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CHAPTER 1

Formal Grammars and Languages

In this chapter we introduce some basic notions and some notations we will use in
the book.

The set of natural numbers {0, 1, 2, . . .} is denoted by N .
Given a set A, |A| denotes the cardinality of A, and 2A denotes the powerset of A,

that is, the set of all subsets of A. Instead of 2A, we will also write Powerset(A).
We say that a set S is countable iff either S is finite or there exists a bijection

between S and the set N of natural numbers.

1.1. Free Monoids

Let us consider a countable set V , also called an alphabet. The elements of V are
called symbols. The free monoid generated by the set V is the set, denoted V ∗,
consisting of all finite sequences of symbols in V , that is,

V ∗ = {v1 . . . vn |n ≥ 0 and for i = 0, . . . , n, vi ∈ V }.
The unary operation ∗ (pronounced ‘star’) is called Kleene star (or Kleene closure,
or ∗ closure). Sequences of symbols are also called words or strings. The length of
a sequence v1 . . . vn is n. The sequence of length 0 is called the empty sequence or
empty word and it is denoted by ε. The length of a sequence w is also denoted
by |w|.

Given two sequences w1 and w2 in V ∗, their concatenation, denoted w1 � w2 or
simply w1w2, is the sequence in V ∗ defined by recursion on the length of w1 as
follows:

w1 � w2 = w2 if w1 = ε
= v1((v2 . . . vn) � w2) if w1 = v1v2 . . . vn with n>0.

We have that |w1 � w2| = |w1|+|w2|. The concatenation operation � is associative
and its neutral element is the empty sequence ε.

Any set of sequences which is a subset of V ∗ is called a language (or a formal
language) over the alphabet V .

Given two languages A and B, their concatenation, denoted A � B, is defined as
follows:

A � B = {w1 � w2 |w1 ∈ A and w2 ∈ B}.
Concatenation of languages is associative and its neutral element is the singleton {ε}.
When B is a singleton, say {w}, the concatenation A � B will also be written as A � w
or simply A w. Obviously, if A = ∅ or A = ∅ then A � B = ∅.

We have that: V ∗ = V 0 ∪ V 1 ∪ V 2 ∪ . . . ∪ V k ∪ . . ., where for each k ≥ 0, V k is
the set of all sequences of length k of symbols of V , that is,

9



10 1. FORMAL GRAMMARS AND LANGUAGES

V k = {v1 . . . vk | for i = 0, . . . , k, vi ∈ V }.
Obviously, V 0 = {ε}, V 1 = V , and for h, k ≥ 0, V h � V k = V h+k = V k+h. By V +

we denote V ∗ − {ε}. The unary operation + (pronounced ‘plus’) is called positive
closure or + closure.

The set V 0 ∪ V 1 is also denoted by V 0,1.

Given an element a in a set V , a∗ denotes the set of all finite sequence of zero
or more a’s (thus, a∗ is an abbreviation for {a}∗), a+ denotes the set of all finite
sequence of one or more a’s (thus, a+ is an abbreviation for {a}+), a 0,1 denotes
the set {ε, a} (thus, a 0,1 is an abbreviation for {a} 0,1), and aω denotes the infinite
sequence made out of all a’s.

Given a word w, for any k≥0, the prefix of w of length k, denoted w k, is defined
as follows:

w k = if |w|≤k then w else u, where w = u v and |u|=k.

In particular, for any w, we have that: w 0 = ε and w |w| = w.

Given a language L ⊆ V ∗, we introduce the following notation:

(i) L0 = {ε}
(ii) L1 = L

(iii) Ln+1 = L � Ln

(iv) L∗ =
⋃

k≥0 Lk

(v) L+ =
⋃

k>0 Lk

(vi) L 0,1 = L0 ∪ L1

We also have that Ln+1 = Ln � L and L+ = L∗ − {ε}.
The complement of a language L with respect to a set V ∗ is the set V ∗−L. This

set is also denoted by ¬L when V ∗ is understood from the context. The language
operation ¬ is called complementation.

From now on, unless otherwise stated, when referring to an alphabet, we will
assume that it is a finite set of symbols.

1.2. Formal Grammars

In this section we introduce the notion of a formal grammar.

Definition 1.2.1. [Formal Grammar] A formal grammar (or a grammar, for
short) is a 4-tuple 〈VT , VN , P, S〉, where:

(i) VT is a finite set of symbols, called terminal symbols,

(ii) VN is a finite set of symbols, called nonterminal symbols or variables, such that
VT ∩ VN = ∅,
(iii) P is a finite set of pairs of strings, called productions, each pair 〈α, β〉 being
denoted by α→ β, where α ∈ V + and β ∈ V ∗, with V = VT ∪ VN , and

(iv) S is an element of VN , called axiom or start symbol.



1.2. FORMAL GRAMMARS 11

The set VT is called the terminal alphabet. The elements of VT are usually denoted
by lower-case Latin letters such as a, b, . . . , z. The set VN is called the nonterminal
alphabet. The elements of VN are usually denoted by upper-case Latin letters such
as A, B, . . . , Z. In a production α → β, α is the left hand side (lhs, for short) and
β is the right hand side (rhs, for short).

Notation 1.2.2. When presenting a grammar we will often indicate the set of
productions and the axiom only, because the sets VT and VN can be deduced from
the set of productions. The examples below will clarify this point. When writing
the set of productions we will feel free to group together the productions with the
same left hand side. For instance, we will write

S → A | a
instead of

S → A
S → a

Sometimes we will also omit to indicate the axiom symbol when it is understood
from the context. Unless otherwise indicated, the symbol S is assumed to be the
axiom symbol. �

Given a grammar G = 〈VT , VN , P, S〉 we may define a set of elements in V ∗
T ,

called the language generated by G as we now indicate.
Let us first define the relation →G⊆ V + × V ∗ as follows: for every sequence

α ∈ V + and every sequence β, γ, and δ in V ∗,

γαδ →G γβδ iff there exists a production α→ β in P .

For any k≥0, the k-fold composition of the relation →G is denoted →k
G. Thus, for

instance, for every sequence σ0 ∈ V + and every sequence σ2 ∈ V ∗, we have that:

σ0 →2
G σ2 iff σ0 →G σ1 and σ1 →G σ2, for some σ1 ∈ V +.

The transitive closure of→G is denoted→+
G. The reflexive, transitive closure of→G

is denoted →∗
G. When it is understood from the context, we will feel free to omit

the subscript G, and instead of writing →G , →k
G, →+

G, and →∗
G, we simply write

→, →k, →+, and →∗, respectively.

Definition 1.2.3. [Language Generated by a Grammar] Given a grammar
G = 〈VT , VN , P, S〉, the language generated by G, denoted L(G), is the set

L(G) = {w |w ∈ V ∗
T and S →∗

G w}.
The elements of the language L(G) are said to be words or strings generated by the
grammar G.

In what follows we will use the following notion.

Definition 1.2.4. [Language Generated by a Nonterminal Symbol of a
Grammar] Given a grammar G = 〈VT , VN , P, S〉, the language generated by the
nonterminal A ∈ VN , denoted LG(A), is the set

LG(A) = {w |w ∈ V ∗
T and A→∗

G w}.



12 1. FORMAL GRAMMARS AND LANGUAGES

We will write L(A), instead of LG(A), when the grammar G is understood from the
context.

Definition 1.2.5. [Equivalence of Grammars] Two grammars are said to
be equivalent iff they generate the same language.

Given a grammar G = 〈VT , VN , P, S〉, an element of V ∗ is called a sentential
form of G.

The following fact is an immediate consequence of the definitions.

Fact 1.2.6. Given a grammar G = 〈VT , VN , P, S〉 and a word w ∈ V ∗
T , we have

that w belongs to L(G) iff there exists a sequence 〈α1, . . . , αn〉 of n (>1) sentential
forms such that:
(i) α1 = S,
(ii) for every i = 1, . . . , n−1, there exist γ, δ ∈ V ∗ such that αi = γαδ, αi+1 = γβδ,
and α →G β is a production in P , and
(iii) αn = w.

Let us now introduce the following concepts.

Definition 1.2.7. [Derivation of a Word and Derivation of a Sentential
Form] Given a grammar G = 〈VT , VN , P, S〉 and a word w ∈ V ∗

T in L(G), any
sequence 〈α1, α2, . . . , αn−1, αn〉 of n (>1) sentential forms satisfying Conditions (i),
(ii), and (iii) of Fact 1.2.6 above, is called a derivation of w from S in the grammar
G. A derivation 〈S, α2, . . . , αn−1, w〉 is also written as:

S → α2 → . . .→ αn−1 → w or as: S →∗ w.

More generally, a derivation of a sentential form ϕ ∈ V ∗ from S in the grammar
G is any sequence 〈α1, α2, . . . , αn−1, αn〉 of n (> 1) sentential forms such that Con-
ditions (i) and (ii) of Fact 1.2.6 hold, and αn = ϕ. That derivation is also written
as:

S → α2 → . . .→ αn−1 → ϕ or as: S →∗ ϕ.

Definition 1.2.8. [Derivation Step] Given a derivation 〈α1, . . . , αn〉 of n (≥1)
sentential forms, for any i = 1, . . . , n−1, the pair 〈αi, αi+1〉 is called a derivation step
from αi to αi+1 (or a rewriting step from αi to αi+1). A derivation step 〈αi, αi+1〉 is
also denoted by αi → αi+1.

Given a sentential form γαδ for some γ, δ ∈ V ∗ and α ∈ V +, if we apply the
production α→ β, we perform the derivation step γαδ → γβδ.

Given a grammar G and a word w ∈ L(G) the derivation of w from S may not
be unique as indicated by the following example.

Example 1.2.9. For instance, given the grammar

〈{a}, {S, A}, {S → a |A, A→ a}, S〉,
we have the following two derivations for the word a from S:

(i) S → a

(ii) S → A→ a �
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1.3. The Chomsky Hierarchy

There are four types of formal grammars which constitute the so called Chomsky
Hierarchy, named after the American linguist Noam Chomksy. Let VT denote the al-
phabet of the terminal symbols, VN denote the alphabet of the nonterminal symbols,
and V be VT ∪ VN .

