ N , s(m+n) = m+s(n).
We have to show that for all m, n ∈ N , s(s(m)+n) = s(m)+s(n).

Let us take two generic values m and n. For left hand side we have that:

s(s(m)+n) = {by (Ps)} = s(s(m+n)).

For right hand side we have that: s(m)+s(n) = {by (Ps)} =

= s(m+s(n)) = {by inductive hypothesis} =

= s(s(m+n)).

Thus, the left and the right hand sides are equal. !

1.2. Complete Induction.

For Peano Arithmetics one may also consider the induction rule called complete in-
duction which is as follows. Let us consider a predicate P (n) over the set N of natural
numbers.
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(Complete Induction)

∀n∈N. ((∀h∈N. h<n ⇒P (h)) ⇒ P (n))

∀k∈N. P (k)

As in the case of mathematical induction, in order to avoid regressio ad infinitum,
the premise of this rule can be proved by using the generalization rule. If we use
complete induction, instead of mathematical induction, the proof of some properties
of the natural numbers may become shorter and simpler. However, Theorem 1.6
and Theorem 1.7 on the next page show that complete induction is equivalent to
mathematical induction.

Remark 1.5. For the expert reader we should say that complete induction is
equivalent to mathematical induction only ‘below’ the first limit ordinal ω, because
‘above’ ω, complete induction is more powerful than mathematical induction. This
is due to the fact that, above ω, the complete induction rule uses, so to speak, an
infinite number of premises, while mathematical induction uses a finite number of
premises only. We will not discuss further this issue here. !

The following theorem shows that complete induction is not more powerful than
mathematical induction.

Theorem 1.6. Every proof by complete induction can be replaced by a proof by
mathematical induction.

Proof. Assume that we have a proof (that is, a sequence of formulas) π ending
by the following formula (with k as a free variable):

(∀n∈N. (n<k ⇒ P (n))) ⇒ P (k). (A1)

From (A1), by generalization (recall also that ∀k. ϕ(k) implies ∀k∈N. ϕ(k)), we get:

∀k∈N. (∀n∈N. (n<k ⇒ P (n))) ⇒ P (k) (A2)

and from (A2), by complete induction, we get:

∀k∈N. P (k). (A3)

Now let us consider the property P ′(k) =def ∀n∈N. (n<k ⇒ P (n)).
We have that P ′(0) is ∀n∈N. (n<0 ⇒ P (n)). Thus, P ′(0) holds.
We also have: P ′(k) ⇒ P ′(s(k)) iff

P ′(k) ⇒ [∀n∈N. (n<s(k) ⇒ P (n))] iff

P ′(k) ⇒ [P ′(k) ∧ P (k)] iff {by a ⇒ a ∧ b iff a ⇒ b}

P ′(k) ⇒ P (k), which is (A1).

Thus, the proof π, being a proof of P ′(k) ⇒ P (k), is also a proof of P ′(k) ⇒ P ′(s(k)).
Since P ′(0) holds, by mathematical induction we get ∀k∈N. P ′(k), that is,

∀k∈N. (∀n∈N. (n<k ⇒ P (n))). (A4)

Having derived (A4), we can prove (A3) by mathematical induction as follows.

(Basis) From (A4) for k=1 we get: (∀n∈N. (n<1 ⇒ P (n)), that is, P (0).

(Step) Let us assume P (h) for some h∈N , and let us show P (s(h)).
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From (A4) for k=s(s(h)) we have: ∀n∈N. (n<s(s(h)) ⇒ P (n)). Now take n=s(h)
and we have: s(h)<s(s(h)) ⇒ P (s(h)) which is equivalent to P (s(h)). (Note that in
order to prove P (s(h)), we did not use the hypothesis P (h).)

This completes the proof of the theorem. !

We also have the following theorem which shows that mathematical induction is
not more powerful than complete induction.

Theorem 1.7. Every proof by mathematical induction can be replaced by a proof
by complete induction.

Proof. Suppose by hypothesis that we have a proof of the two formulas:

(i) P (0) and (ii) ∀n∈N. [P (n) ⇒ P (s(n))].

From (ii) and the fact that ∀k∈N. k<s(n) ⇒ P (k) implies P (n), we get (recall that
if a ⇒ a′ then a′ ⇒ b implies a ⇒ b):

∀n∈N. [(∀k∈N. k<s(n) ⇒ P (k)) ⇒ P (s(n))].

Then by complete induction we get, as desired, ∀k∈N. P (k). !

1.3. Structural Induction.

For sets which are generated by context-free productions, we have an induction rule
called structural induction.

To fix our ideas, let us see this rule in action in the following example which
refers to the set B of binary trees with natural numbers on the nodes. The set B is
generated by the following productions, where n ∈ N and b, b1, b2 ∈ B:

b ::= e | -(n) | 〈b1, n, b2〉 (Binary Trees)

where: (i) n ∈ N , (ii) e is the empty binary tree, (iii) the function λn. -(n) is the
unary constructor from N to B for generating a leaf with the natural number n,
and (iv) the function λb1, n, b2.〈b1, n, b2〉 is the ternary constructor for generating a
node with a natural number n and two son-nodes, the left son-node b1 and the right
son-node b2.

(Structural Induction for Binary Trees)

P (e) ∀n∈N. P (-(n)) ∀n∈N. ∀b1, b2∈B. P (b1) ∧ P (b2) ⇒ P (〈b1, n, b2〉)

∀b∈B. P (b)

Structural induction can be viewed as a generalization of mathematical induction to
sets generated by context-free grammars. In particular, when we consider the set N
of natural numbers as generated by the following two productions, where n ∈ N :

n ::= 0 | s(n) (Natural Numbers)

we get that structural induction for the set N is mathematical induction.
In Example 6.16 on page 188 and Example 6.18 on page 189 we will see in action

the structural induction rule.
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1.4. Rule Induction.

In the literature [19] one finds the so called rule induction, that is used for proving
properties of sets which are generated by rules, as we now indicate. Let us first see
this induction rule in action in the following example.

Let us consider the set BasicAexp of basic arithmetic expressions over the set N
of natural numbers. It is defined as follows, where n ∈ N and a, a1, a2 ∈ BasicAexp:

a ::= n | a1 + a2

The operational semantics of basic arithmetic expressions is specified by a subset of
BasicAexp×N , and a pair 〈a, n〉 in BasicAexp×N , written a → n, denotes that
the basic arithmetic expression a evaluates to n.

The rules defining the operational semantics are as follows (the empty set of
premises stands for true and it is also denoted by {} (see page 65)): for all n, n1, n2 ∈
N , for all a1, a2 ∈ BasicAexp, we have that:

(A1) n→n

(A2)
a1 →n1 a2 →n2

a1 + a2 → add(n1,n2) where add is the usual addition operation
between any two natural numbers.

Now we can show that a given property P (a, n) holds for every pair 〈a, n〉 in the subset
of BasicAexp×N derived by the rules (A1) and (A2), by applying the following rule:

(Rule Induction for BasicAexp)
∀n, n1, n2 ∈ N. ∀a1, a2 ∈ BasicAexp.

P (n, n)
∧ (a1→n1 ∧ P (a1, n1) ∧ a2→n2 ∧ P (a2, n2)) ⇒ P (a1+a2, add(n1, n2))

∀n ∈ N. ∀a ∈ BasicAexp. P (a, n)

Exercise 1.8. Prove by rule induction that the operational semantics of the
basic arithmetic expressions is deterministic, that is, ∀a ∈ BasicAexp. ∀n1, n2 ∈ N.
(a → n1 ∧ a → n2) ⇒ n1 =n2.

Rule induction for BasicAexp can be shown to be equivalent to structural
induction for BasicAexp. Indeed, let us consider the structural induction rule
for the property (a → n) ∧ P (a, n) which refers to the evaluation of any expres-
sion a ∈ BasicAexp to the value n. The structural induction rule is as follows.
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(Structural Induction for BasicAexp)

∀n, n1, n2 ∈ N. ∀a1, a2 ∈ BasicAexp.

(n → n) ∧ P (n, n)
∧ [[(a1 → n1) ∧ P (a1, n1) ∧ (a2 → n2) ∧ P (a2, n2)]

⇒ [(a1+a2 → add(n1, n2)) ∧ P (a1+a2, add(n1, n2))]]

∀n ∈ N. ∀a ∈ BasicAexp. P (a, n)

By rule (A1) we have that

∀n ∈ N. n → n (1)

and by rule (A2) we have that

∀n1, n2∈N. ∀a1, a2∈BasicAexp. (2)

((a1→n1) ∧ (a2→n2)) ⇒ ((a1+a2) → add(n1, n2))

Thus, structural induction for BasicAexp is reduced, by using (1) and (2), to rule
induction for BasicAexp.

Actually, structural induction can be reduced to rule induction, not only in the
case of the set BasicAexp, but also in the case of every set which is generated by a
context-free grammar.

Now let us consider rule induction in the general case. Suppose we are given
a (possibly infinite) set of rule instances R generated by a given finite set R of

derivation rules. Each rule instance in R is of the form
a1, . . . , an

a
, for some terms

a, a1, . . . an, for some n≥0.

Definition 1.9. [Inductive Set] Given the possibly infinite set R of rule in-
stances generated by a finite set R of derivation rules, the inductive set of R, denoted
IR, is the following set of terms:

IR =def {a | there exists d such that d $R a}
where the binary relation $R is recursively defined as follows:

{}
a

$R a if
{}
a

∈ R, and

{d1, . . . , dn}
a

$R a if
{a1, . . . , an}

a
∈ R and d1 $R a1 and . . . and dn $R an.

If for some d and a, d $R a holds, we say that d is an R-derivation (or simply,
derivation, when R is understood from the context) of the term a. (Here the notion
of a derivation is the analogous to that of Definition 2.1 on page 17 in the case of
the First Order Predicate Calculus.) Obviously, if no rule in R has an empty set of
premises then IR is empty.

We will write $R a to mean that there exists an R-derivation d such that d $R a.
We will feel free to write $ a, or simply a, instead of $R a, whenever the set R of
derivation rules is understood from the context.
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Given two R-derivations d and d′, we say that d′ is an immediate subderivation of

d, and we write d′≺d, iff (i) d is of the form
D

a
for some term a and for some set D

of derivations, and (ii) d′ ∈ D. As usual, by ≺+ we denote the transitive closure of
≺. We say that d′ is a proper subderivation of d iff d′≺+ d.

For example, let us consider the set R =def {
{}
a

,
{a}
b

,
{a, b}

c
} of rule instances.

Here is the derivation of c:
{{}

a
,
{{}

a
}

b
}

c
. The derivation

{{}
a
}

b
is an immediate

subderivation of that derivation of c.
As a second example, let us consider the set R consisting of the following two

derivation rules:

(i)
{}
0

(ii) for any n,
{n}
s(n)

The set R generates the following infinite set R of rule instances:

{{}
0

,
{0}
s(0)

,
{s(0)}
s(s(0))

, . . .}

and we have that the inductive set IR is {0, s(0), s(s(0)), . . .}, that is, the set of the
natural numbers with the nullary constructor 0 and the unary constructor successor
function s.

Let R be a set of derivation rules and R be the associated set of rule instances.
Let IR be the inductive set of R. Let P (x) be a property. We have that:

∀x ∈ IR. P (x) iff

for all rule instances
X

y
∈R such that X⊆IR, we have that

(∀x∈X.P (x))⇒P (y).

(†)

Thus, by taking the if-part of the above formula (†), we get the following rule.

(Rule Induction)

for every rule instance
X

y
∈ R, (∀x∈X. x∈IR ∧ P (x)) ⇒ P (y)

∀x∈IR. P (x)

Note that in the premise of rule induction we require that x∈ IR, but we do not
explicitly require that y∈IR because, by definition of IR, if ∀x∈X. x∈IR then y∈IR.

In the case of the natural numbers, rule induction is equivalent to mathematical

induction. Indeed, (i) IR = N , (ii) from the rule instance
{}
0

we get the premise

P (0), and (iii) for each n ∈ N , from the rule instance
{n}
s(n)

we get the premise
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n∈N ∧ P (n) ⇒ P (s(n)). Thus, we get P (0) ∧ ∀n∈N. P (n) ⇒ P (s(n)) which is

the premise of mathematical induction.

Now we prove a completeness result for rule induction (see Theorem 1.13 on the
following page). By this result rule induction is shown to be a necessary and a
sufficient condition for proving all first order properties of the inductive sets.

Let us start by introducing the following Definition 1.10 and Theorem 1.11.

Definition 1.10. [R-closed Set] Given a set R of rule instances, a set C is said

to be R-closed iff for every rule instance
X

y
∈ R, if X ⊆ C then y ∈ C.

Theorem 1.11. [Inductive Set Theorem] Given a set R of rule instances, IR

is the least R-closed set, that is, (i) IR is a R-closed, and (ii) given any set Z, if Z is
an R-closed set then IR ⊆ Z.

Proof. (i) We have to show that for every rule instance
X

y
∈ R, if X ⊆ IR then

y ∈ IR. We have two cases.
Case (i.1). Suppose that X ={}. We have that y∈IR, because there is a derivation
which shows that y is in IR and that derivation is obtained by applying the rule

instance
{}
y

once only.

Case (i.2). Suppose that X = {x1, . . . , xn} with n>0. Since X ⊆ IR, for each xi∈X
there is a derivation of xi, call it di, which uses rule instances in R. Now, we have a

derivation of y of the form:
{d1, . . . , dn}

y
and, thus, y∈IR.

(ii) Take any R-closed set Z. We have to show that IR ⊆ Z. Take any y ∈ IR. We
have to show that y ∈Z. Now, since y ∈ IR there exists a derivation of y. We have
two cases.

Case (ii.1). Suppose there exists a rule instance of the form
{}
y

.

Since Z is an R-closed set and {} ⊆ Z we get that y∈Z by the rule instance
{}
y

.

Case (ii.2). Suppose there exists a rule instance of the form
{x1, . . . , xn}

y
for some

n>0. Since y∈IR we have n derivations which justify that x1, . . . , xn are in IR. By
well-founded induction on derivations (see Section 1.6 on page 72), we have that for
i = 1, . . . , n, xi∈Z. Since there is a rule instance whose premises are all in Z, and Z
is R-closed, we have that also the conclusion of the rule instance, that is y, is in Z.

This concludes the proof of the theorem. !

Remark 1.12. Rule induction allows very general forms of rules. In particular,
for the set N of natural numbers we may assume the following set of rules:

(i)
{}
0

(ii) for any n,
{n}
s(n)

(iii) for any n,
{n}
n
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In this case for each natural number n we have finite derivations (which are the ones
which justify the fact that n belongs to the inductive set N) and also unbounded
derivations (which can be constructed by using the rules of the form (iii)). !

Theorem 1.13. [Completeness of Rule Induction] Given a set R of rule
instances, rule induction is a necessary and sufficient rule for showing every first
order property P (x) that holds for every element x of the inductive set IR.

Proof. (i) First we show that rule induction is necessary to prove any first order
property P (x) that holds for every element x ∈ IR. We show this by assuming the
conclusion of rule induction, that is, ∀x∈IR. P (x), and by proving the premise, that

is, for every rule instance
X

y
∈ R, if (∀x ∈ X. x∈IR ∧ P (x)) then P (y).

Thus, we assume ∀x∈IR. P (x). We consider a rule instance
X

y
∈ R.

We assume ∀x ∈ X. x ∈ IR ∧ P (x) and we have to show P (y). Indeed, by
Theorem 1.11 (i) on page 67, IR is R-closed and thus, we have that y∈IR. Then, by
the assumption that ∀x∈IR. P (x), since y∈IR, we get P (y).

(ii) We show that rule induction is sufficient to prove any first order property P (x)
that holds for every element x∈ IR. We have to show that by using rule induction
we can prove ∀x∈IR. P (x).

In order to do so, we define the set Q =def {x | x ∈ IR ∧ P (x)} (thus, we get
Q⊆IR) and we show that IR⊆Q. If we show that IR⊆Q, we get IR =Q and, since
by definition of Q, we have that ∀x ∈ Q. P (x) holds, we get that ∀x ∈ IR. P (x), as
desired.

Thus, it remains to show that if the premise of rule induction holds, we get IR⊆Q.

Let us assume that premise of rule induction, that is,

for every rule instance
X

y
∈ R, if ∀x ∈ X. x∈IR ∧ P (x) then P (y).

Then, (1) from ∀x ∈ X. x ∈ IR and (2) the fact that IR is R-closed it follows that
y∈IR. Thus, we have that:

for every rule instance
X

y
∈ R, if ∀x ∈ X. x∈IR ∧ P (x) then y∈IR ∧ P (y).

Then, by definition of Q, we have that:

for every rule instance
X

y
∈ R, if ∀x ∈ X. x∈Q then y∈Q,

that is, we have that Q is an R-closed set, and by Theorem 1.11 (ii) on page 67, we
have IR⊆Q, as desired. !

Now we apply rule induction for showing the equivalence of two context-free
grammars.

Example 1.14. [Equivalence of Context-Free Grammars] Let us consider
the context-free grammar with axiom A and the following productions:

A → ε | A A | 0 A 1
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Let us also consider the context-free grammar with axiom B′ and the following pro-
ductions:

B′ → 0 B
B → 1 | 0 B B

Let L(A), L(B), and L(B′) denote the languages generated by the nonterminals A,
B, and B′, respectively.

Now we show by using rule induction that the languages generated by the axioms
A and B′ satisfy the following equality: L(A) = (L(B′))∗.

In order to do so, since L(B′) = 0 L(B), it is enough to show that:

(i) L(A) ⊆ (0 L(B))∗ and (ii) L(A) ⊇ (0 L(B))∗.

The rules for the language L(A) are as follows:

(A1)
{}
ε

(A2) for any a1, a2∈L(A),
{a1, a2}

a1 a2
(A3) for any a∈L(A),

{a}
0 a 1

The rules for the language L(B) are as follows:

(B1)
{}
1

(B2) for any b1, b2∈L(B),
{b1, b2}
0 b1 b2

It is well known from the theory of formal languages that the inductive set of the
rules (A1), (A2), and (A3) is L(A) and, analogously, the inductive set of the rules
(B1) and (B2) is L(B).

For reasons of simplicity in this example a singleton {x} will be denoted also by x.

Proof of Point (i). It is enough to prove by rule induction that the property

P (a) =def a ⊆ (0 L(B))∗

holds for any word a ∈ L(A). This is a consequence from the following Points (i.1),
(i.2), and (i.3).

Point (i.1) By rule (A1) we have to show that: ε ⊆ (0 L(B))∗. This is obvious.

Point (i.2) By rule (A2) we have to show that: a1a2 ⊆ (0 L(B))∗. Indeed, a1 a2 ⊆
{by hypothesis} ⊆ (0 L(B))∗(0 L(B))∗ = (0 L(B))∗.

Point (i.3) By rule (A3) we have to show that: 0 a 1 ⊆ (0 L(B))∗. Indeed, 0 a 1 ⊆
{by hypothesis} ⊆ 0 L(A) 1 ⊆ {by B → 1} ⊆ 0 L(A) L(B) ⊆ {by inclusion (α) below}
⊆ 0 L(B) ⊆ (0 L(B))∗.

Now we prove by rule induction that:

L(A) L(B) ⊆ L(B). (α)

We consider the property Q(a) =def a L(B) ⊆ L(B) and we show that it holds for
all a ∈ L(A).
By rule (A1) we have to show that: ε L(B) ⊆ L(B). This is obvious.
By rule (A2) we have to show that: a1 a2 L(B) ⊆ L(B). Indeed, a1 a2 L(B) ⊆
{by hypothesis} ⊆ a1 L(B) ⊆ {by hypothesis} ⊆ L(B).
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By rule (A3) we have to show that: 0 a 1 L(B) ⊆ L(B). Indeed, 0 a 1 L(B) ⊆
{by B → 1} ⊆ 0 a L(B) L(B) ⊆ {by hypothesis} ⊆ 0 L(A) L(B) L(B) ⊆ {by hy-
pothesis} ⊆ 0 L(B) L(B) ⊆ {by B → 0 B B} ⊆ L(B).

This completes the proof of (α).

Proof of Point (ii). It is enough to prove by rule induction that the property

P (b) =def (0 b)∗ ⊆ L(A)

holds for any word b ∈ L(B). This is a consequence from the following Points (ii.1)
and (ii.2).

Point (ii.1) By rule (B1) we have to show that: (0 1)∗ ⊆ L(A). This follows from
∀n ≥ 0, (01)n ⊆ L(A), which can be proved by induction on n.
(Basis) Since (01)0 = ε we have to show that ε ⊆ L(A). This holds because A → ε.
(Step) Take any k ≥ 0. We assume (0 1)k ⊆ L(A) and we show (0 1)k+1 ⊆ L(A)
as follows. We have that (0 1)k+1 = (0 1)k (0 1) ⊆ {by induction hypothesis} ⊆
L(A) 0 1 ⊆ {by A → 0 A 1 → 0 1} ⊆ L(A) L(A) ⊆ {by A → A A} ⊆ L(A).

Point (ii.2) By rule (B2) we have to show that: (0 0 b1 b2)∗ ⊆ L(A). Indeed, (0 0 b1 b2)∗

⊆ {by hypothesis} ⊆ (0 0 L(B) L(B))∗ ⊆ {by inclusion (β) below} ⊆ (0 L(A) L(B))∗

⊆ {by inclusion (α) above} ⊆ (0 L(B))∗ ⊆ {by inclusion (β) below} ⊆ (L(A))∗ ⊆
L(A). This last inclusion follows from ∀n ≥ 0, (L(A))n ⊆ L(A), which can be proved
by induction on n.
(Basis) We have to show that ε ⊆ L(A). This holds because A → ε.
(Step) Take any k≥0. We assume (L(A))k ⊆ L(A) and we show (L(A))k+1 ⊆ L(A)
as follows. We have that (L(A))k+1 = (L(A))k L(A) ⊆ {by induction hypothesis}
⊆ L(A) L(A) ⊆ {by A → A A} ⊆ L(A).

Now we prove by rule induction that:

0 L(B) ⊆ L(A). (β)

We consider the property R(b) =def 0 b ⊆ L(B) and we show that it holds for all
b ∈ L(B).
By rule (B1) we have to show that: 0 1 ⊆ L(A). This is obvious because: A →
{by A → 0A1} → 0A1 → {by A → ε} → 01.
By rule (B2) we have to show that: 0 0 b1 b2 ⊆ L(A). Indeed, 0 0 b1 b2 ⊆ {by hy-
pothesis} ⊆ 0 L(A) b2 ⊆ {by hypothesis} ⊆ 0 L(A) L(B) ⊆ {by inclusion (γ) below}
⊆ 0 L(A) L(A) 1 ⊆ {by A → 0A1 → 0AA1} ⊆ L(A).

This completes the proof of (β).

Now we prove by rule induction that:

L(B) ⊆ L(A) 1. (γ)

We consider the property S(b) =def b ⊆ L(A) 1 and we show that it holds for all
b ∈ L(B).
By rule (B1) we have to show that: 1 ⊆ L(A) 1. This is obvious because A → ε.
By rule (B2) we have to show that: 0 b1 b2 ⊆ L(A) 1. Indeed, 0 b1 b2 ⊆ {by hypothesis}
⊆ 0 L(A) 1 b2 ⊆ {by A → 0A1} ⊆ L(A) b2 ⊆ {by hypothesis} ⊆ L(A) L(A) 1 ⊆
{by A → AA} ⊆ L(A) 1.

This completes the proof of (γ) and the proof of L(A) = (0 L(B))∗. !
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1.5. Special Rule Induction.

There is a particular version of rule induction, called special rule induction, which
can be used when dealing with properties referring to more than one set.

Let us first see this induction rule in action in the following example that deals
with basic boolean expressions and extends the example of Section 1.4 (see page 64)
dealing with the set BasicAexp of the basic arithmetic expressions.

The set BasicBexp of the basic boolean expressions is defined as follows, where
a1, a2 ∈ BasicAexp and b, b1, b2 ∈ BasicBexp:

b ::= true | false | a1≤a2 | ¬b | b1 ∧ b2

The operational semantics of the basic boolean expressions is specified by a subset of
BasicBexp×{true, false}, and a pair 〈b, t〉 in BasicBexp×{true, false}, written
b → t, denotes that the basic boolean expression b evaluates to t.

The rules defining the operational semantics of the basic boolean expressions
are as follows: for all b, b1, b2 ∈ BasicBexp, for all t1, t2 ∈ {true, false}, for all
a1, a2 ∈ BasicAexp, we have that:

(B1)
true→ true

(B2)
false→ false

(B3.1)
a1 →n1 a2 →n2

a1 ≤ a2 → true
if n1≤n2 (B3.2)

a1 →n1 a2 →n2

a1 ≤ a2 → false
if n1 1≤n2

(B4.1)
b→ true

¬ b→ false
(B4.2)

b→ false

¬ b→ true

(B5)
b1 → t1 b2 → t2

b1 ∧ b2 → and(t1,t2) where and(t1, t2) performs the usual and operation
between any two boolean values t1 and t2.

together with the rules (A1) and (A2) for the evaluation of the basic arithmetic
expressions (see page 64).

Now we can show that a given property P (b, t) holds for every pair 〈b, t〉 in the
subset of BasicBexp × {true, false} derived by the rules (B1)–(B5), by applying
the following rule.
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(Special Rule Induction for BasicBexp)

∀n1, n2 ∈ N. ∀a1, a2 ∈ BasicAexp.
∀t1, t2 ∈ {true, false}. ∀b, b1, b2 ∈ BasicBexp.

P (true, true)
∧ P (false, false)
∧ (a1 → n1 ∧ a2 → n2 ∧ n1≤n2) ⇒ P (a1≤a2, true)
∧ (a1 → n1 ∧ a2 → n2 ∧ n1 1≤n2) ⇒ P (a1≤a2, false)
∧ (b → true ∧ P (b, true)) ⇒ P (¬b, false)
∧ (b → false ∧ P (b, false)) ⇒ P (¬b, true)
∧ (b1 → t1 ∧ P (b1, t1) ∧ b2 → t2 ∧ P (b2, t2)) ⇒ P (b1∧b2, and(t1, t2))

∀t ∈ {true, false}. ∀b ∈ BasicBexp. P (b, t)

Note that in the special rule induction for BasicBexp we have assumed that the
property P (b, t) holds for the elements 〈b, t〉 of the set BasicBexp×{true, false}
which occur in the premises of the rules, while it does not hold for the elements in
the set BasicAexp×N (and in that sense this rule induction is said to be ‘special’).

Here is the special rule induction in the general case. Let us consider a set A ⊆ IR.
Let P (x) be a property. Then

∀x∈A. P (x) iff

for all rule instances
X

y
∈R such that X ⊆ IR and y∈A, we have that

(∀x∈X ∩ A. P (x)) ⇒ P (y).

(††)

Thus, by taking the if-part of the above formula (††), we have the following rule.

(Special Rule Induction)

for every rule instance
X

y
∈R, (∀x∈X ∩ A. x∈IR ∧ y∈A ∧ P (x)) ⇒ P (y)

∀x∈A. P (x)

In the case of the evaluation of basic boolean expressions, we have that:

IR = BasicAexp×N ∪ BasicBexp×{true, false} and

A = BasicBexp×{true, false}.
We leave it to the reader to show that by using the rule induction for the property
x∈A ⇒ P (x), we have the special rule induction for the property P (x) and the set A.
Thus, special rule induction is not more powerful than rule induction.

1.6. Well-founded Induction.

Let us now consider one more induction rule, called well-founded induction. It is a
very general induction rule from which we can derive other induction rules. We start
off by introducing the following definition.
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Definition 1.15. [Well-founded Order] A binary relation ≺ on a set B is a
subset of B×B and it said to be well-founded or a well-founded order if there is no
infinite descending sequence of the form: . . . ≺ b2 ≺ b1 ≺ b0.

Any well-founded relation is irreflexive. As usual, by ≺+ we denote the transitive
closure of ≺, and by ≺∗ we denote the reflexive, transitive closure of ≺. We have the
following theorem.

Theorem 1.16. Given a set B and a well-founded binary relation ≺⊆ B×B, we
have that ≺ is well-founded iff ≺+ is well-founded.

Proof. (i) If ≺ is not well-founded also ≺+ is not well-founded because an infinite
descending sequence . . . ≺ b2 ≺ b1 ≺ b0 is also an infinite descending sequence of the
form . . . ≺+ b2 ≺+ b1 ≺+ b0. (ii) If ≺+ is not well-founded then there exists an
infinite descending sequence of the form . . . ≺+ b2 ≺+ b1 ≺+ b0. Now, by definition of
≺+, ∀bi+1, bi ∈ B, bi+1 ≺+ bi means that there exists a finite sequence b1 ≺ . . . ≺ bki

of elements in B such that b1 = bi+1 and bki = bi. Thus, from the infinite sequence
. . . ≺+ b2 ≺+ b1 ≺+ b0 we can get an infinite descending sequence for ≺ which shows
that ≺ is not well-founded. !

The rule of well-founded induction for a set B whose elements are ordered by a
well-founded binary relation ≺, is as follows.

(Well-founded Induction. W1)

∀x∈B. (∀y≺ x. P (y)) ⇒ P (x)

∀b∈B. P (b)

From this rule we can derive an equivalent well-founded induction rule, called W2.
First we need the following definition.

Definition 1.17. [Minimal Element] Let A be a set with an irreflexive binary
relation C⊆ A×A. We say that m is a minimal element of A w.r.t. C iff we have
that ¬∃ a∈A. a C m.

The well-founded induction rule W2 is based on the absence of a minimal element.
For any set B whose elements are ordered by a well-founded binary relation ≺⊆ B×B,
the well-founded induction rule W2 is as follows.

(Well-founded Induction. W2)

B = {b | b ∈ B ∧ ¬P (b)}
and no minimal element w.r.t. ≺ exists in B

∀b∈B. P (b)

This rule can be derived from the rule W1 of well-founded induction because from
the premises of W2, by recalling that ≺ is well-founded, we get that B = ∅, and thus,
∀b ∈ B. P (b) holds.
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From the well-founded induction rule W1 we can derive other induction rules. In
particular, we can derive:
(i) mathematical induction (see Section 1.1 on page 59) by taking

∀n, m ∈ N. n≺ m iff s(n)=m,

(ii) complete induction (see Section 1.2 on page 61) by taking

∀n, m ∈ N. n≺ m iff n<m, and

(iii) structural induction for the binary trees (see Section 1.3 on page 63) by taking

∀b1, b2 ∈ B, ∀n ∈ N. b1≺ 〈b1, n, b2〉 ∧ b2≺ 〈b1, n, b2〉.
Some more induction rules which are particularly useful for proving properties of

programs, will be presented in Section 6 on page 103.

2. Recursion Theorem

Let us introduce the following notations.

(i) Given a binary relation ρ ⊆ B×B, for all b ∈ B, we denote by ρ−1{b} the set
{x | x ρ b}. In particular, if we consider a well-founded binary relation ≺⊆ B×B, for
all b ∈ B, we denote by ≺−1 {b} the set {x | x≺ b}.

(ii) Given a function f : B → C and a subset A of B, the restriction of the function
f to the set A, denoted f %A, is the function from A to C which is the following set
of pairs {〈x, f(x)〉 | x ∈ A}.

(iii) The domain of a relation (or a function) ρ ⊆ B×C, denoted dom(ρ), is the set
{b | ∃c 〈b, c〉 ∈ ρ}.

(iv) By P(A) we denote the powerset of a set A, that is, the set of all subsets of A.

We have the following theorem.

Theorem 2.1. [Recursion Theorem] Let ≺ be a well-founded relation on a
set B. Suppose that for all b ∈ B, for all functions hb : {x | x≺ b} → C, there exists
a function F : (B × (Bb → C)) → C, where Bb denotes the subset {x | x≺ b} of B
that depends on the value b ∈ B of the first argument of F .

Then, there exists a unique function f : B → C such that:

∀b∈B, f(b)=F (b, f %≺−1 {b}). (R0)

Proof. The proof is made out of two parts. In Part 1 we show that there
exists at most one function satisfying (R0) and in Part 2 we define a function that
satisfies (R0).

Part 1. Let R(f, g, y) be the formula:

f(y)=F (y, f %≺−1 {y}) ∧ g(y)=F (y, g %≺−1{y}).
Let P (z) be the formula:

(
(∀y ≺∗ z, R(f, g, y)

)
→ f(z) = g(z). Now we prove that

∀b∈B, P (b), that is:

∀b∈B,
((
∀y≺∗ b, R(f, g, y)

)
→ f(b)=g(b)

)
(R1)

by well-founded induction on ≺. Thus, (i) we take any x ∈B, (ii) we assume that
∀z≺x, P (z), and (iii) we have to show P (x). By assumption we have:
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∀z≺x, P (z), and (1.1)

∀y≺∗x, R(f, g, y), (1.2)

and we have to show that f(x)=g(x).

Take any z≺x. Since z≺x and ≺∗ is reflexive and transitive, from (1.2) we get:

∀y≺∗ z, R(f, g, y). (1.3)

From (1.1) and (1.3) we get: f(z)=g(z). Since we have taken any z≺x and we have
derived f(z)=g(z), we have that:

∀z≺x, f(z)=g(z). (1.4)

By the definition of function restriction, since ≺−1 {x} is the set of elements z such
that z≺x, from (1.4) we get that:

f %≺−1 {x} = g %≺−1{x}.
Since F is a function we get: F (x, f %≺−1{x}) = F (x, g %≺−1{x}). (1.5)
From (1.2), for y=x we get:

f(x)=F (x, f %≺−1{x}) ∧ g(x)=F (x, g %≺−1{x}). (1.6)

From (1.5) and (1.6) we get: f(x) = g(x) and this concludes the proof of (R1).

From (R1) it follows, as we now show, that if there are two functions, say f and g,
that satisfy (R0) then they are equal, that is,

((
∀b∈B, f(b)=F (b, f %≺−1{b}

)
∧

(
∀b∈B, g(b)=F (b, g %≺−1{b})

))

→ ∀b∈B, f(b)=g(b),

which is equivalent to:

∀b∈B, (f(b)=F (b, f %≺−1{b} ∧ g(b)=F (b, g %≺−1{b})) (R2)
→ ∀b∈B, f(b)=g(b).

Indeed, let us assume the premise of (R2) and let us show the conclusion of (R2).
Take any b ∈ B, by the premise of (R2) we have that ∀y ≺∗ b, R(f, g, y) holds.
By (R1) we get that f(b)=g(b) holds, and this completes the proof of Part 1.

Part 2. In this part we prove the following three Properties (2.1), (2.2), and (2.3).

(Property 2.1) For all x∈B there exists a total function fx : {y | y≺∗x} → C which
is defined as follows:

∀y≺∗x, fx(y) =def F (y, fx %≺−1 {y}), (2.1.1)

(Property 2.2) Given any two functions fb1 and fb2 in the set {fx | x ∈ B} of functions
(each of which is defined as in Property 2.1), we have that:

∀b1, b2∈B, ∀y≺∗ b1, ∀y≺∗ b2, fb1(y) = fb2(y), and

(Property 2.3) Given the set {fx | x ∈ B} of functions (each of which is defined as in
Property 2.1), we have that:

dom(
⋃

x∈B fx) = B and ∀b∈B, (
⋃

x∈B fx)(b) = F (b, (
⋃

x∈B fx)%≺−1 {b}).

From Properties 2.1, 2.2, and 2.3, it follows that
⋃

x∈B fx is a function which satisfies
Property (R0) on the preceding page and whose domain is B. Thus, in order to
complete the proof of the theorem, we have to prove the three Properties 2.1, 2.2, and
2.3, and this will be done in the following three Points 2.1, 2.2, and 2.3, respectively.
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Point 2.1. Let Q(x) be the formula:

there exists a total function fx : {y | y≺∗x} →C such that

∀y≺∗x, fx(y) = F (y, fx %≺−1{y}).
Now we prove that ∀x ∈B, Q(x) holds by well-founded induction on ≺. We do so
by: (i) taking any x∈B, (ii) assuming ∀z≺x, Q(z), and (iii) showing Q(x).

From the assumption that ∀z≺x, Q(z) we have that

∀z≺x, dom(fz) = {y | y≺∗ z}. (2.1.2)

Let us consider the set hx defined as follows:

hx =def

⋃
z≺x fz. (2.1.3)

We show that:

(2.1.i) dom(hx) = {y | y≺+ x} (see Point 2.1.a), and

(2.1.ii) hx is a function from {y | y ≺+ x} to C, that is, for all y ∈ dom(hx) there
exists a unique v ∈ C such that 〈y, v〉 ∈ hx. This means that any two functions fb1

and fb2 such that b1≺ x and b2≺ x, agree on the intersection of their domains (see
Point 2.1.b).

Point 2.1.a. By (2.1.3) we have that dom(hx) =
⋃

z≺x dom(fz). By (2.1.2) we have
that:

⋃
z≺x dom(fz) =

⋃
z≺x{y | y≺∗ z} = {y | y≺+ x}.

Point 2.1.b. Take any b1≺ x, any b2≺ x, any y ∈ dom(fb1) ∩ dom(fb2) (i.e., y≺∗ b1
and y≺∗ b2). By the induction hypothesis which states that ∀z≺x, Q(z) holds, we
have that fb1 is a function and

∀u≺∗ b1, fb1(u) = F (u, fb1 %≺−1 {u}).
Analogously, by the induction hypothesis, we have that fb2 is a function and

∀u≺∗ b2, fb2(u) = F (u, fb2 %≺−1 {u}).
Thus, we get:

∀u≺∗ y, [fb1(u) = F (u, fb1 %≺−1 {u})] ∧ ∀u≺∗ y,
(
fb2(u) = F (u, fb2 %≺−1 {u})

)
.

Now, let us consider the set {u | u≺∗ y}, the well-founded relation ≺ on that set, and
the two functions fb1 and fb2 restricted to that set. By using the uniqueness result
of Part 1 in the case of the functions fb1 and fb2 restricted to the set {u | u≺∗ y}, we
have that for all u ∈ {u | u≺∗ y}, fb1(u)=fb2(u) and, in particular, fb1(y)=fb2(y).

This concludes the proof of Point 2.1.b.

Now let us define fx to be the set of pairs hx ∪ {〈x, F (x, hx %≺−1 {x})〉}.
Since hx is a function and x 1∈ dom(hx), we have that fx is a function. We

also have that dom(fx) = dom(hx) ∪ {x}, that is, dom(fx) = {y | y ≺∗ x} because
hx = {y | y≺+ x}.

Now in order to show Q(x), we need to show that fx(y) = F (y, fx %≺−1 {y})
holds for all y such that y≺∗ x. We do so by cases and, in particular, we show that
fx(y)=F (y, fx %≺−1 {y}) holds:

(2.1.c) for y=x (see Point 2.1.c), and

(2.1.d) for any y such that y≺+ x (see Point 2.1.d).
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Point 2.1.c. We have to show that:

fx(x) = F (x, fx %≺−1 {x}). Since, by definition, fx(x) =def F (x, hx %≺−1 {x}) and F
is a function, it is enough to show that:

hx %≺−1 {x} = fx %≺−1 {x}.
Indeed, we have that: hx %≺−1 {x} =

= {adding to hx a value for x does not modify the restriction to ≺−1 {x}} =

= hx ∪ {〈x, F (x, hx %≺−1 {x})〉})%≺−1 {x} = {by definition of fx} =

= fx %≺−1 {x}.
Point 2.1.d. We have to show that:

∀y ≺+ x, fx(y) (=def hx(y)) = F (y, fx %≺−1 {y}). Since, by definition, for all y such
that y ≺+ x, we have that fx(y) =def hx(y), it is enough to show that hx(y) =
F (x, hx %≺−1 {x}). In order to do so, let us take any y such that y ≺+ x. We have:

hx(y) = {by the defining Equation 2.1.3} =

= (
⋃

z≺x fz)(y) = {by Point 2.1.b} =

= fz(y), for all z such that y ≺∗ z ≺ x. (2.1.4)

Note that: (i) fz is a function because, by induction hypothesis, ∀z≺x, Q(z) holds,
and (ii) every y such that y ≺∗ z ≺ x belongs to dom(fz), because, by induction
hypothesis, dom(fz) = {y | y≺∗ z}.
Now, for all y, z, such that y ≺∗ z ≺ x we have:

fz(y) = {by the induction hypothesis ∀z≺x, Q(z)} =

= F (y, fz %≺−1 {y}) =

= {by ∀y≺+ x. hx(y)=fz(y) (see Equation 2.1.4) and the fact that

∀y≺+ x. hx(y)=fz(y) implies ∀w≺ y. fz(w)=hx(w)} =

= F (y, hx %≺−1 {y}) = {hx and fx differ in x only, and y 1=x} =

= F (y, fx %≺−1 {y}).
This complete the proof of Point 2.1.d and also the proof of Point 2.1.

Point 2.2. The proof of this point is equal to the proof of Point 2.1.b.
Take any b1∈B, any b2∈B, any y ∈ dom(fb1) ∩ dom(fb2) (i.e., y≺∗ b1 and y≺∗ b2).
By induction hypothesis we have that ∀z≺x, Q(z) holds, and thus:

∀u ≺∗ y, [fb1(u) = F (u, fb1 %≺−1 {u})] ∧ ∀u ≺∗ y, [fb2(u) = F (u, fb2 %≺−1 {u})].
Now, let us consider the set {u | u≺∗ y}, the well-founded relation ≺ on that set, and
the two functions fb1 and fb2 restricted to that set. By using the uniqueness result of
Part 1 in the case of the functions fb1 and fb2 restricted to the set {u | u ≺∗ y}, we
have that for all u ∈ {u | u≺∗ y}, fb1(u)=fb2(u) and, in particular, fb1(y)=fb2(y).

Point 2.3. We have that dom(
⋃

x∈B fx) ⊇ B because for any x ∈ B, x ∈ dom(fx).
We also have that dom(

⋃
x∈B fx) =

⋃
x∈B dom(fx) =

⋃
x∈B{y | y ≺∗ x} ⊆ B because

≺⊆ B×B.
Thus, dom(

⋃
x∈B fx) = B.

Now we show that ∀b∈B, (
⋃

x∈B fx)(b) = F (b, (
⋃

x∈B fx) %≺−1 {b}). We proceed
as follows. Take any b ∈ B. We have that:
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(
⋃

x∈B fx)(b) = {by the fact that b ∈ dom(fb)} =

= fb(b) = {by Equation 2.1.1} =

= F (b, fb %≺−1{b}) = {by {y | y ≺−1 b}⊆dom(fb) and by Point 2.2} =

= F (b, (
⋃

x∈B fx)%≺−1 {b}).
This completes the proof of Point 2.3 and the proof of the theorem. !

Now, let us consider a particular instance of the Recursion Theorem by taking:
(i) the set B to be the set N = {0, s(0), s(s(0)), . . .} of the natural numbers,
(ii) the well-founded relation ≺ on B to be the familiar < (less-than) relation on N ,
and
(iii) the function F : N×P(N×N) → N to be the following function (note that the
set {k∈N | k<0} is empty and the set {k∈N | k<s(n)} is the singleton {n}):

F (0, {}) = a
F (s(n), {〈n, m〉}) = G(n, m)

where a∈N and G is a function from N×N to N . (The fact that F is a function
derives from the fact that G is a function and we do not need to apply the Recursion
Theorem because F is not recursively defined.)

Having made the above choices, the Recursion Theorem tells us that there exists
a unique function f : N → N such that:

f(0) = a
f(s(n)) = G(n, f(n))

Moreover, if we take a=1 and λn, m. G(n, m) =def λn, m. s(n) "m, we have that the
equations:

f(0) = 1
f(s(n)) = s(n) "f(n)

determine a unique function from N to N (it is the familiar factorial function).
Similarly, by taking:

(i) B to be N ,
(ii) the well-founded relation ≺ to be the following one:

{n≺ m | m>s(0) and [m=s(n) or m=s(s(n))]} ⊆ N×N , and

(iii) a suitable choice of the function F , by the Recursion Theorem we have that for
any natural number n0 and n1, the equations:

fib(0) = n0

fib(s(0)) = n1

fib(s(s(n))) = fib(s(n))+fib(n)

determine a unique function from N to N (it is the familiar Fibonacci function).
The Recursion Theorem provides a justification for the definition of functions via

the following schema, called primitive recursion schema:

f(0, x2, . . . , xk) = g(x2, . . . , xk)
f(n+1, x2, . . . , xk) = h(n, x2, . . . , xk, f(n, x2, . . . , xk))

(PR1)
(PR2)
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where g and h are functions from Nk−1 to N and from Nk+1 to N , respectively.
In these hypotheses by the Recursion Theorem we have that there exists a unique
function f from Nk to N satisfying (PR1) and (PR2).

A different setting for defining functions by using equations is that of the mono-
tonic (or continuous) functionals and in that setting functions are defined as fixpoints
of those functionals. It may be the case that for those functionals we cannot find any
well-founded relation among the arguments of the function calls on the left hand side
and the right hand side of the equations and, thus, the Recursion Theorem cannot
be applied. For instance, in the case of the following two equations:

(i) f(x) = f(x)
(ii) f(x) = f(x)+1

which correspond to the following two functionals, respectively:

(i) λf.(λx. f(x)) : (N⊥→N⊥)×N⊥ → N⊥

(ii) λf.(λx. f(x)+1) : (N⊥→N⊥)×N⊥ → N⊥

one cannot find any well-founded relation between x (that is, the argument of f(x)
on the left hand side) and x itself (that is, the argument of f(x) on the right hand
side) because any well-founded relation must be irreflexive.

The monotonicity (or the continuity) of a functional allows us to establish that the
function defined via a functional is the unique minimal fixpoint of that functional
(see the following Section 3). Indeed, by the Knaster-Tarski Theorem, any mono-
tonic operator on a complete lattice has a unique minimal fixpoint, also called the
least fixpoint. If this functional is also continuous then the minimal fixpoint can be
computed, as stated by Kleene Theorem 4.7 on page 96, by performing ω iterations
starting from the bottom of the lattice. In the case of the lattice of the above func-
tionals (i) λf, x. f(x) and (ii) λf, x. f(x)+1, the bottom element is the everywhere
undefined function λx∈N⊥.⊥.

3. Knaster-Tarski Theorem on Complete Lattices

A lattice L is a set, which we denote by the same letter L, together with: (i) a partial
order ≤⊆ L × L, and (ii) two binary operations, denoted by glb and lub, called the
greatest lower bound (w.r.t. ≤) and the least upper bound (w.r.t. ≤), respectively.

In this case we say that the lattice L is ordered by ≤.
By definition, we have that for any x, y, and z in L,

(i.1) glb(x, y)≤x and glb(x, y)≤y, that is, glb(x, y) is a lower bound of x and y, and
(ii.1) if z≤x and z≤y then z≤glb(x, y), that is, glb(x, y) is the greatest among the
lower bounds of x and y.

Analogously, by definition, we have that for any x, y, and z in L,
(i.2) x≤ lub(x, y) and y≤ lub(x, y), that is, the lub(x, y) is a upper bound of x and y,
and
(ii.2) if x ≤ z and y ≤ z then lub(x, y) ≤ z, that is, lub(x, y) is the least among the
upper bounds of x and y.

Conditions (ii.1) and (ii.2) above imply that given any two elements x and y in L,
glb(x, y) and lub(x, y) are unique.



80 4. INDUCTION RULES AND SEMANTIC DOMAINS

A lattice L is said to be complete iff the glb and the lub operations are defined for
every (finite or infinite) subset S of L. The greatest lower bound of a set S ⊆ L will
be denoted by glb(S) or glb S. Analogously, the least upper bound of a set S ⊆ L
will be denoted by lub(S) or lub S.

The greatest lower bound of a complete lattice L is denoted by ⊥. Thus, ⊥ is the
least element of L, that is, for all x ∈ L, ⊥ ≤ x.

Let L be a complete lattice ordered by ≤ and T be a function from L to L. We
say that x is a prefixpoint of T iff T (x) ≤ x. We say that x is a postfixpoint of T iff
x ≤ T (x). We also say that x is a fixpoint of T iff T (x) = x.

Let us define:

T 0(x) = x
T k+1(x) = T (T k(x)) for any k ≥ 0
T ω(x) = lub {T k(x) | k ≥ 0}

The function T : L → L is said to be monotonic on L (or monotonic, for short) iff for
every x and y if x ≤ y then T (x) ≤ T (y).
The function T : L → L is said to be continuous on L (or continuous, for short) iff it
is monotonic on L and for every infinite ω-chain x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . of elements
(not necessarily distinct) of L we have that: T (lub{xi | i ≥ 0}) = lub{T (xi) | i ≥ 0}.

Lemma 3.1. Let T : L → L be a monotonic function on a complete lattice L
ordered by ≤. We have that:
(A) glb{x | T (x)≤x}, that is, the glb of all prefixpoints of T , is the least prefixpoint
of T , and
(B) lub{x | x ≤ T (x)}, that is, the lub of all postfixpoints of T , is the greatest
postfixpoint of T .

Proof. Let us first show (A). We have to show that: (1) glb{x | T (x) ≤ x} is a
prefixpoint of T , that is, T (glb{x | T (x) ≤ x}) ≤ glb{x | T (x) ≤ x}, and (2) given
any other prefixpoint z of T we have that glb{x | T (x) ≤ x} ≤ z.
Proof of (1). For every y such that T (y) ≤ y, we have that:

glb{x | T (x) ≤ x} ≤ y (by definition of glb, because y ∈ {x | T (x) ≤ x})
T (glb{x | T (x) ≤ x}) ≤ T (y) (by monotonicity of T )
T (glb{x | T (x) ≤ x}) ≤ y (by transitivity and T (y) ≤ y). (†)

Now, since Inequality (†) holds for every y such that T (y) ≤ y, we have that T (glb{x |
T (x) ≤ x}) is a lower bound of the set {x | T (x) ≤ x}. Since, by definition,
glb{x | T (x) ≤ x} is the greatest among the lower bounds of the set {x | T (x) ≤ x},
we get (1).
Proof of (2). Given a complete lattice L, for every subset S of L, we have that
glb(S) ≤ x for every element x in S. The thesis follows from: (i) glb(S) ≤ x by
taking S to be {x | T (x) ≤ x}, and (ii) the fact that z is a prefixpoint of T , that is,
z is an element of {x | T (x) ≤ x}.

The proof of (B) follows from that of (A) because the complete lattice L ordered
by the partial order ≤ is also a complete lattice ordered by the converse relation ≥,
defined as follows: for all x and y in L, x ≥ y iff y ≤ x. Note that also ≥ is a partial
order. !



3. KNASTER-TARSKI THEOREM ON COMPLETE LATTICES 81

Theorem 3.2. [Knaster-Tarski Theorem] (1955) Let T : L → L be a mono-
tonic function on a complete lattice L ordered by ≤.
(A) T has a least fixpoint, denoted by lfp(T ), and

lfp(T ) = glb{x | T (x)=x} = glb{x | T (x)≤x}.
(B) T has a greatest fixpoint, denoted by gfp(T ), and

gfp(T ) = lub{x | T (x)=x} = lub{x | x≤T (x)}.

Proof. Let us first show Part (A). We start off by showing that:

(1) T (glb{x | T (x) ≤ x}) = glb{x | T (x) ≤ x},
that is, glb{x | T (x) ≤ x} is a fixpoint of T . This can be shown by proving that:

(1.1) T (glb{x | T (x) ≤ x}) ≤ glb{x | T (x) ≤ x}, and

(1.2) T (glb{x | T (x) ≤ x}) ≥ glb{x | T (x) ≤ x}.
The proof of (1.1) is Point (1) of proof of Lemma 3.1. The proof of (1.2) is as follows.
From (1.1) by monotonicity of T we get:

T (T (glb{x | T (x) ≤ x})) ≤ T (glb{x | T (x) ≤ x}).
Thus, T (glb{x | T (x) ≤ x}) is a prefixpoint of T and hence, it belongs to the set
{x | T (x) ≤ x}. Thus, glb{x | T (x) ≤ x} ≤ T (glb{x | T (x) ≤ x}), as stated in (1.2).
We also have:

(2) glb{x | T (x) = x} ≤ glb{x | T (x) ≤ x}
because glb{x | T (x) = x} ≤ x for every x which is a fixpoint of T , and
glb{x | T (x) ≤ x} is a fixpoint of T , as we have shown in (1).
We also have that:

(3) glb{x | T (x) ≤ x} ≤ glb{x | T (x) = x}
because {x | T (x) = x} ⊆ {x | T (x) ≤ x}.
From (2) and (3) we get: glb{x | T (x) ≤ x} = glb{x | T (x) = x}. Now, since
glb{x | T (x) ≤ x} is a fixpoint of T , as we have shown in (1) above, we have that:

(4) glb{x | T (x) = x} is a fixpoint of T .

To complete the proof of Part (A) of this theorem we have to show that:

(5) glb{x | T (x) = x} is the least fixpoint of T .

Since in (4) we have proved that glb{x | T (x) = x} is a fixpoint of T , it remains to
show that glb{x | T (x) = x} is less than or equal to than every other fixpoint of T .

Now, since by (2) and (3), glb{x | T (x) = x} is equal to glb{x | T (x) ≤ x}, it is
enough to show that glb{x | T (x) ≤ x} is less than or equal to every other fixpoint
of T . By Lemma 3.1 on the facing page, glb{x | T (x) ≤ x} is the least prefixpoint
of T . Thus, since glb{x | T (x) ≤ x} is less than or equal to every prefixpoint of T , it
is also less than or equal to every fixpoint of T .

The proof of Part (B) follows from that of Part (A) because the complete lattice L
ordered by the partial order ≤ is also a complete lattice ordered by the converse
relation ≥, defined as follows: for all x and y in L, x ≥ y iff y ≤ x. Note that also ≥
is a partial order. !

Note 3.3. The proof of Knaster-Tarski Theorem shows the usefulness of intro-
ducing the notions of a prefixpoint and a postfixpoint, besides that of a fixpoint.
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4. Complete Partial Orders and Continuous Functions

In this section we introduce a class of mathematical structures, called cpo’s, which
will be used in the sequel for providing the semantics of programming languages in
which one may declare and evaluate recursively defined functions.

The introduction of suitable mathematical structures for providing the semantics
of recursive or interdependent definitions should not be novel to the reader. Indeed,
given a system of linear equations whose coefficients are integer numbers, the values
of the unknowns which are solutions of the system, and in this sense they are the
semantics of the system, are, in general, rational numbers (recall the fractions occur-
ring in the expression of the Cramer rule). For instance, the solution of the following
system, which defines x in terms of y and y in terms of x:{

x = 4 y + 1
y = 2 x + 3

is the pair of rational numbers x =
−13

7
and y =

−5

7
. Thus, in order to provide

the meaning to the systems of linear equations with integer coefficients, one has
introduced the mathematical structure of the rational numbers which is closed with
respect to sums, subtractions, and multiplications, as the integer numbers, but they
are also closed with respect to (non-zero) divisions.

Let us start off by introducing the following concepts.

Partial order and upper bound. Given a set D with a partial order E, the least
upper bound of a subset A of D is an element u in D such that: (i) for all a ∈ A,
a E u, that is, u is an upper bound of A, and (ii) for all z such that z is an upper
bound of A, we have that u E z, that is, u is the least among all upper bounds.

Cpo. A complete partial order (or a cpo, for short) (D,ED) is a set D with a partial
order ED ⊆ D×D such that for each chain of elements d0 ED d1 ED . . . ED di ED . . .
(also called an ω-chain, because that chain is function from ω to D) there exists in D
the least upper bound (lub, for short) of the set {di | i ∈ ω}, denoted

⊔
i∈ω di.

The set D of the cpo (D,ED) is called the carrier of the cpo and often, in the
terminology we use, it is identified with the cpo itself. For instance, we will feel free
to say that the set A is a subset of the cpo (D,ED), instead of saying that the set A
is a subset of the carrier of D of the cpo (D,ED).

The lub of an ω-chain is also called the limit point of the chain. Every element di,
for i∈ω, is said to be an approximant of the least upper bound

⊔
i∈ω di.

When understood from the context, we will write E, instead of ED. When con-
fusion does not arise, the cpo (D,ED) will also be denoted simply by D. Sometimes,
for historical reasons, we will say ‘domain’, instead of ‘cpo’.

Cpo with bottom. Given a cpo (D,E), we say that it is a cpo with bottom if there
exists in D a least element, denoted ⊥ and called bottom, such that for all d ∈ D,
⊥ E d.

Sometimes we will say ‘cpo’, instead of ‘cpo with bottom’, when it is understood
from the context.

Discrete cpo. A discrete cpo is a set A with the partial order which is the identity
relation (that is, for all a, b ∈ A, a E b iff a is b).
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Flat cpo. Any set A can be extended to a flat cpo, denoted A⊥, by: (i) adding a
bottom element ⊥, not in A, and (ii) injecting every element a of A into an element,
denoted FaG, in A⊥. We consider the following partial order on A⊥: for all a, b ∈ A⊥,
a E b iff a=⊥ or a=b.

Given the set T =def {true, false} of the truth values and the set N =def

{. . . ,−2,−1, 0, 1, 2, . . .} of the integer numbers, we have, respectively, the two flat
cpo’s T⊥ and N⊥ depicted in Figure 1. (The reader may also look at the notions of
the lifted cpo and the lifting function λx.FxG on page 90.)

FtrueG FfalseG

⊥
T⊥ :

. . . F−2G F−1G F0G F1G F2G . . .

⊥
N⊥ : . . . . . .

Figure 1. The cpo’s T⊥ and N⊥. We have that a E b iff a=b or there
is an arrow from a to b.

Monotonic and continuous function. Let us consider the cpo’s D and E. A
function f from D to E is said to be monotonic if for all d1, d2 ∈ D, if d1 ED d2

then f(d1) EE f(d2). Sometimes, in the literature, ‘monotone’ is used instead of
‘monotonic’.

A function f from D to E is said to be continuous iff

(i) it is monotonic, and

(ii) it preserves the lub’s, that is, for all ω-chains d0 ED d1 ED . . . ED di ED . . . in
D we have that f(

⊔
i∈ω di) =

⊔
i∈ω f(di).

The set of all continuous functions from the cpo D to the cpo E is denoted by
[D → E].

The composition of two continuous functions is a continuous function.

Strict function. A function f from a cpo D with bottom element ⊥D to a cpo E
with bottom element ⊥E is said to be strict iff f(⊥D) = ⊥E .

Example 4.1. [Streams] In this example we illustrate the importance of contin-
uous functions for making models of computational processes.

Let us consider the context-free grammar whose axiom is s and whose productions
are:

s → s $ | s (finite stoppered sequences or finite extensible sequences)

s → ε | 0 s | 1 s (finite extensible sequences)

Thus, the finite sequences generated from the axiom s are of the form (0+1)∗$ + (0+1)∗.
A finite sequence generated by s is said to be a finite stoppered stream if it ends by $,
otherwise it is said to be a finite extensible stream.

As we will see in Section 3.1 of Chapter 9 (see page 278), the set of sequences
which is the minimal solution (or the minimal fixpoint) of the language equation
X = AX + B in the unknown X, is the set A∗B.
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ε

$ 0 1

0$ 00 01 1$ 10 11

0ω 1ω

...
...

...
...

Figure 2. The cpo of Streams. We have that s1 E s2 iff s1 = s2

or there is a path from s1 to s2 ‘following the arrows’. The maximal
elements in the cpo of Streams are the streams which terminate by $
and the infinite streams.

Thus, (0+1)∗$ + (0+1)∗ is the minimal solution in the unknown s of the language
equations:{

s = s $ + s
s = ε + 0 s + 1 s

Also in Section 3.1 of Chapter 9 (see page 279) we will see that the set of sequences
which is the maximal solution (or the maximal fixpoint) of the equation X = AX +B
in the unknown X, is the set A∗B + Aω.

Thus, the set Streams defined as follows:

Streams =def (0+1)∗$ + (0+1)∗ + (0+1)ω.

is the maximal solution of the language equations:{
s = s $ + s
s = ε + 0 s + 1 s

in the unknown s. We call a stream every finite or infinite sequence in the set Streams.
Concatenation of streams, denoted by " , is defined as follows:

(i) for every s1 in (0+1)∗, for every s in Streams, s1 " s is a (possibly infinite) stream
whose prefix is s1, and

(ii) for every s1 in (0+1)ω, for every s in Streams, s1 " s = s1.

Note that for every s1 in (0+1)∗$, for every s in Streams, s1 " s is not defined.
The set Streams can be structured as a cpo by defining the following partial

order E between its elements.
For all streams s1 and s2, we stipulate that (see also Figure 2):

s1 E s2 iff either s1 = s2

or s1 is a finite extensible sequence and ∃s ∈ Streams, s1 " s = s2.

For instance, 01 E 01$ and 01 E 01001. We have that for every finite stoppered
stream s1$, the only stream s such that s1$ E s, is s1$ itself.

The cardinality of the maximal elements in the cpo of Streams is that of the real
numbers (that is, ℵ1), because: (i) the cardinality of the set of streams ending by $
is ℵ0, and (ii) the cardinality of the infinite streams is ℵ1.
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Now, suppose that we want to define a function from Streams to T⊥ (see Figure 1
on page 83) which tests whether or not there exists a symbol 1 in the given stream.
Let that function be called isone.

We have the following equations: for every (finite or infinite) s in Streams,

isone(ε) = ⊥
isone($) = FfalseG
isone(0 s) = isone(s)
isone(1 s) = FtrueG

We have that, for every s ∈ (0+1)ω, isone(s) = FtrueG if there exists a symbol 1 in s.
Now we have to define the value of isone(0ω). It may seem reasonable to stipulate
that isone(0ω)=FfalseG.

However, if we require that the function isone be a continuous function, we have
that:

isone(0ω) = {by definition of 0ω} =

= isone(
⊔

n∈ω 0n) = {by requiring the continuity of the function isone} =

=
⊔

n∈ω isone(0n) = {by the fact that isone(0n) = ⊥} =

=
⊔

n∈ω ⊥ = ⊥.

Thus, we have two options: either (i) isone(0ω)=FfalseG or (ii) isone(0ω)=⊥.
We will reject option (i) and we will take option (ii), because we want to function

isone to be computable according to the usual notion of Turing computability, as we
now explain.

Turing computability requires that the value of a function (isone in our case)
when it is applied to a limit point (0ω in our case), should be the limit of a sequence
of values, each of which is obtained by applying that function to an element of an
infinite sequence of finite approximants of that limit point.

Turing computability requires also that, for every finite approximant y of the value
of a function f applied to a limit point xω, there exists a suitable, finite approximant
x of xω such that y E f(x) E f(xω).

In our case, an infinite sequence of finite approximants of 0ω is:

ε E 0 E 00 E . . . E 0n E . . .

and we have that, for all n ∈ ω, isone(0n) =⊥. Since the least upper bound of an
ω-chain whose values are all ⊥, is ⊥, we get that the value of isone(0ω) should be ⊥.
This ensures that the function isone is continuous and Turing computable. !

Finite products of cpo’s. Let us consider the cpo’s D1, . . ., Dk. Their product,
denoted D1× . . .×Dk, is the cpo whose underlying set is the set of tuples (d1, . . . , dk)
where d1 ∈ D1, . . ., dk ∈ Dk, ordered as follows:

(d1, . . . , dk) E (d′
1, . . . , d

′
k) iff for i = 1, . . . , k, we have that di E d′

i.

A tuple (d1, . . . , dk) will also be denoted by 〈d1, . . . , dk〉.
The limits points in D1 × . . . × Dk are defined componentwise, that is,

⊔
i∈ω(d1i, . . . , dki) = (

⊔
i∈ω d1i, . . . ,

⊔
i∈ω dki). (†)

Figure 3 on the next page shows the product cpo T⊥ × T⊥.
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(FtrueG, FtrueG) (FtrueG, FfalseG)(FfalseG, FtrueG) (FfalseG, FfalseG)

(FtrueG,⊥) (FfalseG,⊥)(⊥, FtrueG) (⊥, FfalseG)

(⊥,⊥)

Figure 3. The product cpo T⊥ × T⊥. We have that (a1, a2) E (b1, b2)
iff (a1, a2)=(b1, b2) or there a path from (a1, a2) to (b1, b2) following the
arrows.

Notation 4.2. In what follows, a function f with one argument which is a
k-tuple, for k≥1, will be considered to be a function with k arguments. Thus, for in-
stance, we will write f(d1, ..., dk), instead of f((d1, ..., dk)), and λd1, ..., dk. f(d1, ..., dk),
instead of λ(d1, ..., dk). f(π1((d1, ..., dk)), ..., πk((d1, ..., dk))). !

If k = 0 then the product of zero cpo’s is the cpo whose underlying set is the
singleton {()} with only element which is the empty tuple (). In what follow when
considering the product of k cpo’s, we will assume that k is greater than 0.

Given the cpo D1× . . .×Dk, we define, for i = 1, . . . , k, the projection function πi

from D1 × . . . × Dk to Di as follows: πi(d1, . . . , dk) = di (see Figure 4). Every
projection function πi is continuous.

D1×. . .×Dk

D1

. . .
f1

fk
. . .

. . . Dk

E

π1 πk

〈f1, . . . , fk〉

Figure 4. The product cpo D1× . . .×Dk, the function 〈f1, . . . , fk〉:
E → D1×. . .×Dk, and the projection functions πi’s.

Given the continuous functions f1: E → D1, . . . , fk: E → Dk from cpo’s to cpo’s,
we get the tupled function 〈f1, . . . , fk〉: E → D1 × . . . × Dk which is defined compo-
nentwise, that is, for i = 1, . . . , k,

〈f1, . . . , fk〉(e) =def (f1(e), . . . , fk(e)).

Thus, the definition of the function 〈f1, . . . , fk〉 is derived by imposing the commuta-
tivity of the diagram of Figure 4.

The function 〈f1, . . . , fk〉 is continuous, as we now show. Take an ω-chain e0 E
e1 E . . . E ei E . . . of elements in E. We have that

〈f1, . . . , fk〉(
⊔

i∈ω ei) =
⊔

i∈ω(〈f1, . . . , fk〉(ei)).
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Indeed,〈f1, . . . , fk〉(
⊔

i∈ω ei) = {by definition of 〈f1, . . . , fk〉} =

= (f1(
⊔

i∈ω ei), . . . , fk(
⊔

i∈ω ei)) = {each function fi is continuous} =

= (
⊔

i∈ω f1(ei), . . . ,
⊔

i∈ω fk(ei)) = {lub’s of tuples are defined componentwise} =

=
⊔

i∈ω(f1(ei), . . . , fk(ei)) = {by definition of 〈f1, . . . , fk〉} =

=
⊔

i∈ω(〈f1, . . . , fk〉(ei)).

We have that: for i = 1, . . . , k, for all e ∈ E, πi(〈f1, . . . , fk〉(e)) = fi(e). Actually,
it can easily be shown that 〈f1, . . . , fk〉 is the unique function which enjoys that
property (see Figure 4 on the facing page).

Now let us prove the following lemmata which are useful in what follows.

Lemma 4.3. Given the cpo’s E, D1, . . ., Dk, we have that h: E → D1 × . . .×Dk

is a continuous function iff for i = 1, . . . , k, πi ◦ h is a continuous function.

Lemma 4.4. Consider a cpo D and a subset {dij | i, j ∈ ω} of its elements. Suppose
that for all m1, m2, n1, n2 ∈ ω, dm1, m2

E dn1, n2
iff m1 ≤ n1 and m2 ≤ n2. We have

that:
⊔

m,n∈ω dm,n =
⊔

m∈ω(
⊔

n∈ω dm,n) =
⊔

n∈ω(
⊔

m∈ω dm,n) =
⊔

n∈ω dn,n

(1) (2) (3) (4)

Proof. First we prove that (1) E (4). By definition of the least upper bound, it
is enough to prove that for all m, n ∈ ω, dm,n E

⊔
i∈ω di,i. Indeed, we have that dm,n E

dmax(m,n), max(m,n). Moreover, dmax(m,n), max(m,n) E
⊔

i∈ω di,i because dmax(m,n), max(m,n) is
one of the elements of {di,i | i ∈ ω}. Then by transitivity of E, we get that (1) E (4).

Then we prove that (4) E (1). This follows from the property that for all n ∈ ω,
dn,n E

⊔
i,j∈ω di,j because dn,n is one of the elements of {di,j | i, j ∈ ω}.

Thus, we get that (1) = (4). By similar proofs we can show that (2) = (4) and
(3)=(4).

In particular, the proof of (4) E (2) follows from the facts that: (i) for all n ∈ ω,
dn,n E

⊔
j∈ω dn,j (because dn,n is one of the elements of {dn,j | j ∈ ω}) and (ii) for all

n ∈ ω, (
⊔

j∈ω dn,j) E
(⊔

i∈ω(
⊔

j∈ω di,j)
)

(because
⊔

j∈ω dn,j is one of the elements of
{
⊔

j∈ω di,j | i ∈ ω}). !

Lemma 4.5. Let us take a natural number k≥1. The function f : D1×. . .×Dk →E
is continuous iff f is continuous in each of its k arguments, that is, for i = 1, . . . , k, for
all (d1, . . . , di−1, di+1, . . . , dk) ∈ D1×. . .×Di−1×Di+1×. . .×Dk, the function fi: Di → E
such that ∀d∈Di, fi(d) = f(d1, . . . , di−1, d, di+1, . . . , dk) is continuous.

Proof. (only-if part) This proof follows from the fact that a particular ω-chain
of elements in D1 × . . .×Dk can be obtained by fixing the values of k−1 coordinates
and taking an ω-chain of the remaining coordinate.

(if part) Let us consider the case of k=2. The proof of the general case where k
is any positive natural number, is similar. Let f be a function in D1 ×D2 → E. Let
us consider the ω-chain (d10, d20) E . . . E (d1n, d2n) E . . . in D1 × D2. We have that:

f(
⊔

n∈ω(d1n, d2n)) = {lub’s are computed componentwise} =

= f(
⊔

n∈ω d1n,
⊔

m∈ω d2m) = {f is continuous in its first argument} =

=
⊔

n∈ω f(d1n,
⊔

m∈ω d2m) = {f is continuous in its second argument} =
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=
⊔

n∈ω

(⊔
m∈ω f(d1n, d2m)

)
= {by Lemma 4.4 on the previous page} =

=
⊔

n∈ω f(d1n, d2n).

Note that, as usual, the application of the function f to a pair (d1, d2) has been
denoted by f(d1, d2), instead of f((d1, d2)). !

With reference to the above Lemma 4.5 on the preceding page, note that in Real
Analysis it may be the case that a function f is continuous in each of its arguments
and yet f is not continuous. Consider, for instance, the function

f(x, y) =






xy

x2 + y2
if (x, y) 1=(0, 0)

0 otherwise

Indeed, (i) along the line x = y, we have that f(x, y) = 1/2 if (x, y) 1= (0, 0) and
f(x, y) = 0 if (x, y) = (0, 0), (ii) along the line x = 0 we have that f(x, y) = 0, and
(iii) along the line y=0 we have that f(x, y)=0.

Function space. Now we show that given any cpo D and any cpo E (not necessarily
distinct), the set of continuous functions from D to E, denoted [D → E], is a cpo.
We order any two functions f and g in [D → E] pointwise, that is,

f E g iff for all d ∈ D, f(d) E g(d)

If E has a bottom element ⊥ then also the set of all continuous functions in [D → E]
has the bottom element which is the constant function λx.⊥.

The function which is a limit function, that is, the least upper bound of an ω-chain
of continuous functions in [D → E] is computed pointwise, that is,

for all d ∈ D, (
⊔

i∈ω fi) (d) =def

⊔
i∈ω(fi d). (1)

To show that function space [D → E] is indeed a cpo, we have to show that for
every ω-chain of continuous functions f0 E f1 E . . . E fi E . . . we have that its least
upper bound

⊔
i∈ω fi is a continuous function, that is, we have to show that for every

ω-chain d0 E d1 E . . . E dj E . . ., we have that

(
⊔

i∈ω fi) (
⊔

j∈ω dj) =
⊔

j∈ω((
⊔

i∈ω fi) dj).

Indeed, (
⊔

i∈ω fi) (
⊔

j∈ω d) = {by (1) on the current page} =

=
⊔

i∈ω(fi (
⊔

j∈ω d)) = {by continuity of the fi’s} =

=
⊔

i∈ω(
⊔

j∈ω(fi d)) = {by Lemma 4.4 on the preceding page} =

=
⊔

j∈ω(
⊔

i∈ω(fi d)) = {by (1) on the current page} =

=
⊔

j∈ω((
⊔

i∈ω fi) dj).

Apply, curry and uncurry. Let us consider the three cpo’s F , D, and E. Let us
also consider the continuous function f ∈ [[F ×D] → E]. The diagram of Figure 5
on the facing page, where:

curry ∈ [[F×D→E]→ [F → [D→E]]] =def λf ∈ [[F×D]→E]. λv∈F. λd∈D. f(v, d)

idD ∈ [D → D] =def λd ∈ D. d

apply ∈ [[[D→E]×D] → E] =def λ(g, d) ∈ [[D→E]×D]. g(d)

is commutative, that is, ∀v ∈ F , ∀d ∈ D, f(v, d) = apply((curry(f)) v, d).



4. COMPLETE PARTIAL ORDERS AND CONTINUOUS FUNCTIONS 89

F × D E

[D → E] × D

f

〈curry(f), idD〉 apply

Figure 5. The function f is a continuous function in [F ×D → E].
The function curry ∈ [[F×D→E] → [F → [D→E]]] and the function
apply ∈ [[D → E]×D → E]. The function curry(f) is a continuous
function in [F → [D→E]]. The function idD ∈ [D → D] is the identity
function (which is a continuous function).

Let us consider the continuous function f ∈ [[F×D→E] with two arguments, say v
and d. Then the function curry(f) ∈ [F → [D→E]] is a continuous function which
given the first argument v ∈ F , returns the function λd. f(v, d) ∈ [D → E]. This
function, given the second argument d ∈ D, returns the value of f(v, d). In Figure 5
idD ∈ [D → D] is the (continuous) identity function.

The function from the cpo [F ×D] to the cpo [D → E] × D is made out of the
following two components: (i) curry(f) that maps F to [D→E], and (ii) idD that
maps D to D.

Now let us give an example of use of the functions curry and apply .
Let us consider the function λx, y. sum(x, y) ∈ [[N × N ] → N ]. We have that

curry(sum)) is the function λx.(λy. sum(x, y)) ∈ [N → [N → N ]]. For any input
value x, (curry(sum)) x evaluates to the function λz. x+z. This function is then
applied to the argument y, which is the second argument of the given function sum .
Formally, this application of λz. x+ z to the argument y is the evaluation of the
expression apply(λz.x+z, y), and the evaluation of this expression returns the desired
output value x+y.

This example shows that, in general, a function of m+n arguments, with m≥ 1
and n≥ 1, can be viewed as a function of m arguments which returns a function of
the remaining n arguments.

The functions curry and apply allow us to formalize also the behaviour of a
software system M which evaluates a given input program P for a given input value u
by using a compiler.

Indeed, the value of M(P, u) can be computed by: (i) first, applying the function
curry(M) to the program P , thereby getting the object program Pobj (thus, curry(M)
can be viewed as a compiler) (see also Figure 6 on the following page), and then
(ii) applying Pobj to the argument u, that is, evaluating apply(Pobj , u).

Now the value of apply(Pobj , u) is the desired output result P (u) because we have
that:
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apply(Pobj , u) = {by definition of apply} =

= Pobj (u) = {by definition of curry} =
= (curry(M)(P )) u =
= {by commutativity of the diagram of Figure 5 on the previous page} =
= M(P, u) = {by definition of the system M} =
= P (u).

〈program P, input u〉 output P (u)

〈object-program Pobj , input u〉

M

compile id apply

Figure 6. The compilation process. We have that:
(i) compile = curry(M), and (ii) apply(Pobj , u) = Pobj (u) = P (u).

One can show that given a continuous function f ∈ [[F ×D → E], curry(f) is the
unique continuous function in [F → [D→E]] such that for all v ∈ F , d ∈ D, we have
that f(v, d) = apply((curry(f)) v, d).

The function curry has an inverse function, called uncurry , which is defined as
follows:

uncurry =def λf ∈ [F → [D→E]]. λ(v, d)∈ [F×D]. (f(v)) (d).

We have that for all functions f ∈ [F×D→E],

uncurry(curry(f)) = f ,

and for all functions f ∈ [F → [D→E],

curry(uncurry(f)) = f .

One can show that curry , apply, and uncurry are continuous functions. In particular,
apply is a continuous function because, by Lemma 4.5 on page 87, it is continuous in
each argument separately.

Lifted cpo. Given a cpo D, the lifted cpo of D, denoted D⊥, is defined as follows.
(The reader may also look at the definition of a flat cpo on page 83.)

The underlying set of D⊥ is {FdG | d ∈ D} ∪ {⊥D}, where:
(i) ⊥D is the bottom element of D⊥,
(ii) for every d ∈ D, FdG 1= ⊥D, and
(iii) the function λx.FxG from D to D⊥ is a bijection from D to D⊥ − {⊥D}.

The function λx.FxG from D to D⊥ is called the lifting function.
Given the partial order E on D, the partial order on D⊥, also denoted E, is

defined as follows: for all d′
1, d

′
2 ∈ D⊥,

d′
1 E d′

2 iff d′
1 = ⊥D ∨ (∃d1, d2 ∈ D. d′

1 =Fd1G ∧ d′
2 =Fd2G ∧ d1 E d2).
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As a consequence of this definition, we say that the lifting function λx.FxG preserves
the order.

We define
⊔

i∈ωFdiG to be F
⊔

i∈ω diG. This definition is a consequence of the fol-
lowing two points.
Point (1): F

⊔
i∈ω diG is an upper bound of the set {FdiG | i≥0}, and

Point (2): F
⊔

i∈ω diG is the least upper bound of the set {FdiG | ≥0}.
Point (1) follows from the fact that for each i ≥ 0, FdiG E F

⊔
i∈ω diG because

di E
⊔

i∈ω di.
Point (2) can be shown as follows. Let us consider any other element, say e, such

that for all i ≥ 0, FdiG E e then we have that F
⊔

i∈ω diG E e. Indeed, let e′ be the
element in D such that e = Fe′G. We have that for all i≥ 0, di E e′ because λx.FxG
preserves the order. Thus,

⊔
i∈ω di E e′ and, thus, F

⊔
i∈ω diG E e.

The lifting function λx.FxG is continuous.

Down function. Given a cpo D with bottom element ⊥ and its lifted cpo D⊥ with
bottom element ⊥D (see Figure 7), let us introduce the function down: D⊥ → D
which is defined as follows: for all d′ ∈ D⊥,

down(d′) =def

{
d
⊥

if for some d ∈ D, d′=FdG
otherwise (that is, if d′=⊥D ∈ D⊥)

The function λx.down(x) is continuous.

We have that:
(
d′ = ⊥D or d′ = F⊥G

)
iff down(d′) = ⊥.

For any d ∈ D, down(FdG) = d.
For any d′ ∈ D⊥, if d′ 1= ⊥D then Fdown(d′)G = d′.

Let construct. Let us consider a lifted cpo D⊥ with bottom element ⊥D and a
cpo E with bottom element ⊥E . We define the let construct from D⊥ to E as follows
(see also Figure 7 on the next page):

let x ⇐ d′ " e =def if d′=⊥D then ⊥E else ((λx.e)d), where d′ = FdG.
Recall that (λx.e)d = e[d/x]. The let construct is continuous in the sense that the
function

λd′. (let x ⇐ d′ " e)

is continuous.

For reasons of simplicity, we will write let x1 ⇐ d1, . . . , xn ⇐ dn " e, instead of
let x1 ⇐ d1 " (. . . " (let xn ⇐ dn " e) . . .).

By definition of the let construct we have that for any d′ ∈ D⊥, the function down:
D⊥ → D satisfies the following:

down(d′) = let x ⇐ d′ " x

Lifted function. Let us consider a cpo D, its lifted cpo D⊥ with bottom element ⊥D,
a cpo E with bottom element ⊥E , and function λx.e ∈ [D → E]. We define the lifted
function Fλx.eG to be the function in [D⊥ → E] as follows:

Fλx.eG d′ =def if d′=⊥D then ⊥E else (λx.e) d, where d′ = FdG.
We have that: Fλx.eG d′ = let x ⇐ d′ " e.
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F⊥G

" d " FdGD D⊥

E

⊥
⊥D

⊥E

λx.e

F_G

λx.down(x)

Fλx.eG =def λd′. (let x ⇐ d′ " e)
F_G

Figure 7. The lifting operation F_G and the let construct. The cpo D
need not have a bottom element ⊥ (but in this picture we have assumed
that there exists one and we have represented both ⊥ in D and F⊥G
in D⊥), while the cpo E has the bottom element ⊥E . The function
λd′. (let x ⇐ d′ " e) behaves as follows: λd′.

(
if d′ =⊥D then ⊥E else

((λx.e) d), where d′=FdG
)
.

Strict extension of arithmetic and boolean operations. Given the arithmetic
operation +: N×N → N , its strict extension (or natural extension) +⊥: N⊥×N⊥ →
N⊥, where N⊥ is the lifted cpo of N , is defined as follows:
for all n1, n2 ∈ N⊥,

n1 +⊥ n2 =def

{
Fm1 + m2G
⊥

if for some m1, m2 ∈ N, n1 =Fm1G and n2 =Fm2G
otherwise

Analogously, for the arithmetic operations − and ×, and the boolean operations not,
or, and, and implies. Thus, if any of the arguments of the strict extension of an
arithmetic or a boolean operation is ⊥, then the result of that arithmetic or boolean
operation is ⊥. In particular, we have that 0×⊥⊥ = ⊥×⊥0 = ⊥.

The strict extension of an arithmetic or a boolean operation can be expressed in
terms of the let construct. For instance, for the operation +⊥ we have that:

n1 +⊥ n2 =def let m1 ⇐ n1, m2 ⇐ n2 " Fm1 + m2G

Sum. Let us consider the cpo’s D1, . . ., Dk, for k≥1. Their sum, denoted D1 + . . .+
Dk, is the cpo whose underlying set is:

{in1(d) | d ∈ D1} ∪ . . . ∪ {ink(d) | d ∈ Dk}
where: (1) for i=1, . . . , k, each function ini: Di → D1+. . .+Dk is an injection (thus,
so to speak, we have a copy of each Di in D1 + . . . + Dk), and (2) for i, j =1, . . . , k,
for all d ∈ Di, d′ ∈ Dj , if i 1=j then ini(d) 1= inj(d′).

The partial order of the sum cpo is defined as follows:

d E d′ iff ∃i, 1≤ i≤k, ∃ a, b ∈ Di, d= ini(a) and d′= ini(b) and a E b

(See also Figure 8 on the facing page). If k=0 we have that the sum of zero cpo’s is
the cpo whose underlying set is the empty set which, indeed, is the neutral element
of the union operation between sets. In what follow when considering the sum of k
cpo’s, we will assume that k is greater than 0.



4. COMPLETE PARTIAL ORDERS AND CONTINUOUS FUNCTIONS 93

D1 + . . . + Dk

D1

. . . f1

fk
. . .

. . . Dk

E

in1 ink

[f1, . . . , fk]

Figure 8. The sum cpo D1+ . . .+Dk, the sum function [f1, . . . , fk]:
D1 + . . . + Dk → E, and the injection functions in1, . . . , ink.

Note that even if for i = 1, . . . , k, every cpo Di has a bottom element then the
sum cpo D1 + . . .+Dk may lack a bottom element. We leave it to the reader to show
that for i=1, . . . , k, the injection function ini is a continuous function.