Definition 1.3.1. [Type 0, 1, 2, and 3 Production, Grammar, and Lan-
guage. Version 1] (i) Every production α → β with α ∈ V + and β ∈ V ∗, is a
type 0 production.

(ii) A production α→ β is of type 1 iff α, β ∈ V + and the length of α is not greater
than the length of β.

(iii) A production α→ β is of type 2 iff α ∈ VN and β ∈ V +.

(iv) A production α→ β is of type 3 iff α ∈ VN and β ∈ VT ∪ VT VN .

For i = 0, 1, 2, 3, a grammar is of type i if all its productions are of type i. For
i = 0, 1, 2, 3, a language is of type i if it is generated by a type i grammar. �

Remark 1.3.2. Note that in Definition 1.5.7 on page 21, we will slightly gen-
eralize the above notions of type 1, 2, and 3 grammars and languages. In these
generalized notions we will allow the generation of the empty word ε.

A production of the form A → β, with A ∈ VN and β ∈ V ∗, is said to be a
production for (or of ) the nonterminal symbol A.

It follows from Definition 1.3.1 that for i = 0, 1, 2, a type i + 1 grammar is also
a type i grammar. Thus, the four types of grammars we have defined, constitute a
hierarchy which is called the Chomsky Hierarchy.

Actually, this hierarchy is a proper hierarchy in the sense that there exists a
grammar of type i which generates a language which cannot be generated by any
grammar of type i + 1, for i = 0, 1, 2.

As a consequence of the following Theorem 1.3.4, the class of type 1 languages
coincides with the class of context-sensitive languages in the sense specified by the
following definition.

Definition 1.3.3. [Context-Sensitive Production, Grammar, and Lan-
guage. Version 1] Given a grammar G = 〈VT , VN , P, S〉, a production in P is
context-sensitive if it is of the form u A v → u w v, where u, v ∈ V ∗, A ∈ VN ,
and w ∈ V +. A grammar is a context-sensitive grammar if all its productions are
context-sensitive productions. A language is context-sensitive if it is generated by a
context-sensitive grammar.

Theorem 1.3.4. [Equivalence Between Type 1 Grammars and Context-
Sensitive Grammars] (i) For every type 1 grammar there exists an equivalent
context-sensitive grammar. (ii) For every context-sensitive grammar there exists an
equivalent type 1 grammar.



14 1. FORMAL GRAMMARS AND LANGUAGES

The proof of this theorem is postponed to Chapter 4 (see Theorem 4.0.3 on page 172)
and it will be given in a slightly more general setting where will allow the production
S → ε to occur in type 1 grammars (as usual, S denotes the axiom of the grammar).

As a consequence of Theorem 1.3.4, instead of saying ‘type 1 languages’, we
will say ‘context-sensitive languages’. For productions, grammars, and languages,
instead of saying that they are ‘of type 0’, we will also say that they are ‘unrestricted ’.
Similarly,
- instead of saying ‘of type 2’, we will also say ‘context-free’, and
- instead of saying ‘of type 3’, we will also say ‘regular ’.

Due to their form, type 3 grammars are also called right linear grammars, or
right recursive type 3 grammars.

One can show that every type 3 language can also be generated by a grammar
whose productions are of the form α → β, where α ∈ VN and β ∈ VT ∪ VNVT .
Grammars whose productions are of that form are called left linear grammars or
left recursive type 3 grammars. The proof of that fact is postponed to Section 2.4
and it will be given in a slightly more general setting where we allow the production
S → ε to occur in right linear and left linear grammars (see Theorem 2.4.3 on
page 40).

Now let us present some examples of languages and grammars.
The language L0 = {ε, a} is generated by the type 0 grammar whose axiom is S

and whose productions are:

S → a | ε
The set of terminal symbols is {a} and the set of nonterminal symbols is {S}. The
language L0 cannot be generated by a type 1 grammar, because for generating the
word ε we need a production whose right hand side has a length smaller than the
length of the corresponding left hand side.

The language L1 = {anbncn |n> 0} is generated by the type 1 grammar whose
axiom is S and whose productions are:

S → a S B C | a B C
C B → B C
a B → a b
bB → b b
bC → b c
c C → c c

The set of terminal symbols is {a, b, c} and the set of nonterminal symbols is {S,
B, C}. The language L1 cannot be generated by a context-free grammar. This fact
will be shown later (see Corollary 3.11.2 on page 152).

The language

L2 = {w | w ∈ {0, 1}+ and
the number of 0’s in w is equal to the number of 1’s in w}
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is generated by the context-free grammar whose axiom is S and whose productions
are:

S → 0 S1 | 1 S0

S0 → 0 | 0 S | 1 S0 S0

S1 → 1 | 1 S | 0 S1 S1

The set of terminal symbols is {0,1} and the set of nonterminal symbols is {S, S0, S1}.
The language L2 cannot be generated by a regular grammar. This fact will be shown
later and, indeed, it is a consequence of Corollary 2.9.2 on page 73.

The language

L3 = {w |w ∈ {0, 1}+ and w does not contain two consecutive 1’s}

is generated by the regular grammar whose axiom is S and whose productions are:

S → 0 A | 1 B | 0 | 1
A → 0 A | 1 B | 0 | 1
B → 0 A | 0

The set of terminal symbols is {0, 1} and the set of nonterminal symbols is {S, A, B}.

Since for i = 0, 1, 2 there are type i languages which are not type i+1 languages,
we have that the set of type i languages properly includes the set of type i + 1
languages.

Note that if we allow productions of the form α→ β, where α ∈ V ∗ and β ∈ V ∗,
we do not extend the generative power of formal grammars in the sense specified by
the following theorem.

Theorem 1.3.5. For every grammar whose productions are of the form α→ β,
where α ∈ V ∗ and β ∈ V ∗, there exists an equivalent grammar whose productions
are of the form α→ β, where α ∈ V + and β ∈ V ∗.

Proof. Without loss of generality, let us consider a grammar G = 〈VT , VN , P, S〉
with a single production of the form ε→ β, where ε is the empty string and β ∈ V ∗.
Let us consider the set of productions Q = {E → β} ∪ {x→ Ex, x→ xE | x ∈ V }
where E is a new nonterminal symbol not in VN .

Now we claim that the type 0 grammar H = 〈VT , VN∪{E}, (P−{ε→β})∪Q, S〉
is equivalent to G. Indeed, we show that:

(i) L(G) ⊆ L(H), and

(ii) L(H) ⊆ L(G).

Let us first assume that ε 6∈ L(G). Property (i) holds because, given a deriva-
tion S →∗

G w for some word w, where in a particular derivation step we used the
production ε →G β, then in order to simulate that derivation step, we can use ei-
ther the production x →H Ex or the production x →H xE followed by E →H β.
Property (ii) holds because, given a derivation S →∗

H w for some word w, where
in a particular step we used the production x →H Ex or x →H xE, then in order
to get a string of terminal symbols only, we need to apply the production E →H β
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and the sentential form derived by applying E →H β, can also be obtained in the
grammar G by applying ε→G β.

If ε ∈ L(G) then we can prove Properties (i) and (ii) as in the case when
ε 6∈ L(G), because the derivation S →∗

G ε→G β can be simulated by the derivation

S →H S E →∗
H E →H β. �

Theorem 1.3.6. [Start Symbol Not on the Right Hand Side of Produc-
tions] For i = 0, 1, 2, 3, we can transform every type i grammar G into an equivalent
type i grammar H whose axiom occurs only on the left hand side of the productions.

Proof. In order to get the grammar H , for any grammar G of type 0, or 1, or 2,
it is enough to add to the grammar G a new start symbol S ′ and then add the new
production S ′ → S. If the grammar G is of type 3, we do as follows. We consider
the set of productions of G whose left hand side is the axiom S. Call it PS. Then
we add a new axiom symbol S ′ and the new productions {S ′ → βi | S → βi ∈ PS}.
It is easy to see that L(G) = L(H). �

Definition 1.3.7. [Grammar in Separated Form] A grammar is said to be
in separated form iff every production is of one of the following three forms, where
u, v ∈ V +

N , A ∈ VN , and a ∈ VT :

(i) u→ v
(ii) A→ a
(iii) A→ ε

Theorem 1.3.8. [Separated Form Theorem] For every grammar G there
exists an equivalent grammar H in separated form such that there is at most one
production of H of the form A → ε where A is a nonterminal symbol. Thus, if
ε ∈ L(G) then every derivation of ε from S is of the form S →∗ A→ ε.

Proof. We first prove that the theorem holds without the condition that there
is at most one production of the form A → ε. The productions of the grammar H
are obtained as follows:

(i) for every terminal a in G we introduce a new nonterminal symbol A and the
production A → a and replace every occurrence of the terminal a both in the left
hand side or the right hand side of a production of G, by A, and

(ii) replace every production u→ ε, where |u| > 1, by u→ C and C → ε, where C
is a new nonterminal symbol.
We leave it to the reader to check that the new grammar H is equivalent to the
grammar G.

Now we prove that for every grammar H obtained as indicated above, we can
produce an equivalent grammar H ′ with at most one production of the form A→ ε.
Indeed, consider the set {Ai → ε | i ∈ I} of all productions of the grammar H whose
right hand side is ε. The equivalent grammar H ′ is obtained by replacing that set
by the new set {Ai → B | i ∈ I} ∪ {B → ε}, where B is a new nonterminal symbol.
We leave it to the reader to check that the new grammar H ′ is equivalent to the
grammar H . �
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Definition 1.3.9. [Kuroda Normal Form] A context-sensitive grammar is
said to be in Kuroda normal form iff every production is of one of the following
forms, where A, B, C ∈ VN and a ∈ VT :

(i) A → B C
(ii) A B → A C (the left context A is preserved)
(iii) A B → C B (the right context B is preserved)
(iv) A → B
(v) A → a

In order to prove the following theorem we now introduce the notion of the order
of a production and the order of a grammar.

Definition 1.3.10. [Order of a Production and Order of a Grammar]
We say that the order of a production u→ v is n iff n is the maximum between |u|
and |v|. We say that the order of a grammar G is n iff n is the maximum order of
a production in G.

We have that the order of a production (and of a grammar) is at least 1.

Theorem 1.3.11. [Kuroda Theorem] For every context-sensitive grammar
there exists an equivalent context-sensitive grammar in Kuroda normal form.