Given the continuous functions f1: D1 → E, . . ., fk: Dk → E, we define the
sum function [f1, . . . , fk]: D1+. . .+Dk → E by imposing the commutativity of the
diagram of Figure 8), that is:

for i = 1, . . . , k, for all d ∈ Di, [f1, . . . , fk](ini(d)) = fi(d).

The function [f1, . . . , fk] is continuous, that is,

[f1, . . . , fk](
⊔

n∈ω dn) =
⊔

n∈ω([f1, . . . , fk](dn)).

Indeed, take an ω-chain d0 E d1 E . . . E dn E . . . of elements in D1+ . . .+Dk. By
definition of the partial order E in D1+. . .+Dk, we have that: (1) there exists i, with
1≤ i≤ k, such that di0 E di1 E . . . E din E . . . is an ω-chain in Di, and (2) for all
n∈ω, dn = in i(din). Thus, we have that:

[f1, . . . , fk](
⊔

n∈ω dn) iff {by definition of [f1, . . . , fk]}

iff there exists i, with 1≤ i≤k, fi(
⊔

n∈ω din) iff {fi is a continuous function}

iff there exists i, with 1≤ i≤k,
⊔

n∈ω(fi(din)) iff {by definition of [f1, . . . , fk]}

iff
⊔

n∈ω([f1, . . . , fk](dn)).

We have that: for i = 1, . . . , k, for all d ∈ Di, [f1, . . . , fk](ini(d)) = fi(d). Actually, it
can easily be shown that [f1, . . . , fk] is the unique function which enjoys that property.

Conditional. We will consider three kinds of conditional constructs (see the follow-
ing Points (1), (2), and (3)).

(1) Let T be the discrete cpo {true, false}. Given a cpo D, the function cond :
T × D × D → D is defined as follows:

for all b ∈ {true, false}, for all d1, d2 ∈ D,

cond(b, d1, d2) =def [λx ∈ {true}. d1, λx ∈ {false}. d2] (b)

where: (i) x does not occur in d1, (ii) x does not occur in d2, and (iii) [f, g] denotes
the sum (in the cpo sense) of the functions f and g (see also Figure 9 on the following
page).
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{true, false}

{true}

λx∈{true}.
d1

λx∈{fa
lse}.d2

{false}

D

=
λx.cond(x, d1, d2)

in1 in2

[λx∈{true}.d1, λx∈{false}.d2]

Figure 9. The function cond : {true, false} × D × D → D. We have
that for all d1, d2 ∈ D, the function λx.cond(x, d1, d2) behaves as the
sum function [λx ∈ {true}.d1, λx ∈ {false}.d2]. We assume that x
occurs neither in d1 nor in d2.

From the commutativity of the diagram of Figure 9 we have that:
for all d1, d2 ∈ D,

[λx∈{true}.d1, λx∈{false}.d2] (true) = d1

[λx∈{true}.d1, λx∈{false}.d2] (false) = d2

Thus, by the definition of cond, we have that:

for all d1, d2 ∈ D,

cond(true, d1, d2) = d1

cond(false, d1, d2) = d2

The function cond is continuous.

(2) Let T⊥ be the cpo {true, false}⊥ and D be a cpo with bottom element ⊥D. The
function λb, d1, d2. b → d1 | d2 : T⊥×D×D → D is defined as follows:

for all d1, d2 ∈ D,

⊥ → d1 | d2 = ⊥D (where ⊥ ∈ T⊥)

FtrueG → d1 | d2 = d1

FfalseG → d1 | d2 = d2

The function λb, d1, d2. b → d1 | d2 is continuous, but it is not the strict extension of
any function in T⊥×D×D → D because the result may be different from ⊥D even if
an argument is ⊥D (indeed, if d1 1=⊥D then FtrueG → d1 | ⊥D = d1 1=⊥D) (see also
Figure 10 on the facing page). We have that for all b ∈ T⊥, for all d1, d2 ∈ D,

b → d1 | d2 =def let b′ ⇐ b " cond(b′, d1, d2).

(3) Given the cpo N⊥ with bottom element ⊥ and the cpo D with bottom element ⊥D,
the function Cond : N⊥×D×D → D is defined as follows:

for all n ∈ N , for all d1, d2 ∈ D,

Cond(⊥, d1, d2) = ⊥D (where ⊥ ∈ N⊥)

Cond(F0G, d1, d2) = d1

Cond(FnG, d1, d2) = d2 if n 1= 0
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⊥

FtrueG FfalseG

{true}
{⊥}

{false}

λx.d1

λx.⊥D

λx.d2

D

=
λb. b → d1|d2

in2
in1

in3

[λx.⊥D, λx.d1, λx.d2]

Figure 10. The function λb, d1, d2. b → d1|d2 : T⊥×D×D → D. The
bottom element of T⊥ is ⊥. The cpo D is assumed to have a bottom
element ⊥D. We have that for all d1, d2 ∈ D, λb.b → d1|d2 behaves
as the sum function [λx.⊥D, λx.d1, λx.d2]. We assume that b occurs
neither in d1 nor in d2.

We can define the function Cond in terms of the function iszero: N → {true, false}
defined as follows:

iszero(0) = true

iszero(n) = false if n 1=0

We have that:

Cond(z, d1, d2) =def (let n ⇐ z " Fiszero(n)G) → d1 | d2.

The function Cond is continuous (see also Figure 11).

⊥

F0G ...,F−2G,F−1G,F1G,F2G,...

{0}
{⊥}

{...,−2,−1,1,2,...}

λz.d1

λz.⊥D

λz.d2

D

=
λz.Cond(z, d1, d2)

in2
in1

in3

[λz.⊥D, λz.d1, λz.d2]

Figure 11. The function Cond : N⊥×D×D → D. The bottom element
of N⊥ is ⊥. The cpo D is assumed to have a bottom element ⊥D. We
have that for all d1, d2 ∈ D, λz.Cond(z, d1, d2) behaves as the sum
function [λz.⊥D, λz.d1, λz.d2]. We assume that z occurs neither in d1

nor in d2.

Note that for any n ∈ N , Cond(⊥, FnG, FnG) = ⊥D and Cond(F0G, FnG,⊥D) = FnG.
Thus, Cond is not the strict extension of any function in N×D×D → D.
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Case construct. Given the cpo E and the sum cpo D1 + . . . + Dk. Let us consider
the k (≥ 1) continuous functions λx1.e1: D1 → E, . . . , λxk.ek: Dk → E. Then the
function [λx1.e1, . . . , λxk.ek]: D1 + . . . + Dk → E behaves as follows:

for i = 1, . . . , k, for all d ∈ D1 + . . . + Dk,

if d= ini(xi) for some xi ∈ Di, then [λx1.e1, . . . , λxk.ek](d) = ei.

Obviously, for i = 1, . . . , k, the value of the expression ei may depend on the value of
the input xi. Thus, the function [λx1.e, . . . , λxk.ek] behaves as the case construct

case d of in1(x1) " e1 |
. . . |
ink(xk) " ek

which, for i = 1, . . . , k, returns ei whenever d= ini(xi) for some xi ∈ Di.
Note that the case construct is a generalization of the function cond. Indeed,

if we take k = 2, D1 = {true}, and D2 = {false}, the case construct becomes the
function cond.

Fixpoint. Let us consider a cpo D with bottom ⊥. Let us define the following
function fix ∈ [D → D] → D:

fix =def λf.
⊔

n∈ω(fn(⊥)). (FixDefinition)

As we will show below, the function fix is itself continuous, that is, fix ∈ [[D → D] →
D]. We have the following important Theorems 4.7–4.10.

We first introduce the notion of a prefixpoint (see also page 80).

Definition 4.6. [Prefixpoint] Given a cpo E and a continuous function f ∈
[E → E], we say that an element x ∈ E is a prefixpoint of f iff f(x) E x.

Theorem 4.7. [Kleene Theorem] Given a cpo D, ordered by E, with bottom
element ⊥, and a continuous function f ∈ [D → D], we have that:

(i) fix (f) =def

⊔
n∈ω(fn(⊥)) is a fixpoint of f , that is, f(fix(f)) = fix(f),

(ii) for all z ∈ D, if f(z) E z then fix (f) E z, that is, fix(f) is the minimal
prefixpoint of f , and

(iii) fix(f) is the minimal fixpoint of f , that is, for all z ∈ D, if f(z) = z then
fix (f) E z.

Proof. (i) fix(f) is a fixpoint of f . We have to show that f(
⊔

n∈ω fn(⊥)) =⊔
n∈ω fn(⊥).

Since f 0(⊥) E f 1(⊥) E . . . E fn(⊥) E . . . is an ω-chain and f is continuous,
we have that: f(

⊔
n∈ω fn(⊥)) =

⊔
n∈ω fn+1(⊥). Now

⊔
n∈ω fn+1(⊥) =

⊔
n∈ω fn(⊥)

because for all d ∈ D, d I ⊥ = d (by d I ⊥ we have denoted the least upper bound,
in the cpo D, of d and ⊥).

(ii) fix (f) is the minimal prefixpoint of f . Take any z such that f(z) E z. We
have to show that fix (f) E z. It is enough to show that ∀n ∈ ω, fn(⊥) E z. This
can be done by induction on n≥0.
(Basis) Obviously, we have that ⊥ E z.
(Step) Assume fn(⊥) E z. By monotonicity, we have fn+1(⊥) E f(z) and since
f(z) E z we get, by transitivity, fn+1(⊥) E z.

(iii) The proof of this point is like that of Point (ii). !
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Kleene Theorem can be generalized to the case of the so called α-chain complete
cpo’s (which we now define) and monotonic functions as follows.

Given a partially ordered set D, for every ordinal α, an α-chain of D is a function x
from α to D such that for all ordinals µ, ν < α, if µ<ν <α then xµ Exν , where for
every ordinal µ < α, we have written xµ, instead of x(µ). Such an α-chain is also
denoted by 〈xβ | β < α〉. Recall that: (i) given any two ordinals µ and α, we have
that µ<α iff µ∈α, and (ii) the ordinal 0 is the empty set.

Let us consider an α-chain complete cpo D, that is, a cpo such that for every
ordinal α (not only the ordinal ω), every α-chain 〈xβ | β <α〉 in D has a least upper
bound, denoted

⊔
β<α xβ . In particular, the least upper bound of the empty chain

(that is, the 0-chain 〈xβ | β <0〉) in D is the least element of D, denoted ⊥.
Let f be any monotonic function from D to D. Let |D| be the cardinality of D.

Let |D|+ be the least ordinal whose cardinality is strictly greater than |D|. Let us
consider the following sequence of elements in D defined by transfinite induction up
to |D|+:

f 0 =def ⊥
and for every ordinal α ∈ |D|+,

fα =def if
⊔

β<α fβ exists in D then f(
⊔

β<α fβ) else ⊥
It is shown in [4, Theorem 2.2] that there exists a least ordinal α< |D|+ such that:
(i) fα = f(fα), that is, fα is a fixpoint of f , (ii) fα is the minimal fixpoint of f , and
(iii) for all z ∈ D, if f(z) E z then fα E z, that is, fα is the minimal prefixpoint
of f .

Now let us continue our study of the fixpoint operator fix on cpo’s. We have the
following theorem.

Theorem 4.8. [fix as a Least Upper Bound] Given a cpo D with bottom ⊥.
Let fix =def λf.

⊔
n∈ω(fn(⊥)) be a function in [[D → D] → D]. We have that:

fix =
⊔

n∈ω λf.(fn(⊥)). (FixLub)

Proof. We have to show that:

(A1) λf.
⊔

n∈ω(fn(⊥)) E
⊔

n∈ω λf.(fn(⊥)) and

(A2) λf.
⊔

n∈ω(fn(⊥)) J
⊔

n∈ω λf.(fn(⊥)).

Proof of (A1). Since the lub of an ω-chain of functions is a function, (A1) holds iff

(A1*) for every f ,
⊔

n∈ω(fn(⊥)) E (
⊔

n∈ω λf.(fn(⊥))) f .

To show (A1*), it is enough to show that for all i ∈ ω, f i(⊥) E (
⊔

n∈ω λf.(fn(⊥))) f.
This holds because f i(⊥) = λf.(f i(⊥)) f E (

⊔
n∈ω λf.(fn(⊥))) f . This completes the

proof of (A1).

Proof of (A2). By definition of
⊔

, it is enough to show that for all i ∈ ω:

(A2*) λf.
⊔

n∈ω(fn(⊥)) J λf.(f i(⊥)).

To show (A2*), it is enough to show that for all f , for all i ∈ ω,
⊔

n∈ω(fn(⊥)) J f i(⊥).
This holds by definition of

⊔
. This completes the proof of (A2).

The proof of this theorem can also be done by applying extensionality, that is, by
showing that for every function g ∈ [D → D], if we apply the left hand side and the
right hand side of Equation (FixLub) to g, we get the same value.
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For the left hand side we get that: (λf. (
⊔

n∈ω(fn(⊥)))) g =
⊔

n∈ω(gn(⊥)).

For the right hand side, we get that: (
⊔

n∈ω λf. (fn(⊥))) g = {by (1) on page 88}
=

⊔
n∈ω((λf. (fn(⊥))) g) = {by function application} =

⊔
n∈ω(gn(⊥)). !

Thus, by Theorem 4.8 on the previous page, the function fix is the least upper
bound of the following set of functions in the cpo [[D → D] → D]:

F =
{
λf.⊥, λf. f(⊥), λf. f 2(⊥), . . .

}

where ⊥ is the bottom element in the cpo D. Actually, we have that:

(i) for all n ∈ ω, λf. fn(⊥) E λf. fn+1(⊥), that is, F is an ω-chain of functions in
[[D → D] → D], and

(ii) each function in F is a continuous function.

Here is the proof of Point (i) by induction on n.
(Basis) For n = 0 we have to show that for all g ∈ [D → D], ⊥ E g(⊥). This is
obvious.
(Step) We assume for all g ∈ [D → D], gn(⊥) E gn+1(⊥) and we show that for
all g ∈ [D → D], gn+1(⊥) E gn+2(⊥). This follows from the monotonicity of every
function g ∈ [D → D], because every function in [D → D] is continuous.

Here is the proof of Point (ii). Take any chain g0 E g1 E . . . gn E . . . of con-
tinuous functions in [D → D]. We have to show that: for all n ∈ ω, we have that
(λf. fn(⊥)) (

⊔
i∈ω gi) =

⊔
i∈ω((λf.fn(⊥)) gi). Indeed, take any n ∈ ω. For the left

hand side we have that:

(λf. fn(⊥)) (
⊔

i∈ω gi) = (
⊔

i∈ω gi)n(⊥) =

= {by definition of the application of a limit function and continuity of gi} =

=
⊔

i∈ω(gn
i (⊥)).

For we have that:
⊔

i∈ω((λf.fn(⊥)) gi) =
⊔

i∈ω(gn
i (⊥)).

This completes the proofs of Points (i) and (ii).

(The above Points (i) and (ii) are also consequences of the results we will show
in the following Section 5 starting on page 101.)

Thus, the least upper bound of this chain exists and it is a continuous function
in [[D → D] → D]. We conclude that the function fix is a continuous function in
[[D → D] → D].

Let us consider the equation d = (f d), where: (i) d is a variable ranging over the
cpo D with bottom ⊥, (ii) f is a continuous function in [D → D], and (iii) (f d)
denotes the application of f to d. We assume that d does not occur free in the
expression of f . The minimal solution d̂ of the given equation d = (f d), is fix (f),
that is, the minimal fixpoint of the function f .

In general, given the equation d = e, where: (i) d is a variable ranging over the
cpo D with bottom ⊥, (ii) e is an expression with zero or more free occurrences of
the variable d, and (iii) e is continuous on its variable d, the minimal solution of that
equation is fix (λd.e).

Sometimes, instead of writing fix (λd.e), we will write µd.e [19].
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By definition of fix , we have that:

µd.e = (λd.e) (µd.e) (FixUnfold)

Theorem 4.9. [Continuity of Fixpoints] Let us consider a cpo E with bot-
tom ⊥ and a continuous function f ∈ [E → E]. Let us also assume that E is a cpo of
functions from D to D, for some cpo D. We have that fix(f) is a continuous function
in [D → D].

Proof. We have to show that (fixf) (
⊔

i∈ω di) =
⊔

i∈ω((fixf) di). Indeed, we have
that:

(fixf) (
⊔

i∈ω di) = {by Kleene Theorem on page 96} =

= (
⊔

j∈ω f j(⊥)) (
⊔

i∈ω di)= {by definition of the application of a limit function} =

=
⊔

j∈ω

(
(f j(⊥)) (

⊔
i∈ω di)

)
= {by continuity of the functions f j(⊥)’s} =

=
⊔

j∈ω

(⊔
i∈ω(f j(⊥))(di)

)
= {by Lemma 4.4 on page 87} =

=
⊔

i∈ω

(⊔
j∈ω(f j(⊥))(di)

)
= {by definition of the application of a limit function} =

=
⊔

i∈ω

(
(
⊔

j∈ω f j(⊥)) di

)
= {by Kleene Theorem} =

=
⊔

i∈ω((fixf) di). !

Bekić Theorem. The following theorem is used for computing the minimal fixpoint
of sets of functional equations. Without loss of generality, we will consider the case of
two functional equations. The proof of Bekić Theorem can be viewed as an application
of the Gauss elimination method for solving a system of linear equations and it is
based on the Park Induction rule which we will present on page 105.

Theorem 4.10. [Bekić Theorem] Given the cpo’s D and E, let us consider the
continuous functions F ∈ [[D × E] → D] and G ∈ [[D × E] → E]. The pair 〈F, G〉
is a continuous function in [[D × E] → [D × E]]. The minimal fixpoint 〈f̂ , ĝ〉 of the
function 〈F, G〉 defined by the equations:

f = F (f, g)

g = G(f, g)

is the following pair of functions:

f̂ =def µf. F (f, ĝ)

ĝ =def µg. G(µf. F (f, g), g)

(1)
(2)

Proof. First note that by (2) we can express f̂ without referring to ĝ, and we
have that:

f̂ =def µf. F (f, µg. G(µf. F (f, g), g)).

We have to prove that:
(A) 〈f̂ , ĝ〉 is a fixpoint of 〈F, G〉, that is, 〈f̂ , ĝ〉 = 〈F, G〉(〈f̂ , ĝ〉), and
(B) for any other pair 〈f0, g0〉 such that 〈f0, g0〉 = 〈F, G〉(〈f0, g0〉), we have that
f̂ E f0 and ĝ E g0.

Proof of (A). By (1) f̂ satisfies the equation f = F (f, ĝ) in the unknown f . Thus,
we get:
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f̂ = F (f̂ , ĝ). (3)

By (2) ĝ satisfies the equation g = G(µf. F (f, g), g) in the unknown g. Thus, we get:

ĝ = G(µf. F (f, ĝ), ĝ). (4)

From (1) and (4) we get:

ĝ = G(f̂ , ĝ). (5)

Equations (3) and (5) show that 〈f̂ , ĝ〉 is a fixpoint of 〈F, G〉.
Proof of (B). We first show that ĝ E g0.
We have that f0 satisfies the equation f = F (f, g0) in the unknown f . Thus, by
definition of minimal fixpoint, we get:

µf.F (f, g0) E f0 (6)

From (6) by monotonicity of G, we get:

G(µf.F (f, g0), g0) E G(f0, g0) (7)

Since g0 satisfies the equation g = G(f0, g) in the unknown g, from (7) we get:

G(µf.F (f, g0), g0) E g0. (8)

Relation (8) tells us that g0 is a prefixpoint of the function λg. G(µf.F (f, g), g).
By (2) we have that ĝ is the minimal fixpoint of the function λg. G(µf. F (f, g), g).
Since the minimal fixpoint is also the minimal prefixpoint (see Park Induction on
page 105), we get that:

ĝ E g0. (9)

Now we show that f̂ E f0.
From (9) by monotonicity of F , we get:

F (f0, ĝ) E F (f0, g0) (10)

Since f0 satisfies the equation f = F (f, g0) in the unknown f , from (10) we get:

F (f0, ĝ) E f0. (11)

Relation (11) tells us that f0 is a prefixpoint of the function λf. F (f, ĝ). By (1) we
have that f̂ is the minimal fixpoint of the function λf. F (f, ĝ). Since the minimal
fixpoint is also the minimal prefixpoint (see Park Induction on page 105), we get that:

f̂ E f0.

This completes the proof of Bekić Theorem. !

Since Park Induction holds for complete lattices and monotonic functions (see
page 106) and not only for cpo’s and continuous functions, we have that Bekić The-
orem holds also for complete lattices and monotonic functions.

Exercise 4.11. We leave it to the reader to show a symmetric form of Bekić
Theorem where, instead of Equations (1) and (2) of page 99, we have the following
two equations:

f̂ =def µf. F (f, µg. G(f, g))

ĝ =def µg. G(µf. F (f, g), g).

(1∗)
(2)

!
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5. Metalanguage for Denotational Semantics

An expression e denoting an element of the cpo E is said to be continuous in the
variable x, which may or may not occur in e, ranging over the cpo D iff the function
λx.e is a continuous function, that is, λx ∈ D.e ∈ [D → E].

We say that an expression e is continuous in its variables iff e is continuous in
every variable which occurs in it.

Since every expression is continuous in a variable which does not occur in it
(because the function λx.e is a constant function if x does not occur in e), we have
that an expression e is continuous in its variables iff e is continuous in all variables.

For reasons of simplicity, whenever an expression e is continuous in its variables
we will also say that e is continuous.

The reader should not confuse the related notions of the continuity of expressions
and the continuity of functions.

The following expressions are continuous.

(1) Variables are continuous. Indeed, let us consider the variable x. We have that the
identity function λx.x is continuous and the constant function λy.x is continuous.

(2) Constants are continuous. In particular, ⊥ (that is, the bottom element of a
cpo), true, false, the constant functions curry , uncurry , apply , F_G, down, fix , the
projection functions πi’s, and the injection functions ini’s are all continuous.

The following constructs preserve continuity.

(3) Product and sum. Given the expressions e1, . . ., ek in the cpo’s E1, . . ., Ek,
respectively, the tuple (e1, . . . , ek) ∈ E1× . . .×Ek (see page 85) is continuous iff for
i=1, . . . , k, we have that ei is continuous. Indeed, for all variables x,

λx.(e1, . . . , ek) is continuous iff {by Lemma 4.3 on page 87}

iff for i=1, . . . , k, πi ◦ λx.(e1, . . . , ek) is continuous

iff for i=1, . . . , k, λx.ei is continuous

iff for i=1, . . . , k, ei is continuous.

Similarly, given the expressions e1, . . ., ek in the cpo’s E1, . . ., Ek, respectively, the
term [e1, . . . , ek] ∈ E1+. . .+Ek (see page 92) is continuous iff for i=1, . . . , k, we have
that ei is continuous.

(4) Function application. If the expressions e1 and e2 are continuous then the expres-
sion e1(e2) is continuous.

Note that in the above statement we cannot replace ‘if-then’ by ‘iff’ because e1(e2)
can be continuous even if e2 is not continuous. Indeed, e1 can be a constant function
which does not depend on its argument.

(5) Lambda abstraction. For any variable y and any expression e, if e is continuous
then λy.e is continuous. Indeed,
(5.i) if x is y then λx.(λy.e) is continuous because x does not occur free in λy.e (recall
that λy.e is equal to λz.e[z/y] for any z different from y), and thus, λy.e is a constant
value w.r.t. x. Otherwise,
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(5.ii) if x is different from y then

λx.(λy.e) is continuous iff {by Fact 5.1 below}

iff curry(λ(x, y).e) is continuous {because curry is a constant function}

if λ(x, y).e is continuous

iff e is continuous (in the variables x and y).

Fact 5.1. Given any expression e, λ(x, y).e is continuous iff curry(λ(x, y).e) is
continuous.

Proof. First note that curry(λ(x, y).e) is the term λx.(λy.e) and uncurry(λx.(λy.e))
is the term λ(x, y).e.
(only-if part) By continuity of curry (see Point (2) on page 101) and Point (4) on
page 101. (if part) This is an easy consequence of the fact that uncurry is continuous
and we have that λ(x, y).e = uncurry(curry(λ(x, y).e)). !

Using the above results we have also the following facts.

(6) Lambda abstraction with more than one variable. If the expression e is continuous
also the expression λ(x1, . . . , xk).e is continuous.

(7) Composition. If the functions λx.e1 and λx.e2 are continuous then the expression
λx.e1(e2(x)) is continuous.

(8) Let construct. If the expressions e1 and e2 are continuous then let x ⇐ e1 " e2 is
continuous. Indeed, let x ⇐ e1 " e2 is equal to Fλx.e2G(e1) (see page 91).

(9) Case construct. If the expressions e1, . . . , ek are continuous then

case d of in1(x1) " e1 |
. . . |
ink(xk) " ek

is continuous. Indeed, the case construct is defined to be [λx1.e1, . . . , λxk.ek](d) and
(i) the function λx1, . . . , xk. [x1, . . . , xk], (ii) function application, and (iii) lambda
abstraction all preserve continuity (see Points (2), (4), and (5) above).

In particular, for all b ∈ {true, false}, for all b ′ ∈ {true, false}⊥, for all d1, d2 ∈ D,
for all z ∈ N⊥, the following conditional expressions are all continuous:

(9.1) cond(b, d1, d2)

(9.2) b ′ → d1 | d2

(9.3) Cond(z, d1, d2)

Indeed, they can be constructed using the sum construct and the let construct as
indicated in Point (1) on page 93, Point (2) on page 94, and Point (3) on page 94,
respectively.

(10) Function updating. Given a discrete cpo D, if the function f : [D → E] is a
continuous function then the updated function f [e/d] is also continuous.

Indeed, we can consider the cpo D as the sum of: (i) the singleton {d} via the
injection function in1, and (ii) the set D−{d} via the injection function in2. Thus,
λy∈D. f [e/d] can be defined as follows:
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λy∈D. case y of in1(d) " e |
in2(y′) " f(y′)

In what follow we will write expressions using the constructs listed above in this
section. Thus, all those expressions define continuous functions, and those continuous
functions have minimal fixpoints.

6. Induction Rules for Proving Properties of Recursive Programs

In order to prove properties of programs whose semantics is defined by minimal
fixpoints of continuous functionals, we will use various induction rules which we will
present in this section.

First, let us recall that every unary predicate P on a set A can be viewed as
a subset of A. Thus, we will feel free to write x ∈ P , instead of writing P (x). In
particular, given (i) a predicate P on the set D of a given cpo (D,ED) and (ii) an
element d ∈ D, we will write d∈P , instead of P (d).

We need to introduce the following notions of an inclusive predicate and an in-
clusive subset.

Definition 6.1. [Inclusive Predicate] Given the cpo’s D1, . . . , Dn, an n-ary
predicate (or a subset) P ⊆ D1× . . .×Dn, with n ≥ 1, is said to be an inclusive
predicate on (or an inclusive subset of ) D1×. . .×Dn iff for all ω-chains d0 E d1 E
. . . ∈ D1×. . .×Dn we have that if ∀i ∈ ω, P (di) holds then P (

⊔
i∈ω di) holds.

Let us consider the cpo Ω =def {0 E 1 E . . . E n E . . . E ∞}. The inclusive
subsets of this cpo are all the finite subsets of Ω and all the subsets S which satisfy
the following property: if ∀n ∃k>n. k∈S then ∞∈S (see also Fact 1.17 on page 316).
In particular, Ω−{∞} is not an inclusive subset of Ω.

Remark 6.2. [Non-inclusive Predicate] Let us consider the discrete cpo N
of the integers, that is, {. . . ,−2,−1, 0, 1, 2, . . .}. Let us also consider the continuous
functional τ ∈ [[N → N⊥] → [N → N⊥]] defined as follows:

τ ϕ =def λn. cond(n=0, F1G, FnG ×⊥ ϕ(n−1)),

Let us also consider the predicate P ∈ [N → N⊥] → {true, false}, that is, a subset
of [N → N⊥], defined as follows:

P =def λf. ∃n ∈ N. n≥0 ∧ f(n)=⊥.

Now the predicate P is not inclusive. Indeed, for the ω-chain {τ i(⊥) | i ≥ 0} we have
that:

(1) ∀i ≥ 0, P (τ i(⊥)) holds, and

(2) P (
⊔

i∈ω(τ i(⊥))) does not hold.

Point (1) can be proved by mathematical induction on i.

(Basis) For i = 0, P (τ i(⊥)) = P (⊥), where ⊥ is the function λn.⊥ in [N → N⊥]
which always returns ⊥ ∈ N⊥.

Now P (λn.⊥) holds because ∃n ∈ N. n≥0 ∧ (λn.⊥)(n)=⊥ ∈ N⊥.

(Step) Assume P (τ i(⊥)) and show P (τ i+1(⊥)), where ⊥ is the function λn.⊥ in
[N → N⊥].
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We have that P (τ i+1(⊥)) is ∃n ∈ N. n≥0∧cond(n=0, F1G, FnG×⊥ (τ i(⊥))(n−1))=⊥.
By induction hypothesis, there exists n′ such that n′ ≥ 0 ∧ (τ i(⊥))(n′) = ⊥. Take
m = n′+1. We have that:

cond(m=0, F1G, FmG ×⊥ (τ i(⊥))(m−1))=FmG ×⊥ (τ i(⊥))(n′))

because m 1=0. Since (τ i(⊥))(n′)=⊥ we get that:

cond(m=0, F1G, FmG ×⊥ (τ i(⊥))(m−1))=⊥.

Point (2) follows from the negation of P (
⊔

i∈ω(τ i(⊥))), that is,

¬
(
∃n ∈ N. n≥0 ∧ (

⊔
i∈ω(τ i(⊥)))(n)=⊥

)
, which is equivalent to:

∀n ∈ N. (n ≥ 0 → (
⊔

i≥0(τ
i(⊥)))(n) 1= ⊥) (†)

where: (α) the argument ⊥ in τ i(⊥) is the always undefined function λn ∈ N.⊥ in
[N → N⊥], and (β) the element ⊥ on the right hand side of (

⊔
i≥0 τ i(⊥))(n) 1= ⊥ is

the bottom element of N⊥. Property (†) can be shown by proving, by mathematical
induction, that:

∀n ∈ N. (n ≥ 0 → (τn+1(⊥))(n) 1= ⊥).

(Basis) (n=0). (τ 1(⊥))(0) = cond(0=0, F1G, FnG ×⊥ ⊥(n−1)) = F1G 1= ⊥.

(Step) Assume (τn+1(⊥))(n) 1= ⊥ and show (τn+2(⊥))(n+1) 1= ⊥. Indeed,

(τn+2(⊥))(n+1) = cond(n+1=0, F1G, Fn+1G ×⊥ (τn+1(⊥))(n))=

= {by induction hypothesis} =

= cond(n+1=0, F1G, Fn+1G ×⊥ FmG) for some m∈N =

= cond(n+1=0, F1G, F-G) for some -∈N .

Thus, (τn+2(⊥))(n+1) 1= ⊥. !

Now let us present the rule called Scott induction or fixpoint induction.

6.1. Scott Induction.

Let us consider:
(i) a cpo D with bottom element ⊥,
(ii) a continuous function f in [D→D], and
(iii) an inclusive, unary predicate P ⊆D.

Recall that, given a cpo D with bottom element ⊥, the function fix in [[D→D]→D]
is defined as follows: fix (f) =def

⊔
i∈ω f i(⊥).

The Scott induction (also called fixpoint induction) rule is the following one.

(Scott Induction, also called Fixpoint Induction. Version 1)

Let P be a unary inclusive predicate.

P (⊥) ∀d∈D. P (d)→P (f(d))

P (fix(f))

Now let us prove the Scott Induction rule.
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Proof. By the assumptions of Scott Induction we have that P (⊥) holds. Since
for all d ∈ D, P (d) → P (f(d)), by induction on i, we have that for all i ≥ 0,
P (f i(⊥)) hold. Now, since: (i) the elements in the set {f i(⊥) | i ≥ 0} form the ω-
chain ⊥ E f(⊥) E . . . E f i(⊥) E . . ., and (ii) P is an inclusive predicate, we have
that P (

⊔
i∈ω f i(⊥)). Since f is a continuous function, by Kleene Theorem, we have

that
⊔

i∈ω f i(⊥) = fix (f ), and thus, we get that P (fix(f)) holds as stated by the
conclusion of the Scott Induction rule. !

Actually, the proof of the Scott Induction rule allows us to get the following
deduction rule (see the Mathematical Induction rule on page 59).

(Scott Induction, also called Fixpoint Induction. Version 2)
Let P be a unary inclusive predicate.

P (⊥) ∀i∈ω. P (f i(⊥))→P (f i+1(⊥))

P (fix(f))

Remark 6.3. Note that the premise (1): ∀d ∈ D. P (d) → P (f(d)) of the Scott
Induction rule is more general that the premise (2): ∀i ∈ ω. P (f i(⊥)) → P (f i+1(⊥))
of the Mathematical Induction rule for inclusive predicates because (1) refers to all
elements d∈D, while (2) refers only to the elements of D in the set {f i(⊥) | i ∈ ω}.

Scott induction also holds in the case of a k-ary predicate P , with k≥1, subset of
the cpo D1×. . .×Dk with bottom element (⊥D1

, . . . ,⊥Dk
), and a continuous function

f ∈ [[D1×. . .×Dk] → [D1×. . .×Dk]]. In that case we have the following rule whose
proof is left to the reader.

(Scott Induction, also called Fixpoint Induction. Version 3)

Let P be a k-ary inclusive predicate.

P (⊥D1
,...,⊥Dk

) ∀d1∈D1,...,dk∈Dk. P (d1,...,dk)→P (f(d1,...,dk))

P (fix(f))

6.2. Park Induction.

As a consequence of the Scott Induction rule we have the following rule, called Park
Induction, where D is a cpo with bottom element ⊥, and f is a continuous function
in [D → D]. For all d ∈ D,

(Park Induction for cpo’s and continuous functions)

f(d)E d

fix(f)E d



106 4. INDUCTION RULES AND SEMANTIC DOMAINS

Proof. Let us consider the set Pd =def {x ∈ D | x E d}. It is an inclusive
subset of D because for all ω-chains d0 E d1 E . . . ∈ D, if ∀i ∈ ω. di ∈ Pd then
(
⊔

i∈ω di) ∈ Pd. Indeed, if ∀i ∈ ω. di E d then (
⊔

i∈ω di) E d.
Now, we have that: (i) Pd(⊥) because ⊥Ed, and (ii) ∀x ∈ D. Pd(x) → Pd(f(x))

as we now show. Take any x ∈ D, if x ∈ Pd, that is, x E d, then by monotonicity
of f , we have that f(x)Ef(d) and, by assumption, f(d) E d. Thus, by transitivity,
we get that f(x)Ed, that is, Pd(f(x)). Finally, by Scott induction we conclude that
fix (f) ∈ Pd, that is, fix (f) E d. !

Remark 6.4. By the Park Induction rule we have that the minimal fixpoint fix (f)
of continuous function f is also the minimal prefixpoint of that function. Indeed, any
prefixpoint d is such that f(d) E d (and thus, fix (f) is a prefixpoint of f), and by
the Park Induction rule we have that fix(f) E d.

Now we show that Park Induction holds also if we assume that D is a complete
lattice and f is a monotonic function in D → D. Thus, as already mentioned, Bekić
Theorem (see page 99) holds both for continuous functions on cpo’s and monotonic
functions on complete lattices.

Let D be a complete lattice with bottom element ⊥, and f is a monotonic function
in D → D. For all d ∈ D, we have the following rule.

(Park Induction for complete lattices and monotonic functions)

f(d)E d

Lfix(f)E d

where the function Lfix from D→D to D is defined as follows:

Lfix (f) =def glb {x | f(x) E x}.
(The name of the function Lfix comes from the fact that, as we will now show, Lfix
is a fixpoint operator on lattices.) Note that the function Lfix is different from the
function fix defined on page 96, because Lfix returns an element of a complete lattice,
while fix returns an element of a cpo.

As it is the case for the function fix , also the function Lfix is a minimal fixpoint
operator and we have that: f(Lfix (f)) = Lfix (f), as we now show.

Correctness of the Park Induction rule for complete lattices and monotonic functions.
Let D be a complete lattice with bottom element ⊥, and f is a monotonic function
in D → D. Let X be {x∈D | f(x)Ex}. By Knaster-Tarski Theorem (see page 81)
we have that glb X exists. Let m denote glb X. We show that m is:

(i) a prefixpoint of f ,
(ii) a fixpoint of f ,
(iii) the least prefixpoint of f , and
(iv) the least fixpoint of f .

Proof of (i). We have to show that f(m)Em. For any x∈X, we have that mEx.
By monotonicity of f , f(m) E f(x). Since x ∈ X, we get f(m) E f(x) E x. Thus,
f(m) is a lower bound of X. Hence, since by definition m is the greatest lower bound
of X, we get that f(m)Em. Thus, m∈X.
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Proof of (ii). From Point (i) we have that f(m)Em and thus, it remains to show
that mEf(m). From Point (i), by monotonicity of f , we have that f(f(m))Ef(m).
That is, f(m) is a prefixpoint of f and, thus, f(m)∈X. Since m is a lower bound
of X we get that mEf(m).

Proof of (iii). Consider a prefixpoint x ∈ X. We have to show that m E x. Now,
since m is a lower bound of X, we get that mEx.

Proof of (iv). It follows from (ii) and (iii) because every fixpoint is a prefixpoint. !

6.3. McCarthy Induction.

Let us now introduce the McCarthy induction rule (also called unique fixpoint prin-
ciple, or recursion induction).

Let us consider the two flat cpo’s D⊥ and E⊥. Their bottom elements are both
denoted by ⊥. Let Dn

⊥ denote the cpo D⊥× . . .×D⊥ with n copies of D⊥. Let us also
consider a continuous function τ ∈ [[Dn

⊥ → E⊥] → [Dn
⊥ → E⊥]] and let fix (τ) denote

the minimal fixpoint of τ . Let f1 and f2 be two continuous functions in [Dn
⊥ → E⊥].

We have the following rule.

(McCarthy Induction, also called Unique Fixpoint Principle,
or Recursion Induction)

f1 = τ(f1) f2 = τ(f2) ∀x∈S ⊆Dn
⊥. (fix (τ))(x) 1=⊥

∀x∈S ⊆Dn
⊥. f1(x) = f2(x)

The proof of this rule is as follows. Take any x ∈ S ⊆ Dn
⊥. Take any fixpoint f

of τ . Since (fix (τ))(x) 1=⊥, we have that: ∃e ∈ E⊥. e 1=⊥ ∧ (fix (τ))(x)= e. By Park
Induction, since τ(f) E f , we get (fix (τ))(x) E f(x). Thus, ∃e ∈ E⊥. e 1=⊥∧f(x)=e
and, as a consequence, (fix (τ))(x) = f(x). Hence, ∀x ∈ S ⊆ Dn

⊥. (fix (τ))(x) = f(x).
Since f is any fixpoint, we conclude that for every x ∈ S ⊆ Dn

⊥, all fixpoints are
equal.

The McCarthy Induction can be used for proving that two functions are equal in
a given domain S by: (i) finding a suitable functional τ of which the two functions
are fixpoints, and then (ii) showing that the minimal fixpoint of τ is always different
from ⊥ for every element of S.

We will see in action the McCarthy Induction rule in Example 6.19 on page 190.

6.4. Truncation Induction.

Let us introduce the Truncation induction rule.
Let us consider a cpo D⊥ with bottom element ⊥. Let f1 and f2 be two continuous

functions in [D⊥ → D⊥]. Let fix(f) denote the minimal fixpoint of a function f . We
have the following rule.
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(Truncation Induction)

∀i≥ 0. ∃j ≥ 0. f i
1(⊥)E f j

2(⊥)

fix (f1)E fix(f2)

The proof of this rule, which we leave to the reader, is based on the fact that if
∀i ≥ 0. ∃j ≥ 0. f i

1(⊥)Ef j
2 (⊥) then ∀i ≥ 0. f i

1(⊥)Efix (f2). This rule can be used to
show the equality of the two minimal fixpoints fix (f1) and fix(f2) by showing both
fix (f1) E fix(f2) and fix (f2) E fix(f1).

We will see in action the Truncation Induction rule in Example 8.4 on page 113.

6.5. Vuillemin Rule.

Finally, let us present the Vuillemin rule which allows us to establish the equality of
two minimal fixpoints.

Let us consider a cpo D⊥ with bottom element ⊥. Let f = λx. e[x] be a continuous
function in [D⊥ → D⊥]. Let fix (f) denote the minimal fixpoint of f . We have the
following rule.

(Vuillemin rule)

f=λx. e[x]

fix (f) = fix(λx. e[fix (f)/x])

where by e[fix (f)/x] we denote the expression e[x] where some occurrences of x have
been replaced by fix (f).

7. Construction of Inclusive Predicates

Now we will provide a few rules for constructing inclusive predicates. When the
properties we want to prove are constructed by using these rules, we are sure that they
denote inclusive predicates and thus, in particular, these properties can be proved by
Scott induction (see Section 6 on page 176).

We have the following theorem.

Theorem 7.1. [Construction of Inclusive Predicates] A predicate of the
form ∀x1 . . . xn. P (x1, . . . , xn) is inclusive, where x1, . . . , xn are variables ranging over
cpo’s and P is built out of conjunctions and disjunctions of basic predicates of the
form e0 E e1 or e0 =e1, where e0 and e1 are expressions constructed from variables and
constants (such as true, false, apply, curry , F_G, fix) by using tupling, conditionals
(such as cond , b → e1 | e2, and Cond), function applications, lambda abstractions,
and case constructs.

The proof of this theorem follows from Facts 7.2–7.11 we will now state and prove.
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Recall that by Definition 6.1 on page 103, given the n cpo’s D1, . . ., Dn, we
have that Q(x1, . . . , xm) is an inclusive predicate on D1×. . .×Dn iff {〈x1, . . . , xm〉 |
Q(x1, . . . , xm)} is an inclusive subset of D1×. . .×Dn.

Fact 7.2. [Smaller-than and Equality Relation] Consider a cpo D. We have
that: (i) {〈x, y〉 | x E y} is an inclusive subset of D×D. (ii) {〈x, y〉 | x = y} is an
inclusive subset of D×D.

Proof. (i) Consider the ω-chain 〈x0, y0〉 E 〈x1, y1〉 E . . . E 〈xi, yi〉 E . . . As-
sume that ∀i ∈ ω, 〈xi, yi〉 ∈ E, that is, ∀i ∈ ω, xi E yi. We have to show that〈 ⊔

i∈ω xi,
⊔

i∈ω yi

〉
∈ E.

Now, since for all i ∈ ω, yi E
(⊔

i∈ω yi

)
, we get ∀i ∈ ω, xi E

(⊔
i∈ω yi

)
. Thus,(⊔

i∈ω xi

)
E

( ⊔
i∈ω yi

)
.

(ii) The proof is similar to that of Point (i). !

Fact 7.3. [Inverse Image] Let us consider the cpo’s D and E. If Q is an
inclusive predicate on E and f is a continuous function in [D → E]. Let P be the
f-inverse-image of Q, denoted P = f−1(Q), that is, P =def {d |Q(f(d))}. Then P is
an inclusive predicate on D.

Proof. We have that Q = f(P ). We want to show that for all ω-chains d0 E
d1 E . . . E d1 E . . . of elements in P such that for all i ≥ 0, di ∈ P , we have that
(
⊔

i≥0 di) ∈ P .
Take an ω-chain d0 E d1 E . . . E di E . . . in P . Since P = f−1(Q) we have that

for all i ≥ 0, di ∈ D. If we map the given chain via the function f we get an ω-chain
e0 E e1 E . . . E ei E . . . in E because f is monotonic. For all i ≥ 0, ei ∈ Q, because
Q = f(P ). (Recall that P = f−1(Q), that is, Q is the f -image of P .) Since Q is
inclusive, we have that (

⊔
i≥0 ei) ∈ Q, that is, (

⊔
i≥0 f(di)) ∈ Q. Since f is continuous,

we have that f(
⊔

i≥0 di) ∈ Q. Thus, (
⊔

i≥0 di) ∈ P , because Q = f(P ). !

Remark 7.4. [Direct Image] Given an inclusive set, its image via a continuous
function is not necessarily inclusive, that is, given an inclusive set P ⊆ D and a
continuous function f ∈ [D → E], the set {f(x) | x ∈ P} ⊆ E may not be inclusive.

Indeed, let us consider the discrete cpo {0, 1, 2, . . .} of the natural numbers such
that n E n, for all n≥ 0. The set {0, 1, 2, . . .} with the partial order E is trivially
inclusive. Let us also consider the cpo Ω (with the element ∞) (see page 103). We
have that the continuous function f defined as follows:

for all integers n≥0, f(n) = n

maps every element in the set {0, 1, 2, . . .} into Ω−{∞}. The set Ω−{∞}, that is,
{0 E 1 E . . . E n E . . .}, is not inclusive.

Remark 7.5. [Order-monic Direct Image] Let us consider the cpo’s D and E.
If we assume that the continuous function f ∈ [D → E] is order-monic, that is,

for all d1, d2 ∈ D, if f(d1) E f(d2) then d1 E d2

we have that the direct images under the function f of inclusive sets are inclusive,
that is, if P is an inclusive unary predicate on D then

Q(y) =def {y | ∃x∈D. y=f(x) ∧ P (x)}
is an inclusive unary predicate on E.
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The injection functions associated with sums and the lifting function F_G are
examples of order-monic functions.

Note that, however, the projection functions associated with products are not
order-monic. For instance, π1 is not order-monic because, given the discrete cpo
{0, 1, 2, . . .}, we have that 0E0 and yet (0, 1) 1E(0, 2). !

Fact 7.6. [Substitution] Let us consider the cpo’s D =def D1× . . .×Dk and
E =def E1×. . .×E'. Let us assume that Q(y1, . . . , y') is an inclusive predicate on E,
where, for i = 1, . . . , k, the variable yi ranges over Ei. If λx1, . . . , xk.(e1, . . . , e')
is a continuous function in [D → E], where, for i = 1, . . . , k, the expression ei is
continuous on its variables, then {(x1, . . . , xk) |Q(e1, . . . , e')} is an inclusive subset
of D and thus, Q(e1, . . . , e') is an inclusive predicate on D.

Proof. This fact is a consequence of Fact 7.3 on the preceding page. !

In particular, let us consider the cpo’s D and E. If P (y) is an inclusive predicate
on E and λx.t(x) is a continuous function from D to E, then P ′(x) ⊆ D defined as
follows:

for all x ∈ D, P ′(x) iff P (t(x))

is an inclusive predicate on D.

Fact 7.7. [Deletion or Addition of Variables] Let us consider the cpo’s D
and E. (i) If P (x, y) is an inclusive predicate on D×E, then for all constants c ∈ E,
P (x, c) is an inclusive predicate on D. (ii) If P (x) is an inclusive predicate on D,
then the binary predicate R(x, y) ⊆ D×E defined as follows:

for all x ∈ D, for all y ∈ E, R(x, y) iff P (x)

is an inclusive predicate on D×E.

Proof. (i) It follows from Fact 7.6. (ii) It follows from Fact 7.6 by considering
k = 2 and the continuous function λx1, x2.(e1, e2) of Fact 7.6 to be the projection
function π1 =def λx1, x2 ∈ D×E. x1. !

Fact 7.8. [Logical Operators] (i) The predicate true and false are inclusive.
(ii) The finite or infinite conjunction preserves inclusiveness of predicates. (iii) The
finite disjunction preserves inclusiveness of predicates. (iv) The infinite disjunction
may not preserve inclusiveness of predicates.

Proof. (i) Given a cpo D, D itself and ∅ are inclusive subsets of D. Indeed, (i) all
ω-chains of elements of D have their limit points in D itself, and (ii) no ω-chain exists
in ∅.
(ii) Every ω-chain of the (finite or infinite) conjunction of the sets S0, S1, . . . belongs
to a set Si, for some i≥0.
(iii) Every ω-chain of the finite disjunction of the sets S0, S1, . . . has its limit point
in a set Si, for some i≥0.
(iv) Consider the cpo Ω which is of the form: 0 E 1 E . . . E n E . . . E ∞ (see also
page 103). For each m ∈ ω, the unary predicate P (m) = {m} is inclusive, while⋃

m∈ω P (m) is not inclusive because we have that:

(iv.1) ∞ =
⊔

m∈ω m and (iv.2) ∞ 1∈
⋃

m∈ω P (m). !
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Fact 7.9. [Discrete Cpo] Any predicate on a discrete cpo is an inclusive predi-
cate, that is, any subset of a discrete cpo is an inclusive subset.

Fact 7.10. [Product] Let Pi be an inclusive subset of the cpo Di, for i=1, . . . , k.
We have that P1×. . .×Pk is an inclusive subset of D1×. . .×Dk.

Proof. It follows from the facts that: (i) P1×. . .×Pk = π−1
1 (P1)∩ . . .∩ π−1

1 (Pk),
and (ii) inverse image and intersection preserve inclusiveness. !

A predicate P (x1, . . . , xk) ⊆ D1× . . .×Dk is said to be inclusive in each argu-
ment separately iff for i=1, . . . , k, the predicate P (d1, . . . , di−1, xi, di+1, . . . , dk) ⊆ Di

obtained by substituting constants for all but the i-th argument, is inclusive. Note
that an inclusive predicate P (x1, . . . , xk) is inclusive in each argument separately, but
not vice versa. Indeed, here is an example of a predicate that is inclusive in each
argument separately and it is not inclusive.

Let us consider that cpo Ω =def {0 E 1 E . . . E n E . . . E ∞}. The predicate
P (x, y) =def (x=y ∧ x 1=∞) ⊆ Ω×Ω is inclusive in each argument separately, but it
is not inclusive. To see that P (x, y) is not inclusive, let us consider the ω-chain:

〈0, 0〉 E 〈1, 1〉 E . . . E 〈k, k〉 E . . . E 〈∞,∞〉.
We have that ∀k ∈ ω, P (k, k) holds, but P (∞,∞) does not hold. Thus, P (x, y) is
not inclusive.

Now we show that P (x, y) is inclusive both (i) in its first argument and (ii) in its
second argument. Indeed, for Point (i) we fix a value for y, say d. The only ω-chain
such that P (x, d) holds for each element of the chain, is: 〈d, d〉 E 〈d, d〉 E . . . E
〈d, d〉 E . . ., with d 1= ∞, whose limit point is 〈d, d〉. Thus, P (x, d) is inclusive. The
proof of Point (ii) is similar to that of Point (i).

Fact 7.11. [Sum] Let Pi be an inclusive subset of the cpo Di, for i = 1, . . . , k.
We have that P1+. . .+Pk is an inclusive subset of D1+. . .+Dk. Thus, the predicate

Q(y) =def

(
∃x1∈D1. y= in1(x1) ∧ P1(x1)

)
∨ . . . ∨

(
∃xk ∈Dk. y= ink(xk) ∧ Pk(xk)

)

is an inclusive predicate on D1 + . . .+Dk if for i = 1, . . . , k, Pi(xi) is an inclusive
predicate on Di.

Proof. It follows from the facts that: (i) P1+. . .+Pk = in1(P1) ∪ . . . ∪ ink(Pk),
(ii) the injections ini’s are order-monic continuous functions and thus, preserve in-
clusiveness, and (iii) finite union preserves inclusiveness. !

Fact 7.12. [Function Space] Consider the two cpo’s D and E. Let P be a
subset of D and Q be an inclusive subset of E. We have that the following set of
functions

P → Q =def {f | ∀x∈P. f(x)∈Q and f is a continuous function in [D → E]}
is an inclusive subset of [D → E]. Moreover, since: (i) x ∈ P implies that x ∈ D,
(ii) ∀x∈P. f(x)∈Q stands for ∀x. (x∈P ⇒ f(x)∈Q), and (iii) a subset B of a given
set A can be viewed as a unary predicate B(x) on the set A (see the beginning of
Section 6 on page 103), we can write P (x), instead of x∈P , and Q(f(x)), instead of
f(x)∈Q, and we get that the following unary predicate

R(f) =def ∀x∈D. (P (x) ⇒ Q(f(x)))

is an inclusive predicate on [D → E], whenever P (x) is a unary predicate on D, Q(y)
is an inclusive, unary predicate on E, and f is a continuous function in [D → E].
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The subset P → Q of [D → E] can be viewed as the unary predicate R(f) such that
R(f) holds iff f ∈(P → Q).

Proof. Consider an ω-chain f0 E f1 E . . . E fi E . . . of functions in [D → E].
Assume that:

∀x ∈ D, ∀i ≥ 0,
(
P (x) ⇒ Q(fi(x))

)
(α)

We have to show that ∀x ∈ D,
(
P (x) ⇒ Q(

⊔
i∈ω fi(x))

)
.

Take any x ∈ D. Assume P (x). We have to show Q(
⊔

i∈ω fi(x)).
Since Q is an inclusive predicate, it is enough to show that ∀i ≥ 0, Q(fi(x)). By
hypothesis (α), we have ∀i ≥ 0,

(
P (x) ⇒ Q(fi(x))

)
. Since P (x) holds we have that

∀i ≥ 0, Q(fi(x)), as desired. !

Fact 7.13. [Lifting] Let P be an inclusive subset of the cpo D. We have that
{FxG |P (x)} is an inclusive subset of D⊥. Thus, if P (x) is an inclusive predicate on D
then Q(y) =def ∃x∈D. y=FxG ∧ P (x) is an inclusive predicate on D⊥.

Proof. It follows from the fact that the lifting function λx.FxG is an order-monic
continuous function (and thus, it preserves inclusiveness) and Q(y) is the direct image
under the lifting function of the inclusive set P (x). !

8. Proving Properties of Recursive Programs by Using Induction

In this section we will present the proofs of some program properties by making use
of the induction rules presented in Section 6 on page 103. Let us begin by proving
the following lemma which will be useful in Example 8.3 on the facing page.

Lemma 8.1. [Distributivity of Strict Functions over the Conditional Con-
struct] Let us consider two cpo’s D and E, both with bottom element. Let b ∈
{true, false}⊥, d1, d2 ∈ D, and h ∈ [D → E]. We have that:

(i) h(b → d1 | d2) J b → h(d1) | h(d2), and

(ii) if h(⊥) = ⊥ ∈ E then h(b → d1 | d2) = b → h(d1) | h(d2).

Proof. (i) is immediate by considering the three cases b=⊥, FtrueG, and FfalseG.
Also the proof of (ii) is by cases. If b =⊥, FtrueG, and FfalseG, both sides are equal
to ⊥ ∈ E, h(d1), and h(d2), respectively. !

Example 8.2. Let us consider the flat cpo N⊥ of the integer numbers with bottom
element ⊥ and the following continuous functional τ ∈ [[N⊥ → N⊥] → [N⊥ → N⊥]]:

τ ϕ = λn. ((ϕ n) +⊥ F3G)
We want to show that fix(τ) = λn.⊥ ∈ [N⊥ → N⊥]. We have that:

τ 0(⊥) = λn.⊥
τ 1(⊥) = λm.(((λn.⊥) m) +⊥ F3G) = λm.(⊥ +⊥ F3G) = λm.⊥.

Since τ 0(⊥) = τ 1(⊥), we get that: fix (τ) = τ 1(⊥) = λn.⊥ ∈ [N⊥ → N⊥].

This result can also be proved by fixpoint induction by using the inclusive pred-
icate P (f) =def (f =λn.⊥), which is a subset of [N⊥ → N⊥]. Indeed, we have that:
(i) P (⊥) holds, and (ii) for all f ∈[N⊥ → N⊥] if P (f) holds then P (τ(f)) holds.
Indeed,



8. PROVING PROPERTIES OF RECURSIVE PROGRAMS BY USING INDUCTION 113

P (τ(f)) = λn. (f(n) +⊥ F3G) =

= {by the induction hypothesis P (f)} =

= λn. (⊥ +⊥ F3G) = ⊥.

In Chapter 6 on page 173 we will see that the above functional τ can be associated
with the declaration:

f(x) = f(x) + 3

where the evaluation of the function f is done according to the call-by-name regime. !

Example 8.3. Let us consider a cpo D⊥ with bottom element ⊥ and the following
continuous functional τ ∈ [[D⊥ → D⊥] → [D⊥ → D⊥]]:

τ ϕ = λx. p(x) → x |ϕ(ϕ(h x))

where: p ∈ [D⊥ → T⊥] is strict (that is, p(⊥) = ⊥) and h ∈ [D⊥ → D⊥]. (The cpo
T⊥ is defined in Figure 1 on page 83.) Let f̂ be fix(τ). We want to show that:

∀x ∈ D. f̂(f̂(x)) = f̂(x).

We will prove this property by fixpoint induction by considering the predicate

P (g) =def ∀x∈D⊥. f̂(g(x))=g(x).

We have that P (g) is an inclusive predicate on [D⊥ → D⊥]. First we have to show
P (λn ∈ D⊥.⊥). This follows from the fact that for all x ∈ D⊥, (i) g(x) = ⊥, and
(ii) f̂(g(x)) = f̂(⊥) = {since f̂ satisfies (†) and p(⊥)=⊥} = ⊥.
Then we have to show that:

∀f ∈ [D⊥ → D⊥] if ∀x∈D⊥. f̂(f(x))=f(x) then ∀x∈D⊥. f̂((τf)(x))=(τf)(x).

Let us assume that ∀x∈D⊥. f̂(f(x))=f(x) and let us take any x ∈ D⊥. Now,

f̂((τf)(x)) = {by definition of τf} =

= f̂(p(x) → x | f(f(h x))) = {p(⊥)=⊥ and Lemma 8.1 on the facing page} =

= p(x) → x | f̂(f(f(h x))) = {by induction hypothesis} =

= p(x) → x | f(f(h x)). (†)
Since (τf)(x) = p(x) → x | f(f(h x)), from (†) we get that f̂((τf)(x))=(τf)(x). !

In the following example we will see in action the Truncation Induction rule (see
page 107).

Example 8.4. [Milner Functionals] Let us consider the cpo D⊥ with bottom
element ⊥ and the following two continuous functionals τ1, τ2 ∈ [[D⊥ → D⊥] →
[D⊥ → D⊥]]:

f = τ1(f)

g = τ2(g)

Let f̂ be fix(τ1) and ĝ be fix(τ2). Assume that:

τ1(⊥) = τ2(⊥), where ⊥ ∈ [D⊥ → D⊥] (†1)

for all h ∈ [D⊥ → D⊥], τ1(τ2(h)) = τ2(τ2(τ1(h))) (†2)

By truncation induction we can show that f̂ = ĝ. Indeed, we have that:

for all n≥0, τn
1 (⊥) = τ 2n−1

2 (⊥).
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The proof of this fact is by mathematical induction.

(Basis) Obvious.
(Step) Assume τn

1 (⊥) = τ 2n−1
2 (⊥). We have to show that τn+1

1 (⊥) = τ 2n+1−1
2 (⊥).

First note that for all m≥0, τ1(τm
2 (⊥)) = τ 2m

2 (τ1(⊥)). (†3)

This can easily be shown by induction on m (≥0) by using (†2). Then,

τn+1
1 (⊥) = τ1(τn

1 (⊥)) = {by induction hypothesis} =

= τ1(τ
2n−1
2 (⊥)) = {by (†3)} =

= τ 2(2n−1)
2 (τ1(⊥)) = {by (†1)} =

= τ 2n+1−1
2 (⊥).

This completes the proof that f̂ = ĝ.
A proof of f̂ = ĝ can also be done by Scott induction as follows (thanks to Robin

Milner). It is enough to show the following three properties P1(ĝ), P2(f̂), and P3(ĝ).
As a consequence of P2(f̂) and P3(ĝ), we will then get f̂ = ĝ.

(1) P1(ĝ) =def τ1(ĝ) E ĝ, where P1 =def λh. τ1(h) E ĝ,

(2) P2(f̂) =def f̂ E ĝ, where P2 =def λh. h E ĝ, and

(3) P3(ĝ) =def ĝ E τ2(ĝ) ∧ τ2(ĝ) E f̂ ∧ τ2(ĝ) E τ1(ĝ),

where P3 =def λh. h E τ2(h) ∧ τ2(h) E f̂ ∧ τ2(h) E τ1(h).

Proof of P1(ĝ). By Scott induction we have to prove; (i) P1(⊥), and (ii) for all h,
P1(h) → P1(τ2(h)).
(Basis) We have that: (i) τ1(⊥) = τ2(⊥) by (†1), and (ii) τ2(⊥) E ĝ, because
ĝ=fix (τ2). From (i) and (ii), by transitivity, we get: τ1(⊥) E ĝ.
(Step) Take any h ∈ [D⊥ → D⊥]. Assume τ1(h) E ĝ and show τ1(τ2(h)) E ĝ. Indeed,

τ1(τ2(h)) = {by (†2)} = τ2(τ2(τ1(h))) E {by induction hypothesis} E
E τ2(τ2(ĝ)) = {ĝ=fix (τ2)} = ĝ.

Proof of P2(f̂). By Scott induction we have to prove; (i) P2(⊥), and (ii) for all h,
P2(h) → P2(τ1(h)).
(Basis) Obviously, ⊥ E ĝ.
(Step) Take any h ∈ [D⊥ → D⊥]. Assume h E ĝ and show τ1(h) E ĝ. Indeed, by
monotonicity of τ1, from h E ĝ, we get:

τ1(h) E τ1(ĝ) = {ĝ=fix(τ2)} = τ1(τ2(ĝ)) = {by (†2)} =

= τ2(τ2(τ1(ĝ))) E {by P1(ĝ)} E τ2(τ2(ĝ)) = {ĝ=fix(τ2)} = ĝ.

Proof of P3(ĝ). By Scott induction we have to prove: (i) P3(⊥), and (ii) for all h,
P3(h) → P3(τ2(h)).
(Basis) We have to show that:

⊥ E τ2(⊥) ∧ τ2(⊥) E f̂ ∧ τ2(⊥) E τ1(⊥).

Now, ⊥ E τ2(⊥) is obvious. The rest follows from (†1) (that is, τ2(⊥) = τ1(⊥)) and
τ1(⊥) E f̂ .

(Step) Take any h ∈ [D⊥ → D⊥]. Assume:

(H1) h E τ2(h),
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(H2) τ2(h) E f̂ , and

(H3) τ2(h) E τ1(h),

and show:

(T1) τ2(h) E τ2(τ2(h)),

(T2) τ2(τ2(h)) E f̂ , and

(T3) τ2(τ2(h)) E τ1(τ2(h)).

Proof of (T1). By monotonicity of τ2, from H1 we get (T1).

Proof of (T2). By monotonicity of τ2, from H1 we get:

τ2(τ2(h)) E τ2(τ2(τ2(h))) E {by H3} E
E τ2(τ2(τ1(h))) = {by (†2)} = τ1(τ2(h)) E {by H2} E
E τ1(f̂) = {f̂ =fix (τ1)} = f̂ .

Proof of (T3). By monotonicity of τ2, from H1 we get:

τ2(τ2(h)) E τ2(τ2(τ2(h))) E {by H3} E
E τ2(τ2(τ1(h))) = {by (†2)} = τ1(τ2(h)). !





CHAPTER 5

Syntax and Semantics of Imperative Languages

In this chapter we consider a simple imperative language, called IMP, and we define
its operational semantics in Section 2, its denotational semantics in Section 3, and
its axiomatic semantics using Hoare triples in Section 4. In Section 5 we prove the
correctness of some simple imperative programs.

In Section 6 we consider the language of the so called annotated commands which
are commands which are associated with the proof of their correctness. In Section 7 we
study the relationship among various semantics definitions of the while-do command.

Finally, in Sections 8 and 9 we provide the operational semantics of, respectively,
a simple nondeterministic language and a simple parallel language.

1. Syntax of the Imperative Language IMP

In this section we introduce the syntax of a Pascal-like language, called IMP. In this
language we can specify deterministic computations as stated in Fact 2.2 on page 120.

In the language IMP we consider the following syntactic domains.

(i) The set of integers N = {. . . ,−2,−1, 0, 1, 2, . . .}. The variables ranging over N
are: n, m, . . .

Note that, as in [19], here by N we do not denote the set of natural numbers.
Usually, in other textbooks the set of integers is denoted by Z.

(ii) The set Loc of locations (or memory addresses). The variables ranging over
Loc are: X, Y, . . .

(iii) The set {+,−,×} of the arithmetic operators. op ranges over Aop = {+,−,×}.
The division operation is not included in Aop because we want to make sure
that the result of every operation is an element of N .

(iv) The set Aexp of the arithmetic expressions which is defined as follows:

a ::= n | X | a1 op a2

where a, a1, a2 ∈ Aexp, n ∈ N , and X ∈ Loc.

(v) The set {<,≤, =,≥, >} of the relational operators (between arithmetic expres-
sions). rop ranges over Rop = {<,≤, =,≥, >}.

(vi) The set {∧,∨,⇒} of the binary boolean operators (between boolean expressions).
bop ranges over Bop = {∧,∨,⇒}.

(vii) The set Bexp of the boolean expressions which is defined as follows:

b ::= true | false | a1 rop a2 | ¬b | b1 bop b2

where b, b1, b2 ∈ Bexp and a1, a2 ∈ Aexp.

117
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(viii) The set Com of the commands which is defined as follows:

c ::= skip | X := a | c1; c2 | if b then c1 else c2 | while b do c0

where c, c0, c1, c2 ∈ Com, a ∈ Aexp, and b ∈ Bexp.

2. Operational Semantics of the Imperative Language IMP

In this section we introduce the operational semantics of our Pascal-like language
IMP. The operational semantics specifies:
- the evaluation of arithmetical expressions,
- the evaluation of boolean expressions, and
- the execution of commands.

In order to specify the operational semantics we need the notion of a state.
A state σ is a function from Loc to N . The set of all states is called State .

2.1. Operational Semantics of Arithmetic Expressions.

The evaluation of arithmetic expressions is given as a ternary relation which is a
subset of Aexp × State × N . A triple 〈a, σ, n〉 in Aexp × State × N is written as
〈a, σ〉 → n and specifies that the arithmetic expression a in the state σ evaluates to
the integer n. The axioms and the inference rule defining the evaluation of arithmetic
expressions are as follows.

〈n, σ〉 → n

〈X, σ〉 → σ(X)

〈a1,σ〉→n1 〈a2,σ〉→n2

〈a1 op a2, σ〉→n1 op n2

where op is the semantic arithmetic operation corresponding to op ∈ {+,−,×}, that
is, op: (N×N) → N performs the usual arithmetic operations of sum, minus, and
times, respectively.

We have that the evaluation of the arithmetic expressions according to the above
rules is deterministic, that is, for all a ∈ Aexp, for all σ ∈ State , for all n, n′ ∈ N , if
〈a, σ〉 → n and 〈a, σ〉 → n′ then n = n′. The proof of this fact is similar to that of
Fact 2.2 on page 120.

2.2. Operational Semantics of Boolean Expressions.

The evaluation of boolean expressions is given as ternary relation which is a subset
of Bexp × State × {true, false}. A triple 〈b, σ, t〉 in Bexp × State × {true, false}
is written as 〈b, σ〉 → t and specifies that the boolean expression b in the state σ
evaluates to the boolean value t. The axioms and the inference rules defining the
evaluation of boolean expressions are as follows.

〈true, σ〉 → true

〈false, σ〉 → false

〈a1,σ〉→n1 〈a2,σ〉→n2

〈a1 rop a2, σ〉→n1 rop n2
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where rop is the semantic relational operation corresponding to rop∈{<,≤, =,≥, >},
that is, rop: (Aexp×Aexp)→{true, false} performs the usual relational operations
of less-than (<), less-than-or-equal-to (≤), equal-to (=), greater-than-or-equal-to (≥),
and greater-than (>), respectively.

〈b,σ〉→ true

〈¬b,σ〉→ false

〈b,σ〉→ false

〈¬b,σ〉→ true

〈b1,σ〉→ t1 〈b2,σ〉→ t2

〈b1 bop b2, σ〉→ t1 bop t2

where bop is the semantic boolean operation corresponding to bop ∈ {∧,∨,⇒}, that
is, bop: ({true, false}×{true, false}) → {true, false} performs the usual boolean
operations of and (∧), or (∨), and implies (⇒), respectively.

We have that the evaluation of the boolean expressions according to the above
rules is deterministic, that is, for all b ∈ Bexp, for all σ ∈ State , for all t, t′ ∈
{true, false}, if 〈b, σ〉 → t and 〈b, σ〉 → t′ then t = t′. The proof of this fact is
similar to that of Fact 2.2 on the next page.

2.3. Operational Semantics of Commands.

The execution of commands is given as a ternary relation which is a subset of Com×
State ×State . A triple in Com×State ×State is written as 〈c, σ〉 → σ′ and specifies
that the command c from the state σ produces the new state σ′. The axiom and the
inference rules defining the execution of commands are as follows.

〈skip, σ〉 → σ

〈a,σ〉→n

〈X:=a, σ〉→ σ[n/X]

〈c1,σ〉→ σ1 〈c2,σ1〉→ σ2

〈c1;c2, σ〉→ σ2

〈b,σ〉→ true 〈c1,σ〉→ σ1

〈if b then c1 else c2, σ〉→ σ1

〈b,σ〉→ false 〈c2,σ〉→ σ2

〈if b then c1 else c2, σ〉→ σ2

〈b,σ〉→ false

〈while b do c, σ〉→ σ

〈b,σ〉→ true 〈c,σ〉→ σ1 〈while b do c, σ1〉→ σ∗
〈while b do c, σ〉→ σ∗

Note 2.1. The ternary operator 〈− ,− 〉 →− is overloaded and it is used for the
operational semantics of arithmetic expressions, boolean expressions, and commands.

Here is Euclid’s algorithm for computing the greatest common divisor of M and N
using commands (we assume that M > 0 and N > 0):

{n = N > 0 ∧ m = M > 0}
while m 1= n do if m > n then m := m−n else n := n−m od

{gcd(N, M) = n}
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Similarly to the case of the evaluation of the arithmetic expressions (see Section 2.1
on page 118) and boolean expressions (see Section 2.2 on page 118) we have that,
as stated by the following fact, the evaluation of commands according to the above
rules is deterministic.

Fact 2.2. [Determinism of the Operational Semantics of Commands]
The operational semantics of commands defines a function, that is,

∀c ∈ Com, ∀σ0, σ1, σ′
1 ∈ State,

(
〈c, σ0〉→σ1 ∧ 〈c, σ0〉→σ′

1

)
⇒ σ1 =σ′

1.

Proof. We will write
d

〈c, σ0〉 → σ1
, instead of writing d $R 〈c, σ0〉 → σ1 (see

page 65), to mean that, given the set of the derivation rules for the operational
semantics of commands (see Section 2.3 on the preceding page), d is a derivation of
〈c, σ0〉 → σ1. Let us consider the following property P (d) of a given derivation d:

∀c ∈ Com, ∀σ0, σ1, σ′
1 ∈ State ,

( d

〈c, σ0〉 → σ1
∧ ∃d̃

d̃

〈c, σ0〉 → σ′
1

)
⇒ σ1 =σ′

1.

We do the proof by well-founded induction on derivations: (i) we assume that for all
subderivations d′ ≺+ d, we have that P (d′), that is,

∀c ∈ Com, ∀σ0, σ1, σ′
1 ∈ State ,

( d ′

〈c, σ0〉 → σ1
∧ ∃d̃

d̃

〈c, σ0〉 → σ′
1

)
⇒ σ1 =σ′

1

and (ii) we have to show P (d).
In order to show P (d), we consider a fixed, generic command c and the fixed,

generic states σ0, σ1, and σ′
1. We assume:

d

〈c, σ0〉 → σ1
∧ ∃d̃

d̃

〈c, σ0〉 → σ′
1

(Hyp)

and we have to show that σ1 =σ′
1. We reason by cases on the structure of c.

Case 1. c = skip. In this case (Hyp) is 〈skip, σ0〉 → σ1
∧ ∃d̃

d̃

〈skip, σ0〉 → σ′
1

. Since

both σ1 and σ′
1 are equal to σ0, we get σ1 =σ′

1.

Case 2. c = X := a. In this case (Hyp) is

d1

〈a, σ0〉 → m
〈c, σ0〉 → σ1

∧ ∃d̃1

d̃1

〈a, σ0〉 → m̃
〈c, σ0〉 → σ′

1

, where

σ1 = σ0[m/X] and σ′
1 = σ0[m̃/X]. Since the evaluation of the arithmetic expressions

is deterministic (see Section 2.1 on page 118), we get m = m̃ and, thus, σ1 = σ′
1.

Case 3. c = c1; c2. In this case (Hyp) is:

d1

〈c1, σ0〉 → σ′

d2

〈c2, σ′〉 → σ1

〈c1; c2, σ0〉 → σ1
∧ ∃d̃1, d̃2

d̃1

〈c1, σ0〉 → σ∗

d̃2

〈c2, σ∗〉 → σ′
1

〈c1; c2, σ0〉 → σ′
1

and the derivation d is such that
d

〈c1; c2, σ0〉 → σ1
. By induction, since d1 ≺+ d and

d2 ≺+ d, we have P (d1) and P (d2). By P (d1) we have that:
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∀c1, σ0, σ
′, σ∗,

d1

〈c1, σ0〉 → σ′
∧ ∃d̃1

d̃1

〈c1, σ0〉 → σ∗
⇒ σ′=σ∗.

Thus, by (Hyp) we get σ′ = σ∗. Analogously by P (d2) we have that (note that we
have written σ∗, instead of σ′):

∀c2, σ
∗, σ1, σ

′
1,

d2

〈c2, σ∗〉 → σ1
∧ ∃d̃2

d̃2

〈c2, σ∗〉 → σ′
1

⇒ σ1 =σ′
1

which by (Hyp) gives us σ1 =σ′
1.

Case 4. c = if b then c1 else c2. Let us consider the case in which the evaluation
of b gives us true, that is, 〈b, σ0〉 → true. Recall that the evaluation of the boolean
expressions is deterministic (see Section 2.2 on page 118). In this case (Hyp) is:

d1

〈b, σ0〉 → true

d2

〈c1, σ0〉 → σ1

〈if b then c1 else c2, σ0〉 → σ1
∧ ∃d̃1, d̃2

d̃1

〈b, σ0〉 → true

d̃2

〈c1, σ0〉 → σ′
1

〈if b then c1 else c2, σ0〉 → σ′
1

and the derivation d is such that
d

〈if b then c1 else c2, σ0〉 → σ1
. By induction, since

d2 ≺+ d, we have P (d2), that is, σ1 =σ′
1.

Analogously when 〈b, σ0〉 → false.

Case 5. c = while b do c1. Let us consider the case 〈b, σ0〉 → false. In this case
(Hyp) is:

d1

〈b, σ0〉 → false

〈while b do c1, σ0〉 → σ1
∧ ∃d̃1

d̃1

〈b, σ0〉 → false

〈while b do c1, σ0〉 → σ′
1

and we get that σ1 = σ′
1 because both are equal to σ0 (as in the case in which c is

skip).
Now let us consider the case 〈b, σ0〉 → true. In this case (Hyp) is:

d1

〈b, σ0〉 → true

d2

〈c1, σ0〉 → σ′

d3

〈while b do c1, σ′〉 → σ1

〈while b do c1, σ0〉 → σ1
∧

∃d̃1, d̃2, d̃3

d̃1

〈b, σ0〉 → true

d̃2

〈c1, σ0〉 → σ∗

d̃3

〈while b do c1, σ∗〉 → σ′
1

〈while b do c1, σ0〉 → σ′
1

Since d2 ≺+ d we have P (d2). Thus, σ′ = σ∗. We get that (note that we have
written σ∗, instead of σ′):

d3

〈while b do c1, σ∗〉 → σ1
∧ ∃d̃3

d̃3

〈while b do c1, σ∗〉 → σ′
1

Since d3 ≺+ d we have P (d3). Thus, σ1 =σ′
1. This concludes the proof. !

We also have the following fact.
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Fact 2.3. We have that: ∀c ∈ Com, ∀σ, σ′ ∈ State , it is not the case that
〈while true do c, σ〉→σ′.

Proof. By absurdum. We assume the negation of the fact to be shown, that
is, ∃c ∈ Com, ∃σ, σ′ ∈ State , 〈while true do c, σ〉 → σ′. Consider the minimal

derivation d such that
d

〈while true do c, σ〉→σ′
. The derivation d is of the form:

d1

〈true, σ〉→true

d2

〈skip, σ〉→σ

d3

〈while true do c, σ〉→σ′

〈while true do c, σ〉→σ′

which contains a proper subderivation d3 of 〈while true do c, σ〉→σ′.
This is a contradiction because we have assumed that d is the minimal derivation

of 〈while true do c, σ〉→σ′. !

3. Denotational Semantics of the Imperative Language IMP

Let us consider the language IMP of Section 2 on page 118. For that language IMP
we consider the following semantic domains.

(i) N is the set of integers {. . . ,−2,−1, 0, 1, 2, . . .}.
(ii) N⊥ is the flat cpo whose underlying set is N ∪ {⊥} with ⊥ 1∈ N , such that for all
distinct i, j ∈ N ∪ {⊥}, we have that i E j iff i=⊥.
(iii) State is the set of functions from Loc to N , each of these function is called a
state. State is a cpo in the sense that every element is related only to itself in the
partial order of the cpo.
(iv) State⊥ is the flat cpo of the functions whose underlying set is State ∪{⊥}. The
bottom element ⊥ of this cpo is the function λX∈ Loc.⊥ which for any given loca-
tion X, returns the bottom element ⊥ in N⊥. Every state σ ∈ State⊥ different from
λX∈ Loc.⊥, maps every location X to an element of N .

In what follows we will feel free to use the symbol ⊥ to denote either the bottom
element of State⊥ or the bottom element of N⊥. The context will disambiguate
between these two uses.
(v) Statek is the set of all sequences of states of length k, for any k ≥ 0. The
concatenation of sequences is denoted by ‘ " ’. Given two sets A and B of sequences,
by A " B, we denote the set {s1 " s2 | s1∈A and s2∈B}. For instance, Statek " State⊥

is the set of all sequences of states of length k+1 whose last element is a state in the
set State or the state ⊥.

3.1. Denotational Semantics of Arithmetic Expressions.

The semantic function !_" for arithmetic expressions is a function from Aexp×State
to N . As usual, the arithmetic expressions in Aexp is written inside the fat square
brackets !_" and the state in State is written to the right of those brackets.

Given a state σ ∈ State , the semantics of an arithmetic expression a ∈Aexp is
defined by structural induction as follows :

!n" σ = n

!X" σ = σ(X)

!a1 op a2" σ = !a1" σ op !a2" σ
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where op : N×N → N is the semantic operation corresponding to op ∈ {+,−,×}.
As usual, in the above semantic equations, the metavariables n ∈ N , X ∈ Loc,

and a1, a2 ∈Aexp are assumed to be universally quantified at the front.
Note that in defining the operational semantics of arithmetic expressions, we

assume that the given state σ is different from ⊥.

3.2. Denotational Semantics of Boolean Expressions.

The semantic function !_" for boolean expressions is a function from Bexp×State⊥

to {true, false}.
Given a state σ ∈ State⊥, the semantics of a boolean expression b ∈Bexp is defined
as follows:

- for σ = ⊥,

!b"⊥ = true

- for σ 1= ⊥ (the definition is by structural induction according to the following
equations) :

!true" σ = true

!false" σ = false

!a1 rop a2" σ = !a1" σ rop !a2" σ

!¬b" σ = not (!b" σ)

!b1 ∨ b2" σ = !b1" σ or !b2" σ

!b1 ∧ b2" σ = !b1" σ and !b2" σ

!b1 ⇒ b2" σ = !b1" σ implies !b2" σ

where rop : N×N → {true, false} is the semantic relational operator corresponding
to rop ∈ {<,≤, =,≥, >}.

As usual, in the above semantic equations the metavariables a1, a2 ∈Aexp, and
b, b1, b2 ∈Bexp are assumed to be universally quantified at the front. The semantic
operators not (¬), or (∨), and (∧), and implies (⇒) are those of the Propositional
Calculus.

3.3. Denotational Semantics of Commands.

The semantic function !_" for commands is a function from Com×State⊥ to State⊥.

Given a state σ ∈ State⊥, the semantics of a command c ∈Com is defined as follows :

- for σ=⊥,

!c"⊥ = ⊥ (that is, the semantic function !_" is a strict function)

- for σ 1= ⊥ (the definition is by structural induction according to the following
equations) :

!skip" σ = σ

!X := a" σ = σ[(!a" σ)/X]

!c1; c2" σ = !c2" (!c1" σ) (†1)

!if b then c1 else c2" σ = cond(!b" σ, !c1" σ, !c2" σ) (†2)

!while b do c0" σ = cond(!b" σ, !while b do c0" (!c0" σ), σ)
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Recall that cond is a continuous function from {true, false} × State⊥ × State⊥ to
State⊥.

The meaning of the semantic function for commands is the minimal fixpoint of
the continuous functional defined by the above semantic equations. In particular, by
recalling Kleene Theorem, we have that:

!while bdo c0" = (λf.λσ. cond(!b "σ, f(!c0"σ), σ)) !while bdo c0"

that is,

!while bdo c0" =
⊔

n≥0 τn(⊥)

where: (i) τ =def λf.λσ. cond(!b "σ, f(!c0"σ), σ) is a continuous functional from the
cpo [State⊥ → State⊥] to the cpo [State⊥ → State⊥], and (ii) ⊥ in the term τn(⊥) is
the function λσ.⊥, which is the bottom element of the cpo [State⊥ → State⊥].

Given a command c and a state σ ∈ State (thus, in particular, σ 1=⊥),
(i) if !c" σ =⊥ then we say that starting from state σ, the command c diverges (or
does not terminate), and
(ii) if !c" σ 1= ⊥ then we say that starting from state σ, the command c converges (or
terminates).

From the definition of the semantic function !_" for commands it follows that for
all commands c, for all states σ ∈ State⊥,

if either σ = ⊥ or the command c does not terminate starting from a state σ
different from ⊥,

then !c"σ = ⊥.

Since a command c may not terminate, the state σ in an expression of the form !c" σ
may be ⊥ (see the above Equation (†1)) and this fact may require the evaluation of a
boolean expression in the state σ which is λX∈Loc.⊥ (see the above Equation (†2)).

Remark 3.1. [Alternative Semantics of Boolean Expressions] We could
have defined the semantic function !_" for boolean expressions to be a function from
Bexp × State⊥ to {true, false}⊥ defined as follows:
- for σ = ⊥,

!b"⊥ = ⊥
- for σ 1= ⊥ (the definition is by structural induction according to the following
equations) :

!true" σ = FtrueG
!false" σ = FfalseG
!a1 rop a2" σ = F!a1" σ rop !a2" σG
!¬b" σ = not⊥ (!b" σ)

!b1 ∨ b2" σ = !b1" σ or⊥ !b2" σ

!b1 ∧ b2" σ = !b1" σ and⊥ !b2" σ

!b1 ⇒ b2" σ = !b1" σ implies⊥ !b2" σ

where rop : N ×N → {true, false} is the semantic relational operator corresponding
to rop ∈ {<,≤, =,≥, >}. The operators not⊥, or⊥, and⊥, implies⊥ are the strict
extensions of the corresponding operators of the Propositional Calculus. For instance,
or⊥ is a function from T⊥ × T⊥ to T⊥, where T⊥ denotes the cpo {true, false}⊥.
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Then, when defining the semantics of the commands, instead of the continuous
function cond from {true, false}×State⊥×State⊥ to State⊥, we should have used the
function

λb, σ1, σ2. b → σ1 | σ2

from {true, false}⊥×State⊥×State⊥ to State⊥, which satisfies the following equations:

⊥ → σ1 | σ2 = ⊥
FtrueG → σ1 | σ2 = σ1

FfalseG → σ1 | σ2 = σ2

The function λb, σ1, σ2. b → σ1 | σ2 is a continuous function.
This alternative definition of the semantics of the boolean expressions determines

a semantics of commands which is equivalent to the one we have given in Section 3.3
on page 123. !

Note 3.2. We use the same symbol !_" for denoting the semantic function for
(i) arithmetic expressions, (ii) boolean expressions, and (iii) commands. The context
will disambiguate these different uses of the symbol !_".

4. Assertions, Hoare Triples, and Weakest Preconditions

We begin this section by introducing some syntactic domains. In particular, we will
introduce the following two sets that extend, respectively, the sets Aexpv and Bexp
which we have defined in Section 1 on page 117:
(1) the set Aexpv of the arithmetic expressions with integer variables, which is a

superset of the set Aexp of the Arithmetic Expressions (see page 117), that
includes also expressions constructed by using the integer variables belonging to
the set Intvar, and

(2) the set Assn of the assertions, which is a superset of the set Bexp of the Boolean
Expressions (defined on page 117) that includes also formulas quantified over
the integer variables in Intvar. These quantified formulas will be required for
denoting the so called invariants (see, for instance, the formula I in the program
for the Ackermann function on page 148 with the quantifier ∃k and ∃n1, . . . , nk).

We consider the following syntactic domains.

(i) The set of the integer numbers N = {. . . ,−2,−1, 0, 1, 2, . . .}.

(ii) The set Intvar of the integer variables. The variable i ranges over Intvar.

(iii) The set Aexpv of the arithmetic expressions with integer variables defined as
follows:

a ::= n | X | a1 op a2 | i

where a, a1, a2 ∈ Aexpv, n ∈ N , X ∈ Loc, op ∈ {+,−,×}, and i ∈ Intvar.

(iv) The set Assn of the assertions defined as follows:

A ::= true | false | a1 rop a2 | ¬A | A1∨A2 | A1∧A2 | A1⇒A2 | ∀i. A | ∃i. A

where A, A1, A2 ∈ Assn, a1, a2 ∈ Aexpv, rop ∈ {<,≤, =,≥, >}, and i ∈ Intvar.
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(v) The set Com of the commands defined as follows:

c ::= skip | X := a | c1; c2 | if b then c1 else c2 | while b do c0

where c, c0, c1, c2 ∈ Com, X ∈ Loc, a ∈ Aexp (the definition of the set Aexp of
the Arithmetic Expressions is given on page 117), and b ∈ Bexp (the definition of the
set Bexp of the Boolean Expressions is given on page 117). Note that in assignments
of the form X := a, we have that a belongs to Aexp, rather than Aexpv.

We have that: (i) Aexp ⊆ Aexpv (the inclusion is strict because integer variables
do not belong to the set Aexp of the Arithmetic Expressions), and (ii) Bexp ⊆ Assn
(the inclusion is strict because integer variables and quantified formulas do not occur
in any boolean expression of Bexp).

Let an interpretation I be a function from Intvar to N .

Given any expression exp, by exp[a/X] we denote the result of replacing in exp
all occurrences of X by a. If exp is an assertion, then by exp[a/X] we denote the
result of replacing all free occurrences of X by a [12].

4.1. Semantics of Arithmetic Expressions with Integer Variables.

The semantic function !_" for arithmetic expressions with integer variables is a func-
tion from Aexpv × (Intvar → N) × State to N .

Given an interpretation I ∈ Intvar → N and a state σ ∈ State , the semantics of
an arithmetic expression with integer variables a ∈ Aexpv is defined by structural
induction, according to the following equations :

!n" I σ = n

!X" I σ = σ(X)

!a1 op a2" I σ = !a1" I σ op !a2" I σ

!i" I σ = I(i)

where op : N × N → N is the semantic operation corresponding to op ∈ {+,−,×}.
In the above semantic equations, the metavariables n ∈ N , i ∈ Intvar, X ∈ Loc,

and a1, a2 ∈ Aexpv are assumed to be universally quantified at the front.
We have the following lemmata.

Lemma 4.1. [Substitution of Integer Variables in Arithmetic Expres-
sions] For all arithmetic expressions a ∈ Aexpv, for all integers n ∈ N , for all integer
variables i, for all interpretations I ∈ Intvar → N , and for all states σ ∈ State, we
have that:

!a[n/i]" I σ = !a" I[n/i] σ.

Proof. By induction on the structure of a. !

As usual, I[n/i] denotes the interpretation I ′ which is equal to I except that
I ′(i) = n.

Lemma 4.2. [Substitution of Subexpressions in Arithmetic Expressions]
For all interpretations I ∈ Intvar → N , for all states σ ∈ State, for all arithmetic
expressions with integer variables a1, a2 ∈ Aexpv, for all locations X ∈ Loc, we
have that:

!a1[a2/X]"I σ = !a1"I σ[!a2"I σ/X].
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Proof. By induction on the structure of a1. !

Recall that the substitution a2/X applied to the arithmetic expression a1, replaces
all occurrences of X in a1 by the arithmetic expression a2. As usual, σ[v/X] denotes
a state σ′ which is equal to σ except that σ′(X) = v.

4.2. Semantics of Assertions.

Given an interpretation I ∈ Intvar → N , a state σ ∈ State⊥, and an assertion
A ∈ Assn, we say that the assertion A is true for (or in) the interpretation I and
the state σ, and we write I, σ |= A, iff

either σ = ⊥ (thus, we have that I,⊥ |= A)

or σ 1= ⊥ and I, σ |= A can be derived by using the following axiom and deduction
rules (which are given by structural induction) :

I, σ |= true

I, σ |= a1 rop a2 if !a1" I σ rop !a2" I σ

I, σ |= ¬A if not (I, σ |= A)

I, σ |= A1 ∨ A2 if I, σ |= A1 or I, σ |= A2

I, σ |= A1 ∧ A2 if I, σ |= A1 and I, σ |= A2

I, σ |= A1 ⇒ A2 if I, σ |= A1 implies I, σ |= A2

I, σ |= ∀i.A if for all n ∈ N , I[n/i], σ |= A

I, σ |= ∃i.A if there exists n ∈ N , I[n/i], σ |= A

where rop :N ×N → {true, false} is the semantic operator corresponding to syntactic
operator rop ∈ {<,≤, =,≥, >}.

In the above rules the metavariables a1, a2 ∈ Aexpv and A, A1, A2 ∈ Assn are
assumed to be universally quantified at the front.

Note that integer variables may occur in assertions because integer variables may
occur in arithmetic expressions with variables and arithmetic expressions with vari-
ables may occur in assertions.

Lemma 4.3. For all boolean expressions b ∈ Bexp, for all states σ ∈ State⊥, we
have that:

!b" σ= true iff for all interpretations I, I, σ |= b, and

!b" σ= false iff for all interpretations I, not (I, σ |= b) (that is, I, σ |= ¬b).

Proof. By induction on the structure of b. Recall that integer variables do not
occur in boolean expressions. !

Lemma 4.4. [Substitution of Arithmetic Expressions in Assertions] For
all interpretations I ∈ Intvar → N , for all states σ ∈ State⊥, for all arithmetic
expressions with integer variables a ∈ Aexpv, for all assertions B ∈ Assn, for all
locations X ∈ Loc, we have that:

if σ 1=⊥ then I, σ |= B[a/X] iff I, σ[!a"Iσ/X] |= B.

Proof. By induction on the structure of B. Recall that if σ =⊥ then I, σ |= B
holds for every assertion B. !
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Recall that the substitution a/X applied to the assertion B, replaces all free
occurrences of X in B by a.

4.3. The Calculus of Hoare Triples.

Now we introduce an axiomatic system for establishing a ternary relation, subset
of Assn×Com×Assn, denoted & {A} c {B}, for any given assertions A, B ∈ Assn
and command c ∈ Com. A triple of the form {A} c {B} is said to be a Hoare triple.

Definition 4.5. [Hoare Calculus. Derivability of Hoare Triples] Given the
assertions A and B and the command c, we say that the triple {A} c {B} is derivable
in the Hoare Calculus, and we write & {A} c {B}, iff there is a proof (that is, a finite
derivation) of {A} c {B} by using the following axiom H1 and inference rules H2–H6:

(H1) {A} skip {A}

(H2)
|= A ⇒ B[a/X]

{A} X:=a {B}

(H3)
{A} c1 {B} {B} c2 {C}

{A} c1 ; c2 {C}

(H4)
{A∧ b} c1 {B} {A∧¬b} c2 {B}

{A} if b then c1 else c2 {B}

(H5)
{A∧ b} c {A}

{A} while b do c {A∧¬b}

(H6)
|= A⇒A′ {A′} c {B′} |= B′ ⇒B

{A} c {B}

In rule H5 the assertion A is said to be an invariant of the while-do loop.
A Hoare triple {A} c {B} which is derivable using the Hoare Calculus, is said to

be a partially correct triple (the reasons for this terminology we will given below).

Remark 4.6. In the above rules H2 and H6, given any two assertions A and B,
a premise of the form |= A ⇒ B means that for all interpretations I ∈ Intvar → N ,
for all states σ ∈ State⊥, the implication A ⇒ B holds in the theory of Integer
Arithmetics. We will not formally define this theory here. It will be enough to say
that: (i) Integer Arithmetics is the theory of the integers with the usual arithmetic
operators +, −, and ×, and the usual relational operators <, ≤, =, ≥, and >,
and (ii) if we restrict Integer Arithmetics to the non-negative integers we get Peano
Arithmetics. As a consequence, there is no computable decision procedure that given
any assertion A, checks whether or not |= A holds in Integer Arithmetics.
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Definition 4.7. [Validity of Hoare Triples] Given the assertions A, B∈Assn,
the command c∈Com, the interpretation I ∈ Intvar→N , the state σ∈State⊥, we
say that the triple {A} c {B} holds in the interpretation I and the state σ, and we
write I, σ |= {A} c {B}, if we have that:

I, σ |= A implies I, !c"σ |= B.

We say that a triple {A} c {B} is valid, or holds, and we write |= {A} c {B}, iff for
all interpretations I ∈ Intvar → N , for all states σ ∈ State⊥, we have that I, σ |= A
implies I, !c"σ |= B.

When the triple {A} c {B} is valid, we say that the command c is partially correct
with respect to the precondition A and the postcondition B. This correctness is said to
be partial, because we have that |= {A} c {B} holds iff starting from a state σ where
the assertion A holds, we have that: either (i) the command c does not terminate,
that is, !c"σ = ⊥, or (ii) the command c terminates and the assertion B holds
after the execution of the command c, that is, B holds in the state !c"σ. Thus, the
term ‘partial correctness’ refers to the fact that the command c is not guaranteed to
terminate.

We say that the command c is totally correct with respect to the precondition A
and the postcondition B iff starting from a state where the assertion A holds, (i) the
command c terminates, and (ii) the assertion B holds after the execution of the com-
mand c. That is, the command c is totally correct with respect to the precondition A
and the postcondition B iff for all interpretations I, for all states σ ∈ State , I, σ |= A
implies !c"σ 1= ⊥ and I, !c"σ |= B. Thus, the term ‘total correctness’ refers to the
fact that the command c is guaranteed to terminate.

The following theorem tells us that the partially correct triples which the Hoare
rules derive, are valid triples.

Theorem 4.8. [Soundness Theorem] For all assertions A and B in Assn, for
all commands c in Com, we have that & {A} c {B} implies |= {A} c {B}.

Proof. When proving that for every interpretation I ∈ Intvar → N , state σ ∈
State⊥, assertions A, B ∈ Assn, and command c ∈ Com, it is the case that I, σ |= A
implies I, !c"σ |= B, we may assume without loss of generality that σ 1= ⊥, because:
(i) for every command c, we have that !c"⊥ = ⊥, and (ii) for every interpretation I,
assertion A, we have that I,⊥ |= A holds.

The proof of the theorem is done by rule induction.

(Rule H1). We have to show that |= {A} skip {A} holds. This follows from the fact
that for every interpretation I, state σ, I, σ |= A implies I, !skip"σ |= A, because
!skip"σ = σ.

(Rule H2). Assume & {A}X :=a {B}. By rule H2 we get |= A ⇒ B[a/X], that is,

for all interpretations I, for all states σ,

I, σ |= A implies I, σ |= B[a/X]. (2.1)

By Lemma 4.4 on page 127 from (2.1) we get:

for all interpretations I, for all states σ,

I, σ |= A implies I, σ[!a"Iσ/X] |= B. (2.2)

By definition of !X :=a"σ from (2.2) we get:
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for all interpretations I, for all states σ,

I, σ |= A implies I, !X :=a"σ |= B, that is, |= {A}X :=a {B}.
(Rule H3). Assume & {A} c1; c2 {C}. By rule H3 for some assertion B we get:
& {A} c1 {B} and & {B} c2 {C}. By rule induction, we have that:

|= {A} c1 {B} and (3.1)

|= {B} c2 {C}. (3.2)

Thus, we have:

for all interpretations I, for all states σ,

I, σ |= A implies I, !c1"σ |= B, and (3.1∗)

for all interpretations I, for all states σ,

I, σ |= B implies I, !c2"σ |= C. (3.2∗)

By (3.1∗) and (3.2∗) we get: for all interpretations I, for all states σ,

I, σ |= A implies I, !c2"(!c1"σ) |= C, that is, I, !c1; c2"σ |= C.

Thus, we get |= {A} c1; c2 {C}.
(Rule H4). Assume &{A} if b then c1 else c2 {B}. By rule H4 we get:

&{A ∧ b} c1 {B} and & {A ∧ ¬b} c2 {B}. By rule induction we have that:

|= {A ∧ b} c1 {B} and (4.1)

|= {A ∧ ¬b} c2 {B}. (4.2)

Thus,

for all interpretations I, for all states σ,

I, σ |= A∧b implies I, !c1"σ |= B, and (4.1∗)

for all interpretations I, for all states σ,

I, σ |= A∧¬b implies I, !c2"σ |= B. (4.2∗)

By (4.1∗) and (4.2∗) we get: for all interpretations I, for all states σ,

I, σ |= A implies I, !if b then c1 else c2"σ |= B.

Thus, we get |= {A} if b then c1 else c2 {B}.
(Rule H5). Assume & {A}while b do c {A∧¬b}. By rule H5 we get & {A∧b} c {A}.
By rule induction we have that:

|= {A ∧ b} c {A}. (5.1)

We have to show that |= {A}while b do c {A∧¬b}, that is, for all interpretations I,
for all states σ, I, σ |= A implies I, !while b do c"σ |= A ∧ ¬b.

By definition of !while b do c"σ (see page 124), we have that:

!while b do c" =
⊔

n≥0 τn(⊥)

where: (i) τ =def λf.λσ. cond(!b "σ, f(!c"σ), σ), and (ii) ⊥ is the function λσ.⊥ of
the cpo [State⊥ → State⊥].

Now, let us consider the property P : (State⊥ → State⊥) → {true, false} defined
as follows:

P (τn(⊥)) =def for all interpretations I, for all states σ ∈ State⊥,

I, σ |= A implies I, τn(⊥)σ |= A ∧ ¬b.
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We have that |= {A}while b do c {A ∧ ¬b} holds and, thus, we conclude the proof
for the case of Rule H5, if we prove that:

for all n≥0, P (τn(⊥)) holds, and (P1)

if for all n≥0, P (τn(⊥)) holds, then P (
⊔

n≥0 τn(⊥)) holds. (P2)

Let us prove properties (P1) and (P2). The proof of (P2) is required because in
order to use Scott induction, the property P should be inclusive.

Proof of (P1). By induction on n.
(Basis) Since τ 0(⊥) = ⊥, we have to show that for all interpretations I, for all
states σ ∈State⊥, I, σ |= A implies I,⊥ |= A ∧ ¬b. This is obvious, because for all
assertions ϕ, we have that I,⊥ |= ϕ holds.
(Step) Assume P (τn(⊥)). We show P (τn+1(⊥)) as follows. Take any interpretation I
and any state σ and assume

I, σ |= A. (5.2)

From P (τn(⊥)) and (5.2) we get I, τn(⊥)σ |= A ∧ ¬b. We have to show that
I, τn+1(⊥)σ |= A ∧ ¬b, that is, I, cond(!b "σ, τn(⊥)(!c"σ), σ) |= A ∧ ¬b. Now there
are two cases:

Case (P1.1): !b "σ = false, and

Case (P1.2): !b "σ = true.

Case (P1.1). Since !b "σ = false, we have that

I, σ |= ¬b. (5.3)

We have to show that I, σ |= A ∧ ¬b. This follows from (5.2) and (5.3).

Case (P1.2). Since !b "σ = true, we have that

I, σ |= b. (5.4)

We have to show that I, τn(⊥)(!c"σ) |= A ∧ ¬b. From (5.2) and (5.4) we get

I, σ |= A ∧ b. (5.5)

From (5.5) and (5.1) we get

I, !c"σ |= A. (5.6)

From (5.6) and the inductive hypothesis P (τn(⊥)), we get I, τn(⊥)(!c"σ) |= A ∧ ¬b.

Proof of (P2).
Assume that for all n≥0, for all interpretations I, for all states σ ∈ State⊥, I, σ |= A
implies I, τn(⊥)σ |= A∧¬b. In order to show that P (

⊔
n≥0 τn(⊥)) holds, we take any

interpretation I and any state σ such that I, σ |= A holds and we have to show that
I, (

⊔
n≥0 τn(⊥))σ |= A ∧ ¬b holds. Now there are two cases:

Case (P2.1): (
⊔

n≥0 τn(⊥))σ = ⊥, and

Case (P2.2): there exists a state σ′ such that (
⊔

n≥0 τn(⊥))σ=σ′ 1=⊥.

Case (P2.1). In this case we have that I, (
⊔

n≥0 τn(⊥))σ |= A ∧ ¬b is equivalent to
I, ⊥ |= A ∧ ¬b and thus, it holds by definition of |=.

Case (P2.2). In this case, since τ is a continuous function from State⊥ to State⊥

(recall that, in particular, cond is continuous), and State⊥ is a flat cpo, we have that
there exists m>0 such that τm(⊥)σ = σ′. Thus, I, (

⊔
n≥0 τn(⊥))σ |= A ∧ ¬b follows

from the fact that for all n ≥ 0, P (τn(⊥)) holds, and P (τm(⊥)) means that for all
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interpretations I, for all states σ ∈ State⊥, I, σ |= A implies I, τm(⊥)σ |= A ∧ ¬b
which in this Case (P2.2) is equal to I, σ′ |= A ∧ ¬b.

This concludes the proof for the case of rule H5.

(Rule H6). Assume & {A} c {B}. By rule H6 we get:

|= A ⇒ A′, (6.1)

& {A′} c {B′}, and (6.2)

|= B′ ⇒ B. (6.3)

By rule induction from (6.2) we have:

|= {A′} c {B′}. (6.2.1)

From (6.1), (6.2.1), and (6.3), we have that for all interpretations I, for all states σ,

I, σ |= A implies I, σ |= A′, (6.1.1)

I, σ |= A′ implies I, !c"σ |= B′, and (6.2.2)

I, σ |= B′ implies I, σ |= B. (6.3.1)

From (6.1.1), (6.2.2), and (6.3.1), by transitivity of implication, we have that:
for all interpretations I, for all states σ, I, σ |= A implies I, !c"σ |= B, that is,
|= {A} c {B}. This concludes the proof of the theorem. !

Now we will show that, although in a weak form, also the reverse implication of
the Soundness Theorem (see Theorem 4.8 on page 129) holds, that is, |= {A} c {B}
implies & {A} c {B} (see Theorem 4.24 on page 143). First we need some definitions,
lemmata, and theorems.

Definition 4.9. [Extension of an Assertion] Given an assertion A ∈Assn
and an interpretation I∈Intvar → N , the extension of the assertion A with respect
to I, denoted AI , is the set of states: {σ | σ ∈ State⊥ ∧ I, σ |= A}. In particular, for
all interpretations I, falseI = {⊥}.

We have the following fact.

Fact 4.10. (i) For all assertions A,B∈Assn, for all interpretations I∈Intvar→N ,
if AI = BI then |= A ⇔ B. (ii) For all interpretations I ∈ Intvar → N , for all
assertions A, we have that ⊥ ∈ AI .

Proof. (i) By hypothesis we have that for all interpretations I ∈ Intvar → N ,
for all states σ ∈ State⊥, I, σ |= A iff I, σ |= B. Thus, for all I, σ, I, σ |= A ⇔ B.
(ii) It follows from the fact that for all interpretations I, for all assertions A, we have
that I,⊥ |= A. !

Definition 4.11. [Weakest Precondition and its Extension] Given a com-
mand c ∈Com, an assertion B ∈Assn, and an interpretation I ∈ Intvar→ N , the
weakest precondition of B with respect to c is a formula, denoted wp(c, B), such that
its extension with respect to the interpretation I, denoted wpI(c, B), is the set

wpI(c, B) =def {σ | σ ∈ State⊥ ∧ I, !c"σ |= B}.

Thus, wpI(c, B) is the largest subset of State⊥, such that starting from any state in
that largest subset, the command c either does not terminate or produces a state σ′

such that I, σ′ |= B.



4. ASSERTIONS, HOARE TRIPLES, AND WEAKEST PRECONDITIONS 133

Note that in Definition 4.11 on the facing page we said that wp(c, B) is a formula.
In Theorem 4.15 on the next page we will show that actually there is an assertion
whose extension is equal to that of wp(c, B).

The following fact follows immediately from the above Definition 4.11 on the
facing page.

Fact 4.12. For all states σ ∈ State⊥, for all interpretations I, for all commands c,
for all assertions B, we have that σ ∈ wpI(c, B) iff I, σ |= wp(c, B).

What we have called weakest precondition, sometimes in the literature is also
called weakest liberal precondition, and the term weakest precondition is reserved for
the similar notion which refers to total correctness, rather than partial correctness [19,
page 101]. Our notion of weakest precondition refers to partial correctness, because
in Definition 4.11 on the preceding page we allow the command c not to terminate.

Recall that the state which is obtained after a non-terminating command is the
bottom element of the cpo State⊥, that is, λX∈Loc.⊥, where ⊥∈N⊥.

For all interpretations I ∈ Intvar → N , for all states σ ∈ State⊥, for all com-
mands c such that !c"σ = ⊥, for all assertions B, we have that

σ ∈ wpI(c, B) iff {by Fact 4.12}

iff I, !c"σ |= B iff {by !c"σ = ⊥}

iff I,⊥ |= B iff {by the semantics of assertions (see Section 4.2 on page 127)}

iff true.

Now, let us consider a command c such that for all states σ ∈ State⊥, !c"σ = ⊥, that
is, either the command c does not terminate starting from σ or σ =⊥. Then for all
interpretations I, for all assertions B, wp(c, B) is true and the extension of wp(c, B)
with respect to I is the whole cpo State⊥.

From Definition 4.11 on the facing page and the fact that the semantic function
!_" is strict, it follows that:
(i) for all commands c, for all assertions B, for all interpretations I, we have that

⊥ ∈ wpI(c, B), where ⊥ is the bottom element of the cpo State⊥,

(ii) for all states σ ∈ State (thus, σ 1=⊥), for all commands c, we have that c diverges
starting from state σ iff σ ∈ wpI(c, false) iff

for all interpretations I, I, σ |= wp(c, false), and

(iii) for all states σ ∈ State (thus, σ 1= ⊥), for all commands c, we have that c
converges starting from state σ iff σ 1∈ wpI(c, false) iff

for all interpretations I, I, σ |= ¬wp(c, false).

Theorem 4.13. [Properties of Weakest Preconditions] For all assertions A
and B, for all commands c,
(i) |= {wp(c, B)} c {B}
(ii) |= {A} c {B} iff |= A ⇒ wp(c, B).

Proof. The proof of (i) is immediate. The proof of (ii) is as follows. We have that:

|= {A} c {B} iff for all I, for all σ, if I, σ |= A then I, !c"σ |= B.

By the definition of the weakest precondition, we have that:
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for all I, for all σ, I, !c"σ |= B iff I, σ |= wp(c, B).

Thus, for all I, for all σ, if I, σ |= A then I, σ |=wp(c, B). Hence, |= A⇒wp(c, B). !

Notation 4.14. In what follows and, in particular, in the proof of the following
Theorem 4.15 for the case of the while-do, for all interpretations I, for all asser-
tions A, we write I |= A to mean that for all states σ, I, σ |= A holds. !

Theorem 4.15. [Expressiveness Theorem] Given any command c ∈Com and
any assertion B ∈Assn, there exists an assertion, call it A(c, B), such that for
all interpretations I ∈ Intvar→ N , its extension AI(c, B) w.r.t. I is equal to the
extension w.r.t. I of the weakest precondition of B w.r.t. the command c, that is,
AI(c, B) = wpI(c, B).

Proof. In order to show that AI(c, B) = wpI(c, B), by definition of the extension
of an assertion, we have to show that for all commands c ∈Com, for all assertions
B ∈Assn, for all interpretations I ∈ Intvar→ N , for all states σ ∈ State⊥, there
exists an assertion A(c, B) such that

I, !c"σ |= B iff I, σ |= A(c, B).

The proof is by cases on the command c.

(Case c = skip). The assertion A(skip, B) to be found is B itself. Indeed, for all
interpretations I ∈ Intvar→ N , for all states σ ∈ State⊥, we have that:

I, !skip"σ |= B iff {by definition of !_"}

iff I, σ |= B.

(Case c = X := a). The assertion A(X := a, B) to be found is B[a/X] (that is,
B with all free occurrences of X substituted by a). Indeed, for all interpretations
I ∈ Intvar→ N , for all states σ ∈ State⊥, we have that:

I, !X :=a"σ |= B iff {by definition of !_"}

iff I, σ[!a"Iσ/X] |= B iff {by Lemma 4.4 on page 127}

iff I, σ |= B[a/X].

(Case c = c; c2). The assertion A(c1; c2, B) to be found is inductively defined as
A(c1, A(c2, B)). Indeed, for all interpretations I ∈ Intvar→ N , for all states σ ∈
State⊥, we have that:

I, !c1; c2"σ |= B iff {by definition of !_"}

iff I, !c2"(!c1"σ) |= B iff {by structural induction}

iff I, !c1"σ |= A(c2, B) iff {by structural induction}

iff I, σ |= A(c1,A(c2, B)).

(Case c = if b then c1 else c2). The assertion A(if b then c1 else c2, B) to be found
is inductively defined as (b∧A(c1, B)) ∨ (¬b∧A(c2, B)). Indeed, for all interpretations
I ∈ Intvar→ N , for all states σ ∈ State⊥, we have that:

I, !if b then c1 else c2"σ |= B iff {by definition of !_"}

iff (!b"σ ∧ I, !c1"σ |= B) ∨ (¬!b"σ ∧ I, !c2"σ |= B) iff {by structural induction}

iff (!b"σ ∧ I, σ |= A(c1, B)) ∨ (!¬b"σ ∧ I, σ |= A(c2, B)) iff {by definition of |=}

iff I, σ |= (b ∧ A(c1, B)) ∨ (¬b∧A(c2, B)).
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(Case c = while b do c0). The assertion wp(while b do c0, B) to be found is an
assertion whose extension wpI(while b do c0, B) with respect to the interpretation
I is such that a state σ ∈ wpI(while b do c0, B) iff

σ=⊥ (α)

∨ ∀k≥0. ∀σ0 . . . σk ∈ State k " State⊥.[
σ0 =σ ∧ (∀i. (0≤ i<k) ⇒ (!b"σi ∧ !c0"σi = σi+1))

]
(β)

⇒
(
!b"σk ∨ (I, σk |= B)

)
.

The correctness of this formula will be proved in Section 7 on page 153.
Note that in the formula (α) ∨ (β) we can write σ0 = σ 1= ⊥, instead of σ0 = σ,

because if σ=⊥ then σ ∈ wpI(while b do c0, B) by (α).
Now, before continuing the proof, let us make the following two remarks.

Remark 4.16. If in (β) we specify that the sequence σ0 . . . σk of states belongs to
Statek+1

⊥ , rather than Statek " State⊥, we get a formula (β ′) equivalent to (β), because

(i) the semantic function !_" is strict, that is, for all commands c, !c"⊥=⊥,

(ii) for all boolean expressions b, !b"⊥= true , and

(iii) for all interpretations I, for all assertions B, I,⊥ |= B.

The equivalence of (β) and (β ′) follows from the fact that for all i, with 0≤ i<k, if
σi =⊥ then for all j, with i≤j≤k, we have that σj =⊥. !

Remark 4.17. If in (β) we specify that the sequence σ0 . . . σk of states belongs to
Statek+1, rather than Statek " State⊥, we get an equivalent formula because if σk =⊥
then I, σk |= B holds and, thus, the implication ⇒ holds. !

Let us continue the proof of the Expressivity Theorem.
Since the formula (α) ∨ (β) is not an assertion, in order to prove this while-do

case of the theorem, we have to construct an assertion which is equivalent to (α)∨(β).
We do so by first avoiding in the formula (α) ∨ (β) all references to the states σi’s.
This can be done by using sequences of integers and ⊥’s, as we now indicate. We
assume that the locations occurring in the states are X1, . . . , X' and these locations
are ordered in the sequence X = 〈X1, . . . , X'〉. Then, instead of any given state σ,
we can use a sequence s = 〈s1, . . . , s'〉 made out of integers or ⊥’s for denoting the
values stored for the state σ in the locations 〈X1, . . . , X'〉, so that, for i=1, . . . , -, we
have that si is the value stored in the location Xi in σ.

In those sequences, if the value stored in a location is undefined, we stipulate that
it is ⊥. Thus, if the state σ is undefined, the sequence s is made out of all ⊥’s. Note
that, since the cpo State⊥ is flat, any sequence s is made out of either all integers
in N or all ⊥’s.

Let us assume that in the state σk the locations X = 〈X1, . . . , X'〉 have the values
sk = 〈s1, . . . , s'〉. By Lemma 4.4 on page 127, in the formula (β) we can replace
I, σk |= B by I |= B[s1/X1, . . . , s'/X'], also denoted I |= B[sk/X]. (Recall that
for all interpretations I, for all assertions B, when we write I |= B we mean that
for all states σ, I, σ |= B.) Indeed, in B[s1/X1, . . . , s'/X'] there is no occurrence of
X1, . . . , X' and thus, the value of σ is not significant.
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Thus, by recalling that for all interpretations I, falseI = {⊥} and, as stated in
Remark 4.17 on the previous page, the state σk may be assumed to be an element of
State , rather than State⊥, we get the following formula equivalent to (α)∨(β):

false

∨ ∀k≥0. ∀ s0 . . . sk ∈ (N ') k+1.
[
X =s0 ∧ (∀i. (0≤ i<k) ⇒ (b[si/X] ∧ !c0"σi = σi+1))

]

⇒ ( b[sk/X] ∨ I |= B[sk/X] ).

(W1)

Note that for all i, with 0≤ i<k, in the sequence si the value ⊥ does not occur. Now
we have the following three properties:

(W1.1) (false ∨ b) iff b,

(W1.2) b[si/X] iff I |=b[si/X],

(W1.3) !c0"σi =σi+1 1= ⊥ with σi ∈ State iff for every interpretation I,

I, σi |=
(
wp(c0, X =si+1) ∧ ¬wp(c0, false)

)
[si/X].

Point (W1.1) is obvious. Point (W1.2) is a consequence of the fact that no integer
variable occurs in any boolean expression. Point (W1.3) can be proved as follows
(recall that, as noted on page 133, the command c0 starting from the state σi∈State
converges iff for every interpretation I, I, σi |= ¬wp(c0, false)):

!c0"σi = σi+1 1= ⊥

iff for every interpretation I, σi ∈ wpI (c0, X =si+1) ∧ !c0"σi 1= ⊥

iff for every interpretation I, I, σi |= wp(c0, X =si+1) ∧ I, σi |= ¬wp(c0, false)

iff for every interpretation I, I, σi |=
(
wp(c0, X =si+1) ∧ ¬wp(c0, false)

)

iff for every interpretation I, I |=
(
wp(c0, X =si+1) ∧ ¬wp(c0, false)

)
[si/X].

Thus, by Properties (W1.1), (W1.2), and (W1.3), from (W1) we get:

∀k≥0. ∀ s0 . . . sk ∈ (N ') k+1.
[
X =s0 ∧ ∀i. (0≤ i<k)⇒

(
I |=

(
b ∧ wp(c0, X =si+1) ∧¬wp(c0, false)

)
[si/X]

)]

⇒ I |= (b ∨ B)[sk/X].

(W2)

Note that by structural induction the formulas wp(c0, X = si+1) and ¬wp(c0, false)
can be expressed as assertions because c0 is a subcommand of the command c.

Note also that in the formula (W2) we first compute the assertions wp(c0, X =
si+1) and ¬wp(c0, false), and then we apply the substitution si/X. To apply first
the substitution si/X and then to compute the weakest preconditions is not correct.
Indeed, in particular, the formula wp(c0, si =si+1) does not make sense.

Now let us consider the following Table 1 where, for i = 0, . . . , k, we have indicated
the values stored in the locations X1, . . . , X' for each state σi, for i = 0, . . . , k, for
j =1, . . . , -.
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state
locations

X1 . . . X'

σ0 s0 = 〈s01 . . . s0'〉
σ1 s1 = 〈s11 . . . s1'〉
...

...
...

σk sk = 〈sk1 . . . sk'〉

Table 1. A sequence of states and the associated sequence of values
stored in the locations X1, . . . , X'.

We can encode this sequence of k+1 sequences, each of which is of length -, row by
row into a single sequence of the form:

〈s01, . . . , s0', s11, . . . , s1', . . . , sk1, . . . , sk'〉

whose length is -(k+1). Note that the value of - is fixed for any given command
while b do c0 and assertion B.

Now by Lemma 4.19 on the following page and Lemma 4.21 on page 140, any finite
sequence x0, . . . , xp of integers can be encoded by two natural numbers n and m such
that there exists an assertion β±(n, m, i, x) which holds iff x is the i-th element of
that sequence, for i = 0, . . . , p.

Thus, the formula (W2) can be written as the following assertion (W3) where the
variables x1, y1, . . . , x', y' belong to Intvar.

∀k≥0. ∀n, m ≥ 0.[
β±(n, m, 0, X1) ∧ . . . ∧ β±(n, m, -−1, X') ∧
∀i. (0≤ i<k)⇒[(
∀x1, . . . , x'.(β±(n, m, i-, x1) ∧ . . . ∧ β±(n, m, i-+-−1, x'))

⇒ b[x1/X1, . . . , x'/X']
)

∧
(
∀x1, y1, . . . , x', y'.

(
β±(n, m, i-, x1) ∧ . . . ∧ β±(n, m, i-+-−1, x')

∧ β±(n, m, (i+1)-, y1)∧ . . . ∧β±(n, m, (i+1)-+-−1, y')
)

⇒
((

wp(c0, (X1 =y1, . . . , X'=y'))

∧¬wp(c0, false)
)
[x1/X1, . . . , x'/X']

))]]

⇒
[
∀x1 . . . x'.

(
(β±(n, m, k-, x1) ∧ . . . ∧ β±(n, m, k-+-−1, x'))

⇒ (b ∨ B)[x1/X1, . . . , x'/X']
)]

.

(W3)

In the assertion (W3) x1, . . . , x' are the values in the locations X1, . . . , X' in the
state σi (that is, 〈si1, . . . , si'〉 in Table 1), while y1, . . . , y' are the values in those
locations in the state σi+1 (that is, 〈si+11, . . . , si+1 '〉 in Table 1).

If -=1, that is, we have one location only, say X, then the assertion (W3) reduces
to the following assertion (W3.1) where we have written: (i) x, instead of x1, (ii) y,
instead of y1, and (iii) X, instead of X1.
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∀k≥0. ∀n, m ≥ 0.[
β±(n, m, 0, X)∧
∀i. (0≤ i<k)⇒

(
(∀x.(β±(n, m, i, x) ⇒ b[x/X]))∧
(∀x, y.((β±(n, m, i, x) ∧ β±(n, m, i+1, y))

⇒ (wp(c0, X =y) ∧ ¬wp(c0, false))[x/X]))
) ]

⇒
[
∀x.(β±(n, m, k, x) ⇒ (b ∨ B)[x/X])

]
.

(W3.1)

This concludes the proof of the Expressiveness Theorem. !

Remark 4.18. In the proof of the Expressiveness Theorem (see page 134) we
made use of assertions with quantified integer variables and this is the reason why
we have introduced the set Intvar of the integer variables.

Now we prove Lemma 4.19 and Lemma 4.21 that we have used in the proof of
the Expressiveness Theorem.

In what follows, for all natural numbers x, n, p, we will write the formula

x = n mod p

as an abbreviation for the assertion

∃h. h≥0 ∧ x+h×p =n ∧ 0≤x<p

where h is a natural number, or equivalently,

∃h. h≥0 ∧ x+h×p =n ∧ h×p≤n ∧ (h+1)×p>n

where h is a natural number. Note that in these assertions we have used no other
arithmetic operation besides + and ×.

Lemma 4.19. [The Gödel β Predicate] For all natural numbers n, m, i, x, let
the assertion β(n, m, i, x), called the Gödel beta predicate, be the equality formula
x=n mod (1+(1+i)×m), that is, for all natural numbers n, m, i, x,

β(n, m, i, x) =def ∃h. h≥0 ∧ x=n−h×(1+(1+i)×m) ∧ 0≤x<(1+(1+i)×m).

Any sequence 〈n0, . . . , nk〉 of k+1 natural numbers can be encoded by two natural
numbers m and n such that for i = 0, . . . , k, x = ni, that is, x is the i-th element of
that sequence, iff β(n, m, i, x) holds.

Proof. Let us first define the natural numbers m and n for any given sequence
〈n0, . . . , nk〉 of k+1 natural numbers. By definition, the number m is the factorial of
the maximum number in the set {n0, . . . , nk, k}. In order to define the number n we
first define the following 3(k+1) values:

for i=0, . . . , k,

pi = 1+(i+1)×m

ci = (p0× . . . ×pk)/pi

di = the unique number such that: (i) 0≤di <pi, and (ii) the integer division of
(cidi) by pi, denoted (cidi)div pi, has remainder 1, that is there exists an
integer qi such that cidi = qipi+1.

Note that the definition of di is well-formed because it can be shown that there is a
unique value di which satisfies Conditions (i) and (ii).

Then we define n to be
∑k

i=0 ni ci di.
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We leave it to the reader to check that for i = 0, . . . , k, for any given sequence
〈n0, . . . , nk〉 of k +1 natural numbers, the values of m and n defined as we have
indicated above, are such that β(n, m, i, x) holds iff x is the i-th element of the
sequence 〈n0, . . . , nk〉.

Note also that ∀i, j, 0 ≤ i, j ≤ k, if i 1=j then gcd(pi, pj)=1. !

The following example clarifies the constructions we have indicated in the proof of
Lemma 4.19 on the preceding page.

Example 4.20. Let us consider, for instance, the sequence 〈1, 3, 2〉. It is encoded
by the numbers m = 6 and n = 7127, as we now show. The given sequence has 3
numbers and, thus, k=2 and m = (max{1, 3, 2, 2})! = 6.

p0 = 1+1×6 = 7. p1 = 1+2×6 = 13. p2 = 1+3×6 = 19.

c0 = 13×19 = 247. c1 = 7×19 = 133. c2 = 7×13 = 91.

Now we list the values of:

- r0(n) (that is, the remainder of (c0×n)div p0, which is (247×n)div 7), for 1≤n<p0,

- r1(n) (that is, the remainder of (c1×n)div p1, which is (133×n)div 13), for 1≤n<p1,

and

- r2(n) (that is, the remainder of (c2×n)div p2, which is (91×n)div 19), for 1≤n<p2.

n: 1 2 3 4 5 6
r0(n): 2 4 6 1 3 5

n: 1 2 3 4 5 6 7 8 9 10 11 12
r1(n): 3 6 9 12 3 5 8 11 1 4 7 10

n: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
r2(n): 15 11 7 3 18 14 10 6 2 17 13 9 5 1 16 12 8 4

Within boxes we have singled out the values of n such that ri(n) = 1, for i = 0, 1, 2.
Note that for i = 0, 1, 2, the function λn.ri(n) defines a permutation of the se-

quence 〈1, 2, . . . , pi−1〉. Thus, we have that:

d0 = 4 (indeed, if we divide 247×4 by 7 we get the remainder 1),

d1 = 9 (indeed, if we divide 133×9 by 13 we get the remainder 1), and

d2 = 14 (indeed, if we divide 91×14 by 19 we get the remainder 1).

Then n = 1×247×4 + 3×133×9 + 2×91×14 = 7127. We have that:

for i = 0: β(7127, 6, 0, 1) holds because 7127 mod (1+(1+0)×6) = 1,

for i = 1: β(7127, 6, 1, 3) holds because 7127 mod (1+(1+1)×6) = 3, and

for i = 2: β(7127, 6, 2, 2) holds because 7127 mod (1+(1+2)×6) = 2.

We can encode any finite sequence of natural numbers by a unique natural number
using powers of prime numbers. For instance, the sequence 〈1, 3, 2〉 can be encoded
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by 213352. However, this encoding cannot be realized by using −, +, and × only.
In particular, in fact, in the language of assertions we cannot express the primitive
recursion schema. Indeed, if it were the case, we could have reduced multiplication
to addition and Peano Arithmetics (which is an undecidable theory) would have been
reducible to Presburger Arithmetics (which is a decidable theory).

Lemma 4.21. [The β± Predicate] A sequence of k+1 integer numbers can be
encoded by two natural numbers m and n so that for i = 0, . . . k, the i-th element of
the sequence is the integer number x iff the following assertion β±(n, m, i, x) holds:

β±(n, m, i, x) =def ∃y.
(
β(n, m, i, y) ∧
y≥0∧∃z.

(
z≥0∧ (y=2z⇒x=z)∧ (y=2z−1⇒x=−z)

))

where, as indicated in Lemma 4.19 on page 138, the formula β(n, m, i, y) stands for

∃h. h≥0 ∧ y+h×(1+(1+i)×m) =n ∧ 0≤y<(1+(1+i)×m).

Proof. Any sequence σ = 〈n0, . . . , nk〉 of integer numbers is encoded by the
values of m and n which are constructed, as indicated in the proof of Lemma 4.19 on
page 138, starting from the sequence of natural numbers which is obtained from σ by
replacing, for i=0, . . . , k, each integer number ni by the natural number, denoted n+

i ,
defined as follows:

n+
i = if ni≥0 then 2 ni else (−2 ni)−1,

that is,

for ni = 0 −1 1 −2 2 −3 3 −4 4 −5 5 . . .

we have: n+
i = 0 1 2 3 4 5 6 7 8 9 10 . . . !

Now we illustrate the fact that if we choose a particular language of assertions and
a particular language of commands, it may be the case that the chosen language of
assertions is not expressive w.r.t. the chosen language of commands.

Let us consider the language of assertions which consists of the following three
assertions only: (i) X < 0, (ii) X = 0, and (iii) X > 0. In particular, for instance,
the assertion X = 0 ∨ X > 0 is not in the language. We have that this language of
assertions is not expressive w.r.t. the language that consists of the command X :=X+1
only. Indeed, wp(c, X > 0) is X ≥ 0, and it is not in the language of assertions we
have considered.

Let us consider the language of assertions which consists of the assertions true
and false only. This language of assertions is expressive w.r.t. the language Com of
commands we have considered in Section 1 on page 117. Indeed, for all commands c,
we have that:
(i) wp(c, true) is true because both |= {true} c {true} and |= {false} c {true} hold,
and
(ii) the value of wp(c, false) depends on c.
(ii.1) For all commands c such that for all σ ∈ State , !c"σ 1=⊥ (that is, c terminates
starting from σ), we have that wp(c, false) is false, because |= {false} c {false}
holds and |= {true} c {false} does not hold.
(ii.2) For all commands c such that for all σ ∈ State , !c"σ = ⊥ (that is, c does
not terminate starting from σ), we have that wp(c, false) is true, because both
|= {false} c {false} and |= {true} c {false} hold.
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We have the following theorems.

Theorem 4.22. [Uniqueness of Weakest Preconditions] Given a command
c ∈Com and an assertion B ∈Assn, we have that the assertion wp(c, B) is unique
up to logical equivalence.

Proof. Let us consider a command c ∈Com and an assertion B ∈Assn. Let
us also assume that there are two formulas A1 and A2 which enjoy the properties of
the weakest precondition of B w.r.t. c. In particular, for A1 we have that:

|= {A1} c {B}, and (α.1)

for all assertions A and B, for all commands c, |= {A} c {B} iff |= A ⇒ A1. (α.2)

Similarly, for A2 we have that:

|= {A2} c {B}, and (β.1)

for all assertions A and B, for all commands c, |= {A} c {B} iff |= A ⇒ A2. (β.2)

From (α.1) and (β.2) we have that |= A1 ⇒ A2, and from (α.2) and (β.1) we have
that |= A2 ⇒ A1. Thus, |= A2 ⇔ A1. !

Lemma 4.23. [Weakest Precondition Lemma] For all commands c ∈Com,
assertions B ∈Assn, if A(c, B) is an assertion such that for all interpretations I,
AI(c, B) = wpI(c, B), then & {A(c, B)} c {B}.

In particular, we have that & {wp(c, B)} c {B}.

Proof. We proceed by cases on the command c as in the proof of the Expres-
siveness Theorem 4.15 on page 134.

(Case c = skip). By Theorem 4.15 we have that BI = wpI(skip, B). Since by
hypothesis, AI(skip, B) = wpI(skip, B), we get by transitivity, AI(skip, B) = B I .
By Fact 4.10 on page 132 we have:

|= A(skip, B) ⇔ B. (1.1)

From (1.1) and & {B} skip {B} (see rule H1), by the consequence rule H6, we get
& {A(skip, B)} skip {B}.
(Case c = X := a). By Theorem 4.15 we have that (B[a/X])I = wpI(X := a, B).
(Recall that B[a/X] denotes the assertion B where all free occurrences of X are
substituted by a.) Since by hypothesis, AI(X := a, B) = wpI(X := a, B), we get by
transitivity, AI(X :=a, B) = (B[a/X])I . By Fact 4.10 we have:

|= A(X :=a, B) ⇔ B[a/X]. (2.1)

From (2.1) and & {B[a/X]}X :=a {B} (see rule H2), by the consequence rule H6,
we get & {A(X :=a, B)}X :=a {B}.
(Case c = c1; c2). By Theorem 4.15 we have that AI(c1,A(c2, B)) = wpI(c1; c2, B).
Since by hypothesis, AI(c1; c2, B) = wpI(c1; c2, B), by transitivity, we get that
AI(c1; c2, B) = AI(c1,A(c2, B)). By Fact 4.10 on page 132 we have:

|= A(c1; c2, B) ⇔ A(c1,A(c2, B)). (3.1)

By structural induction hypothesis, we have:

& {A(c2, B)} c2 {B}, where AI(c2, B) = wpI(c2, B), and (3.2)

& {A(c1,A(c2, B))} c1 {A(c2, B)}, (3.3)
where AI(c1,A(c2, B)) = wpI(c1; c2, B) = wpI(c1, A(c2, B))
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From (3.1), (3.2), (3.3), rule H3, and rule H6, we get & {A(c1; c2, B)} c1; c2 {B}.
(Case c = if b then c1 else c2). By Theorem 4.15 we have that:

(
(b ∧ A(c1, B)) ∨ (¬b∧A(c2, B))

)I
= wpI(if b then c1 else c2, B).

Since by hypothesis,

AI(if b then c1 else c2, B) = wpI(if b then c1 else c2, B), we get, by transitivity,

AI(if b then c1 else c2, B) =
(
(b∧A(c1, B))∨(¬b∧A(c2, B))

)I
. By Fact on page 132

we have:

|= A(if b then c1 else c2, B) ⇔ (b ∧ A(c1, B)) ∨ (¬b∧A(c2, B)). (4.1)

By structural induction hypothesis, we have:

& {A(c1, B)} c1 {B}, and (4.2)

& {A(c2, B)} c2 {B}. (4.3)

Since |= (b∧A(c1, B)) ⇒ A(c1, B) and |= (¬b∧A(c2, B)) ⇒ A(c2, B), from (4.1) and
(4.2), by rule H6 we get, respectively:

& {b ∧ A(c1, B)} c1 {B}, and (4.2.1)

& {¬b∧A(c2, B)} c2 {B}. (4.3.1)

Let F stand for (b∧A(c1, B))∨(¬b∧A(c2, B)). We have that: (b∧F ) ⇔ (b∧A(c1, B))
and (¬b ∧ F ) ⇔ (¬b ∧A(c2, B)). Thus, from (4.2.1) and (4.3.1) we get, respectively:

& {b ∧ F} c1 {B}, and (4.2.2)

& {¬b ∧ F} c2 {B}. (4.3.2)

From (4.1), (4.2.2), (4.3.2), rule H4, and rule H6, we get:

& {A(if b then c1 else c2, B)} if b then c1 else c2 {B}.
(Case c = while b do c0). Let W denote the assertion A(while b do c0, B). Since by
hypothesis, W I = wpI(while b do c0, B) we have that |= W ⇔wp(while b do c0, B).
Now we show that:

|= {W ∧ b} c0 {W}, and (5.1)

|= (W ∧ ¬b) ⇒ B. (5.2)

In order to prove Property (5.1) we need to show that for all I, σ, I, σ |= W ∧ b
implies I, !c0"σ |= W . Take any I and σ. Assume I, σ |= W ∧ b. We have that:

I, σ |= W and (5.1.1)

I, σ |= b. (5.1.2)

From (5.1.1) I, σ |= W , by |= W ⇔ wp(while b do c0, B), we get:

I, σ |= wp(while b do c0, B).

Hence, I, !while b do c0"σ |= B. By the property of the function !_" for commands,
we have:

I, !if b then (c0;while b do c0) else skip"σ |= B. (5.1.3)

From (5.1.3), since by (5.1.2), I, σ |= b holds, we have:

I, !c0;while b do c0"σ |= B, that is, I, !while b do c0"(!c0"σ) |= B.

Therefore, I, !c0"σ |= wp(while b do c0, B), and thus, I, !c0"σ |= W .

Now we prove Property (5.2). Take any I and σ. Assume I, σ |= W ∧ ¬b. We have
that:
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I, σ |= W and (5.2.1)

I, σ |= ¬b. (5.2.2)

We have to show that I, σ |= B.
From (5.2.1) we get I, σ |= wp(while b do c0, B). Thus, by definition of weakest

precondition, we also get I, !while b do c0"σ |= B. By the property of the function
!_" for commands, we have:

I, !if b then (c0;while b do c0) else skip"σ |= B. (5.2.3)

From (5.2.3), since by (5.2.2), I, σ |= ¬b, we get I, !skip"σ |= B. Thus, I, σ |= B.
This completes the proofs of Properties (5.1) and (5.2).

Now, from (5.1) by definition of weakest precondition, we have that:

|= (W ∧ b) ⇒ wp(c0, W ). (5.3)

By induction hypothesis (that is, by assuming that this Lemma 4.23 holds for c0,
which is a subcommand of the command while b do c0) from (5.3) we get:

& {wp(c0, W )} c0 {W}. (5.4)

Thus by (5.3) and (5.4), by rule H6 we get:

& {W ∧ b} c0 {W}. (5.5)

From (5.5), by rule H5 we get:

& {W}while b do c0 {W ∧ ¬b}. (5.6)

From (5.6), by (5.2) and rule H6, we get: & {W}while b do c0 {B}. !

Theorem 4.24. [Relative Completeness Theorem] Given a procedure (which
is necessarily not Turing computable) which for all assertions ϕ, checks whether or
not |= ϕ holds in Integer Arithmetics, we have that for all Hoare triples {A} c {B},
if |= {A} c {B} then & {A} c {B}.

Proof. Let us assume |= {A} c {B}. By Lemma 4.23 on page 141 we get:
(i) & {wp(c, B)} c {B}. Thus, from |= {A} c {B} and a property of the weakest
precondition (see Theorem 4.13 (ii) on page 133), we get: (ii) |= A ⇒ wp(c, B).
Thus, from (i) and (ii), by the consequence rule H6 we get: & {A} c {B}.

The procedure for checking for all assertions ϕ, whether or not |= ϕ holds in
Integer Arithmetics, is necessary for proving the premises of rules H2 and H6 of
Hoare Calculus. !

Theorem 4.25. [Gödel Incompleteness Theorem] The set {A | A ∈ Assn
and |= A holds in Integer Arithmetics} is not recursively enumerable.

Proof. Let us consider the set C↑ of commands which diverge starting from the
state where all arithmetic variables are bound to 0. Formally,

C↑ =def {c | |= wp(c, false) and all locations in c are bound to 0}.
Note that: (i) there is nothing peculiar in our choice to have all locations bound
to 0 because, by using assignments, we can bound every location to any value we
desire, and (ii) having all locations bound to values, we may ask ourselves given any
interpretation I, any state σ, any assertion A, whether or not I, σ |= A holds.

We know that C ↑ is not recursively enumerable (r.e., for short), because the
complement of C↑ is r.e. and not recursive (recall Post Theorem which states that if
a set and its complement are both r.e. then they are both recursive).
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Now, let us assume by absurdum that {A | A ∈Assn and |= A} is r.e. Thus,
we have a semidecision procedure that, in particular, tells us given any command c,
where all locations are bound to 0, whether or not |= wp(c, false) holds. Thus, C↑ is
r.e. and we get a contradiction. !

If we restrict the assertions by assuming that the set Aop of arithmetic operators
(see page 125) is {+,−}, then we have that the set {A | A ∈ Assn and |= A} is
recursive. Analogously, if we take Aop to be {×}, instead of {+,−}. These results
follow from Presburger’s result of the decidability of the first order theory of the
natural numbers with the addition operation only.

If we restrict the assertions by avoiding quantifiers (and keeping Aop to be
{+,−,×}), that is, if we consider the set Bexp of the boolean expressions (see
page 117), instead of the set Assn, we have that the set {b | b∈Bexp and |= b} is
not r.e. As we will see below, this result is a consequence of the following Matijasevic
Theorem (see Theorem 4.26).

Recall that:
(i) for every arithmetic expression a ∈ Aexp (see page 117), for every state σ ∈
State⊥ which assigns integers to locations (see page 118), we have that σ |= a=0 iff
!a"σ=0 (see page 126), and

(ii) the value of !a"σ does not depend on any interpretation I (that assigns integers
to integer variables of Intvar), because neither quantifiers nor integer variables of
Intvar occur in the boolean expressions of Bexp (see pages 117 and 125).

Theorem 4.26. [Matijasevic Theorem] Let us consider the set Aexp of the
arithmetic expressions. The set {a=0 | a ∈ Aexp and σ |= a=0 for some state σ} is
not recursive and it is recursively enumerable.

As a consequence of Matijasevic Theorem and Post Theorem, we get that the set
{¬(a = 0) | a ∈ Aexp and for all states σ, σ |= ¬(a = 0)} of boolean expressions in
Bexp is not recursively enumerable.

Since ¬(a=0) is a particular boolean expression, we also get that the set {b | b∈
Bexp and |= b} is not recursively enumerable.

Now we present a proof system for deciding whether or not an equation e, where
a1, a2 ∈ Aexp (see Figure 1 on the next page).

If an equation e can be derived by our proof system we write & e. If an equation e
of the form a1 =a2 is valid (that is, e holds for every state which assigns integers to
the locations occurring in a1 or a2) we write |= e.

The proof system we will present is sound and complete in the sense that: (i) it
derives only valid equations, and (ii) every valid equation has a derivation. Indeed,
for every equation e of the form a1 = a2, where a1, a2 ∈ Aexp, we have that & e iff
|= e [19, page 350].

In Figure 1 we assume that: (i) op ranges over {+,−,×}, (ii) n ranges over the
integers N , and (iii) a, possibly with subscripts, ranges over Aexp.

Note that when proving equations, a context-rule holds because we have the left
and right congruence rule.
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(reflexivity) a = a

(symmetry)
a1 = a2

a2 = a1

(transitivity)
a1 = a2 a2 = a3

a1 = a3

(left and right congruence)
a1 = a2

a op a1 = a op a2

a1 = a2

a1 op a = a2 op a

(associativity for +) (a1+a2)+a3 = a1+(a2+a3)

(associativity for ×) (a1×a2)×a3 = a1×(a2×a3)

(commutativity for +) a1+a2 = a2+a1

(commutativity for ×) a1×a2 = a2×a1

(distributivity) a1×(a2+a3) = (a1×a2)+(a1×a3)

(identity for +) 0+a = a

(identity for ×) 1×a = a

(inverse for +) a−a = 0

(negative numbers) −n = (−1)×n

(subtraction) a1−a2 = a1+((−1)×a2)

(successor) 1+1 = 2, 1+2 = 3, 1+3 = 4, . . .

Figure 1. Proof system for equations in Integer Arithmetics. All
variables are universally quantified in front.

In the proof system of Figure 1 all sums and products are computed by successive
applications of the successor rule. For instance, the product 2×2 is computed by the
following sequence of equalities:

2× 2 = (1+1)× (1+1) = (1× 1)+ (1× 1)+ (1× 1)+ (1× 1) = 1+1+1+1 = 4.

Exercise 4.27. By using the proof system of Figure 1, show that for all integer
numbers a, b, and c, we have that:

(i) 4 + 3 = 7, (ii) −a + a = 0,
(iii) 0 − a = −a, (iv) 0 = −0,
(v) −(−a) = a,
(vi) a−b = c iff a = b+c (that is, every subtraction can be reduced to a sum),
(vii) −2 × 3 = −6, (viii) 0 × a = 0, and (ix) (−1) × (−1) = 1. !
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5. Proving Simple Programs Correct Using Hoare Triples

In this section we present the correctness proofs for some programs. Here and in
what follows, we will free to refer to ‘a command’ also as ‘a program’.

5.1. Summing up the elements of an array.

We first consider the following program ArraySum for summing up the n elements
A[0], . . . A[n−1] of a given array A.

{n ≥ 0} Program: ArraySum

i := 0;
sum := 0;

I ≡ {0≤ i≤n ∧ sum =
∑i−1

j=0 A[j]}

while i<n do sum := sum + A[i];
i := i + 1;

od

{sum =
∑n−1

j=0 A[j]}

We first show that the assertion I, which is the invariant of the while-do loop, is
established upon initialization. We have to show the following implication:

n ≥ 0 ⇒
(
0≤ i≤n ∧ sum =

∑i−1
j=0 A[j]

)
[0/i, 0/sum],

that is,

n ≥ 0 ⇒
(
0≤0≤n ∧ 0 =

∑−1
j=0 A[j]

)
.

This implication is obvious. Then we show that the invariant I is kept during every
execution of the body of the loop because we have that:

(
0≤ i≤n ∧ sum =

∑i−1
j=0 A[j]

)
∧ (i<n) ⇒(

0≤ i≤n ∧ sum =
∑i−1

j=0 A[j]
)
[i+1/i, sum+A[i]/sum],

that is,
(
0≤ i≤n ∧ sum =

∑i−1
j=0 A[j]

)
∧ (i<n) ⇒(

0≤ i+1≤n ∧ sum+A[i] =
∑i

j=0 A[j]
)
.

Also this implication is obvious.
Upon termination of the loop we get that the postcondition holds, because of the

following implication holds:
(
0≤ i≤n ∧ sum =

∑i−1
j=0 A[j]

)
∧ (i 1<n) ⇒ sum =

∑n−1
j=0 A[j].

The termination of the program holds because at each execution of the body of the
loop the value of n− i decreases by one unit and cannot become negative. Thus,
we have established the total correctness of the given program for summing up the
elements of a given array.
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5.2. Computing the power of a number.

Now we present a program for computing the n-th power of a given number x. The
algorithm is based on the following equations where: (i) even and odd are primitive
predicates over the natural numbers with the obvious meaning, and (ii) div 2 denotes
the integer division by 2 (for instance, 7div 2 returns 3, and 8div 2 returns 4).

xn = 1 if n = 0
xn = (xn/2)2 if even(n)
xn = x×xn−1 if odd(n)

We have the following imperative program.

{n ≥ 0} Program: Fast Exponentiation

k := n; y := 1; z := x;

I ≡ {y×zk = xn ∧ k≥0}
while k 1=0 do if odd(k) then begin k := k−1; y := y×z end

L ≡ {y×zk = xn ∧ k≥0 ∧ even(k)}
k := k div 2; z := z×z;

od

{y = xn}

Partial correctness of our Fast Exponentiation program is established by the following
four implications whose easy proofs are left to the reader.

The invariant I is established upon initialization because the following implication
holds:

n ≥ 0 ⇒
(
y×zk = xn ∧ k≥0

)
[n/k, 1/y, x/z],

that is,

n ≥ 0 ⇒
(
xn = xn ∧ n≥0

)
.

The invariant I is kept during every execution of the body of the loop, because the
following two implications hold:(

y×zk = xn ∧ k≥0
)
∧ (k 1=0) ∧ odd(k) ⇒(

y×zk = xn ∧ k≥0 ∧ even(k)
)
[k−1/k, y×z/y],

and(
y×zk = xn ∧ k≥0 ∧ even(k)) ⇒(

y×zk = xn ∧ k≥0) [k div 2/k, z×z/z].

Upon termination of the loop we get the postcondition because the following impli-
cation holds:(

y×zk = xn ∧ k≥0
)
∧ (k=0) ⇒ (y = xn).

The termination of the program is shown by the fact that the value of k is decreased
at every execution of the loop body. This concludes the proof of the total correctness
of our Fast Exponentiation program.
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5.3. Computing Ackermann function.

Ackermann function is defined by the following equations.

Ack(0, n) = n+1 for any n ≥ 0
Ack(m+1, 0) = Ack(m−1, 1) for any m ≥ 0
Ack(m+1, n+1) = Ack(m, Ack(m+1, n)) for any m, n ≥ 0

We may compute Ackermann function by using the following imperative program.

{m ≥ 0 ∧ n ≥ 0} Program: Ackermann Function

stack := push(m, emptystack); res := n;

I ≡ {stack =emptystack ⇒ Ack(m, n)=res
∧ stack 1=emptystack ⇒ ∃k, ∃n1, . . . nk,

stack =push(n1, . . . , push(nk, emptystack) . . .)
∧ Ack(m, n)=Ack(nk, . . . ,Ack(n1, res) . . .)}

while stack 1=emptystack do
a := top(stack); stack := pop(stack);
if a=0 then res := res+1 else
if res =0 then begin stack := push(a−1, stack); res := 1 end else
else begin stack := push(a, push(a−1, stack)); res := res−1 end

od

{res = Ack(m, n)}

We leave to the reader the proof of the partial correctness of this program which is
done by checking that: (i) the invariant I is established upon initialization, (ii) the
invariant I is kept during every execution of the body of the loop, and (iii) the
invariant I establishes the postcondition res = Ack(m, n) upon termination of the
loop.

The termination of our program for Ackermann function can be shown by prov-
ing that at every execution of the loop body the measure µ which we now de-
fine, decreases according to a suitable ordering. For any stack with the k values
n1, n2, n3, . . . , nk−1, nk, in this order (being n1 the top of the stack), for any value of
res, the function µ returns a multiset of pairs of integers, as follows:

µ(push(n1, push(n2, push(n3, . . . , push(nk−1, push(nk, emptystack)) . . .))), res)

=def {〈n1, res〉, 〈n2+1, 0〉, 〈n3+1, 0〉, . . . , 〈nk−1+1, 0〉, 〈nk+1, 0〉}
Below we will prove (see Cases 1, 2, and 3) that at every execution of the loop body
the measure µ decreases according to the ordering that we now define.

Let us consider the lexicographic order >lex on pairs of natural numbers which
is defined as follows: for any natural numbers a1, b1, a2, and b2, we have that:
〈a1, b1〉 >lex 〈a2, b2〉 iff either a1 >a2 or (a1 =a2 and b1 >b2).

Let us also consider the multiset order ;lex on finite multisets of pairs of natural
numbers which is defined as follows: for any two finite multisets X and Y of pairs of
natural numbers we have that: X ;lex Y iff there exist the multisets A, B, and C
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such that X =A : C and Y =B : C and ∀q ∈ B, ∃p ∈ A, p>lex q, where : denotes
the disjoint union of multisets (see also Definition 9.10 on page 42).

Case 1: a=0. We have that:

{〈a, res〉, 〈n2+1, 0〉, 〈n3+1, 0〉, . . .} ;lex {〈n2, res+1〉, 〈n3+1, 0〉, . . .}
because: (i) the pair 〈a, res〉 belongs to the multiset on the left hand side and it does
not belong to the multiset on the right hand side, (ii) 〈n2+1, 0〉 >lex 〈n2, res+1〉, and
(iii) all other pairs of the two multisets are equal.

Case 2: a>0 ∧ res =0. We have that:

{〈a, res〉, 〈n2+1, 0〉, 〈n3+1, 0〉, . . .} ;lex {〈a−1, 1〉, 〈n2+1, 0〉, 〈n3+1, 0〉, . . .}
because: (i) 〈a, res〉 >lex 〈a−1, 1〉, and (ii) all other pairs of the two multisets are
equal.

Case 3: a>0 ∧ res >0. We have that:

{〈a, res〉, 〈n2+1, 0〉, 〈n3+1, 0〉, . . .} ;lex {〈a, res−1〉, 〈a, 0〉, 〈n2+1, 0〉, 〈n3+1, 0〉, . . .}
because: (i) 〈a, res〉 >lex 〈a, res−1〉, (ii) 〈a, res〉 >lex 〈a, 0〉 (recall that in this Case 3
res >0), and (iii) all other pairs of the two multisets are equal.

Since, as it is well known, the order > is well-founded (that is, has no infinite
descending sequences of elements of the form: a1 > a2 > a3 > . . .) iff the order ;lex

is well-founded, there is no an infinite sequence of executions of the loop body, and
this concludes the proof of the total correctness of the given program for computing
the Ackermann function.

5.4. Computing a linear recursive schema.

Let us consider the following recursively defined function h : N → D, where: (i) N
is the set of integers, (ii) D is a given set, (iii) a and b are two constants in D, and
(iv) c is a function from D to D.

h(0) = a
h(1) = b
h(n+2) = c(h(n)) for any n ≥ 0

We may compute the value of h(n) for any argument n ≥ 0 by using the following
imperative program. Recall that: (i) by xdiv 2 we denote the integer division of x
by 2, so that, for instance, 7div 2 = 3 and 6div 2 = 3 (in general, when performing
the integer division we discard the remainder, if it is different from 0), and (ii) c0(n) =
n and cm+1(n) = c(cm(n)). We assume that even(n) is true iff n is an even natural
number.

{K≥0} Program: Linear Recursive Schema

n := K;

{n≥0 ∧ n = K}
if even(n) then res := a else begin res := b; n := n−1 end;

I ≡ {n≥0 ∧ cndiv 2(res)=h(K) ∧ even(n)}
while n >1 do n := n−2; res := c(res) od

{res = h(K)}
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The partial correctness of this imperative program follows from the following four
implications:

(1) (n≥0 ∧ n=K ∧ even(n)) ⇒ (n≥0 ∧ cndiv 2(a)=h(K) ∧ even(n))

(2) (n≥0 ∧ n=K ∧ ¬even(n)) ⇒ (n≥0 ∧ c (n−1)div 2(b)=h(K) ∧ even(n−1))

(3) (n≥0 ∧ cndiv 2(res)=h(K) ∧ even(n) ∧ n>1)

⇒ (n−2≥0 ∧ c (n−2)div 2(c(res))=h(K) ∧ even(n−2))

(4) (n≥0 ∧ cndiv 2(res)=h(K) ∧ even(n) ∧ n≤1) ⇒ res =h(K)

The proofs of (1) and (2) can be done by induction on K.
The termination of the program follows from the fact that at each execution of

the loop body the value of n decreases and that value cannot go below 0.
By taking different values for a, b, and c, we get different instantiations of the

function h. Indeed,

(i) by taking a=0, b=0, and c = λn.n+1, we get the function which for any n≥0,
computes the integer division of n by 2,

(ii) by taking a = true, b = false, c = λx. not(x), we get the function which for any
input n≥0, tells us whether or not n is even, that is, h(n) is true iff even(n) holds,

(iii) by taking a = false, b = true, c = λx. not(x), we get the function which for any
input n≥0, tells us whether or not n is odd, that is, h(n) is false iff even(n) holds,
and

(iv) by taking a=ε, b=1, and c = λw. 10w, we get the function which for any input
n≥0, returns the word (10)ndiv 2 if even(n) holds, and (10)ndiv 21 if even(n) does not
hold.

5.5. Dividing integers using binary arithmetics.

Given the integer numbers P ≥ 0 and Q > 0, we may compute the quotient q and the
remainder r such that P = Q×q + r with 0≤r<Q by using the following program.

{P ≥0 ∧ Q>0} Program: Binary Division

r := P ; m := Q; k := 0; q := 0;

I1 ≡ {P ≥0 ∧ Q>0 ∧ r=P ∧ m=Q×2k ∧ k≥0 ∧ q=0}
while r≥m do m := m×2; k := k+1 od;

I2 ≡ {P ≥0 ∧ Q>0 ∧ P = Q×q+r ∧ 0≤r<m ∧ m=Q×2k ∧ k≥0 ∧ q≥0}
while m 1=Q do m := mdiv 2; k := k−1;

I3 ≡ {P ≥0 ∧ Q>0 ∧ P =Q×q+r ∧ 0≤r<2×m ∧ m=Q×2k ∧ k≥0 ∧ q≥0}
if r≥m then begin r := r−m; q := q+2k end;

od

{P =Q×q+r ∧ 0≤r<Q}

I1 and I2 are the invariants of the two while-do loops and I3 is the assertion which
holds after the execution of k := k−1. Note that when the statement m := mdiv 2
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is executed then m is an even number, because: (i) m 1= Q, and (ii) by I2, we have
that m=Q×2k (indeed, it can be shown that if m 1=Q ∧ k≥0, then k≥1).

Here is a trace of the values of r (initialized to P ), m (initialized to Q), k (initial-
ized to 0), and q (initialized to 0), while computing P = 32 divided by Q = 6. This
division returns the quotient q=5 and the remainder r=2.

step r m k q

0 P = 32 Q = 6 0 0
1 12 1
2 24 2
3 48 3

4 8 24 2 4 (=0+22)
5 12 1
6 2 6 0 5 (=0+22 +20)

The partial correctness of our program for binary division follows from the following
implications:

1. P ≥0 ∧ Q>0 ⇒ I1[P/r, Q/m, 0/k, 0/q]

2. I1 ∧ r≥m ⇒ I1[(m×2)/m, (k+1)/k]

3. I1 ∧ r<m ⇒ I2

4. I2 ∧ m 1=Q ⇒ I3[(mdiv 2)/m, (k−1)/k]

5. I3 ∧ r≥m ⇒ I2[(r−m)/r, (q+2k)/q]

6. I2 ∧ m=Q ⇒ P =Q×q+r ∧ 0≤r<Q

In the above implications, as usual,

(i) the generic formula I[v/x] denotes I, where all occurrences of x have been replaced
by v, and

(ii) I[v1/x1, . . . , vn/xn] is an abbreviation for (. . . (I[v1/x1]) . . . [vn/xn]). In particular,
I3[(mdiv 2)/m, (k−1)/k] denotes I3 where all occurrences of m have been replaced
by mdiv 2 and all occurrences of k have been replaced by k−1.

We leave it to the reader to prove those implications. In one of those proofs the
following property is required: if m 1=Q ∧ k≥0 then k≥1.

The termination of the program Binary Division is a consequence of the following
two facts:

(i) for the first while-do loop, we have that at each execution of the body, m increases
and, eventually, it becomes larger than r, and

(ii) for the second while-do loop, we have that at each execution of the body, k is
decreased by one unit until it becomes 0 and, thus, m becomes equal to Q (because
I2 ⇒ m=Q×2k).
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6. Verification Conditions on Annotated Commands

In this section we present a language of annotated commands, called Acom, and
through those annotations, also called verification conditions, one can verify that
any given annotated command is partially correct w.r.t. given assertions. Here are
the annotated commands (see also page 126, where we have defined the set Com of
commands).

Annotated Commands

c, c0, c1, c2 over Acom c ::= skip | X :=a | c1; X :=a | c1; {D} c2

| if b then c1 else c2 | while b do {D} c0

where a ∈ Aexp, b ∈ Bexp, and D ∈ Assn.

In the case of the while-do command the assertion D is called the invariant of the
while-do.

Now we present the so called proof obligations, which allow us to show the partial
correctness of commands with respect to given preconditions and postconditions. A

proof obligation is presented as a deductive rule of the form
Y1 . . . Yn

X
which tells

us that in order to show X we need to show Y1, . . . , Yn.

(H1)
|= A ⇒ B

{A} skip {B}

(H2)
|= A ⇒ B[a/X]

{A} X:=a {B}

(H3.2)
{A} c1 {B[a/X]}
{A} c1 ; X:=a {B}

(H3.2)
{A} c1 {D} {D} c2 {B}

{A} c1 ; {D} c2 {B}

(H4)
{A∧ b} c1 {B} {A∧¬b} c2 {B}

{A} if b then c1 else c2 {B}

(H5)
|= A⇒D {D∧ b} c0 {D} |= (D∧¬b)⇒B

{A} while b do {D} c0 {B}
(D is the invariant)

These proof obligations are derived from the rules of the Hoare Calculus (see Sec-
tion 4.3 on page 128).

The three premises of rule (H5) are called initialization, looping, and exit, respec-
tively.
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The proof obligations (H1)–(H5) are sufficient conditions. However, they are not
necessary conditions. Indeed, let us consider the following Hoare triple:

{true} while false do {false} skip {true} (α)

where false is the invariant of the while-do command. Since for any command c,
the triple {true} c {true} holds, we have that (α) is a valid triple.

However, the initialization condition |= true ⇒ false does not hold and, thus,
the invariant false does not allow us to establish the validity of the triple (α).

Note that, since the calculus of the Hoare triples is undecidable, there is no
algorithm that for any given command c and assertions A and B, (i) terminates, and
(ii) constructs for all while-do commands occurring in c, the associated invariants
which allow us to establish the validity of the triple {A} c {B}.

Actually, the calculus of the Hoare triples is not even semidecidable, because
the triple {true} c {false} holds iff the command c does not terminate, and non-
termination is undecidable and not semidecidable.

7. Semantics of While-Do Loops

In what follows we give two definitions (see Definition 7.1 below and Definition 7.6
on page 156) of the semantics of the while-do loops and we show that they are
equivalent.

In Lemma 7.3 on the following page we show that these definitions are also equiv-
alent to the semantic equations of Section 3.3 on page 123.

Definition 7.1. [Denotational Semantics of while-do] We stipulate that for
all boolean expressions b ∈Bexp, for all commands c0 ∈Com, and for all states
σ, σ′ ∈ State⊥,

!while b do c0"σ = σ′ iff

σ 1= ⊥ ∧ !b"σ = false ∧ σ = σ′ (1)

∨ ∃k>0. ∃σ0 . . . σk ∈ State k " State⊥. (2)

σ0 = σ ∧ σk = σ′ ∧
(
∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi = σi+1)

)
∧

(( !b"σk = false ∧ σk 1= ⊥) (2.1)

∨ σk = ⊥) (2.2)

∨ σ = σ′ = ⊥ (3)

∨ σ′ = ⊥ ∧
∀k≥0. ∀σ0 . . . σk ∈ State k+1. (4)

σ0 = σ∧
(
∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi = σi+1)

)

Remark 7.2. Cases (1), (2.1), (2.2), (3), and (4) of this Definition 7.1 are mutually
exclusive and exhaustive and, thus, Definition 7.1 defines a function, called !while b
do c0", from State⊥ to State⊥.

Note that in Case (2) we have that k 1=0. Indeed, if k=0 then Case (2.1) reduces
to Case (1), and Case (2.2) reduces to Case (3). Thus, if we do not insist on having
mutually exclusive cases, in Case (2) we may write ‘∃k≥0’, instead of ‘∃k>0’.
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The initial state σ is equal to ⊥ in Case (3), while it is different from ⊥ in
Cases (1), (2.1), (2.2), and (4).

Case (1) holds when the body of the while-do command is never executed and,
thus, the while-do command is equivalent to skip.

Case (2.1) holds when the body of the while-do command is executed at least
once and the last execution of its body terminates.

Case (2.2) holds when the body of the while-do command is executed at least
once and the last execution of its body does not terminate, that is, the execution of
c0 starting from the state σk−1, does not terminate.

Case (4) holds when the body of the while-do command is executed an un-
bounded number of times because the value of boolean expression b is always true,
that is, for all i ≥ 0, (1) the value of b in the state σi is true, and (2) every execution
of c0 starting from the state σi, terminates leading to the state σi+1. !

Lemma 7.3. For all boolean expressions b ∈Bexp, for all commands c0 ∈Com,
and for all states σ, σ′ ∈ State⊥, we have that !while b do c0"σ = σ′ holds according
to the semantic equations given in Section 3.3 on page 123 iff !while b do c0"σ = σ′

holds according to Definition 7.1 on the preceding page.

Proof. The proof is done by cases considering the possible values of σ (whether
σ=⊥ or σ 1=⊥) and b (whether !b"σ= true or !b"σ= false).

(Case 1) Assume that σ 1= ⊥ and !b"σ = false. According to the semantic equa-
tions, σ′ = !while bdo c0"σ = σ. We also have that σ′ = σ according to Case 1 of
Definition 7.1.

(Case 2.1) Assume that σ 1=⊥ and there exists k>0 such that for all i, with 0≤ i<k,
!b"(!c0"iσ)= true and !b"(!c0"kσ)= false and !c0"kσ =σ′. According to the semantic
equations, σ′=!while bdo c0"σ=(

⊔
i≥0 τ i(λσ.⊥))σ where:

τ =def λf.λσ.cond(!b"σ, f(!c0"σ), σ).

We have that:

τ 0(λσ.⊥)σ = ⊥
τ 1(λσ.⊥)σ = cond(!b"σ,⊥, σ)

τ 2(λσ.⊥)σ = cond(!b"σ, cond(!b"(!c0"σ),⊥, !c0"σ) , σ)

τ 3(λσ.⊥)σ = cond(!b"σ, cond(!b"(!c0"σ), cond(!b"(!c0"2σ),⊥, !c0"2σ), !c0"σ) , σ)
. . .

In order to highlight the iterative structure of the above right hand sides, let us
rewrite them by using the following abbreviations:

(i) (a, b, c), instead of cond(a, b, c),
(ii) b, instead of !b",
(iii) for all i>0, iσ, instead of !c0"iσ, and
(iv) σ, instead of !c0"0σ.

Thus, for instance, !b"σ is rewritten as bσ, and for i > 0, !b"(!c0"iσ) is rewritten as
biσ. We get:
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τ 0(λσ.⊥)σ = ⊥
τ 1(λσ.⊥)σ = (bσ, ⊥, σ)

τ 2(λσ.⊥)σ = (bσ, (b1σ, ⊥, 1σ), σ)

τ 3(λσ.⊥)σ = (bσ, (b1σ, (b2σ, ⊥, 2σ), 1σ), σ)
. . . . . .

τ i+1(λσ.⊥)σ = (bσ, (b1σ, (b2σ, (. . . , (biσ, ⊥, iσ), . . .), 2σ), 1σ), σ)
. . . . . .

By using the same abbreviations, the hypotheses holding in our case are rewritten as
follows: there exists k>0 such that for all i, with 0≤ i<k, biσ= true and bkσ= false
and kσ=σ′.

By looking at the above values of τ i(λσ.⊥)σ, for i ≥ 0, one can easily show
by induction that, for all k > 0, for all i, with i > k, τ i(λσ.⊥)σ = kσ, that is,
τ i(λσ.⊥)σ=!c0"kσ. Therefore, we get the following table:

i = 0 1 . . . k−1 k k+1 k+2 . . .

!b"(!c0"iσ) = true true . . . true false

τ i(λσ.⊥)σ = ⊥ ⊥ . . . ⊥ ⊥ !c0"kσ !c0"kσ . . .

Thus, σ′=(
⊔

i≥0 τ i(λσ.⊥))σ=!c0"kσ.
We also have that σ′=!c0"kσ according to Case 2.1 of Definition 7.1.

(Case 2.2) Assume that σ 1= ⊥ and there exists k > 0 such that for all i, with 0 ≤
i < k, !b"(!c0"iσ) = true and !c0"kσ = ⊥. According to the semantic equations,
σ′ = !while bdo c0"σ = (

⊔
i≥0 τ i(λσ.⊥))σ. The proof is similar to that of Case 2.1.

However, in this case, since !c0"kσ =⊥, we have that: (1) for all i≥k, !b"(!c0"iσ) =
true (recall that for all b, !b"⊥ = true), and (2) for all i> k, τ i(λσ.⊥)σ = ⊥ (recall
that for all commands c, !c"⊥=⊥).

Thus, we have the following table:

i = 0 1 . . . k−1 k k+1 k+2 . . .

!b"(!c0"iσ) = true true . . . true true true true . . .

τ i(λσ.⊥)σ = ⊥ ⊥ . . . ⊥ ⊥ ⊥ ⊥ . . .

Thus, σ′=(
⊔

i≥0 τ i(λσ.⊥))σ=⊥.
We also have that σ′=⊥ according to Case 2.2 of Definition 7.1.

(Case 3) Assume that σ=⊥. According to the semantic equations, we have that σ′=
!while bdo c0"σ = ⊥, because !c"⊥=⊥ for all commands c.

We also have that σ′=⊥ according to Case 3 of Definition 7.1.
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(Case 4) Assume that σ 1= ⊥ and for all i ≥ 0, !b"(!c0"iσ) = true and !c0"iσ 1= ⊥.
According to the semantic equations, σ′=!while bdo c0"σ=(

⊔
i≥0 τ i(λσ.⊥))σ.

Let us show, by induction on i, that for all i≥0, τ i(λσ.⊥)=λσ.⊥.
The basis case is obvious. The inductive step is as follows.

τ i+1(λσ.⊥)=τ(τ i(λσ.⊥))= {by induction hypothesis} =

= τ(λσ.⊥)=λσ.cond (!b"σ,⊥, σ)= {because for all i≥0, !b"(!c0"iσ)= true} =

= λσ.⊥.

Now, since for all i≥0, τ i(λσ.⊥)=λσ.⊥, we get that σ′=⊥.
We also have that σ′=⊥ according to Case 4 of Definition 7.1. !

Remark 7.4. We have assumed that the semantics function !_" for commands is
a total function from Com × State⊥ to State⊥. We could have assumed that it were
a partial function from Com × State to State. In that case, in order to be consistent
with the semantic equations given in Section 3.3, in Definition 7.1 on page 153 we
should have limited ourselves to Cases (1) and (2.1) only, because in those cases
σ′ 1=⊥. In the other cases, that is, Cases (2.2), (3), and (4), !while b do c0"σ should
have been undefined and, indeed, we have that σ′=⊥. !

Remark 7.5. Since the semantic function for commands is strict and for every
boolean expression b, !b"⊥ = true, we have that Case (2.2) and Case (3) of Defini-
tion 7.1 on page 153 are the instances for 0<k=m and 0=k=m, respectively, of the
more general case in which there exist: (1) two integers k and m, with 0≤k≤m, and
(2) a sequence of states σ0 . . . σk−1σk . . . σm ∈ Statek " Statem−k+1

⊥ such that: (2.1) for
i=0, . . . , k−1, we have that σi 1=⊥, and (2.2) for i=k, . . . , m, we have that σi =⊥. !