Proof. Let G be the given context-sensitive grammar and let GS be a grammar
which is equivalent to G and it is in separated form. For every production u → v
of the grammar GS which is not of the form (v), we have that |u| ≤ |v| because the
given grammar is context-sensitive.

Now, given any production of GS of order n > 2 we can derive a new equivalent
grammar where that production has been replaced by a set of productions, each of
which is of order strictly less than n. We have that every production u → v of GS

of order n > 2 can be of one of the following two forms:
(i) u = P1P2α and v = Q1Q2β, where P1, P2, Q1, and Q2 are nonterminal symbols
and α ∈ V ∗

N and β ∈ V +
N , and

(ii) u = P1 and v = Q1Q2β, where P1, Q1, and Q2 are nonterminal symbols and
β ∈ V +

N .
In Case (i) we replace the production u→ v by the productions:

P1P2 → T1 T2

T1 → Q1

T2α → Q2 β

where T1 and T2 are new nonterminal symbols.
In Case (ii) we replace the production u→ v by the productions:

P1 → T1 T2

T1 → Q1

T2 → Q2 β

where T1 and T2 are new nonterminal symbols.
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Thus, by iterating the transformations of Cases (i) and (ii), we eventually get
an equivalent grammar whose productions are all of order at most 2. A type 1
production of order at most 2 can be of one of the following five forms:

(1) A→ B which is of the form (iv) of Definition 1.3.9,

(2) A→ BC which is of the form (i) of Definition 1.3.9,

(3) AB → AC which is of the form (ii) of Definition 1.3.9,

(4) AB → CB which is of the form (iii) of Definition 1.3.9,

(5) AB → CD and this production can be replaced by the productions:

AB → AT (which is of the form (ii) of Definition 1.3.9),
AT → CT (which is of the form (iii) of Definition 1.3.9), and
CT → CD (which is of the form (ii) of Definition 1.3.9),

where T is a new nonterminal symbol.
We leave it to the reader to check that after all the above transformations the

derived grammar is equivalent to GS and, thus, to G. �

There is a stronger form of the Kuroda Theorem because one can show that
the productions of the forms (ii) and (iv) (or, by symmetry, those of the forms (iii)
and (iv)) are not needed.

Example 1.3.12. We can replace the production ABCD → RSTUV whose
order is 5, by the following three productions, whose order is at most 4:

A B → T1 T2

T1 → R
T2 C D → S T U V

where T1 and T2 are new nonterminal symbols. By this replacement the gram-
mar where the production ABCD → RSTUV occurs, is transformed into a new,
equivalent grammar.

Note that we can replace the production ABCD → RSTUV also by the following
two productions, whose order is at most 4:

A B → R T2

T2 C D → S T U V

where T2 is a new nonterminal symbol. Also by this replacement, although it
does not follow the rules indicated in the proof of the Kuroda Theorem, we get
a new grammar which is equivalent to the grammar with the production ABCD →
RSTUV . �

With reference to the proof of the Kuroda Theorem (see Theorem 1.3.11), note that
if we replace the production AB → CD by the two productions: AB → AD and
AD → CD, we may get a grammar which is not equivalent to the given one. Indeed,
consider, for instance, the grammar G whose productions are:

S → A B
A B → C D
C D → a a
A D → b b
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We have that L(G) = {aa}. However, for the grammar G′ whose productions are:

S → A B
A B → A D
A D → C D
C D → a a
A D → b b

we have that L(G′) = {aa, bb}.

1.4. Chomsky Normal Form and Greibach Normal Form

Context-free grammars can be put into normal forms as we now indicate.

Definition 1.4.1. [Chomsky Normal Form. Version 1] A context-free
grammar G = 〈VT , VN , P, S〉 is said to be in Chomsky normal form iff every produc-
tion is of one of the following two forms, where A, B, C ∈ VN and a ∈ VT :

(i) A→ B C

(ii) A→ a �

This definition of the Chomsky normal form can be extended to the case when in
the set P of productions we allow ε-productions, that is, productions whose right
hand side is the empty word ε (see Section 1.5). That extended definition will be
introduced later (see Definition 3.6.1 on page 131).

Note that by Theorem 1.3.6 on page 16, we may assume without loss of generality,
that the axiom S does not occur on the right hand side of any production.

Theorem 1.4.2. [Chomsky Theorem. Version 1] For every context-free
grammar there exists an equivalent context-free grammar in Chomsky normal form.

The proof of this theorem will be given later (see Theorem 3.6.2 on page 131).

Definition 1.4.3. [Greibach Normal Form. Version 1] A context-free
grammar G = 〈VT , VN , P, S〉 is said to be in Greibach normal form iff every produc-
tion is of the following form, where A ∈ VN , a ∈ VT , and α ∈ V ∗

N :

A → a α �

As in the case of the Chomsky normal form, also this definition of the Greibach
normal form can be extended to the case when in the set P of productions we allow
ε-productions (see Section 1.5). That extended definition will be given later (see
Definition 3.7.1 on page 133).

Also in the case of the Greibach normal form, by Theorem 1.3.6 on page 16 we
may assume without loss of generality, that the axiom S does not occur on the right
hand side of any production, that is, α ∈ (VN − {S})∗.

Theorem 1.4.4. [Greibach Theorem. Version 1] For every context-free
grammar there exists an equivalent context-free grammar in Greibach normal form.

The proof of this theorem will be given later (see Theorem 3.7.2 on page 133).
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1.5. Epsilon Productions

Let us introduce the following concepts.

Definition 1.5.1. [Epsilon Production] Given a grammar G = 〈VT , VN , P, S〉
a production of the form A→ ε, where A ∈ VN , is called an epsilon production.

Instead of writing ‘epsilon productions’, we will feel free to write ‘ε-productions’.

Definition 1.5.2. [Extended Grammar] For i = 0, 1, 2, 3, an extended type i
grammar is a grammar 〈VT , VN , P, S〉 whose set of productions P consists of pro-
ductions of type i and, possibly, n (≥ 1) epsilon productions of the form: A1 → ε,
. . ., An → ε, where the Ai’s are distinct nonterminal symbols.

Definition 1.5.3. [S-extended Grammar] For i = 0, 1, 2, 3, an S-extended
type i grammar is a grammar 〈VT , VN , P, S〉 whose set of productions P consists of
productions of type i and, possibly, the production S → ε.

Obviously, an S-extended grammar is also an extended grammar of the same
type.

We have that every extended type 1 grammar is equivalent to an extended
context-sensitive grammar, that is, a context-sensitive grammar whose set of pro-
ductions includes, for some n ≥ 0, n epsilon productions of the form: A1 → ε, . . .,
An → ε, where for i = 1, . . . , n, Ai ∈ VN .

This property follows from the fact that, as indicated in the proof of Theo-
rem 4.0.3 on page 172 (which generalizes Theorem 1.3.4 on page 13), the equivalence
between type 1 grammars and context-sensitive grammars, is based on the transfor-
mation of a single type 1 production into n (≥ 1) context-sensitive productions.

We also have the following property: every S-extended type 1 grammar is equiv-
alent to an S-extended context-sensitive grammar, that is, a context-sensitive gram-
mar with, possibly, the production S → ε.

The following theorem relates the notions of grammars of Definition 1.2.1 with
the notions of extended grammars and S-extended grammars.

Theorem 1.5.4. [Relationship Between S-extended Grammars and Ex-
tended Grammars] (i) Every extended type 0 grammar is a type 0 grammar and
vice versa.
(ii) Every extended type 1 grammar is a type 0 grammar.
(iii) For every extended type 2 grammar G such that ε 6∈ L(G), there exists an equiv-
alent type 2 grammar. For every extended type 2 grammar G such that ε ∈ L(G),
there exists an equivalent, S-extended type 2 grammar.
(iv) For every extended type 3 grammar G such that ε 6∈ L(G), there exists an equiv-
alent type 3 grammar. For every extended type 3 grammar G such that ε ∈ L(G),
there exists an equivalent, S-extended type 3 grammar.

Proof. Points (i) and (ii) follow directly for the definitions. Point (iii) will
be proved in Section 3.5.3 (see page 125). Point (iv) follows from Point (iii) and
Algorithm 3.5.8 on page 126. Indeed, according to that algorithm, every production



1.5. EPSILON PRODUCTIONS 21

of the form: A → a, where A ∈ VN and a ∈ VT is left unchanged, while every
production of the form: A→ aB, where A ∈ VN , a ∈ VT , and B ∈ VN , either is left
unchanged or can generate a production of the form: A → a, where A ∈ VN and
a ∈ VT . �

Remark 1.5.5. The main reason for introducing the notions of the extended
grammars and the S-extended grammars is the correspondence between S-extended
type 3 grammars and finite automata which we will show in Chapter 2 (see Theo-
rem 2.1.14 on page 33 and Theorem 2.2.1 on page 33).

We have the following fact whose proof is immediate (see also Theorem 1.5.10).

Fact 1.5.6. Let us consider a type 1 grammar G whose axiom is S. If we add
to the grammar G the n (≥ 0) epsilon productions A1 → ε, . . ., An → ε, such
that the nonterminal symbols A1, . . . , An do not occur on the right hand side of
any production, then we get an equivalent grammar G′ which is an extended type 1
grammar such that:

(i) if S 6∈ {A1, . . . , An} then L(G) = L(G′)
(ii) if S ∈ {A1, . . . , An} then L(G) ∪ {ε} = L(G′).

As a consequence of this fact and of Theorem 1.5.4 above, in the sequel we will often
use the generalized notions of type 1, type 2, and type 3 grammars and languages
which we introduce in the following Definition 1.5.7. As stated by Fact 1.5.9 below,
these generalized definitions: (i) allow the empty word ε to be an element of any
language L of type 1, or type 2, or type 3, and also (ii) ensure that the language
L− {ε} is, respectively, of type 1, or type 2, or type 3, in the sense of the previous
Definition 1.3.1.

We hope that it will not be difficult for the reader to understand whether the
notion of grammar (or language) we consider in each sentence throughout the book,
is that of Definition 1.3.1 on page 13 or that of the following definition.