Definition 7.6. [Weakest Precondition of while-do] We stipulate that for all
states σ ∈ State⊥, for all interpretations I ∈ Intvar→ N , for all boolean expressions
b ∈Bexp, for all commands c0 ∈Com, and for all assertions B ∈Assn,

σ ∈ wpI(while b do c0, B) iff

σ = ⊥ (α)

∨ ∀k≥0. ∀σ0 . . . σk ∈ State k " State⊥. (β⇒) (β)

where the formula (β⇒) is the following implication :
[
σ0 = σ ∧

(
∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi = σi+1)

) ]

⇒ ( !b"σk = true ∨ I, σk |= B )

The following two theorems, Theorem 7.7 on the next page and Theorem 7.9 on
page 158, show that Definition 7.1 on page 153 and Definition 7.6 are equivalent in
the sense that:
for all boolean expressions b ∈Bexp, for all commands c0 ∈Com, for all states
σ ∈ State⊥, for all interpretations I ∈ Intvar→ N , for all assertions B ∈Assn,

σ ∈ wpI(while b do c0, B)

iff there exists σ′ ∈ State⊥ such that !while b do c0"σ = σ′ ∧ I, σ′ |= B.
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Theorem 7.7. [Equivalence of Semantics of while-do. Part 1] For all
boolean expressions b ∈Bexp, for all commands c0 ∈ Com, for all states σ, σ′ ∈
State⊥, for all interpretations I ∈ Intvar→ N , for all assertions B ∈Assn,

if !while b do c0"σ = σ′ ∧ I, σ′ |= B

then σ ∈ wpI(while b do c0, B).

Proof. By cases according to Definition 7.1.

(Case 1). Since !b"σ = false and σ0 = σ, we have that !b"σ0 = false. For any k ≥ 0
and any sequence σ0 . . . σk, the implication (β⇒) holds because its premise is false.
Thus, (β) holds and σ ∈ wpI(while b do c0, B).

(Case 2). It is enough to show that ∀k≥0. ∀σ0 . . . σk ∈ State k " State⊥. (β⇒). In order
to do so, let us take any k ≥ 0 and any sequence σβ =def σ0 . . . σk ∈ Statek " State⊥

such that σ0 = σ and ∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi =σi+1).
For this case we look at Cases (2.1) and (2.2) separately.

(Case 2.1). In this case, by hypothesis, there exists a sequence σα =def σ0 . . . σs ∈
State s " State⊥ such that s > 0 and σ0 = σ and σs = σ′ and ∀i, 0 ≤ i < k. (!b"σi =
true ∧ !c0"σi =σi+1) and !b"σs = false and σs 1=⊥.

Let m be the minimum between k and s. Since the semantic function !_" for
commands is indeed a function, we have that for j =0, . . . , m, the prefixes of length j
of the sequences σα and σβ are equal. Now, we have that:

(2.1.1) for 0≤k<s, (β⇒) holds for σβ because !b"σk = true,

(2.1.2) for k = s, (β⇒) holds for σβ because σs = σ′ and !while b do c0"σ = σs 1=⊥,
and I, σ′ |= B (by hypothesis), and

(2.1.3) for k > s, (β⇒) holds for σβ because !b"σs = false and thus, the premise of
(β⇒) is false.

Thus, (β) holds and σ ∈ wpI(while b do c0, B).

(Case 2.2) is similar to Case (2.1). In this case, by hypothesis, there exists a sequence
σα =def σ0 . . . σs ∈ State s " State⊥ such that s > 0 and σ0 = σ and σs = σ′ and
∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi =σi+1) and σs =⊥.

Let m be the minimum between k and s. Since the semantic function !_" for
commands is indeed a function, we have that for j =0, . . . , m, the prefixes of length j
of the sequences σα and σβ are equal. Now, we have that:

(2.2.1) for 0≤k<s, (β⇒) holds for σβ because !b"σk = true,

(2.2.2) for k=s, (β⇒) holds for σβ because σs =σ′=⊥ and !while b do c0"σ=σs =⊥,
and I,⊥ |= B (by definition of |=), and

(2.2.3) for k > s, (β⇒) holds for σβ because: (i) σs = ⊥, (ii) for all j ≥ s, σj = ⊥
(because for all j≥s, !c0"σj =σj+1 and the semantic function !_" for commands is a
strict function), and (iii) I,⊥ |= B (by definition of |=) and, thus, the conclusion of
(β⇒) holds.

Thus, (β) holds and σ ∈ wpI(while b do c0, B).

(Case 3). In this case σ=σ′=⊥ and for any b, c0, and B, we have that ⊥ ∈ wpI(while
b do c0, B).
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(Case 4). In this case, by hypothesis, we have that:

∀k ≥ 0. ∀σ0 . . . σk ∈ Statek+1. σ0 =σ ∧ ∀i ≥ 0. (!b"σi = true ∧ !c0"σi =σi+1). (†)
It is enough to show that ∀k≥0. ∀σ0 . . . σk ∈ State k " State⊥. (β⇒). In order to do so,
let us take any k≥0 and any sequence σ0 . . . σk ∈ Statek " State⊥ such that σ0 =σ and
∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi =σi+1). Since (†) holds and the semantic function
!_" for commands is indeed a function, we have that σk ∈ State . By (†) we also have
that !b"σk = true. Thus, the conclusion of (β⇒) holds. !

Remark 7.8. The above Theorem 7.7 can also be stated as follows:
for all interpretations I ∈ Intvar→ N , for all states σ ∈ State⊥, for all assertions
B ∈Assn,

if !while b do c0"σ ∈ BI then σ ∈ wpI(while b do c0, B).

Indeed, we have that:

σ ∈ wpI(while b do c0, B) iff {by Fact 4.12 on page 133}

iff I, σ |= wp(while b do c0, B) iff {by Definition 4.11 on page 132}

iff I, !while b do c0"σ |= B. !

Note that, in contrast to the statement of Theorem 7.7 on the previous page, in this
new, equivalent statement of the theorem there is no reference to the state σ′.

Theorem 7.9. [Equivalence of Semantics of while-do. Part 2] For all
boolean expressions b ∈Bexp, for all commands c0 ∈Com, for all states σ ∈ State⊥,
for all interpretations I ∈ Intvar→ N , for all assertions B ∈Assn,

if σ ∈ wpI(while b do c0, B)

then there exists σ′ ∈ State⊥ such that !while b do c0"σ = σ′ ∧ I, σ′ |= B.

Proof. By cases according to Definition 7.6.
(Case α). Assume σ=⊥. Since the semantics function !_" for commands is a strict
function, we have that !while b do c0"⊥ = ⊥. (This case corresponds to Case (3) of
Definition 7.1.) We have that I,⊥ |= B. Thus, there exists a state σ′, namely ⊥,
such that !while b do c0"σ=σ′ and I, σ′ |= B.

(Case β). Assume (β) of Definition 7.6.

Let us consider two cases: Case β.1 and Case β.1.

(Case β.1). We assume (β) of Definition 7.6 and we also assume that:

∃k≥0. ∃σ0 . . . σk ∈ Statek " State⊥.

σ0 =σ ∧
(
∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi = σi+1)

)

∧ !b"σk = false ∧ I, σk |= B.

(β.1)

Let us consider two subcases: Subcase β.1.1 and Subcase β.1.2.

(Subcase β.1.1). Assume that in Condition (β.1) we have that k=0. Thus, we have
that:
σ0 = σ ∧ !b"σ0 = false ∧ I, σ0 |= B. (This case corresponds to Case (1) of Defi-
nition 7.1.) We also have that !while b do c0"σ = σ0, because !b"σ0 = false and
σ0 = σ. Thus, there exists a state σ′, namely σ0, such that !while b do c0"σ=σ′ and
I, σ′ |= B.
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(Subcase β.1.2). Assume that in Condition (β.1) we have that k > 0. Thus, Condi-
tion (β.1) becomes:

∃k > 0. ∃σ0 . . . σk ∈ Statek " State⊥.

σ0 =σ ∧
(
∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi = σi+1)

)

∧ !b"σk = false ∧ I, σk |= B.

(β.1*)

By (β) we have that !b"σk = true∨ I, σk |= B. Thus, from (β.1*) we get: I, σk |= B.
(This case corresponds to Case (2.1) of Definition 7.1 because !b"σk = false and,
thus, σk 1=⊥.) Since by (β.1*) we have that for all i, with 0≤ i<k, !b"σi = true and
!b"σk = false, by Definition 7.1 on page 153 we get that !while b do c0"σ = σk. Thus,
there exists a state σ′, namely σk, such that !while b do c0"σ=σ′ and I, σ′ |= B.

(Case β.1). In this case we assume (β) of Definition 7.6 and we also assume that:

∀k≥0. ∀σ0 . . . σk ∈ Statek " State⊥.[
σ0 = σ ∧

(
∀i, 0≤ i<k. (!b"σi = true∧ !c0"σi = σi+1)

) ]

⇒ (!b"σk = true ∨ I, σk 1|= B).

(β.1)

Note that Condition (β.1) is the negation of Condition (β.1). By (β) and (β.1) we
get:

∀k≥0. ∀σ0 . . . σk ∈ Statek " State⊥.[
σ0 = σ ∧

(
∀i, 0≤ i<k. (!b"σi = true∧ !c0"σi = σi+1)

) ]

⇒ !b"σk = true.

(β ∧ β.1)

Let us consider two subcases: Subcase (β.1.1) and Subcase (β.1.2).

(Subcase β.1.1). Let us assume that for all k ≥ 0 and for all sequences σ0 . . . σk ∈
Statek " State⊥, if σ0 = σ ∧

(
∀i, 0 ≤ i < k. (!b"σi = true∧ !c0"σi = σi+1)

)
then

σk 1= ⊥. (This case corresponds to Case (4) of Definition 7.1.) By Definition 7.1 we
have that !while b do c0"σ = ⊥. We also have that I,⊥ |= B holds. Thus, there
exists a state σ′, namely ⊥, such that !while b do c0"σ=σ′ and I, σ′ |= B.

(Subcase β.1.2). Let us assume that there exists k ≥ 0 and there exists a sequence
σ0 . . . σk ∈ Statek " State⊥ for which we have that:

σ0 =σ ∧
(
∀i, 0≤ i<k. (!b"σi = true ∧ !c0"σi =σi+1)

)
∧ σk = ⊥.

(This case corresponds to Case (2.2) of Definition 7.1.) For that sequence we have
that:

σ0 =σ ∧
(
∀i, 0≤ i<k. ⇒ (!b"σi = true∧ !c0"σi = σi+1)

)
∧ !b"σk = true.

By Definition 7.1 we have that !while b do c0"σ = σk = ⊥. We also have that
I, σk |= B holds because σk =⊥. Thus, there exists a state σ′, namely ⊥, such that
!while b do c0"σ=σ′ and I, σ′ |= B. !
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8. Nondeterministic Computations

In this section we present the language of the guarded commands introduced by
E. D. Dijkstra [3] and we present its operational semantics in the style of the so
called big-step semantics. In this kind of operational semantics a given command c
and a given state σ are related to the state which we get, so to speak, at the end of
the execution of c starting from σ. The guarded commands allow nondeterministic
computations. We have the following new syntactic categories (which are mutually
recursively defined) besides the arithmetic expressions Aexp and the boolean expres-
sions Bexp (defined in Section 1 on page 117):

- Commands

c ranges over Com c ::= skip | abort | X := a | c1; c2 | if gc fi | do gc od

- Guarded Commands

gc ranges over Gcom gc ::= b → c | gc1 gc2

where a ranges over the arithmetic expressions Aexp and b ranges over the boolean
expressions Bexp.

Note that the set Com of commands we consider here, is different from the set
Com of commands we considered in Section 1 on page 117.

The operator is assumed to be associative and commutative.
The operational semantics given below specifies: (i) the execution of commands,

and (ii) the execution of guarded commands.

8.1. Operational Semantics of Nondeterministic Commands.

The execution of commands is given as a subset of Com× State × State . A triple in
Com×State×State is written as 〈c, σ〉 → γ and specifies that the command c from
the state σ produces the new state γ. The axiom and the inference rules defining the
execution of commands are as follows.

(1.1) 〈skip, σ〉 → σ

(1.2)
〈a,σ〉→n

〈X:=a, σ〉→ σ[n/X]

(1.3)
〈c1,σ〉→ σ1 〈c2,σ1〉→ σ2

〈c1; c2, σ〉→ σ2

(1.4)
〈gc,σ〉→ 〈c,σ〉 〈c,σ〉→ σ′

〈if gc fi, σ〉→ σ′

(1.5)
〈gc,σ〉→ fail

〈do gc od, σ〉→ σ
(1.6)

〈gc,σ〉→ 〈c,σ〉 〈c;do gc od, σ〉→ σ′

〈do gc od, σ〉→ σ′

Let us informally explain the rules for the if . . . fi and do . . . od commands.

Starting from the state σ, the execution of if gc1 . . . gcn fi is performed as fol-
lows.
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(i) We first choose in a nondeterministic way a guarded command, say gci, among
{gc1, . . . , gcn}, such that its guard bi evaluates to true.
(ii) Let gci be bi → ci. Then we execute the command ci starting from σ.
(iii) If no guarded command among {gc1, . . . , gcn} has a guard which evaluates to
true, the execution of the if gc1 . . . gcn fi command is aborted, that is, there is no
state γ such that 〈if gc1 . . . gcn fi, σ〉 → γ. Moreover, the execution of the whole
program is aborted, that is, there is no state γ such that 〈c, σ〉 → γ, where c is the
command which includes the command if gc1 . . . gcn fi.

Starting from the state σ, the execution of do gc1 . . . gcn od is performed as
follows.
(i) We first choose in a nondeterministic way a guarded command, say gci, among
{gc1, . . . , gcn}, such that its guard bi evaluates to true.
(ii) Let gci be bi → ci. Then we execute the command ci starting from σ and we go
to Step (i), that is, we execute again the command do gc1 . . . gcn od starting from
the state γ, if any, such that 〈ci, σ〉 → γ.
(iii) If no guarded command among {gc1, . . . , gcn}, has a guard which evaluates to
true, then the execution of the do . . . od command is terminated.

Note that we gave no rules for the command abort. Thus, for every state σ ∈
State and every γ ∈ State, no triple 〈abort, σ, γ〉 exists in the subset of Com ×
State × State which denotes the operational semantics.

8.2. Operational Semantics of Guarded Commands.

The execution of guarded commands is given as a subset of Gcom×State×((Com×
State) ∪ {fail}). A triple in Gcom× State × ((Com× State) ∪ {fail}) is written as
〈gc, σ〉 → γ and specifies that the guarded command gc from the state σ produces
a value of γ which is either a new 〈command, state〉 pair or the value fail. The
inference rules defining the execution of guarded commands are as follows.

(2.1)
〈b,σ〉→ true

〈b→c, σ〉→ 〈c,σ〉
(2.2)

〈b,σ〉→ false

〈b→ c, σ〉→ fail

(2.3)
〈gc1,σ〉→ 〈c,σ〉

〈gc1 gc2, σ〉→ 〈c,σ〉
(2.4)

〈gc2,σ〉→ 〈c,σ〉
〈gc1 gc2, σ〉→ 〈c,σ〉

(2.5)
〈gc1, σ〉→ fail 〈gc2, σ〉→ fail

〈gc1 gc2, σ〉→ fail

Note that when evaluating the guard of a guarded command, the state does not
change. This fact is not exploited in the semantic rules given by Winskel [19].

Instead of the above rules (2.3) and (2.4), we can equivalently use the following
two rules:

(2.3*)
〈b→c,σ〉→ 〈c,σ〉

〈b→c gc2, σ〉→ 〈c,σ〉
(2.4*)

〈b→c,σ〉→ 〈c,σ〉
〈gc1 b→c, σ〉→ 〈c,σ〉

Note also that for all b, c, σ, gc1, gc2, we have that:

(i) 〈b → c, σ〉 → 〈c, σ〉 holds iff 〈b, σ〉 → true, and
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(ii) 〈gc1 gc2, σ〉 → 〈c, σ〉 holds iff there exists i ∈ {1, 2} such that gci is b → c and
〈b, σ〉 → true.

Here is Euclid’s algorithm for computing the greatest common divisor of M and N
using guarded commands (we assume that M >0 and N >0):

{n=N >0 ∧ m=M >0}
do m ≥ n ∧ n > 0 → m := m−n

n ≥ m ∧ m > 0 → n := n−m
od

{gcd(N, M) = if n=0 then m else n}

The assertions between curly brackets at the beginning and at the end of the above
do . . . od command relate the value of the integer variables before and after the
execution of that command.

9. Owicki-Gries Calculus for Parallel Programs

In this section we present the Owicki-Gries rules for proving properties of imperative
parallel programs. They are constructed using commands c of the following form:

c ::= skip | X := a | c1; c2 | if b then c1 else c2 | while b do c0 | c1 par c2

where a is any arithmetic expression in Aexp and b is any boolean expression in
Bexp (see Section 1 on page 117). The Owicki-Gries rules are like the Hoare rules
for partial correctness (see page 128), but they use decorated Hoare triples, as we
now explain.

A decorated Hoare triple {A} c {B} | R
W is a Hoare triple with two sets R and W ,

called the upper decoration and the lower decoration, respectively. The set R is the
set of locations which the command c reads and does not write, and W is the set of
the locations that the command c writes. Thus, if there is a location X that c reads
and writes (this occurs, for instance, in the command X := X+1), then X 1∈ R and
X ∈ W .

By definition, (i) every location occurring in c belongs to either R or W , and
(ii) for every decorated triple {A} c {B} | R

W , we have that R ∩ W = {}.
Given an expression e by Locs(e) we denote the set of locations occurring in e.

We say that a decorated triple {A} c {B} | R
W is derivable in the Owicki-Gries

Calculus, and we write & {A} c {B} | R
W , iff there is a proof (that is, a finite derivation)

of {A} c {B} | R
W by using the following axiom and inference rules.

(OG1) {A} skip {A} | {}
{}

(OG2)
|= A ⇒ B[a/X]

{A} X:=a {B} | Locs(a)−{X}
{X}
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(OG3)
{A} c1 {B} | R1

W1 {B} c2 {C} | R2
W2

{A} c1 ; c2 {C} | (R1∪R2)− (W1∪W2)
W1∪W2

(OG4)
{A∧ b} c1 {B} | R1

W1 {A∧¬b} c2 {B} | R2
W2

{A} if b then c1 else c2 {B} | (Locs(b)∪R1∪R2)− (W1∪W2)
W1∪W2

(OG5)
{A∧ b} c {A} | R

W

{A} while b do c {A∧¬b} | (Locs(b)∪R)−W
W

(OG6)
{A1} c1 {B1} | R1

W1 {B2} c2 {C2} | R2
W2

{A1∧A2} c1 par c2 {B1∧B2} | R1∪R2
W1∪W2

∣∣∣∣∣∣

assume R1 ∩ W2 =
= R2 ∩ W1 =
= W1 ∩ W2 = {}

(OG7)
|= A⇒A′ {A′} c {B′} | R

W |= B′ ⇒B

{A} c {B} | R
W

With reference to rule (OG3), the upper decoration should be the set of locations
read by either c1 or c2, and not written by c1 or c2, that is, (R1∪R2)− (W1∪W2).
This value is equal to (R1−W2) ∪ (R2−W1), because R1∩W1 = R2∩W2 = {}.

The assumptions we have made for rule rule (OG6), allow us to execute the
commands c1 and c2 in parallel and, without knowing their relative execution speed,
we have that the final values stored in the locations which are written by those
commands, is uniquely determined.

We have that if & {A} c {B} | R
W holds then the decorated triple {A} c {B} | R

W

is valid and by this we mean that for all interpretations I ∈ Intvar → N , for all
states σ ∈ State⊥, I, σ |= A implies I, !c"σ |= B. As for the Hoare triples, when a
decorated triple {A} c {B} | R

W is valid we write |= {A} c {B} | R
W .

The rules OG1−OG7 of the Owicki-Gries Calculus we have presented above, can
be shown to be sound and relatively complete in the same sense in which the rules
H1−H6 of the Hoare Calculus are sound and relatively complete (see Section 4.3 on
page 128, Theorem 4.8 on page 129, and Theorem 4.24 on page 143). We will not
present the proofs of these facts here and the interested reader is encouraged to look
at the relevant literature.





CHAPTER 6

Syntax and Semantics of First Order Functional Languages

In this chapter we consider a first order functional language, called REC, under two
evaluation regimes, the call-by-value and the call-by-name regime. For each of these
regimes we will provide the operational and the denotational semantics.

1. Syntax of the First Order Functional Language REC

In this section we present the syntax of the first order functional language REC. Let
us first introduce the following basic sets.

(i) The set of integers N = {. . . ,−2,−1, 0, 1, 2, . . .}. The variables ranging over N
are: n, m, . . .

(ii) The set {+,−,×} of the arithmetic operators. op ranges over {+,−,×}.

(iii) The set Var = {x, y, z, . . .} of the integer variables (or variables, for short).

(iv) The set Fvar = {f1, f2, . . . , g, h, . . .} of the function variables with arity a (≥0).

The syntax of the REC language is defined by: (v) the sets of terms, and (vi) the
set of declarations.

(v) The set Term of terms is defined as follows:

t ::= n | x | t1 op t2 | if t0 then t1 else t2 | fi(t1, . . . , tai)

where t, t0, t1, t2, tai ∈ Term, n ∈ N , x ∈ Var, and fi ∈ Fvar. A term is said
to be closed if no integer variable occurs in it.

(vi) The set of declarations is a set of equations, each of which is called a declaration.
A set of declarations is represented as follows:





f1(x1, . . . , xa1
) = d1

. . .
fk(x1, . . . , xak

) = dk

where: (1) the fi’s are distinct function variables, (2) the xi’s are integer vari-
ables, and (3) the di’s are terms. We assume that for i = 1, . . . , k, every variable
occurring in di belongs to {x1, . . . , xai

}.
For instance, the factorial function is defined by the following declaration:

fact(x) = if x then 1 else x × fact(x−1)

In order to compute the factorial of an integer, say 5, we have to evaluate the term
fact(5), where for all x≥0, fact(x) is defined by the above declaration.

165
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Note that in order to avoid the introduction of boolean values, we encode the value
true by the integer 0 and the value false by any other integer. Thus, for instance,
if 0 then 4 else 7 evaluates to 4, and if 3 then 4 else 7 evaluates to 7.

The evaluation function is defined by the semantics of the language REC which we
will now introduce. Actually, we will define two different semantics which are usually
called the call-by-value semantics and the call-by-name semantics, respectively.

In order to see the reason for these two semantics, let us consider the following
declarations of the function f and g both of arity 1:
{

f(x)= 1
g(x) = g(x+1)

Now there are two options for the evaluation of the term f(g(1)): either the call-by-
value regime, or the call-by-name regime.

(call-by-value regime): the evaluation of f(g(1)) does not return any value, because we
assume that before evaluating the function declaration, we first compute the values of
all the arguments (and, obviously, the evaluation of g(1) does not terminate because
it requires the evaluation of g(2), which in turn requires the evaluation of g(3), and
so on), or

(call-by-name regime): the evaluation of f(g(1)) returns the value 1, because we
assume that we first evaluate the declaration of the outermost function call and
then we evaluate the arguments which are actually needed for the evaluation of that
declaration.

The call-by-value regime defines the so called call-by-value semantics, while the
call-by-name regime defines the so called call-by-name semantics.

2. Call-by-value Operational Semantics of REC

In this section we give the operational semantics of the language REC under the call-
by-value regime. It will be given as a set of deduction rules which are shown in Table 1
on the next page. Those rules define the rewriting relation →va ⊆ Term × Term.
The superscript va is for denoting the call-by-value regime. For reasons of simplicity,
we will also write t1 → t2, instead of t1 →va t2, for any two terms t1 and t2.

Note that in the call-by-value semantics we have fi(t1, . . . , tai) → n if for some
integers n1, . . . , nai

, we have that t1→n1, . . ., tai →nai
, and di[n1/x1, . . . , nai

/xai
]→n.

This rule enforces the evaluation of all the arguments before the evaluation of the
function declaration.

Note also that the evaluation of the if t0 then t1 else t2 construct first requires
the evaluation of the term t0 and then it requires the evaluation of the term t1 or t2,
according to the value of t0, whether or not it is 0.

Remark 2.1. In giving the operational semantics there is no context-rule, that
is, we do not have the following rule: for any term t, for any integer n,

t→n

C[t] → C[n]

where a context C[−] is any term ‘with a missing subterm’.
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Call-by-value Operational Semantics of the language REC.

n → n

t1 →n1 t2 →n2

t1 op t2 → n

where n = n1op n2 and op is the semantic operation corresponding to op

t0 → 0 t1 →n1

if t0 then t1 else t2 → n1

t0 →n t2 →n2 n1=0

if t0 then t1 else t2 → n2

t1 →n1 ... tai →nai di[n1/x1, ..., nai/xai ]→n

fi(t1,...,tai) → n

where di is the right hand side of the declaration of the function fi.

Table 1. Call-by-value Operational Semantics of the language REC.
For simplicity, we write t1 → t2, instead of t1 →va t2.

More formally, the contexts C[−] in the language REC are defined by the following
context-free grammar:

C[−] ::= [−] | [−] op t2 | t1 op [−]

| if [−] then t1 else t2 | if t0 then [−] else t2 | if t0 then t1 else [−]

| fi([−], . . . , tai) | . . . | fi(t1, . . . , [−])

Given a context C[−] and a term t, by C[t] we denote the context C[−] with the
term t in place of the missing subterm.

Remark 2.2. The rules we have given specify a big-step semantics in the sense
that the binary relation → relates a given term t to its value n without specifying
any intermediate term. For instance, rules such as the following ones would specify a
semantics for the if t0 then t1 else t2 construct which is not big-step semantics and
is, instead, a small-step semantics.

t0 → 0

if t0 then t1 else t2 → t1

t0 →n n1=0

if t0 then t1 else t2 → t2

We have the following fact which tells us that the call-by-value operational semantics
defines a function. We leave the proof to the reader. It can be done by rule induction.

Fact 2.3. [Determinism of Call-by-value Operational Semantics] For all
term t, integers n1 and n2, if t →va n1 and t →va n2 then n1 =n2.
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3. Call-by-value Denotational Semantics of REC

In this section we give the denotational semantics of the language REC under the
call-by-value regime as a set of equations. These equations define a unique semantic
function !_"va by structural induction.

We first introduce the semantic domains Envva and Fenvva which are defined as
follows. Let N denote the discrete cpo of the integers and N⊥ denote the flat cpo of
the integers with the bottom element ⊥.

(i) Envva is the cpo [Var → N ] of the environments.
Thus, an environment ρ ∈ Envva is a function from the discrete cpo Var of the
integer variables to N .

(ii) Fenvva is the cpo of function environments.
For a given set of k declarations whose i-th declaration defines a function with arity ai,
Fenvva is the cpo [Na1 → N⊥] × . . . × [Nak → N⊥]. Thus, a function environment
ϕ ∈ Fenvva is the product of k continuous functions. For i = 1, . . . , k, the i-th
projection of ϕ, denoted ϕi, is a continuous function in the cpo [Nai → N⊥].

The denotational semantic function under the call-by-value regime will be denoted
by !_"va .
For all terms t, !t"va is the unique continuous function in [Fenvva → [Envva → N⊥]]
defined by structural induction by the equations of Table 2 for any given function
environment ϕ ∈ Fenvva and any given environment ρ ∈ Envva .

When understood from the context we will avoid writing the superscript va .

Call-by-value Denotational Semantics of the language REC.

! n " ϕ ρ = FnG
! x " ϕ ρ = Fρ(x)G
! t1 op t2 " ϕ ρ = ! t1 " ϕ ρ op⊥ ! t2 " ϕ ρ

! if t0 then t1 else t2 " ϕ ρ = Cond(! t0 " ϕ ρ, ! t1 " ϕ ρ, ! t2 " ϕ ρ)

! fi(t1, . . . , tai) " ϕ ρ = let v1 ⇐ ! t1 " ϕ ρ, . . . , vai
⇐ ! tai " ϕ ρ " ϕi(v1, . . . , vai

)

Table 2. Call-by-value Denotational Semantics of the language REC.
For simplicity, we write !_", instead of !_"va.

Note also that, as usual in mathematics, the expressions which provide the call-by-
value semantics, should be evaluated in the call-by-name regime. Thus, in particular,
if the function ϕ is the constant function λx.1 then ϕ(⊥)=1.

For the denotational semantics we have a context-rule of the form:

if ! t1 " ϕ ρ = ! t2 " ϕ ρ

then for any context C[−] we have that ! C[t1] " ϕ ρ = ! C[t2] " ϕ ρ.



3. CALL-BY-VALUE DENOTATIONAL SEMANTICS OF REC 169

3.1. Computation of the function environment in call-by-value.

The function environment ϕ ∈ Fenvva associated with a given set of declarations can
be computed as the minimal fixpoint of a continuous functional as we now explain.

Let us consider the following k declarations:





f1(x1, . . . , xa1
) = d1

. . .
fk(x1, . . . , xak

) = dk

Associated with these k declarations, we have a k-tuple 〈δ1, . . . , δk〉 of functions be-
longing to the cpo Fenvva = [Na1 → N⊥] × . . . × [Nak → N⊥] which is recursively
defined as follows:





δ1 = λn1. . . . λna1
. !d1" 〈δ1, . . . , δk〉 ρ[n1/x1, . . . , na1

/xa1
]

. . .
δk = λn1. . . . λnak

. !dk" 〈δ1, . . . , δk〉 ρ[n1/x1, . . . , nak
/xak

]

This system of k equations can be rewritten as follows:





δ1 = (λχ. λn1. . . . λna1
. !d1" χ ρ[n1/x1, . . . , na1

/xa1
]) 〈δ1, . . . , δk〉

. . .
δk = (λχ. λn1. . . . λnak

. !dk" χ ρ[n1/x1, . . . , nak
/xak

]) 〈δ1, . . . , δk〉

and it defines a continuous functional τ such that

〈δ1, . . . , δk〉 = τ 〈δ1, . . . , δk〉.
The minimal fixpoint of τ is the function environment ϕ = 〈ϕ1, . . . , ϕk〉 ∈ Fenvva as-
sociated with the given k declarations. For i = 1, . . . , k, the environment ϕ associates
the function ϕi with the function variable fi.

The minimal fixpoint of τ exists because τ is continuous. This continuity property
follows from the facts that (see Chapter 4 Section 5 starting on page 101):
(i) δ1, . . . , δk are variables, (ii) lambda abstraction is continuous, (iii) ρ is a continuous
function in [Var → N ], (iv) environment updating of the form ρ[n/x] is a continuous
operation, (v) tupling is continuous, (vi) function application is continuous, and
(vii) all operators occurring in the right hand sides of the semantic equations, such
as F_G, op⊥, Cond , and the let construct, are continuous.

Example 3.1. [Factorial Function in Call-by-value] In the case of the dec-
laration of the factorial function:

fact(x) = if x then 1 else x × fact(x−1)

we have that

δ = (λχ. λn∈N. !if x then 1 else x × fact(x−1)" χ ρ[n/x]) δ

and the value of function variable fact is the minimal fixpoint of the functional

τ =def λχ. λn∈N. !if x then 1 else x × fact(x−1)" χ ρ[n/x].

Thus, in this case Fenv = [N → N⊥] and the function environment ϕ ∈ [N → N⊥]
is the function fix (τ) =

⊔
k≥0 τk(⊥). We have that:
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τ 0(⊥) = λn∈N.⊥

τ 1(⊥) = λn∈N.Cond(FnG, F1G, FnG ×⊥ (τ 0(⊥))(n−1)) =

{
F1G if n=0
⊥ otherwise

τ 2(⊥) = λn∈N.Cond(FnG, F1G, FnG ×⊥ (τ 1(⊥))(n−1)) =






F1G if n=0
F1G if n=1
⊥ otherwise

Then, as one can prove by mathematical induction, we get that, for any k ≥ 0,

τk(⊥) = λn∈N.

{
Fn!G if 0≤n<k
⊥ otherwise

Thus, ϕ = fix (τ) =
⊔

k≥0 τk(⊥) = λn.

{
Fn!G if 0≤n
⊥ otherwise

The following table shows the computation of τk(⊥), for k ≥ 0, of the functional τ
and the limit point fix (τ) =

⊔
k≥0 τk(⊥). This table is constructed starting from the

lowest row and going upwards.

n ∈ N : . . . −2 −1 0 1 2 3 4 . . .

ϕ =def

⊔
k≥0 τk(⊥) . . . ⊥ ⊥ F1G F1G F2G F6G F24G . . .
...

...
...

...
...

...
...

...
...

...

τ 4(⊥) . . . ⊥ ⊥ F1G F1G F2G F6G ⊥ . . .

τ 3(⊥) . . . ⊥ ⊥ F1G F1G F2G ⊥ ⊥ . . .

τ 2(⊥) . . . ⊥ ⊥ F1G F1G ⊥ ⊥ ⊥ . . .

τ 1(⊥) . . . ⊥ ⊥ F1G ⊥ ⊥ ⊥ ⊥ . . .

τ 0(⊥) . . . ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ . . .

Table 3. Computation of the minimal fixpoint
⊔

k≥0 τk(⊥) relative to
the functional τ =def λχ. λn. !if x then 1 else x × fact(x−1)" χ ρ[n/x]
associated with the declaration of the factorial function.

As indicated on the topmost row of Table 3, we have that for all n≥0,( ⊔
k≥0 τk(⊥)

)
(n) = Fn!G.

The call-by-value evaluation of the factorial function for the input 3 is as follows:

!fact(3)" ϕ ρ = let v ⇐ !3" ϕ ρ " (ϕ v) = let v ⇐ F3G " (ϕ v) = ϕ(3) = F6G. !

Now let us present a second example of evaluation of the call-by-value denota-
tional semantics. In this second example we will see that the value of fact(2) can be
computed without computing the minimal fixpoint ϕ of the functional τ associated
with the declaration of the function fact (see the topmost row of the above table).
Indeed, it is enough to use the property that for all n ∈ N , the minimal fixpoint ϕ
satisfies the following equation:

ϕ(n) = Cond(FnG, F1G, FnG ×⊥ ϕ(n−1)).
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Note that for every input value n ∈ N , the value of ϕ(n) =def

(⊔
k≥0 τk(⊥)

)
(n) is

obtained as the value of (τk(⊥))(n), for a sufficiently large value of k (≥0).

Example 3.2. [Factorial Function in Call-by-value. Version 2] We want
to compute the value of fact(2) where, as in the previous Example 3.1, the function
fact is defined by the following declaration:

fact(x) = if x then 1 else x × fact(x − 1).

We have that:

τ ϕ x = Cond(FnG, F1G, FnG ×⊥ (let v ⇐ Fn−1G "ϕ(v))) =
= Cond(FnG, F1G, FnG ×⊥ ϕ(n−1))

with τ ∈ [[N → N⊥] → [N → N⊥], ϕ ∈ [N → N⊥], and n ∈ N .

The evaluation of !fact(2)" ϕ ρ is as follows.

!fact(2)" ϕ ρ = let v ⇐ F2G "ϕ(v) =

= ϕ(2) =
= (τ ϕ)(2) =
= Cond(F2G, F1G, F2G ×⊥ ϕ(2−1)) = (†)
= F2G ×⊥ ϕ(2−1) =
= F2G ×⊥ (Cond(F2−1G, F1G, F2−1G ×⊥ ϕ((2−1)−1))) =
= F2G ×⊥ (Cond(F1G, F1G, F2−1G ×⊥ ϕ((2−1)−1))) =
= F2G ×⊥ (F2−1G ×⊥ ϕ((2 − 1) − 1)) =
= F2G ×⊥ (F2−1G×⊥Cond(F(2−1)−1G, F1G, F(2−1)−1G ×⊥ ϕ(((2−1)−1)−1))) =
= F2G ×⊥ (F2−1G ×⊥ F1G) = F2G.

Since ϕ is a function, we have that: if e1 = e2 then ϕ(e1) = ϕ(e2). Thus, the
above derivation could have also be done as follows. Continuing from the above
Expression (†):

Cond(F2G, F1G, F2G ×⊥ ϕ(2−1)) =
= F2G ×⊥ ϕ(1) =
= F2G ×⊥ (Cond(F1G, F1G, F1G ×⊥ ϕ(0)) =
= F2G ×⊥ (F1G ×⊥ ϕ(0)) =
= F2G ×⊥ (F1G×⊥Cond(F0G, F1G, F(2−1)−1G ×⊥ ϕ(−1))) =
= F2G ×⊥ (F1G ×⊥ F1G) = F2G. !

Example 3.3. [Constant Functions and Looping Functions in Call-by-
value] Let us consider the declaration:

{
f(x)= 1
g(x) = g(x+1)

In this case the function environment ϕ is a pair of functions

〈ϕ1, ϕ2〉∈ [N → N⊥] × [N → N⊥],

the function variable f being associated with ϕ1 and the function variable g being
associated with ϕ2. We have that 〈ϕ1, ϕ2〉 is the minimal fixpoint of the functional
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which transforms the pair 〈δ1, δ2〉 of functions into itself, as specified by the following
equation:

〈δ1, δ2〉=〈λχ. λn∈N. !1" χ ρ[n/x], λχ. λn∈N. !g(x + 1)" χ ρ[n/x]〉 〈δ1, δ2〉 (††)

Now we have that:

!1" χ ρ[n/x] = F1G
and, if we denote by χ2 the second component of the argument χ which is a pair, we
also have that:

!g(x+1)" χ ρ[n/x] =

= let v ⇐ !x+1" χ ρ[n/x] "χ2(v) =

= let v ⇐ FnG +⊥ F1G " χ2(v) =

= χ2(n + 1).

Thus, Equation (††) above becomes

〈δ1, δ2〉 = 〈λχ. λn∈N. F1G, λχ. λn∈N. χ2(n + 1)〉 〈δ1, δ2〉

and we have that 〈ϕ1, ϕ2〉 is the minimal fixpoint of the functional τ :

τ =def 〈λχ. λn∈N. F1G, λχ. λn∈N. χ2(n + 1)〉.
That minimal fixpoint is computed as follows, where n, m∈N and, for i = 0, 1, the
term (τ i(⊥))2 denotes the second component of the pair τ i(⊥):

τ 0(⊥) = 〈λn.⊥, λn.⊥〉
τ 1(⊥) = 〈λn. F1G, λn. ((τ 0(⊥))2(n + 1))〉 =

= 〈λn. F1G, λn. ((λm.⊥)(n + 1))〉 =

= 〈λn. F1G, λn.⊥〉
τ 2(⊥) = 〈λn. F1G, λn. ((τ 1(⊥))2(n + 1))〉 =

= 〈λn. F1G, λn. ((λm.⊥)(n + 1))〉 =

= 〈λn. F1G, λn.⊥〉.
Thus, we get that:

ϕ = fix(τ) =
⊔

k≥0 τk(⊥) = 〈λn∈N. F1G, λn∈N.⊥〉.

Therefore, !f(g(1))" ϕ ρ =

= let u ⇐ !g(1)" ϕ ρ " (λn∈N. F1G)(u) =

= let u ⇐ (let v ⇐ !1" ϕ ρ " (λn∈N.⊥) v) " (λn∈N. F1G)(u) =

= let u ⇐ ⊥ " (λn∈N. F1G)(u) =

= ⊥ ∈ N⊥. !

We have the following result which establishes a correspondence between the opera-
tional and the denotational semantics in the call-by-value regime.

Theorem 3.4. [Equivalence of Operational and Denotational Semantics
of REC. Call-by-value] For all closed terms t, for all integers n, for all function
environment ϕ, for all environment ρ, we have that t →va n iff !t"va ϕρ = FnG.
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Call-by-name Operational Semantics of the language REC.

n → n

t1 →n1 t2 →n2

t1 op t2 → n

where n = n1op n2 and op is the semantic operation corresponding to op

t0 → 0 t1 →n1

if t0 then t1 else t2 → n1

t0 →n t2 →n2 n1=0

if t0 then t1 else t2 → n2

di[t1/x1, ..., tai/xai ] → n

fi(t1,...,tai) → n

where di is the right hand side of the declaration of the function fi.

Table 4. Call-by-name Operational Semantics of the language REC.
For simplicity, we write t1 → t2, instead of t1 →na t2.

4. Call-by-name Operational Semantics of REC

In this section we give the operational semantics of the language REC under the
call-by-name regime. It will be given as a set of deduction rules which are shown
in Table 4. Those rules define the rewriting relation →na ⊆ Terms × Terms. The
superscript na is for denoting the call-by-name regime. For reasons of simplicity, we
will also write t1 → t2, instead of t1 →na t2, for any two terms t1 and t2.

Note that in the call-by-name semantics we have that fi(t1, . . . , tai) → n holds
if we have that di[t1/x1, . . . , tai/xai

] → n holds. In the call-by-name semantics the
rule for function application does not enforce the evaluation of the arguments before
the evaluation of the function declaration. Indeed, we do not require to establish that
t1 → n1, . . . , tai → nai

, for some n1 ∈ N , . . ., nai
∈ N .

As in the case of the call-by-value denotational semantics, for the call-by-name
operational semantics we do not have a context-rule (see Remark 2.1 on page 166).

We have the following fact which tells us that the call-by-name operational se-
mantics defines a function. We leave the proof of this fact to the reader. The proof
can be done by rule induction.

Fact 4.1. [Determinism of Call-by-name Operational Semantics] For all
term t, integers n1 and n2, if t →na n1 and t →na n2 then n1 =n2.

5. Call-by-name Denotational Semantics of REC

In this section we give the denotational semantics of the language REC under the
call-by-name regime as a set of equations. These equations define a unique semantic
function !_"na by structural induction.
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The semantic domains for this semantic function are the following ones. Let N
denote the discrete cpo of the integers and N⊥ denote the flat cpo of the integers
with the bottom element ⊥.

(i) Envna is the cpo [Var → N⊥] of the environments.
Thus, an environment ρ ∈ Envna is a function from the discrete cpo Var of the
integer variables to N⊥.

Note that in the call-by-name semantics environments may map variables to ⊥,
contrary to the case of the call-by-value semantics where variables are mapped to
integers only (recall that Envva is the cpo [Var → N ]). This is due to the fact that
in the call-by-name semantics the evaluation of a function does not require the prior
evaluation of its arguments and the value of some of those arguments may be ⊥.

(ii) Fenvna is the cpo of function environments.
For a given set of k declarations whose i-th declaration defines a function with arity ai,
Fenvna is the cpo [Na1

⊥ → N⊥] × . . . × [Nak

⊥ → N⊥]. Thus, a function environment
ϕ ∈ Fenvna is the product of k continuous functions. For i = 1, . . . , k, the i-th
projection of ϕ, denoted ϕi, is a continuous function in the cpo [Nai

⊥ → N⊥].

Remark 5.1. The cpo Envna of the environments and the cpo Fenvna of the
function environments of the call-by-name denotational semantics differ from those
of the call-by-value denotational semantics. Indeed, variables and arguments of func-
tions, respectively, may be bound to ⊥ (in N⊥) in the call-by-name semantics, while
this is not the case in the call-by-value semantics (see page 168). This change of the
domains of the environments and function environments is required by the fact that
in the case of the call-by-name semantics, arguments of functions may be ⊥, that is,
values of non-terminating computations.

The denotational semantic function under the call-by-name regime will be denoted
by !_"na .
For all terms t, !t"na is the unique continuous function in [Fenvna → [Envna → N⊥]],
defined by structural induction by the equations of Table 5 on the facing page for
any given function environment ϕ ∈ Fenvna and any given environment ρ ∈ Envna .

When understood from the context we will avoid writing the superscript na .

As in the case of the call-by-value denotational semantics, for the call-by-name deno-
tational semantics we do have a context-rule. Note also that, as usually in mathemat-
ics, the expressions which provide the call-by-name semantics, should be evaluated
in the call-by-name regime. Thus, in particular, if the function ϕ ∈ [N⊥ → N⊥] is
the constant function λn.F1G then ϕ(⊥)=F1G.

5.1. Computation of the function environment in call-by-name.

The function environment ϕ ∈ Fenvna for the call-by-name semantics, associated
with a given set of declarations, can be computed analogously to what has been
indicated for the call-by-value semantics on page 169. We leave this task as an
exercise to the reader.
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Call-by-name Denotational Semantics of the language REC.

! n " ϕ ρ = FnG
! x " ϕ ρ = ρ(x)

! t1 op t2 " ϕ ρ = ! t1 " ϕ ρ op⊥ ! t2 " ϕ ρ

! if t0 then t1 else t2 " ϕ ρ = Cond(! t0 " ϕ ρ, ! t1 " ϕ ρ, ! t2 " ϕ ρ)

! fi(t1, . . . , tai) " ϕ ρ = ϕi(! t1 " ϕ ρ, . . . , ! tai " ϕ ρ)

Table 5. Call-by-name Denotational Semantics of the language REC.
For simplicity, we write !_", instead of !_"na.

Example 5.2. [Factorial Function in Call-by-name] As in the case of the
call-by-value semantics, let us consider the following declaration:

fact(x) = if x then 1 else x × fact(x−1)

The associated functional τ satisfies the following equation:

δ = (λχ. λn∈N⊥. !if x then 1 else x × fact(x−1)" χ ρ[n/x]) δ

and the value of function variable fact is the minimal fixpoint of the functional

τ =def λχ. λn∈N⊥. !if x then 1 else x × fact(x−1)" χ ρ[n/x].

Thus, in this case Fenv = [N⊥ → N⊥] and the function environment ϕ ∈ [N⊥ → N⊥]
is the function fix (τ) =

⊔
k≥0 τk(⊥). We have that:

τ 0(⊥) = λn∈N⊥.⊥

τ 1(⊥) = λn∈N⊥.Cond(n, F1G, n ×⊥ (τ 0(⊥))(n −⊥ F1G)) =

{
F1G if n=F0G
⊥ otherwise

τ 2(⊥) = λn∈N⊥.Cond(n, F1G, n ×⊥ (τ 1(⊥))(n −⊥ F1G)) =






F1G if n=F0G
F1G if n=F1G
⊥ otherwise

Then, as one can prove by mathematical induction, we get that, for any k ≥ 0,

τk(⊥) = λn∈N⊥.

{
Fx!G if n = FxG and 0≤x<k
⊥ otherwise

Thus, ϕ = fix (τ) =
⊔

k≥0 τk(⊥) = λn∈N⊥.

{
Fx!G if n = FxG and 0≤x
⊥ otherwise

The call-by-name evaluation of the factorial function for the input 3 is done as follows.

!fact(3)" ϕ ρ = ϕ(!3" ϕ ρ) = ϕ(F3G) = F3!G = F6G. !

Example 5.3. [Constant Functions and Looping Functions in Call-by-
name] Let us consider the declaration:

{
f(x)= 1
g(x) = g(x+1)
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The function environment ϕ is given by the pair of functions 〈ϕ1, ϕ2〉 which belongs
to the cpo [N⊥ → N⊥]× [N⊥ → N⊥], the function variable f being associated with ϕ1

and the function variable g being associated with ϕ2. We have that 〈ϕ1, ϕ2〉 is the
minimal fixpoint of the functional which transforms the pair 〈δ1, δ2〉 of functions into
itself, as specified by the following equation:

〈δ1, δ2〉 = 〈λχ. λn∈N⊥. !1" χ ρ[n/x], λχ. λn∈N⊥. !g(x+1)" χ ρ[n/x]〉 〈δ1, δ2〉

that is,

〈δ1, δ2〉 = 〈λχ. λn∈N⊥. F1G, λχ. λn∈N⊥. χ2(n+⊥F1G)〉 〈δ1, δ2〉

where by χ2 we have denoted the second component of the argument χ which is a
pair. Thus, we have that 〈ϕ1, ϕ2〉 is the minimal fixpoint of the following functional τ :

τ =def 〈λχ. λn∈N⊥. F1G, λχ. λn∈N⊥. χ2(n+⊥F1G)〉.
As in the case of the call-by-value regime, the minimal fixpoint of τ is

ϕ = fix(τ) =
⊔

k≥0 τk(⊥) = 〈λn∈N⊥. F1G, λn∈N⊥.⊥〉.
Indeed, we have that

τ 0(⊥) = 〈λn∈N⊥.⊥, λn∈N⊥.⊥〉
τ 1(⊥) = 〈λn∈N⊥. F1G, λn∈N⊥. ((τ 0(⊥))2(n+⊥F1G))〉 =

= 〈λn∈N⊥. F1G, λn∈N⊥.⊥〉
τ 2(⊥) = 〈λn∈N⊥. F1G, λn∈N⊥. ((τ 1(⊥))2(n+⊥F1G))〉 =

= 〈λn∈N⊥. F1G, λn∈N⊥.⊥〉.

Therefore, !f(g(1))" ϕ ρ =

= (λn∈N⊥. F1G) ((λn∈N⊥.⊥) F1G) =

= F1G ∈ N⊥. !

We have the following result which establishes a correspondence between the
operational and the denotational semantics in the call-by-name regime.

Theorem 5.4. [Equivalence of Operational and Denotational Semantics
of REC. Call-by-name] For all closed terms t, for all integers n, for all function
environment ϕ, for all environment ρ, we have that t →na n iff !t"na ϕρ = FnG.

6. Proving Properties of Functions in the Language REC

In this section we will prove some properties of functions defined by declarations in
the language REC. Let us begin by showing a fact which will be useful in Example 6.2
on the next page.

Fact 6.1. [Call-by-value Equivalence of Two Functionals] Let us consider
a cpo D and the lifted cpo D⊥. Let us also consider the functions h : [D⊥ → D⊥],
h : [D → D], and k : [D → D], and the predicate p : [D → T⊥], where T⊥ is the lifted
cpo of the discrete cpo T = {true, false}. Let us assume that: (i) the function h
is strict, that is, h(⊥) = ⊥ ∈ D⊥, and (ii) ∀y ∈ D. h(FyG) = Fh(y)G. The minimal
fixpoints of the two functionals:
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τ1 δ1 (x, y) = p(x) → FyG | h(δ1(k(x), y))

τ2 δ2 (x, y) = p(x) → FyG | δ2(k(x), h(y))

where δ1, δ2 ∈ [D×D → D⊥], are equal. Recall that b → d1 | d2 ∈ [T⊥×D⊥×D⊥ → D⊥]
stands for let t ⇐ b " cond(t, d1, d2), where cond ∈ [T×D⊥×D⊥ → D⊥].

Proof. We want to show that fix(τ1) = fix (τ2). We do so by considering the inclusive
predicate

P (f, g) =def ∀x∈D, y∈D. f(x, y)=g(x, y) ∧ g(x, h(y))=h(g(x, y))

and by applying Scott induction using the continuous function which is the pair
〈τ1, τ2〉 of the continuous functionals τ1 and τ2. Thus, if we get P (fix(〈τ1, τ2〉)), we
also get P (fix(τ1), fix (τ2)), because fix (〈τ1, τ2〉) = 〈fix(τ1), fix(τ2)〉 (see Equation (†)
on page 85).
We have to show that:

(i) P (⊥,⊥) holds, and

(ii) for all δ1, δ2 ∈ [D×D → D⊥], if P (δ1, δ2) holds then P (τ1(δ1), τ2(δ2)) holds.

For Point (i) we have to show that ∀x∈D, y ∈D. ⊥(x, y) =⊥(x, y) ∧ ⊥(x, h(y)) =
h(⊥(x, y)) which is immediate because h is strict.
For Point (ii) we assume by induction hypothesis:

(1) ∀x∈D, y∈D. δ1(x, y) = δ2(x, y) and

(2) ∀x∈D, y∈D. δ2(x, h(y)) = h(δ2(x, y))

We have to show that ∀x∈D, y∈D,

p(x) → FyG | h(δ1(k(x), y)) = p(x) → FyG | δ2(k(x), h(y)) (†1)

p(x) → h(FyG) | δ2(k(x), h(h(y))) = h(p(x) → FyG | δ2(k(x), h(y))) (†2)

For Equality (†1) we have that

h(δ1(k(x), y)) = {by induction hypothesis (1)} =

= h(δ2(k(x), y)) = {by induction hypothesis (2)} =

= δ2(k(x), h(y)).

For Equality (†2) we have that

δ2(k(x), h(h(y))) = {by induction hypothesis (2)} = h(δ2(k(x), h(y))). (†3)

Thus,

p(x) → h(FyG) | δ2(k(x), h(h(y))) = {by (†3)} =

= p(x) → h(FyG) | h(δ2(k(x), h(y))) =

= {by Lemma 8.1 on page 112 because h(⊥)=⊥} =

= h(p(x) → FyG | δ2(k(x), h(y))). !

In the following example we establish the equivalence of two function declarations for
the call-by-value regime.

Example 6.2. [Call-by-value Equivalence of Sum Declarations] Let N de-
note the discrete cpo of the integers {. . . ,−2,−1, 0, 1, 2, . . .} and N⊥ denote the flat
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cpo of the integers with the bottom element ⊥. Let us consider again the two decla-
rations:

sum1(x, y) = if x then y else sum1(x−1, y) + 1

sum2(x, y) = if x then y else sum2(x−1, y+1)

We want to show that under the call-by-value semantics they define the same func-
tions. In the call-by-value semantics those declarations define two functionals, called
them τ1 and τ2, satisfying the following equations:

τ1 δ1 (x, y) = Cond(FxG, FyG, δ1(x−1, y)+⊥F1G) where δ1 ∈ [N×N →N⊥]

τ2 δ2 (x, y) = Cond(FxG, FyG, δ2(x−1, y+1)) where δ2 ∈ [N×N →N⊥]

(For reasons of simplicity we have made some simplifications of the let construct
and, in particular, we have written x−1, instead of down(FxG −⊥ F1G)). Now, if we
indicate by ϕ1 and ϕ2 the minimal fixpoints of τ1 and τ2, respectively, and we use the
_→_ |_ construct, instead of Cond , we get:

ϕ1(x, y) = Fx=0G → FyG | ϕ1(x−1, y)+⊥F1G
ϕ2(x, y) = Fx=0G → FyG | ϕ2(x−1, y+1).

Then, by using Fact 6.1 on page 176, where we take: (i) D to be N , (ii) D⊥ to be
N⊥, (iii) h ∈ [N⊥ → N⊥] to be λx.x+⊥ F1G, (iv) h ∈ [N → N ] to be λx.x+1, and
(v) k ∈ [N →N ] is λx.x−1, and (vi) p ∈ [N →T⊥] to be λx.Fx=0G, we conclude that
∀x, y ∈ N. ϕ1(x, y)=ϕ2(x, y).

Example 6.3. [McCarthy 91 Function. Call-by-value. Denotational Se-
mantics] Let us consider the McCarthy 91 function defined for all (negative, or null,
or positive) integers n ∈ N as follows:

f(n) = if n>100 then n−10 else f(f(n+11))

Note that, if we use the usual semantics of >, this declaration is not a legal declaration
in the language REC, but it can be rewritten as a legal declaration as follows:

f(n) = if p(n) then n−10 else f(f(n+11)) (†1)

where p denotes a function from N to N⊥ such that for all n in the set N of integers,
!p(n)"vaϕρ = cond(n>100, F0GF1G). (Recall that cond ∈ [{true, false}×N⊥×N⊥ →
N⊥].) The declaration of the function p can be given in the language REC as follows:

p(n) = if q(n−101) then 0 else 1

q(n) = n−sqroot(n×n)

sqroot(n) = if n then 0 else sqroot1(n, 1)

sqroot1(n, m) = if n−(m×m) then m else sqroot1(n, m+1)

Note that the argument of the function sqroot is always the square of an integer.
Indeed, we have that for all n ∈ N : (i) sqroot(n×n) is the absolute value of n, and
(ii) q(n)= 0 iff n≥ 0. Thus, q(n−101) = 0 iff n> 100, and we get that p(n) = 0 iff
n>100.

A different approach to make the declaration (†1) to be a legal declaration in the
language REC is to assume that the operator > is a primitive operator (such as +,
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−, and ×) whose semantics is defined as follows: for all n, m ∈ N , (n>m) = 0 iff n
is greater than m.

The continuous functional τ associated with the declaration of the function f in
the call-by-value semantics, is as follows:

τ =def λδ.λn. cond(n>100, Fn−10G, let v⇐
(
let u ⇐ !n+11" δ ρ " δ(u)

)
" δ(v))=

=def λδ.λn. cond(n>100, Fn−10G, let v⇐ δ(n+11) " δ(v))

We want to show that the minimal fixpoint of τ is the function, call it g, defined
under the call-by-value semantics by the following declaration (where we used the
identifier g91, instead of g, to distinguish syntax from semantics):

g91(n) = if p(n) then n−10 else 91 (†2)

Thus, g is the continuous function in [N → N⊥] such that for all n ∈ N :

g(n) =def cond(n>100, Fn−10G, F91G). (†3)

We will show that for every function δ ∈ [N → N⊥] which is a fixpoint of τ (and,
thus, τδ=δ), we have that for all n∈N , δ(n)=g(n). Thus, also the minimal fixpoint
of τ is equal to the function g defined by Equation (†3).

Moreover, since for all n∈N , g(n) 1=⊥ (as it can easily be proved by considering
the cases n>100 and n≤100), there is a unique fixpoint of τ .

The proof that for all n∈N , δ(n) = g(n) is done by well-founded induction on
the integers N according to the well-founded order ≺⊆ N × N defined as follows:

∀m, n ∈ N. n ≺ m iff m < n ≤ 101

First note that the order ≺ is well-founded, that is, there is no infinite descending
sequence . . .≺n2≺n1≺n0 in N . Indeed,
(i) if n0 ≥ 101 then no n1 exists such that n1 ≺ n0 because no n1 exists such that
n0 <n1≤101, and
(ii) if n0 <101 then every sequence of the form n0 <n1 <. . .≤101 which is necessarily
finite, gives us a sequence . . .≺n1≺n0 which is necessarily finite.

Take any n ∈ N .
There are three cases: (i) n > 100, (ii) 90 ≤ n ≤ 100, and (iii) n < 90.

Case (i): n > 100. Since δ(n) = τ(δ)(n), we have that

δ(n) = cond(n>100, Fn−10G, let v ⇐ δ(n+11) " δ(v)).

Thus, in this case δ(n) = Fn−10G and δ(n) = g(n).

Case (ii): 90 ≤ n ≤ 100. Since δ(n) = τ(δ)(n), we have that

δ(n) = let v ⇐ δ(n+11) " δ(v) = {since n+11 > 100} =

= let v ⇐ Fn+11 − 10G " δ(v) =

= δ(n+1) =

= {by induction hypothesis because n+1 ≺ n (note that n < n+1 ≤ 101)} =

= g(n+1) = F91G.
Case (iii): n < 90. Since δ(n) = τ(δ)(n), we have that

δ(n) = let v ⇐ δ(n+11) " δ(v) =

= {by induction hypothesis because n+11 ≺ n (note that n < n+11 ≤ 101)} =

= let v ⇐ cond(n+11>100, Fn+11−10G, F91G) " δ(v) = {since n+11 ≤ 100} =
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= let v ⇐ F91G " δ(v) =

= δ(91) = {by Case (ii)} = F91G.

Exercise 6.4. Redo Example 6.3 on page 178 in the call-by-name semantics by
considering the functional

χ =def λδ. λn∈N⊥. n>⊥ F100G → n−⊥F10G | δ(δ(n+⊥F11G))
in [[N⊥ → N⊥] → [N⊥ → N⊥]]. The order >⊥ ⊆ N⊥ × N⊥ is defined as follows:

n >⊥ m = true if down(n) > down(m)
= false if down(n) ≤ down(m)
= ⊥ if n=⊥ or m=⊥

Therefore, you should show that for every fixpoint δ of χ, for every n ∈ N⊥, δ(n) =
g(n), where g(n) =def n>⊥ F100G → n−⊥F10G | F91G.

Exercise 6.5. [McCarthy 91 Function. Call-by-value. Operational Se-
mantics] Consider the function declaration

f(n) = if n>100 then n−10 else f(f(n+11)).

Show that for all (negative, null, and positive) integers n ∈ N , f(n) →va m, for some
m ≥ 91. As already mentioned in Example 6.3 on page 178, this declaration of the
function f is not a legal declaration in the language REC, and in order to make it
legal we will consider > as a primitive operator whose semantics is defined as follows:
for all n, m ∈ N , (n>m) = 0 iff n is an integer larger than m.

Hint. Consider the well-founded order ≺ defined in Example 6.3, and the three
cases: (i) n≤89, (ii) 89<n≤100, and (iii) n>100, as indicated in Example 6.3. !

Example 6.6. [Ackermann Function: Call-by-value. (1) Termination
Implies Computation of Positive Values] Let N denote the set of all (negative,
or null, or positive) integers. Let us consider the Ackermann function which has the
following declaration in the language REC, where x, y ∈ N :

Ack(x, y) = if x then y+1 else
if y then Ack(x−1, 1) else
Ack(x−1,Ack(x, y−1))

(‡)

The functional τ va ∈
[
[N ×N → N⊥] → [N ×N → N⊥]

]
associated with that

declaration of the Ackermann function in the call-by-value semantics is as follows:

τ va =def λδ. λm∈N. λn∈N.Cond
(
FmG, Fn+1G,

Cond
(
FnG, let p ⇐ !x−1" δ ρ[m/x, n/y],

q ⇐ !1" δ ρ[m/x, n/y] " δ(p, q),
let k ⇐ !x−1" δ ρ[m/x, n/y],

- ⇐
(
let r ⇐ !x" δ ρ[m/x, n/y],

s ⇐ !y−1" δ ρ[m/x, n/y] " δ(r, s)
)
" δ(k, -)

))

After some simplifications we get:

τ va =def λδ. λm∈N. λn∈N. Cond
(
FmG, Fn+1G,

Cond
(
(FnG, δ(m−1, 1),

let - ⇐ δ(m, n−1) " δ(m−1, -)
)) (‡1)
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We want to show that the following property holds:

∀m∈N, n∈N. if (m≥0 ∧ n≥0) then fix (τ va)(m, n) 1=⊥ → fix (τ va)(m, n)>⊥ F0G
where for all x, y ∈ N , FxG>⊥ FyG iff x>y. That is, by using a more concise notation,
we want to show that:

∀m, n≥0. P (fix (τ va), m, n) holds, where:

(i) for all functions f ∈ [N×N → N⊥], for all m, n≥ 0, the property P (f, m, n) is
defined as follows:

P (f, m, n) =def f(m, n) 1=⊥ → f(m, n)>⊥ F0G (‡2)

and, as usual,

(ii) fix(τ va) ∈ [N×N → N⊥] is the minimal fixpoint of the functional τ va .

Thus, by using Scott induction we have to show:

(i) ∀m, n≥0. P (⊥, m, n), where ⊥ is the everywhere undefined function λm.λn.⊥ in
[N×N → N⊥], and

(ii) for all f ∈ [N×N → N⊥], if ∀m, n≥0. P (f, m, n) then ∀m, n≥0. P (τ va(f), m, n).

The proof of Point (i) is obvious because for f = λm.λn.⊥, for all m, n ≥ 0, the
premise of the implication (‡2) is false.

The proof of Point (ii) is as follows. Take any function f ∈ [N×N → N⊥]. Let us
assume that:

∀m, n≥0. P (f, m, n). (H)

We have to show that: ∀m, n≥ 0. P (τ va(f), m, n). Let us take any m, n ≥ 0. There
are three cases: (ii.1) m=0 ∧ n≥0, (ii.2) m>0 ∧ n=0, and (ii.3) m>0 ∧ n>0.

Case (ii.1): m = 0 ∧ n ≥ 0. In this case τ va(f) = λm.λn. Fn+1G. Thus, in order
to show P (τ va(f), m, n), it is enough to show that Fn+1G >⊥ F0G. This is obvious
because we have that n≥0.

Case (ii.2): m>0 ∧ n=0. In this case τ va(f)=λm.λn. f(m−1, 1). Thus, in order to
show P (τ va(f), m, n), it is enough to show that:

f(m−1, 1) 1=⊥ → f(m−1, 1)>⊥ F0G. (‡3)

By the hypothesis (H) we have that (‡3) holds.

Case (ii.3): m>0 ∧ n>0. In this case

τ va(f) = λm.λn. (let - ⇐ f(m, n−1) " f(m−1, -)).

We have to show P (τ va(f), m, n), that is:(
let - ⇐ f(m, n−1) " f(m−1, -) 1=⊥

)
→

(
let - ⇐ f(m, n−1) " f(m−1, -)>⊥ F0G

)
.

Thus, we assume:

let - ⇐ f(m, n−1) " f(m−1, -) 1=⊥ (H1)

and we have to show:

let - ⇐ f(m, n−1) " f(m−1, -)>⊥F0G. (T)

Hypothesis (H1) is equivalent to:

f(m, n−1) 1= ⊥ and (H1.1)

f(m−1, -) 1= ⊥, where F-G = f(m, n−1). (H1.2)

Now by the hypothesis (H) we have that P (f, m, n−1) holds, that is,
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f(m, n−1) 1=⊥ → f(m, n−1)>⊥ F0G (‡4)

holds. From (‡4) and (H1.1) we get:

f(m, n−1)>⊥ F0G (‡5)

that is, there exists ->0 such that F-G = f(m, n−1).

From (‡5) we have that in order to show (T) is enough to show that:

f(m−1, -)>⊥ F0G where F-G=f(m, n−1). (T1)

This statement (T1) is a consequence of the hypotheses (H) and (H1.2). !

Example 6.7. [Ackermann Function: Call-by-value. (2) Termination]
We want to show that for all functions δ ∈ [N×N → N⊥] satisfying the following
equation:

δ (m, n) = Cond
(
FmG, Fn+1G,

Cond
(
FnG, δ(m−1, 1),

let - ⇐ δ(m, n−1) " δ(m−1, -)
)) (‡6)

that is, for all functions δ which are fixpoints of Equation (‡6), we have that
∀m, n ≥ 0. δ(m, n) 1= ⊥. Recall that N denotes the set of all negative, or null, or
positive integers.

The proof is by well-founded induction using the well-founded lexicographic order
<lex ⊆ N≥0×N≥0, where N≥0 =def {n |n ∈ N ∧ n≥0}.

There are three cases: (i) m=0 ∧ n≥0, (ii) m>0 ∧n=0, and (iii) m>0 ∧n>0.

Case (i): m = 0 ∧ n ≥ 0. Since δ satisfies Equation (‡6), in this case we have that
δ(m, n) = Fn+1G. Thus, δ(m, n) 1= ⊥.

Case (ii): m > 0 ∧ n = 0. Since δ satisfies Equation (‡6), in this case we have that
δ(m, n)= δ(m−1, 1). Since 〈m−1, 1〉<lex 〈m, n〉 by induction hypothesis we have that
δ(m−1,1) 1=⊥. Thus, δ(m, n) 1= ⊥.

Case (iii): m > 0 ∧ n > 0. Since δ satisfies Equation (‡6), in this case we have that
δ(m, n) = let - ⇐ f(m, n−1) " f(m−1, -). Since 〈m, n−1〉 <lex 〈m, n〉 by induction
hypothesis we have that δ(m, n−1) 1= ⊥ and thus, δ(m, n−1) = F-G for some - ∈ N≥0.
Hence, δ(m, n) = δ(m−1, -) for some - ∈ N≥0. Since 〈m−1, k〉 <lex 〈m, n〉 for all
k ∈ N≥0, by induction hypothesis we have that δ(m−1, -) 1= ⊥. Thus, we get that
δ(m, n) 1= ⊥. !

The following Fact 6.7 is a consequence of the previous two examples (Example 6.6
on page 180 and Example 6.7) by taking into account that: (i) the minimal fixpoint
of the functional τ va for the Ackermann function (see Definition (‡1) on page 180) is a
particular function δ satisfying Equation (‡6) on this page, and (ii) ∀x (A(x) → B(x))
implies (∀xA(x)) → (∀xB(x)).

Fact 6.8. [Ackermann Function: Call-by-value. (3) Termination and
Computation of Positive Values] In the call-by-value regime, the Ackermann
function terminates for all natural numbers m and n. Formally, given the following
functional τ va ∈

[
[N×N → N⊥] → [N×N → N⊥]

]
associated with the Declaration (‡)

on page 180:
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τ va =def λδ. λm∈N. λn∈N. Cond
(
FmG, Fn+1G,

Cond
(
(FnG, δ(m−1, 1),

let - ⇐ δ(m, n−1) " δ(m−1, -)
))

we have that ∀m, n ≥ 0. fix(τ va)(m, n) >⊥ F0G. By the Unique Fixpoint Principle (see
page 107), (i) for all m, n ≥ 0, there exists a unique fixpoint of τ va (and thus, it is
equal to the minimal fixpoint fix (τ va)), and (ii) for all m, n ≥ 0, that unique fixpoint
of τ va applied to m and n, is different from ⊥ ∈ N⊥. All fixpoints of τ va differ only
for the values they return for m<0 or n<0. !

Thus, from this Fact 6.8 on the preceding page and Theorem 3.4 on page 172, we
have that for all m, n ≥ 0, there exists a natural number k such that Ack(m, n) →va k
(see Declaration (‡) of the Ackermann function on page 180).

Fact 6.8 can be extended to the call-by-name regime because, as the reader may
verify, what we have shown for the call-by-value regime in Example 6.6 on page 180
and Example 6.7 on the facing page, also holds for the call-by-name regime. Thus,
we have the following fact.

Fact 6.9. [Ackermann Function: Call-by-name. (4) Termination and
Computation of Positive Values] In the call-by-name regime, the Ackermann
function terminates for all natural numbers m and n. Formally, given the follow-
ing functional τna ∈

[
[N⊥×N⊥ → N⊥] → [N⊥×N⊥ → N⊥]

]
associated with the

Declaration (‡) on page 180:

τna =def λδ. λm∈N⊥. λn∈N⊥.Cond
(
m, n+⊥F1G,

Cond
(
(n, δ(m−⊥F1G, F1G),

δ(m−⊥F1G, δ(m, n−⊥F1G))
)) (‡7)

we have that ∀m, n ≥ 0. fix(τna)(FmG, FnG) >⊥ F0G. By the Unique Fixpoint Princi-
ple (see page 107), (i) for all m, n ≥ 0, there exists a unique fixpoint of τna (and thus,
it is equal to the minimal fixpoint fix(τna)), and (ii) for all m, n ≥ 0, that unique
fixpoint of τna applied to FmG and FnG is different from ⊥ ∈ N⊥. All fixpoints of τna

differ only for the values they return for m<0 or n<0. !

Exercise 6.10. Consider the functional τ va (see Definition (‡1) on page 180) and
the functional τna (see Definition (‡7) on page 183).

Show that ∀m, n ≥ 0, fix (τ va)(m, n) = fix (τna)(FmG, FnG).
Hint. By induction on m and n. !

In the following Fact 6.13 on page 186 we will extend the termination results of
Fact 6.8 and Fact 6.9. We will show strong termination (see page 42) of a rewriting
system associated with the Ackermann function. For that rewriting system, in fact,
given any initial term of the form Ack(m, n), there exist the natural numbers r and v
such that Ack(m, n) −→r v under any evaluation regime, that is, for every possible
choice of the subterm to be rewritten at every rewriting step. Thus, in particular,
termination will be guaranteed when at every rewriting step we replace the innermost
subterm or the outermost subterm and these regimes correspond, respectively, to the
call-by-value and the call-by-name regimes (see also Section 7 on page 192).
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In Fact 6.13 we will assume a binary relation, denoted −→, which is defined by
a set of rewriting rules and, as usual, we will also assume the following context-rule
for that rewriting relation:

for every term t and t′, for every context C[−],

t−→ t′

C[t] −→ C[t′]

Recall that a context C[−] is a term ‘with a missing subterm’ (see Remark 2.1 on
page 166).

The following definition introduces the rewriting system associated with the Ack-
ermann function.

Definition 6.11. [Ackermann Rewriting Rules] Let us consider the following
rewriting rules R1–R3 are associated with the Ackermann function. The variables m
and n range over the set of terms t of the form

t ::= 0 | succ(t) | t + t | Ack(t, t)

We will write n as an abbreviation for succn(0), for any n∈N . In particular 1 is an
abbreviation for succ(0). The term t+1 stands for succ(t), for any term t.

We will also implicitly use commutativity and associativity of +.

R1. Ack(0, n) −→ n+1
R2. Ack(m+1, 0) −→ Ack(m, 1)
R3. Ack(m+1, n+1) −→ Ack(m,Ack(m+1, n)) !

Whenever the term ti+1 is derived from the term ti by applying the rewriting rule Rk ,
for k = 1, 2, and 3, we will write ti −→k ti+1. For instance, starting from the term
Ack(1, 2), we have the following three sequences of terms, where at every rewriting
step we have underlined the term which has been replaced (see also Section 7 on
page 192).

(A) Call-by-name regime (outermost call):

Ack(1, 2) −→3 Ack(0,Ack(1, 1)) −→1 Ack(1, 1)+1

−→3 Ack(0,Ack(1, 0))+1 −→1 Ack(1, 0)+1+1

−→2 Ack(0, 1)+1+1 −→1 1+1+1+1 = 4

(B) Call-by-value regime (innermost call):

Ack(1, 2) −→3 Ack(0,Ack(1, 1)) −→3 Ack(0,Ack(0,Ack(1, 0)))

−→2 Ack(0,Ack(0,Ack(0, 1))) −→1 Ack(0,Ack(0, 1+1))

−→1 Ack(0, 1+1+1) −→1 1+1+1+1 = 4

(C) A regime which is neither call-by-name nor call-by-value:

Ack(1, 2) −→3 Ack(0,Ack(1, 1)) −→3 Ack(0,Ack(0,Ack(1, 0)))

−→1 Ack(0,Ack(1, 0)+1) −→2 Ack(0,Ack(0, 1)+1)

−→1 Ack(0, 1)+1+1 −→1 1+1+1+1 = 4
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Now, in the following Fact 6.12 we will prove some properties of the Ackermann
function defined as the minimal fixpoint of the functional τna (see Definition (‡7)
on page 183). We leave it to the reader to show that analogous properties hold for
the Ackermann function defined as the minimal fixpoint of the functional τ va (see
Definition (‡1) on page 180).

Then in Fact 6.13 on the next page we will show strong termination (see Defi-
nition 9.7 on page 42) of the rewriting system of Definition 6.11 on the preceding
page.

Fact 6.12. [Monotonicities of the Ackermann Function] Let the function
λm ∈ N. λn ∈ N.A(FmG, FnG) ∈ [N⊥×N⊥ → N⊥] be the minimal fixpoint of the
functional τna (see Definition (‡7) on page 183). We have the following inequalities:

(F1) ∀m, n ≥ 0, A(FmG, FnG) >⊥ FnG
(F2) ∀m, n ≥ 0, A(FmG, Fn+1G) >⊥ A(FmG, FnG) (Right Monotonicity)
(F3) ∀m, n ≥ 0, A(Fm+1G, FnG) >⊥ A(FmG, FnG) (Left Monotonicity)

where the relation >⊥ is the strict extension of the usual > relation between natural
numbers (see also Exercise 6.4 on page 180).

Proof. (F1) By induction on m∈N .
(Basis) We have to prove that ∀n∈N.A(F0G, FnG) >⊥ FnG. This is obvious, because
by definition of τna , ∀n∈N.A(F0G, FnG) = Fn+1G.
(Step) We take any m∈N and we assume (α): ∀n∈N.A(FmG, FnG) >⊥ FnG and we
have to show: ∀n∈N .A(Fm+1G, FnG) >⊥ FnG. We prove this by induction on n∈N .
(Basis) A(Fm+1G, F0G) = {by definition of τna} = A(FmG, F1G) = {by induction
hypothesis (α)} >⊥ F1G. Thus, A(Fm+1G, F0G) >⊥ F0G.
(Step) We take any n ∈ N . We assume (β): A(Fm+1G, FnG) >⊥ FnG. We have to
show: A(Fm+1G, Fn+1G) >⊥ Fn+1G. Indeed,
A(Fm+1G, Fn+1G) = {by definition of τna} =

= A(FmG,A(Fm+1G, FnG)) = {by induction hypothesis (α)} =
>⊥ A(Fm+1G, FnG) = {by induction hypothesis (β)} >⊥ FnG.

Thus, A(Fm+1G, Fn+1G) >⊥ Fn+1G. (Note that if Fn1G >⊥ Fn2G >⊥ Fn3G then
Fn1G >⊥ Fn3+1G.)

(F2) By induction on m∈N .
(Basis) We have to prove: A(F0G, Fn+1G) >⊥ A(F0G, FnG). This is obvious, because
by definition of τna , A(F0G, Fn+1G) = Fn+2G and A(F0G, FnG) = Fn+1G.
(Step) We take any m∈N and we assume: A(FmG, Fn+1G) >⊥ A(FmG, FnG). We have
to show: A(Fm+1G, Fn+1G) >⊥ A(Fm+1G, FnG). Indeed,

A(Fm+1G, Fn+1G) = {by definition of τna} =
= A(FmG,A(Fm+1G, FnG)) = {by (F1)} >⊥ A(Fm+1G, FnG).

(F3) By induction on n∈N .
(Basis) We have to prove: ∀m.A(Fm+1G, F0G) >⊥ A(FmG, F0G). We take any m∈N .
We have: A(Fm+1G, F0G) = {by definition of τna} = A(FmG, F1G) = {by (F2)} >⊥

A(FmG, F0G).
(Step) We take any n∈N . We assume (γ): ∀m∈N.A(Fm+1G, FnG) >⊥ A(FmG, FnG).
We have to show: ∀m∈N.A(Fm+1G, Fn+1G) >⊥ A(FmG, Fn+1G).
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We take any m∈N . We have:
A(Fm+1G, Fn+1G) = {by definition of τna} =

= A(FmG,A(Fm+1G, FnG)) = {by induction hypothesis (γ) and (F2)} =
>⊥ A(FmG,A(FmG, FnG)).

It remains to show that A(FmG,A(FmG, FnG)) ≥⊥ A(FmG, Fn+1G), where ≥⊥ means,
as usual, >⊥ or =.

Now, since: (i) by (F1) A(FmG, FnG) >⊥ FnG, and (ii) A(FmG, FnG) >⊥ FnG implies
A(FmG, FnG) ≥⊥ Fn+1G, we have (δ): A(FmG, FnG) ≥⊥ Fn+1G.
We have two cases:

Case (δ1): A(FmG, FnG) = Fn+1G, and Case (δ2): A(FmG, FnG) >⊥ Fn+1G.
In Case (δ1) we have: A(FmG,A(FmG, FnG)) = {A is a function} =

= A(FmG, Fn+1G).
In Case (δ2), by (F2) we get: A(FmG,A(FmG, FnG)) >⊥ A(FmG, Fn+1G). Thus, by
combining cases (δ1) and (δ2), we get:

A(FmG,A(FmG, FnG)) ≥⊥ A(FmG, Fn+1G), as desired.
This concludes the proof of (F3). !

We have the following fact which states that the strong termination of the rewrit-
ing system of Definition 6.11 on page 184.

Fact 6.13. [Ackermann Rewriting Rules. (5) Strong Termination] For
all natural numbers m and n, every sequence t0, t1, . . . of terms such that: (i) t0 is
Ack(m, n), and (ii) for all i≥ 0, ti+1 is derived from ti by applying in any subterm
of ti any of the three rewriting rules R1–R3 of the rewriting system of Definition 6.11
on page 184, is finite, that is, for all m≥0, for all n≥0, there exist r>0, v >0 such
that Ack(m, n) −→r v.

Proof. The strong termination of the Ackermann rewriting system R1–R3 is
proved by using a bounded lexicographic recursive path order (see Theorem 9.21 on
page 44).

Let us consider the set {Ack , +, succ, 0} of symbols with the following order ! :
Ack ! + ! succ ! 0. We write 1, instead of succ(0). Let O be the bounded
lexicographic recursive path order associated with ! (see Definition 9.20 on page 44),
and Olex be the lexicographic order associated with O (see Definition 9.18 on page 44).

For rule R1 we have that: Ack(0, n) O n+1 because:
(1.1) Ack ! +, (1.2) Ack(0, n) O n (by subterm (see Definition 9.15 on page 43)),
and (1.3) Ack(0, n) O succ(0) because: (1.3.1) Ack ! succ, (1.3.2) Ack(0, n) O 0 (by
subterm).

For rule R2 we have that: 〈m+1, 0〉 Olex 〈m, succ(0)〉, because:
(2.1) m+1 O m, (2.2) Ack(m+1, 0) O m (by subterm), and (2.3) Ack(m+1, 0) O
succ(0) because: (2.3.1) Ack ! succ and (2.3.2) Ack(m+1, 0) O 0 (by subterm).

Finally, for rule R3 we have that: Ack(m+1, n+1) O Ack(m,Ack(m+1, n)), because:
(3.1) m+1 O m, (3.2) Ack(m+1, n+1) O m (by subterm), and (3.3) Ack(m+1, n+1) O
Ack(m+1, n) because: 〈m+1, n+1〉 Olex 〈m+1, n〉 and this holds because n+1 O n
(by subterm).
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An alternative proof of Fact 6.13 on the facing page is based on a bounded lexico-
graphic recursive path order with Condition (bl-rpo 2.2*), instead of Condition (bl-
rpo 2.2) (see Definition 9.20 on page 44). We take the semantic function ![_"] of
Condition (bl-rpo 2.2*) defined as follows: for all m, n ≥ 0,

![Ack(m, n)"] = v iff there exists a natural number v such that Ack(m, n) →na v

and, indeed, this is the case because of: (i) Fact 4.1 on page 173, (ii) Theorem 5.4 on
page 176, and (iii) Fact 6.9 on page 183.

Let us consider the difficult part of this alternative proof. It refers to the case of
rule R3. The easy cases of the rules R1 and R2 are left to the reader.

For rule R3 we have that: Ack(m+1, n+1) O Ack(m,Ack(m+1, n)), because:
(3.1) m+1 O m, (3.2) Ack(m+1, n+1) O m (by subterm), and (3.3) Ack(m+1, n+1) O
Ack(m+1, n) because:

![Ack(m+1, n+1)"] >⊥ ![Ack(m+1, n)"]

(by Fact 6.12 on page 185 and the fact that >⊥ is well-founded on N≥0
⊥ ×N≥0

⊥ , where
N≥0

⊥ is the flat cpo of the natural numbers). !

Having shown the strong termination of the Ackermann rewriting rules of Defini-
tion 6.11 on page 184, we have that the rewriting relation −→ is confluent. Indeed,
since there are no critical pairs in those rules, confluence follows from Theorem 9.28
on page 46 and Theorem 9.30 on page 48.

From strong termination and confluence, by Theorem 9.26 on page 46, it follows
that the Ackermann rewriting rules associate a unique normal form to every term
Ack(t1, t2), where t1 and t2 are terms of the form (see Definition 6.11):

t ::= 0 | succ(t) | t + t | Ack(t, t).

Now we prove a fact which is analogous to Fact 6.1 on page 176. It will be useful
in the following Example 6.15 where we will prove the equivalence of two function
declarations under the call-by-name regime.

Fact 6.14. [Call-by-name Equivalence of Two Functionals] Let us consider
a cpo D⊥ with bottom and the functions h ∈ [D⊥ → D⊥] and k ∈ [D⊥ → D⊥],
and the predicate p ∈ [D⊥ → T⊥], where T⊥ is the lifted cpo of the discrete cpo
T = {true, false}. Let us assume that the function h is strict, that is, h(⊥) = ⊥ ∈ D⊥.
We have that the minimal fixpoint of the two functionals

τ1 δ1 (x, y) = p(x) → y | h(δ1(k(x), y))

τ2 δ2 (x, y) = p(x) → y | δ2(k(x), h(y))

where δ1, δ2 ∈ [D⊥×D⊥ → D⊥], are equal. Recall that b → d1 | d2 is a continuous
function in [T⊥×D⊥×D⊥ → D⊥] and it stands for let t ⇐ b " cond(t, d1, d2), where
cond is a continuous function in [T×D⊥×D⊥ → D⊥].