Definition 1.5.7. [Type 1, Context-Sensitive, Type 2, and Type 3 Pro-
duction, Grammar, and Language. Version with Epsilon Productions]
(1) Given a grammar G = 〈VT , VN , P, S〉 we say that a production in P is of type 1
iff (1.1) either it is of the form α→ β, where α ∈ (VT ∪ VN)+, β ∈ (VT ∪ VN)+, and
|α| ≤ |β|, or it is S → ε, and (1.2) if the production S → ε is in P then the axiom
S does not occur on the right hand side of any production in P .

(cs) Given a grammar 〈VT , VN , P, S〉, we say that a production in P is context-
sensitive iff (cs.1) either it is of the form u A v → u w v, where u, v ∈ V ∗, A ∈ VN ,
and w ∈ (VT ∪VN )+, or it is S → ε, and (cs.2) if the production S → ε is in P then
the axiom S does not occur on the right hand side of any production in P .

(2) Given a grammar G = 〈VT , VN , P, S〉 we say that a production in P is of type 2
(or context-free) iff it is of the form α→ β, where α ∈ VN and β ∈ V ∗.

(3) Given a grammar G = 〈VT , VN , P, S〉 we say that a production in P is of type 3
(or regular) iff it is of the form α→ β, where α ∈ VN and β ∈ {ε} ∪ VT ∪ VT VN .

A grammar is of type 1, context-sensitive, of type 2, and of type 3 iff all its
productions are of type 1, context-sensitive, of type 2, and of type 3, respectively.
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A type 1, context-sensitive, type 2 (or context-free), and type 3 (or regular) language
is a language generated by a type 1, context-sensitive, type 2, and type 3 grammar,
respectively.

As a consequence of Theorem 4.0.3 on page 172 the notions of type 1 and context-
sensitive grammars are equivalent and thus, the notions of type 1 and context-
sensitive languages coincide. For this reason, instead of saying ‘a language of type 1’,
we will also say ‘a context-sensitive language’ and vice versa.

One can show (see Section 2.4 on page 39) that every type 3 (or regular) lan-
guage can be generated by left linear grammars, that is, grammars in which every
production is the form α→ β, where α ∈ VN and β ∈ {ε} ∪ VT ∪ VNVT .

Remark 1.5.8. In the above definitions of type 2 and type 3 productions, we
do not require that the axiom S does not occur on the right hand side of any pro-
duction. Thus, it does not immediately follow from those definitions that also when
epsilon productions are allowed, the grammars of type 0, 1, 2, and 3 do constitute a
hierarchy, in the sense that, for i=0, 1, 2, the class of type i languages properly in-
cludes the class of type i+1 languages. However, as a consequence of Theorems 1.3.6
and 1.5.4, and Fact 1.5.6, it is the case that they do constitute a hierarchy.

Contrary to our Definition 1.5.7 above, in some textbooks (see, for instance, [9])
the production of the empty word ε is not allowed for type 1 grammars, while it is
allowed for type 2 and type 3 grammars, and thus, in that case the grammars of
type 0, 1, 2, and 3 do constitute a hierarchy if we do not consider the generation of
the empty word. �

We have the following fact which is a consequence of Theorems 1.3.6 and 1.5.4,
and Fact 1.5.6.

Fact 1.5.9. A language L is a context-sensitive (or context-free, or regular) in
the sense of Definition 1.3.1 iff the language L∪{ε} is context-sensitive (or context-
free, or regular, respectively) in the sense of Definition 1.5.7.

We also have the following theorem.

Theorem 1.5.10. [Salomaa Theorem for Type 1 Grammars] For every
extended type 1 grammar G = 〈VT , VN , P, S〉 such that for every production of
the form A → ε, the nonterminal A does not occur on the right hand side of any
production, there exists an equivalent S-extended type 1 grammar G′ = 〈VT , VN ∪
{S ′, S1}, P ′, S ′〉, whose productions in P ′ are of the form:

(i) S ′ → S ′ A (with A different from S ′)
(ii) A B → A C (the left context is preserved)
(iii) A B → C B (the right context is preserved)

(iv) A → B
(v) A → a
(vi) S ′ → ε

where A, B, C ∈ V ′
N , a ∈ VT , and the axiom S ′ occurs on the right hand side of

productions of the form (i) only. The set P ′ of productions includes the production
S ′ → ε iff ε ∈ L(G′).
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Proof. Let us consider the grammar G = 〈VT , VN , P, S〉. Since for each pro-
duction A → ε, the nonterminal symbol A does not occur on the right hand side
of any production of the grammar G, the symbol A may occur in a sentential form
of a derivation of a word in L(G) starting from S, only if A is the axiom S and
that derivation is S → ε. Thus, by the Kuroda Theorem we can get a grammar G1,
equivalent to G, whose axiom is S and whose productions are of the form:

(i) A → B C
(ii) A B → A C (the left context A is preserved)
(iii) A B → C B (the right context B is preserved)

(iv) A → B
(v) A → a
(vi) S → ε

where A, B, and C are nonterminal symbols in VN (thus, they may also be S)
and the production S → ε belongs to the set of productions of the grammar G1

iff ε ∈ L(G1). Now let us consider two new nonterminal symbols S ′ and S1 and
the grammar G2 =def 〈VT , VN ∪ {S ′, S1}, P2, S

′〉 with axiom S ′ and the set P2 of
productions which consists of the following productions:

1. S ′ → S ′ S1

2. S ′ → S

and for each nonterminal symbol A of the grammar G1, the productions:

3. S1 A→ A S1

4. A S1 → S1 A

and for each production A→ BC of the grammar G1, the productions:

5. A S1 → B C

and the productions of the grammar G1 of the form:

6. A B → A C (the left context A is preserved)
7. A B → C B (the right context B is preserved)
8. A → B
9. A → a

and the production:

10. S ′ → ε iff S → ε is a production of G1.

Now we show that L(G1) = L(G2) by proving the following two properties.

Property (P1): for any w ∈ V ∗
T , if S ′ →∗

G2
w and w ∈ L(G2) then S →∗

G1
w.

Property (P2): for any w ∈ V ∗
T , if S →∗

G1
w and w ∈ L(G1) then S ′ →∗

G2
w.

Properties (P1) and (P2) are obvious if w = ε. For w 6= ε we reason as follows.

Proof of Property (P1). The derivation of w from S in the grammar G1 can be
obtained as a subderivation of the derivation of w from S ′ in the grammar G2 after
removing in each sentential form the nonterminal S1.
Proof of Property (P2). If S →∗

G1
w and w ∈ L(G1) then S (S1)

n →∗
G2

w for some
n ≥ 0. Indeed, the productions S1A → AS1 and AS1 → S1A can be used in the
derivation of a word w using the grammar G2, for inserting copies of the symbol
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S1 where they are required for applying the production AS1 → BC to simulate the
effect of the production A → BC in the derivation of a word w ∈ L(G1) using the
grammar G1.

Since S ′ →∗
G2

S ′ (S1)
n →G2

S (S1)
n for all n≥ 0, the proof of Property (P2) is

completed. This also concludes the proof that L(G1) = L(G2).
Now from the grammar G2, we can get the desired grammar G′ with the produc-

tions of the desired form, by replacing every production of the form: AB → CD by
three productions of the form: AB → AT , AT → CT , and CT → CD, where T is a
new nonterminal symbol. We leave it to the reader to prove that L(G) = L(G′). �

Note that while in the Kuroda normal form (see Definition 1.3.9 on page 17) we
have, among others, some productions of the form A → B C, where A, B, and C
are nonterminal symbols, here in the Salomaa Theorem (see Theorem 1.5.10 on
page 22) the only form of production in which a single nonterminal symbol produces
two nonterminal symbols is of the form S ′ → S ′ A, where S ′ is the axiom of the
grammar and A is different from S ′. Thus, the Salomaa Theorem can be viewed
as an improvement with respect to the Kuroda Theorem (see Theorem 1.3.11 on
page 17).

1.6. Derivations in Context-Free Grammars

For context-free grammars we can associate a derivation tree, also called a parse
tree, with every derivation of a word w from the axiom S.

Given a context-free grammar G = 〈VT , VN , P, S〉, and a derivation of a word w
from the axiom S, that is, a sequence α1 → α2 → . . . → αn of n (> 1) sentential
forms such that, in particular, α1 =S and αn =w (see Definition 1.2.7 on page 12),
the corresponding derivation tree T is constructed as indicated by the following two
rules.

Rule (1). The root of T is a node labeled by S.

Rule (2). For any i = 1, . . . , n−1, let us consider in the given derivation

α1 → α2 → . . .→ αn

the i-th derivation step αi → αi+1. Let us assume that in that derivation step we
have applied the production A→ β, where:

(i) A ∈ VN ,
(ii) β = c1 . . . ck, for some k ≥ 0, and
(iii) for j = 1, . . . , k, cj ∈ VN ∪ VT .

In the derivation tree constructed so far, we consider the leaf-node labeled by the
symbol A which is replaced by β in that derivation step.

If k ≥ 1 then we generate k son-nodes of that leaf-node and they will be labeled,
from left to right, by c1, . . . , ck, respectively. (Obviously, after the generation of
these k son-nodes, the leaf-node labeled by A will no longer be a leaf-node and will
become an internal node of the new derivation tree.)

If k = 0 then we generate one son-node of the node labeled by A. The label of
that new node will be the empty word ε.



1.6. DERIVATIONS IN CONTEXT-FREE GRAMMARS 25

When all the derivation steps of the given derivation α1 → α2 → . . .→ αn have
been considered, the left-to-right concatenation of the labels of all the leaves of the
resulting derivation tree T is the word w.

The word w is said to be the yield of the derivation tree T .

Example 1.6.1. Let us consider the grammar whose productions are:

S → a A S
S → a

A→ S bA
A→ b a
A→ S S

with axiom S. Let us also consider the following derivation:

D : S → a A S → a S bA S → a a bA S → a a b b a S → a a b b a a

(1) (2) (3) (4) (5)

where in each sentential form αi we have underlined the nonterminal symbol which
is replaced in the derivation step αi → αi+1. The corresponding derivation tree
is depicted in Figure 1.6.1 on page 25. In the above derivation D the numbers
below the underlined nonterminal symbols, denote the correspondence between the
derivation steps and the nodes with the same number in the derivation tree depicted
in Figure 1.6.1. �

S

a A S

S b A

(1)

(2) (5)

(3) (4) a

a b a

Figure 1.6.1. A derivation tree for the word a a b b a a and the gram-
mar given in Example 1.6.1 on page 25. This tree corresponds to the
derivation D: S → aAS → aS bAS → aabA S → aabbaS → aabbaa.
The numbers associated with the nonterminal symbols denote the
correspondence between the nonterminal symbols and the derivation
steps of the derivation D on page 25.