Proof. The proof is similar to that of Fact 6.1 on page 176 and can be done by
Scott induction by considering the inclusive predicate

P (f, g) =def ∀x, y. f(x, y)=g(x, y) ∧ g(x, h(y))=h(g(x, y)). !

Example 6.15. [Call-by-name Equivalence of Sum Declarations] Let N
denote the discrete cpo of the integers {. . . ,−2,−1, 0, 1, 2, . . .} and N⊥ denote the
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flat cpo of the integers with the bottom element ⊥. Let us consider the following two
declarations:

sum1(x, y) = if x then y else sum1(x−1, y) + 1

sum2(x, y) = if x then y else sum2(x−1, y+1)

In the call-by-name semantics those declarations define two functionals, call them
τ1 and τ2, respectively. They satisfy the following equations (recall that Cond ∈
[N⊥×N⊥×N⊥→N⊥]):

τ1 δ1 (x, y) = Cond(x, y, δ1(x−⊥F1G, y)+⊥F1G) where δ1 ∈ [N⊥×N⊥→N⊥]

τ2 δ2 (x, y) = Cond(x, y, δ2(x−⊥F1G, y+F1G)) where δ2 ∈ [N⊥×N⊥→N⊥]

Now, if we indicate by ϕ1 and ϕ2 the minimal fixpoints of τ1 and τ2, respectively,
and we use the _→_ |_ construct, instead of Cond , we get (recall that _→_ |_ ∈
[T⊥×N⊥×N⊥→N⊥]):

ϕ1(x, y) = x=⊥ F0G → y | ϕ1(x−⊥F1G, y)+⊥F1G
ϕ2(x, y) = x=⊥ F0G → y | ϕ2(x−⊥F1G, y+⊥F1G)

Then, we use Fact 6.14 on the preceding page, where we take: (i) the cpo D⊥ to be
N⊥, (ii) the function h ∈ [N⊥ →N⊥] to be the strict function λx. x+⊥F1G, (iii) the
function k ∈ [N⊥ →N⊥] to be λx.x−⊥F1G, and (iv) the predicate p ∈ [N⊥ →T⊥] to
be λx.x=⊥ F0G, and we conclude that fix (τ1) = fix (τ2), that is, ∀x, y ∈ N⊥. ϕ1(x, y)=
ϕ2(x, y). !

In Example 6.16 and Example 6.18 on the next page we will see in action the
Structural Induction rule. Before presenting those examples we need introduce the
discrete cpo, called List(Σ), of the lists of elements taken from a given set Σ.

The discrete cpo List(Σ) is the smallest set, also denoted List(Σ), which has:
(i) the empty list [ ], and
(ii) the list a : -, for any a∈Σ, for any list -∈List(Σ), where ‘:’ denotes the familiar

infix constructor cons for lists.
For instance, given the list [c, a, a], we have that b : [c, a, a] is the list [b, c, a, a]. As
usual, for any a ∈ Σ, a : [ ] is also written as [a]. The partial order E on the cpo
List(Σ) is defined as follows:

for all -∈List(Σ), - E -.
Thus, the elements of the set List(Σ) are those generated by the following productions
from the nonterminal symbol L, for any a∈Σ:

L → [ ] | a :L (Lists)

We will also use the head function hd : List(Σ)−{[ ]} → Σ and the tail function
tl : List(Σ)−{[ ]} → List(Σ), defined as usual. For instance, hd([b, a, a]) = b and
tl([b, a, a]) = [a, a].

Example 6.16. [Associativity of the Append Function] Let us consider the
following functional τapp ∈

[
[List(Σ)×List(Σ) → List(Σ)] → [List(Σ)×List(Σ) →

List(Σ)]
]
:
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τapp =def λδ. λ(x, y). cond(x=[ ], y, hd(x) :δ(tl(x), y)) (functional τapp for append)

where cond : {true, false}×List(Σ)×List(Σ) → List(Σ). Let the append function
app: List(Σ)×List (Σ) → List(Σ) be defined as the minimal fixpoint fix(τapp). Thus,
we have the following equation:

app(x, y) = cond(x=[ ], y, hd(x) :app(tl(x), y)). (append function) (†)
For instance, app([a, c, b], [c, b]) = [a, c, b, c, b].

Now we prove that app enjoys the associativity property, that is, we have that,
for all x, y, z ∈ List(Σ),

app(app(x, y), z) = app(x, app(y, z)) (associativity of append)

The proof is by structural induction on the list x as follows.

(Basis) x=[ ]. We have to show that app(app([ ], y), z) = app([ ], app(y, z)).

We have that:

(i) l.h.s: app(app([ ], y), z) =

= app(cond([ ]=[ ], y, hd(x) :app(tl(x), y)), z) = app(y, z).

(ii) r.h.s.: app([ ], app(y, z)) =

= cond([ ]=[ ], app(y, z), hd(x) :app(tl(x), y)), z)= app(y, z).

(Step) For all -, y, z ∈ List(Σ), for all a ∈ Σ,

we assume that app(app(-, y), z) = app(-, app(y, z)) and we have to show that
app(app(a :-, y), z) = app(a :-, app(y, z)).

We have that:

(i) l.h.s.: app(app(a :-, y), z) =

= app(cond(a :-=[ ], y, a :app(-, y)), z) =

= app(a :app(-, y), z) = cond(a :app(-, y)=[ ], z, a :app(app(-, y), z)) =

= a :app(app(-, y), z) = {by induction hypothesis} =

= a :app(-, app(y, z)).

(ii) r.h.s.: app(a :-, app(y, z)) =

= cond(a :-=[ ], app(y, z), a :app(-, app(y, z))) =

= a :app(-, app(y, z)). !

Exercise 6.17. Show by structural induction on x that for all x ∈ List(Σ),
app(x, [ ]) = x. !

Example 6.18. [Properties of the Reverse Function (1)] Let us introduce
the reverse function rev : List(Σ) → List(Σ). First, we consider the the functional
τr ∈

[
[List(Σ)×List(Σ) → List(Σ)] → [List(Σ)×List(Σ) → List(Σ)]

]
defined as

follows:
τr =def λδ. λ(x, y). cond(x=[ ], y, δ(tl(x), hd(x) :y)) (functional τr for r)

Then we define:

rev(x) = r(x, [ ]) (reverse function)

where the function r is the minimal fixpoint fix(τr ), that is,
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r(x, y) = cond(x=[ ], y, r(tl(x), hd(x) :y)) (r function)

We have the following properties: for all a ∈ Σ, for all -, m ∈ List(Σ),

rev([ ]) = [ ] (both sides are equal to r([ ], [ ])) (†1)

rev(a :-) = r(-, [a]) (both sides are equal to r(a :-, [ ])) (†2)

r(-, m) = app(rev(-), m) (†3)

where app denotes the append function on lists introduced in Example 6.16 on
page 188. The proofs of (†1) and (†2) are left to the reader. Here is the proof
of (†3) by structural induction on -.

(Basis) For -=[ ] we have:

l.h.s.: r([ ], m) = {by definition of r} = m.

r.h.s.: app(rev([ ]), m) = {by (†1)} =

= app([ ], m) = {by (†) of Example 6.16 on page 188} = m.

(Step) For any a ∈ Σ, any -, m ∈ List(Σ), assume r(-, m) = app(rev(-), m) and show
that r(a :-, m) = app(rev(a :-), m).

l.h.s.: r(a :-, m) = {by definition of r} = r(-, a :m).

r.h.s.: app(rev(a :-), m) = {by (†2)} =

= app(r(-, [a]), m) = {by induction hypothesis} =

= app(app(rev(-), [a]), m) =

= {by associativity of app (see Example 6.16 on page 188)} =

= app(rev(-), app([a], m)) =

= {by (†) of Example 6.16 on page 188} =

= app(rev(-), a :m) = {by induction hypothesis} =

= r(-, a :m).

This concludes the proof of (†3). As a particular instance of (†3) for m=[a], we get:

r(-, [a]) = app(rev(-), [a])

that is, by (†2),

rev(a :-) = app(rev(-), [a]). (†4) !

Example 6.19. [Properties of the Reverse and Append Functions (2)]
Let us consider the flat cpo List(Σ)⊥ which is the set List(Σ)∪ {⊥} with the partial
order E defined as follows:

for all x, y ∈ List(Σ)⊥, x E y iff x=⊥ or x=y.

By using the McCarthy Induction rule, we will prove that for all u, v ∈ List(Σ)⊥ such
that u 1=⊥ and v 1=⊥:

rev⊥(app⊥(u, v)) = app⊥(rev⊥(v), rev⊥(u))

where: (i) the function app⊥: List(Σ)⊥ × List(Σ)⊥ → List(Σ)⊥ is the strict exten-
sion of the function app defined in Example 6.16 on page 188, and (ii) the function
rev⊥: List(Σ)⊥ → List(Σ)⊥ is the strict extension of the function rev defined in
Example 6.18 on the previous page.

Thus, we have that: for all u, v ∈ List(Σ)⊥,
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app⊥(u, v)=cond
(
u=⊥∨ v=⊥, ⊥, let x ⇐ u, y ⇐ v " Fapp(x, y)G

)
(app⊥)

rev⊥(u)=cond
(
u=⊥, ⊥, let x ⇐ u " Frev(x)G

)
(rev⊥)

Recall that cond is a continuous function in [{true, false} × List(Σ)⊥ × List(Σ)⊥ →
List(Σ)⊥].

Let us consider the continuous functional τ ∈
[
[List(Σ)⊥×List(Σ)⊥→List(Σ)⊥] →

[List(Σ)⊥×List(Σ)⊥→List(Σ)⊥]
]

defined as follows:

τ =def λδ. λ(u, v). cond
(
u=⊥∨ v=⊥, ⊥,

let x ⇐ u, y ⇐ v "⌊
cond(x=[ ], rev(y),
let d ⇐ δ(Ftl(x)G, FyG) " app(d, [hd(x)])

⌋)
(functional τ)

where the outside cond is in [{true, false} × List(Σ)⊥ × List(Σ)⊥ → List(Σ)⊥] and
the inner cond is in [{true, false} × List(Σ) × List(Σ) → List(Σ)].

In order to use the McCarthy Induction rule, we have to show that:

for all u, v ∈ List(Σ)⊥,

(i) rev⊥(app⊥(u, v)) = τ
(
λ(r, s). rev⊥(app⊥(r, s))

)
(u, v),

that is, λ(r, s). rev⊥(app⊥(r, s)) is a fixpoint of the functional τ ,

(ii) app⊥(rev⊥(v), rev⊥(u)) = τ
(
λ(r, s). app⊥(rev⊥(s), rev⊥(r))

)
(u, v),

that is, λ(r, s). app⊥(rev⊥(s), rev⊥(r)) is a fixpoint of the functional τ , and

(iii) for all u, v ∈ List(Σ)⊥, if u 1=⊥ and v 1=⊥, then (fix (τ))(u, v) 1= ⊥.

Proof of Point (i). By cases. If u=⊥∨ v=⊥, Point (i) is obvious.

If u = F[ ]G and v=FyG, for some y ∈ List(Σ), we have the following.

l.h.s. of (i): rev⊥(app⊥(F[ ]G, FyG)) = {by (rev⊥) and (app⊥)} =

= Frev(app([ ], y))G = {by (†) of Example 6.16 on page 188} = Frev(y)G.
r.h.s. of (i): τ

(
λ(r, s). rev⊥(app⊥(r, s))

)
(F[ ]G, FyG) = {by the definition of τ} =

= Frev(y)G.
If u = Fa : -G and v = FyG, for some a ∈ Σ, for some -, y ∈ List(Σ), we have the
following.

l.h.s. of (i): rev⊥(app⊥(Fa :-G, FyG)) = {by (rev⊥) and (app⊥)} =

= Frev(app(a :-, y))G = {by (†) of Example 6.16 on page 188} =

= Frev(a :app(-, y))G = {by (†4) of Example 6.18 on page 189} =

= Fapp(rev(app(-, y)), [a])G.
r.h.s. of (i): τ

(
λ(r, s). rev⊥(app⊥(r, s))

)
(Fa :-G, FyG) = {by the definition of τ} =

= Flet d ⇐ rev⊥(app⊥(F-G, FyG)) " app(d, [a])G =

= Flet d ⇐ Frev(app(-, y))G " app(d, [a])G =

= Fapp(rev(app(-, y)), [a])G.
Proof of Point (ii). By cases. If u=⊥∨ v=⊥, Point (ii) is obvious.

If u = F[ ]G and v=FyG for some y ∈ List(Σ), we have the following.

l.h.s. of (ii): app⊥(rev⊥(FyG), rev(F[ ]G)) = {by (rev⊥) and (app⊥)} =
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= Fapp(rev(y), rev([ ]))G = {by (†1) of Example 6.18 on page 189} =

= Fapp(rev(y), [ ])G = {by Exercise 6.17 on page 189} =

= Frev(y)G.
r.h.s. of (ii): τ

(
λ(r, s). app⊥(rev⊥(s), rev⊥(r))

)
(F[ ]G, FyG) =

= {by the definition of τ} = Frev(y)G.
If u = Fa : -G and v = FyG, for some a ∈ Σ, for some -, y ∈ List(Σ), we have the
following.

l.h.s. of (ii): app⊥(rev⊥(FyG), rev⊥(Fa :-G)) = {by (rev⊥) and (app⊥)} =

= Fapp(rev(y), rev(a :-))G = {by (†4) of Example 6.18 on page 189} =

= Fapp(rev(y), app(rev(-), [a]))G.
r.h.s. of (ii): τ

(
λ(r, s). app⊥(rev⊥(s), rev⊥(r))

)
(Fa :-G, FyG) =

= {by the definition of τ} =

= Flet d ⇐ app⊥(rev⊥(FyG), rev⊥(F-G)) " app(d, [a])G =

= Flet d ⇐ app⊥(Frev(y)G, Frev(-)G) " app(d, [a])G =

= Fapp(app(rev(y), rev(-)), [a])G =

= Fapp(app(rev(y), rev(-)), [a])G =

= {by associativity of app (see Example 6.16 on page 188)} =

= Fapp(rev(y), app(rev(-), [a]))G.
Proof of Point (iii). For all u, v ∈ List(Σ)⊥, if u 1=⊥ and v 1=⊥, that is, if u = FxG
and v=FyG for some x, y ∈ List(Σ), by the definition of τ we have that:

(fix (τ))(u, v) = Fcond
(
x=[ ], rev(y), let d ⇐ fix (τ)(Ftl(x)G, FyG) " app(d, [hd(x)]

)
G.

Thus, (fix (τ))(u, v) 1= ⊥. !

7. Computation of Fixpoints in the Language REC via Rewritings

In this section we will present some operational semantics for the language REC
and we will investigate their relationship with the call-by-value and call-by-name
denotational semantics (defined on pages 168 and 175, respectively).

In order to present the operational semantics we will follow the approach based
on term rewriting [9, Chapter 5], rather than the one based on deduction rules which
we have followed for the call-by-value semantics in Section 2 on page 166 and for the
call-by-name semantics in Section 4 on page 173.

Let us first recall the definition of the set Term of terms of the language REC
which we have presented on page 165. A term t ∈ Term is defined as follows:

t ::= n | x | t1 op t2 | if t0 then t1 else t2 | fi(t1, . . . tai
)

where t0, t1, t2, tai
are terms in Term, n is an integer in N = {. . . ,−2,−1, 0, 1, 2, . . .},

x is a variable in Var, op is an operator in the set {+,−,×, }, and fi is a function
variable in Fvar. Let us also consider a set of declarations of the form:





f1(x1, . . . , xa1
) = d1

. . .
fk(x1, . . . , xak

) = dk
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Step (A). (Unfolding) We replace, simultaneously and in parallel, the function calls
singled out in the term ti by the rule R, by the corresponding instances of the right
hand sides of their declarations.

For instance,we have that: fh(t1,. . . ,tah
)→R dh[t1/x1,. . . ,tah

/xah
], forh=1,. . . ,k.

Step (B). Perform the following Steps (B.1) and (B.2) as long as possible.

(B.1) (Evaluation of arithmetic operators) We evaluate every arithmetical operator
op ∈ {+,−,×} whose operands have both been evaluated to an integer.

For instance, we have that: 3×(5−1) →R 3×4 →R 12.

(B.2) (Simplification of conditionals) We simplify every if -then-else construct
whose condition has been evaluated to an integer, that is, for all terms t1 and
t2, if 0 then t1 else t2 →R t1, and if n then t1 else t2 →R t2, if n 1=0.

For instance, we have that: if 2 then 1 else 0 →R 1.

Figure 1. Operational Semantics of the language REC via term
rewriting, according to the computation rule R.

where, for i = 1, . . . , k, di is a term such that: (i) every variable occurring in di belongs
to the set {x1, . . . , xai

}, and (ii) every function variable in di belongs to {f1, . . . , fk}.
Let a computation rule R be a function that given a term t, singles out some

occurrences of the function variables in t.

The evaluation of a term t according a given computation rule R, is defined to be
the last term, if any, of a (possibly infinite) maximal sequence σ = 〈t0, t1, . . . , ti, . . .〉
of terms, called the evaluation sequence of the term t, such that: (1) t0 is t, and
(2) for i ≥ 0, the term ti+1 is derived by the term ti, and we write ti →R ti+1, by
performing the Steps (A) and (B) indicated in Figure 1. In that figure we present the
operational semantics of the language REC via term rewriting according to a given
computation rule R.

Note that the evaluation sequence is a maximal sequence in the sense that if its
last term is the term tn then there is no term t such that tn →R t.

If ti →R ti+1 we say that the term ti is rewritten into the term ti+1 by using the
rule R.

When the computation rule R is understood from the context we will write →,
instead of →R.

We have that: (i) if the evaluation sequence σ is finite then only the last term
of σ is an integer, and (ii) if the evaluation sequence σ is infinite then no term of σ
is an integer.

These two properties of σ are in accordance with the fact that both the call-by-
name and the call-by-value denotational semantics of a closed term in REC is a value
in the lifted cpo N⊥ of the integers.

If the evaluation sequence σ of the term t that we may construct using →R with
the call-by-value (or call-by-name) computation rule R (see below on page 194), is an
infinite sequence, then the call-by-value (or call-by-name, respectively) denotational
semantics of a term t is ⊥.
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If the evaluation of a term t according to a computation rule R is n, we will write
t →∗

R n.

Remark 7.1. (i) The evaluation of any arithmetical operator requires first the
evaluation of all its arguments. Thus, for instance, we cannot replace 0× t by 0,
unless t has been first evaluated to an integer.

(ii) The simplification of any if -then-else construct requires first the evaluation
of its condition to an integer. Thus, in particular, the expression if t0 then t else t
(in which the left arm is equal to the right arm), should not be replaced by t, unless
t0 has first been evaluated to an integer.

Note that, as usual for the language REC, in the expression if t0 then t1 else t2
we have that if t0 = 0 then t0 stands for true, while if t0 1=0 then t0 stands for false. !

In the rewriting steps for constructing the sequence σ of terms starting from a
given term t using a computation rule R, we have that:

for all terms t1, t2,
if t1 →R t2 then for every context C[−], if in C[t1] the computation rule R requires
to first evaluate t1, then C[t1] →R C[t2].

In this sense we say that a context-rule holds for our operational semantics.

Let us consider the following computation rules:

(i) leftmost-innermost rule, which singles out the leftmost occurrence of a function
variable which has all its arguments without function variables (this rule is a particu-
lar instance of the call-by-value rule as described by the deduction rules on page 167),

(ii) parallel-innermost rule, which singles out all occurrences of function variables,
each of which has all its arguments without occurrences of function variables,

(iii) leftmost rule, which singles out the leftmost occurrence of a function variable (this
rule is a particular instance of the call-by-name rule as described by the deduction
rules on page 173),

(iv) parallel-outermost rule, which singles out all occurrences of function variables
which do not occur in arguments of other function variables,

(v) free-argument rule, which singles out all occurrences of function variables, each
of which has at least one argument without occurrences of function variables, and

(vi) full-substitution rule, which singles out all occurrences of function variables.

In the following table we indicate the occurrences of the function variables which
are singled out by the various computation rules in the following term:

f1(f2(0, 1), f3(2, 3)) + f4(f5(4, 5), 6).
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Computation rule R Occurrences which are singled out in the term
f1(f2(0, 1), f3(2, 3)) + f4(f5(4, 5), 6)

leftmost-innermost rule: f2

parallel-innermost rule: f2, f3, f5

leftmost rule: f1

parallel-outermost rule: f1, f4

free-argument rule: f2, f3, f4, f5

full-substitution rule: f1, f2, f3, f4, f5

Now we give an example of evaluation of a term.

Example 7.2. [McCarthy 91 Function. Leftmost Computation Rule] Let
us consider the McCarthy 91 function which we have introduced in Example 6.3 on
page 178. We recall its declaration which is as follows: for all (negative, or null, or
positive) integers n ∈ N ,

f(n) = if n>100 then n−10 else f(f(n+11)) (McCarthy 91 function)

Let us consider the leftmost computation rule. Then evaluation sequence of the term
f(−3) is the following sequence of terms, where: (i) we have written fk(n), instead
of f(. . . (f(n)) . . .) with k occurrences of f , and (ii) for reasons of brevity we have
omitted the rewriting steps relative to the evaluation of arithmetic operators and the
simplification of conditionals.

f(−3) → f 2(8) → f 3(19) → . . . → f 10(96) → f 11(107) → f 10(97)

→ f 11(108) → f 10(98)

→ f 11(109) → f 10(99) (†11)

→ f 11(110) → f 10(100) → f 11(111)

→ f 10(101) → f 9(91) (†101)

→ f 10(102) → f 9(92) (†102)

. . . {by comparing the rewritings (†101) and (†102)}

→ f 10(109) → f 9(99) (†10)

. . . {by comparing the rewritings (†11) and (†10)}

→ f 2(109) → f(99)

→ f 2(110) → f(100) → f 2(111) → f(101) → 91.

One can show that for all n ∈ N = {. . . ,−2,−1, 0, 1, 2, . . .},
if n>100
then f(n) →∗

R n−10
else f(n) →∗

R 91

where R is the leftmost computation rule.
This fact follows from Theorem 7.4 on the next page, which tells us that the

leftmost computation rule agrees with the value of the minimal fixpoint

λn. cond(n>100, Fn−10G, F91G)



196 6. SYNTAX AND SEMANTICS OF FIRST ORDER FUNCTIONAL LANGUAGES

of the functional

τ =def λδ.λn. cond
(
n>100, Fn−10G, δ(δ(n+11))

)

which expresses the call-by-name semantics of the above declaration of McCarthy 91
function. !

Now we state without proof the following theorems [9, Chapter 5] which refer to
a given set Decl = {fi(x1, . . . , xai

) = di | 1≤ i≤k} of declarations.
Let ϕ ∈ [Na1

⊥ → N⊥]×. . .×[Nak

⊥ → N⊥] be the minimal fixpoint of the functional
associated with the set Decl of declarations in the call-by-name semantics. Let ρ be
an environment, that is, a function from the set Var of variables to the cpo N⊥.

Given the set Decl of declarations and a term t, by !t"naϕρ we denote the element
in N⊥ which is the call-by-name semantics of the term t.

Theorem 7.3. [Cadiou Theorem] For any term t and any computation rule R,
if t →∗

R n then !t"naϕρ=FnG ∈ N⊥.

Note that the converse of Cadiou Theorem does not hold. Indeed, given a term t and
a computation rule R, it may be the case that there exists an integer n such that
!t"naϕρ= FnG holds and t →∗

R n does not hold, that is, the evaluation sequence of t
is infinite.

Theorem 7.4. [Computation Rules for Call-by-name in REC] If the com-
putation rule R is either the parallel -outermost rule or the full -substitution rule or
the leftmost rule, then the evaluation of a closed term t agrees with the value !t"naϕρ,
in the sense that for all integer n,

t →∗
R n iff !t"naϕρ=FnG ∈ N⊥.

Theorem 7.4 holds also for the free-argument computation rule, provided that in the
set Decl there is no function variable symbol fi such that the function environment ϕ
associates a constant function with fi.

Since Theorem 7.4 holds for the parallel-outermost rule, it generalizes Theo-
rem 5.4 on page 176.

The following example shows that Theorem 7.4 cannot be extended to the case
where the computation rule is the leftmost-innermost rule or the parallel-innermost
rule.

Example 7.5. [Morris Function] Let us consider the following declaration of
the function f defined as follows [9, page 389]: for all (negative, or null, or positive)
integers m, n ∈ N :

f(m, n) = if m=0 then 1 else f(m−1, f(m, n))

The minimal fixpoint of the functional associated with this declaration for the call-
by-name semantics is the function

δ =def λm.λn. cond(m≥0, F1G, ⊥) ∈ N⊥×N⊥ → N⊥

Now, !f(1, 0)"naϕρ = F1G (because the function environment ϕ associates δ with
the function variable f), while according to the leftmost-innermost rule (and the
parallel-innermost rule), we get the following infinite sequence:

f(1, 0) →∗ f(0, f(1, 0)) →∗ f(0, f(0, f(1, 0))) →∗ . . . !
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Now we want to present a variant of Theorem 7.4.

First, note that one may define the call-by-name denotational semantics of the
arithmetic operators of the language REC by using monotonic functions, rather than
strict functions (as we did on page 175 where we used the function op⊥). Indeed, any
functional τ ∈ [[Nai

⊥ → N⊥] → [Nai

⊥ → N⊥]] which is constructed by using monotonic
functions, the function Cond (or, equivalently, the function cond), and the function
variables, is continuous and, thus, its minimal fixpoint exists and can be taken to
define the denotational semantics of a declaration [9, Chapter 5].

Now, let us assume that for the call-by-name denotational semantics of the arith-
metic operators +, −, and × we use, respectively, the strict functions +⊥, −⊥, and
the monotonic (not strict) function ×m : N⊥×N⊥ → N⊥, defined as follows:

for all n ∈ N⊥, n ×m F0G = F0G ×m n = F0G
for all n ∈ N⊥ different from F0G, ⊥×m n = n ×m ⊥ = ⊥

Let us also assume the following variant (B.1*) of Step (B.1) (see page 193) for
rewriting products.

(B.1*) (Evaluation of arithmetic operators) We evaluate every arithmetical oper-
ator op ∈ {+,−} whose operands have both been evaluated to an integer, except
that, whenever possible, we use the following rewriting rule for products:

for all terms t, 0×t → 0 and t×0 → 0

(thus, for products when one operand has been evaluated to 0, we should not
evaluate the other operand).

In these hypotheses we have that Theorem 7.4 on the preceding page still holds for
the parallel-outermost rule and the full-substitution rule, but it does not hold for the
leftmost computation rule as we now show.

Let us consider the following declaration:

f(x, y) = if x then 0 else f(x+1, f(x, y))× f(x−1, f(x, y))

whose associated functional τ ∈
[
[N⊥×N⊥ → N⊥] → [N⊥×N⊥ → N⊥]

]
in the

call-by-name semantics is defined as follows:

τ =def λδ.λm.λn.Cond
(
m, F0G, δ(m+⊥F1G, δ(m, n)) ×m δ(m−⊥F1G, δ(m, n))

)

We have that: fix (τ) = λm.λn.Cond(m, F0G, F0G). Thus, !f(1, 0)"na ϕρ = F0G (be-
cause the function environment ϕ associates fix (τ) with the function variable f),
while starting from the term f(1,0) by using the leftmost computation rule, we get
an infinite sequence of terms. Indeed, we have that:

f(1,0) →∗f(2,f(1,0))×f(0,f(1,0)) →∗
(
f(3,f(1,0))×f(1,f(1,0))

)
×f(0,f(1,0)) →∗ . . .

where the first argument of the outermost f grows in an unbounded way (see the
underlined terms). An infinite sequence of terms is also obtained starting from f(1,0)
if we use either the leftmost-innermost or the parallel-innermost computation rule.

On the contrary, if we use the parallel outermost rule we get:
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f(1,0) →∗ f(2,f(1,0))×f(0,f(1,0)) →∗
(
f(3,f(2,f(1,0)))×f(1,f(2,f(1,0)))

)
×0 → 0

The reader may check that if we use the full -substitution rule we also get:

f(1,0) →∗ 0.

The following theorem which is analogous to Theorem 7.4, holds for the call-by-
value semantics of REC.

Theorem 7.6. [Computation Rules for Call-by-value in REC] If the com-
putation rule R is either the leftmost-innermost rule or the parallel-innermost rule,
then the evaluation of a closed term t agrees with the value !t"vaϕρ, in the sense that
for all integer n,

t →∗
R n iff !t"vaϕρ=FnG ∈ N⊥.

Since Theorem 7.6 holds for the parallel-innermost rule, it generalizes Theorem 3.4
on page 172.

Theorem 7.6 does not hold if we consider any of the following computation rules:
(i) the parallel -outermost rule, or (ii) the full -substitution rule, or (iii) the leftmost
rule. Indeed, let us consider the declaration of the following two functions:

{
f(x) = f(x+1)

g(x) = 1

By using either the parallel -outermost rule, or the full -substitution rule, or the left-
most rule, we have that: g(f(0)) → 1, while !g(f(0))"vaϕρ=⊥ ∈ N⊥.

If we assume that in the set Decl of declarations there is no function variable fi

such that the function environment ϕ associates a constant function with fi, then The-
orem 7.6 does not hold for the free-argument computation rule [9, Chapter 5]. Indeed,
for the Morris function (see Example 7.5 on page 196) we have that !f(1, 0)"vaϕρ=⊥,
while by using the free-argument rule we get that: f(1, 0) →∗ 1.



CHAPTER 7

Syntax and Semantics of Higher Order Functional Languages

In this chapter we introduce two higher order, typed functional languages, the Eager
language and the Lazy language. Actually, as we will see below, since we will define
two different denotational semantics of the Lazy language, we will have two Lazy
languages, the Lazy1 language and the Lazy2 language. Recall that the notion of a
programming language depends on the definition of:

(i) its syntax,
(ii) its operational semantics, and
(iii) its denotational semantics, and

thus, by changing one of those definitions we change the language.

Let us first introduce the following basic sets.

(i) The set Types of the types, which is defined as follows:

τ ::= int | τ1 × τ2 | τ1 → τ2

where τ, τ1, τ2 ∈ Types. We have that: (i) int is the type of the integers, (ii) the
product type τ1 × τ2 is the type of the pairs whose first component is of type τ1 and
whose second component is of type τ2, and (iii) the function type τ1 → τ2 is the type
of the functions from type τ1 to type τ2.

(ii) The set N = {. . . ,−2,−1, 0, 1, 2, . . .} of integers. The variables ranging over N
are: n, m, . . .

(iii) The set {+,−,×} of arithmetic operators. op ranges over {+,−,×}.

(iv) The set Var = {x, y, f, v, w, . . .} of variables with arity r, with r≥0.

Note that, contrary to the REC language, we keep in the single set Var the variables
of all types (and, thus, also function variables). Note that the function variables may
have arity different from 0 and they may be applied to arguments.

Substitutions are denoted by using the square brackets notation, that is, t[t1/x]
denotes the term t where each free occurrence of the variable x has been replaced by
the term t1 (see also the definition of the β-rule on page 20).

1. Syntax of the Eager Language and the Lazy Language

In this section we introduce the syntax of the Eager language and of the Lazy lan-
guage.

1.1. Syntax of the Eager Language.

The set Term of the terms in the Eager language is defined as follows.

199



200 7. SYNTAX AND SEMANTICS OF HIGHER ORDER FUNCTIONAL LANGUAGES

t ::= n | x | t1 op t2
| if t0 then t1 else t2
| (t1, t2) | fst(t) | snd(t)

| (t1 t2) | λx.t | rec y.(λx.t)

where t, t0, t1, t2 ∈ Term, n ∈ N , and x, y ∈ Var.
The operators fst and snd denote, respectively, the first and second projection on

pairs. In a pair (t1, t2) the first projection term t1 and the second projection term t2
are separated by a comma, while in a function application (t1 t2) no comma separates
the function t1 from the argument t2. In a pair the projection terms are also called
components of the pair.

Note that in the recursive definitions of the Eager language we insist that the
variable y be bound to a lambda abstraction.

1.2. Syntax of the Lazy Language.

The set Term of the terms in the Lazy language is defined as follows.

t ::= n | x | t1 op t2
| if t0 then t1 else t2
| (t1, t2) | fst(t) | snd(t)

| (t1 t2) | λx.t | recx.t

where t, t0, t1, t2 ∈ Term, n ∈ N , and x ∈ Var.
In the recursive definition of the Lazy language we do not insist that the variable

x be bound to a lambda abstraction. The variable x can be bound to any term, thus,
for instance, we also allow the term recx.x+1.

The syntax of the Lazy language is common to both languages, the Lazy1 and
the Lazy2 language, for which we will introduce a common operational semantics,
but two different denotational semantics.

In the Eager and in the Lazy languages, a function application (t1t2) will also be
denoted by t1(t2) or t1 t2.

1.3. Typing Rules for the Eager Language and the Lazy Language.

Both the Eager and the Lazy languages are typed languages. For all terms t and
types τ , by t : τ we indicate that the term t has type τ .

In Table 1 on the facing page we list the rules which give a type to each term of
the Eager language and the Lazy language.

One can show that every term can be given exactly one type.

2. Operational Semantics of the Eager and Lazy Languages

The operational semantics rules are structural rules, that is, they are based on the
syntactic structure of the terms.

As already mentioned, a context C[−] is a term with a missing subterm. In Table 2
on the next page we list some contexts. C[t] denotes the context C[−] where we have
inserted the term t in the place of the missing subterm.



2. OPERATIONAL SEMANTICS OF THE EAGER AND LAZY LANGUAGES 201

Typing Rules for the Eager Language and the Lazy Language.

n : int for each integer n ∈ N

x : τ (the type τ is known from the identifier of the variable x)

t1 : int t2 : int

t1 op t2 : int

t0 : int t1 : τ t2 : τ

if t0 then t1 else t2 : τ

t1 : τ1 t2 : τ2

(t1, t2) : τ1 × τ2

t : τ1 × τ2

fst(t) : τ1

t : τ1 × τ2

snd(t) : τ2

x : τ1 t : τ2

λx.t : τ1 → τ2

t1 : τ1 → τ2 t2 : τ1

(t1 t2) : τ2

y : τ λx.t : τ

rec y.(λx.t) : τ (for the Eager Language) τ is of the form: τ1 → τ2

x : τ t : τ

recx.t : τ (for the Lazy Language)

Table 1. Typing Rules for the Eager Language and the Lazy Language.

context C[−] complete term C[t]

(i) (t1 [−]) C[t] = (t1 t)

(ii) [−] op t2 C[t] = top t2

(iii) if [−] then t1 else t2 C[t] = if t then t1 else t2

(iv) [−] C[t] = t

Table 2. Some examples of contexts.

Note that in Case (iv) of Table 2 the missing subterm is the whole term. In this
case the context is said to be the empty context.

2.1. Operational Semantics of the Eager Language.

In order to present the operational semantics of the Eager language, we first define
the set Canonical Form of the canonical forms of the Eager language. It is defined
as follows:
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c ::= n | (c1, c2) | λx.t

where c, c1, c2 ∈ Canonical Form and λx.t is a closed term. In what follows the
variable c, possibly with subscripts, is supposed to range over the canonical forms.

The eager operational semantics relation →e ⊆ Term × Canonical Form is de-
fined by the deduction rules of Table 3. The identifiers t, t0, t1, and t2 denote terms,
and the identifiers c, c1, and c2 denote canonical forms.

The superscript e in →e tells us that the operational semantics is for the Eager
language. For reasons of simplicity, given any closed, typed term t of type and any
canonical form c, we write t → c, instead of t →e c. If t →e c we also say that the
eager operational evaluation of t yields the canonical form c.

Operational Semantics of the Eager Language.

c → c

t1 → c1 t2 → c2

t1 op t2 → c

where c = c1op c2 and op is the semantic operation corresponding to op

t0 → 0 t1 → c1

if t0 then t1 else t2 → c1

t0 →n t2 → c2 n1=0

if t0 then t1 else t2 → c2

t1 → c1 t2 → c2

(t1, t2) → (c1, c2)

t→ (c1, c2)

fst(t) → c1

t→ (c1, c2)

snd(t) → c2

t1 → λx.t t2 → c2 t[c2/x]→ c

(t1 t2) → c

rec y.(λx.t) → λx.(t[rec y.(λx.t)/y])

Table 3. Operational Semantics of the Eager Language. For reasons
of simplicity, for any closed, typed term t of type τ and any canonical
form c, we have written t → c, instead of t →e c.

Note 2.1. The eager operational semantics rules define a so called big-step se-
mantics in the sense that for every term t1 and t2, if t1 →e t2 then t2 is a canonical
value for the eager operational semantics.

If t1 →e t2 we will say that t2 is the eager operational value of t1. !
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Note 2.2. In the definition of the eager operational semantics we do not have a
context-rule of the form:

t→ c

C[t]→C[c]
for every context C[−].

Thus, in Table 3 on the preceding page if we replace the two rules with conclusions
fst(t) → c1 and fst(t) → c2 by the axioms fst((c1, c2)) → c1 and fst((c1, c2)) → c2,
respectively, we get a weaker deductive system. Indeed, for all t, c1, c2, in the new
deductive system we cannot derive that if t → (c1, c2), then fst(t) → c1. !

We have the following theorems whose proofs can be done by rule induction.

Theorem 2.3. [Determinism of the Eager Operational Semantics]
∀ terms t, ∀ canonical forms c1, c2, if t →e c1 and t →e c2 then c1 = c2.

Theorem 2.4. [The Eager Operational Semantics Preserves Types]
∀ terms t :τ , ∀ canonical forms c, if t →e c then c :τ .

2.2. Operational Semantics of the Lazy Language.

In order to present the operational semantics of the Lazy language, we first define
the set Canonical Form of the canonical forms of the Lazy language as follows:

c ::= n | (t1, t2) | λx.t

where c ∈ Canonical Form and t1, t2, and λx.t are closed terms. In what follows the
variable c, possibly with subscripts, is supposed to range over the canonical forms.

The lazy operational semantics relation →'⊆ Term×Canonical Form is defined
by the deduction rules of Table 4 on the following page. The identifiers t, t0, t1, and t2
denote terms, and the identifiers c, c1, and c2 denote canonical forms.

The superscript - in →' tells us that the operational semantics is for the Lazy
language. For reasons of simplicity, given any closed, typed term t of type and any
canonical form c, we write t → c, instead of t →' c. If t →' c we also say that the
lazy operational evaluation of t yields the canonical form c.

Note 2.5. The lazy operational semantics rules define a big-step semantics in
the sense that for every term t1 and t2, if t1 →' t2 then t2 is a canonical value for the
lazy operational semantics.

If t1 →' t2 we will say that t2 is the lazy operational value of t1. !

Note 2.6. In the definition of the lazy operational semantics we do not have a
context-rule of the form:

t→ c

C[t]→C[c]
for every context C[−].

!

Note 2.7. In the lazy operational semantics there are no rules for pairs with
conclusion of the form (t1, t2) → (c1, c2) because for all terms t1 and t2, (t1, t2) is a
canonical form. !

We have the following theorems whose proofs can be done by rule induction.
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Operational Semantics of the Lazy Language.

c → c

t1 → c1 t2 → c2

t1 op t2 → c

where c = c1op c2 and op is the semantic operation corresponding to op

t0 → 0 t1 → c1

if t0 then t1 else t2 → c1

t0 →n t2 → c2 n1=0

if t0 then t1 else t2 → c2

t→ (t1,t2) t1 → c1

fst(t) → c1

t→ (t1,t2) t2 → c2

snd(t) → c2

t1 → λx.t t[t2/x]→ c

(t1 t2) → c

t[(recx.t)/x]→ c

recx.t → c

Table 4. Operational Semantics of the Lazy Language. For reasons
of simplicity, given a closed, typed term t and a canonical form c, we
have written t → c, instead of t →' c.

Theorem 2.8. [Determinism of the Lazy Operational Semantics]
∀ terms t, ∀ canonical forms c1, c2, if t →' c1 and t →' c2 then c1 = c2.

Theorem 2.9. [The Lazy Operational Semantics Preserves Types]
∀ terms t :τ , ∀ canonical forms c, if t →' c then c :τ .

Note 2.10. Both in the eager operational semantics and lazy operational se-
mantics the evaluation of the operations op’s is done by evaluating its arguments
first. Analogously, the evaluation of the if t0 then t1 else t2 is done by evaluating
the condition t0 first and then either the arm t1 or the arm t2, according to the value
of t0. !

Note 2.11. In the case of pairs there is a difference between the eager operational
semantics and the lazy operational semantics, as we now indicate.
(i) In the eager semantics the canonical form of a pair is the pair of the canonical forms
of the two components. For any pair t, in order to evaluate fst(t) we need to evaluate
the canonical form of both the first and the second component of t. Analogously for
the the evaluation of the second component snd(t).
(ii) In the lazy semantics any pair (t1, t2) is already in canonical form. For any
pair t, in order to evaluate fst(t) we need to evaluate only the canonical form c1 of
t1. Analogously for the evaluation of the second component snd(t).
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In the case of function application there is a difference between the eager opera-
tional semantics and the lazy operational semantics, as we now indicate.
(i) In the eager operational semantics in order to evaluate the function application
(t1 t2), we first evaluate t1 and t2 to their canonical forms, say c1 and c2, respectively,
and then we evaluate the application c1c2.
(ii) In the lazy operational semantics in order to evaluate the function application
(t1 t2), we first evaluate t1 to its canonical form, say c1, and then we evaluate the
application c1t2.

Other differences between the eager operational semantics and the lazy opera-
tional semantics are in the syntax and semantics of the rec construct which are
evident from the rules we have given above. !

Note 2.12. The eager operational rule for the rec, that is, the axiom

rec y.(λx.t) → λx.(t[rec y.(λx.t)/y])

follows from the usual semantics of recursion via unfolding. Indeed, the deduction
rule one expects via unfolding is as follows:

(λx.t)[(rec y.(λx.t))/y]→ c

rec y.(λx.t) → c

and it reduces to rec y.(λx.t) → λx.(t[rec y.(λx.t)/y]) because:

(i) (λx.t)[(rec y.(λx.t))/y] is equal to λx.(t[(rec y.(λx.t))/y]) (recall that x and y are
distinct variables having distinct types), and

(ii) λx.(t[(rec y.(λx.t))/y]) → λx.(t[(rec y.(λx.t))/y]) because any term of the form
λx.t is a canonical form in the Eager language. !

2.3. Operational Evaluation in Linear Form.

A deduction, that is, a proof tree which justifies the operational evaluation of a given
term, will often be written in linear form. This form is obtained by visiting the proof
tree in a preorder way. Thus, for instance, instead of writing:

a → a′ b → b′

a + b → c d → d′

(a + b) + d → e

we will also write:

(a+b)+d → (a′+b)+d → (a′+b′)+d → c+d → c+d′ → e.

Analogously, instead of writing:

t1 → λx.t t2 → c2 t[c2/x]→ c

(t1 t2) → c

we will also write:

(t1t2) → ((λx.t) t2) → ((λx.t) c2) → t[c2/x] → c.

In the case of the lazy operational semantics, instead of writing:
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t[recx.t/x] → c

rec x. t → c

we will also write:

rec x. t → t[recx.t/x] → c.

Remark 2.13. When the evaluation of a term t is written in linear form, the
term u occurring in t → u, need not be a canonical form. !

Definition 2.14. [Eager Canonical Form of a Term] We will say that a
term t has the eager canonical form c iff its eager operational evaluation in linear
form is a sequence of the form: t →e . . . →e c and c is a term in eager canonical form.

Definition 2.15. [Lazy Canonical Form of a Term] We will say that a term t
has the lazy canonical form c iff its lazy operational evaluation in linear form is a
sequence of the form: t →' . . . →' c and c is a term in lazy canonical form.

2.4. Eager Operational Semantics in Action: the Factorial Function.

Let us now show the evaluation, according to the eager operational semantics, of
(fact 2), where fact is the factorial function.

In order to evaluate (fact 2) we have to consider the initial term:

((rec f.(λx. if x then 1 else x × f(x−1)))2).

Here is the evaluation of (fact 2) according to the eager operational semantics, ex-
pressed in linear form:

((rec f.(λx. if x then 1 elsex × f(x−1)))2)

→ ((λx. if x then 1 else x × ((rec f.(λx. if x then 1 elsex × f(x−1))) (x−1))) 2)

→ if 2 then 1 else 2 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (2−1))

→ 2 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (2−1)) (e2)

→ 2×((λx. if x then 1 else x×((rec f.(λx. if x then 1 else x×f(x−1))) (x−1))) (2−1))

→ 2 × ((λx. if x then 1 elsex × ((rec f.(λx. if x then 1 else x × f(x−1))) (x−1))) 1)

→ 2 × (if 1 then 1 else 1 × ((rec f.(λx. if x then 1 else x × f(x−1))) (1−1)))

→ 2 × (1 × ((rec f.(λx. if x then 1 else x × f(x−1))) (1−1))) (e1)

→ 2 × (1 × ((λx. if x then 1 else x×
((rec f.(λx. if x then 1 else x × f(x−1))) (x−1))) (1−1)))

→ 2×(1×((λx. if x then 1 elsex×((rec f.(λx. if x then 1 elsex×f(x−1))) (x−1)))0))

→ 2 × (1 × (if 0 then 1 else 0 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (0−1))))

→ 2 × (1 × 1) (e0)

→ 2 × 1 → 2.

Note that the derivation from term (e1) to term (e0) is similar to the derivation from
term (e2) to term (e1).
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2.5. Lazy Operational Semantics in Action: the Factorial Function.

Here is the evaluation of fact(2) according to the lazy operational semantics, expressed
in linear form:

((rec f.(λx. if x then 1 elsex × f(x−1)))2)

→ ((λx. if x then 1 else x × ((rec f.(λx. if x then 1 elsex × f(x−1))) (x−1))) 2)

→ if 2 then 1 else 2 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (2−1))

→ 2 × ((rec f.(λx. if x then 1 elsex × f(x−1))) (2−1)) (-2)

→ 2×((λx. if x then 1 else x×((rec f.(λx. if x then 1 else x×f(x−1))) (x−1))) (2−1))

→ 2×(if 2−1 then 1 else (2−1)×(((rec f.(λx. if x then 1 else x×f(x−1))) ((2−1)−1))))

→ 2×(if 1 then 1 else (2−1)×(((rec f.(λx. if x then 1 else x×f(x−1))) ((2−1)−1))))

→ 2 × ((2−1) × (((rec f.(λx. if x then 1 else x × f(x−1))) ((2−1)−1))))

→ 2 × (1 × (((rec f.(λx. if x then 1 else x × f(x−1))) ((2−1)−1)))) (-1)

→ 2 × (1 × (λx. if x then 1 else x×
((rec f.(λx. if x then 1 else x × f(x−1))) (x−1)) ((2−1)−1)))

→ 2 × (1 × (if ((2−1)−1) then 1 else ((2−1)−1)×
((rec f.(λx. if x then 1 else x × f(x−1))) (((2−1)−1)−1))))

→ 2 × (1 × (if (1−1) then 1 else ((2−1)−1)×
((rec f.(λx. if x then 1 else x × f(x−1))) (((2−1)−1)−1))))

→ 2 × (1 × (if 0 then 1 else ((2−1)−1)×
((rec f.(λx. if x then 1 else x × f(x−1))) (((2−1)−1)−1))))

→ 2 × (1 × 1) (-0)

→ 2 × 1 → 2

Note that the derivation from term (-1) to term (-0) is similar to the derivation from
term (-2) to term (-1).

2.6. Operational Semantics of the let-in construct.

Let us assume that we have the following syntactic construct:

let x ⇐ t1 in t

where x does not occur in t1, with the following typing rule:

x : τ1 t1 : τ1 t : τ

let x ⇐ t1 in t : τ

When considering the let-in construct from now on we will assume that the associated
term (λx.t) t1 is closed and typed. For the let-in construct we have the following
eager operational semantics rule:

t1 → c1 t[c1/x]→ c

let x⇐ t1 in t → c

and the following lazy operational semantics:

t[t1/x]→ c

let x⇐ t1 in t → c



208 7. SYNTAX AND SEMANTICS OF HIGHER ORDER FUNCTIONAL LANGUAGES

The constructs let x ⇐ t1 in t and ((λx.t) t1) have the same eager operational
semantics. Indeed, we have that:

t1 → c1 t[c1/x]→ c

let x⇐ t1 in t → c
and

λx.t → λx.t t1 → c1 t[c1/x]→ c

((λx.t) t1) → c

and, obviously, λx.t → λx.t always holds because λx.t is a canonical form.

The constructs let x ⇐ t1 in t and ((λx.t) t1) also have the same lazy operational
semantics. Indeed, we have that:

t[t1/x]→ c

let x⇐ t1 in t → c
and

λx.t → λx.t t[t1/x]→ c

((λx.t) t1) → c

and, obviously, λx.t → λx.t holds because λx.t is a canonical form.

3. Denotational Semantics of the Eager, Lazy1, and Lazy2 Languages

In this section we will present the denotational semantics of three languages: the
Eager language, the Lazy1 language, and the Lazy2 language.

As already said, for all terms t and types τ , t : τ denotes that the type of t is τ .
The domain of values of type τ is the cpo Vτ .

Given any term t of type τ , its canonical form c depends on τ . In Table 5 we have
indicated the canonical forms of a term t of type τ in the Eager, Lazy1, and Lazy2
languages for: (i) the type int, (ii) the product type τ1 × τ2, and (iii) the function
type τ1 → τ2. The corresponding semantic domains are indicated in Table 6.

In Table 5 we have that: (i) τ1 is the type of the canonical form c1, the term t1
and the variable x, and (ii) τ2 is the type of the canonical form c2, the term t2, and
the term t.

Type τ Eager Language Lazy1 Language and Lazy2 Language

τ = int n n

= τ1 × τ2 (c1, c2) (t1, t2)

= τ1 → τ2 λx.t closed λx.t closed

Table 5. The canonical forms for the Eager, Lazy1, and Lazy2 lan-
guages. n denotes an integer. c1, c2 denote canonical forms. t, t1, t2
denote terms. x denotes a variable of type τ1, and t denotes a term of
type τ2.
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Type τ Eager Semantics Lazy1 Semantics Lazy2 Semantics

ρ ∈ Var →
⋃

τ Vτ ρ ∈ Var →
⋃

τ (Vτ)⊥ ρ ∈ Var →
⋃

τ Vτ

τ = int Vτ = N Vτ = N Vτ = N⊥

= τ1 × τ2 = Vτ1 × Vτ2 = (Vτ1)⊥ × (Vτ2)⊥ = Vτ1 × Vτ2

= τ1 → τ2 = [Vτ1 → (Vτ2)⊥] = [(Vτ1)⊥ → (Vτ2)⊥] = [Vτ1 → Vτ2 ]

! t "e ρ ∈ (Vτ )⊥ ! t "'1 ρ ∈ (Vτ )⊥ ! t "'2 ρ ∈ Vτ

Table 6. The semantic domains for the denotational semantics of the
Eager, Lazy1, and Lazy2 languages for: (i) the type int, (ii) the product
types, and (iii) the function types.

The eager denotational semantics is the function !_"e ∈ Term × Env → (Vτ )⊥
where τ is the type of the term t ∈ Term and Env is the set of environments, that
is, Var →

⋃
τ Vτ . Analogously, the lazy1 denotational semantics is the function

!_"'1 ∈ Term × Env → (Vτ )⊥ where τ is the type of the term t ∈ Term and Env is
the set of environments, that is, Var →

⋃
τ (Vτ )⊥. The lazy2 denotational semantics

is the function !_"'2 ∈ Term × Env → Vτ where τ is the type of the term t ∈ Term
and Env is the set of environments, that is, Var →

⋃
τ Vτ .

As we have seen in the case of the language REC (see Remark 5.1 on page 174),
the domains of the environments in the Lazy1 language (that are of the form

⋃
τ Vτ )

differ from those of the Eager language (that are of the form
⋃

τ (Vτ )⊥). This is due
to the fact that in the case of the Lazy1 language, arguments of functions may be
⊥’s, that is, values of non-terminating computations.

Then, this change of the domains is propagated from the environments ρ ∈ Env
both to the function types (that are of the form τ1 → τ2) and to the product types
(that are of the form τ1 × τ2), because of the isomorphism between [[F × D] → E]
and [F → [D → E]] (see page 88 and Figure 5 on page 89).

3.1. Denotational Semantics of the Eager Language.

In Table 7 on the next page we present the denotational semantics of the Eager
language, also called eager denotational semantics. For simplicity, when understood
from the context, we write !_", instead of !_"e.

Here are some notes on the definition of the eager denotational semantics of Table 7.

Note 3.1. The denotational semantics for the Eager language satisfies the fol-
lowing context-rule: for all context C[−], for all typable, closed terms t1 and t2 such
that C[t1] and C[t2] are typable, closed terms,

if ! t1 " ρ = !t2" ρ then ! C[t1] " ρ = !C[t2]" ρ. !
In the right hand side of the semantic equation for ! λx.t " ρ the variable v is a

fresh, new variable. Moreover, that right hand side cannot be simplified to Fλx.! t " ρG.
If we make this wrong simplification, in fact, the eager denotational semantics of the
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Denotational Semantics of the Eager language.

! n " ρ = FnG
! x " ρ = Fρ(x)G
! t1 op t2 " ρ = ! t1 " ρ op⊥ ! t2 " ρ

! if t0 then t1 else t2 " ρ = Cond(! t0 " ρ, ! t1 " ρ, ! t2 " ρ)

! (t1, t2) " ρ = let v1 ⇐ ! t1 " ρ, v2 ⇐ ! t2 " ρ " F(v1, v2)G
! fst(t) " ρ = let v ⇐ ! t " ρ " Fπ1(v)G
! snd(t) " ρ = let v ⇐ ! t " ρ " Fπ2(v)G

! t1t2 " ρ = let ϕ ⇐ ! t1 " ρ, v ⇐ ! t2 " ρ " ϕ(v)

! λx.t " ρ = Fλv.! t " ρ [v/x]G
! rec y.(λx.t) " ρ = Ffix (λf.λv.! t " ρ[f/y, v/x])G (rec-Glynn)

= fix (λf.! λx.t " ρ[down(f)/y]) (rec-Alberto)

Table 7. Denotational Semantics of the Eager language. For simplic-
ity, we have written !_", instead of !_"e.

application (λx.x) 4 in the environment ρ such that ρ(x) = 1, is F1G, instead of the
expected value F4G. Indeed,

! (λx.x) 4 " ρ =

= (λx.(! x " ρ)) 4 =

= (λx.F1G) 4 = F1G.
Note also that in the expression (λx.(! x " ρ)) 4, the binder λx, which acts on

the semantics, binds the variable x in ! x ", which is syntactic term, and this is an
indication that the expression λx.(! x " ρ) is not correct. !

The fix operator in the expression (rec-Glynn) is different from the fix operator
in the expression (rec-Alberto) because they belong to two different cpo’s (see also
Note 3.3 below). Actually, there is an operator fix ∈ [[Vτ → Vτ ] → Vτ ], for each cpo
Vτ associated with the type τ . !

As already mentioned, instead of fix (λf.e), we will also write µf.e. By defini-
tion of the minimal fixpoint fix (λf.e) of the function λf.e, we have that: µf.e =
(λf.e)(µf.e). !

Note 3.2. The semantic function op⊥ is the strict function in [N⊥×N⊥ → N⊥]
associated with op. Thus, for all x and y ∈ N⊥,

x op⊥ y =

{
⊥ if x=⊥ or y=⊥
Fx′+y′G if x=Fx′G and y=Fy′G for some x′, y′ ∈ N !
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Note 3.3. Let us assume that in the term rec y.(λx.t) we have that:

(i) y : τ1 → τ2

(ii) x : τ1

(iii) t : τ2

Then in Equations (rec-Glynn) and (rec-Alberto) we have that:

! rec y.(λx.t) " ρ ∈ [Vτ1 → (Vτ2)⊥]⊥

ρ ∈ Var → Vτ1 ∪ [Vτ1 → (Vτ2)⊥]

In Equation (rec-Glynn) we also have that:

f ∈ [Vτ1 → (Vτ2)⊥]

v ∈ Vτ1

! t " ρ ∈ (Vτ2)⊥

fix ∈ [[Vτ1 → (Vτ2)⊥] → [Vτ1 → (Vτ2)⊥]] → [Vτ1 → (Vτ2)⊥]

In Equation (rec-Alberto) we also have that:

f ∈ [Vτ1 → (Vτ2)⊥]⊥

! λx.t " ρ ∈ [Vτ1 → (Vτ2)⊥]⊥

down(f) ∈ [Vτ1 → (Vτ2)⊥]

fix ∈ [[Vτ1 → (Vτ2)⊥]⊥ → [Vτ1 → (Vτ2)⊥]⊥] → [Vτ1 → (Vτ2)⊥]⊥ !

Now we will show that the (rec-Glynn) and the (rec-Alberto) definitions of the eager
denotational semantics of ! rec y.(λx.t) " ρ (see Table 7 on the preceding page), are
equivalent in the sense that they define the same semantic value. It is enough to
show that:

Ffix (λf.d)G = fix (λf.Fd[down(f)/f ]G) (G)

where: (i) d is of the form λx.t for some x ∈ Vτ1 and some term t ∈ (Vτ2)⊥, and
(ii) d[down(f)/f ] is the expression d where each occurrence of f has been replaced
by down(f).
Thus, on the left hand side of (G):

f ∈ [Vτ1 → (Vτ2)⊥]

d ∈ [Vτ1 → (Vτ2)⊥]

fix ∈ [[Vτ1 → (Vτ2)⊥] → [Vτ1 → (Vτ2)⊥]] → [Vτ1 → (Vτ2)⊥]

while on the right hand side of (G):

f ∈ [Vτ1 → (Vτ2)⊥]⊥

d ∈ [Vτ1 → (Vτ2)⊥] (not [Vτ1 → (Vτ2)⊥]⊥)

fix ∈ [[Vτ1 → (Vτ2)⊥]⊥ → [Vτ1 → (Vτ2)⊥]⊥] → [Vτ1 → (Vτ2)⊥]⊥

Thus, in the equation (G) the two occurrences of fix denote two different fixpoint
operators because they belong to two different cpo’s.
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We first show that:

Ffix (λf.d)G E fix (λf.Fd[down(f)/f ]G) (G1)

and then we show that:

Ffix (λf.d)G J fix (λf.Fd[down(f)/f ]G) (G2)

Proof of (G1). Since F_G is continuous, we have that Ffix (λf.d)G = fixF(λf.d)G.
Thus, we have to show that the following inequality holds in [Vτ1 → (Vτ2)⊥]⊥:

⊔
i∈ω F(λf.d)i(⊥)G E

⊔
i∈ω (λf.Fd[down(f)/f ]G)i(⊥) (G1.1)

where: (i) ⊥ on the left hand side is the function λx∈Vτ1 .⊥ (∈ (Vτ2)⊥), while (ii) ⊥ on
the right hand side is the bottom element of [Vτ1 → (Vτ2)⊥]⊥. We will prove (G1.1)
by showing that

for all i ≥ 0, F(λf.d)i(⊥)G E
⊔

i∈ω (λf.Fd[down(f)/f ]G)i(⊥).

The proof is by induction on i.

(Basis) We have to show that F⊥G E
⊔

i∈ω (λf.Fd[down(f)/f ]G)i(⊥).
This holds because Fd[down(f)/f ]G 1= ⊥ ∈ [Vτ1 → (Vτ2)⊥]⊥, and thus,

F⊥G E (λf.Fd[down(f)/f ]G) (⊥).

To better understand this inequality, let us consider the types of its subexpressions.
Let Vτ denote the cpo [Vτ1 → (Vτ2)⊥]. We have that on the left hand side ⊥ is in Vτ ,
while on the right hand side the first two occurrences of f are in (Vτ )⊥, the third
occurrence of f is in Vτ , and the occurrence of ⊥ is in (Vτ )⊥.

(Step) Assume that F(λf.d)i(⊥)G E fix (λf.Fd[down(f)/f ]G). We have to show that:

F(λf.d)((λf.d)i(⊥))G E fix (λf.Fd[down(f)/f ]G).
Indeed, for the left hand side we have that:

F(λf.d)((λf.d)i(⊥))G =

= Fd[(λf.d)i(⊥)/f ]G = {by down(FxG) = x } =

= Fd[down(F(λf.d)i(⊥)G)/f ]G. (G1.2)

For the right hand side we have that:

fix (λf.Fd[down(f)/f ]G) =

= (λf.Fd[down(f)/f ]G) (fix (λf.Fd[down(f)/f ]G)) =

=Fd[down(fix (λf.Fd[down(f)/f ]G))/f ]G. (G1.3)

Now we have that (G1.2) E (G1.3), by induction hypothesis, and monotonicity of
down, substitution, and F_G. This completes the proof of (G1).

Proof of (G2). We have to show that the following inequality holds in [Vτ1 →(Vτ2)⊥]⊥:

F
⊔

i∈ω (λf.d)i(⊥)G J
⊔

i∈ω (λf.Fd[down(f)/f ]G)i(⊥) (G2.1)

We will prove (G2.1) by showing that:

for all i ≥ 0, F
⊔

i∈ω (λf.d)i(⊥)G J (λf.Fd[down(f)/f ]G)i(⊥).

The proof is by induction on i.

(Basis) Obviously, we have that: F
⊔

i∈ω (λf.d)i(⊥)G J ⊥ ∈ [Vτ1 → (Vτ2)⊥]⊥.

(Step) Assume that Ffix (λf.d)G J (λf.Fd[down(f)/f ]G)i(⊥). We have to show that:

Ffix (λf.d)G J (λf.Fd[down(f)/f ]G) ((λf.Fd[down(f)/f ]G)i(⊥)).
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Indeed, for the left hand side we have that:

Fd[fix (λf.d)/f ]G = {by down(FxG) = x } =

= Fd[down(Ffix(λf.d)G) /f ]G. (G2.2)

For the right hand side we have that:

(λf.Fd[down(f)/f ]G) ((λf.Fd[down(f)/f ]G)i(⊥)) =

=Fd[down((λf.Fd[down(f)/f ]G)i(⊥))/f ]G (G2.3)

Now we have that (G2.2) J (G2.3) by induction hypothesis, and monotonicity of
down, substitution, and F_G. This completes the proof of (G2).

3.2. Computing the Factorial in the Eager Denotational Semantics.

Now let us see in action the eager denotational semantics and let us compute the
value of !(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)" which is the factorial
of 2. We have:

!(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)" ρ =

= let ϕ ⇐ !rec fact. λx. if x then 1 else x×fact(x − 1)" ρ, v ⇐ !2" ρ " ϕ(v) =

= let ϕ ⇐ Fµψ.λv.!if x then 1 else x×fact(x − 1)"
ρ[ψ/fact , v/x]G, v ⇐ F2G ρ " ϕ(v) =

= (µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x]) 2 (E2)

Now we may proceed by computing by mathematical induction the minimal fixpoint
µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x].

A different way of proceeding is to use the following equation (see page 99):

µx.t = (λx.t)(µx.t) (FixUnfold)

This equation characterizes the minimal fixpoint µx.t and allows us to unfold the
fixpoint as many times as it is required by the value of the argument. We clarify this
point by showing how to compute the factorial of 2 by performing the unfolding of
the fixpoint

µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x]

occurring in Expression (E2).

From (E2) by applying (FixUnfold), we get:

(λψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x])
(µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x]) (2) =

= !if x then 1 else x×fact(x − 1)"
ρ[(µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact , v/x])/fact , 2/x] =

= Cond(!x"ρ[. . . , 2/x], !1"ρ[. . . , 2/x], !x×fact(x − 1)" ρ[. . . , 2/x]) =

= Cond(F2G, !1"ρ[. . .], !x×fact(x − 1)" ρ[. . .]) =

= !x×fact(x−1)" ρ[(µψ.λv.!if x then 1 else x×fact(x−1)"
ρ[ψ/fact , v/x])/fact , 2/x] =

= !x" ρ[. . ., 2/x] ×⊥ !fact(x − 1)" ρ[. . . , 2/x] =

= F2G ×⊥ (let ϕ ⇐ !fact"ρ[. . . , 2/x], v ⇐ !x − 1"ρ[. . . , 2/x].ϕ(v)) =

= F2G ×⊥ (let ϕ ⇐ Fµψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact, v/x]G,
v ⇐ !x"ρ[. . . , 2/x] −⊥ !1"ρ[. . . , 2/x].ϕ(v) =
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= F2G ×⊥ ((µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact, v/x])
(down(F2G −⊥ F1G))) =

= F2G ×⊥ ((µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact, v/x]) (1)) (E1)

Now if we compare the expressions (E1) and (E2), we see that, by performing
from (E1) a sequence of evaluation steps analogous to the sequence which leads
from (E2) to (E1), we eventually get:

F2G ×⊥ (F1G ×⊥ ((µψ.λv.!if x then 1 else x×fact(x − 1)" ρ[ψ/fact, v/x]) (0)))

Then, after a few more evaluation steps we get:

F2G ×⊥ (F1G ×⊥ F1G) = F2G, as expected.

3.3. Two Equivalent Expressions in the Eager Denotational Semantics.

In this section we will show that the following equality holds in the eager denotational
semantics:

!((λf.(fx)) (recf.λx.t)" ρ = !((recf.λx.t) x)" ρ (RecDef )

For the left hand side we have:

!((λf.(fx)) (recf.λx.t)" ρ =

= let ϕ ⇐ !λf.(fx)" ρ, v ⇐ !recf.(λx. t)" ρ " ϕ(v) =

= let ϕ ⇐ Fλg.!fx" ρ[g/f ]G, v ⇐ Fµg.λv. !t" ρ[g/f, v/x]G " ϕ(v) =

= (λg.!fx" ρ[g/f ])(µg.λv. !t" ρ[g/f, v/x]) =

= !fx"ρ[(µg.λv. !t" ρ[g/f, v/x])/f ] =

= let ϕ ⇐ Fµg.λv. !t" ρ[g/f, v/x]G, v ⇐ Fρ(x)G. ϕ(v) =

= (µg.λv. !t" ρ[g/f, v/x]) ρ(x).

For the right hand side we have:

!((recf.(λx.t)) x)" ρ =

= let ϕ ⇐ !recf.(λx.t)" ρ, v ⇐ !x" ρ " ϕ(v) =

= let ϕ ⇐ Fµg.λv. !t" ρ[g/f, v/x]G, v ⇐ Fρ(x)G " ϕ(v) =

= (µg.λv. !t" ρ[g/f, v/x]) ρ(x).

Thus, Equation (RecDef ) has been proved. !

Note 3.4. (Equation (RecDef ) is a consequence of the β-rule in lambda calculus.
However, the β-rule does not hold, in general, in the eager denotational semantics as
we will see later. !

As a consequence of the above Equation (RecDef ), we have, for instance, that:

!(λfact. fact(2)) (rec fact. λx. if x then 1 else x×fact(x − 1))"ρ =

= !(rec fact. λx. if x then 1 else x×fact(x − 1))(2)"ρ.
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Denotational Semantics of the Lazy1 Language.

! n " ρ = FnG
! x " ρ = ρ(x)

! t1 op t2 " ρ = ! t1 " ρ op⊥ ! t2 " ρ

! if t0 then t1 else t2 " ρ = Cond(! t0 " ρ, ! t1 " ρ, ! t2 " ρ)

! (t1, t2) " ρ = F(! t1 " ρ, ! t2 " ρ)G
! fst(t) " ρ = let v ⇐ ! t " ρ " π1(v)

! snd(t) " ρ = let v ⇐ ! t " ρ " π2(v)

! t1t2 " ρ = let ϕ ⇐ ! t1 " ρ " ϕ(!t2"ρ)

! λx.t " ρ = Fλv.! t " ρ [v/x]G
! rec x.t " ρ = fix (λf.! t " ρ[f/x])

Table 8. Denotational Semantics of the Lazy1 Language. For sim-
plicity, we have written !_", instead of !_"'1.

3.4. Denotational Semantics of the Lazy1 and Lazy2 Languages.

In Table 8 on page 215 and in Table 9 on page 216 we present the denotational
semantics of the languages Lazy1 and Lazy2, also called lazy1 denotational semantics
and lazy2 denotational semantics, respectively. For simplicity, when understood from
the context, we write !_", instead of !_"'1 or !_"'2, for the lazy1 and the lazy2
denotational semantics, respectively.

Note 3.5. As in the case of the denotational semantics for the Eager language,
the denotational semantics for the languages Lazy1 and Lazy2 satisfy the following
context-rule:

for all context C[−], for all typable, closed terms t1 and t2 such that C[t1] and
C[t2] are typable, closed terms,

if ! t1 " ρ = !t2" ρ then ! C[t1] " ρ = !C[t2]" ρ. !

3.5. Computing the Factorial in the Lazy1 Denotational Semantics.

Let us see in action the lazy1 denotational semantics and let us compute the value
of !(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)". We have that:

!(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)" ρ =

= let ϕ ⇐ !rec fact. λx. if x then 1 else x×fact(x − 1)" ρ " ϕ(!2" ρ) =

= let ϕ ⇐ (µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ]) " ϕ(F2G) =

= (down(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])) (F2G) (L1.2)

where ψ ∈ [N⊥ → N⊥]⊥.
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Denotational Semantics of the Lazy2 Language.

! n " ρ = FnG
! x " ρ = ρ(x)

! t1 op t2 " ρ = ! t1 " ρ op⊥ ! t2 " ρ

! if t0 then t1 else t2 " ρ = Cond(! t0 " ρ, ! t1 " ρ, ! t2 " ρ)

! (t1, t2) " ρ = (! t1 " ρ, ! t2 " ρ)

! fst(t) " ρ = π1(! t " ρ)

! snd(t) " ρ = π2(! t " ρ)

! t1t2 " ρ = (!t1"ρ)(!t2"ρ)

! λx.t " ρ = λv.! t " ρ [v/x]

! rec x.t " ρ = fix (λf.! t " ρ[f/x])

Table 9. Denotational Semantics of the Lazy2 Language. For sim-
plicity, we have written !_", instead of !_"'2.

Now, in order to compute the subexpression (down(. . .)), note that:

µψ.!λx. if x then 1 else x × fact(x − 1)" ρ[ψ/fact ] 1= ⊥ ∈ [N⊥ → N⊥]⊥.

Indeed, µψ.!λx. if x then 1 else x × fact(x − 1)" ρ[ψ/fact ] =

= fix
(
λψ.!λx. if x then 1 else x × fact(x − 1)" ρ[ψ/fact ]

)
=

= fix
(
λψ.Fλv!λx. if x then 1 else x × fact(x − 1)" ρ[ψ/fact , v/x]G

)
(†)

where fix ∈
[
[N⊥ → N⊥]⊥ → [N⊥ → N⊥]⊥

]
, ψ ∈ [N⊥ → N⊥]⊥, v ∈ N⊥, and the

value of Expression (†) is different from ⊥ ∈ [N⊥ → N⊥]⊥, because of the occurrence
of the lifting function F_G.

Now, similarly to what we did for the minimal fixpoint in Expression (E2) on
page 213, instead of computing the minimal fixpoint in Expression (L1.2), we proceed
by using the following equation (see page 99):

µx.t = (λx.t)(µx.t) (FixUnfold)

Thus, from (L1.2) by applying (FixUnfold), we get:

down
(
(λψ.!λx. if x then 1 else x × fact(x − 1)"ρ[ψ/fact ])

(µψ.!λx. if x then 1 else x × fact(x−1)" ρ[ψ/fact ])
)
(F2G) =

= down
(
!λx. if x then 1 else x×fact(x − 1)"

ρ[(µψ.!λx. if x then 1 else x × fact(x−1)" ρ[ψ/fact ])/fact ]
)
(F2G) =

= down
(
Fλv. !if x then 1 else x×fact(x − 1)"

ρ[(µψ.!λx. if x then 1 else x×fact(x−1)" ρ[ψ/fact ])/fact , v/x]G
)
(F2G) = (††)
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= !if x then 1 else x×fact(x − 1)"

ρ[(µψ.!λx. if x then 1 else x × fact(x−1)" ρ[ψ/fact ])/fact , F2G/x] =

= Cond(!x"ρ[. . ./fact , F2G/x], !1"ρ[. . . /fact , F2G/x],

!x×fact(x − 1)" ρ[. . . /fact , F2G/x]) =

= Cond(F2G, F1G,
F2G ×⊥

(
let ϕ ⇐ (µψ.!λx. if x then 1 else x × fact(x−1)" ρ[ψ/fact ]) "

ϕ(F2G −⊥ F1G)
)

=

= F2G×⊥

(
let ϕ ⇐ (µψ.!λx. if x then 1 else x× fact(x−1)" ρ[ψ/fact ]) " ϕ(F1G)

)
=

= F2G ×⊥ (down(µψ.!λx. if x then 1 else x× fact(x−1)" ρ[ψ/fact ])) (F1G) (L1.1)

Now if we compare this expression (L1.1) and the expression (L1.2) on page 215, we
see that, by performing from (L1.2) a sequence of evaluation steps analogous to the
sequence which leads from (L1.2) to (L1.1), we eventually get:

F2G ×⊥

(
F1G ×⊥ (down(µψ.!λx. if x then 1 else x× fact(x−1)" ρ[ψ/fact ])) (F0G)

)

Then, after a few more evaluation steps we get:

F2G ×⊥ (F1G ×⊥ F1G) = F2G, as expected.

3.6. Computing the Factorial in the Lazy2 Denotational Semantics.

Let us see in action the lazy2 denotational semantics and let us compute the value
of !(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)". We have:

!(rec fact. λx. if x then 1 else x×fact(x − 1)) (2)" ρ =

= (!rec fact. λx. if x then 1 else x×fact(x − 1)" ρ) (!2" ρ) =

= (µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ]) (F2G) (L2.2)

Now, similarly to what we did for the minimal fixpoint in Expression (L1.2) on
page 215, instead of computing the minimal fixpoint in Expression (L2.2), we proceed
by using the following equation (see page 99):

µx.t = (λx.t)(µx.t) (FixUnfold)

Thus, from (L2.2) by applying (FixUnfold), we get:

(λψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])

(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ]) (F2G) =

= !λx. if x then 1 else x×fact(x − 1)"

ρ[(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])/fact ] (F2G) =

= λv. !if x then 1 else x×fact(x − 1)"

ρ[(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])/fact , v/x] (F2G).
Note that with respect to the evaluation performed in the lazy1 denotational seman-
tics (see Expression (††) on the facing page), in the above expression there is no lifting.
The evaluation proceeds as in the case of the lazy1 semantics and we then get:

!if x then 1 else x×fact(x − 1)"

ρ[(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])/fact , F2G/x] =

= Cond(!x"ρ[. . ./fact , F2G/x], !1"ρ[. . ./fact , F2G/x],

!x×fact(x − 1)" ρ[. . . /fact , F2G/x]) =
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= Cond(F2G, F1G,
F2G×⊥(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])(F2G −⊥ F1G)) =

= F2G×⊥(µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact ])(F1G)) (L2.1)

Now if we compare the expressions (L2.1) and (L2.2), we can see that, by performing
from (L2.2) a sequence of evaluation steps analogous to the sequence which leads
from (L2.2) to (L2.1), we eventually get:

F2G ×⊥ (F1G ×⊥ ((µψ.!λx. if x then 1 else x×fact(x − 1)" ρ[ψ/fact]) (F0G)))
Then, after a few more evaluation steps we get:

F2G ×⊥ (F1G ×⊥ F1G) = F2G, as expected.

Exercise 3.6. Show that in the eager denotational semantics we have that the
FixUnfold equality holds (see page 99), that is, for all variables x, for all terms t, for
all environments ρ, fix (!λx.t"eρ) = (!λx.t"eρ) (fix (!λx.t"eρ)) (see page 213).

Show that the FixUnfold equality holds also for the lazy1 denotational semantics
(see page 216) and the lazy2 denotational semantics (see page 217). !

3.7. Denotational Semantics of the let-in construct.

Let us assume that we have the syntactic construct which we have introduced in
Section 2.6 on page 207:

let x ⇐ t1 in t

where x does not occur in t1.
We want to have the equivalence of the denotational semantics of let x ⇐ t1 in t

and the denotational semantics of ((λx.t)t1). Thus, in the eager denotational seman-
tics we stipulate that:

! let x ⇐ t1 in t " ρ = !t" ρ[down(!t1"ρ)/x]

and in the lazy1 and lazy2 denotational semantics we stipulate that:

! let x ⇐ t1 in t " ρ = !t" ρ[!t1"ρ/x].

4. The Alpha Rule

The α-rule does not hold in the eager operational semantics.
The α-rule does not hold in the lazy operational semantics.

The proof of these properties is based on the fact that for both the eager operational
semantics and the lazy operational semantics, λx.t and λy.t[y/x] are different canon-
ical forms. As usual, t[y/x] denotes the term t where each free occurrence of the
variable x is replaced by y.
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The α-rule holds in the eager denotational semantics, in the lazy1 denotational
semantics, and in the lazy2 denotational semantics.

Let us consider the case of the eager denotational semantics. The cases of the lazy1
and the lazy2 denotational semantics are similar. We have that:

!λx.t" ρ = Fλv.!t" ρ[v/x]G,
!λy.t[y/x]" ρ = Fλv.!t[y/x]" ρ[v/y]G,

where y is a fresh, new variable distinct from x, and the right hand sides of these two
equations are equal.

5. The Beta Rule

The β-rule does not hold in the eager operational semantics.

It is not the case that, for all terms t and e, for all canonical forms c :

((λx.t) e) → c iff t[e/x] → c

Indeed, take t =def 1 and e =def ((rec y.λx.(y x)) 5). We have the following Points (i)
and (ii).
Point (i). No canonical form c exists such that (λx.1)e → c, because no canonical
form c2 exists such that e → c2. Indeed, since e is an application, by the following
rules of the eager operational semantics (see Table 3 on page 202)

t1 → λx.t t2 → c2 t[c2/x]→ c

(t1 t2) → c
(app)

rec y.(λx.t) → λx.(t[rec y.(λx.t)/y]) (rec)

we have that:

there exists a canonical form c such that ((rec y.λx̃.(y x̃)) 5) → c iff {by (rec)}

there exists a canonical form c such that λx.((rec y.λx̃.(y x̃)) x) 5 → c iff {by (app)}

there exists a canonical form c such that ((rec y.λx̃.(y x̃)) 5) → c

Thus, there is no proof that there exists a canonical form c such that:

((rec y.λx̃.(y x̃)) 5) → c.

Point (ii). We have that t[e/x] → 1[e/x] → 1 and 1 is a canonical form.

The β-rule holds in the lazy operational semantics.

It is the case that, for all terms t and e, for all canonical forms c :

((λx.t) e) → c iff t[e/x] → c

because we have the following derived rule for the lazy operational semantics (see
Table 4 on page 204) when t1 is λx.t and t2 is e :

t[e/x]→ c

((λx.t) e) → c
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The β-rule does not hold in the eager denotational semantics.

We have that, for all terms t and e, for all environments ρ :

!(λx.t) e" ρ 1= !t[e/x]" ρ

where t[e/x] denotes the term t where all free occurrences of x which are bound in
λx.t, have been replaced by e. Indeed,

!(λx.t)e"ρ =

= let ϕ ⇐ Fλṽ.!t"ρ[ṽ/x]G, v ⇐ !e"ρ " ϕ(v) =

= let v ⇐ !e"ρ " (λṽ.!t"ρ[ṽ/x])(v) =

= let v ⇐ !e"ρ " !t"ρ[v/x]

which may be different from !t[e/x]" ρ if !e"ρ = ⊥.
Indeed, take t=1 and e=((rec y.λx.(y x)) 5) with y : int → int and x : int. We

have that:

!(λx.1) ((rec y.λx.(y x)) 5)" ρ 1= !1[(rec y.λx.(y x)) 5/x]" ρ. (†)
Left hand side of Equation (†) =

= let v ⇐ !(rec y.λx.(y x)) 5"ρ " !1"ρ[v/x] =

= let v ⇐ (let ϕ⇐!rec y.λx.(y x)"ρ, ṽ⇐!5"ρ " ϕ(ṽ)) " !1"ρ[v/x] =

{by Remark 5.1 below}

= let v ⇐ (λx.⊥) 5 " !1"ρ[v/x] =

{by (λx.⊥) 5 = ⊥ and by the definition of the let construct}

= ⊥ ∈ N⊥.

Right hand side of Equation (†) =

= !1[(rec y.λx.(y x)) 5/x]" ρ = !1" ρ = F1G.

Remark 5.1. Here we prove that !rec y.λx.(y x)"ρ = Fλx.⊥G ∈ [N → N⊥]⊥.

We have that: !rec y.λx.(yx)"ρ ∈ [N → N⊥]⊥. We also have that:

!rec y.λx(yx)"ρ =

= Fµϕ.λv. let y′ ⇐ !y"ρ[v/x, ϕ/y], x′ ⇐ !x"ρ[v/x, ϕ/y] " y′(x′)G =

= Fµϕ.λv.ϕ(v)G = Ffix (λϕ.λv.ϕ(v))G = {see Equation (††) below} =

= Fλx.⊥G ∈ [N → N⊥]⊥.

Let us explain this last step by proving Equation (††).
For ϕ ∈ [N → N⊥]⊥, for v ∈ N , we have that fix (λϕ.λv.ϕ(v)) = λx.⊥, with

λx.⊥ ∈ [N → N⊥], because we have that:
⊔

n≥0(λϕ.λv. ϕ(v))n(⊥) =
⊔

n≥0 τn(⊥) for τ = λϕ.λv.ϕ(v) with ⊥ ∈ [N → N⊥]⊥.

τ 0(⊥) = λx.⊥ ∈ [N → N⊥] and

τ 1(⊥) = λv.((λx.⊥)(v)) which is λv.⊥ ∈ [N → N⊥],

where ⊥ in the arguments of τ 0 and τ 1 on the left hand sides belongs to [N → N⊥]⊥,
and ⊥ on the right hand sides belongs to N⊥.

Thus,
⊔

n≥0(λϕ.λv. ϕ(v))n(⊥) = λv.⊥ ∈ [N → N⊥]. (††) !
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The β-rule holds in the lazy1 denotational semantics.

We have that, for all terms t and e, for all environments ρ :

!(λx.t) e" ρ =

= let ϕ ⇐ Fλd.!t"ρ[d/x]G " ϕ(!e"ρ) =

= (λd.!t"ρ[d/x] (!e"ρ) =

= !t"ρ[!e"ρ/x].

The β-rule holds in the lazy2 denotational semantics.

We have that, for all terms t and e, for all environments ρ :

!(λx.t) e" ρ = (λd.!t"ρ[d/x]) (!e"ρ) = !t"ρ[!e"ρ/x].

6. The Eta Rule

The η-rule does not hold in the eager operational semantics.

Let us consider the term λx.(fx), where x is not free in f . We have that this term is
a canonical form and it may be the case that there is no canonical form c such that
f → c.
Consider, for instance, f =def ((rec y.λx.(y x)) 5). Indeed,

f → c iff λx.((rec y.λx̃.(y x̃)) x) 5 → c iff ((rec y.λx̃.(y x̃)) 5) → c

and thus, there is no proof that there exists a canonical form c such that f → c.