Given a word w and a derivation α1 → α2 → . . . → αn, with n > 1, where α1 =S
and αn =w, for a context-free grammar, we say that it is a leftmost derivation of w
from S iff for i = 1, . . . , n−1, in derivation step αi → αi+1 the nonterminal symbol
which is replaced in the sentential form αi, is the leftmost nonterminal in αi. A
derivation step αi → αi+1 in which we replace the leftmost nonterminal in αi, is also
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denoted by αi →lm αi+1. The derivation D in the above Example 1.6.1 is a leftmost
derivation.

Similarly to the notion of leftmost derivation, there is also the notion of right-
most derivation where at each derivation step the rightmost nonterminal symbol is
replaced. A rightmost derivation step is usually denoted by →rm.

Theorem 1.6.2. Given a context-free grammar G, for every word w ∈ L(G)
there exists a leftmost derivation of w and a rightmost derivation of w.

Proof. The proof is by structural induction on the derivation tree of w. �

Example 1.6.3. Let us consider the grammar whose productions are:

E → E + T
E → T
T → T × F
T → F
F → (E)
F → a

with axiom E. Let us also consider the following three derivations D1, D2, and D3,
where for each derivation step αi → αi+1, we have underlined in the sentential form
αi the nonterminal symbol which is replaced in that derivation step:

D1: E →lm E + T →lm T + T →lm F + T →lm a + T→lm a + F →lm a + a

D2: E →rm E + T →rm E + F →rm E + a →rm T + a →rm F + a →rm a + a

D3: E →lm E + T →rm E + F →lm T + F →rm T + a →lm F + a →lm a + a

We have that: (i) derivation D1 is leftmost, (ii) derivation D2 is rightmost, and
(iii) derivation D3 is neither rightmost nor leftmost. �

Let us also introduce the following definition which we will need later.

Definition 1.6.4. [Unfold and Fold of a Context-Free Production] Let
us consider a context-free grammar G = 〈VT , VN , P, S〉. Let A, B be elements of
VN and α, β1, . . . , βn, γ be elements of (VT ∪ VN)∗. Let A → αBγ be a production
in P , and B → β1 | . . . | βn be all the productions in P whose left hand side is B.

The unfolding of B in A→ αBγ with respect to P (or simply, the unfolding of
B in A→ αBγ) is the replacement of

the production: A→ αBγ by the productions: A→ αβ1γ | . . . |αβnγ.

Conversely, let A → αβ1γ | . . . |αβnγ be some productions in P whose left hand
side is A, and B → β1 | . . . | βn be all the productions in P whose left hand side
is B.

The folding of β1, . . . , βn in A→ αβ1γ | . . . |αβnγ with respect to P (or simply,
the folding of β1, . . . , βn in A→ αβ1γ | . . . |αβnγ) is the replacement of

the productions: A→ αβ1γ | . . . |αβnγ by the production: A→ αBγ.

Sometimes, instead of saying ‘unfolding of B in A → αBγ with respect to P ’, we
will free to say ‘unfolding of B in A→ αBγ by using P ’.
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Definition 1.6.5. [Left Recursive Context-Free Production and Left
Recursive Context-Free Grammar] Let us consider a context-free grammar G =
〈VT , VN , P, S〉. We say that a production in P is left recursive if it is the form:
A → A α with A ∈ VN and α ∈ V ∗. A context-free grammar is said to be left
recursive if one of its productions is left recursive.

The reader should confuse this notion of left recursive context-free grammar with
the one of Definition 3.5.19 on page 130.

1.7. Substitutions and Homomorphisms

In this section we introduce some notions which will be useful in the sequel for
stating various closure properties of some classes of languages we will consider.

Definition 1.7.1. [Substitution] Given two alphabets Σ and Ω, a substitution
is a mapping which takes a symbol of Σ, and returns a language subset of Ω∗.

Any substitution σ0 with domain Σ can be canonically extended to a mapping
σ1, also called a substitution, which takes a word in Σ∗ and returns a language subset
of Ω∗, as follows:

(1) σ1(ε) = {ε}
(2) σ1(wa) = σ1(w) � σ0(a) for any w ∈ Σ∗ and a ∈ Σ

where the operation � denotes the concatenation of languages. (Recall that for
every symbol a ∈ Σ the value of σ0(a) is a language subset of Ω∗, and also for every
word w ∈ L ⊆ Σ∗ the value of σ1(w) is a language subset of Ω∗.) Since concatenation
of languages is associative, Equation (2) above can be replaced by the following one:

(2∗) σ1(a1 . . . an) = σ0(a1) � . . . � σ0(an) for any n > 0

Any substitution σ1 with domain Σ∗ can be canonically extended to a mapping σ2,
also called a substitution, which takes a language subset of Σ∗ and returns a language
subset of Ω∗, as follows: for any L ⊆ Σ∗,

σ2(L) =
⋃

w∈L σ1(w) =

= {z | z ∈ σ0(a1) � . . . � σ0(an) for some word a1 . . . an ∈ L}
Since substitutions have canonical extensions and also these extensions are called
substitutions, in order to avoid ambiguity, when we introduce a substitution we have
to indicate its domain and its codomain. However, we will not do so when confusion
does not arise.

Definition 1.7.2. [Homomorphism and ε-free Homomorphism] Given
two alphabets Σ and Ω, a homomorphism is a total function which maps every
symbol in Σ to a word ω ∈ Ω∗. A homomorphism h is said to be ε-free iff for every
a ∈ Σ, h(a) 6= ε.

Note that sometimes in the literature (see, for instance, [9, pages 60 and 61]),
given two alphabets Σ and Ω, a homomorphism is defined as a substitution which
maps every symbol in Σ to a language L ∈Powerset(Ω∗) with exactly one word.
This definition of a homomorphism is equivalent to ours because when dealing with
homomorphisms, one can assume that for any given word ω ∈ Ω∗, the singleton
language {ω} ∈Powerset(Ω∗) is identified with the word ω itself.
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As for substitutions, a homomorphism h from Σ to Ω∗ can be canonically ex-
tended to a function, also called a homomorphism and denoted h, from Powerset(Σ∗)
to Powerset(Ω∗). Thus, given any language L ⊆ Σ∗, the homomorphic image under
h of L is the language h(L) which is a subset of Ω∗.

Example 1.7.3. Given Σ = {a, b} and Ω = {0, 1}, let us consider the homomor-
phism h : Σ→ Ω∗ such that

h(a) = 0101

h(b) = 01

We have that h({b, ab, ba, bbb}) = {01, 010101}. �

Definition 1.7.4. [Inverse Homomorphism and Inverse Homomorphic
Image] Given a homomorphism h from Σ to Ω∗ and a language V , subset of Ω∗,
the inverse homomorphic image of V under h, denoted h−1(V ), is the following
language, subset of Σ∗: h−1(V ) = {x | x ∈ Σ∗ and h(x) ∈ V }.

Given a language V , the inverse h−1 of an ε-free homomorphism h returns a new
language L by replacing every word v of V by either zero or one or more words, each
of which is not longer than v.

Example 1.7.5. Let us consider the homomorphism h of Example 1.7.3 on
page 28. We have that

h−1({010101}) = {ab, ba, bbb}
h−1({0101, 010, 10}) = {a, bb} �

Given two alphabets Σ and Ω, a language L ⊆ Σ∗, and a homomorphism h which
maps L into a language subset of Ω∗, we have that:

(i) L ⊆ h−1(h(L)) and (ii) h(h−1(L)) ⊆ L

Note that these Properties (i) and (ii) actually hold for any function, not necessarily
a homomorphism, which maps a language subset of Σ∗ into a language subset of Ω∗.

Definition 1.7.6. [Inverse Homomorphic Image of a Word] Given a homo-
morphism h from Σ to Ω∗, and a word w of Ω∗, we define the inverse homomorphic
image of w under h, denoted h−1(w), to be the following language subset of Σ∗:

h−1(w) = {x | x ∈ Σ∗ and h(x) = w}.
Example 1.7.7. Let us consider the homomorphism h of Example 1.7.3 on

page 28. We have that h−1(0101) = {a, bb}. �

We end this section by introducing the notion of a closure of a class of languages
under a given operation.

Definition 1.7.8. [Closure of a Class of Languages] Given a class C of
languages, we say that C is closed under a given operation f of arity n iff f applied
to n languages in C returns a language in C.

This closure notion will be used in the sequel and, in particular, in Sections 2.12,
3.13, 3.17, and 7.5, starting on page 94, 157, 169, and 224, respectively.



CHAPTER 2

Finite Automata and Regular Grammars

In this chapter we will introduce the deterministic finite automata and the nondeter-
ministic finite automata and we will show their equivalence (see Theorem 2.1.14 on
page 33). We will also prove the equivalence between deterministic finite automata
and S-extended type 3 grammars. We will introduce the notion of regular expres-
sions (see Section 2.5) and we will prove the equivalence between regular expressions
and deterministic finite automata. We will also study the problem of minimizing
the number of states of the finite automata and we will present a parser for type 3
languages. Finally, we will introduce some generalizations of the finite automata and
we will consider various closure and decidability properties for type 3 languages.

2.1. Deterministic and Nondeterministic Finite Automata

The following definition introduces the notion of a deterministic finite automaton.

Definition 2.1.1. [Deterministic Finite Automaton] A deterministic finite
automaton (also called finite automaton, for short) over the finite alphabet Σ (also
called the input alphabet) is a quintuple 〈Q, Σ, q0, F, δ〉 where:
- Q is a finite set of states,
- q0 is an element of Q, called the initial state,
- F ⊆ Q is the set of final states, and
- δ is a total function, called the transition function, from Q× Σ to Q.

A finite automaton is usually depicted as a labeled multigraph whose nodes are the
states and whose edges represent the transition function as follows: for every state
q1 and q2 and every symbol v in Σ, if δ(q1, v) = q2 then there is an edge from node
q1 to node q2 with label v.