The η-rule does not hold in the lazy operational semantics.

The proof is as in the case of the eager operational semantics, but now we have to
consider the term f =def recw.w, instead of the term f =def ((rec y.λx.(y x)) 5).

The η-rule does not hold in the eager denotational semantics.

Let us consider the following terms: (i) x : σ, (ii) f : σ → τ , and (iii) λx.(fx) : σ → τ ,
where x is not free in f .

We have that:

!f"ρ, !λx.(fx)"ρ ∈ [Vσ → (Vτ )⊥]⊥, ρ(x) ∈ Vσ, and !x"ρ ∈ (Vσ)⊥.

Let us assume that !f"ρ = ⊥, with ⊥ ∈ [Vσ → (Vτ )⊥]⊥. We have that:

!λx.(fx)" ρ =

= Fλw. let ϕ ⇐ !f"ρ[w/x], v ⇐ !x"ρ[w/x] " ϕ(v)G =

= Fλw. let ϕ ⇐ !f"ρ, v ⇐ FwG " ϕ(v)G =

= Fλw. let ϕ ⇐ !f"ρ " ϕ(w)G (where w ∈ Vσ and ϕ ∈ [Vσ → (Vτ )⊥]) = (1)

= {by !f"ρ=⊥} =

= Fλw.⊥G
which is different from ⊥ ∈ [Vσ → (Vτ )⊥]⊥.

Note that if we assume that !f"ρ 1= ⊥ with ⊥ ∈ [Vσ → (Vτ )⊥]⊥ then the η-rule
holds in the eager denotational semantics. Indeed,
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!λx.(fx)" ρ = {see (1) above} =

= Fλw. let ϕ ⇐ !f"ρ " ϕ(w)G = {evaluating the let expression} =

= Fλw.(down(!f"ρ) w)G = {the η-rule holds in mathematics} =

= Fdown(!f"ρ)G = {by !f"ρ 1=⊥} =

= !f"ρ.

The η-rule does not hold in the lazy1 denotational semantics.

Let us consider the following terms: (i) x : σ, (ii) f : σ → τ , and (iii) λx.(fx) : σ → τ ,
where x is not free in f .

We have that:

!f"ρ, !λx.(fx)"ρ ∈ [(Vσ)⊥ → (Vτ )⊥]⊥, ρ(x) ∈ Vσ, and !x"ρ ∈ (Vσ)⊥.

Let us assume that !f"ρ = ⊥, with ⊥ ∈ [(Vσ)⊥ → (Vτ )⊥]⊥. We have that:

!λx.(fx)" ρ =

= Fλd. !fx"ρ[d/x]G (where d ∈ (Vσ)⊥ and ϕ ∈ [Vσ → (Vτ )⊥]) =

= Fλd. let ϕ ⇐ !f"ρ[d/x] " ϕ(!x"ρ[d/x])G (where ϕ ∈ [(Vσ)⊥ → (Vτ )⊥]) =

= Fλd. let ϕ ⇐ !f"ρ " ϕ(d)G = (2)

= Fλd.⊥G, with Fλd.⊥G ∈ [(Vσ)⊥ → (Vτ)⊥]⊥
which is different from ⊥ of [(Vσ)⊥ → (Vτ )⊥]⊥.

Note that if we assume that !f"ρ 1= ⊥ with ⊥ ∈ [(Vσ)⊥ → (Vτ )⊥]⊥ then the η-rule
holds in the lazy1 denotational semantics. Indeed,

!λx.(fx)" ρ = {see (2) above} =

= Fλd. let ϕ ⇐ !f"ρ " ϕ(d)G = {evaluating the let expression} =

= Fλd.(down(!f"ρ) d)G = {the η-rule holds in mathematics} =

= Fdown(!f"ρ)G = {because !f"ρ 1=⊥} =

= !f"ρ.

The η-rule holds in the lazy2 denotational semantics.

Let us consider the following terms: (i) x : σ, (ii) f : σ → τ , and (iii) λx.(fx) : σ → τ ,
where x is not free in f .

We have that:

!f"ρ, !λx.(fx)"ρ ∈ [Vσ → Vτ ], ρ(x) ∈ Vσ, and !x"ρ ∈ Vσ.

We also have that:

!λx.(fx)" ρ =

= λd.(!fx"ρ[d/x]) =

= λd.((!f"ρ[d/x]) (!x"ρ[d/x])) =

= λd.((!f"ρ) d) = {the η-rule holds in mathematics} =

= !f"ρ.
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7. The Fixpoint Operators

In this section we study various fixpoint operators in higher order, typed functional
languages. We also show that in those languages we can dispose of the rec construct
in favour of lambda abstraction and function application.

Indeed, as indicated by Equation (E) on this page and Equation (L) on the current
page, we have that any term t with rec constructs can be replaced by a term t′ without
rec constructs, such that t and t′ have the same denotational semantics.

In the Eager language, given the variable x : τ1, the term t : τ2, the term λx.t : τ ,
and the variable y :τ , with τ = τ1→τ2, there exists a term R : (τ →τ) → τ such that
for any environment ρ:

!R (λy.λx.t)"ρ = !rec y.(λx.t)"ρ (E)

We will show that in the Eager language the term R can be taken to be the term
recw.λf.λx.((f(wf)) x) where w : (τ → τ)→ τ , f : τ → τ , and x : τ1, with τ = τ1→ τ2.
Since in R there are no free variables, in Equation (E) the value of the environment ρ
is irrelevant. Other choices for R are possible.

Note that Equation (E) does not hold operationally, because as the reader may
verify, it is not the case that for all canonical forms c, we have that R (λy.λx.t) →e c
iff rec y.(λx.t) →e c.

In the Lazy1 language and the Lazy2 language, given the terms y : τ , and t : τ ,
there exists a term R : (τ →τ) → τ such that for any environment ρ:

!R (λy.t)"ρ = !rec y.t"ρ (L)

We will show that in the Lazy1 language and the Lazy2 language the term R can be
taken to be recw.λf.(f(wf)) where w : (τ → τ) → τ and f : τ → τ . Since in R there
are no free variables, in Equation (L) the value of the environment ρ is irrelevant.
Also in this case other choices for R are possible.

Note that Equation (L) does not hold operationally, because as the reader may
verify, it is not the case that for all canonical forms c, we have that R (λy.t) →' c iff
rec y.t →' c.

In the Eager language we have that:

!R"ρ = Fλϕ. Ffix (down ◦ϕ)GG ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥]⊥

with ϕ ∈ [Vτ → (Vτ )⊥], fix ∈ [[Vτ → Vτ ] → Vτ ], and

down ∈ [(Vτ )⊥ → Vτ ].

(RE)

In the Lazy1 language we have that:

!R"ρ = Fλϕ. fix (down ϕ)G ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥

with ϕ ∈ [(Vτ )⊥ → (Vτ )⊥]⊥, fix ∈ [[(Vτ )⊥ → (Vτ )⊥] → (Vτ )⊥], and

down ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → [(Vτ )⊥ → (Vτ )⊥]].

(RL1)
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In the Lazy2 language we have that:

!R"ρ = fix ∈ [[Vτ → Vτ ] → Vτ ] (RL2)

In the case of the Lazy2 language we assume that the cpo Vτ is a cpo with a bot-
tom element. This hypothesis is required, in particular, in the proof of (RL2) (see
page 226), where we need the bottom element of the cpo [[Vτ → Vτ ] → Vτ ].

The terms R are called fixpoint operators because for any given term F :τ →τ ,
for the Eager language we have that:

!RF "ρ = !F (RF )"ρ ∈ (Vτ)⊥ if down(!F "ρ) 1= (λx.⊥) ∈ [Vτ → (Vτ )⊥] (EF)

for the Lazy1 language we have that:

!RF "ρ = !F (RF )"ρ ∈ (Vτ )⊥ (LF1)

and for the Lazy2 language we have that:

!RF "ρ = !F (RF )"ρ ∈ Vτ (LF2)

In (EF) the condition down(!F "ρ) 1= (λx.⊥) ∈ [Vτ → (Vτ )⊥] is equivalent to the
conjunction of the following two conditions:
(i) !F "ρ 1=⊥∈ [Vτ →(Vτ )⊥]⊥ where⊥ is the bottom element in [Vτ →(Vτ)⊥]⊥, and

(ii) !F "ρ 1=(λx.⊥)∈ [Vτ →(Vτ)⊥] where x∈Vτ and⊥ is the bottom element in (Vτ )⊥.

First we show (RE), (RL1), and (RL2), then we show (E) and (L) and, finally, we
show (EF), (LF1), and (LF2).

Proof of (RE). We have to show that !R"ρ = Fλϕ. Ffix (down ◦ϕ)GG.
We have that !R"ρ ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥]⊥.

Since R is recw.λf.λx.((f(wf)) x), we have that:

!R"ρ = F fix (λu.λϕ.Fdown (let v ⇐ u(ϕ) " (ϕ v))G)G
with ϕ ∈ [Vτ → (Vτ )⊥], u ∈ A, and fix ∈ [[A → A] → A],

where A stands for [[Vτ → (Vτ )⊥] → (Vτ )⊥].

Thus,

!R"ρ = F
⊔

n∈ω χn(⊥)G with χ = λu.λϕ.Fdown (let v ⇐ u(ϕ) " (ϕ v))G and

χ ∈ [[[Vτ → (Vτ )⊥] → (Vτ )⊥] → [[Vτ → (Vτ )⊥] → (Vτ )⊥]].

We have that:

χ0(⊥) = ⊥ with both ⊥’s belonging to [[Vτ → (Vτ )⊥] → (Vτ )⊥]

= λϕ.⊥ with ⊥ ∈ (Vτ )⊥

χ1(⊥) = λϕ.Fdown (let v ⇐ ⊥ " (ϕ v))G =

= λϕ.Fdown (ϕ⊥)G =

= λϕ.F(down ◦ϕ)⊥G
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where on the left hand side ⊥ ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥] and on the right hand sides
⊥ ∈ (Vτ )⊥.

χ2(⊥) = λϕ.Fdown (let v ⇐ λϕ̃.F(down ◦ ϕ̃)⊥G(ϕ) " (ϕ v))G =

= λϕ.Fdown (let v ⇐ F(down ◦ϕ)⊥G " (ϕ v))G =

= λϕ.Fdown (ϕ((down ◦ϕ)⊥))G =

= λϕ.F(down ◦ϕ)((down ◦ϕ)⊥)G =

= λϕ.F(down ◦ϕ)2(⊥)G

where on the left hand side ⊥ ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥] and on the right hand sides
⊥ ∈ (Vτ )⊥,

and, by induction, one can show that for all n ≥ 0, we have that:

χn(⊥) = λϕ.F(down ◦ϕ)n⊥)G

where on the left hand side ⊥ ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥] and on the right hand side
⊥ ∈ (Vτ )⊥. Thus,

!R"ρ = F
⊔

n∈ω χn(⊥)G =

= F
⊔

n∈ω λϕ.F((down ◦ϕ)n⊥)GG = {lub’s of functions are computed pointwise} =

= Fλϕ.
⊔

n∈ω F((down ◦ϕ)n⊥)GG = {by continuity of F_G} =

= Fλϕ.F
⊔

n∈ω (down ◦ϕ)n⊥)GG = {by definition of fix = λf.
⊔

n∈ω fn(⊥)} =

= Fλϕ.F fix (down ◦ϕ)GG. !

Proof of (RL1). We have to show that !R"ρ = Fλϕ. fix (down ϕ)G.

We have that !R"ρ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥.

Since R is recw.λf.(f(wf)), we have that:

!R"ρ = fix (λu.Fλϕ.(down (ϕ))((down(u))ϕ)G)

with ϕ ∈ [(Vτ )⊥ → (Vτ )⊥]⊥ and u ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥.

(Note that the two down operators are different because they have different types.)

Thus,

!R"ρ =
⊔

n∈ω χn(⊥) with χ = λu.Fλϕ.(down (ϕ))((down(u))ϕ)G and

χ ∈ [[[(Vτ )⊥ → (Vτ)⊥]⊥ → (Vτ )⊥]⊥ → [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥].

We have that:

χ0(⊥) = ⊥ with both ⊥’s belonging to [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥

χ1(⊥) = Fλϕ.(down (ϕ)⊥)G

where on the left hand side ⊥ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥ and on the right hand
sides ⊥ ∈ (Vτ )⊥.
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χ2(⊥) = Fλϕ.(down (ϕ))((down(Fλϕ̃.(down (ϕ̃)⊥)G))ϕ)G =

= Fλϕ.(down (ϕ))((λϕ̃.(down (ϕ̃)⊥))ϕ)G =

= Fλϕ.(down (ϕ))((down (ϕ)⊥))G =

= Fλϕ.(down (ϕ))2(⊥)G

where on the left hand side ⊥ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥ and on the right hand
sides ⊥ ∈ (Vτ )⊥. By induction on n, one can show that for all n≥0,

χn(⊥) = Fλϕ.(down(ϕ))n(⊥)G

where on the left hand side ⊥ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥ and on the right hand
side ⊥ ∈ (Vτ )⊥. Thus,

!R"ρ =
⊔

n∈ω χn(⊥) =

=
⊔

n∈ωFλϕ.(down(ϕ))n(⊥)G = {by continuity of F_G} =

= F
⊔

n∈ωλϕ.(down(ϕ))n(⊥)G = {lub’s of functions are computed pointwise} =

= Fλϕ.
⊔

n∈ω(down(ϕ))n(⊥)G = {by definition of fix = λf.
⊔

n∈ω fn(⊥)} =

= Fλϕ.fix (down(ϕ))G. !

Proof of (RL2). We have to show that !R"ρ = fix, where R : (τ →τ) → τ .

We have that !R"ρ ∈ [[Vτ → Vτ ] → Vτ ].

We also have that R is recw.λf.(f(wf)) where f :τ →τ . Thus,

!R"ρ = !recw.λf.(f(wf))"ρ =

= fix (λw̃.!λf.(f(wf))"ρ[w̃/w] =

= fix (λw̃.λf̃ .!f(wf)"ρ[w̃/w, f̃/f ] = {by renaming of bound variables} =

= fix (λw.λf.f(wf)).

Hence,

!R"ρ =
⊔

n∈ω χn(⊥) with χ = λw.λf.f(wf) and

χ ∈ [[[Vτ → Vτ ] → Vτ ] → [[Vτ → Vτ ] → Vτ ]].

We have that:

χ0(⊥) = ⊥ with both ⊥’s belonging to [[Vτ → Vτ ] → Vτ ]

χ1(⊥) = (λw.λf.f(wf)) (⊥) = λf.⊥
χ2(⊥) = (λw.λf.f(wf)) (λf.⊥) = λf.f(⊥)

χ3(⊥) = (λw.λf.f(wf)) (λf.f(⊥)) = λf.f(f(⊥))

where all ⊥’s belong to ⊥ ∈ [[Vτ → Vτ ] → Vτ ], except those which occur in ex-
pressions of the form λf.fn(⊥), for some n≥0: those ⊥’s belong to Vτ (recall that:
(i) f ∈[Vτ → Vτ ]), and (ii) we have assumed that Vτ is a cpo with bottom) By in-
duction on n, one can show that for all n ≥ 1, χn(⊥) = λf.fn−1(⊥). Thus, since
χ0(⊥)=⊥, we have that:

!R"ρ =
⊔

n∈ω χn(⊥) =
⊔

n∈ω λf.fn(⊥) = fix . !
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Proof of (E). For the Eager language we have to show that:

!R (λy.λx.t)"ρ = !rec y.λx.t"ρ (E)

with R = recw.λf.λx.((f(wf))x) and R : (τ → τ) → τ . By (RE) on page 223 and
the definition of the eager denotational semantics of rec y.λx.t, we have to show that

let ϕ̃⇐Fλϕ. Ffix (down ◦ϕ)GG, v⇐!λy.λx.t"ρ " ϕ̃(v) = Ffix (λu.λv.! t " ρ[u/y, v/x])G,
that is,

let v ⇐ Fλu.!λx.t"ρ[u/y]G " (λϕ. Ffix (down ◦ϕ)G)(v) = Ffix (λu.λv.! t " ρ[u/y, v/x])G.
Now, this last equality holds because:

let v ⇐ Fλu.!λx.t"ρ[u/y]G " (λϕ. Ffix (down ◦ϕ)G)(v) =

= λϕ.F fix (down ◦ϕ)G (λu.!λx.t"ρ[u/y]) =

= F fix (down ◦ (λu.!λx.t"ρ[u/y]))G =

= F fix (down ◦ (λu.Fλv.!t"ρ[u/y, v/x]G))G = {see Equation (†) below} =

= F fix (λu.λv.! t " ρ[u/y, v/x])G.
Thus, the proof is completed if the following equation holds between elements of the
cpo [Vτ → Vτ ]:

down ◦ (λu.Fλv.!t"ρ[u/y, v/x]G) = λu.λv.! t " ρ[u/y, v/x] (†)
where u :τ , v :τ1, and t :τ2, with τ = τ1 → τ2. Indeed, for all r and s, we have that:

(down ◦ (λu.FrG))s = down((λu.FrG)s) = downFr[s/u]G = r[s/u] =

= (λu.r)s (††)
Now, having derived the Equation (††): (down ◦ (λu.FrG))s = (λu.r)s, we may in-
stantiate it by considering r to be the term λv.!t"ρ[u/y, v/x], and we get the desired
Equation (†) above. !

Proof of (L) for the Lazy1 language. We have to show that:

!R (λy.t)"ρ = !rec y.t"ρ (L)

with R = recw.λf.(f(wf)) and R : (τ → τ) → τ . By (RL1) on page 223 and the
definition of the lazy1 denotational semantics of rec y.t, we have to show that:

let ϕ̃ ⇐ Fλϕ. fix (down ϕ)G " ϕ̃(!λy.t"ρ) = fix (λu.! t " ρ[u/y]).

This equality holds because:

let ϕ̃ ⇐ Fλϕ. fix (down ϕ)G " ϕ̃(!λy.t"ρ) = {by definition of the let construct} =

= fix (down (!λy.t"ρ)) = {by definition of !λy.t"ρ} =

= fix (down Fλu.!t"ρ[u/y]G) = {by downFxG = x} =

= fix (λu.! t " ρ[u/y]). !

Proof of (L) for the Lazy2 language. We have to show that:

!R (λy.t)"ρ = !rec y.t"ρ (L)

with R = recw.λf.(f(wf)) and R : (τ → τ) → τ . By (RL2) on page 224 and the
definition of the lazy2 denotational semantics of rec y.t, we have to show that:

fix (!λy.t"ρ) = fix (λu.! t " ρ[u/y]).
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This equality holds in the lazy2 denotational semantics because:

!λy.t"ρ = λu.! t " ρ[u/y]. !

Proof of (EF). Consider F :τ →τ and R : (τ →τ) → τ .

For the Eager language we have that:

!F "ρ ∈ [Vτ → (Vτ )⊥]⊥
!R"ρ ∈ [[Vτ → (Vτ )⊥] → (Vτ )⊥]⊥
fix ∈ [[Vτ → Vτ ] → Vτ ]

ϕ ∈ [Vτ → (Vτ )⊥]

(down ◦ ϕ) ∈ [Vτ → Vτ ]

!R"ρ = Fλϕ.Ffix (down ◦ϕ)GG
We have to show that:

!RF "ρ = !F (RF )"ρ if down(!F "ρ) 1= (λx.⊥) ∈ [Vτ → (Vτ )⊥]. (EF)

For the left hand side of (EF) we have that:

!RF "ρ = let r ⇐ !R"ρ, v ⇐ !F "ρ " r(v) =

{by definition of the let construct}

= (down(!R"ρ)) (down(!F "ρ)) =

{by definition of !R"ρ}

= Ffix (down ◦ (down(!F "ρ)))G =

{by definition of fix and ◦ }

=
⌊
down

((
down(!F "ρ)

) (
fix (down ◦ (down(!F "ρ)))

))⌋
= (†1)

{by Fdown(x)G = x for x 1= ⊥ ∈ (Vτ )⊥}

=
(
down(!F "ρ)

)(
fix (down ◦ (down(!F "ρ)))

)
. (†2)

This last step from Expression (†1) to Expression (†2) is justified by the fact that
the argument of the leftmost down in (†1) is different from ⊥ ∈ (Vτ )⊥ because, by
hypothesis, down(!F "ρ)) 1= (λx.⊥) ∈ [Vτ → (Vτ )⊥].

For the right hand side of (EF) we have that:

!F (RF )"ρ = let f ⇐ !F "ρ, x ⇐ (let r ⇐ !R"ρ, v ⇐ !F "ρ " r(v))" f(x)) =

{by definition of the let construct}

= (down(!F "ρ)) (down((down(!R"ρ)) (down(!F "ρ)))) =

{by definition of !R"ρ}

= (down(!F "ρ)) (down((downFλϕ.Ffix (down ◦ϕGG) (down(!F "ρ)))) =

{by down(FxG) = x and function application}

= (down(!F "ρ)) (down(Ffix (down ◦ (down(!F "ρ))G)) =

{by down(FxG) = x}

= (down(!F "ρ)) (fix (down ◦ (down(!F "ρ)))). (†3)

Since (†2) = (†3) the proof is completed. !
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Proof of (LF1). Consider F :τ →τ and R : (τ →τ) → τ .

For the Lazy1 language we have that:

!F "ρ ∈ [(Vτ )⊥ → (Vτ )⊥]⊥
!R"ρ ∈ [[(Vτ )⊥ → (Vτ )⊥]⊥ → (Vτ )⊥]⊥
fix ∈ [[(Vτ )⊥ → (Vτ )⊥] → (Vτ )⊥]

!R"ρ = Fλϕ.fix (down ϕ)G
We have to show that:

!RF "ρ = !F (RF )"ρ ∈ (Vτ )⊥.

This equality holds because we have that:

!RF "ρ = let ϕ ⇐ !R"ρ " ϕ(!F "ρ) =

= let ϕ̃ ⇐ Fλϕ.fix(down ϕ)G " ϕ̃(!F "ρ) =

= (λϕ.fix(down ϕ))(!F "ρ) =

= fix(down (!F "ρ)), (†4)

!F (RF )"ρ = let ϕ ⇐ !F "ρ " ϕ(!RF "ρ) = {see (†4)} =

= let ϕ ⇐ !F "ρ " ϕ(fix(down (!F "ρ))) =

= (down (!F "ρ)) (fix(down (!F "ρ))), and

for all x, fix x = x (fix x). !

Proof of (LF2). Consider F :τ →τ and R : (τ →τ) → τ .

For the Lazy2 language we have that:

!F "ρ ∈ [Vτ → Vτ ]

!R"ρ ∈ [[Vτ → Vτ ] → Vτ ]

fix ∈ [[Vτ → Vτ ] → Vτ ]

!R"ρ = fix

Since in the Lazy2 language we have that ! t1t2 " ρ = (!t1"ρ)(!t2"ρ), we have to show
that !RF "ρ = !F (RF )"ρ, that is,

fix (!F "ρ) = (!F "ρ) (fix (!F "ρ))

Indeed, this equality holds because for any x ∈ [Vτ → Vτ ] we have that fix x =
x (fix x). !

7.1. Eager Operational Semantics of Fixpoint Operators.

Let R denote the fixpoint operator rec y.(λf.λx.((f(yf))x)) of the eager operational
semantics.

We show that in the eager operational semantics the following two points hold.
Point (i): for all terms F : τ → τ , if F has no canonical form then both RF and
F (RF ) have no canonical form, and
Point (ii): for all terms F :τ →τ , if F has a canonical form then RF has a canonical
form, while F (RF ) may or may not have a canonical form.

Point (i) is immediate because in the eager operational semantics the evaluation of
an application (t1t2) requires that both subterms t1 and t2 have canonical forms.



230 7. SYNTAX AND SEMANTICS OF HIGHER ORDER FUNCTIONAL LANGUAGES

In order to show Point (ii), let us consider the term F =def λu.t which is a
canonical form. We have that:

RF =def (rec y.(λf.λx.((f(yf))x))) (λu.t) →
→ (λf.λx.((f(yf))x) [rec y. (λgλv.((g(yg))v)) / y]) (λu.t) →
→ λx.(((λu.t)(y(λu.t)))x) [rec y. (λgλv.((g(yg))v)) / y] →
→ λx.(((λu.t)((rec y. (λgλv.((g(yg))v)))(λu.t)))x) (α)

which is a canonical form. Let us call it α. We also have that:

F (RF ) =def (λu.t) ((rec y.(λf.λx.((f(yf))x))) (λu.t)) → . . . → (λu.t) α → t[α/u]

If in F =def λu.t we take t to be 1 then RF → α[1/t] and F (RF ) → 1. Thus,
we get the two distinct canonical forms α[1/t] and 1. We have that RF and F (RF )
have the same canonical form if in F we take t to be u. In that case, in fact, the
terms α and t[α/u] are both equal to α[u/t].

If in F we take t to be ((rec y.(λf.(f(yf)))) (λv.t1)) for some term t1 then RF has
the canonical form α with ((rec y.(λf.(f(yf)))) (λv.t1)), instead of t, and F (RF ) has
no canonical form in the eager operational semantics. Indeed, in the eager operational
semantics the application:

(rec y.(λf.(f(yf)))) (λv.t1)

where rec y.(λf.(f(yf))) is the fixpoint operator of the lazy operational semantics,
has no canonical form.

7.2. Lazy Operational Semantics of Fixpoint Operators.

We show that in the lazy operational semantics for all terms F : τ → τ and all
canonical forms c, RF → c iff F (RF ) → c, where R denotes the fixpoint operator
rec y.λf.(f(yf)) of the lazy operational semantics. Indeed, we have that:

RF → c

{by definition of R}

iff (rec y.λf.(f(yf))) F → c

{by the operational rule for rec}

iff λf.(f((rec y. λg.(g(yg)))f)) F → c

{by the operational rule for function application}

iff F ((rec y. (λg.g(yg)))F ) → c

{by definition of R}

iff F (RF ) → c.

7.3. Fixpoint Operators in Type Free, Higher Order Languages.

If we consider type free, higher order languages where self-application is allowed, we
can express the fixpoint operators without using the rec operator. In particular, for
a language with eager operational semantics we have the fixpoint operator:

Y ∗ =def λf.
(
λz.

(
(λx.f(λy.xxy)) (λx.f(λy.xxy))z

))

and for a language with lazy operational semantics we have the fixpoint operator:

Y =def λf.
(
(λx.f(xx)) (λx.f(xx))

)
.
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Note that in the definitions of both Y ∗ and Y the self application of x to itself is
allowed because we consider type free languages. Also recall that application is left
associative, that is, for instance, xxy stands for ((xx)y).

By using the rules of the operational semantics of the Eager language (see
page 202) and by writing ∆∗, instead of λx.τ(λy.xxy), we have that:
for any abstraction τ =def λf.t, for any canonical form c, c1,

Y ∗τ c →e c1 (α0)

iff (λz.∆∗∆∗z) c →e c1, (α1)

iff ∆∗∆∗c →e c1

iff τ(λy.∆∗∆∗y) c →e c1. (α2)

From (α0), (α1), and (α2), we get that Y ∗τ behaves as τ(Y ∗τ) and, thus, Y ∗ behaves
as a fixpoint operator in a type free version of the Eager language.

Exercise 7.1. Show that (see also Section 2.4 on page 206):

Y ∗(λf.λx.if x then 1 elsex × f(x−1)) 2 →e 2 !

Similarly, by using the rules of the operational semantics of the Lazy language (see
page 204) and by writing ∆, instead of λx.τ(xx), we have that:
for any abstraction τ =def λf.t, for any canonical form c, c1,

Y τ c →' c1 (β0)

iff ∆∆ c →' c1 (β1)

iff τ(∆∆) c →' c1. (β2)

From (β0), (β1), and (β2), we get that Y τ behaves as τ(Y τ) and, thus, Y behaves
as a fixpoint operator in a type free version of the Lazy language.

Exercise 7.2. Show that (see also Section 2.5 on page 207):

Y (λf.λx.if x then 1 else x × f(x−1)) 2 →' 2. !

8. Adequacy

In this section we establish a correspondence between the operational and the de-
notational semantics for the three languages: (i) the Eager language, (ii) the Lazy1
language, and (iii) the Lazy2 language.

Let us introduce the following definitions. For any closed, typable term t of type τ ,
we say that:

(i) t converges in the eager operational semantics, denoted t ↓e, iff there exists a
canonical form c such that t →e c, where →e denotes the eager operational
semantics relation,

(ii) t converges in the lazy operational semantics, denoted t ↓', iff there exists a
canonical form c such that t →' c, where →' denotes the lazy operational
semantics relation, and

(iii) t converges in the eager denotational semantics, denoted t ⇓e, iff there exists
v ∈ Vτ such that for all environments ρ, !t"e ρ = FvG,
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(iv) t converges in the lazy1 denotational semantics, denoted t ⇓'1, iff there exists
v ∈ Vτ such that for all environments ρ, !t"'1 ρ = FvG.

The definition of convergence in the lazy2 denotational semantics, denoted t ⇓'2,
cannot be given in a way which is similar to that of convergence in the lazy1 deno-
tational semantics (see Point (iv) above), because for any term t of type τ , for any
environment ρ, !t"'2 ρ is of type Vτ , and not of type (Vτ )⊥ and, in general, we do not
assume the existence of a bottom element in the cpo Vτ .

Thus, we introduce the following definition. For any closed, typable term t of
type τ , we say that:

(v) t converges in the lazy2 denotational semantics, denoted t ⇓'2, iff if τ = int then
there exists n∈N such that for all environments ρ, !t"'2 ρ = FnG.

Now we introduce the three notions of adequacy of the denotational semantics with
respect to the operational semantics for: (i) the Eager language, (ii) the Lazy1 lan-
guage, and (iii) the Lazy2 language. These three definitions follow the same pattern
and they can be derived one from the other by making the changes indicated in the
following Table 10.

Eager Lazy1 Lazy2

operational semantics and
operational convergence

→e ↓e →' ↓' →' ↓'

denotational semantics and
denotational convergence

!_"e ⇓e !_"'1 ⇓'1 !_"'2 ⇓'2

Table 10. Notations for operational semantics, denotational seman-
tics, operational convergence, and denotational convergence. Note that
Lazy1 and Lazy2 languages have the same operational semantics.

Definition 8.1. [Adequacy of the Eager Denotational Semantics] The
eager denotational semantics !_"e is said to be adequate w.r.t. the eager operational
semantics →e iff

(Ae) for all closed, typed terms t, t ↓e iff t ⇓e, and

(
−→
Be) for all closed, typed terms t, there exists a canonical form c such that

t →e c implies for all environments ρ, !t"e ρ = !c"e ρ.

Definition 8.2. [Adequacy of the Lazy1 Denotational Semantics] The
lazy1 denotational semantics !_"'1 is said to be adequate w.r.t. the lazy operational
semantics →' iff

(A'1) for all closed, typed terms t, t ↓' iff t ⇓'1, and

(
−→
B'1) for all closed, typed terms t, there exists a canonical form c such that

t →' c implies for all environments ρ, !t"'1 ρ = !c"'1 ρ.
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Definition 8.3. [Adequacy of the Lazy2 Denotational Semantics] The
lazy2 denotational semantics !_"'2 is said to be adequate w.r.t. the lazy operational
semantics →' iff

(A'2) for all closed term t of type τ , t ↓' iff t ⇓'2, and

(
−→
B'2) for all closed, typed terms t, there exists a canonical form c such that

t →' c implies for all environments ρ, !t"'2 ρ = !c"'2 ρ.

The following theorem shows that if in the definitions of the properties (
−→
Be), (

−→
B'1),

and (
−→
B'2) we replace ‘implies’ by ‘iff’, then adequacy does not hold.

Theorem 8.4. For some closed, typed terms t1 and t2 both of type int → int,

(i) !t1"e ρ = !t2"e ρ does not imply t1 →e t2,

(ii) !t1"'1 ρ = !t2"'1 ρ does not imply t1 →' t2, and

(iii) !t1"'2 ρ = !t2"'2 ρ does not imply t1 →' t2.

Proof. (i) Let us consider the terms λx.x+0 and λx.x.
We have that: !λx.x+0"e ρ = !λx.x"e ρ. However, since in the eager operational
semantics λx.x+0 and λx.x are distinct canonical forms, it is not the case that
λx.x+0 →e λx.x.

The proofs of (ii) and (iii) are analogous to the proof of (i). !

Let us also introduce the following notations. For the superscript ! which is e, or '1,
or '2,

(i) let (
−→
A!) denote the formula (A!) with ‘implies’, instead of ‘iff’, and

(ii) let (B!) denote the formula (
−→
B!) with ‘iff’, instead of ‘implies’.

Let Aeint , Beint , A'1int , B'1int , A'2int , and B'2int denote the properties derived
from the properties Ae, Be, A'1, B'1, A'2, and B'2, respectively, by assuming that
the quantifications are over terms of type int only.

Theorem 8.5. We have that:

(i) (Aeint) is equivalent to (Beint),

(ii) (A'1int) is equivalent to (B'1int), and

(iii) (A'2int) is equivalent to (B'2int).

Proof. Point (i). We have that:

(Aeint) is: for all closed terms t of type int,(
∃n ∈ N , t →e n

)
iff

(
∃m ∈ N , ∀ρ, !t"eρ = FmG

)

(Beint) is: for all closed terms t of type int, ∃n ∈ N ,
(
t →e n iff ∀ρ, !t"eρ = FnG

)
.

We have to show that: (i.1) (Aeint) implies (Beint), and (i.2) (Beint) implies (Aeint).
Point (i.1) follows from the fact which we now show, that (Aeint) implies

for all closed terms t of type int, for all n ∈ N ,
(
t →e n iff ∀ρ, !t"eρ = FnG

)
.

Take any t of type int. Take any n. We have to show that:

(i.1.1) t →e n implies (∀ρ, !t"eρ = FnG) and

(i.1.2) (∀ρ, !t"eρ = FnG) implies t →e n.
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Point (i.1.1). Assume that t →e n. By Lemma 11.11 [19, page 191] we have that ∀ρ,
!t"eρ = FnG.
Point (i.1.2). Take any ρ. Assume that !t"eρ = FnG. By Corollary 11.15 [19, page
200] we have that ∃m, t →e m. Now we have that m = n because, by absurdum, if
t →e m and t →e n and m 1=n we get by (i.1.1) that for all ρ, !t"eρ = FmG = FnG and
m 1=n. This is impossible because λt.!t"eρ is a function.
Point (i.2) is obvious.

Point (ii). The proof is similar to that of Point (i) by referring to Lemma 11.20 [19,
page 205] and Corollary 11.24 [19, page 209], instead of Lemma 11.11 and Corol-
lary 11.15, respectively.

Point (iii). The proof is similar to that of Point (i) by referring to Exercise 11.28 (2)
[19, page 217] and Exercise 11.28 (3) [19, page 217], instead of Lemma 11.11 and
Corollary 11.15, respectively. !

As a consequence of Theorem 8.4, the above Theorem 8.5 cannot be extended to
the case where the term t has a type which is not int. In particular, for a closed term
t of type int → int , we have that (Ae) holds, while (Be) does not hold.

Indeed, let us consider the term λx.t1, for some variable x and term t1, both of
type int. Then λx.t1 ↓e holds (because λx.t1 is an abstraction) and λx.t1 ⇓e holds
(because for all ρ, !λx.t1"eρ = Fλv.!t1"eρ[v/x]G). Similarly for -1, instead of e. For -2,
instead of e, we have that (A'2) holds because both λx.t1 ↓'2 and λx.t1 ⇓'2 hold.

We have the following theorems which we state without proofs.

Theorem 8.6. [Adequacy of the Eager Denotational Semantics] The eager
denotational semantics !_"e is adequate w.r.t. the eager operational semantics →e.

Proof. It is based on the fact that for any closed term t : τ , there exists a
canonical form c of the Eager language such that t →e c iff ∃v ∈ Vτ ∀ρ !t"e ρ = FvG.

The only-if part is a consequence of the fact that: (i) for all canonical forms
c : τ of the Eager language, !c"e ρ 1= ⊥ ∈ (Vτ )⊥ (see Lemma 11.8 [19, page 190]),
and (ii) for all terms t and canonical forms c, if t →e c then ∀ρ !t"e ρ = !c"e ρ (see
Lemma 11.11 [19, page 191]).

The if part is shown in Lemma 11.14 [19, page 195] whose proof uses the technique
of logical relations. !

Theorem 8.7. [Adequacy of the Lazy1 Denotational Semantics] The lazy1
denotational semantics !_"'1 is adequate w.r.t. the lazy operational semantics →'.

Proof. It is based on the fact that for any closed term t : τ , there exists a
canonical form c of the Lazy1 language such that t →' c iff ∃v ∈ Vτ ∀ρ !t"'1 ρ = FvG.

The only-if part is a consequence of the fact that: (i) for all canonical forms
c : τ of the Lazy1 language, !c"'1 ρ 1= ⊥ ∈ (Vτ )⊥ (see Lemma 11.19 [19, page 204]),
and (ii) for all terms t and canonical forms c, if t →' c then ∀ρ !t"'1 ρ = !c"'1 ρ (see
Lemma 11.20 [19, page 205]).

The if part is shown in Lemma 11.23 [19, page 206] whose proof uses the technique
of logical relations. !

As a consequence of Theorems 8.5, 8.6, and 8.7, and Exercise 11.28 (3) [19, page
217], we have the following corollary.



8. ADEQUACY 235

Corollary 8.8. For every closed term t of type int and n ∈ N ,

(i) (Beint): t →e n iff !t"e ρ = !n"e ρ,

(ii) (B'1int): t →' n iff !t"'1 ρ = !n"'1 ρ, and

(iii) (B'2int): t →' n iff !t"'2 ρ = !n"'2 ρ.

Recall that for any n ∈ N , for any environment ρ, we have that: !n"e ρ = !n"'1 ρ =
!n"'2 ρ = FnG.

We have the following result.

Theorem 8.9. (i) (
−→
Be) implies (

−→
Ae). (ii) (

−→
B'1) implies (

−→
A'1).

(iii) (
−→
B'2) implies (

−→
A'2).

Proof. Point (i). First note that (
−→
Be): ∀t ∃ a canonical form c, t →e c implies

!t"e ρ = !c"e ρ, is equivalent to: (1) ∀t ∀ canonical form c, t →e c implies !t"e ρ =
!c"e ρ, because the relation →e is deterministic. In order to prove Point (i), we assume
(1) and (2): ∀t ∀ canonical forms c, t →e c, and we have to show: ∀ terms t : τ , ∃ a
value v ∈ Vτ , ∀ environments ρ, !t"e ρ = FvG ∈ (Vτ )⊥. From (1) by (2) we get: ∃ a
canonical form c, !t"e ρ = !c"e ρ. By Lemma 11.8 (ii) [19, page 190], we have that
!c"e ρ 1= ⊥ ∈ (Vτ)⊥. This completes the proof of Point (i).
Point (ii). Analogous to the proof of Point (i) using Lemma 11.19 (ii) [19, page 204].
Point (iii). It is obvious if t of a type different from int . If t is of type int , the proof
follows from Exercise 11.28 (3) [19, page 217]. !

Let us consider the following two terms of the Lazy language:
(i) recw.w, also denoted Ω, where the variable w is of type int → int and the term
recw.w is of type int → int , and
(ii) λx.((recw.w) x), also denoted λx.(Ωx), where the variable x is of type int , and
the variable w and the term λx.((recw.w) x) are both of type int → int .

We have the following fact and theorem.

Fact 8.10. For any environment ρ, !Ω"'2ρ = !λx.(Ωx)"'2ρ (both sides belong to
[N⊥→N⊥]).

Proof. This lemma is a consequence of the fact that the η-rule holds in the Lazy2
language (see page 222). We have that for any ρ,

!Ω"'2ρ = !recw.w"'2ρ = fix(λd.!w"'2ρ[d/w]) =

= fix (λd.d), with fix ∈ [[[N⊥→N⊥] → [N⊥→N⊥]] → [N⊥→N⊥]] =

=
⊔

n≥0(λd.d)n(⊥), where ⊥ is the function λn ∈ N⊥.⊥ ∈ N⊥ =

= λn.⊥, with n∈N⊥ and ⊥∈N⊥.

Recall that λn.⊥ is the bottom element in [N⊥→N⊥]. !

Remark 8.11. For any ρ, !Ω"'1ρ 1= !λx.(Ωx)"'1ρ (both sides belong to
[N⊥→N⊥]⊥). Indeed, for the left hand side we have that:

!Ω"'1ρ = !recw.w"'1ρ = fix(λd.!w"'1ρ[d/w]) =

= fix (λd.d), with fix ∈ [[[N⊥→N⊥]⊥ → [N⊥→N⊥]⊥] → [N⊥→N⊥]⊥] =
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=
⊔

n≥0(λd.d)n(⊥), where ⊥∈ [N⊥→N⊥]⊥ =

= ⊥, with ⊥∈ [N⊥→N⊥]⊥.

For the right hand side we have that:

!λx.(Ωx)"'1ρ = Fλv.(!Ωx"'1ρ[v/x])G ∈ [N⊥→N⊥]⊥ with v ∈ N⊥ =

= Fλv.(let ϕ ⇐ !Ω"'1ρ[v/x] " ϕ(!x"'1ρ[v/x]))G =

= {since !Ω"'1ρ=⊥ ∈ [N⊥→N⊥]⊥, as we have shown above, we have that

ϕ=(λn.⊥) ∈ [N⊥→N⊥]} =

= Fλv.((λn.⊥)(!x"'1ρ[v/x]))G =

= Fλv.⊥G, with Fλv.⊥G ∈ [N⊥→N⊥]⊥. !

Theorem 8.12. [The Lazy2 Denotational Semantics is not adequate]
The lazy2 denotational semantics !_"'2 is not adequate w.r.t. the lazy operational
semantics →'.

Proof. Let us assume, by absurdum, that the lazy2 denotational semantics !_"'2 is
adequate w.r.t. the lazy operational semantics →'. In particular, we assume that:

Ω ↓' iff Ω ⇓'2 and (†1)

λx.(Ωx) ↓' iff λx.(Ωx) ⇓'2. (†2)

We have that:

Ω ↓' {by (†1)}

iff Ω ⇓'2 {by definition of ⇓'2, being Ω and λx.(Ωx) of type int→ int}

iff λx.(Ωx) ⇓'2 {by (†2)}

iff λx.(Ωx) ↓'

Now, it cannot be the case that: Ω ↓' iff λx.(Ωx) ↓', because:
(i) λx.(Ωx) is a lazy canonical form, being an abstraction, and thus, λx.(Ωx) →
λx.(Ωx), and
(ii) no lazy canonical form c exists such that Ω→' c because the only way of deducing
recw.w →' c is to prove recw.w →' c (see the lazy operational rule for rec on
page 204). !

Note that, if we consider a different notion of denotational convergence in the
Lazy2 language (for example, a notion which assumes that a term t of type τ is
convergent if its semantic value !t"'2ρ, for some environment ρ, belongs to a fixed
subset of the cpo Vτ ), we still have that the lazy2 denotational semantics is not
adequate w.r.t. the lazy2 operational semantics, because by Fact 8.10 on the preceding
page, we have that for any ρ, !Ω"'2ρ=!λx.(Ωx)"'2ρ.

In Table 11 on the next page we sum up the main notions and results we have
presented in this Section 8. In that table we consider a closed, typed term t of type τ .
The expression t : any means that the term t is of any type, that is, t is typed, but we
do not know its type, while the expression t : int means that the term t is of type int.

In that table the down-arrow ↓ and the right-arrow → should be labeled by:
(i) the superscript e if we consider the Eager language, and (ii) the superscript ' if
we consider the Lazy1 and Lazy2 languages.
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Eager Lazy1 Lazy2
Property ! = e ! = '1 ! = '2

1. A! : t :any t ↓ iff t ⇓ yes yes no

2.
−→
B! : t :any t → c implies !t"ρ = !c"ρ yes (∗) yes (∗) yes (∗)

3. A!int : t : int t ↓ iff t ⇓ yes yes yes

4. B!int : t : int t → n iff !t"ρ = FnG yes yes yes

Table 11. The arrows ↓, ⇓, and →, and the semantic brackets !_"
should be labelled by the superscript e, or ', or '1, or '2, according to
the languages Eager, Lazy1, and Lazy2. By Theorem 8.5 on page 233
we have that A!int iff B!int , for ! = e, or '1, or '2. The denotational
semantics of the languages Eager and Lazy1 are adequate w.r.t. their

operational semantics (that is, Ae ∧−→
Be and A'1 ∧

−→
B'1 hold), while the

denotational semantics of the language Lazy2 is not (see the ‘no’ entry).
If in row 2 we replace ‘implies’ by ‘iff’, then the three ‘yes’ entries
marked with (∗) become ‘no’, because in the Eager, Lazy1, and Lazy2
languages we have that !λx.x"ρ = !λx.x+0"ρ holds, while λx.x →
λx.x+0 does not hold.

The down-arrow ⇓ and the semantic brackets !_" should be labeled by: (i) the
superscript e if we consider the Eager language, (ii) the superscript '1 if we consider
the Lazy1 language, and (iii) the superscript '2 if we consider the Lazy2 language.

The superscript ! should be: (i) e if we consider the Eager language, (ii) '1 if we
consider the Lazy1 language, and (iii) '2 if we consider the Lazy2 language.

Adequacy of the denotational semantics with respect to the operational semantics

is defined to be the conjunction of Property A! and Property
−→
B!, for the superscript !

equal to e, or '1, or '2. Note that in Property
−→
B! the term t is of any type and

not necessarily of type int (as in Property B!int). Thus, in particular, Table 11
indicates that: (i) the eager denotational semantics is adequate with respect to the
eager operational semantics, (ii) the lazy1 denotational semantics is adequate with
respect to the lazy operational semantics, while (iii) the lazy2 denotational semantics
is not adequate with respect to the lazy operational semantics. Indeed, in the case
of the lazy2 denotational semantics Property A'2 holds only for terms t of type int
(see the entry ‘yes’ for Property A'2int), and not for terms of any type.

9. Half Abstraction and Full Abstraction

Let us consider a generic, higher order operational semantics relation, denoted _→_,
and a generic, higher order denotational semantics function, denoted !_" ρ. For every
closed, typed term t, we write t ↓ iff there exists a canonical form c such that t → c.
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Let us also consider the following two formulas, which are assumed to have as
parameters the two terms t1 and t2 of the same type:

Op(t1, t2) which holds iff for every contextC[−] such that C[t1] andC[t2]

are typable, closed terms, C[t1] ↓ iff C[t2] ↓

Den(t1, t2) which holds iff for every environment ρ, !t1"ρ = !t2"ρ.

The name of the predicate Op derives from the fact that its definition refers to the
operational semantics. Analogously, the name of the predicate Den derives from the
fact that its definition refers to the denotational semantics.

The following definitions relate the convergence of the operational semantics to
the equality of the denotational semantics. These definitions are meaningful because
through contexts we can establish equality of denotational values as we now explain.
For instance, in the Eager language, for any term t of type int, for any n ∈ N , we
have that:

t →e n iff (if (t−n) then 0 else Ω) →e 0

iff !t"eρ = FnG.
Analogous properties hold for the Lazy1 and Lazy2 languages.

Definition 9.1. [Half Abstraction of a Denotational Semantics with re-
spect to an Operational Semantics] A denotational semantics !_" is said to be
half abstract w.r.t. the observation of convergence of the operational semantics → (or
simply, w.r.t. the operational semantics →) if

for all terms t1 and t2, Op(t1, t2) if Den(t1, t2).

Definition 9.2. [Full Abstraction of a Denotational Semantics with re-
spect to an Operational Semantics] A denotational semantics !_" is said to be
fully abstract w.r.t. the observation of convergence of the operational semantics →
(or simply, w.r.t. the operational semantics →) if

for all terms t1 and t2, Op(t1, t2) if and only if Den(t1, t2).

Theorem 9.3. [The Eager Denotational Semantics is Half Abstract] For
the eager denotational semantics !_"e (which is adequate w.r.t. →e), we have that
for all terms t1 and t2 of the same type, Op(t1, t2) if Den(t1, t2).

Proof. Let us consider the terms t1 and t2 of type τ . If !t1"eρ = !t2"eρ we get that:
for every context C[−], !C[t1]"eρ = !C[t2]"eρ. Now there are two cases.
Case (i): !C[t1]"eρ 1= ⊥ ∈ (Vτ )⊥ and Case (ii): !C[t1]"eρ = ⊥ ∈ (Vτ )⊥.
In Case (i), from !C[t1]"eρ = !C[t2]"eρ 1= ⊥, by adequacy, we get that: C[t1] ↓ and
C[t2] ↓ .
In Case (ii), from !C[t1]"eρ = !C[t2]"eρ = ⊥, by adequacy, we get that: ¬C[t1] ↓ and
¬C[t2] ↓ .
Thus, in both cases we have C[t1] ↓ iff C[t2] ↓ . !

Theorem 9.4. [The Lazy1 Denotational Semantics is Half Abstract] For
the lazy1 semantics !_"'1 (which is adequate w.r.t. →'), we have that for all terms
t1 and t2 of the same type, Op(t1, t2) if Den(t1, t2).
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Proof. Similar to the proof of Theorem 9.3. !

Theorem 9.5. [The Lazy2 Denotational Semantics is not Half Abstract]
For the lazy2 semantics !_"'2 (which is not adequate w.r.t. →'), it is not the case
that for all terms t1 and t2 of the same type, Op(t1, t2) if Den(t1, t2).

Proof. Let us consider the terms Ω and λx.(Ωx) both of type int → int. We have
that:
(i) !Ω"'2ρ = !λx.(Ωx)"'2ρ,
(ii) λx.(Ωx) →' λx.(Ωx), and
(iii) no lazy operational canonical form c exists such that Ω→' c.

Thus, by Point (i), Den(Ω, λx.(Ωx)) holds, and by Points (ii) and (iii), it is not
the case that Ω ↓' iff λx.(Ωx) ↓', and thus, Op(Ω, λx.(Ωx)) does not hold because
if we take the context C[−] to be empty context, it is not the case that C[Ω] ↓' iff
C[λx.(Ωx)] ↓'. !

We have the following theorems. The proofs of Theorem 9.6 and Theorem 9.7 are
omitted.

Theorem 9.6. [The Eager Denotational Semantics is Not Fully Abstract]
The eager denotational semantics !_"e is not fully abstract w.r.t. the eager opera-
tional semantics →e.

Theorem 9.7. [The Lazy1 Denotational Semantics is Not Fully Abstract]
The lazy1 denotational semantics !_"'1 is not fully abstract w.r.t. the lazy operational
semantics →'.

Theorem 9.8. [The Lazy2 Denotational Semantics is Not Fully Abstract]
The lazy2 denotational semantics !_"'2 is not fully abstract w.r.t. the lazy operational
semantics →'.

Proof. It is a consequence of Theorem 9.5. !

Table 12 and Table 13 below summarize the results of Sections 5, 6, 8, and 9. In
those tables the entry ‘yes’ means that the rule (or the property) holds, while the
entry ‘no’ means that the rule (or the property) does not hold.

Operational
Semantics α-rule β-rule η-rule

Eager no no no

Lazy no yes no

Table 12. Validity of the α-rule, β-rule, and η-rule in the operational
semantics of the Eager and Lazy languages.
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Denotational
Semantics α-rule β-rule η -rule

A!int
∧B!int

adequacy:

A! ∧
−→
B!

abstraction
half full

Eager yes no no yes yes yes no

Lazy1 yes yes no yes yes yes no

Lazy2 yes yes yes yes no no no

Table 13. Validity of the α-rule, β-rule, η-rule, adequacy, half ab-
straction, and full abstraction in the eager, lazy1, and lazy2 denota-

tional semantics. Properties A!,
−→
B!, A!int , and B!int are defined in

Table 11 on page 237, for ! = e or '1 or '2. Half abstraction and full
abstraction are defined in Definition 9.1 on page 238 and Definition 9.2
on page 238, respectively.

Exercise 9.9. Recall that for any type τ and σ, any variable x of type τ , any
expression e of type σ, and any term t of type τ , we stipulate that letx ⇐ t in e
stands for (λx.e) t. In particular, letx ⇐ t in x stands for (λx.x) t.

(1) Show that in the Eager language !letx ⇐ t in x" ρ = !t" ρ. Both values belong
to (Vτ )⊥.

Solution. We have that !let x ⇐ t in x" ρ =

= !(λx.x)t" ρ =
= let ϕ ⇐ !λx.x" ρ, v ⇐ !t" ρ " (ϕ v) =
= let ϕ ⇐ Fλṽ.!x" ρ[ṽ/x]G, v ⇐ !t" ρ " (ϕ v) =
= let v ⇐ !t" ρ " ((λṽ.FṽG) v) =
= let v ⇐ !t" ρ " FvG, which belongs to (Vτ )⊥.

Now, let v ⇐ !t" ρ " FvG = !t" ρ because: (i) if !t" ρ=⊥ ∈ (Vτ )⊥ then both sides are ⊥
and, otherwise, (ii) if !t" ρ 1=⊥ then both sides are equal because Fdown(!t" ρ)G=!t" ρ
(see page 91). Note that, in general, !let x ⇐ t in e" ρ 1= !t[e/x]" ρ (see page 220).

(2) Show that in the Lazy1 language !letx ⇐ t inx" ρ = !t" ρ. Both values belong
to (Vτ )⊥.

Solution. We have that !let x ⇐ t in x" ρ =

= !(λx.x)t" ρ =
= let ϕ ⇐ !λx.x" ρ " (ϕ !t" ρ) =
= let ϕ ⇐ Fλv.vG " (ϕ !t" ρ) =
= (λv.v) (!t" ρ) =
= !t" ρ, which belongs to (Vτ )⊥.

(3) Show that in the Lazy2 language !letx ⇐ t inx" ρ = !t" ρ. Both values belong
to Vτ .

Solution. We have that !let x ⇐ t in x" ρ =
= !(λx.x)t" ρ =
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= (!λx.x" ρ) (!t" ρ) =
= (λv.v) (!t" ρ) =
= !t" ρ, which belongs to Vτ . !

Exercise 9.10. Assume that x, y : τ1, e : τ2, and f : τ1 → τ2. Assume also that y
does not occur free in rec f. (λx.e).

(1) Show that in the Eager language !rec f. (λx.e)" ρ = !λy.((rec f. (λx.e)) y)" ρ.
Both values belong to [Vτ1 → (Vτ2)⊥]⊥. Recall that, in general, the η-rule does not
hold in the Eager language.

Solution. We have that !rec f. (λx.e)" ρ =

= Ffix (λf̃.λv.!e" ρ[f̃/f, v/x])G. (†1)

We also have that !λy.((rec f. (λx.e)) y)" ρ =

= Fλv.!(rec f. (λx.e)) y" ρ[v/y])G =
= Fλv.let ϕ ⇐ Ffix (λf̃ .λṽ.!e" ρ[f̃ /f, ṽ/x, v/y])G, u ⇐ FvG " (ϕ u)G =
= {since y does not occur free in e and for all z, down(FzG)=z} =
= Fλv.(fix (λf̃.λṽ.!e" ρ[f̃/f, ṽ/x]) v)G

which is equal to (†1) because the η-rule holds in mathematics.

(2) Show that in the Lazy1 language !rec f. (λx.e)" ρ = !λy.((rec f. (λx.e)) y)" ρ.
Both values belong to [(Vτ1)⊥ → (Vτ2)⊥]⊥. Recall that, in general, the η-rule does
not hold in the Lazy1 language.

Solution. We have that !rec f. (λx.e)" ρ =

= fix (λf̃.!λx.e" ρ[f̃ /f ]). (†2)

We also have that !λy.((rec f. (λx.e)) y)" ρ =

= Fλv.!(rec f. (λx.e)) y" ρ[v/y])G =
= Fλv.let ϕ ⇐ fix (λf̃.!λx.e" ρ[f̃ /f, v/y]) " (ϕ !y" ρ[v/y])G =
= Fλv.let ϕ ⇐ fix (λf̃.!λx.e" ρ[f̃ /f, v/y]) " (ϕ v)G =
= {since y does not occur free in e} =
= Fλv.let ϕ ⇐ fix (λf̃.!λx.e" ρ[f̃ /f ]) " (ϕ v)G =
= {since fix(λf̃ .!λx.e" ρ[f̃/f ]) 1= ⊥ ∈ [(Vτ1)⊥ → (Vτ2)⊥]⊥} =
= Fλv.(down(fix(λf̃ .!λx.e" ρ[f̃/f ])) v)G =
= {since the η-rule holds in mathematics} =
= Fdown(fix(λf̃ .!λx.e" ρ[f̃ /f ]))G

which is equal to (†2) because: (i) fix (λf̃ .!λx.e" ρ[f̃/f ]) 1= ⊥ ∈ [(Vτ1)⊥ → (Vτ2)⊥]⊥,
and (ii) for all z 1=⊥, Fdown(z)G=z.

(3) Show that in the Lazy2 language !rec f. (λx.e)" ρ = !λy.((rec f. (λx.e)) y)" ρ.
Both values belong to [Vτ1 → Vτ2 ].

Solution. The equality to be shown follows from the fact that the η-rule holds in the
Lazy2 language. !





CHAPTER 8

Implementation of Operational Semantics

In this chapter we present four Prolog programs which implement, respectively, the
operational semantics of:
(i) the imperative language IMP introduced in Section 1 on page 117 (see the program
in Section 1 on this page),
(ii) the first order functional language REC introduced in Section 1 on page 165,
both in the call-by-value and call-by-name regime (see the program in Section 2 on
page 247),
(iii) the higher order, typed functional language Eager introduced in Section 1.1 on
page 199 (see the program in Section 3 on page 251), and
(iv) the higher order, typed functional language Lazy introduced in Section 1.2 on
page 200 (see the program in Section 4 on page 256).

1. Operational Semantics of the Imperative Language IMP

In this section we consider the simple imperative language IMP which we have intro-
duced in Section 1 on page 117 and we provide its operational semantics via a Prolog
program, called imp.pl.

In that program we use the non-ground representation for terms and, in particular,
the expression variable X is represented as the Prolog variable X. On the contrary,
in the ground representation for terms, the expression variable X is represented as
the term: var(X) using the unary term constructor var.

Since every deduction rule which defines the operational semantics has a single
conclusion (see Section 2.1 on page 118, Section 2.2 on page 118, and Section 2.3 on
page 119), the operational semantics of the language IMP can easily be implemented
via a Prolog program with definite clauses [1].

In order to to parse and interpret the input string, we use the so called Definite
Clause Grammars [1]. In that formalism, having defined a syntactic category, say
prog(P), we need to call a Prolog goal of the form: prog(P,"...",[]), for binding
the Prolog variable P to the term obtained by parsing the string "...". Note that
the Prolog predicate prog requires a third argument which is an empty list.

In the program imp.pl below, the reader will find the definition of the syntax of
the language IMP and many comments that will help him to understand the Prolog
code. He will also find some examples of program execution. In particular, after
entering the Prolog system, in order to compute the factorial of 5, which is 120, we
have to type:

f(5,F).

243
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and we will get:

[[x,0],[y,120]]
F = 120

Note that the variable identifiers in IMP are written using lower case letters such as
x or y. The list [[x,0],[y,120]] shows the store at the end of the computation:
the variable x is bound to 0 and the variable y is bound to 120.

In the program imp.pl we do not perform the type-checking of the input and,
indeed, we assumed that the input is well-typed.

/**
* ======================================================================
* OPERATIONAL SEMANTICS OF THE IMPERATIVE LANGUAGE IMP
*
* filename: imp.pl
* Non-ground representation:
* the expression variable X is represented as the Prolog variable X.
* ----------------------------------------------------------------------
* Use of a DEFINITE CLAUSE GRAMMAR for the input.
* Do not insert blank spaces in the input string! For reasons of clarity
* in the grammar below we have indicated the blank spaces (not to be
* inserted) as ‘_’.
* Note that we can add extra round parentheses ‘(’ and ‘)’ around
* programs, arithmetic expressions, and boolean expressions.
* program p ::= skip | x:=e | (p;p) | if_b_then_p_else_p |
* while_b_do_p | (p)
*
* arithmetic expression
* e ::= n | x | (e+e) | (e-e) | (e*e) | (e)
*
* boolean expression (or formula)
* b ::= tt | ff | e=e | e=<e | -b | (b*b) |
* (b+b) | (b)
*
* variable x ::= a | ... | z
* digit n ::= 0 | 1 | ... | 9
* ======================================================================
*/

prog(P) --> "skip", {P = skip}.

/* Note the non-ground representation of the variable X:
* the expression variable X is represented as the Prolog variable X,
* not as the term var(X). */

prog(P) --> expvar(X), ":=", exp(E), {P = asg(X,E)}.

prog(P) --> "(", prog(P1), ";", prog(P2), ")", {P = conc(P1,P2)}.
prog(P) --> "if", form(B), "then", prog(P1), "else", prog(P2),

{P = ite(B,P1,P2)}.
prog(P) --> "while", form(B), "do", prog(P1), {P = wl(B,P1)}.
prog(P) --> "(", prog(P1), ")", {P = P1}.

form(B) --> exp(B1), "=", exp(B2), {B = eq(B1,B2)}.
form(B) --> exp(B1), "=<", exp(B2), {B = leq(B1,B2)}.
form(B) --> "(", form(B1), "*", form(B2), ")", {B = and(B1,B2)}.
form(B) --> "(", form(B1), "+", form(B2), ")", {B = or(B1,B2)}.
form(B) --> "-", form(B1), {B = not(B1)}.
form(B) --> "(", form(B1), ")", {B = B1}.
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form(B) --> true(B).
form(B) --> false(B).
true(X) --> [C,C], {C=116, name(X,[C,C])}. % name("tt", [116,116]) holds
false(X) --> [C,C], {C=102, name(X,[C,C])}. % name("ff", [102,102]) holds

exp(E) --> "(", exp(E1), "+", exp(E2), ")", {E = plus(E1,E2)}.
exp(E) --> "(", exp(E1), "-", exp(E2), ")", {E = minus(E1,E2)}.
exp(E) --> "(", exp(E1), "*", exp(E2), ")", {E = mult(E1,E2)}.
exp(E) --> "(", exp(E1), ")", {E = E1}.
exp(E) --> expvar(E).
exp(E) --> digit(E).

expvar(X) --> [C], {"a"=<C, C=<"z", name(X,[C])}.
/* e.g., expvar(X,"y",[]) gives X = y */

digit(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.
/* e.g., digit(X,"5",[]) gives X = 5 */

/* ----------------------------------------------------------------------
* lookup(Location, Store, ValueAtLocation) */

lookup(Loc, [[Loc,V]|_], V) :- !.
lookup(Loc, [[Loc1,_]|T], V) :- \+ (Loc = Loc1), lookup(Loc,T,V), !.
/* ----------------------------------------------------------------------
* update([Location, NewValue], Store, NewStore) adds to the store a new
* [Location, Value] pair, if Location is not already in the store. */

update([Loc,NewV], [[Loc, _]|T], [[Loc, NewV]|T]) :- !.
update([Loc,NewV], [[Loc1, V1]|T], [[Loc1, V1]|T1]) :- \+ (Loc = Loc1),

update([Loc,NewV], T, T1).
update([Loc,NewV], [], [[Loc,NewV]]).

/* ----------------------------------------------------------------------
* Evaluation of arithmetic expressions: eval(Aexp, Store, Value)
* Note the non-ground representation:
* the expression variable X is represented as the Prolog variable X. */

eval(N,_,N) :- integer(N), !.
eval(X,S,N) :- lookup(X,S,N), !.
eval(plus(T0,T1),S,N) :- eval(T0,S,N0), eval(T1,S,N1), N is N0 + N1.
eval(minus(T0,T1),S,N) :- eval(T0,S,N0), eval(T1,S,N1), N is N0 - N1.
eval(mult(T0,T1),S,N) :- eval(T0,S,N0), eval(T1,S,N1), N is N0 * N1.

/* ----------------------------------------------------------------------
* Evaluation of boolean expressions: beval(Bexp, Store, Value)
* tt stands for true. ff stands for false. */

beval(tt,_,tt).
beval(ff,_,ff).
beval(eq(A0,A1),S,tt) :- eval(A0,S,N0), eval(A1,S,N1), N0 =:= N1.
beval(eq(A0,A1),S,ff) :- eval(A0,S,N0), eval(A1,S,N1), N0 =\= N1.
beval(leq(A0,A1),S,tt) :- eval(A0,S,N0), eval(A1,S,N1), N0 =< N1.
beval(leq(A0,A1),S,ff) :- eval(A0,S,N0), eval(A1,S,N1), \+ (N0 =< N1).
beval(not(B),S,ff) :- beval(B,S,tt).
beval(not(B),S,tt) :- beval(B,S,ff).
beval(or(B0,B1),S,tt) :- beval(B0,S,T0), beval(B1,S,T1), (T0;T1).
beval(or(B0,B1),S,ff) :- beval(B0,S,T0), beval(B1,S,T1), \+ (T0;T1).
beval(and(B0,B1),S,tt) :- beval(B0,S,T0), beval(B1,S,T1), (T0,T1).
beval(and(B0,B1),S,ff) :- beval(B0,S,T0), beval(B1,S,T1), \+ (T0,T1).
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/* ----------------------------------------------------------------------
* Execution of commands: exec(Command, Store, NewStore) */

exec(skip,S,S).
exec(asg(X,A),S,S1) :- eval(A,S,V), update([X,V],S,S1).
exec(conc(C0,C1),S,S2) :- exec(C0,S,S1), exec(C1,S1,S2).
exec(ite(B,C0,_),S,S1) :- beval(B,S,tt), exec(C0,S,S1).
exec(ite(B,_,C1),S,S1) :- beval(B,S,ff), exec(C1,S,S1).
exec(wl(B,_),S,S) :- beval(B,S,ff).
exec(wl(B,C),S,Sn) :- beval(B,S,tt), exec(C,S,S1),

exec(wl(B,C),S1,Sn).
/**
* ----------------------------------------------------------------------
* Now we give three examples of execution of our Prolog program.
* factorial (First Version).
* For the query ‘f(5,F).’ we get: [[x,0],[y,120]]
* F = 120
* ------------------------------------------------------------------- */

f(N,F) :- exec(conc(asg(x,N),
conc(asg(y,1),
wl(leq(1,x), conc( asg(y,mult(y,x)), asg(x, minus(x,1))) )
)), [], S),

lookup(y,S,F), % we compute the value of the factorial
write(S). % we write the final store

/**
* ----------------------------------------------------------------------
* factorial (Second Version).
* For the query ‘f1(5,F).’ we get: [[x,0],[y,120]]
* F = 120
* In the string for P below, we may want to write:
* "(x:=N;(y:=1;while(1=<x)do((y:=(y*x));(x:=(x-1)))))", instead of
* "(y:=1;while(1=<x)do((y:=(y*x));(x:=(x-1))))". But, if we do so,
* we get: "asg(x,’N’)", instead of "asg(x,N)", that is, we get the
* character N, instead of the Prolog variable N. To overcome this
* difficulty, we take the initial store to be [[x,N]], instead of [],
* and, indeed, in [[x,N]] the variable x is bound to N, not to ’N’.
* ------------------------------------------------------------------- */

f1(N,F) :- prog(P,"(y:=1;while(1=<x)do((y:=(y*x));(x:=(x-1))))",[]),
exec(P, [[x,N]], S),
lookup(y,S,F), % we compute the value of the factorial
write(S). % we write the final store

/**
* ----------------------------------------------------------------------
* greatest common divisor.
* For the query ‘gcd(18,30,D).’ we get: [[x,6],[y,6]]
* D = 6
* ------------------------------------------------------------------- */

gcd(M,N,D) :- exec(conc(asg(x,M),
conc(asg(y,N),
wl(not(eq(x,y)),

ite(leq(x,y), asg(y,minus(y,x)), asg(x,minus(x,y)) ) )
)), [], S),

lookup(x,S,D), % the value of the gcd is the value of x (and y)
write(S). % we write the final store

/* =================================================================== */
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2. Operational Semantics of the First Order Language REC

In this section we consider the simple first order functional language REC that we
have introduced in Section 1 on page 165, and we provide its operational semantics
via a Prolog program, called rec.pl.

We have two operational semantics: (i) the operational semantics for the call-by-
value regime (see Table 1 on page 167), and (ii) the operational semantics for the
call-by-name regime (see Table 4 on page 173).

Our Prolog program rec.pl implements the deduction rules provided in those
Tables 1 and 4.

For reasons of simplicity, we assume that the declarations of the language REC can
introduce unary functions only. Obviously, as usual, we have the binary arithmetic
operations +, −, and ×.

In our program rec.pl, in order to parse and interpret the input string, we use
Definite Clause Grammars [1]. In that formalism, having defined a syntactic category,
say binding(B), we need to call a Prolog goal of the form: binding(B,"...",[]),
for binding the Prolog variable B to the term obtained by parsing the string "...".
Note that the Prolog predicate binding requires a third argument which is an empty
list.

/**
* ======================================================================
* OPERATIONAL SEMANTICS FOR THE LANGUAGE REC
*
* filename: rec.pl
* ----------------------------------------------------------------------
* Use of a DEFINITE CLAUSE GRAMMAR for the input.
*
* Do not insert blank spaces in the input string! For reasons of clarity
* in the grammar below we have indicated the blank spaces (not to be
* inserted) as ‘_’.
* Note that we can add extra round parentheses ‘(’ and ‘)’ around terms.
* term t ::= n | x | (t+t) | (t-t) | (t*t) |
* if_t_then_t_else_t |
* (i_t) | % i is a function identifier.
* (t) % we consider unary functions only.
*
* variable x ::= a | ... | z
*
* number n ::= 0 | 1 | ... | 9 % note: one digit only.
*
* function-identifier % note: long function-identifiers.
* i ::= letter (letter+digit)*
*
* binding i(x)=t % note: one argument only.
* % e.g., binding for factorial:
* fact1(x)=if(x)then(1)else(x*fact1(x-1))
* definitions
* [binding, binding, ...]
* ======================================================================
*/

binding(B) --> fun(F), "(", termvar(X), ")=", term(T),
{B = [F,var(X),T]}.
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term(T) --> "if", term(T0), "then", term(T1), "else", term(T2),
{T = ite(T0,T1,T2)}.

term(T) --> "(", term(T1), ")", {T = T1}.
term(T) --> fun(F), term(T1), {T = fun(F,T1)}.

term(T) --> "(", term(T1), "+", term(T2), ")", {T = plus(T1,T2)}.
term(T) --> "(", term(T1), "-", term(T2), ")", {T = minus(T1,T2)}.
term(T) --> "(", term(T1), "*", term(T2), ")", {T = mult(T1,T2)}.
term(T) --> termvar(X), {T = var(X)}.
term(T) --> digit(T).

/* ----------------------------------------------------------------------
* a function identifier is a sequence of one letter followed by 0 or
* more letters or digits. */

fun(F) --> letter(F1), fun1(F2),
{name(F1,N1), name(F2,N2), append(N1,N2,N3), name(F,N3)}.

fun(F) --> letter(F1), {F = F1}.
fun1(F) --> letterdigit(F1), fun1(F2),

{name(F1,N1), name(F2,N2), append(N1,N2,N3), name(F,N3)}.
fun1(F) --> letterdigit(F).

letterdigit(F) --> letter(F).
letterdigit(F) --> digit(F).

termvar(X) --> letter(X).
letter(X) --> [C], {"a"=<C, C=<"z", name(X,[C])}.

/* e.g., letter(X,"y",[]) gives X = y */
digit(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.

/* e.g., digit(X,"5",[]) gives X = 5 */
/* ----------------------------------------------------------------------
* Appending lists */

append([],L,L).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).
/* ----------------------------------------------------------------------
* lookup(FunctionName, FunctionArg, FunctionBody, FunctionEnv) */

lookup(Name,var(X),Body,[[Name,var(X),Body]|_]).
lookup(Name,var(X),Body,[[Name1,_,_]|T]) :- \+ (Name = Name1),

lookup(Name,var(X),Body,T).

/* ----------------------------------------------------------------------
* substituting ‘Value’ for ‘Variable’ in ‘Term’, thereby deriving
* ‘NewTerm’: subst(Variable, Value, Term, NewTerm) */

subst(_,_,N,N) :- integer(N).
subst(var(X),V,var(X),V).
subst(var(X),_,var(Y),var(Y)) :- X \= Y.
subst(var(X),V,plus(T0,T1),plus(NT0,NT1)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).
subst(var(X),V,minus(T0,T1),minus(NT0,NT1)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).
subst(var(X),V,mult(T0,T1),mult(NT0,NT1)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).
subst(var(X),V,ite(T0,T1,T2),ite(NT0,NT1,NT2)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1),
subst(var(X),V,T2,NT2).
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subst(var(X),V,fun(Name,Arg),fun(Name,NArg)) :- subst(var(X),V,Arg,NArg).

/* ----------------------------------------------------------------------
* CALL-BY-VALUE: eval_v(Term, FunctionEnv, Value)
* The evaluation of the closed term ‘Term’ in the function environment
* ‘FunctionEnv’ returns in the call-by-value regime the value ‘Value’.*/

eval_v(N,_,N) :- integer(N).
eval_v(plus(T0,T1),FEnv,N) :- eval_v(T0,FEnv,N0), eval_v(T1,FEnv,N1),

N is N0 + N1.
eval_v(minus(T0,T1),FEnv,N) :- eval_v(T0,FEnv,N0), eval_v(T1,FEnv,N1),

N is N0 - N1.
eval_v(mult(T0,T1),FEnv,N) :- eval_v(T0,FEnv,N0), eval_v(T1,FEnv,N1),

N is N0 * N1.
eval_v(ite(T0,T1,_),FEnv,N) :- eval_v(T0,FEnv,0), eval_v(T1,FEnv,N).
eval_v(ite(T0,_,T2),FEnv,N) :- eval_v(T0,FEnv,N1), N1 =\= 0,

eval_v(T2,FEnv,N).
eval_v(fun(Name,Arg),FEnv,N) :- eval_v(Arg,FEnv,V),

lookup(Name,var(X),Body,FEnv),
subst(var(X),V,Body,NewBody),
eval_v(NewBody,FEnv,N).

/* ----------------------------------------------------------------------
* CALL-BY-NAME: eval_n(Term, FunctionEnv, Value)
* The evaluation of the closed term ‘Term’ in the function environment
* ‘FunctionEnv’ returns in the call-by-name regime the value ‘Value’. */

eval_n(N,_,N) :- integer(N).
eval_n(plus(T0,T1),FEnv,N) :- eval_n(T0,FEnv,N0), eval_n(T1,FEnv,N1),

N is N0 + N1.
eval_n(minus(T0,T1),FEnv,N) :- eval_n(T0,FEnv,N0), eval_n(T1,FEnv,N1),

N is N0 - N1.
eval_n(mult(T0,T1),FEnv,N) :- eval_n(T0,FEnv,N0), eval_n(T1,FEnv,N1),

N is N0 * N1.
eval_n(ite(T0,T1,_),FEnv,N) :- eval_n(T0,FEnv,0), eval_n(T1,FEnv,N).
eval_n(ite(T0,_,T2),FEnv,N) :- eval_n(T0,FEnv,N1), N1 =\= 0,

eval_n(T2,FEnv,N).
eval_n(fun(Name,Arg),FEnv,N) :- lookup(Name,var(X),Body,FEnv),

subst(var(X),Arg,Body,NewBody),
eval_n(NewBody,FEnv,N).

/** ---------------------------------------------------------------------
* Various tests
* ------------------------------------------------------------------- */

/* Evaluation ‘by value’ of factorial */

f1_v(N,F) :- eval_v(fun(f,N),
[[f,var(x),ite(var(x),1,mult(var(x),fun(f,minus(var(x),1))))]],
F).

f2_v(N,F) :- binding(B,"fact1(x)=if(x)then(1)else(x*fact1(x-1))",[]),
eval_v(fun(fact1,N),[B],F).

/* ----------------------------------------------------------------------
* Evaluation ‘by name’ of factorial */

f3_n(N,F):- eval_n(fun(f,N),
[[f,var(x),ite(var(x),1,mult(var(x),fun(f,minus(var(x),1))))]],
F).
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/* ----------------------------------------------------------------------
* Evaluation ‘by value’.
* Terminating function composition: f(x) = x; g(x) = x+1; */

gf1_v(N,V) :- eval_v(fun(g,fun(f,N)),
[[f,var(x),var(x)], [g,var(x),plus(var(x),1)]],
V). % V = N+1

gf2_v(N,V) :- binding(B1,"f(x)=x",[]), bind(B2,"g(x)=(x+1)",[]),
eval_v(fun(g,fun(f,N)),
[B1,B2],
V). % V = N+1

/* ----------------------------------------------------------------------
* Evaluation ‘by value’.
* Nonterminating function composition: f(x) = f(x); g(x) = x+1; */

gf3_v(N,V) :- eval_v(fun(g,fun(f,N)),
[[f,var(x),fun(f,var(x))], [g,var(x),plus(var(x),1)]],
V). % computation diverges

/* ----------------------------------------------------------------------
* Evaluation ‘by name’.
* Terminating function composition: f(x) = f(x); g(x) = 1; */

gf4_n(N,V) :- eval_n(fun(g,fun(f,N)),
[[f,var(x),fun(f,var(x))], [g,var(x),1]],
V). % V = 1

/* =================================================================== */
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3. Operational Semantics of the Higher Order Language Eager

In this section we consider the higher order typed functional language Eager that we
have introduced in Section 1.1 on page 199. The operational semantics of the Eager
language has been defined in Table 3 on page 202. The following Prolog program
eager.pl implements the deduction rules provided in that table.

In our program eager.pl, in order to parse and interpret the input string, we
use Definite Clause Grammars [1]. In that formalism, having defined a syntactic
category, say term(T), we need to call a Prolog goal of the form: term(T,"...",[]),
for binding the Prolog variable T to the term obtained by parsing the string "...".
Note that the Prolog predicate term requires a third argument which is an empty
list.

/**
* ======================================================================
* EAGER EVALUATION OF A HIGHER ORDER TYPED FUNCTIONAL LANGUAGE
*
* filename: eager.pl
* Variables are introduced ‘without types’, but we assume that
* all terms are well-typed.
* ----------------------------------------------------------------------
* Use of a DEFINITE CLAUSE GRAMMAR for the input.

* Do not insert blank spaces in the input string! For reasons of clarity
* in the grammar below we have indicated the blank spaces (not to be
* inserted) as ‘_’.
* Note that we can add extra round parentheses ‘(’ and ‘)’ around terms.
* term t ::= n | x | (t+t) | (t-t) | (t*t) |
* if_t_then_t_else_t |
* <t,t> | p1(t) | p2(t) |
* \\x.t | (t_t) |
* let_x=t_in_t |
* rec_f.\\x.t |
* (t)
*
* variable x ::= a | ... | z
* number n ::= d | #dd...d
* digit d ::= 0 | 1 | ... | 9
* ======================================================================
*/

term(T) --> "if", term(T0), "then", term(T1), "else", term(T2),
{T = ite(T0,T1,T2)}.

term(T) --> "<", term(T1), ",", term(T2), ">", {T = pair(T1,T2)}.
term(T) --> "p1(", term(T1), ")", {T = fst(T1)}.
term(T) --> "p2(", term(T1), ")", {T = snd(T1)}.

/* the character \ (lambda) is denoted by \\.
Thus, in the input string, one should use \\. */

term(T) --> "\\", termvar(X), ".", term(T1), {T = lam(var(X),T1)}.
term(T) --> "(", term(T1), term(T2), ")", {T = app(T1,T2)}.
term(T) --> "let", termvar(X), "=", term(T1), "in", term(T2),

{T = let(var(X),T1,T2)}.
term(T) --> "rec", termvar(X), ".", term(T1), {T = rec(var(X),T1)}.
term(T) --> "(", term(T1), ")", {T = T1}.
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term(T) --> "(", term(T1), "+", term(T2), ")", {T = plus(T1,T2)}.
term(T) --> "(", term(T1), "-", term(T2), ")", {T = minus(T1,T2)}.
term(T) --> "(", term(T1), "*", term(T2), ")", {T = mult(T1,T2)}.
term(T) --> termvar(X), {T = var(X)}.

term(N) --> digit(N).
term(T) --> "#", number(T). /* e.g., #14 represents the number 14 */

/* 2 is represented by 2 or #2 */

/* Since the 2nd clause for number/1 is left recursive the order
* of the clauses is important: basis case first. */

number(N) --> digit(N).
number(N) --> number(N1), digit(D), {N is (N1*10)+D}.

/* A function identifier is a sequence of one letter followed by 0 or
* more letters or digits. */

termvar(F) --> "(", termvar(F1), ")", {F = F1}.
termvar(F) --> letter(F1), termvar1(F2),

{name(F1,N1), name(F2,N2), append(N1,N2,N3), name(F,N3)}.
termvar(F) --> letter(F1), {F = F1}.
termvar1(F) --> letterdigit(F1), termvar1(F2),

{name(F1,N1), name(F2,N2), append(N1,N2,N3), name(F,N3)}.
termvar1(F) --> letterdigit(F).

letterdigit(F) --> letter(F).
letterdigit(F) --> digit(F).

letter(X) --> [C], {"a"=<C, C=<"z", name(X,[C])}.
/* e.g., letter(X,"y",[]) gives X = y */

digit(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.
/* e.g., digit(X,"5",[]) gives X = 5 */

/* ----------------------------------------------------------------------
* Generator of new symbols. */

:- assert(current_index(0)). /* this is executed at compile time. */
gensym(NewName) :-

(current_index(I) -> retract(current_index(I)) ; I = 0),
I1 is I + 1, assert(current_index(I1)),
name(I1,NameI1), name(NewName,[120, 95 | NameI1]). /* 120 95 is x_ */

/* ----------------------------------------------------------------------
* Appending lists. */

append([],L,L).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

/* ----------------------------------------------------------------------
* Deleting all occurrences of an element from a list. */

del(_,[],[]).
del(X,[X|L],T) :- !, del(X,L,T).
del(X,[Y|Ys],[Y|Zs]) :- del(X,Ys,Zs).
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/* ----------------------------------------------------------------------
* Member of a list. */

member(X,[X|_]) :- !.
member(X,[_|T]) :- member(X,T).

/* ----------------------------------------------------------------------
* Union of two sets represented as lists without repetitions.
* Unfortunately, the order of the elements in a list is significant.
* Be careful about this!
* For sets the order of the elements is not significant. */

union([],Ys,Ys).
union([X|Xs],Ys,Zs) :- member(X,Ys), !, union(Xs,Ys,Zs).
union([X|Xs],Ys,[X|Zs]) :- union(Xs,Ys,Zs).

/* ----------------------------------------------------------------------
* Free Variables. */

freeV(N,[]) :- integer(N).
freeV(var(X),[X]).
freeV(plus(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

union(S1,S2,S).
freeV(minus(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

union(S1,S2,S).
freeV(mult(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

union(S1,S2,S).
freeV(ite(T0,T1,T2),S) :- freeV(T0,S0), freeV(T1,S1),

freeV(T2,S2), union(S0,S1,S01), union(S01,S2,S).
freeV(pair(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

union(S1,S2,S).
freeV(fst(T),S) :- freeV(T,S).
freeV(snd(T),S) :- freeV(T,S).
freeV(lam(var(X),B),S) :- freeV(B,FB), del(X,FB,S).
freeV(app(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2), union(S1,S2,S).
freeV(let(var(X),T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

del(X,S2,S21), union(S1,S21,S).
freeV(rec(var(F), lam(var(X),B)), S) :-

freeV(lam(var(X),B),S1), del(F,S1,S).