If we have that δ(q1, v1) = q2 and . . . and δ(q1, vn) = q2, for some n ≥ 1, we will
feel free to depict only one edge from node q1 to node q2, and that edge will have
the n labels v1, . . . , vn, separated by commas (see, for instance, Figure 2.1.2 (β) on
page 32).

Usually the initial state is depicted as a node with an incoming arrow and the
final states are depicted as nodes with two circles (see, for instance, Figure 2.1.1 on
page 31). We have to depict a finite automaton using a multigraph, rather than a
graph, because between any two nodes there can be, in general, more than one edge.

Let δ∗ be the total function from Q× Σ∗ to Q defined as follows:

(i) for every q ∈ Q, δ∗(q, ε) = q, and
(ii) for every q ∈ Q, for every word wv with w ∈ Σ∗ and v ∈ Σ,

δ∗(q, wv) = δ(δ∗(q, w), v).

29
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For every w1, w2 ∈ Σ∗ we have that δ∗(q, w1w2) = δ∗(δ∗(q, w1), w2).

Given a finite automaton, we say that there is a w-path from state q1 to state q2

for some word w ∈ Σ∗ iff δ∗(q1, w) = q2.
When the transition function δ is applied, we say that the finite automaton

makes a move (or a transition). In that case we also say that a state transition
takes place.

Remark 2.1.2. [Epsilon Moves] Note that since in each move one symbol of
the input is given as an argument to the transition function δ, we say that a finite
automaton is not allowed to make ε-moves (see the related notion of an ε-move for
a pushdown automaton introduced in Definition 3.1.5 on page 101). �

Definition 2.1.3. [Equivalence Between States of Finite Automata]
Given a finite automaton 〈Q, Σ, q0, F, δ〉 we say that a state q1 ∈ Q is equivalent to
a state q2 ∈ Q iff for every word w ∈ Σ∗ we have that δ∗(q1, w) ∈ F iff δ∗(q2, w) ∈ F .

As a consequence of this definition, given a finite automaton 〈Q, Σ, q0, F, δ〉, if a
state q1 is equivalent to a state q2 then for every v ∈ Σ, the state δ(q1, v) is equivalent
to the state δ(q2, v). (Note that this statement is not an ‘iff’.)

Definition 2.1.4. [Language Accepted by a Finite Automaton] We say
that a finite automaton 〈Q, Σ, q0, F, δ〉 accepts a word w in Σ∗ iff δ∗(q0, w) ∈ F . A
finite automaton accepts a language L iff it accepts every word in L and no other
word. If a finite automaton M accepts a language L, we say that L is the language
accepted by M . L(M) denotes the language accepted by the finite automaton M .

When introducing the concepts of this definition, other textbooks use the terms ‘rec-
ognizes’ and ‘recognized’, instead of the terms ‘accepts’ and ‘accepted’, respectively.

The set of languages accepted by the set of the finite automata over Σ is denoted
LFA, Σ or simply LFA, when Σ is understood from the context. We will prove that
LFA, Σ is equal to REG, that is, the class of all regular languages subsets of Σ∗.

Definition 2.1.5. [Equivalence Between Finite Automata] Two finite au-
tomata are said to be equivalent iff they accept the same language.

A finite automaton can be given by providing: (i) its transition function δ, (ii) its
initial state q0, and (iii) its final states F . Indeed, from the transition function, we
can derive the input alphabet Σ and the set of states Q.

Example 2.1.6. In the following Figure 2.1.1 we have depicted a finite automa-
ton which accepts the empty string ε and the binary numerals denoting the natural
numbers that are divisible by 3. The numerals are given in input to the finite
automaton, starting from the most significant bit and ending with the least signif-
icant bit. Thus, for instance, if we want to give in input to a finite automaton the
number 2n−1 b1 + 2n−2 b2 + . . . + 21 bn−1 + 20 bn, we have to give in input the string
b1b2 . . . bn−1bn of bits in the left-to-right order.

Starting from the initial state 0, the finite automaton will be in state 0 if the input
examined so far is the empty string ε and it will be in state x, with x ∈ {0, 1, 2},
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if the input examined so far is the string b1b2 . . . bj , for some j = 1, . . . , n, which
denotes the integer k and k divided by 3 gives the remainder x, that is, there exists
an integer m such that k = 3 m + x.

The correctness of the finite automaton depicted in Figure 2.1.1 is proved as
follows. The set of states is {0, 1, 2}, because the remainder of a division by 3 can
only be either 0 or 1 or 2. From state 0 to state 1 there is an arc labeled 1 because
if the string b1b2 . . . bj of bits denotes an integer k divisible by 3 (and thus, there is
a (b1b2 . . . bj)-path which leads from the initial state 0 again to state 0), then the
extended string b1b2 . . . bj1 denotes the integer 2 k + 1, and thus, when we divide
2 k + 1 by 3 we get the integer remainder 1. Analogously, one can prove the labels
of all other arcs of the finite automaton depicted in Figure 2.1.1 are correct. �

0 1 2
1

1

0

0

0

1

Figure 2.1.1. A deterministic finite automaton which accepts the
empty string ε and the binary numerals denoting natural numbers
divisible by 3 (see Example 2.1.6). For instance, this automaton ac-
cepts the binary numeral 10010 which denotes the number 18, because
10010 leads from the initial state 0 again to state 0 (which is also a
final state) through the following sequence of states: 1, 2, 1, 0, 0.

Remark 2.1.7. Finite automata can also be introduced by stipulating that the
transition function is a partial function from Q×Σ to Q, rather than a total function
from Q×Σ to Q. If we do so, we get an equivalent notion of finite automata. Indeed,
one can show that for every finite automaton with a partial transition function, there
exists a finite automaton with a total transition function which accepts the same
language, and vice versa.

We will not formally prove this statement and, instead, we will provide the
following example which illustrates the proof technique. This technique uses a so
called sink state for constructing an equivalent finite automaton with a total tran-
sition function, starting from a given finite automaton with a partial transition
function. 2

Example 2.1.8. Let us consider the finite automaton 〈{S, A}, {0, 1}, S, {S, A},
δ〉, where δ is the following partial transition function:

δ(S, 0) = S δ(S, 1) = A δ(A, 0) = S.
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This automaton is depicted in Figure 2.1.2 (α). In order to get the equivalent finite
automaton with a total transition function we consider the additional state qs, called
the sink state, and we stipulate that (see Figure 2.1.2 (β)):

δ(A, 1) = qs δ(qs, 0) = qs δ(qs, 1) = qs. �

S A

S A qs

(α)

(β)

1

0

0

1

0

0

1

0, 1

Figure 2.1.2. (α) The deterministic finite automaton of Exam-
ple 2.1.8 with a partial transition function. (β) A deterministic finite
automaton equivalent to the finite automaton in (α). This second
automaton has the sink state qs and a total transition function.

Definition 2.1.9. [Nondeterministic Finite Automaton] A nondetermin-
istic finite automaton is like a finite automaton, with the only difference that the
transition function δ is a total function from Q × Σ to 2Q, that is, from Q × Σ to
the set of the finite subsets of Q. Thus, the transition function δ returns a subset
of states, rather than a single state.

Remark 2.1.10. According to Definitions 2.1.1 and 2.1.9, when we say ‘finite
automaton’ without any other qualification, we actually mean a ‘deterministic finite
automaton’. �

Similarly to a deterministic finite automaton, a nondeterministic finite automa-
ton is depicted as a labeled multigraph. In this multigraph for every state q1 and q2

and every symbol v in Σ, if q2 ∈ δ(q1, v) then there is an edge from node q1 to node
q2 with label v. The fact that the finite automaton is nondeterministic implies that
there may be more than one edge with the same label going out of a given node.

Obviously, every deterministic finite automaton can be viewed as a particular
nondeterministic finite automaton whose transition function δ returns singletons
only.

Let δ∗ be the total function from 2Q × Σ∗ to 2Q defined as follows:

(i) for every A ⊆ Q, δ∗(A, ε) = A, and

(ii) for every A ⊆ Q, for every word w v, with w ∈ Σ∗ and v ∈ Σ,

δ∗(A, w v) =
⋃

q∈ δ∗(A,w) δ(q, v).
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Given a nondeterministic finite automaton, we say that there is a w-path from
state q1 to state q2 for some word w ∈ Σ∗ iff q2 ∈ δ∗({q1}, w).

Definition 2.1.11. [Language Accepted by a Nondeterministic Finite
Automaton] A nondeterministic finite automaton 〈Q, Σ, q0, F, δ〉 accepts a word w
in Σ∗ iff there exists a state in δ∗({q0}, w) which belongs to F . A nondeterministic
finite automaton accepts a language L iff it accepts every word in L and no other
word. If a nondeterministic finite automaton M accepts a language L, we say that
L is the language accepted by M .

When introducing the concepts of this definition, other textbooks use the terms ‘rec-
ognizes’ and ‘recognized’, instead of the terms ‘accepts’ and ‘accepted’, respectively.

Definition 2.1.12. [Equivalence BetweenNondeterministic Finite Auto-
mata] Two nondeterministic finite automata are said to be equivalent iff they accept
the same language.

Remark 2.1.13. As for deterministic finite automata, one may assume that the
transition functions of the nondeterministic finite automata are partial function,
rather than total functions. Indeed, by using the sink state technique one can show
that for every nondeterministic finite automaton with a partial transition function,
there exists a nondeterministic finite automaton with a total transition function
which accepts the same language, and vice versa. 2

We have the following theorem.

Theorem 2.1.14. [Rabin-Scott. Equivalence of Deterministic and Non-
deterministic Finite Automata] For every nondeterministic finite automaton
〈Q, Σ, q0, F, δ〉 there exists an equivalent, deterministic finite automaton whose set
of states is a subset of 2Q.

This theorem will be proved in Section 2.3.

2.2. Nondeterministic Finite Automata and S-extended Type 3
Grammars

In this section we establish a correspondence between the set of the S-extended
type 3 grammars whose set of terminal symbols is Σ and the set of the nondeter-
ministic finite automata over Σ.