/* ----------------------------------------------------------------------
* Substitution of ‘Value’ for Variable in ‘Term’, thereby deriving
* ‘NewTerm’: subst(Variable, Value, Term, NewTerm) */

subst(var(_),_,N,N) :- integer(N).
subst(var(X),V,var(X),V).
subst(var(X),_,var(Y),var(Y)) :- X \= Y.
subst(var(X),V,plus(T0,T1),plus(NT0,NT1)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).
subst(var(X),V,minus(T0,T1),minus(NT0,NT1)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).
subst(var(X),V,mult(T0,T1),mult(NT0,NT1)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).
subst(var(X),V,ite(T0,T1,T2),ite(NT0,NT1,NT2)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1),
subst(var(X),V,T2,NT2).

subst(var(X),V,pair(T1,T2),pair(NT1,NT2)) :-
subst(var(X),V,T1,NT1), subst(var(X),V,T2,NT2).
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subst(var(X),V,fst(T),fst(NT)) :- subst(var(X),V,T,NT).
subst(var(X),V,snd(T),snd(NT)) :- subst(var(X),V,T,NT).
subst(var(X),V,app(T1,T2),app(NT1,NT2)) :-

subst(var(X),V,T1,NT1), subst(var(X),V,T2,NT2).

/* ----------------------------------------------------------------------
* Lambda Abstraction. */

subst(var(X),_,lam(var(X),T),lam(var(X),T)).
subst(var(X),V,lam(var(Y),T),lam(var(Y),NT)) :-

X \= Y, freeV(V,FV), freeV(T,FT),
(\+ member(Y,FV) ; \+ member(X,FT)),
subst(var(X),V,T,NT).

subst(var(X),V,lam(var(Y),T),lam(var(Z),NT)) :-
X \= Y, freeV(V,FV), freeV(T,FT), member(Y,FV), member(X,FT),
gensym(Z),
subst(var(Y),var(Z),T,T1), subst(var(X),V,T1,NT).

/* ----------------------------------------------------------------------
* let expression.
*
* We use the equivalence of ‘let x = t1 in t2’ with ‘((\x.t2) t1)’.
* The bound variable x, denoted X, does not occur free in t1,
* denoted T1. Note that the variable X may be changed to NX. */

subst(var(Y),V,let(var(X),T1,T2),let(var(NX),NT1,NT2)) :-
subst(var(Y),V,app(lam(var(X),T2),T1),
app(lam(var(NX),NT2),NT1)).

/* ----------------------------------------------------------------------
* Function Application. */

subst(var(X),V,app(T1,T2),app(NT1,NT2)) :-
subst(var(X),V,T1,NT1), subst(var(X),V,T2,NT2).

/* ----------------------------------------------------------------------
* Recursion for the Eager language. */

subst(var(Y),V,rec(var(F),lam(var(X),B)),
rec(var(NF),lam(var(NX),NB))) :-

subst(var(Y),V,lam(var(F),lam(var(X),B)),
lam(var(NF),lam(var(NX),NB))).

/* ----------------------------------------------------------------------
* Canonical forms for the Eager language. */

canonical(N) :- integer(N).
canonical(pair(C1,C2)) :- canonical(C1), canonical(C2).
canonical(lam(var(X),B)) :- freeV(lam(var(X),B),[]).

/* ----------------------------------------------------------------------
* Evaluation in the Eager language. */

eager(plus(T1,T2),C) :- eager(T1,C1), eager(T2,C2), C is C1 + C2.
eager(minus(T1,T2),C) :- eager(T1,C1), eager(T2,C2), C is C1 - C2.
eager(mult(T1,T2),C) :- eager(T1,C1), eager(T2,C2), C is C1 * C2.
eager(ite(T0,T1,_),C) :- eager(T0,0), eager(T1,C).
eager(ite(T0,_,T2),C) :- eager(T0,C0), C0 \= 0, eager(T2,C).
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eager(pair(T1,T2),pair(C1,C2)) :- eager(T1,C1), eager(T2,C2).
eager(fst(T),C1) :- eager(T,pair(C1,_)).
eager(snd(T),C2) :- eager(T,pair(_,C2)).

eager(app(T1,T2),C) :- eager(T1,lam(var(X),B)), eager(T2,C2),
subst(var(X),C2,B,NB), eager(NB,C).

eager(let(var(X),T1,T2),C) :- eager(T1,C1),
subst(var(X),C1,T2,T21), eager(T21,C).

eager(rec(var(F),lam(var(X),B)),lam(var(X),NB)) :-
subst(var(F),rec(var(F),lam(var(X),B)),B,NB).

eager(C,C) :- canonical(C).

/* ----------------------------------------------------------------------
* The above clause should be last, because otherwise, no computation
* is done because the variable C unify with any term.
* ======================================================================
* Various tests
* ----------------------------------------------------------------------
*/

/* factorial in the Eager language. */

f(N,F) :- eager(app(
rec(var(f),

lam(var(x),
ite(var(x),1,

mult(var(x), app(var(f), minus(var(x),1)))))),
N),

F).
f1(N,F) :- term(T,"recfact.\\(x).if(x)then(1)else(x*(fact(x-1)))",[]),

eager(app(T,N),F).
/* ----------------------------------------------------------------------
* In the language Eager the execution of the term
* ((rec f. \x.1) ((rec g. (\x.g(x))) 2)) does not terminate.
* In the language Lazy it returns 1. */

t1e(C) :- eager(app(rec(var(f),lam(var(x),1)),
app(rec(var(g),lam(var(x), app(var(g),var(x))) ),2))

,C).
t11e(C) :- term(T,"((recf.\\(x).1)((recg.\\x.(gx))2))",[]),

eager(T,C).
/* ------------------------------------------------------------------- */
t2(C) :- term(P,"p1(<#123,#3456>)",[]), eager(P,C). /* C is 123 */
/* ------------------------------------------------------------------- */
t3(C) :- term(B,"p2(<letx=1inx,letx=1in(x*4)>)",[]),

eager(B,C). /* C is 4 */
/* ----------------------------------------------------------------------
* rec.f.\\x.(fx) denotes the minimal fixpoint of the equation f(x)=f(x).
* In the language Eager the term p2(...) has no normal form.
* In the language Lazy the value of p2(...) is 32. */

t4(C) :- term(B,"p2(<((recf.\\x.(fx))5),#32>)",[]), eager(B,C).
/* =================================================================== */
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4. Operational Semantics of the Higher Order Language Lazy

In this section we consider the higher order typed functional language Lazy that we
have introduced in Section 1.2 on page 200. The operational semantics of the Lazy
language has been defined in Table 4 on page 204. The following Prolog program
lazy.pl implements the deduction rules provided in that table.

Most of the code in the program lazy.pl is similar to that of the program
eager.pl that implements the operational semantics of the Eager language (see
page 251). Indeed, most of the rules that define the operational semantics of the
Eager language are equal to those that define the operational semantics of the Lazy
language (compare Table 3 on page 202 with Table 4 on page 204).

In our program lazy.pl, in order to parse and interpret the input string, we
use Definite Clause Grammars [1]. In that formalism, having defined a syntactic
category, say term(T), we need to call a Prolog goal of the form: term(T,"...",[]),
for binding the Prolog variable T to the term obtained by parsing the string "...".
Note that the Prolog predicate term requires a third argument which is an empty
list.

/**
* ======================================================================
* LAZY EVALUATION OF A HIGHER ORDER TYPED FUNCTIONAL LANGUAGE
*
* filename: lazy.pl
* Variables are introduced ‘without types’, but we assume that
* all terms are well-typed.
* ----------------------------------------------------------------------
* Use of a DEFINITE CLAUSE GRAMMAR for the input.
*
* Do not insert blank spaces in the input string! For reasons of clarity
* in the grammar below we have indicated the blank spaces (not to be
* inserted) as ‘_’.
* Note that we can add extra round parentheses ‘(’ and ‘)’ around terms.
* term t ::= n | x | (t+t) | (t-t) | (t*t) |
* if_t_then_t_else_t |
* <t,t> | p1(t) | p2(t) |
* \\x.t | (t_t) |
* let_x=t_in_t |
* rec_f.t |
* (t)
*
* variable x ::= a | ... | z
* number n ::= d | #dd...d
* digit d ::= 0 | 1 | ... | 9
* ======================================================================
*/

term(T) --> "if", term(T0), "then", term(T1), "else", term(T2),
{T = ite(T0,T1,T2)}.

term(T) --> "<", term(T1), ",", term(T2), ">", {T = pair(T1,T2)}.
term(T) --> "p1(", term(T1), ")", {T = fst(T1)}.
term(T) --> "p2(", term(T1), ")", {T = snd(T1)}.

/* the character \ (lambda) is denoted by \\.
Thus, in the input string, one should use \\. */

term(T) --> "\\", termvar(X), ".", term(T1), {T = lam(var(X),T1)}.
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term(T) --> "(", term(T1), term(T2), ")", {T = app(T1,T2)}.
term(T) --> "let", termvar(X), "=", term(T1), "in", term(T2),

{T = let(var(X),T1,T2)}.
term(T) --> "rec", termvar(X), ".", term(T1), {T = rec(var(X),T1)}.
term(T) --> "(", term(T1), ")", {T = T1}.

term(T) --> "(", term(T1), "+", term(T2), ")", {T = plus(T1,T2)}.
term(T) --> "(", term(T1), "-", term(T2), ")", {T = minus(T1,T2)}.
term(T) --> "(", term(T1), "*", term(T2), ")", {T = mult(T1,T2)}.
term(T) --> termvar(X), {T = var(X)}.

term(N) --> digit(N).
term(T) --> "#", number(T). /* e.g., #14 represents the number 14 */

/* 2 is represented by 2 or #2 */

/* Since the 2nd clause for number/1 is left recursive the order
* of the clauses is important: basis case first. */

number(N) --> digit(N).
number(N) --> number(N1), digit(D), {N is (N1*10)+D}.

/* A function identifier is a sequence of one letter followed by 0 or
* more letters or digits. */

termvar(F) --> "(", termvar(F1), ")", {F = F1}.
termvar(F) --> letter(F1), termvar1(F2),

{name(F1,N1), name(F2,N2), append(N1,N2,N3), name(F,N3)}.
termvar(F) --> letter(F1), {F = F1}.

termvar1(F) --> letterdigit(F1), termvar1(F2),
{name(F1,N1), name(F2,N2), append(N1,N2,N3), name(F,N3)}.

termvar1(F) --> letterdigit(F).

letterdigit(F) --> letter(F).
letterdigit(F) --> digit(F).

letter(X) --> [C], {"a"=<C, C=<"z", name(X,[C])}.
/* e.g., letter(X,"y",[]) gives X = y */

digit(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.
/* e.g., digit(X,"5",[]) gives X = 5 */

/* ----------------------------------------------------------------------
* Generator of new symbols. */

:- assert(current_index(0)). /* this is executed at compile time. */

gensym(NewName) :-
(current_index(I) -> retract(current_index(I)) ; I = 0),
I1 is I + 1, assert(current_index(I1)),
name(I1,NameI1), name(NewName,[120, 95 | NameI1]). /* 120 95 is x_ */

/* ----------------------------------------------------------------------
* Appending lists. */

append([],L,L).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).
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/* ----------------------------------------------------------------------
* Deleting all occurrences of an element from a list. */

del(_,[],[]).
del(X,[X|L],T) :- !, del(X,L,T).
del(X,[Y|Ys],[Y|Zs]) :- del(X,Ys,Zs).

/* ----------------------------------------------------------------------
* Member of a list. */

member(X,[X|_]) :- !.
member(X,[_|T]) :- member(X,T).

/* ----------------------------------------------------------------------
* Union of two sets represented as lists without repetitions.
* Unfortunately, the order of the elements in a list is significant.
* Be careful about this!
* For sets the order of the elements is not significant. */

union([],Ys,Ys).
union([X|Xs],Ys,Zs) :- member(X,Ys), !, union(Xs,Ys,Zs).
union([X|Xs],Ys,[X|Zs]) :- union(Xs,Ys,Zs).

/* ----------------------------------------------------------------------
* Free Variables. */

freeV(N,[]) :- integer(N).
freeV(var(X),[X]).
freeV(plus(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

union(S1,S2,S).
freeV(minus(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

union(S1,S2,S).
freeV(mult(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

union(S1,S2,S).
freeV(ite(T0,T1,T2),S) :- freeV(T0,S0), freeV(T1,S1),

freeV(T2,S2), union(S0,S1,S01), union(S01,S2,S).
freeV(pair(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

union(S1,S2,S).
freeV(fst(T),S) :- freeV(T,S).
freeV(snd(T),S) :- freeV(T,S).
freeV(lam(var(X),B),S) :- freeV(B,FB), del(X,FB,S).
freeV(app(T1,T2),S) :- freeV(T1,S1), freeV(T2,S2), union(S1,S2,S).
freeV(let(var(X),T1,T2),S) :- freeV(T1,S1), freeV(T2,S2),

del(X,S2,S21), union(S1,S21,S).
freeV(rec(var(X),B), S) :- freeV(lam(var(X),B),S).

/* ----------------------------------------------------------------------
* Substitution of ‘Value’ for Variable in ‘Term’, thereby deriving
* ‘NewTerm’: subst(Variable, Value, Term, NewTerm) */

subst(var(_),_,N,N) :- integer(N).
subst(var(X),V,var(X),V).
subst(var(X),_,var(Y),var(Y)) :- X \= Y.
subst(var(X),V,plus(T0,T1),plus(NT0,NT1)) :-

subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).
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subst(var(X),V,minus(T0,T1),minus(NT0,NT1)) :-
subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).

subst(var(X),V,mult(T0,T1),mult(NT0,NT1)) :-
subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1).

subst(var(X),V,ite(T0,T1,T2),ite(NT0,NT1,NT2)) :-
subst(var(X),V,T0,NT0), subst(var(X),V,T1,NT1),
subst(var(X),V,T2,NT2).

subst(var(X),V,pair(T1,T2),pair(NT1,NT2)) :-
subst(var(X),V,T1,NT1), subst(var(X),V,T2,NT2).

subst(var(X),V,fst(T),fst(NT)) :- subst(var(X),V,T,NT).
subst(var(X),V,snd(T),snd(NT)) :- subst(var(X),V,T,NT).
subst(var(X),V,app(T1,T2),app(NT1,NT2)) :-

subst(var(X),V,T1,NT1), subst(var(X),V,T2,NT2).

/* ----------------------------------------------------------------------
* Lambda Abstraction. */

subst(var(X),_,lam(var(X),T),lam(var(X),T)).
subst(var(X),V,lam(var(Y),T),lam(var(Y),NT)) :-

X \= Y, freeV(V,FV), freeV(T,FT),
(\+ member(Y,FV) ; \+ member(X,FT)),
subst(var(X),V,T,NT).

subst(var(X),V,lam(var(Y),T),lam(var(Z),NT)) :-
X \= Y, freeV(V,FV), freeV(T,FT), member(Y,FV), member(X,FT),
gensym(Z),
subst(var(Y),var(Z),T,T1), subst(var(X),V,T1,NT).

/* ----------------------------------------------------------------------
* let expression.
*
* We use the equivalence of ‘let x = t1 in t2’ with ‘((\x.t2) t1)’.
* The bound variable x, denoted X, does not occur free in t1,
* denoted T1. Note that the variable X may be changed to NX. */

subst(var(Y),V,let(var(X),T1,T2),let(var(NX),NT1,NT2)) :-
subst(var(Y),V,app(lam(var(X),T2),T1),
app(lam(var(NX),NT2),NT1)).

/* ----------------------------------------------------------------------
* Function Application. */

subst(var(X),V,app(T1,T2),app(NT1,NT2)) :-
subst(var(X),V,T1,NT1), subst(var(X),V,T2,NT2).

/* ----------------------------------------------------------------------
* Recursion for the Lazy language. */

subst(var(Y),V,rec(var(X),B),rec(var(NX),NB)) :-
subst(var(Y),V,lam(var(X),B),lam(var(NX),NB)).

/* ----------------------------------------------------------------------
* Canonical forms for the Lazy language. */

canonical(N) :- integer(N).
canonical(pair(T1,T2)) :- freeV(T1,[]), freeV(T2,[]).
canonical(lam(var(X),B)) :- freeV(lam(var(X),B),[]).
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/* ----------------------------------------------------------------------
* Evaluation in the Lazy language. */

lazy(plus(T1,T2),C) :- lazy(T1,C1), lazy(T2,C2), C is C1 + C2, !.
lazy(minus(T1,T2),C) :- lazy(T1,C1), lazy(T2,C2), C is C1 - C2, !.
lazy(mult(T1,T2),C) :- lazy(T1,C1), lazy(T2,C2), C is C1 * C2, !.
lazy(ite(T0,T1,_),C) :- lazy(T0,0), lazy(T1,C).
lazy(ite(T0,_,T2),C) :- lazy(T0,C0), C0 \= 0, lazy(T2,C).

lazy(fst(T),C1) :- lazy(T,pair(T1,_)), lazy(T1,C1).
lazy(snd(T),C2) :- lazy(T,pair(_,T2)), lazy(T2,C2).

lazy(app(T1,T2),C) :- lazy(T1,lam(var(X),B)),
subst(var(X),T2,B,NB), lazy(NB,C).

lazy(let(var(X),T1,T2),C) :- subst(var(X),T1,T2,NT2),
lazy(NT2,C).

lazy(rec(var(X),B),C) :- subst(var(X),rec(var(X),B),B,NB),
lazy(NB,C).

lazy(C,C) :- canonical(C).

/* ----------------------------------------------------------------------
* The above clause lazy(C,C) :- canonical(C) should be last. Otherwise,
* no computation is done because the variable C unify with any term.
*
* ======================================================================
* Various tests
* ----------------------------------------------------------------------
*/

/* factorial in the Lazy language. */

f(N,F) :- lazy(app(
rec(var(f),

lam(var(x),
ite(var(x),1,

mult(var(x), app(var(f), minus(var(x),1)))))),
N),

F).

f1(N,F) :- term(T,"recfact.\\(x).if(x)then(1)else(x*(fact(x-1)))",[]),
lazy(app(T,N),F).

/* ----------------------------------------------------------------------
* C should be pair(120,121). */

t1(C) :- lazy(app(
rec(var(f),

lam(var(x),
ite(var(x),1,

mult(var(x), app(var(f), minus(var(x),1)))))),
5),

T1), lazy(pair(T1,121),C).

/* ----------------------------------------------------------------------
* t3 should be true because for all terms t1 and t2 we have that:
* let x=t1 in t2 == (\x.t2) t1. */
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t3 :- lazy(let(var(x),1,plus(var(x),var(x))),C),
lazy(app(lam(var(x),plus(var(x),var(x))),1),C).

/* ----------------------------------------------------------------------
* In t4(T) T should be \x_1.y. Indeed: in \y.x the variable y is bound,
* so y ’does not exist’: it is x_1. */

t4(T) :- subst(var(x),var(y),lam(var(y),var(x)),T).

/* ----------------------------------------------------------------------
* Since let double =\f.\x.f(f(x)) in ((double (\x.x+2)) N)
* we get C = N+4. It should be: t5(n,n+4). */

t5(N,C) :- lazy(let(var(d),
lam(var(f),

lam(var(x), app(var(f), app(var(f),var(x))))),
app( app(var(d), lam(var(x),plus(var(x),2))),
N)),

C).
/* ----------------------------------------------------------------------
* The execution of the term ((rec f. \x.1) ((rec g. (\x.g(x))) 2))
* in the language Eager does not terminate, while
* in the language Lazy returns 1. */

t6(C) :- lazy(app(rec(var(f),lam(var(x),1)),
app(rec(var(g),lam(var(x),

app(var(g),var(x))) ),2))
,C). /* C is 1 */

t61(C) :- term(T,"((recf.\\(x).1)((recg.\\x.(gx))2))",[]),
lazy(T,C). /* C is 1 */

/* ------------------------------------------------------------------- */
t7(C) :- term(B,"p2(<letx=1inx,letx=1in(x*4)>)",[]),

lazy(B,C). /* C is 4 */

/* ----------------------------------------------------------------------
* rec.f.\\x.(fx) denotes the minimal fixpoint of the equation f(x)=f(x).
* In the language Eager the term p2(...) has no normal form.
* In the language Lazy the value of p2(...) is 32. */

t8(C) :- term(B,"p2(<((recf.\\x.(fx))5),#32>)",[]),
lazy(B,C). /* C is 32 */

/* =================================================================== */





CHAPTER 9

Parallel Programs and Proof of Their Properties

In this chapter we present: (i) the CCS calculus which is a calculus whose terms can be
used to define parallel programs, also called processes, (ii) the modal µ-calculus whose
formulas can be used to define properties of parallel programs, and (iii) an algorithm,
called the local model checker, that allows us to prove properties of parallel programs.

1. The Pure CCS Calculus

In this section we present the pure CCS calculus, or CCS calculus, for short, which is a
calculus for defining parallel programs which communicate with each other via hand-
shaking communications. (CCS stands for Calculus for Communicating Systems.)
This calculus was introduced by Robin Milner [10, 11]. We follow the presentation
of [15, Section 6].

Here are the syntactic categories of the pure CCS calculus.

(i) The set A of names. For every name - ∈ A we assume that there exists a co-name,
denoted by -. The set of co-names is denoted by A. We assume that for any - ∈ A,

- = -.

(ii) The set of labels, which is A ∪ A.

(iii) The set Act of actions, which is A∪A∪{τ}, where τ is a distinguished element,
called the invisible action. The actions in A∪A are said to be visible actions. α, β, . . .
range over Act.

(iv) A function (not necessarily a bijection) f from Act to Act is said to be a renaming

function if it preserves co-names, that is, f(-)=f(-) and f(τ)=τ .
In particular, given the set A = {α, β, γ} of actions, the function f defined by the

following equations is a renaming function:

f(α)=γ f(α)=γ

f(β)=γ f(β)=γ

f(γ)=α f(γ)=α

(v) The set Id of identifiers. P ranges over Id. They are introduced by definitions
(see below).

(vi) The set Proc of processes (also called terms or agents). p (with possible sub-
scripts) ranges over Proc.

p ::= 0 | α.p |
∑

i∈I pi | p1 | p2 | p\L | p[f ] | P

263
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where: 0 (pronounced zero) is a distinguished process, α is an action in Act , I is a
set of indexes, L ⊆ A is a set of names, f is a renaming function, and P is a process
identifier in Id .

When denoting processes we will feel free to use, instead of p, also the identifiers
P, Q, R, . . .

(vii) The set of definitions of the form: P =def p. In definitions we allow ourselves
to write =, instead of =def . (Note that the symbol = is also used below to denote
the bisimulation congruence between processes.)

Instead of introducing definitions, we can introduce processes of the form: recP.p.
Every process defined by the term recP.p should be viewed as the process P whose
definition is: P =def p.

Now we give the informal semantics of the processes.
The process 0 is the process which can do no action. The process α.p is the process

which can do the action α and then become the process p. The process
∑

i∈I pi is
the process which can be any of the processes pi for i ∈ I. The process p1 | p2 is the
process which behaves as either p1 or p2 or establishes a communication between p1

and p2. The process p\L behaves like the process p, but it cannot do any action in
L∪L. The renamed process p[f ] behaves like p, except that the actions are renamed.
The process whose identifier is P behaves like p, if the definition of P is P =def p
(or, equivalently, recP.p).

When writing CCS terms we assume the following syntactical equivalences:
(i) process 0 is syntactically equivalent to

∑
i∈I pi, whenever I = ∅,

(ii)
∑

i∈{0,1} pi is syntactically equivalent to p0 + p1, and
(iii) the operators + and | are commutative and associative (thus, for instance,
p0 + p1, is syntactically equivalent to p1 + p0).

In Table 1 on the facing page we define the operational semantics of CCS pro-

cesses by introducing the binary relation
α−→ ⊆ Proc×Proc, for each α ∈ Act. We

will not define the denotational semantics of CCS processes. For the semantics of
nondeterministic computations the interested reader may look at [16].

Definition 1.1. [α-derivative] For all processes P and P ′, for all actions α ∈
Act , if P

α−→ P ′ we say that P ′ is an α-derivative of P .

We have that, for any action α and any process P and Q,

(i) α.P |α.Q
α−→ P |α.Q, (ii) α.P |α.Q

α−→ α.P |Q, and (iii) α.P |α.Q
τ−→ P |Q.

We also have that, for any action α and any process P and Q,
(α.P |α.Q)\{α} τ−→ P |Q, and neither α-derivative nor α-derivative exists for the
term (α.P |α.Q)\{α}.

Now we will define two relations, subsets of Proc × Proc: (i) the bisimulation
equivalence, also called bisimilarity, denoted ≈, and (ii) the bisimulation congruence,
also called equality, denoted =.

Note that we can view each of these two relations as the definition of a denotational
semantics of CCS terms which associates with any CCS process p its equivalence class.
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Prefix:

α.p
α−→ p

Sum:

pj
α−→ q

∑
i∈I pi

α−→ q
if j ∈ I

Parallel composition:

p1

α−→ p′1

p1 | p2

α−→ p′
1
| p2

p2

α−→ p′2

p1 | p2

α−→ p1 | p′2

p1

"−→ p′1 p2

"−→ p′2

p1 | p2

τ−→ p′
1
| p′

2

Restriction:

p
α−→ q

p\L α−→ q\L
if α /∈ L ∪ L for any set L ⊆ A of names

Relabelling:

p
α−→ q

p[f ]
f(α)−→ q[f ]

for any renaming function f

Identifier:

p
α−→ q

P
α−→ q

where P =def p

Table 1. Operational semantics of CCS terms.

Before defining the relations ≈ and =, we need the following definitions of the

relations
α−→,

α
=⇒, and

bα
=⇒, for any α ∈ Act .

Let t ∈ Act∗ be any sequence of elements in Act , and ε be the empty sequence.
By t̂ we denote the sequence obtained from t by erasing all τ ’s.

We have that τ̂n = ε for any n≥0. For any α ∈ Act we have that: if α= τ then
α̂=ε else α̂=α.

By (
τ−→)∗ we denote the reflexive, transitive closure of

τ−→, that is, for all pro-
cesses P and Q, P (

τ−→)∗ Q iff there exists n≥0 such that P (
τ−→)n Q.

Let us consider any sequence t of actions such that t =def α1 . . . αn, where n ≥ 0
and some of the αi’s may be τ . Then,

(i) P
t−→ Q stands for P

α1−→ . . .
αn−→ Q,

(ii) P
t

=⇒ Q stands for P (
τ−→)∗

α1−→ (
τ−→)∗ . . . (

τ−→)∗
αn−→ (

τ−→)∗ Q, and

(iii) P
bt

=⇒ Q stands for P (
τ−→)∗

β1−→ (
τ−→)∗ . . . (

τ−→)∗
βm−→ (

τ−→)∗ Q, where t̂ =

β1 . . . βm, for some 0≤m≤n, is obtained from t by erasing all τ ’s.
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Thus, for all processes P and Q, P
ε

=⇒ Q iff P (
τ−→)n Q for some n≥0. In particular,

for every process P , we have that P
ε

=⇒ P .

If P
t−→ Q we say that there is a path from (or a derivative of ) P to Q labeled

by the action sequence t (or simply, the sequence t) [10, pages 48–49].

Definition 1.2. [Bisimilarity ≈ ] The relation ≈ is the largest relation satisfying
the following property: for all processes P and Q,

P ≈ Q iff ∀α∈Act . (i) ∀P ′. if P
α−→ P ′ then (∃Q′. Q

bα
=⇒ Q′ and P ′ ≈ Q′) and

(ii) ∀Q′. if Q
α−→ Q′ then (∃P ′. P

bα
=⇒ P ′ and P ′ ≈ Q′).

Definition 1.3. [Equality = ] The relation = is the largest relation satisfying the
following property: for all processes P and Q,

P = Q iff ∀α∈Act . (i) ∀P ′. if P
α−→ P ′ then (∃Q′. Q

α
=⇒ Q′ and P ′ ≈ Q′) and

(ii) ∀Q′. if Q
α−→ Q′ then (∃P ′. P

α
=⇒ P ′ and P ′ ≈ Q′).

If for any two processes P and Q we have that P ≈ Q, we say that P and Q are
bisimilar.

For any process P , we have that P ≈ τ.P [10, page 111].

Let a CCS context C[−] be a CCS term C without a subterm. For instance,

(i) α.−,
(ii) P+−,
(iii) − |P , and
(iv) (− |P ) + Q

are CCS contexts. If C[−] is P+− we have that C[Q] is P+Q. Note that (−|−) is not
a CCS context.

Fact 1.4. [Bisimilarity ≈ is an Equivalence] (i) The relation ≈ is an equiva-
lence relation. (ii) ≈ is not a congruence, that is, there exist a context C[−] and two
terms t1 and t2 such that t1 ≈ t2 and C[t1] 1≈ C[t2].

Proof. For some distinct actions α and β in Act, we have that: (i) β.0 ≈ τ.β.0,
and (ii) α.0 + τ.β.0 1≈ α.0 + β.0, as we now show. Property (i) holds because

β.0
β−→ 0 and τ.β.0

bβ
=⇒ 0 (because τ.β.0

τ−→ β−→ 0). Property (ii) holds because

α.0+τ.β.0
τ−→ β.0 and α.0+β.0

bτ
=⇒ α.0+β.0 (and obviously, β.0 1≈ α.0+β.0). !

Fact 1.5. [Equality = is a Congruence] The relation = is a congruence and
it is the largest congruence contained in the equivalence ≈.

We have that P | τ.Q ≈ P |Q (recall that τ̂ is ε and for any P , P
ε

=⇒ P ).
We also have that P | τ.Q 1= P |Q (indeed, P | τ.Q τ−→ P |Q and there is no agent

R such that P |Q τ
=⇒ R). (Recall that

τ
=⇒ means (

τ−→)∗
τ−→ (

τ−→)∗, that is, (
τ−→)k

with k≥1.)

The equivalence ≈ satisfies the following laws which hold for any process P , Q,
and R, any action α and β, any set L ⊆ A of names, and any renaming function f .
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Monoid laws:
1. P + Q ≈ Q + P
2. (P + Q) + R ≈ P + (Q + R)
3. P + P ≈ P
4. P + 0 ≈ P

τ laws:
5. P + τ.P ≈ τ.P
6. α.τ.P ≈ α.P
7. α.(P + τ.Q) ≈ α.(P + τ.Q) + α.Q

Restriction laws:
8. 0\L ≈ 0
9. (P + Q)\L ≈ P\L + Q\L
10. (α.P )\{β} ≈ if α ∈ {β, β} then 0 else α.(P\{β})

Renaming laws:
11. 0[f ] ≈ 0
12. (P + Q)[f ] ≈ P [f ] + Q[f ]
13. (α.P )[f ] ≈ f(α).(P [f ])

For any process P we have that: 0 |P ≈ P | 0 ≈ P .

Theorem 1.6. [Expansion Theorem for ≈] Let the process P be
∑

i∈I αi.Pi

and the process Q be
∑

j∈J βj.Qj . Then,

P |Q ≈
∑

i∈I αi.(Pi |Q) +
∑

j∈J βj.(P |Qj) +
∑

i∈I, j∈J,αi=βj
τ.(Pi |Qj).

By this theorem, every | (parallel composition) can be replaced by + (sum). In
particular, for every action α, β, α1, α2, β1, and β2 in Act, we have that:

(i) α.0 | β.0 ≈ α.β.0 + β.α.0

(ii) α1.α2.0 | β1.β2.0≈ α1.α2.β1.β2.0 + α1.β1.α2.β2.0 + α1.β1.β2.α2.0 +
+ β1.α1.α2.β2.0 + β1.α1.β2.α2.0 + β1.β2.α1.α2.0

(iii) α.0 |α.0 | β.0 ≈ τ.β.0+ α.(α.β.0 + β.α.0)+ α.(α.β.0 + β.α.0) +
+ β.(τ.0 + α.α.0 + α.α.0)

Equivalences (i) and (ii) show that, if two processes cannot perform a τ action to-
gether, then their parallel composition behaves as the interleaving of their actions in
the sense specified by the following definition.

Definition 1.7. [Interleaving of Sequences] An interleaving of two sequences
t1 =def 〈α1, α2, . . . , αn〉 and t2 =def 〈β1, β2, . . . , βm〉 is the sequence t =def 〈γ1, γ2, . . . ,
γn+m〉 such that: (i) for i = 1, . . . , n+m, γi is either an element of t1 or t2, (ii) if we
erase all the αi’s from t we get t2, and (iii) if we erase all the βi’s from t we get t1.

Exercise 1.8. Show that for every process P and Q,
(i) 0 |P ≈ P , (ii) P + τ.(P + Q) ≈ τ.(P + Q), and (iii) P | τ.Q ≈ P |Q.
Solution of (ii). P + τ.(P + Q) ≈ P + (P + Q) + τ.(P + Q) ≈ P + Q + τ.(P + Q) ≈
τ.(P + Q).

We say that A is stable iff A has no τ -derivatives.
We have the following results [10, pages 112 and 156].
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Theorem 1.9. [Relating Bisimilarity ≈ and Equality =] Let us consider any
two processes P and Q.
(i) If P ≈ Q and P and Q are both stable, then P = Q.
(ii) If P ≈ Q then for any α ∈ Act , α.P = α.Q.
(iii) P ≈ Q iff (P = Q or P = τ.Q or τ.P = Q).

Definition 1.10. [Finite Process] A process P is said to be finite iff it is of the
form: P ::= 0 | α.P |

∑
i∈I Pi and I is a finite set.

In Table 2 we list a system of axioms for =. These axioms hold for any process P ,
Q, and R, and any action α, and are complete for finite processes, in the sense that
these axioms are sufficient for showing all equalities between finite processes.

By Theorem 1.9 (iii) the axioms of Table 2 are a sound and complete axiom system
for establishing, for any two finite processes P and Q, whether or not P ≈ Q.

The Monoid laws and the τ laws are analogous to those for the bisimulation
equivalence we have listed above.

Monoid laws:
1. P + Q = Q + P
2. (P + Q) + R = P + (Q + R)
3. P + P = P
4. P + 0 = P

τ laws:

5. P + τ.P = τ.P
6. α.τ.P = α.P
7. α.(P + τ.Q) = α.(P + τ.Q) + α.Q

Table 2. A sound and complete axiom system for establishing for
any two given finite CCS processes P and Q, whether or not P = Q.
By Theorem 1.9 (iii) on page 268 this is a sound and complete axiom
system also for establishing whether or not P ≈ Q.

We also have the following equalities which hold for any process P and Q, any
action α and β, any set L ⊆ A of names, and any renaming function f .

Restriction laws:
8. 0\L = 0
9. (P + Q)\L = P\L + Q\L
10. (α.P )\{β} = if α ∈ {β, β} then 0 else α.(P\{β})

Renaming laws:

11. 0[f ] = 0
12. (P + Q)[f ] = P [f ] + Q[f ]
13. (α.P )[f ] = f(α).(P [f ])

The following theorem is analogous to Theorem 1.6 on the previous page.
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Theorem 1.11. [Expansion Theorem for =] Let the process P be
∑

i∈I αi.Pi

and the process Q be
∑

j∈J βj.Qj . Then,

P |Q =
∑

i∈I αi.(Pi |Q) +
∑

j∈J βj.(P |Qj) +
∑

i∈I, j∈J,αi=βj
τ.(Pi |Qj).

Fact 1.12. For any process P , Q, and R, any action α, any set L of names, and
any renaming function f , if P = Q we have that:
(i) α.P = α.Q,
(ii) P + R = Q + R,
(iii) P |R = Q |R,
(iv) P\L = Q\L, and
(v) P [f ] = Q[f ].

Exercise 1.13. Show that for every process P and Q,
(i) 0 |P = P ,
(ii) P + τ.(P + Q) = τ.(P + Q), and
(iii) P | τ.Q 1= P |Q

The following two facts establish the uniqueness of solutions of recursively defined
processes (see [10, page 157] and [11, page 59]).

First we need the following definitions.
Let us consider a countable set of variables Vars = {X1, X2, . . .}.
Let E be any expression constructed as a process (see Point (vi) on page 263) by

allowing also variables in Vars. Let E[P1, . . . ,Pn] denote the expression E whose free
variables are included in {X1, . . . ,Xn} and substituted by P1, . . . ,Pn, respectively.
Thus, E[P1, . . . ,Pn] stands for E[P1/X1, . . . ,Pn/Xn].

Definition 1.14. [Guarded Process and Sequential Process] A process X
is said to be guarded in an expression E iff every occurrence of X is within some
subexpressions of E of the form -.F , with - ∈ Act−{τ}.

A process X is said to be sequential in an expression E iff every subexpression
of E which contains X, apart from X itself, is of the form either α.F , with α ∈ Act ,
or

∑
i∈I Fi, where I is a finite set.

The process X is sequential but not guarded in τ.X + α.0. The process X is
guarded but not sequential in α.X | β.0. The process X is both sequential and guarded
in τ(α.(P |Q) + β.X).

Fact 1.15. [System of Processes for ≈] Consider a system of processes of the
form:





P1 ≈ -11P1 + . . . + -1nPn
...

Pn ≈ -n1P1 + . . . + -nnPn

(S≈)

where: (i) some of the sommands may be absent, and (ii) for i, j ∈ {1, . . . , n}, -ij

is an action in Act−{τ}. We have that there exists a unique solution up to ≈ for
P1, . . . , Pn. That is, if processes P1, . . . , Pn satisfy the system (S ≈) and also the
processes Q1, . . . , Qn satisfy the system (S ≈) then for i = 1, . . . , n, we have that
Pi ≈ Qi.
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The system P ≈ τ.P has more than one solution. Actually any process P is a
solution of that system. In particular, given any two distinct actions α and β, we
have that: (i) α.0 ≈ τ.α.0, (ii) β.0 ≈ τ.β.0, and (iii) α.0 1≈ β.0.

Fact 1.16. [System of Processes for =] Consider a system of processes of the
form:





P1 = E1[P1, . . . , Pn]
...

Pn = En[P1, . . . , Pn]

(S =)

We have that if for i, j ∈ {1, . . . , n}, every Pi is guarded and sequential in every Ej ,
then there exists a unique solution up to = for P1, . . . , Pn. That is, if processes
P1, . . . , Pn satisfy the system (S =) and also the processes Q1, . . . , Qn satisfy the
system (S=) then for i=1, . . . , n, we have that Pi = Qi.

The relations ≈ and = can be used for proving properties of parallel programs
after encoding them as CCS processes. We will not illustrate in detail this approach
here and the interested reader may refer to [15, Chapter 6].

The following example will suffice.
In order to show that a given protocol P ensures mutual exclusion between two

given processes P1 and P2 when they want to enter a critical section, it will enough
to show that the parallel composition of the protocol P and the processes P1 and P2

is bisimilar to the process R defined as follows:

R =def in.out .R (R)

where the in and out actions are performed by a process when entering and exiting,
respectively, the critical section. Note that bisimilarity is established by observing
the actions in and out only.

Obviously, we have that R
in−→ out−→ R and, thus, the behaviour of R is the infinite

sequence (in out)ω of actions where between any two in actions there is always an
out action.

This guarantees that the processes P1 and P2 can never be in the critical section
at the same time. Indeed, for those processes to be together in the critical section,
it is necessary that, after an in action has been performed by a process, say P1, the
other process P2 performs an in action, before P1 performs the subsequent out action,
thereby exiting the critical section.

Now we will prove that Peterson algorithm ensures mutual exclusion by applying
the technique for proving properties of parallel programs that is described in [15,
Chapter 6]. As already mentioned, that proof technique is based on the bisimilation
equivalence.

Let us consider the following two processes:

process P1: process P2:

while true do while true do
non-critical section 1; non-critical section 2;
await test 1; await test 2;
critical section 1; critical section 2;
od od
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which are assumed to run in parallel. When test 1 succeeds process P1 enters the
critical section 1, likewise when test 2 succeeds process P2 enters the critical section 2.
Peterson algorithm consists in suitably modifying processes P1 and P2 by adding
some tests and assignments involving three extra variables: two of those variables
are boolean variables and the third one is an integer variable that may assume the
values 1 and 2. Let the boolean variables be q1 and q2, and the integer variable be s.

The modified processes P1 and P2 are as follows.

process P1: process P2:

while true do while true do
non-critical section 1; non-critical section 2;
q1 := true; s := 1; q2 := true; s := 2;
await (¬q2) ∨ (s = 2); await (¬q1) ∨ (s = 1);
critical section 1; critical section 2;
q1 := false; od q2 := false; od

We can encode the two processes and the three variables by using CCS processes as
follows [15, page 90]. For the variable q1 we have:

Q1t =def q1rt .Q1t + q1wt .Q1t + q1wf .Q1f
Q1f =def q1rf .Q1f + q1wt .Q1t + q1wf .Q1f

(q1 true)
(q1 false)

For the variable q2 we have:

Q2t =def q2rt .Q2t + q2wt .Q2t + q2wf .Q2f
Q2f =def q2rf .Q2f + q2wt .Q2t + q2wf .Q2f

(q2 true)
(q2 false)

For the variable s we have:

S1 =def r1.S1 + w1.S1 + w2.S2
S2 =def r2.S2 + w1.S1 + w2.S2

(s=1)
(s=2)

For the process P1 we have the following three equations:





P1 =def q1wt.w1.P11
P11 =def q2rt .P11 + r1.P11 + q2rf .P12 + r2.P12
P12 =def in.out .q1wf.P1

(P1)

For the process P2 we have the following three equations:





P2 =def q2wt.w2.P21
P21 =def q1rt .P21 + r2.P21 + q1rf .P22 + r1.P22
P22 =def in.out .q2wf.P2

(P2)

The initial value of q1 and q2 is assumed to be false and we take the initial value of s
to be 1. (Nothing changes if we take the initial value of s to be 2.)

In the above CCS definitions of the process P1 and P2, the critical sections are
encoded by the two sequence of actions ‘in .out ’, while the non-critical sections are
not encoded. Indeed, in order to prove the mutual exclusion property of Peterson’s
algorithm, there is no need to encode the non-critical sections and, as the reader may
convince himself, these non-critical sections may be incorporated in the actions q1wt
and q2wt, respectively.
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The fact that Peterson algorithm satisfies the mutual exclusion property can be
established by proving that the compound CCS process

(P1 |P2 |Q1f |Q2f |S1)\L
where L = {q1rt , q1rf , q1wt , q1wf , q2rt , q2rf , q2wt , q2wf , r1, r2,w1,w2}, is bisimilar
to the process R (see Equation (R) on page 270).

This proof can be done through an automatic system, the Edinburgh Concurrency
Workbench [13]. The following program shows the use of that system. For any two
CCS terms P and Q, the command eq(P, Q) returns true iff P ≈ Q.

Lines preceded by the character * are comments. Anything between a * and the
next newline character is also a comment.

* =======================================================================
* PETERSON ALGORITHM AND BISIMULATION
*
* filename: peterson-bisimulation.cwb
* Use of the Edinburgh Concurrency Workbench.
* -----------------------------------------------------------------------
*** variable q1
agent Q1t = ’q1rt.Q1t + q1wt.Q1t + q1wf.Q1f; * q1 true
agent Q1f = ’q1rf.Q1f + q1wt.Q1t + q1wf.Q1f; * q1 false
*** variable q2
agent Q2t = ’q2rt.Q2t + q2wt.Q2t + q2wf.Q2f; * q2 true
agent Q2f = ’q2rf.Q2f + q2wt.Q2t + q2wf.Q2f; * q2 false
*** variable S
agent S1 = ’r1.S1 + w1.S1 + w2.S2; * s = 1
agent S2 = ’r2.S2 + w1.S1 + w2.S2; * s = 2
*** process P1
agent P1 = ’q1wt.’w1.P11;
agent P11 = q2rt.P11 + r1.P11 + q2rf.P12 + r2.P12;
agent P12 = in.out.’q1wf.P1;
*** process P2
agent P2 = ’q2wt.’w2.P21;
agent P21 = q1rt.P21 + r2.P21 + q1rf.P22 + r1.P22;
agent P22 = in.out.’q2wf.P2;
* -----------
agent Peterson = (P1|P2|Q1f|Q2f|S1)\L;
set L = {q1rt,q1rf,q1wt,q1wf,q2rt,q2rf,q2wt,q2wf,r1,r2,w1,w2};
* -----------
agent R = in.out.R;
* -----------------------------------------------------------------------
* Mutual Exclusion
* -----------------------------------------------------------------------
* cwb
* input "peterson-bisimulation.cwb";
* eq(Peterson,R); <--- bisimulation between agents Peterson and R: true
* true;
* =======================================================================

Since the process R generates the infinite sequence (in out)ω, that proof also shows
that Peterson algorithm ensures absence of deadlock, that is, it is not the case that
both processes cannot proceed. More details on this point may be found in [15,
Chapter 6].

Actually, one can show that Peterson algorithm ensures (see the proofs using the
Edinburgh Concurrency Workbench system [13] on page 290):
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(1) mutual exclusion,
(2) absence of deadlock,
(3) absence of starvation, and
(4) bounded overtaking.

Absence of starvation means that every process is at the await statement only
a finite amount of time, and bounded overtaking means that if a process is at the
await statement, the other process can exit the critical section at most once (and
this implies that can enter its critical section at most once). Again, more details can
be found in [15, Chapter 6].

As mentioned at the beginning of this Chapter, the proofs of these properties can
also be done by applying the following general three step procedure which we will
illustrate in the following Sections 3 and 4.

Step (1). We encode the program under consideration as a CCS process, say p (as we
have done above in the case of the Peterson algorithm).

Step (2). We encode the property to be shown as a formula, say ϕ, of a calculus,
called modal µ-calculus (see Section 3 on page 275).

Step (3). We apply an algorithm for showing when the process p satisfies the modal
µ-calculus formula ϕ (see Section 4 on page 283).

Obviously, since in general the problem of deciding whether or not a property holds
for a process may be unsolvable, the algorithm of Step (iii) is not guaranteed to
terminate in all cases with a yes/no answer.

2. The Hennessy-Milner Logic

In this section we present the Hennessy-Milner logic which characterizes a particular
notion of bisimilarity, called strong bisimilarity, between CCS terms which we now
define.

Let us consider the set Act of actions defined as indicated in Section 1 on page 263
and a set P of CCS processes.

Definition 2.1. [Strong Bisimilarity ∼ ] The relation ∼, called strong bisimi-
larity, is the largest relation satisfying the following property:

for all CCS processes p and q,

p ∼ q iff ∀a∈Act . (i) ∀p′. if p
a−→ p′ then (∃q′. q

a−→ q′ and p′ ∼ q′) and

(ii) ∀q′. if q
a−→ q′ then (∃p′. p

a−→ p′ and P ′ ∼ q′).

If for any two processes p and q we have that p ∼ q, we say that p and q are strongly
bisimilar.

Now let us introduce the the Hennessy-Milner logic.

The syntax of an assertion ϕ of the Hennessy-Milner logic is defined as follows.
The symbol a stands for any action in Act .

ϕ ::= true | false | ¬ϕ |
∧

i∈I ϕi |
∨

i∈I ϕi |
〈a〉ϕ | [a] ϕ
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where I is an index set. Note that the set I may be empty or infinite.
As usual, we have that true is

∧
i∈∅ ϕi and false is

∨
i∈∅ ϕi.

The semantics of an assertion ϕ of the Hennessy-Milner logic is defined as follows
via a satisfaction relation p |= ϕ, where p is any CCS process:

p |= true

p 1|= false

p |= ¬ϕ if p 1|= ϕ

p |=
∧

i∈I ϕi if for all i ∈ I, p |= ϕi

p |=
∨

i∈I ϕi if there exists i ∈ I such that p |= ϕi

p |= 〈a〉ϕ if ∃ q∈P. p
a−→ q ∧ q |= ϕ

p |= [a] ϕ if ∀ q∈P. p
a−→ q ⇒ q |= ϕ

Note, in particular, that p |= [a] ϕ holds for a process p if there is no process q such
that p

a−→ q and q 1|= ϕ. Thus, p |= [a] false means that process p cannot perform
an a action.

We state without proof the following theorem which relates the satisfaction rela-
tion in the Hennessy-Milner logic to strong bisimilarity.

Theorem 2.2. [Strong Bisimilarity and Hennessy-Milner Logic] Let us
consider a set Act of actions. Given any two CCS processes p and q constructed by
using the set Act of actions,

p ∼ q iff for all Hennessy-Milner assertions ϕ constructed by using the set
Act of actions, we have that p |= ϕ iff q |= ϕ.

Example 2.3. Given the process p =def a.0 + b.a.0 we have that:

p |= 〈a〉 true ∧ 〈b〉 〈a〉 true. (Note ∧ and not ∨.) !

We have the following result [10, Proposition 8, page 112]: for all processes p and q,

(i) p∼q implies p=q, and

(ii) p=q implies p≈q.

The laws of Table 3 provide a sound and complete axiom system for establishing
for any two given finite CCS processes p and q, whether or not p and q are strongly
bisimilar, that is, whether or not p∼q holds.

Monoid laws:
1. p + q ∼ q + p
2. (p + q) + r ∼ p + (q + r)
3. p + p ∼ p
4. p + 0 ∼ p

Table 3. A sound and complete axiom system for establishing for any
two given finite CCS processes p and q, whether or not p∼q.



3. THE MODAL µ-CALCULUS 275

3. The Modal µ-Calculus

In this section we present the modal µ-calculus, also called the ν-calculus, when one
wants to stress the role of the maximal fixpoints, rather than the minimal fixpoints.
This calculus is an extension of the Hennessy-Milner logic we have introduced in the
previous section.

Let us consider the set Act of actions defined as indicated in Section 1 on page 263
and a set P of CCS processes. Let us also consider a countable set Vars of variables.

The syntax of an assertion (or a property, or a formula) ϕ of the modal µ-calculus
is as follows.

ϕ ::= true | false | S | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 |
〈a〉ϕ | 〈 " 〉ϕ | [a] ϕ | [ " ] ϕ |
νX.ϕ | µX.ϕ

The symbol S stands for any subset of P. The symbol a stands for any action in Act .
The operators νX and µX, for any variable X ∈Vars, behave as binders. As usual
in the case of binders, we have that every occurrence of a variable is either a bound
occurrence or a free occurrence. (We do not formally define these concepts here and
we assume that the reader is already familiar with them.)

Any assertion of the form µX.ϕ should be regarded as an abbreviation for the
assertion ¬νX.¬ϕ[¬X/X]. (Note that ϕ has to be replaced by ϕ[¬X/X].) As usual,
by ϕ [ψ/X] we denote the assertion ϕ where the free occurrences of the variable X
(that is, the occurrences which are not in the scope of a binder) have been replaced
by the assertion ψ.

The relationship between νX.ϕ and µX.ϕ is based on the semantics of the modal
µ-calculus assertions which we will give in Table 4 on the following page (see also
Exercise 3.2 on page 279). Thus, according to this definition, the semantics of νX.ϕ
is equal to the semantics of ¬µX.¬ϕ[¬X/X].

To be syntactically correct an assertion ϕ of the modal µ-calculus should satisfy
the following condition, assuming that every subassertion of the form µX.ψ in ϕ has
been replaced by ¬νX.¬ψ[¬X/X]:

(Pos) in every subassertion of the form νX.ψ, each free occurrence of the variable X
in ψ is a positive occurrence, that is, it is an occurrence under an even, possibly
zero, number of negation symbols.

For instance, given any two subsets S1 and S2 of P, we have that the assertion
νX.¬(S1 ∨ (S2 ∧ ¬[ " ]X)) is syntactically correct, while the assertion νX.(S1 ∨ (S2 ∧
¬[ " ]X)) is not, because it does not comply with Condition (Pos) above.

Given a variable X and an assertion ϕ, the assertion νX.ϕ is said to be the
maximal fixpoint (or the greatest fixpoint) of ϕ with respect to the variable X, and
the assertion µX.ϕ is said to be the minimal fixpoint (or the least fixpoint) of ϕ with
respect to the variable X. This terminology follows from the fact that the semantics
of an assertion is specified as a set of processes and νX.ϕ denotes the maximal set X of
processes which is a solution of the equation X =ϕ. Similarly, the minimal fixpoint
µX.ϕ denotes the minimal set X of processes which is a solution of the equation
X =ϕ.
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Syntax Semantics (as a subset of P)

true P
false ∅
S S for any subset S ⊆ P
¬ϕ {p | p 1∈ϕ}, that is, {p | p∈(P−ϕ)}
ϕ1 ∧ ϕ2 ϕ1 ∩ ϕ2

ϕ1 ∨ ϕ2 ϕ1 ∪ ϕ2

〈a〉ϕ {p | ∃ q∈P. p
a−→ q ∧ q∈ϕ} for any a∈Act

〈 " 〉ϕ {p | ∃ a∈Act . ∃ q∈P. p
a−→ q ∧ q∈ϕ}

[a] ϕ {p | ∀ q∈P. p
a−→ q ⇒ q∈ϕ} for any a ∈ Act

[ " ] ϕ {p | ∀ a∈Act . ∀ q∈P. p
a−→ q ⇒ q∈ϕ}

νX.ϕ
⋃

{S⊆P | S ⊆ ϕ[S/X]}
µX.ϕ

⋂
{S⊆P | ϕ[S/X] ⊆ S}

Table 4. The syntax and the semantics of the assertions of the modal
µ-calculus. The set P is a given set of CCS processes and the set Act
is a given set of actions.

Here are some notes on Table 4 which defines the semantics of the assertions of
the modal µ-calculus as sets of processes.

(1) First, for any set S of processes, the semantics of the assertion S is identified
with S itself.

(2) The assertion 〈a〉ϕ with the modality 〈a〉, called ‘diamond a’, holds for all pro-
cesses p in P such that p can do an a action and become a process which satisfies ϕ.

(3) The assertion 〈 " 〉ϕ with the modality 〈 " 〉, called ‘diamond dot ’, holds for all pro-
cesses p in P which can do any action in Act and become a process which satisfies ϕ.

(4) Besides the modalities 〈a〉 and 〈 " 〉, there are the following two modalities: (i) [a],
called ‘box a’, and (ii) [ " ], called ‘box dot ’. They are dual modalities w.r.t. 〈a〉
and 〈 " 〉. Indeed, [a] ϕ and [ " ] ϕ can be viewed as abbreviations for ¬〈a〉¬ϕ and
¬〈 " 〉¬ϕ, respectively.

Thus, [a] ϕ holds for all processes p in P such that either p cannot do an a action
or if p can do an a action, then in every way p can do it, p becomes a process
satisfying ϕ. The assertion [ " ] ϕ holds for all processes p in P such that either p
cannot do any action at all or if p can do an action, then in every way p can do an
action, p becomes a process satisfying ϕ. Thus, every action, if any, which a process
p satisfying [ " ] ϕ can do, leads from p to a process satisfying ϕ.

The assertion [a] false holds for all processes which cannot do an a action. The
assertion [ " ] false holds for all processes which cannot do any action at all.

(5) According to the assumption that the variable X occurs positively in the asser-
tion ϕ (see Condition (Pos) on page 275), the function λS∈P. ϕ[S/X] is monotonic
and, by Knaster-Tarski Theorem (see Theorem 3.2 on page 81) it has a maximal and
a minimal fixpoint in the lattice of all subsets of P.
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The maximal fixpoint of λS ∈ P. ϕ[S/X] is least upper bound of all its postfix-
points and, thus, we have that the semantics of νX.ϕ is

⋃
{S ⊆ P |S ⊆ ϕ[S/X]}.

The minimal fixpoint of λS ∈P. ϕ[S/X] is greatest lower bound of all its prefix-
points and, thus, we have that the semantics of µX.ϕ is

⋂
{S ⊆ P |ϕ[S/X] ⊆ S}.

Remark 3.1. Since the syntax and the semantics of processes may be identified
(see Point (1) on page 276), by abuse of language, we will feel free to write νX.ϕ =⋃
{S ⊆ P |S ⊆ ϕ[S/X]}. Analogously, for the minimal fixpoint µX.ϕ, instead of the

maximal fixpoint νX.ϕ.
In general, we will feel free to view assertions as sets of processes and, dually, sets

of processes as assertions. Thus, when the operands of the operators ¬, ∨, and ∧ are
sets, rather than assertions, we assume that they denote, respectively, complement
(with respect to a given finite set P of processes to be understood from the context),
union, and intersection of sets. !

3.1. Solutions of Language Equations.

In order to better understand to meaning of maximal and minimal fixpoints, in this
section we consider equations between sets of words over a given alphabet Σ and we
provide their solutions in terms of maximal and minimal fixpoints (see also [14]).

We assume that the reader is familiar with the notion of a regular expression over
an alphabet Σ. The elements of Σ are called symbols.

Given a set A of symbols, with A ⊆ Σ, the set A∗, called the star closure of A, is
the set of all finite words made out of symbols of A. The set A∗ is a monoid w.r.t. the
concatenation operation. As usual, given two words w1 and w2 in A∗, by w1 w2 we
denote their concatenation, that is, the symbols of w1 followed by the symbols of
w2. The identity element of the concatenation is the empty word ε made out of no
symbols.

Let Σ∞ denote the set of all finite or infinite words made out of symbols in Σ.
Let us consider two sets A and B of (finite or infinite) words made out of symbols
in Σ.

Given two sets A and B of words in Σ∞, with B 1=∅, we defined their concatena-
tion, denoted A " B (or A B, for short), to be the set

A " B =def {wA wB | wA ∈ A ∩ Σ∗ and wB ∈ B} ∪ (A ∩ Σω)

where wA wB denotes the concatenation of the finite words wA and wB. Note that
the set A ∩ Σω is the set of the infinite words of A.

We stipulate that if B=∅, then for all sets A, A " B=∅. As a consequence of the
definition, we have that if A=∅ then A " B=∅.

Note that if a word w is infinite then for all v ∈ Σ∞, we have that w v = w. Thus,
if we concatenate a word v to the right of an infinite word w, we get again the infinite
word w. Thus, all the infinite words in A belong to A " B.

Let Ai denote the set A " A " . . . " A, where A occurs i times. For any set A, let
A0 denote the set {ε} consisting of the empty word ε only. Let A + B denote the
union of the sets A and B.
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We have that: A∗ =
∑

i≥0 Ai = {ε} ∪ A ∪ A2 ∪ . . . ∪ Ai ∪ . . . Thus, if A=∅ then
A∗={ε}. We defined the set Aω as follows:

Aω =def Σ∞ if ε∈A

=def {w0w1 . . . wi . . . | i∈ω and wi∈A ∩ Σ∗} ∪ (A∗ ∩ Σω) otherwise

where: (1) w0w1 . . . wi . . ., with i∈ω and wi∈A ∩ Σ∗, is an infinite concatenation of
finite words, each of which is in A, and (2) the set A∗ ∩ Σω is the set of the infinite
words in A∗. Note that any infinite word in A∗ is the finite concatenation of n (≥1)
words in A such that the first n−1 words are finite words in A and the last one is an
infinite word in A. (Obviously, the concatenation of n (≥0) finite words in A followed
by one infinite word in A, is a word in A∗ ∩ Σω.)

If A=∅ then Aω =∅.
By definition, the infinite words of A∗ belong to the infinite words of Aω. Below

we will explain why we stipulate that if ε∈A then Aω is Σ∞.

We define A∞ to be A∗ ∪ Aω.

We have the following equalities between sets of (finite or infinite) words:

(i) Aω = A Aω = AωA

(ii) if ε∈A then Aω = A∞ = Σ∞.

The proof of Point (i) is left to the reader. For Point (ii) we have that if ε ∈ A
then Aω = A∞. Indeed, every word w in A∗ also belongs to Aω because it can be
obtained by concatenating a finite number of words in A and then, infinitely many
times, the finite word ε (and so, every word in A∗ can be viewed as the result of
infinite concatenations). The proof that if ε∈A then A∞ = Σ∞ will be given below.

Let us consider the following two equations and their solutions. Let A and B be
two given sets of (finite or infinite) words made out of symbols in Σ.

(1) Equation E1: X = A X + B.

The minimal solution for X, denoted µX.A X +B, of Equation E1 is the set A∗B
(recall the Arden rule for the equations between regular expressions). The proof of
this fact can be done by applying the Kleene Theorem by iterated applications of
the function λX.A X + B, starting from the empty set. The set A∗B is the unique
solution of Equation E1 if ε 1∈ A.

The maximal solution for X, denoted νX.A X + B, of Equation E1 is the set
A∗B + Aω.

Here is the proof that νX.A X + B = A∗B + Aω. Starting from Σ∞, by iterated
application of the function λX.A X + B, we get the following sequence of sets of
words:

Σ∞, AΣ∞ + B, A2Σ∞ + A B + B, A3Σ∞ + A2 B + A B + B, . . .

whose limit point is A∗B + Aω because, as the reader may show, A∗B + Aω =
A (A∗B + Aω) + B and for any other solution Z of Equation E1, we have that
Z ⊆ A∗B + Aω.

If we assume that B = {ε} then

(1.1) µX.A X + B = A∗, and

(1.2) νX.A X + B = A∗ + Aω = A∞.
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(2) Equation E2: X = A X.

The maximal solution for X , denoted νX.A X, of Equation E2 is the set Aω. If
we assume that ε∈A then νX.A X = Σ∞. Actually, as already indicated, if ε ∈A
then Σ∞ = Aω = A∞.

We have that if ε∈A then Aω = Σ∞, because if ε∈A the maximal fixpoint Aω of
the function λX.A X is equal to Σ∞. Indeed, if ε∈A we have that (λX.A X)(Σ∞) =
Σ∞, and thus, for every ordinal α, (λX.A X)α(Σ∞) = Σ∞.

As a consequence of the fact that if ε∈A then Aω = Σ∞, we also get that if ε∈A
then A∞ = Σ∞, because as already shown, if ε∈A then Aω = A∞.

Note that the set of the infinite words of A∗ may be different from the set of the
infinite words of A. Indeed, take A = {a, bω}. We have that:

(i) A∗ = {ε} ∪ {a, bω} ∪ {aa, bω, abω} ∪ {aaa, bω, abω, aabω} ∪ . . . = a∗ + a∗bω, and

(ii) A ∩ Σω = {bω}, while A∗ ∩ Σω = a∗bω.

Obviously, the set of the infinite words of A is included in the set of the infinite
words of A∗.

Exercise 3.2. Given a set P of CCS processes and a modal µ-calculus formula ϕ,
show that the semantics of µX.ϕ is equal to the semantics of ¬νX.¬ϕ[¬X/X], which
is ¬

⋃
{R | R ⊆ ¬ϕ[¬R/X]}.

Solution. We have to show that
⋂

{S ⊆ P |ϕ[S/X] ⊆ S} = ¬
⋃

{S |S ⊆ ¬ϕ[¬S/X]}.
We have that:

⋂
{S | ϕ[S/X] ⊆ S} = {by negating ϕ} =

=
⋂

{S | ¬ϕ[S/X] ⊇ P−S} = {by taking S =P−R} =

=
⋂

{P−R | ¬ϕ[¬R/X] ⊇ R} = {De Morgan} =

= ¬
⋃

¬{P−R | ¬ϕ[¬R/X] ⊇ R} = {by complementing P−R} =

= ¬
⋃

{R | R ⊆ ¬ϕ[¬R/X]}. !

Exercise 3.3. Show that the function λS ∈P. [a]S, for some action a ∈ Act , is
monotonic (with respect to set inclusion), but not continuous.

Solution. Monotonicity is obvious. For showing that continuity does not hold, let us
consider the following ω-sequence of sets of processes:

{p0}, {p0, p1}, . . . , {p0, p1, . . . , pi}, . . .

where every process pi is distinct from pj, for i 1= j. (Recall that any finite set of
processes can be viewed as an assertion.)

We have that:

(i) [a]{p0} = {p | ∀ q. p
a−→ q ⇒ q=p0},

(ii) [a]{p0, p1} = {p | ∀ q. p
a−→ q ⇒ (q=p0 ∨ q=p1)}, . . . ,

(iii) [a]{p0, p1, . . . , pi} = {p | ∀ q. p
a−→ q ⇒ q=pj for some j with 0≤j≤ i}.

For instance, {a.p0} ⊆ [a]{p0}, {a.p0, a.p1, a.p0 + a.p1} ⊆ [a]{p0, p1}.
Now, the least upper bound of the given ω-sequence of set of processes is the set

A =def {pi | i∈ω}. We have that:

[a]A =
{
p | ∀ q.

(
p

a−→ q ⇒ (∃i≥0. q=pi)
)}

.
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Thus, [a]A includes the process
∑

i∈ω a.pi, while this process does not belong to any
set of the ω-chain:

[a]{p0}, [a]{p0, p1}, . . . , [a]{p0, p1, . . . , pi}, . . .

because every element in every set of this ω-chain is a CCS term which is a finite
sum. The reader should recall here that an element is a member of the least upper
bound of an ω-chain of sets (with respect to set inclusion) iff it is a member of one
of the sets in the ω-chain. !

3.2. Some Useful Modal µ-Calculus Assertions.

Let us introduce the following assertions:

(α) possibly(B) =def µX.(B ∨ 〈 " 〉X) ≡ 〈 " 〉∗B
(β) eventually(B) =def µX.(B ∨ (〈 " 〉 true ∧ [ " ]X)) ≡ (〈 " 〉 true ∧ [ " ])∗B

(ε) inevitably(A) =def νX.(A ∧ [ " ]X) ≡ (A ∧ [ " ])ω

(ζ) A until B =def νX.(B ∨ (A ∧ [ " ]X)) ≡ (A ∧ [ " ])∗B ∨ (A ∧ [ " ])ω

The expressions in the rightmost column specify the values of the minimal fixpoints
and maximal fixpoints in the middle column as indicated in Section 3.1 on page 277.
For instance,

(i) 〈 " 〉∗B stands for B ∨ 〈 " 〉B ∨ . . . ∨ 〈 " 〉nB ∨ . . ., for all n≥0 (thus, it may be the
case that no infinite sequence of actions is possible), and

(ii) (A∧ [ " ])ω stands for A∧ [ " ]A∧ . . .∧ [ " ]nA∧ . . .∧ [ " ]ωA (thus, an infinite sequence
of actions is possible).

We can represent the meaning of those assertions by considering trees of paths (or
derivations trees [10, page 49]), as indicated in Figure 2 on the facing page. In that
figure we assume that after performing an action, a process ‘moves to the right’ and,
since in general more than one action is possible, we get a tree rooted on the leftmost
node. In particular (see also Figure 1),

(1) the term a.t of CCS can be viewed as a tree such that: (1.1) the root has a single
outgoing arc, (1.2) that arc has label a, and (1.3) that arc connects the root itself
to the root of the subtree t, and

(2) the term t1 + t2 of CCS can be viewed as a tree whose root has the two subtrees t1
and t2.

By the Expansion Theorems (see Theorem 1.6 on page 267 and Theorem 1.11 on
page 269), we have that also CCS terms which involve the parallel composition op-
erator | , can be viewed as trees.

a.t

t

t1+t2
t1

t2

a

Figure 1. Trees of paths corresponding to the CCS terms a.t and t1+t2.



3. THE MODAL µ-CALCULUS 281

B

possibly(B):

µX.(B ∨ 〈 "〉X)

(α)
B

B

B

B

B

eventually(B):

µX.(B ∨ (〈 "〉 true∧FR"GSX))

(β)

" " "
B

B

B
B

B

νX.(B ∧ 〈 "〉X)

(γ)

a

a
a

a

a

µX.(〈a〉 true∨FR"GSX)

(δ)
" " "

" " "

" " "

" " "

A

A

A

A

A

A

A

A

A

A

A
A

inevitably(A):

νX.(A∧FR"GSX)

(ε)
" " "

A

A

A

A

A

B

A

A

B

B

B
B

A until B:

νX.(B ∨ (A∧FR"GSX))

(ζ)

Figure 2. Trees which illustrate the meaning of some modal µ-calcu-
lus assertions. In (γ) the dots mean that there exists an infinite path
on whose nodes B always holds. In (ε) the dots mean that: (i) A holds
on all nodes of all (finite or infinite) paths. In (ζ) the dots mean that:
(i) all paths starting from the process next to the dots, are infinite, and
(ii) A ∧ ¬B holds on all nodes of those infinite paths.

By recalling the meaning of the minimal and maximal fixpoints of equations as
indicated in Section 3.1 on page 277, we have that:

(α) possibly(B) means that there is a process on a path starting from the root, on
which B holds (see Figure 2(α) on the current page),

(β) eventually(B) means that on all paths starting from the root, there is a process
on which B holds (see Figure 2(β)),

(γ) the assertion νX.(B ∧ 〈 " 〉X) means that there is an infinite path starting from
the root on whose nodes B always holds (see Figure 2(γ)),

(δ) the assertion µX.(〈a〉 true∨ [ " ]X) means that on all paths starting from the root
there is a process which can do an a action (see Figure 2(δ)),

(ε) inevitably(A) means that A holds on every processes of all (finite or infinite) paths
starting from the root (see Figure 2(ε)), and
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(ζ) A until B means that for every path π starting from the root, either (ζ1) on all
processes of the path π the assertion A ∧ ¬B holds and π is infinite, or (ζ2) on
the path π there is a finite prefix πk such that:

(ζ2.1) πk ends by a process on which B holds, and

(ζ2.2) in all other processes of πk the assertion A ∧ ¬B holds.

This notion of until is said to be the weak until because it may be the case that B
never holds on an infinite path on whose nodes A always holds (see Figure 2(ζ)).

There is also a notion, called the strong until, where Case (ζ1) does not occur
and, thus, on all paths π there is a process on which the assertion B holds. We
have that the assertion A strong until B is µX.(B ∨ (A ∧ 〈 " 〉 true ∧ [ " ]X)), that is,
(A ∧ 〈 " 〉 true ∧ [ " ])∗B, if we were to use the notation of Section 3.1 (see page 277).

The following two assertions which are often of interest in practice.

(Infinitely Often)
The assertion νZ.µY.〈a〉((〈b〉 true ∧ Z) ∨ Y ) holds at a process p iff there exists
an infinite path π beginning at p and whose sequence of labels is aω, on which
infinitely often it is possible to perform a b action.

(Almost Always)
The assertion µY.νZ.〈a〉((〈b〉 true ∨ Y ) ∧ Z) holds at a process p iff there exists
an infinite path π beginning at p and whose sequence of labels is aω, on which
almost always it is possible to perform a b action, that is, only in a finite number
of processes on π it is not possible to perform a b action.

Given a finite set P of processes and an action a, we have that:

(1.1) µX.〈a〉X is ∅ (that is, false),

(1.2) νX.〈a〉X is the set of processes in P which can do aω (that is, the set of processes
in P which can do an infinite sequence of a actions),

(1.3) µX.[a]X is the set of processes in P which cannot do aω (that is, the set of
processes in P which cannot do an infinite sequence of a actions),

(1.4) νX.[a]X is P (that is, true),

(2.1) µX.〈 " 〉X is ∅ (that is, false),

(2.2) νX.〈 " 〉X is the set of processes in P which can do an infinite sequence of
actions,

(2.3) µX.[ " ]X is the set of processes in P which cannot do an infinite sequence of
actions, and

(2.4) νX.[ " ]X is P (that is, true).

Note that for k = 1, 2, the expression k.1 is the complement (w.r.t. P) of the
expression k.4 and, likewise, the expression k.2 is the complement (w.r.t. P) of the
expression k.3. For instance, (1.2) is the complement of (1.3). Indeed,

µX.[a]X = ¬νX.¬[a]¬X = ¬νX.〈a〉X.
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4. The Local Model Checker for Finite Processes

In this section we present the local model checker which is an algorithm for testing
whether or not, given a CCS process p and an assertion ϕ, we have that ϕ holds for p.
In order for this algorithm to be a decision procedure, the given process p should be
a finite-state process, that is, the set Pp of the processes reachable from p which we
now define, should be finite. We define Pp as follows:

Pp =def {q | q∈P ∧ p −→∗ q}
where: (i) for all processes p, q∈P, p −→ q holds iff ∃ a∈Act . p

a−→ q, and (ii) −→∗

is the reflexive, transitive closure of −→. When p is understood from the context, we
will simply write P, instead of Pp.

Table 5 which resembles Table 4 on page 276, defines the satisfaction relation
P, p |= ϕ which expresses the fact that the assertion ϕ holds for the finite-state
process p whose set of reachable processes is P.

With reference to Rules 10 and 11 of Table 5, note that in order to test whether
or not p ∈ ϕ, the assertion ϕ is viewed as a set of processes, as indicated in Table 4,
and ∨ denotes union of sets as well as disjunction of assertions. Dually, sets are
viewed as assertions when we act on them using the operators ¬, ∨, and ∧.

1. P, p |= true

2. P, p 1|= false

3. P, p |= S if p ∈ S for any subset S ⊆ P
4. P, p 1|= S if p 1∈ S for any subset S ⊆ P
5. P, p |= ¬ϕ if P, p 1|= ϕ
6. P, p |= ϕ1 ∧ ϕ2 if P, p |= ϕ1 and P, p |= ϕ2

7. P, p |= ϕ1 ∨ ϕ2 if P, p |= ϕ1 or P, p |= ϕ2

8. P, p |= 〈a〉ϕ if there exists q∈{q | p a−→ q} such that P, q |= ϕ

9. P, p |= 〈 " 〉ϕ if there exists q∈{q | ∃ a∈Act . p
a−→ q} such that P, q |= ϕ

10. P, p |= νX.ϕ if p∈ϕ

11. P, p |= νX.ϕ if P, p |= ϕ[νX.({p}∨ϕ) / X] and p 1∈ϕ

Table 5. The satisfaction relation P, p |= ϕ for a finite-state CCS
process p and a modal µ-calculus assertion ϕ. The set P is the set of
processes reachable from p. The action a is any action in Act .

The rewriting rules listed in Table 6 on the following page give us a sound and
complete algorithm to decide whether or not P, p |= ϕ for a finite-state CCS process p
and a modal µ-calculus assertion ϕ, and the set P of processes reachable from p, in the
sense established by the following Theorem 4.1 on the next page (see [19, page 331]).

Note that according to the following Theorem 4.1 on the following page, when
checking whether or not P, p |= ϕ holds, the initial expression to which the rewriting
rules of Table 6 are applied, should be P, p & ϕ, where ϕ is the assertion ϕ, where
every subassertion νX.ψ has been transformed into the equivalent assertion νX.(∅ ∨
ψ), where ∅ denotes the empty set of processes. In assertions such as νX.(∅ ∨ ψ),
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1. P, p & true T→ true

2. P, p & false T→ false

3. P, p & S T→ true if p ∈ S for any subset S ⊆ P
4. P, p & S T→ false if p 1∈ S for any subset S ⊆ P
5. P, p & ¬ϕ T→ ¬(P, p & ϕ)
6. P, p & ϕ1 ∧ ϕ2 T→ P, p & ϕ1 ∧ P, p & ϕ2

7. P, p & ϕ1 ∨ ϕ2 T→ P, p & ϕ1 ∨ P, p & ϕ2

8. P, p & 〈a〉ϕ T→ P, q1&ϕ ∨. . .∨ P, qn&ϕ

where {q1, . . . , qn} = {q | p a−→ q}
9. P, p & 〈 " 〉ϕ T→ P, q1 & ϕ ∨ . . .∨ P, qn & ϕ

where {q1, . . . , qn} = {q | ∃ a. p
a−→ q}

10. P, p & νX.(S ∨ ϕ) T→ true if p∈S for any subset S ⊆ P
11. P, p & νX.(S ∨ ϕ) T→ P, p & ϕ[νX.({p} ∨ S ∨ ϕ) / X] if p 1∈S

for any subset S ⊆ P

Table 6. Rewriting rules for establishing whether or not P, p & ϕ
holds for a finite-state CCS process p, a modal µ-calculus assertion ϕ,
and the set P of processes reachable from p. Every empty disjunction
of the form b1 ∨ . . . ∨ bn, for n=0, is rewritten to false. The action a
is any action in Act .

the round parentheses will be omitted when understood from the context and, thus,
for any set S of processes and any assertion ψ, we will feel free to write νX.S ∨ ψ,
instead of νX.(S ∨ ψ).

Note also that in Table 6 the operators ¬, ∨, and ∧ are overloaded: sometimes
they act on triples of the form P, p & ϕ and some other times they act on assertions.
The reader should distinguish between these two different uses.

Theorem 4.1. [Soundness and Completeness of the Local Model Checker]
Let p be a finite-state CCS process, ϕ be a modal µ-calculus assertion, and P be
the finite set of processes reachable from p. We have that: P, p |= ϕ holds iff
(P, p & ϕ) T→∗ true, where: (i) ϕ is the assertion ϕ where every subassertion νX.ψ
has been transformed into νX.(∅ ∨ ψ), and (ii) T→∗ denotes the reflexive, transitive
closure of the relation T→ which is defined in Table 6.

The proof of this theorem is based on the following lemma [19, page 327].

Lemma 4.2. [Reduction Lemma] Consider a set P and a monotonic function ϕ
from 2P to 2P , where 2P denotes the powerset of P. For any S ⊆ P we have that:

S ⊆ νX.ϕ(X) ⇔ S ⊆ ϕ(νX.(S ∪ ϕ(X))).

Proof. (⇒) First we show that S ∪ ϕ(νX.ϕ(X)) = νX.ϕ(X). Indeed,

S ∪ ϕ(νX.ϕ(X)) = {νX.ϕ(X) is a fixpoint of ϕ} =

= S ∪ νX.ϕ(X) = {by hypothesis, S ⊆ νX.ϕ(X)} =

= νX.ϕ(X).
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Thus, νX.ϕ(X) is a fixpoint of the function λX.S ∪ ϕ(X). Since, by definition,
νX.(S ∪ ϕ(X)) is the maximal fixpoint of that function, we have that:

νX.ϕ(X) ⊆ νX.(S ∪ ϕ(X)) (†1)

By monotonicity of ϕ, from (†1) we get:

ϕ(νX.ϕ(X)) ⊆ ϕ(νX.(S ∪ ϕ(X))) (†2)

Since, by hypothesis, we have that S ⊆ νX.ϕ(X), and by definition, νX.ϕ(X) =
ϕ(νX.ϕ(X)), we get that S ⊆ ϕ(νX.ϕ(X)). Hence, by (†2) we get:

S ⊆ ϕ(νX.(S ∪ ϕ(X))).

(⇐) We assume that S ⊆ ϕ(νX.(S ∪ ϕ(X))).

νX.(S ∪ ϕ(X)) = {by definition of ν} = S ∪ ϕ(νX.(S ∪ ϕ(X))). (†3)

Then, by the assumption S ⊆ ϕ(νX.(S ∪ ϕ(X))), from (†3) we get:

νX.(S ∪ ϕ(X)) = ϕ(νX.(S ∪ ϕ(X))). (†4)

Thus, νX.(S ∪ϕ(X)) is a fixpoint of ϕ. Since νX.ϕ(X) is the maximal fixpoint of ϕ,
we get:

νX.(S ∪ ϕ(X)) ⊆ νX.ϕ(X). (†5)

By the assumption S ⊆ ϕ(νX.(S ∪ ϕ(X))), from (†4) we get: S ⊆ νX.(S ∪ ϕ(X)).
By (†5) we get:

S ⊆ νX.ϕ(X). !

Note that, given a set P and a monotonic function ϕ from 2P to 2P , for any S ⊆ P,
we have that:

(1) S ⊆ νX.ϕ(X) ⇒ S ⊆ νX.(S ∪ ϕ(X))

(2) S ⊆ νX.ϕ(X) 1⇐ S ⊆ νX.(S ∪ ϕ(X))

Indeed, for (1) we have that: (1.i) νX.ϕ(X) ⊆ νX.(S ∪ ϕ(X)) (as shown in (†1) of
Lemma 4.2), and (1.ii) by hypothesis, S ⊆ νX.ϕ(X).
For (2) we consider the function νX.B ∪ AX for some sets of words A and B. We
have that: (2.i) νX.B ∪ AX is Aω ∪ A∗B, (2.ii) νX.AX is Aω, and (2.iii) in general,
A∗B 1⊆ Aω.

In the following examples we show the evaluation of the satisfaction relation
P, p |= ϕ by using the rewriting rules of Table 6 on the facing page.

Example 4.3. Let us consider the following four CCS finite-state processes:

P1 =def a.P2 + b.P4 P2 =def a.P3 + a.P4 P3 =def a.P4 P4 =def 0

They can be depicted as in Figure 3. Let P be the set {P1, P2, P3, P4}.
We want to check whether or not P, P1 |= νX.〈a〉X holds, that is, whether or not
from P1 one can do an infinite sequence of a actions (recall that νX.〈a〉X is 〈a〉ω).
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P1 P2

P3 P4

a

b a

a

a

Figure 3. Some CCS processes. From P1 it is not possible to do an
infinite sequence of a actions.

We have that (for reasons of brevity, we have not indicated all the rewriting steps
and thus, sometimes T→ actually stands for T→∗):

P, P1 & νX.(∅ ∨ 〈a〉X)

T→ P, P1 & 〈a〉X [νX.({P1} ∨ 〈a〉X) / X], that is, P, P1 & 〈a〉νX.({P1} ∨ 〈a〉X)

T→ P, P2 & νX.({P1} ∨ 〈a〉X)

T→ P, P2 & ({P1} ∨ 〈a〉X) [νX.({P1, P2} ∨ 〈a〉X)/X], that is,

P, P2 & {P1} ∨ 〈a〉νX.({P1, P2} ∨ 〈a〉X)

T→ P, P2 & 〈a〉νX.({P1, P2} ∨ 〈a〉X)

T→ P, P3 & νX.({P1, P2} ∨ 〈a〉X) ∨ P, p4 & νX.({P1, P2} ∨ 〈a〉X)

T→ P, P3 & {P1, P2} ∨ 〈a〉νX.({P1, P2, P3} ∨ 〈a〉X) ∨
P, P4 & {P1, P2} ∨ 〈a〉νX.({P1, P2, P4} ∨ 〈a〉X)

T→ P, P3 & 〈a〉νX.({P1, P2, P3} ∨ 〈a〉X) ∨ P, P4 & 〈a〉νX.({P1, P2, P4} ∨ 〈a〉X)

T→ P, P4 & νX.({P1, P2, P3} ∨ 〈a〉X) ∨ false

T→ P, P4 & {P1, P2, P3} ∨ 〈a〉νX.({P1, P2, P3, P4} ∨ 〈a〉X)

T→ P, P4 & 〈a〉νX.({P1, P2, P3, P4} ∨ 〈a〉X)

T→ false

We may also establish that P, P1 & νX.〈a〉X does not hold by computing the maximal
fixpoint of the function λX.〈a〉X starting from P and iterating the application of
λX.〈a〉X until a fixpoint is reached. Recall that, given a set X ⊆ P, 〈a〉X is the
subset of P such that every process in 〈a〉X can do an a action and become a process
in X. We have the following sequence of sets of processes, where in line 1 we have
indicated the set P of all processes, and for i = 2, 3, 4, 5, in line i we have indicated the
set of processes which can do an a action and become a process in the set indicated
in line i−1:

1. P = {P1, P2, P3, P4}
2. 〈a〉P = {P1, P2, P3}
3. 〈a〉(〈a〉P) = {P1, P2}
4. 〈a〉(〈a〉(〈a〉P)) = {P1}
5. 〈a〉(〈a〉(〈a〉(〈a〉P))) = ∅
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At line 5 we have reached a fixpoint, because 〈a〉 ∅ = ∅. Thus, since the maximal
fixpoint is ∅, we have that for no process in P we can do an infinite sequence of
a actions.

Example 4.4. If we consider the following four processes:

Q1 =def a.Q2 + b.Q4 Q2 =def a.Q3 Q3 =def a.Q4 Q4 =def a.Q2

which can be depicted as in Figure 4. Let Q be the set {Q1, Q2, Q3, Q4}.

Q1 Q2

Q3 Q4

a

b a

a

a

Figure 4. Some CCS processes. From Q1 it is possible to do an
infinite sequence of a actions. Note the edge labeled by a from Q4 to
Q2, instead the edge labeled by a from P2 to P4 of Figure 3 on the
preceding page.

We have that Q, Q1 |= νX.〈a〉X holds. Indeed:

Q, Q1 & νX.(∅ ∨ 〈a〉X)

T→ Q, Q1 & 〈a〉νX.({Q1} ∨ 〈a〉X)

T→ Q, Q2 & νX.({Q1} ∨ 〈a〉X)

T→ Q, Q2 & {Q1} ∨ 〈a〉(νX.({Q1, Q2} ∨ 〈a〉X))

T→ Q, Q2 & 〈a〉(νX.({Q1, Q2} ∨ 〈a〉X))

T→ Q, Q3 & νX.({Q1, Q2} ∨ 〈a〉X)

T→ Q, Q3 & {Q1, Q2} ∨ 〈a〉νX.({Q1, Q2, Q3} ∨ 〈a〉X)

T→ Q, Q3 & 〈a〉νX.({q1, Q2, Q3} ∨ 〈a〉X)

T→ Q, Q4 & νX.({Q1, Q2, Q3} ∨ 〈a〉X)

T→ Q, Q4 & {Q1, Q2, Q3} ∨ 〈a〉νX.({Q1, Q2, Q3, Q4} ∨ 〈a〉X)

T→ Q, Q4 & 〈a〉νX.({Q1, Q2, Q3, Q4} ∨ 〈a〉X)

T→ Q, Q2 & νX.({Q1, Q2, Q3, Q4} ∨ 〈a〉X)

T→ Q, Q2 & {Q1, Q2, Q3, Q4} ∨ 〈a〉νX.({Q1, Q2, Q3, Q4} ∨ 〈a〉X)

T→ true

As indicated at the end of Example 4.3 on page 285, we can establish that Q, Q1 &
νX.〈a〉X holds by computing the maximal fixpoint of the function λX.〈a〉X starting
from Q. By applying the function λX.〈a〉X to the set of processes Q we get the set
〈a〉Q = {Q1, Q2, Q3, Q4} = Q (recall that 〈a〉Q by definition is the set of processes
which can do an a action and become a process in Q). Thus, a fixpoint is reached
and we have that from any process in Q we can do an infinite sequence of a actions.
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Example 4.5. Let us consider the set Q of processes of Example 4.4 on the
previous page. We have that Q, Q1 |= µX.〈a〉X does not hold, that is, Q, Q1 &
µX.〈a〉X T→∗ false. Indeed, we have that: for all b ∈ {true, false},
Q, Q1 & µX.〈a〉X T→∗ b {by the definition of µX.ϕ}

iff Q, Q1 & ¬νX.¬〈a〉¬X T→∗ b

{by the initialization indicated in Theorem 4.1 on page 284}

iff Q, Q1 & νX.(∅ ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q1 & ¬〈a〉¬νX.({Q1} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q1 & 〈a〉¬νX.({Q1} ∨ ¬〈a〉¬X) T→∗ b

iff Q, Q2 & ¬νX.({Q1} ∨ ¬〈a〉¬X) T→∗ b

iff Q, Q2 & νX.({Q1} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q2 & {Q1} ∨ ¬〈a〉¬νX.({Q1, Q2} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q2 & 〈a〉¬νX.({Q1, Q2} ∨ ¬〈a〉¬X) T→∗ b

iff Q, Q3 & νX.({Q1, Q2} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q3 & {Q1, Q2} ∨ ¬〈a〉¬νX.({Q1, Q2, Q3} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q3 & 〈a〉¬νX.({Q1, Q2, Q3} ∨ ¬〈a〉¬X) T→∗ b

iff Q, Q4 & ¬νX.({Q1, Q2, Q3} ∨ ¬〈a〉¬X) T→∗ b

iff Q, Q4 & νX.({Q1, Q2, Q3} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q4 & {Q1, Q2, Q3} ∨ ¬〈a〉¬νX.({Q1, Q2, Q3, Q4} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q4 & ¬〈a〉¬νX.({Q1, Q2, Q3, Q4} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q4 & 〈a〉¬νX.({Q1, Q2, Q3, Q4} ∨ ¬〈a〉¬X) T→∗ b

iff Q, Q2 & ¬νX.({Q1, Q2, Q3, Q4} ∨ ¬〈a〉¬X) T→∗ b

iff Q, Q2 & νX.({Q1, Q2, Q3, Q4} ∨ ¬〈a〉¬X) T→∗ ¬b

iff Q, Q2 & {Q1, Q2, Q3, Q4} ∨ ¬〈a〉¬νX.({Q1, Q2, Q3, Q4} ∨ ¬〈a〉¬X) T→∗ ¬b

Now, in this last expression we have that ¬b is true because Q2 ∈ {Q1, Q2, Q3, Q4}.
Thus, we get that Q, Q1 & µX.〈a〉X T→∗ false.

As we have indicated at the end of Example 4.3 on page 285, we can check
that Q, Q1 & µX.〈a〉X does not hold also by computing the minimal fixpoint of the
function λX.〈a〉X, starting from the empty set and iteratively applying the function
λX.〈a〉X until we get a set M ⊆ Q such that 〈a〉M = M. Then we have that
Q, Q1 & µX.〈a〉X iff Q1∈M. Since 〈a〉 ∅ = ∅, we have that 〈a〉M = M, for M=∅.
Thus, since Q1 1∈∅, we have that Q, Q1 & µX.〈a〉X does not hold, as expected.

Here is an alternative way of deriving the same result. The value of µX.〈a〉X
which is equivalent to µX.(〈a〉X∨false), is 〈a〉∗ false (see Equation E1 on page 278).
Thus, µX.〈a〉X holds for a process P such that false ∨ 〈a〉 false ∨ 〈a〉〈a〉 false ∨ . . .
holds, that is, µX.〈a〉X holds for a process P if there exists n≥0 such that P can do
an a action n times, thereby reaching a state where false holds. Since false holds in
no state, we have that for all processes in Q, µX.〈a〉X does not hold.

In order to test whether or not a given CCS term satisfies a given modal µ-calculus
formula one can use an automatic verification system, the Edinburgh Concurrency
Workbench [13].
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On page 290 we will present a program, called peterson-mucalculus.cwb, which
by using the Edinburgh Concurrency Workbench, demonstrates that: (i) some CCS
agents satisfy some modal µ-calculus formulas, and (ii) Peterson algorithm guar-
antees mutual exclusion, absence of deadlock, absence of starvation, and bounded
overtaking.

In that program we use the following notations. The operator <-> stands for 〈 " 〉
and [-] stands for [ " ]. The operator ~ (tilde) stands for ¬ (not), | stands for ∨ (or),
and & stands for ∧ (and). The operator max(X.ϕ) stands for νX.ϕ and, similarly,
min(X.ϕ) stands for µX.ϕ.

For any action a∈Act , for any µ-calculus formula ϕ, an agent P satisfies <<a>>ϕ

iff there exists an agent P ′ such that P
a

=⇒ P ′ (see the definition of
a

=⇒ on page 265)
and P ′ satisfies ϕ. Similarly, an agent P satisfies [[a]]ϕ iff for all agents P ′, if

P
a

=⇒ P ′ then P ′ satisfies ϕ.

For any µ-calculus formula ϕ, an agent P satisfies <<->>ϕ iff there exist a visible

action a, (that is, an action a ∈ Act−{τ}) and an agent P ′ such that P
a

=⇒ P ′ and
P ′ satisfies ϕ. Similarly, an agent P satisfies [[-]]ϕ iff for all visible actions a and

agents P ′, if P
a

=⇒ P ′ then P ′ satisfies ϕ. In particular, [[-]]ϕ holds if P cannot
perform any a action.

In any line whatever follows a semicolon ‘;’ is a comment, and when we write a
line of the form:

prop P = . . .; A: true B: false

we mean that the formula P holds for the process A and it does not hold for the
process B. The following pair of commands:

echo "for P1: F1 true =";
checkprop(P1,F1);

produces as output the line:

for P1: F1 true =

followed by the line:

true

(or false), if the agent P1 satisfies (or does not satisfy) property F1. The echo
command has been inserted for anticipating the expected answer so that, at run
time, we may easily check whether or not the computed answer is the correct one.

The agent Peterson and all other agents which are required in the definition of
the agent Peterson, are the same as in the Peterson algorithm listed on page 272,
except that: (i) now we have different actions in and out for the different agents
(we have the actions in1 and out1 for agent P12 and the actions in2 and out2 for
agent P22), and (ii) we have added to the agent P1 a visible action b1 and to the
agent P2 a visible action b2, for easily identifying the point in time when an agent
has completed a request to enter its critical section.
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The fact that Peterson algorithm guarantees mutual exclusion has been expressed
by the validity of the following modal µ-calculus formula:

ψ =def νX.
(
[in1] ([in2] false) ∧ [in2] ([in1] false) ∧ [ " ] X

)

which is equivalent to: ¬µX.
(
〈in1〉 (〈in2〉 true) ∨ 〈in2〉 (〈in1〉 true) ∨ 〈 " 〉X

)
.

The formula ψ expresses the fact that for an agent: (i) it is impossible to perform
an in1 action immediately before an in2 action, and (ii) it is impossible to perform
an in2 action immediately before an in1 action, and (iii) whatever action the agent
performs, it becomes an agent that satisfies the same formula ψ.

In order to express the mutual exclusion property, instead of the formula ψ, we
can also use the following formula:

ψ′ =def νX.
(
[out1] ([out2] false) ∧ [out2] ([out1] false) ∧ [ " ] X

)

because it is possible to perform the sequence of actions out1 out2 or the sequence
out2 out1, iff two distinct agents have been in their critical section at the same time.

* =======================================================================
* PETERSON ALGORITHM AND MU-CALCULUS ASSERTIONS
*
* filename: peterson-mucalculus.cwb
* Use of the Edinburgh Concurrency Workbench.
* -----------------------------------------------------------------------

agent A = a.0 + b.a.0;
prop P = <a>T & <b><a>T; A: true
* -----------------------------------------------------------------------
* Minimal and maximal fixpoints
* -----------------------------------------------------------------------
agent Z = 0;
agent T0 = a.T0;

prop Ma = min(X.<a>T | [-]X); Z: true T0: true
prop Na = max(X.<a>T | [-]X); Z: true T0: true
prop Ma1 = min(X.<a>T | (<->T & [-]X)); Z: false T0: true
prop Na1 = max(X.<a>T | (<->T & [-]X)); Z: false T0: true

* =======================================================================
*** variable q1
agent Q1t = ’q1rt.Q1t + q1wt.Q1t + q1wf.Q1f; * q1 true
agent Q1f = ’q1rf.Q1f + q1wt.Q1t + q1wf.Q1f; * q1 false
*** variable q2
agent Q2t = ’q2rt.Q2t + q2wt.Q2t + q2wf.Q2f; * q2 true
agent Q2f = ’q2rf.Q2f + q2wt.Q2t + q2wf.Q2f; * q2 false
*** variable S
agent S1 = ’r1.S1 + w1.S1 + w2.S2; * s = 1
agent S2 = ’r2.S2 + w1.S1 + w2.S2; * s = 2

* -----------------------------------------------------------------------
* Note the visible actions b1 and b2. Performing the action b1 (or b2)
* means that the request to enter the critical section is completed.
* -----------------------------------------------------------------------
*** process Peterson
agent P1 = ’q1wt.’w1.b1.P11; * <------------------------+
agent P11 = q2rt.P11 + r1.P11 + q2rf.P12 + r2.P12; |
agent P12 = in1.out1.’q1wf.P1; * =------------------------+
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agent P2 = ’q2wt.’w2.b2.P21; * <------------------------+
agent P21 = q1rt.P21 + r2.P21 + q1rf.P22 + r1.P22; |
agent P22 = in2.out2.’q2wf.P2; * =------------------------+

agent Peterson = (P1|P2|Q1f|Q2f|S1)\L;
set L = {q1rt,q1rf,q1wt,q1wf,q2rt,q2rf,q2wt,q2wf,r1,r2,w1,w2};

* -----------------------------------------------------------------------
* process Reduced_Peterson avoids infinitely many reading operations at
* P11 or P21, i.e., staying in P11 or P21 forever.
* -----------------------------------------------------------------------
*** process Reduced_Peterson
agent R1 = ’q1wt.’w1.b1.R11; * <------------------------+
agent R11 = q2rf.R12 + r2.R12; (only two summands) |
agent R12 = in1.out1.’q1wf.R1; * =------------------------+

agent R2 = ’q2wt.’w2.b2.R21; * <------------------------+
agent R21 = q1rf.R22 + r1.R22; (only two summands) |
agent R22 = in2.out2.’q2wf.R2; * =------------------------+

agent Reduced_Peterson = (R1|R2|Q1f|Q2f|S1)\L;
* -----------------------------------------------------------------------
prop Inv(Phi) = max(Y.(Phi & [-]Y));
prop Ev(Phi) = min(X.(Phi | (<->T & [-]X)));
*
* -----------------------------------------------------------------------
* Mutual Exclusion Property
* -----------------------------------------------------------------------
prop Mutex = max(X.[in1] [in2] F & [in2] [in1] F & [-] X);

* The following two sequences: (i) ... in2 in1 ..., (ii) ... in1 in2 ...
* are impossible.
* Peterson: true; Reduced_Peterson: true;
* The following stronger version of the Mutual Exclusion property, where
* tau actions are not considered, holds for Peterson and also for
* Reduced_Peterson:
* prop Mutex1 = max(X.[[in1]] [[in2]] F & [[in2]] [[in1]] F & [[-]] X);
*
*** In what follows, after: echo "for Peterson: Mutex true ="; ***
*** and checkprop(Peterson,Mutex), we should get: true. ***
*** Similarly, for the other echo-checkprop pairs, both in the case ***
*** of "true" and "false". ***

echo "====== Mutual exclusion";
echo "for Peterson: Mutex true =";
checkprop(Peterson,Mutex);
echo "for Reduced_Peterson: Mutex true =";
checkprop(Reduced_Peterson,Mutex);
*
* -----------------------------------------------------------------------
* Absence of Deadlock
* -----------------------------------------------------------------------
prop AD = (Inv([[out1]] Ev(((<<in1>>T)|(<<in2>>T))))) &

(Inv([[out2]] Ev(((<<in1>>T)|(<<in2>>T)))));
* Peterson: false (because infinitely many read operations at P11 or P21)
* Reduced_Peterson: true
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echo "====== Absence of deadlock";
echo "for Peterson: AD false = ";
checkprop(Peterson,AD);
echo "for Reduced_Peterson: AD true = ";
checkprop(Reduced_Peterson,AD);
*
* -----------------------------------------------------------------------
* Absence of Starvation
* -----------------------------------------------------------------------
* After the actions in1, out1, and ’q1wf by process P22 (or R22), all
* actions of the system Peterson (or Reduced_Peterson) may be performed
* by the other process. This case occurs if P1 (or R1) after exiting its
* critical section, does not make any request to re-enter in it.

prop AS1 = Inv([[b1]] Ev(<<in1>> T));
* Peterson: false (because infinitely many read operations at P11 or P21)
* Reduced_Peterson: true (because only one read operation at R11 or R21)

prop AS2 = Inv([[in1]] Ev(<<in1>> T));
* Peterson: false; Reduced_Peterson: false;
* false because no request is made to re-enter the critical section.

echo "====== Absence of starvation";
echo "for Peterson: AS1 false = ";
checkprop(Peterson,AS1);
echo "for Reduced_Peterson: AS1 true = ";
checkprop(Reduced_Peterson,AS1);
* ---------
echo "for Peterson: AS2 false = ";
checkprop(Peterson,AS2);
echo "for Reduced_Peterson: AS2 false = ";
checkprop(Reduced_Peterson,AS2);
*
* -----------------------------------------------------------------------
* Bounded Overtaking
* -----------------------------------------------------------------------
prop B1 = max(X.([in2] [b1] [out2] [b2] [in2] F) & [-]X);
* The following sequence (forgetting tau actions):
* in2 b1 out2 b2 in2 ... is impossible,
* because after b1, P2 may exit twice from the critical section.
* Peterson: true; Reduced_Peterson: true;
prop B2 = ~max(X.([[b2]][[in2]][[out2]][[b1]][[b2]][[in2]] F) & [[-]]X);
* The following sequence (forgetting tau actions):
* b2 in2 out2 b1 b2 in2 ... is possible,
* because after b1, P2 may exit once from the critical section.
* Peterson: true; Reduced_Peterson: true;

echo "====== Bounded overtaking";
echo "for Peterson: B1 true =";
checkprop(Peterson, B1);
echo "for Peterson: B2 true =";
checkprop(Peterson, B2);
* ---------
echo "for Reduced_Peterson: B1 true =";
checkprop(Reduced_Peterson,B1);
echo "for Reduced_Peterson: B2 true =";
checkprop(Reduced_Peterson,B2);
* =======================================================================
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In the following program, called examples.cwb, we show some more examples of
use the Edinburgh Concurrency Workbench [13] and we show, in particular, that
some CCS agents satisfy some modal µ-calculus formulas which use minimal and
maximal fixpoints operators.

In that program we have defined the sets {P1, P2, P3, P4} and {Q1, Q2, Q3, Q4} of
agents (see the lines marked with (*)). For those sets we have that: (i) agent P1

cannot do an infinite sequence of a actions because νX.〈a〉X does not hold for P1 (see
P1 : false in line (!) of program examples.cwb and also Example 4.3 on page 285),
and (ii) agent Q1 can do an infinite sequence of a actions because νX.〈a〉X holds
for Q1 (see Q1 : true in line (!) of program examples.cwb and also Example 4.4 on
page 287).

Note that, given a finite set P of agents, we have that: (i) µX.〈a〉X holds for no
agent in P, (ii) νX.〈a〉X holds for the agents in P which can do an infinite sequence
of a actions, also denoted aω, (iii) µX.[a]X holds for all agents in P, except those
which can do aω, and (iv) νX.[a]X holds for all agents in P.

Exercise 4.6. Show that, given a finite set P of agents, we have that:
(i) µX.〈 " 〉X holds for no agent, (ii) νX.〈 " 〉X holds for the agents which can do an
infinite sequence of actions, (iii) µX.[ " ]X holds for all agents in P which cannot do
an infinite sequence of actions, and (iv) νX.[ " ]X holds for all agents in P.

* =======================================================================
* PROVING PROPERTIES OF CCS PROCESSES USING THE MODAL MU-CALCULUS
*
* filename: examples.cwb
* Use of the Edinburgh Concurrency Workbench.
* -----------------------------------------------------------------------
* More on minimal and maximal fixpoints
* -----------------------------------------------------------------------
agent B = a.C; <---a---
agent C = a.B + b.0; B ---a--> C ---b--> 0
agent H = b.0;
prop Maa = min(X.<a><a>X); B: false C: false
prop MabT = min(X.<a><b>T); B: true C: false
prop Mabor = min(X.<a><a>X | <a><b>T); B: true C: false
prop Maband = min(X.<a><a>X & <a><b>T); B: false C: false
prop Naband = max(X.<a><a>X & <a><b>T); B: true C: false
prop Delta = max(X.(<a>T | [-]X)); H: true

* -----------------------------------------------------------------------
agent P1 = a.P2 + b.P4; In P1, P2, P3, and P4 there are no a-cycles.(*)
agent P2 = a.P3 + a.P4; (see also line (!) below) (*)
agent P3 = a.P4; (*)
agent P4 = 0; (*)
* ---------
agent Q1 = a.Q2 + b.Q4; In Q1, Q2, Q3, and Q4 there is an a-cycle: (*)
agent Q2 = a.Q3; (see also line (!) below) (*)
agent Q3 = a.Q4; <-------a-------- (*)
agent Q4 = a.Q2; Q2 --a--> Q3 --a--> Q4 (*)

* ---------
agent R1 = a.R2; <---a---
agent R2 = a.R1 + a.0; R1 ---a--> R2 ---a--> 0
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* ---------
agent T1 = a.T2; <---a---
agent T2 = a.T1; T1 ---a--> T2
* ---------
agent T0 = a.T0;
* -----------------------------------------------------------------------
agent A = a.0; A ---a--> 0

agent D = a.E; a--- G <--a
agent E = b.F + a.G; | |
agent G = a.D; V | <--b
agent F = b.F; D ---a--> E ---b--> F ---
*
* -----------------------------------------------------------------------
prop Ba = [a]F; P1: false Q1: false
prop Bb = [b]F; P2: true Q3: true
*
* -----------------------------------------------------------------------
* Key to the names of properties: M:min, N:max, d:diamond, b:box.
* Thus, for instance, Mda:min,diamond,a Nbb:max,box,b
* ---------
*
prop Mda = min(X.<a>X); A,B,C: false Q1,R1,T1,T0,D,E,F,G: false
prop Nda = max(X.<a>X); A,P1,F: false B,C,Q1,R1,T1,T0,D,E,G: true (!)
prop Mba = min(X.[a]X); A,P1,F: true B,C,Q1,R1,T1,T0,D,E,G: false
prop Nba = max(X.[a]X); A,B,C: true D,E,F,G: true
* ---------

prop Mdb = min(X.<b>X); A,B,C: false D,E,F,G: false
prop Ndb = max(X.<b>X); A,B,C: false D,G: false E,F: true
prop Mbb = min(X.[b]X); A,B,C: true D,G: true E,F: false
prop Nbb = max(X.[b]X); A,B,C: true D,E,F,G: true
* -----------------------------------------------------------------------

prop MM = min(X.<a>(min(Y.<b>Y)) & <a><a><a>X); D: false E,G: false
prop MN = min(X.<a>(max(Y.<b>Y)) & <a><a><a>X); D: false E,G: false
prop NM = max(X.<a>(min(Y.<b>Y)) & <a><a><a>X); D: false E,G: false
prop NN = max(X.<a>(max(Y.<b>Y)) & <a><a><a>X); D: true E,G: false
* -----------------------------------------------------------------------

prop MM1 = min(X.<a>(min(Y.<b>Y)) | <a><a><a>X); D: false E,G: false
prop MN1a = min(X.<a>(max(Y.<b>Y)) | <a><a><a>X); D: true E,G: false
prop MN1b = min(X.<a>(max(Y.<b>Y) | <a><a>X)); D: true E,G: false
prop MN1c = min(X.<a>(max(Y.<b>Y) | <a>X)); D: true E,G: true
prop NM1 = max(X.<a>(min(Y.<b>Y) | <a><a>X)); D: true E,G: true
prop NN1 = max(X.<a>(max(Y.<b>Y) | <a><a>X)); D: true E,G: true
* -----------------------------------------------------------------------

prop Mor = min(X.<a>X | <a>T); Q1,R1,T1,T0: true
prop Mand = min(X.<a>X & <a>T); Q1,R1,T1,T0: false
* ---------

* prop Maa = min(X.<a><a>X); Q1,R1,T1,T0: false
prop M2or = min(X.<a><a>X | <a>T); Q1,R1,T1,T0: true
prop M2and = min(X.<a><a>X & <a>T); Q1,R1,T1,T0: false
prop M3or = min(X.[a]F | <a>X); R1,R2: true T1:false
* -----------------------------------------------------------------------
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prop Ev(Phi) = min(X.(Phi | (<->T & [-]X))); Eventually
prop Inv(Phi) = max(Y.(Phi & [-]Y)); Inevitably

prop Fa = Inv(<a>T); T1,T2: true A,B,C,R1: false
prop Ft = Inv(T); T1,T2,A,B,C,R1: true
prop Fb = Ev(<b>T); D,P1,Q1: true P2: false
prop Fc = Inv(Ev(<b>T)); D: true P1,Q1: false
prop Fd = max(X.T & <->X); R1: true A: false
* =======================================================================
* cwb
* input "examples.cwb";
* checkprop(P1,Nda); (see line (!) above)
* false;
* checkprop(Q1,Nda); (see line (!) above)
* true;
* =======================================================================

5. Implementation of a Local Model Checker

In this section we consider a Prolog program, called lmc.pl, which implements a
local model checker. This lmc.pl program checks whether or not a given modal
µ-calculus assertion holds in a process (or a state) of a given finite-state process
(see [19, Chapter 14]).

In our program lmc.pl, in order to parse and interpret the input string, we use
Definite Clause Grammars [1]. In that formalism, having defined a syntactic category,
say binding(B), we need to call a Prolog goal of the form: binding(B,"...",[]),
for binding the Prolog variable B to the term obtained by parsing the string "...".
Note that the Prolog predicate binding requires a third argument which is an empty
list.

For any process ‘Process’ and any list ‘Definitions’ of process definitions, we
have that the modal µ-calculus assertion ‘Assertion’ holds if and only if the atom
sat(Process, Assertion, Definitions, true) holds.

We also have that the modal µ-calculus assertion ‘Assertion’ does not hold if
and only if the atom sat(Process, Assertion, Definitions, false) holds.

In the program lmc.pl below, the reader will find several comments that will help
him to understand the Prolog code. The characters /* indicate the beginning of a
comment and the characters */ indicate the end of a comment.

At the end of the program, we have added, among other comments, the proof
that Peterson algorithm ensures mutual exclusion. The mutual exclusion property
has been expressed by the modal µ-calculus formula:

¬µX.
(
〈in〉 (〈in〉 true) ∨ 〈 " 〉X)

)

that is, by pushing ¬ inside and substituting ¬X for X,

νX.
(
[in] ([in] false) ∧ [ " ] X)

)
.

Note that these formulas are different from those on page 290, because here we
assume, as in the program on page 271, that in Peterson algorithm the two processes
perform the same in action to enter their critical section, and perform the same out
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action to exit their critical section. Analogously to what we indicated on page 290,
mutual exclusion of Peterson algorithm can also be expressed by the formula:

¬µX.
(
〈out〉 (〈out〉 true) ∨ 〈 " 〉X)

)

that is,

νX.
(
[out ] ([out ] false) ∧ [ " ] X)

)

because we can have two consecutive out actions iff two agents have been in their
critical section at the same time.

Note also that in program lmc.pl the negation has been denoted by - (minus),
not by ~ (tilde), as in the program peterson-mucalculus.cwb on page 290.

/**
* ======================================================================
* LOCAL MODEL CHECKER
* filename: lmc.pl
*
* =================================================================== */

/* Generator of new symbols. */

:- assert(current_index(0)). /* this is executed at compile time. */

gensym(NewName) :-
(current_index(I) -> retract(current_index(I)) ; I = 0),
I1 is I + 1, assert(current_index(I1)),
name(I1,NameI1), name(NewName,[120, 95 | NameI1]). /* 120 95 is x_ */

/* ----------------------------------------------------------------------
* Appending lists. */

append([],L,L).
append([X|Xs],Ys,[X|Zs]) :- append(Xs,Ys,Zs).

/* ----------------------------------------------------------------------
* Deleting all occurrences of an element from a list. */

del(_,[],[]).
del(X,[X|L],T) :- !, del(X,L,T).
del(X,[Y|Ys],[Y|Zs]) :- del(X,Ys,Zs).

/* ----------------------------------------------------------------------
* Member of a list. */

member(X,[X|_]) :- !.
member(X,[_|T]) :- member(X,T).

/* ----------------------------------------------------------------------
* Union of two sets:
* the sets are represented as lists without repetitions.
*
* Note that the order of the elements in a list is significant,
* while in a set the order of the elements is not significant. */

union([],Ys,Ys).
union([X|Xs],Ys,Zs) :- member(X,Ys), !, union(Xs,Ys,Zs).
union([X|Xs],Ys,[X|Zs]) :- \+ member(X,Ys), union(Xs,Ys,Zs).



5. IMPLEMENTATION OF A LOCAL MODEL CHECKER 297

/**
* ----------------------------------------------------------------------
* sat(Process,Assertion,Definitions,T)
*
* We use the if-then-else construct: P -> Q ; R.
* Recall that the construct: P -> Q ; R only explores the first
* solution to the goal P.
* sat(P,B,Defs,T) never fails and after solving sat(P,B,Defs,T),
* we have that the variable T is bound either to tt or ff.
* ----------------------------------------------------------------------
*/

sat(_P,ff,_,T) :- T = ff, !.
sat(_P,tt,_,T) :- T = tt, !.

/* ----------------------------------------------------------------------
/* setting the atomic assertions ‘a’ and ‘not(b)’, denoted at(a) and
* not(at(b)), respectively, for process ide(p).
* For other atomic assertions and/or processes do likewise. */

sat(ide(p),at(a),_,T) :- T = tt, !. % <---------------------- clause (c1)
sat(ide(p),at(b),_,T) :- T = ff, !. % <---------------------- clause (c2)

/* ------------------------------------------------------------------- */
sat(P,not(B),Defs,NT) :- sat(P,B,Defs,T), !, (T = tt -> NT = ff ;

(T = ff -> NT = tt )), !.

sat(P,and(B1,B2),Defs,T) :- sat(P,B1,Defs,T1), !, (T1 = ff -> T = ff ;
(sat(P,B2,Defs,T2) -> T = T2 )), !.

sat(P,or(B1,B2),Defs,T) :- sat(P,B1,Defs,T1), !, (T1 = tt -> T = tt ;
(sat(P,B2,Defs,T2) -> T = T2 )), !.

sat(P,diam(Act,B),Defs,T) :- trans(P,Act,Defs,Q), sat(Q,B,Defs,T1),
T1 = tt, !, T = tt.

sat(_P,diam(_Act,_B),_Defs,T) :- T = ff, !.
sat(P,ex_diam(B),Defs,T) :- trans(P,_,Defs,Q), sat(Q,B,Defs,T1),

T1 = tt, !, T = tt.
sat(_P,ex_diam(_B),_Defs,T) :- T = ff, !.

sat(P,box(Act,B),Defs,T) :- sat(P,not(diam(Act,not(B))),Defs,T), !.
sat(P,ex_box(B),Defs,T) :- sat(P,not(ex_diam(not(B))),Defs,T), !.

sat(P,nu(var(X),Set,B),Defs,T) :-
member(P,Set) -> (T = tt) ;

(union([P],Set,Set1),
subst(var(X),nu(var(X),Set1,B),B,NB),
sat(P,NB,Defs,T)), !.

/* Set is a list of bindings. For instance, for processes q1t and p1
* Set is the following list of pairs:
* [ [ide(q1t), sum([dot(out(a),ide(q1t)), dot(in(c),ide(q1t)),
* dot(in(d),ide(q1f))])],
* [ide(p1), dot(out(c),dot(out(u),ide(p11)))] ] */

sat(P,mu(var(X),Set,B),Defs,T) :-
subst(var(X),not(var(X)),B,NB),
sat(P,not(nu(var(X),Set,not(NB))),Defs,T), !.
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/* The following clause makes ‘failure to prove sat(...)’ equivalent to
‘sat(...) does not hold’, that is, we assume negation-as-failure. This
clause should be the LAST clause for sat/4. To see when it is called,
use, instead, for instance: sat(_P,_S,_D,T) :- print(’.’), T=ff, !.
This clause should never be called. */

sat(_P,_S,_D,T) :- T = ff, !. % <---------------------------------------
/* ----------------------------------------------------------------------
* lookup(ProcessIdentifier, ProcessDefinition, ProcessDefinitionList) */

lookup(ide(P),Def,[[ide(Q), Def1]|_T]) :- P = Q, Def = Def1, !.
lookup(ide(P),Def,[[ide(Q), _Def]| T]) :- \+ (P = Q), lookup(ide(P),Def,T).

/* ----------------------------------------------------------------------
* Action names */

act(in(_)).
act(out(_)).
act(tau).
/* ----------------------------------------------------------------------
* compl(Action, ComplementedAction)
* compl_list(Action, ComplementedAction) */

compl(in(P),out(P)).
compl(out(P),in(P)).
compl_list([],[]).
compl_list([A|As],[B|Bs]) :- compl(A,B), compl_list(As,Bs).
/* ----------------------------------------------------------------------
* Transitions of CCS terms.
* transition(Process,Action,ProcessDefinitionList,NewProcess)
*
* During transitions, the definitions are kept in the argument Defs,
* that is the ProcessDefinitionList.
* trans(P,Act,Def,Q) may fail. */

trans(dot(Act,P),Act,_Defs,P) :- act(Act).

trans(sum([P|_]),Act,Defs,Q) :- trans(P,Act,Defs,Q).
trans(sum([_|Ps]),Act,Defs,Q) :- trans(sum(Ps),Act,Defs,Q).

trans(par(P,Q),Act,Defs,par(P1,Q)) :-
trans(P,Act,Defs,P1).

trans(par(P,Q),Act,Defs,par(P,Q1)) :-
trans(Q,Act,Defs,Q1).

trans(par(P,Q),tau,Defs,par(P1,Q1)) :-
trans(P,ActP,Defs,P1), trans(Q,ActQ,Defs,Q1),
compl(ActP,ActQ).

trans(restr(P,L),Act,Defs,restr(P1,L)) :- compl_list(L,CL),
union(L,CL,LCL), trans(P,Act,Defs,P1),
\+ member(Act,LCL).

/* unfolding of an identifier.
ide(P) should be of the form: ide(c), for some constant c. */

trans(ide(P),Act,Defs,Q) :- P \= 0, lookup(ide(P),Def,Defs),
trans(Def,Act,Defs,Q).

/* No other clauses for trans/4! <----------------------------------- */
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/* ----------------------------------------------------------------------
* Free Variables.
* freeV(F,S) should never fail.
* ------------------------------------------------------------------- */

freeV(tt,[]) :- !.
freeV(ff,[]) :- !.
freeV(at(_),[]) :- !.
freeV(var(X),[X]) :- !.

freeV(not(B),S) :- freeV(B,S), !.
freeV(and(B1,B2),S) :- freeV(B1,S1), freeV(B2,S2), union(S1,S2,S), !.
freeV(or(B1,B2),S) :- freeV(B1,S1), freeV(B2,S2), union(S1,S2,S), !.

freeV(diam(_,B),S) :- freeV(B,S), !.
freeV(ex_diam(B),S) :- freeV(B,S), !.
freeV(box(_,B),S) :- freeV(B,S), !.
freeV(ex_box(B),S) :- freeV(B,S), !.

freeV(nu(var(X),_,B),S) :- freeV(B,S1), del(X,S1,S), !.
freeV(mu(var(X),_,B),S) :- freeV(B,S1), del(X,S1,S), !.

/* ----------------------------------------------------------------------
* Substitution of ‘Value’ for ‘Variable’ in ‘Term’,
* thereby deriving
* ‘NewTerm’: subst(Variable, Value, Term, NewTerm).
* subst(var(X),V,T,NT) should never fail.
* ------------------------------------------------------------------- */

subst(_,_,tt,NT) :- !, NT = tt.
subst(_,_,ff,NT) :- !, NT = ff.
subst(_,_,at(P),NT) :- !, NT = at(P).

subst(var(X),V,var(X),V) :- !.
subst(var(X),_,var(Y),var(Y)) :- X \= Y, !.

subst(var(X),V,not(B),not(NB)) :- subst(var(X),V,B,NB), !.
subst(var(X),V,and(B1,B2),and(NB1,NB2)) :-

subst(var(X),V,B1,NB1), subst(var(X),V,B2,NB2), !.
subst(var(X),V,or(B1,B2),or(NB1,NB2)) :-

subst(var(X),V,B1,NB1), subst(var(X),V,B2,NB2), !.

subst(var(X),V,diam(Act,B),diam(Act,NB)) :-
subst(var(X),V,B,NB), !.

subst(var(X),V,ex_diam(B),ex_diam(NB)) :-
subst(var(X),V,B,NB), !.

subst(var(X),V,box(Act,B),box(Act,NB)) :-
subst(var(X),V,B,NB), !.

subst(var(X),V,ex_box(B),ex_box(NB)) :-
subst(var(X),V,B,NB), !.

/* ----------------------------------------------------------------------
* Substitution for Maximal and Minimal fixpoints. */

subst(var(X),_T,nu(var(X),Set,B),nu(var(X),Set,NB)) :- NB = B, !.
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subst(var(X),V,nu(var(Y),Set,B),nu(var(Z),Set,NB)) :-
X \= Y, freeV(V,FV), freeV(B,FB),
member(Y,FV), member(X,FB), gensym(Z),
subst(var(Y),var(Z),B,B1), subst(var(X),V,B1,NB), !.

subst(var(X),V,nu(var(Y),Set,B),nu(var(Y),Set,NB)) :-
X \= Y, freeV(V,FV), freeV(B,FB),
(\+ member(Y,FV) ; \+ member(X,FB)),
subst(var(X),V,B,NB), !.

subst(var(X),V,mu(var(Y),Set,B),mu(var(Z),Set,NB)) :-
subst(var(X),V,nu(var(Y),Set,B),nu(var(Z),Set,NB)), !.

/**
* ======================================================================
* Use of DEFINITE CLAUSE GRAMMAR for the input.
*
* Correctness of the local model checker requires that
* the given assertion should have DISTINCT bound variables. <<==========
*
* Do not insert blank spaces in the input string!
* Note that we can add extra round parentheses ‘(’ and ‘)’ around
* assertions and processes.
* ----------------------------------------------------------------------
*
* assertion f ::= tt | ff | <----------- truth values
* {d} | <----------- atomic assertion
* -f | (f*f) | (f+f) |
* <a>f | <>f | [a]f | []f <--- a is an input-
* nx.f | mx.f | output action
* (f)
*
* atomic assertion d ::= a | ... | z
*
* input-output action ioact ::= act | !act
* act ::= a | ... | z
*
* variable x ::= a | ... | z
* ----------------------------------------------------------------------
* process p ::= a.p | sum([p,p,...]) | p|p |
* (p[a,b,...]) | <------------------ for restriction
* i | (a, b,... are input-output actions)
* (p)
*
* process-identifier i ::= 0 | letter(letter+digit)*
*
* binding: i=p
* definitions: [binding, binding, ...]
* ------------------------------------------------------------------- */

/* ----------------------------------------------------------------------
* parsing an assertion: */

assn(B) --> "{", atomic_assn(B1), "}", {B = at(B1)}.

assn(B) --> "(", assn(B1), "*", assn(B2), ")", {B = and(B1,B2)}.
assn(B) --> "(", assn(B1), "+", assn(B2), ")", {B = or(B1,B2)}.
assn(B) --> "-", assn(B1), {B = not(B1)}.

assn(B) --> "<>", assn(B1), {B = ex_diam(B1)}.
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assn(B) --> "<", ioact(A), ">", assn(B1), {B = diam(A,B1)}.

assn(B) --> "[]", assn(B1), {B = ex_box(B1)}.
assn(B) --> "[", ioact(A), "]", assn(B1), {B = box(A,B1)}.

assn(B) --> "n", boolvar(X), ".", assn(B1), {B = nu(var(X),[],B1)}.
assn(B) --> "m", boolvar(X), ".", assn(B1), {B = mu(var(X),[],B1)}.

assn(B) --> "(", assn(B1), ")", {B = B1}.

assn(B) --> truthval(B).
assn(B) --> boolvar(B1), {B = var(B1)}.

/* parsing an atomic assertion */
atomic_assn(X) --> [C], {"a"=<C, C=<"z", name(X,[C])}.

/* parsing an truth value: it is either "tt" or "ff" */

truthval(X) --> [C,C], {C = 116, name(X,[C,C])}.% this is "tt". 116 is t.
truthval(X) --> [C,C], {C = 102, name(X,[C,C])}.% this is "ff". 102 is f.

/* parsing a boolean variable: */
boolvar(X) --> [C], {"a"=<C, C=<"z", name(X,[C])}.

/* parsing an input-output action: */
ioact(X) --> act(X1), {X = in(X1)}.
ioact(X) --> "!", act(X1), {X = out(X1)}.
act(X) --> [C], {"a"=<C, C=<"z", name(X,[C])}.

/* ----------------------------------------------------------------------
* parsing a process: */

binding(B) --> procname(F), "=", proc(T), {B = [F,T]}.

proc(P) --> ioact(X), ".", proc(P1), {P = dot(X,P1)}.
proc(P) --> "sum([", proclist(L), "])", {P = sum(L)}.
proc(P) --> "(", proc(P1), "|", proc(P2), ")", {P = par(P1,P2)}.
proc(P) --> "(", proc(P1), "[", actlist(L), "])", {P = restr(P1,L)}.
proc(P) --> "(", proc(P1), ")", {P = P1}.
proc(P) --> procname(P1), {P = P1}.

proclist(L) --> proc(P), ",", proclist(Ps), {L = [P|Ps]}.
proclist(L) --> proc(P), {L = [P]}.

actlist(L) --> ioact(X), ",", actlist(Xs), {L = [X|Xs]}.
actlist(L) --> ioact(X), {L = [X]}.

/* ----------------------------------------------------------------------
* A process identifier is either 0 or a sequence of one letter followed
* by zero or more letters or digits. */

procname(F) --> letter(F1), procname1(F2),
{name(F1,N1), name(F2,N2), append(N1,N2,N3), name(F0,N3),

F = ide(F0)}. % <------- here is ide(_)

procname(F) --> letter(F1), {F = ide(F1)}.
procname(F) --> "0", {F = ide(0)}.
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procname1(F) --> letterdigit(F1), procname1(F2),
{name(F1,N1), name(F2,N2), append(N1,N2,N3), name(F,N3)}.

procname1(F) --> letterdigit(F).

letterdigit(F) --> letter(F).
letterdigit(F) --> digit(F).
letter(X) --> [C], {"a"=<C, C=<"z", name(X,[C])}.

/* e.g., letter(X,"y",[]) gives X = y */
digit(X) --> [C], {"0"=<C, C=<"9", X is C - "0"}.

/* e.g., digit(X,"5",[]) gives X = 5 */
/**
* ======================================================================
* Various tests
* tt stands for true. If T is tt then the property holds.
* ff stands for false. If T is ff then the property does not hold.
* =================================================================== */

/* P = a.P
* To show: P |= nu X. {} (<a> tt /\ [a]X). T is tt (1)
* To show: P |= mu X. {} (<a> tt /\ [a]X). T is ff (2) */

w1(T) :- sat(ide(p),
nu(var(x),[], and(diam(in(a), tt), box(in(a),var(x))) ),
[[ide(p), dot(in(a),ide(p))]],

T). /* T is tt (1) */
w2(T) :- sat(ide(p),

mu(var(x),[], and(diam(in(a), tt), box(in(a),var(x))) ),
[[ide(p), dot(in(a),ide(p))]],

T). /* T is ff (2) */

/* ----------------------------------------------------------------------
* P = a.Q; Q = a.P;
* To show: P |= nu X. {} <a>X T is tt (3)
* To show: P |= mu X. {} <a>X T is ff (4) */

w3(T) :- binding(P,"p=a.q",[]), binding(Q,"q=a.p",[]),
sat(ide(p),

nu(var(x),[],diam(in(a),var(x))),
[P,Q],

T). /* T is tt (3) */

w4(T) :- binding(P,"p=a.q",[]), binding(Q,"q=a.p",[]),
sat(ide(p),

mu(var(x),[],diam(in(a),var(x))),
[P,Q],

T). /* T is ff (4) */

/* inevitably <a> tt, that is, nu X. {} (<a> tt /\ [-]X)), holds for P */
w5(T) :- binding(P,"p=a.q",[]), binding(Q,"q=a.p",[]),

sat(ide(p),
nu(var(x),[],(and(diam(in(a),tt),ex_box(var(x))))),
[P,Q],

T). /* T is tt (5) */

/* ----------------------------------------------------------------------
* P = a.Q + a.0; Q = a.P;
* To show: P |= nu X. {} (<a> tt /\ <a> <a> X) T is tt (6)
* To show: P |= mu X. {} (<a> tt /\ <a> <a> X) T is ff (7) */
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w6(T) :- binding(P,"p=sum([a.q,a.0])",[]), binding(Q,"q=a.p",[]),
sat(ide(p),

nu(var(x),[], and(diam(in(a),tt),
diam(in(a),diam(in(a),var(x))) )),

[P,Q],
T). /* T is tt (6) */

w7(T) :- binding(P,"p=sum([a.q,a.0])",[]), binding(Q,"q=a.p",[]),
sat(ide(p),

mu(var(x),[], and(diam(in(a),tt),
diam(in(a),diam(in(a),var(x))) )),

[P,Q],
T). /* T is ff (7) */

/* ----------------------------------------------------------------------
* P = a.P + a.0;
* To show: P |= nu X. {} (<a> tt /\ <a> X) T is tt (8)
* To show: P |= mu X. {} (<a> tt /\ <a> X) T is ff (9) */

w8(T) :- binding(P,"p=sum([a.p,a.0])",[]),
sat(ide(p),

nu(var(x),[], and(diam(in(a),tt),
diam(in(a),var(x)) )),

[P],
T). /* T is tt (8) */

w9(T) :- binding(P,"p=sum([a.p,a.0])",[]),
sat(ide(p),

mu(var(x),[], and(diam(in(a),tt),
diam(in(a),var(x)) )),

[P],
T). /* T is ff (9) */

/* inevitably <a> tt, that is, nu X. {} (<a> tt /\ [-]X)),
does NOT hold for P */

w10(T) :- binding(P,"p=sum([a.p,a.0])",[]),
sat(ide(p),

nu(var(x),[],(and(diam(in(a),tt),ex_box(var(x))))),
[P],

T). /* T is ff (10) */

/* ----------------------------------------------------------------------
* P = a.Q; Q = a.P + a.0;
* To show: P |= nu X. {} ([a] ff \/ <a> X) T is tt (11)
* To show: P |= mu X. {} ([a] ff \/ <a> X) T is tt (12)
* To show: P |= nu X. {} (<a><a> tt /\ <a><a> X) T is tt (13)
* To show: P |= mu X. {} (<a><a> tt /\ <a><a> X) T is ff (14) */

w11(T) :- binding(P,"p=a.q",[]), binding(Q,"q=sum([a.p,a.0])",[]),
sat(ide(p),

nu(var(x),[], or(box(in(a),ff), diam(in(a),var(x)))),
[P,Q],

T). /* T is tt (11) */

w12(T) :- binding(P,"p=a.q",[]), binding(Q,"q=sum([a.p,a.0])",[]),
sat(ide(p),

mu(var(x),[], or(box(in(a),ff), diam(in(a),var(x)))),
[P,Q],

T). /* T is tt (12) */
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w13(T) :- binding(P,"p=a.q",[]), binding(Q,"q=sum([a.p,a.0])",[]),
sat(ide(p),

nu(var(x),[], and(diam(in(a),diam(in(a),tt)),
diam(in(a),diam(in(a),var(x))))),

[P,Q],
T). /* T is tt (13) */

w14(T) :- binding(P,"p=a.q",[]), binding(Q,"q=sum([a.p,a.0])",[]),
sat(ide(p),

mu(var(x),[], and(diam(in(a),diam(in(a),tt)),
diam(in(a),diam(in(a),var(x))))),

[P,Q],
T). /* T is ff (14) */

/* inevitably <a> tt, that is, nu X. {} (<a> tt /\ [-]X)),
does NOT hold for P */

w15(T) :- binding(P,"p=a.q",[]), binding(Q,"q=sum([a.p,a.0])",[]),
sat(ide(p),

nu(var(x),[],(and(diam(in(a),tt),ex_box(var(x))))),
[P,Q],

T). /* T is ff (15) */
/**
* ----------------------------------------------------------------------
* Sender = a.Sender1
* Sender1 = !b.( d.Sender + c.Sender1)
* Medium = b.(!c.Medium + !e.Medium)
* Receiver = e.f.!d.Receiver
* System = (Sender | Medium | Receiver)\{b,c,d,e}
*
* To show: System |= inv ([f] ev (<a> tt))
* where: inv(A) = nu X. {} (A /\ [.]X)
* and ev(A) = mu Y. {} (A \/ (<.> tt /\ [.]Y)),
* that is, to show:
* System |= nu X.{}(([f] mu Y.{}(<a>tt \/ (<.>tt /\ [.]Y))) /\ [.]X)
* (16)
* w16(T) holds: T is tt. (16) holds. */

w16(T) :- assn(F, "nx.(([f](my.((<a>tt)+((<>tt)*[]y))))*[]x)", []),
binding(Sender, "sender=a.sender1", []),
binding(Sender1, "sender1=!b.sum([d.sender,c.sender1])", []),
binding(Medium, "medium=b.sum([!c.medium,!e.medium])", []),
binding(Receiver,"receiver=e.f.!d.receiver", []),
binding(System, "system=(((sender|medium)|receiver)[b,c,d,e])",[]),
sat(ide(system),F,

[Sender, Sender1, Medium, Receiver, System],
T). /* T is tt (16) */

/* ----------------------------------------------------------------------
* To show:
* System |= nu X.{}(([a] mu Y.{}(<f>tt \/ (<.>tt /\ [.]Y))) /\ [.]X)
* (17)
* Note: (17) is (16) with ’a’ and ’f’ interchanged.
* w17(T) does NOT hold: T is ff. (17) does not hold.
*
* This is due to the fact that Sender1 and Medium may ’talk to each
* other’ forever: Sender1 always chooses ’b. c.Sender1 and
* Medium always chooses b.’c.Medium */
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w17(T) :- assn(F, "nx.(([a](my.((<f>tt)+((<>tt)*[]y))))*[]x)", []),
binding(Sender, "sender=a.sender1", []),
binding(Sender1, "sender1=!b.sum([d.sender,c.sender1])", []),
binding(Medium, "medium=b.sum([!c.medium,!e.medium])", []),
binding(Receiver,"receiver=e.f.!d.receiver", []),
binding(System, "system=(((sender|medium)|receiver)[b,c,d,e])",[]),
sat(ide(system),F,

[Sender, Sender1, Medium, Receiver, System],
T). /* T is ff (17) */

/* ----------------------------------------------------------------------
* P1 = a.P2 + b.P4; P2 = a.P3 + a.P4; P3 = a.P4; P4 = 0;
* To show: P1 |= nu X. {} <a>X T is ff (18) */

w18(T) :- sat(ide(p1),
nu(var(x),[],diam(in(a), var(x))),
[[ide(p1), sum([dot(in(a),ide(p2)), dot(in(b),ide(p4))])],
[ide(p2), sum([dot(in(a),ide(p3)), dot(in(a),ide(p4))])],
[ide(p3), dot(in(a),ide(p4))],
[ide(p4), ide(0)]],

T). /* T is ff (18) */

/* ----------------------------------------------------------------------
* Q1 = a.Q2 + b.Q4; Q2 = a.Q3; Q3 = a.Q4; Q4 = a.Q2;
* To show: Q1 |= nu X. {} <a>X T is tt (19) */

w19(T) :- sat(ide(p1),
nu(var(x),[],diam(in(a), var(x))),
[[ide(p1), sum([dot(in(a),ide(p2)), dot(in(b),ide(p4))])],
[ide(p2), dot(in(a),ide(p3))],
[ide(p3), dot(in(a),ide(p4))],
[ide(p4), dot(in(a),ide(p2))]],

T). /* T is tt (19) */

/* ----------------------------------------------------------------------
* S = a.R; R = a.S + b.0;
* To show: S |= mu X. {} <a>(<b> tt \/ <a>X) T is tt (20)
* To show: S |= mu X. {} <a>(<b> tt /\ <a>X) T is ff (21)
* To show: S |= nu X. {} <a>(<b> tt \/ <a>X) T is tt (22)
* To show: S |= nu X. {} <a>(<c> tt \/ <a>X) T is tt (23)
* To show: S |= nu X. {} <a>(<b> tt /\ <a>X) T is tt (24)
* To show: S |= nu X. {} <a>(<c> tt /\ <a>X) T is ff (25) */

w20(T) :- sat(ide(s),
mu(var(x),[],diam(in(a), or(diam(in(b),tt),diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(0))])]],

T). /* T is tt (20) */

w21(T) :- sat(ide(s),
mu(var(x),[],diam(in(a), and(diam(in(b),tt),diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(0))])]],

T). /* T is ff (21) */
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w22(T) :- sat(ide(s),
nu(var(x),[],diam(in(a), or(diam(in(b),tt),diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(0))])]],

T). /* T is tt (22) */

w23(T) :- sat(ide(s),
nu(var(x),[],diam(in(a), or(diam(in(c),tt),diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(0))])]],

T). /* Notice: in(c). T is tt (23) */

w24(T) :- sat(ide(s),
nu(var(x),[],diam(in(a), and(diam(in(b),tt),diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(0))])]],

T). /* T is tt (24) */

w25(T) :- sat(ide(s),
nu(var(x),[],diam(in(a), and(diam(in(c),tt),diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(0))])]],

T). /* Notice: in(c). T is ff (25) */

/* ----------------------------------------------------------------------
* S = a.R; R = a.S + b.W; W = b.W;
* To show: S |= mu X. {} <a>((nu Y. {} <b>Y) \/ <a>X) T is tt (26)
* To show: R |= mu X. {} <a>((nu Y. {} <b>Y) \/ <a>X) T is ff (27)
* To show: S |= nu X. {} <a>((nu Y. {} <b>Y) \/ <a>X) T is tt (28)
* To show: R |= nu X. {} <a>((nu Y. {} <b>Y) \/ <a>X) T is tt (29)
*
* See also file "examples.cwb". Processes D, E, and F of "examples.cwb"
* are similar (not equal) to our processes S, R, and W, respectively.
* prop MN1b = min(X.<a>(max(Y.<b>Y) | <a><a>X)); D: true E: false (26’)
* prop NN1 = max(X.<a>(max(Y.<b>Y) | <a><a>X)); D: true E: true (29’)
* */

w26(T) :- sat(ide(s),
mu(var(x),[],diam(in(a), or(nu(var(y),[],diam(in(b),var(y))),

diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(w))])],
[ide(w), dot(in(b),ide(w))]],

T). /* T is tt (26) */

w27(T) :- sat(ide(r),
mu(var(x),[],diam(in(a), or(nu(var(y),[],diam(in(b),var(y))),

diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(w))])],
[ide(w), dot(in(b),ide(w))]],

T). /* T is ff (27) */
w28(T) :- sat(ide(s),

nu(var(x),[],diam(in(a), or(nu(var(y),[],diam(in(b),var(y))),
diam(in(a),var(x))))),

[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(w))])],
[ide(w), dot(in(b),ide(w))]],

T). /* T is tt (28) */
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w29(T) :- sat(ide(r),
nu(var(x),[],diam(in(a), or(nu(var(y),[],diam(in(b),var(y))),

diam(in(a),var(x))))),
[[ide(s), dot(in(a),ide(r))],
[ide(r), sum([dot(in(a),ide(s)), dot(in(b),ide(w))])],
[ide(w), dot(in(b),ide(w))]],

T). /* T is tt (29) */
/* ======================================================================
* Testing the transitions
* ------------------------------------------------------------------- */

/* a.0 | !a.0 */
t1(Act,T) :- trans(par(ide(p),ide(q)), Act,

[[ide(p), dot(in(a), ide(0))], [ide(q), dot(out(a), ide(0))]],
T).

/* ?- t1(A,T).
* A = in(a),
* T = par(ide(0),ide(q)) ? ;
* A = out(a),
* T = par(ide(p),ide(0)) ? ;
* A = tau,
* T = par(ide(0),ide(0)) ? ;
* no

*/
/* (a.0 | !a.0)\[!a] ------------------------------------------------ */
t2(Act,T) :- trans(restr(par(ide(p),ide(q)),[out(a)]), Act,

[[ide(p), dot(in(a), ide(0))], [ide(q), dot(out(a), ide(0))]],
T).

/* ?- t2(A,T).
* A = tau,
* T = restr(par(ide(0),ide(0)),[out(a)]) ? ;
* no */

/* (a.0 | !a.0)\[b] ------------------------------------------------ */
t3(Act,T) :- trans(restr(par(ide(p),ide(q)),[in(b)]), Act,

[[ide(p), dot(in(a), ide(0))], [ide(q), dot(out(a), ide(0))]],
T).

/* ?- t3(A,T).
* A = in(a),
* T = restr(par(ide(0),ide(q)),[in(b)]) ? ;
* A = out(a),
* T = restr(par(ide(p),ide(0)),[in(b)]) ? ;
* A = tau,
* T = restr(par(ide(0),ide(0)),[in(b)]) ? ;
* no */

/* (a.0 + a.0 + b.0) --------------------------------------------- */
t4(Act,T) :- trans(sum([dot(in(a),ide(0)), dot(in(a),ide(0)),

dot(in(b),ide(0))]),Act,[],T).
/* ?- t4(A,T).
* A = in(a),
* T = ide(0) ? ;
* A = in(a),
* T = ide(0) ? ;
* A = in(b),
* T = ide(0) ? ;
* no */
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/* p = a.0 and q = !a.0. Thus, p -> 0 with action in(a). ---------- */
t5(Act,T) :- trans(ide(p), Act,

[[ide(p), dot(in(a), ide(0))], [ide(q), dot(out(a), ide(0))]],
T).

/* ?- t5(A,T).
* A = in(a),
* T = ide(0) ? ;
* no */

/* ======================================================================
* Testing satisfiability of atomic assertions
* p = a.0 (a is an action here)
* For process p the atomic assertion a holds and the atomic assertion b
* does not hold (see the above clauses (c1) and (c2)).
* ----------------------------------------------------------------------
*/

w30(T) :- sat(ide(p),
and(at(a),diam(in(a),tt)),
[[ide(p), dot(in(a),ide(0))]],
T). /* T is tt (30) */

w31(T) :- assn(F, "({b}*<a>tt)", []),
binding(P, "p=a.0", []),
sat(ide(p), F, [P], T). /* T is ff (31) */

/* ======================================================================
* Peterson Algorithm: Mutual Exclusion Property
*
* mutex(T) holds: T is tt.
*
* We can replace the assertion:
* "nx.(([i]([i]ff))*([]x))"
* by the assertion (see mutex1(T) below):
* "-(mx.((<i>(<i>tt))+(<>x)))"
* ------------------------------------------------------------------- */

mutex(T) :- assn(F, "nx.(([i]([i]ff))*([]x))", []),

binding(Q1t, "q1t=sum([!a.q1t,c.q1t,d.q1f])", []),
binding(Q1f, "q1f=sum([!b.q1f,c.q1t,d.q1f])", []),
binding(Q2t, "q2t=sum([!e.q2t,g.q2t,h.q2f])", []),
binding(Q2f, "q2f=sum([!f.q2f,g.q2t,h.q2f])", []),
binding(S1, "s1=sum([!r.s1,u.s1,w.s2])", []),
binding(S2, "s2=sum([!s.s2,u.s1,w.s2])", []),

binding(P1, "p1=!c.!u.p11", []),
binding(P11, "p11=sum([e.p11,r.p11,f.p12,s.p12])", []),
binding(P12, "p12=i.o.!d.p1", []),
binding(P2, "p2=!g.!w.p21", []),
binding(P21, "p21=sum([a.p21,s.p21,b.p22,r.p22])", []),
binding(P22, "p22=i.o.!h.p2", []),

binding(Peterson,
"pet=((p1|(p2|(q1f|(q2f|s1))))[a,b,c,d,e,f,g,h,r,s,u,w])",[]),

sat(ide(pet), F,
[Q1t,Q1f,Q2t,Q2f,S1,S2,P1,P11,P12,P2,P21,P22,Peterson],

T). /* T is tt */
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/* ------------------------------------------------------------------- */

mutex1(T) :- assn(F, "-(mx.((<i>(<i>tt))+(<>x)))", []),

binding(Q1t, "q1t=sum([!a.q1t,c.q1t,d.q1f])", []),
binding(Q1f, "q1f=sum([!b.q1f,c.q1t,d.q1f])", []),
binding(Q2t, "q2t=sum([!e.q2t,g.q2t,h.q2f])", []),
binding(Q2f, "q2f=sum([!f.q2f,g.q2t,h.q2f])", []),
binding(S1, "s1=sum([!r.s1,u.s1,w.s2])", []),
binding(S2, "s2=sum([!s.s2,u.s1,w.s2])", []),

binding(P1, "p1=!c.!u.p11", []),
binding(P11, "p11=sum([e.p11,r.p11,f.p12,s.p12])", []),
binding(P12, "p12=i.o.!d.p1", []),
binding(P2, "p2=!g.!w.p21", []),
binding(P21, "p21=sum([a.p21,s.p21,b.p22,r.p22])", []),
binding(P22, "p22=i.o.!h.p2", []),

binding(Peterson,
"pet=((p1|(p2|(q1f|(q2f|s1))))[a,b,c,d,e,f,g,h,r,s,u,w])",[]),

sat(ide(pet), F,
[Q1t,Q1f,Q2t,Q2f,S1,S2,P1,P11,P12,P2,P21,P22,Peterson],

T). /* T is tt */

/* ======================================================================
* Testing the order of possible actions
* p = a.0 + a.(b.0) p can do an ‘a’ action and then a ‘b’ action
* ----------------------------------------------------------------------
*/

w32(T) :- binding(P,"p=sum([a.0,a.(b.0)])",[]),
sat(ide(p),

diam(in(a),diam(in(b),tt)),
[P],

T). /* T is tt (32) */
/* =================================================================== */
go1 :-
w1(T1), print(’ 01tt:’), print(T1), w2(T2), print(’ 02ff:’), print(T2),
w3(T3), print(’ 03tt:’), print(T3), w4(T4), print(’ 04ff:’), print(T4),
w5(T5), print(’ 05tt:’), print(T5), w6(T6), print(’ 06tt:’), print(T6),
w7(T7), print(’ 07ff:’), print(T7), w8(T8), print(’ 08tt:’), print(T8),
w9(T9), print(’ 09ff:’), print(T9),
nl, w10(T10), print(’ 10ff:’), print(T10),
w11(T11),print(’ 11tt:’),print(T11), w12(T12),print(’ 12tt:’),print(T12),
w13(T13),print(’ 13tt:’),print(T13), w14(T14),print(’ 14ff:’),print(T14),
w15(T15),print(’ 15ff:’),print(T15), w16(T16),print(’ 16tt:’),print(T16),
w17(T17),print(’ 17ff:’),print(T17), w18(T18),print(’ 18ff:’),print(T18),
nl, w19(T19), print(’ 19tt:’), print(T19),
w20(T20),print(’ 20tt:’),print(T20), w21(T21),print(’ 21ff:’),print(T21),
w22(T22),print(’ 22tt:’),print(T22), w23(T23),print(’ 23tt:’),print(T23),
w24(T24),print(’ 24tt:’),print(T24), w25(T25),print(’ 25ff:’),print(T25),
w26(T26),print(’ 26tt:’),print(T26), w27(T27),print(’ 27ff:’),print(T27),
nl, w28(T28),print(’ 28tt:’),print(T28),
w29(T29),print(’ 29tt:’),print(T29), w30(T30),print(’ 30tt:’),print(T30),
w31(T31),print(’ 31ff:’),print(T31), w32(T32),print(’ 32tt:’),print(T32),
(T1=tt, T2=ff, T3=tt, T4=ff, T5=tt, T6=tt, T7=ff, T8=tt, T9=ff, T10=ff,
T11=tt, T12=tt, T13=tt, T14=ff, T15=ff, T16=tt, T17=ff, T18=ff, T19=tt,
T20=tt, T21=ff, T22=tt, T23=tt, T24=tt, T25=ff, T26=tt, T27=ff, T28=tt,
T29=tt, T30=tt, T31=ff, T32=tt) -> (print(’ *yes’)); true.
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/* --------------------- */

ww(Form,T) :- assn(F, Form, []),
binding(Sender, "sender=a.sender1", []),
binding(Sender1, "sender1=!b.sum([c.sender1,d.sender])", []),
binding(Medium, "medium=b.sum([!e.medium,!c.medium])", []),
binding(Receiver,"receiver=e.f.!d.receiver", []),
binding(System, "system=((sender|(medium|receiver))[b,c,d,e])",[]),
sat(ide(system),F,

[Sender, Sender1, Medium, Receiver, System],
T).

go2 :- print(’ Communication Channel:’),
F1 = "nx.(([a](my.((<a>tt)+((<>tt)*[]y))))*[]x)",
F16 = "nx.(([f](my.((<a>tt)+((<>tt)*[]y))))*[]x)", % as in w16(T)
F17 = "nx.(([a](my.((<f>tt)+((<>tt)*[]y))))*[]x)", % as in w17(T)
F4 = "nx.(([f](my.((<f>tt)+((<>tt)*[]y))))*[]x)",
ww(F1,T1), print(’ ff:’), print(T1),
ww(F16,T16), print(’ 16tt:’), print(T16),
ww(F17,T17), print(’ 17ff:’), print(T17),
ww(F4,T4), print(’ ff:’), print(T4),
(T1=ff, T16=tt, T17=ff, T4=ff) -> print(’ *yes ’) ; true.

/* --------------------- */
go3 :- print(’ Peterson Protocol:’),

mutex(T), print(’ tt:’), print(T),
mutex1(T1), print(’ tt:’), print(T1),
(T=tt, T1=tt) -> print(’ *yes’) ; true.

go :- statistics(runtime,[T11,_T12]), go1, nl, go2, nl, go3,
statistics(runtime,[T21,_T22]), nl,
print(’ time: ’), T is T21-T11, print(T), print(’ ms’).

/* =================================================================== */
/* In order to run all the tests, type: go.

You should get (the value of 3080 ms for the elapsed time may
be different):

| ?- go.
01tt:tt 02ff:ff 03tt:tt 04ff:ff 05tt:tt 06tt:tt 07ff:ff 08tt:tt 09ff:ff
10ff:ff 11tt:tt 12tt:tt 13tt:tt 14ff:ff 15ff:ff 16tt:tt 17ff:ff 18ff:ff
19tt:tt 20tt:tt 21ff:ff 22tt:tt 23tt:tt 24tt:tt 25ff:ff 26tt:tt 27ff:ff
28tt:tt 29tt:tt 30tt:tt 31ff:ff 32tt:tt *yes
Communication Channel: ff:ff 16tt:tt 17ff:ff ff:ff *yes
Peterson Protocol: tt:tt tt:tt *yes
time: 3080 ms

yes
====================================================================== */



Appendix A. Complete Lattices and Complete Partial Orders

In this section we show that to choose complete lattices, rather than complete partial
orders, for providing the denotational semantics of conditionals, is problematic.

Indeed, let us consider the following four terms:

(a1) if t then (if t then e0 else e1) else (if t then e2 else e3)

(a2) if t then e0 else e3

(b1) if t0 then (if t1 then e0 else e1) else (if t1 then e2 else e3)

(b2) if t1 then (if t0 then e0 else e2) else (if t0 then e1 else e3)

We expect that the denotational semantics of the if-then-else construct should sat-
isfy the following two equations:

(α) !a1"ρ = !a2"ρ

(β) !b1"ρ = !b2"ρ

Let us consider the complete lattice B of the form:

!
! "

"

!
!"

"

F true G F false G

U

⊥
and let us assume that the semantics of the if-then-else construct is given by a
function Cond (the reader should not confuse this function with the function with
the same name we have introduced on page 94). Now Cond should denote a function
from B×B×B to B such that for any triple 〈t0, t1, t2〉 of boolean terms we have:

! if t0 then t1 else t2 " ρ = Cond(! t0 " ρ, ! t1 " ρ, ! t2 " ρ)

We have that: Cond(FtrueG, x, y) = x, Cond(FfalseG, x, y) = y. Since Cond should
be strict on the first argument, we also have that: Cond(⊥, x, y) = ⊥. By mono-
tonicity on the first argument we have the following two options for the definition of
Cond(U, x, y) :

Option (I) : Cond(U, x, y) = x I y
Option (U) : Cond(U, x, y) = U

Now let us consider the pair of terms a1 and a2. In order to establish (α) we cannot
take Option (I), because for !t"ρ = U we have that ! a1 "ρ = ! a2 "ρ holds iff

(! e0 "ρ I ! e1 "ρ) I (! e2 "ρ I ! e3 "ρ) = (! e0 "ρ I ! e3 "ρ) holds,

and, in general, this does not hold. Indeed, if ! e0 "ρ = ! e3 "ρ = ⊥ then ! e1 "ρI! e2 "ρ
may be different from ⊥.
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In order to establish (β) we cannot take Option (U), because for !t1"ρ = U we
have that ! b1 "ρ = ! b2 "ρ holds iff Cond(! t0 " ρ,U,U) = U holds and, in general, this
does not hold. Indeed, if ! t0 " ρ=⊥ then Cond(! t0 " ρ,U,U) = ⊥.

Thus, since we can take neither Option (I) nor Option (U), we conclude that for
the semantics of the if-then-else construct it is problematic to use complete lattices,
instead of cpo’s.



Appendix B. Scott Topology

Given a cpo (D,E) we define a topology, called Scott topology, as follows (see
also [19]).

Definition 1.1. [Scott-open Set] We say that a subset V of D is a Scott-open
set (or an open set, for short) iff
(i) (upward closure) for all d in D, for all e in D, if (d E e ∧ d ∈ V ) then e ∈ V ,
and
(ii) (finite approximant of limit points) for all ω-chains d0 E d1 E . . . in D,

if
⊔

i∈ω di ∈ V then there exists n ∈ ω such that dn ∈ V .

Proposition 1.2. [Empty Subset] Given a cpo (D,E), the empty subset ∅
of D is an open set.

Proof. Points (i) and (ii) of Definition 1.1 hold because ∀x ∈ ∅. P (x) holds for
every unary predicate P . !

Proposition 1.3. [Whole Subset] Given a cpo (D,E), the subset of D which
is D itself, is an open set.

Proof. Points (i) and (ii) of Definition 1.1 hold because the conclusions of the
implications hold. !

Proposition 1.4. [Finite or Infinite Union of Sets] Let us consider a collec-
tion {Di | i ∈ I} of open sets in the cpo (D,E). Then,

⋃
i∈I Di is an open set in the

cpo (D,E).

Proof. (i) Take any d ∈
⋃

i∈I Di. Let d ∈ Dk, for some k ∈ I. Take any e such
that d E e. Since Dk is open e ∈ Dk. Thus, e ∈

⋃
i∈I Di.

(ii) Take an ω-chain d0 E d1 E . . . in D. Assume
⊔

m∈ω dm ∈
⋃

i∈I Di. Now we
have to show that there exists n ∈ ω such that dn ∈

⋃
i∈I Di.

Indeed, since
⊔

m∈ω dm ∈
⋃

i∈I Di we have that there exists k ∈ I such that⊔
m∈ω dm ∈ Dk. Since Dk is open, there exists n ∈ ω such that dn ∈ Dk. Thus, there

exists n ∈ ω such that dn ∈
⋃

i∈I Di. !

Remark 1.5. Since the index set I can be finite or infinite, we have that the
finite or infinite union of open sets is an open set.

Proposition 1.6. [Finite Intersection of Sets] Let us consider a finite collec-
tion {Di | i ∈ F} of open sets in the cpo (D,E). Then,

⋂
i∈F Di is an open set in the

cpo (D,E).

Proof. (i) Take any d ∈
⋂

i∈F Di. Thus, d ∈ Dk, for all k ∈ F . Take any e such
that d E e. We have that e ∈ Dk, for all k ∈ F , because Dk is an open set. Thus,
e ∈

⋂
i∈F Di.
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(ii) Take an ω-chain d0 E d1 E . . . in D. Assume
⊔

m∈ω dm ∈
⋂

i∈F Di. Now
we have to show that there exists n ∈ ω such that dn ∈

⋂
i∈F Di. Indeed, since⊔

m∈ω dm ∈
⋂

i∈F Di we have that for all k ∈ F ,
⊔

m∈ω dm ∈ Dk. Now, by definition
of an open set, we have that for all k ∈ F , there exists nk ∈ ω such that dnk

∈ Dk. Let
us consider the maximum value, call it nmax, in the set {nk | k ∈ F}. We have that
dnmax ∈

⋂
i∈F Di, because for all k ∈ F , Dk is an open set (and thus, upward closed).

Therefore, Condition (ii) of Definition 1.1 holds and the proof is completed. !

Remark 1.7. The intersection of an infinite number of open sets need not be an
open set. In particular, the maximum value in the set {nk | k ∈ F} may not exist
because {nk | k ∈ F} may be an infinite, unbounded set.

Proposition 1.8. [Open Set Not Below a Given Element] For any element
d ∈ D, the set {x | x 1E d} is open.

Proof. (i) Take any d1 ∈ {x | x 1E d}. Take any e1 such that d1 E e1 we have
to show that e1 1E d. Let us assume the contrary, that is, e1 E d. Since d1 E e1, by
transitivity, we have that d1 E d, contrary to our assumption that d1 ∈ {x | x 1E d}.

(ii) Take an ω-chain d0 E d1 E . . . in D such that
⊔

i∈ω di ∈ {x | x 1E d}. We
have to show that there exists n ∈ ω such that dn 1E d. Let us assume the contrary,
that is, for all k ∈ ω, dk E d. By definition of the least-upper-bound

⊔
, we get that⊔

i∈ω di E d, which contradicts the hypothesis that
⊔

i∈ω di ∈ {x | x 1E d}. !

Definition 1.9. [Limit Point and Finite Point] An element d of a cpo is said
to be a limit point iff there exists an ω-chain d0 E d1 E . . . such that: (i) d =

⊔
i∈ω di,

and (ii) ∀i ∈ ω. ∃j ∈ ω. i<j ∧ di 1= dj.
An element of a cpo is said to be a finite point iff it is not a limit point.

Remark 1.10. We have that d 1∈ {x | x 1E d}, because d E d (see also Figure 5).

!
!

!
!

!
!!

"
"
"
"

"
""

!!
!!

!!
!!

""
""

""
""

d

d

V1 = {x | d E x ∧ x is a finite point} V2 = {x | x 1E d}

!

!

Figure 5. A pictorial view of the open sets: V1 = {x | d E x ∧ x is a
finite point} and V2 = {x | x 1E d}. d ∈ V1 and d 1∈ V2.

Definition 1.11. [Topological Continuity] A function is said to be topologi-
cally continuous iff for any open subset V of E its inverse image f−1(V ) is an open
set of D.

Proposition 1.12. [Continuity and Topological Continuity] Let us consider
the two cpo’s D and E. A function f from D to E is continuous iff it is topologically-
continuous.
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Proof. (only-if part) Take any f continuous from D to E. (i) Take any d ∈
f−1(V ) (see also Figure 6). Take any e ∈ D such that d E e. We have to show that
e ∈ f−1(V ).

"

#

$

%

"

#

$

%

"

#

$

%

"

#

$

%

#
d
"

f(d)
"

D E

f continuous

Vf−1(V )

Figure 6. The inverse image f−1(V ) of the open set V in E is an
open set in D iff f is topologically continuous function from D to E.

We have that f(d) ∈ V because d ∈ f−1(V ). Since f is monotonic f(d) E f(e).
Since V is open, f(e) ∈ V . Thus, e ∈ f−1(V ).

(ii) Take an ω-chain d0 E d1 E . . . in D. Assume that
⊔

i∈ω di ∈ f−1(V ), that is,
f(

⊔
i∈ω di) ∈ V . We have to show that there exists n ∈ ω such that dn ∈ f−1(V ).

By monotonicity we have that f(d0) E f(d1) E . . . is an ω-chain in E. Since
f(

⊔
i∈ω di) ∈ V we have that

⊔
i∈ω f(di) ∈ V (indeed, by continuity, f(

⊔
i∈ω di) =⊔

i∈ω f(di)). Since V is open, there exists k ∈ ω such that f(dn) ∈ V . Thus, there
exists k ∈ ω such that dn ∈ f−1(V ).

(if part) Take any f topologically continuous. We have to show: (1) f is mono-
tonic, and (2) f preserves limits.

(1) Take any d E e in D. We have to show that f(d) E f(e). We will assume the
contrary and we will get a contradiction.

Let us assume that f(d) 1E f(e). We have that V = {x | x 1E f(e)} is an open set
in E. Thus, f(d) ∈ {x | x 1E f(e)} and f(e) 1∈ V . Hence, d ∈ f−1(V ) and e 1∈ f−1(V )
Since f is topologically continuous, f−1(V ) is an open set and d E e, we have that
e ∈ f−1(V ). This contradicts that e 1∈ f−1(V ).

(2) Take an ω-chain d0 E d1 E . . . in D. We have to show that
⊔

i∈ω f(di) =
f(

⊔
i∈ω di). Let us first show that
(2.1)

⊔
i∈ω f(di) E f(

⊔
i∈ω di) and then

(2.2) f(
⊔

i∈ω di) E
⊔

i∈ω f(di).

Proof of (2.1). Since for all i ∈ ω, di E
⊔

i∈ω di, by monotonicity, we get: for all i ∈ ω,
f(di) E f(

⊔
i∈ω di). Thus,

⊔
i∈ω f(di) E f(

⊔
i∈ω di).

Proof of (2.2). Assume the contrary, that is,

f(
⊔

i∈ω di) 1E
⊔

i∈ω f(di). (†)
Now, consider the subset V = {x | x 1E

⊔
i∈ω f(di)} in E. V is an open set in E

because: (a)
⊔

i∈ω f(di) ∈ E (indeed, f(d0) E f(d1) E . . . is an ω-chain in E, and
since E is a cpo,

⊔
i∈ω f(di) ∈ E), and (b) Proposition 1.8 on the facing page holds.

In particular, we have that:
⊔

i∈ω f(di) 1∈ V . (††)



316 APPENDIX B. SCOTT TOPOLOGY

By (†) we also have that f(
⊔

i∈ω di) ∈ V . Thus,
⊔

i∈ω di ∈ f−1(V ). Since f−1(V ) is
an open set in D, there exists k ∈ ω such that dk ∈ f−1(V ). Thus, f(dk) ∈ V . Now
we have that f(dk) E

⊔
i∈ω f(di) by definition of

⊔
i∈ω f(di). Since V is an open set

in E and f(dk) ∈ V, we have that
⊔

i∈ω f(di) ∈ V , which contradicts (††). !

Proposition 1.13. [Characterization of Open Sets] The open subsets of a
cpo D are precisely those subsets which are equal to f−1(U) for some continuous
function f : D →O, where O is the cpo {⊥,U} with ⊥ E U.

Proof. (i) Since a continuous function f is topologically continuous and for any
topologically continuous function the inverse images of open sets are open sets, it
should be the case that the subset {U} of O is an open set in O. This is immediate.

(ii) We have to show that any open A of D can be mapped onto {U} by a
continuous function f which maps every element of A to U.

(ii.1) Take any d ∈ A. Take any e such that d E e. Since A is open, e ∈ A. Since
f(d) = f(e) = U we have that f is monotonic (indeed, f(d) E f(e), because both
are U).

(ii.2) Take any ω-chain d0 E d1 E . . . in D and assume that
⊔

i∈ω di ∈ A. Since A is
an open set, there exists k ∈ ω such that dk ∈ A. We have to show that f(

⊔
i∈ω di) =⊔

i∈ω f(di). Indeed, since
⊔

i∈ω di ∈ A we have that f(
⊔

i∈ω di) = U. We also have
that there exists k ∈ ω such that dk ∈ A because

⊔
i∈ω di ∈ A and A is an open

set. Thus, there exists k ∈ ω such that f(dk) = U. Thus,
⊔

i∈ω f(di) = U because
f(dk) E

⊔
i∈ω f(di). !

As a consequence of Proposition 1.13 we can choose an open subset of the cpo D
by choosing a continuous function from D to O.

Definition 1.14. [Scott-closed Set] A subset of a cpo is said to be a Scott-
closed set (or a closed set, for short) iff it is the complement of a Scott-open subset.

Theorem 1.15. [Scott-closed Sets are Inclusive] Every Scott-closed subset
of a cpo is inclusive.

Proof. Recall that a subset P of a cpo D is said to be inclusive iff for all ω-chains
d0 E d1 E . . . in D, if ∀n ∈ ω. dn ∈ P then

⊔
n∈ω dn ∈ P (see Definition 6.1 on

page 103). Assume that P is a Scott-closed set and that for all ω-chains d0 E d1 E . . .
we have that for all n ∈ ω, dn ∈ P. We will prove that

⊔
n∈ω dn ∈ P by contradiction.

Assume to the contrary that
⊔

n∈ω dn ∈ P , where P is the complement of P . Since,
by definition, P is a Scott-open set, we also have that for the ω-chain d0 E d1 E . . .
if

⊔
n∈ω dn ∈ P then there exists n ∈ ω such that dn ∈ P. Thus, we have that there

exists n ∈ ω such that dn ∈ P . But this contradicts the hypothesis that for all n ∈ ω,
dn ∈ P. !

We have the following two Facts 1.17 and 1.18. First we need this definition.

Definition 1.16. [The set Ω] Let ω be the set {0, 1, 2, . . .} of the natural num-
bers. Let Ω be the cpo consisting of the set ω ∪ {∞} with the partial order relation
induced by the following chain: 0 E 1 E 2 E . . . E ∞.

Fact 1.17. [Inclusive Subsets of Ω] The inclusive subsets of Ω are either the
finite subsets of Ω or the infinite subsets A of Ω which satisfy the following property :
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if (∀n∈ω. ∃m∈ω. n<m ∧ m∈A) then ∞∈A. !

Fact 1.18. Let us consider the cpo Ω (see Definition 1.16 on the preceding page).
We have that: (i) {∞} is an inclusive subset of Ω, and (ii) {∞} is not a Scott-closed
subset of Ω.

Proof. (i). Immediate. (ii) The fact that {∞} is not Scott-closed follows from
the fact that its complement (w.r.t. Ω) is the subset {0, 1, 2, . . .} which is not Scott-
open. Indeed, {0, 1, 2, . . .} does not satisfy Condition (i) of Definition 1.1, because
0 E ∞ and ∞ 1∈ {0, 1, 2, . . .}. !
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rewriting system, 31, 40
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small-step semantics, 167
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stream, 84
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strong bisimilarity between CCS terms, 273
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strong termination property, 25, 42, 45
strong until, 282
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structural induction, 63
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symbols, 277
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tautology, 14
term λx.(Ωx), 236
term recw.w, 235
term Ω, 235, 236, 238
term free for a variable in a formula, 16
term rewriting system, 40
terminating relation, 45
termination property, 25, 42, 45
terms, 27
terms (in CCS), 263
terms (in the Eager language), 199
terms (in the Lazy language), 200
terms (in the REC language), 165, 192
theorem (in the Predicate Calculus), 17
theorem (in the Propositional Calculus), 12,
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topologically continuous function, 314
total correctness of a command, 129
transition relation, 28
transitive closure, 22
true axiom, 12
Truncation induction, 107
tupling function, 101
Turing computability, 85
type, 31
typed operator, 31
typed signature, 31
types, 199
typing rules, 200

undecidable formula, 19
unifiable terms (modulo equations), 39
unification of terms, 39

unification problem, 39
unifier, 40
unique fixpoint principle, 107
uniqueness of normal form, 25, 46
unsatisfiable formula, 55
upper bound, 79, 82
upper decoration of a triple, 162
upward closure, 313

valid formula, 55
validity of Σ-equations, 34
validity problem, 35, 50
value stack, 26, 28
variable assignment, 17, 33
variables (in a higher order language), 199
variables (in the REC language), 165
variables occurring in a term, 38
variables Var, 27
variety, 34
verification conditions, 152
visible actions, 263
Vuillemin rule, 108

weak until, 282
weakest liberal precondition, 133
weakest precondition, 133
weakest precondition of an assertion with

respect to a command, 132
well-founded induction, 72
well-founded order, 73
well-founded relation, 73
word, 32
word problem, 35, 38, 50
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