Theorem 2.2.1. [Equivalence Between S-extended Type 3 Grammars
and Nondeterministic Finite Automata] (i) For every S-extended type 3 gram-
mar which generates the language L ⊆ Σ∗, there exists a nondeterministic finite
automaton over Σ which accepts L and (ii) vice versa.

Proof. Let us show Point (i). Given the S-extended type 3 grammar 〈VT , VN , P, S〉
we construct the nondeterministic finite automaton 〈Q, VT , S, F, δ〉 as indicated by
the following procedure. Note that S ∈ Q is the initial state of the nondeterministic
finite automaton.
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Algorithm 2.2.2.
Procedure: from S-extended Type 3 Grammars to Nondeterministic Finite Au-
tomata.

Q := VN ; F := ∅; δ := ∅;
for every production p in P :

begin

if p is A→ aB then update δ by adding B to the set δ(A, a);

if p is A→ a then begin introduce a new final state q;

Q := Q ∪ {q}; F := F ∪ {q};
update δ by adding q to the set δ(A, a) end;

if p is S → ε then F := F ∪ {S};
end

We leave it to the reader to show that the language generated by the S-extended
type 3 grammar 〈VT , VN , P, S〉 is equal to the language accepted by the automaton
〈Q, VT , S, F, δ〉.

Let us show Point (ii). Given a nondeterministic finite automaton 〈Q, Σ, q0, F, δ〉
we define the S-extended type 3 grammar 〈Σ, Q, P, q0〉, where q0 is the axiom and
the set P of productions is constructed as indicated by the following procedure.

Algorithm 2.2.3.
Procedure: from Nondeterministic Finite Automata to S-extended Type 3 Gram-
mars.

P := ∅;
for every state A and B and for every symbol a such that B ∈ δ(A, a):

begin add to P the production A→ aB;

if B ∈ F then add to P the production A→ a

end;

if q0 ∈ F then add to P the production q0 → ε

In the for-loop of this procedure, one looks at every state, one at a time, and
for each state at every outgoing edge. The S-extended regular grammar which is
generated by this procedure can then be simplified by eliminating useless symbols
(see Definition 3.5.5 on page 125), if any.

We leave it to the reader to show that the finite automaton 〈Q, Σ, q0, F, δ〉 accepts
the language which is generated by the grammar 〈Σ, Q, P, q0〉. �
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Example 2.2.4. Let us consider the S-extended type 3 grammar:

〈{0, 1}, {S, B}, {S → 0B, B → 0B | 1S | 0}, S〉.
We get the nondeterministic finite automaton 〈{S, B, Z}, Σ, S, {Z}, δ〉, depicted in
Figure 2.2.1. The transition function δ is defined as follows:

δ(S, 0) = {B}, δ(B, 0) = {B, Z}, and δ(B, 1) = {S}. �

S B Z
1

0
0

0

Figure 2.2.1. The nondeterministic finite automaton of Example 2.2.4.

Example 2.2.5. Let us consider the deterministic finite automaton 〈{S, A},
{0, 1}, S, {S, A}, δ〉, where δ(S, 0) = S, δ(S, 1) = A, and δ(A, 0) = S (see Fig-
ure 2.1.2 (α) on page 32). This automaton can also be viewed as a nondeterministic
finite automaton whose partial transition function is: δ(S, 0) = {S}, δ(S, 1) = {A},
and δ(A, 0) = {S}. The language accepted by this automaton is:

{w |w ∈ {0, 1}∗ and w does not contain two consecutive 1’s}.
We get the following S-extended type 3 grammar:

〈{0, 1}, {S, A}, {S → ε | 0S | 0 | 1A | 1, A→ 0S | 0}, S〉. �

2.3. Finite Automata and Transition Graphs

In this section we will introduce the notion of a transition graph and we will prove
the Rabin-Scott Theorem (see Theorem 2.1.14 on page 33).

Definition 2.3.1. [Transition Graph] A transition graph 〈Q, Σ, q0, F, δ〉 over
the alphabet Σ is a multigraph like that of a nondeterministic finite automaton over
Σ, except that the transition function δ is a total function from Q× (Σ∪{ε}) to 2Q

such that for any q ∈ Q, q ∈ δ(q, ε).

Similarly to a deterministic or a nondeterministic finite automaton, a transition
graph can be depicted as a labeled multigraph. The edges of that multigraph are
labeled by elements in Σ ∪ {ε}.

Note that in the above Definition 2.3.1 we do not assume that for any q ∈ Q, if
q1 ∈ δ(q, ε) and q2 ∈ δ(q1, ε) then q2 ∈ δ(q, ε).

We have that every nondeterministic finite automaton can be viewed as a par-
ticular transition graph such that for any q ∈ Q, δ(q, ε) = {q}.

Every deterministic finite automaton can be viewed as a particular transition
graph such that: (i) for every q ∈ Q, δ(q, ε) = {q}, and (ii) for every q ∈ Q and
v ∈ Σ, δ(q, v) is a singleton.
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Definition 2.3.2. For every transition graph with transition function δ and for
every α ∈ Σ ∪ {ε}, we define a binary relation

α
=⇒ which is a subset of Q × Q, as

follows:
for every qa, qb ∈ Q, we stipulate that qa

α
=⇒ qb iff there exists a sequence of states

〈q1, q2, . . . , qi, qi+1, . . . , qn〉, with 1 ≤ i < n, such that:

(i) q1 = qa

(ii) for j = 1, . . . , i−1, qj+1 ∈ δ(qj , ε)

(iii) qi+1 ∈ δ(qi, α)

(iv) for j = i+1, . . . , n−1, qj+1 ∈ δ(qj, ε)

(v) qn = qb.

Since for any q ∈ Q, q ∈ δ(q, ε), we have that for every state q ∈ Q, q
ε

=⇒ q.
For every transition graph with transition function δ we define a total function

δ∗ from 2Q × Σ∗ to 2Q as follows:

(i) for every set A ⊆ Q, δ∗(A, ε) = {q | there exists p ∈ A and p
ε

=⇒ q} , and

(ii) for every set A ⊆ Q, for every word w v with w ∈ Σ∗ and v ∈ Σ,

δ∗(A, w v) = {q | there exists p ∈ δ∗(A, w) and p
v

=⇒ q}.
Given a transition graph, we say that there is a w-path from state q1 to state q2 for
some word w ∈ Σ∗ iff q2 ∈ δ∗({q1}, w). Thus, given a subset A of Q and a word w
in Σ∗, δ∗(A, w) is the set of all states q such that there exists a w-path from a state
in A to q.

Definition 2.3.3. [Language Accepted by a Transition Graph] We say
that a transition graph 〈Q, Σ, q0, F, δ〉 accepts a word w in Σ∗ iff there exists a state
in δ∗({q0}, w) which belongs to F . A transition graph accepts a language L iff
it accepts every word in L and no other word. If a transition graph T accepts a
language L, we say that L is the language accepted by T .

When introducing the concepts of this definition, other textbooks use the terms ‘rec-
ognizes’ and ‘recognized’, instead of the terms ‘accepts’ and ‘accepted’, respectively.

We will prove that the set of languages accepted by the transition graphs over
Σ is equal to REG, that is, the class of all regular languages subsets of Σ∗.

Definition 2.3.4. [Equivalence Between Transition Graphs] Two transi-
tion graphs are said to be equivalent iff they accept the same language.

Remark 2.3.5. As for deterministic finite automata and nondeterminisic finite
automata, one may assume that the transition functions of the transition graphs
are partial functions, rather than total functions. Indeed, by using the sink state
technique one can show that for every transition graph with a partial transition func-
tion, there exists a transition graph with a total transition function which accepts
the same language, and vice versa. 2

We have the following Theorem 2.3.7 which is a generalization of the Rabin-Scott
Theorem (see Theorem 2.1.14). We need first the following definition.
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Definition 2.3.6. [Image of a Set of States with respect to a Symbol]
For every subset S of Q and every a ∈ Σ, the a-image of S is the following subset
of Q:

{q2 | there exists a state q1 ∈ S and q1
a

=⇒ q2}.

Theorem 2.3.7. [Rabin-Scott. Equivalence of Finite Automata and
Transition Graphs] For every transition graph T over the alphabet Σ, there exists
a deterministic finite automaton D which accepts the same language.

Proof. The proof is based on the following procedure, called the Powerset Con-
struction.

Algorithm 2.3.8.
The Powerset Construction. Version 1: from Transition Graphs to Finite Automata.

Given a transition graph T = 〈Q, Σ, q0, F, δ〉, we construct a deterministic finite
automaton D which accepts the same language, subset of Σ∗, as follows.

The set of states of the finite automaton D is 2Q, that is, the powerset of Q.

The initial state I of D is equal to δ∗({q0}, ε) ⊆ Q. (That is, the initial state of D is
the smallest subset of Q which consists of every state q for which there is an ε-path
from q0 to q. In particular, q0 ∈ I).

A state of D is final iff it includes a state from which there is an ε-path to a state
in F . (In particular, a state of D is final if it includes a state in F .)

The transition function η of the finite automaton D is defined as follows: for every
pair S1 and S2 of subsets of Q and for every a ∈ Σ, η(S1, a) = S2 iff S2 is the a-image
of S1.

We leave it to the reader to show that the language accepted by the transition
graph T is equal to the language accepted by the finite automaton D constructed
according to the Powerset Construction Procedure. (That proof can be done by
induction on the length of the words accepted by T and D.) �

The finite automaton D which is constructed by the Powerset Construction Pro-
cedure starting from a given transition graph T , can be kept to its smallest size if
we take the set of states of D to be the set of states reachable from I, that is,

{q | there exists a w-path from the initial state I to q, for some w ∈ Σ∗}.

Example 2.3.9. Let us consider the following transition graph (whose transition
function is a partial function):
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1

2

3

0

1

0

1

ε

By applying the Powerset Construction we get a finite automaton (see Figure 2.3.1)
whose transition function δ is given by the following table, where we have underlined
the final states:

input

state 0 1

1 2 123

2 − −
123 12 123

12 2 123

Note that in this table a state {q1, . . . , qk} in 2Q has been named q1 . . . qk.

Notation 2.3.10. In the sequel, we will use the convention we have used in the
above table, and we will underline the names of the states when we want to stress
the fact that they are final states. �

For instance, the entry 123 for state 1 and input 1 is explained as follows: (i) from
state 1 via the arc labeled 1 followed by the arc labeled ε we get to state 1, (ii) from
state 1 via the arc labeled 1 we get to state 2, and (iii) from state 1 via the arc
labeled 1 we get to state 3. Thus, from state 1 for the input 1 we get to a state
which we call 123, and since this state is a final state (because state 2 is a final
state in the given transition graph) we have underlined its name and we write 123 ,
instead of 123.

Similarly, the entry 12 for state 123 and input 0 is explained as follows: (i) from
state 1 via the arc labeled 0 we get to state 2, (ii) from state 3 via the arc labeled 0
we get to state 1, and (iii) from state 3 via the arc labeled ε followed by the arc
labeled 0 we get to state 2. Thus, from state 123 for the input 0 we get to a state
which we call 12, and since this state is a final state (because state 2 is final in the
given transition graph) we have underlined its name and we write 12 , instead of 12.

An entry ‘−’ in row r and column c of the above table means that from state r
for the input c it is not possible to get to any state, that is, the transition function
is not defined for state r and input symbol c. �
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1

Figure 2.3.1. The finite automaton corresponding to the transition
graph of Example 2.3.9.

Since nondeterministic finite automata are particular transition graphs, the Powerset
Construction is a procedure which for any given nondeterministic finite automaton
〈Q, Σ, q0, F, δ〉 constructs a deterministic finite automaton D which accepts the same
language. This fulfills the promise of providing a proof of Theorem 2.1.14 on page 33.

Moreover, since in a nondeterministic finite automaton there are no edges labeled
by the empty string ε, the Powerset Construction can be simplified as follows when
we are given a nondeterministic finite automaton, rather than a transition graph.

Algorithm 2.3.11.
Powerset Construction. Version 2: from Nondeterministic Finite Automata to Fi-
nite Automata.

Given a nondeterministic finite automaton N = 〈Q, Σ, q0, F, δ〉, we construct a de-
terministic finite automaton D which accepts the same language, subset of Σ∗, as
follows.

The set of states of D is 2Q, that is, the powerset of Q.

The initial state of D is {q0}.
A state of D is final iff it includes a state in F .

The transition function η of the finite automaton D is defined as follows: for every
S ⊆ Q, for every a ∈ Σ, η(S, a) = {p | p ∈ δ(q, a) and q ∈ S}.

We can keep the set of states of the automaton D as small as possible, by considering
only those states which are reachable from the initial state {q0}.

2.4. Left Linear and Right Linear Regular Grammars

In this section we show that regular languages, which can be generated by right linear
grammars, can also be generated by left linear grammars as we have anticipated on
page 14.

Let us begin by introducing the notions of right linear and left linear grammars
in a setting where we also allow epsilon productions.

Definition 2.4.1. [Extended Right Linear Grammars and Extended
Left Linear Grammars] Given a grammar G = 〈VT , VN , P, S〉, (i) we say that
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G is an extended right linear grammar iff every productions is of the form A → β
with A ∈ VN and β ∈ {ε} ∪ VT ∪ VT VN , and (ii) we say that G is an extended
left linear grammar iff every production is of the form A → β with A ∈ VN and
β ∈ {ε} ∪ VT ∪ VNVT .

Definition 2.4.2. [S-extended Right Linear Grammars and S-extended
Left Linear Grammars] Given a grammar G = 〈VT , VN , P, S〉, (i) we say that
G is an S-extended right linear grammar iff every production is either of the form
A→ β with A ∈ VN and β ∈ VT ∪ VT VN , or it is S → ε, and (ii) we say that G is
an S-extended left linear grammar iff every production is either of the form A→ β
with A ∈ VN and β ∈ VT ∪ VNVT , or it is S → ε.

We have the following theorem.

Theorem 2.4.3. [Equivalence of Left Linear Extended Grammars and
Right Linear Extended Grammars] (i) For every extended right linear grammar
there exists an equivalent, extended left linear grammar. (ii) For every extended left
linear grammar there exists an equivalent, extended right linear grammar.

In order to show this Theorem 2.4.3 it is enough to show the following Theorem 2.4.4
because of the result stated in Theorem 1.5.4 Point (iv) on page 20.

Theorem 2.4.4. [Equivalence of Left Linear S-extended Grammars and
Right Linear S-extended Grammars] (i) For every S-extended right linear
grammar there exists an equivalent, S-extended left linear grammar. (ii) For every
S-extended left linear grammar there exists an equivalent, S-extended right linear
grammar.

Proof. (i) Given any S-extended right linear grammar G = 〈VT , VN , P, S〉, we
construct the nondeterministic finite automaton M over the alphabet VT by applying
Algorithm 2.2.2 on page 34. Thus, the language accepted by M is L(G). Then from
this automaton M viewed as labeled multigraph, we generate an S-extended left
linear grammar G′ by applying the following procedure for generating the set P ′ of
productions of G′ whose alphabet is VT and whose start symbol is S. The set V ′

N of
nonterminal symbols of G′ consists of the nonterminal symbols occurring in P ′.

Algorithm 2.4.5.

Procedure: from Nondeterministic Finite Automata
to S-extended Left Linear Grammars. (Version 1)

Let us consider the labeled multigraph corresponding to a given nondeterministic
finite automaton M . Let S1, . . . , Sn be the final states of M . Let the set P ′ of
productions be initially {S → S1, . . . , S → Sn}.
Step (1). For every edge from a state A to a state B with label a ∈ VT , do the
following actions 1 and 2:

1.1. Add to P ′ the production B → Aa.
1.2. If A is the initial state, then add to P ′ also the production B → a.
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Step (2). If a final state of M is also the initial state of M, then add to P ′ the
production S → ε.
Step (3). Finally, for each i, with 1≤ i≤n, unfold Si in the production S → Si (see
Definition 1.6.4 on page 26), that is, replace S → Si by S → σ1 | . . . | σm, where
Si → σ1 | . . . | σm are all the productions for Si.

In Step (1) of this procedure we have to look at every state, one at a time, and for
each state at every incoming edge. The S-extended left linear grammar which is
generated by this procedure can then be simplified by eliminating useless symbols
(see Definition 3.5.5 on page 125), if any.

If in the automaton M there exists one final state only, that is, n = 1, then
Algorithm 2.4.5 can be simplified by: (i) calling S the final state of M, (ii) assuming
that the set P ′ is initially empty, and (iii) skipping Step (3).

We leave it to the reader to show that the derived S-extended left linear gram-
mar G′ generates the same language accepted by the given finite automaton M
which is also the language L(G) generated by the given S-extended right linear
grammar G.

Now we present an alternative algorithm for constructing an S-extended left
linear grammar G from a given nondeterministic finite automaton N .

Let L be the language accepted by the finite automaton N .

Algorithm 2.4.6.

Procedure: from Nondeterministic Finite Automata
to S-extended Left Linear Grammars. (Version 2)

Step (1). Construct a transition graph T starting from the nondeterministic finite
automaton N by adding ε-arcs from the final states of N to a new final state, say qf .
Then make all states different from qf to be non-final states.

Step (2). Reverse all arrows and interchange the final state with the initial state of T .
We have that the resulting transition graph TR whose initial state is qf , accepts the
language LR = {ak · · ·a2a1 | a1a2 · · ·ak ∈ L} ⊆ V ∗

T .

Step (3). Apply Algorithm 2.2.3 on page 34 to the derived transition graph TR.
Actually, we apply an extension of that algorithm because in order to cope with the
arcs labeled by ε which may occur in TR, we also apply the following rule:

if in TR there is an arc labeled by ε from state A to state B
then (i) we add the production A→ B, and

(ii) if B is a final state of TR then we add also the production A→ ε.

By doing so, from TR we get an S-extended right linear grammar with the possible
exception of some productions of the form A→ B.

Note that: (i) qf is the axiom of that S-extended right linear grammar, and (ii) if
a production of the form A→ ε occurs in that grammar then A is qf .

Step (4). In the derived grammar reverse each production, that is, transform each
production of the form A→ aB into a production of the form A→ Ba.
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Step (5). Unfold B in every production A→ B (see Definition 1.6.4 on page 26), that
is, if we have the production A→ B and B → β1 | . . . | βn are all the productions
for B then we replace A→ B by A→ β1 | . . . | βn.

The left linear grammar which is generated by this procedure can then be simplified
by eliminating useless symbols (see Definition 3.5.5 on page 125), if any.

If in the automaton N there exists one final state only, then Algorithm 2.4.6 can
be simplified by: (i) skipping Step (1) and calling qf the unique final state of N ,
(ii) adding the production qf → ε if qf is both the initial and the final state of TR,
and (iii) skipping Step (5).

We leave it to the reader to show that the language generated by the derived
S-extended left linear grammar with axiom qf , is the language L accepted by the
finite automaton N .

In Section 7.7 on page 230 we will present a different algorithm which given any
nondeterministic finite automaton, derives an equivalent left linear or right linear
grammar. That algorithm uses techniques (such as the elimination of ε-productions
and the elimination of unit productions) for the simplifications of context-free gram-
mars which we will present in Section 3.5.3 on page 125 and Section 3.5.4 on page 126.

(ii) Given any S-extended left linear grammar G = 〈VT , VN , P, S〉, we construct
a nondeterministic finite automaton M over VT by applying the following procedure
which constructs its transition function δ, its set of states, its set of final states, and
its initial state.

Algorithm 2.4.7.

Procedure: from S-extended Left Linear Grammars
to Nondeterministic Finite Automata.

Let us consider an S-extended left linear grammar G = 〈VT , VN , P, S〉.
1. The unique final state of the nondeterministic finite automaton M is the state S.

2. The initial state of the nondeterministic finite automaton M is S if the production
S → ε occurs in P , otherwise it is a new state q0.

3. For each production of the form A→ a we consider the edge labeled by a, from
node q0 to node A.

4. For each production of the form A→ Ba we consider the edge labeled by a, from
node B to node A.

The resulting labeled multigraph represents the desired nondeterministic finite au-
tomaton. This nondeterministic finite automaton may have equivalent states which
can be eliminated (see Section 2.8).

Then from this nondeterministic finite automaton M , we construct an equivalent
S-extended right linear grammar G′ by applying Algorithm 2.2.3 on page 34.

We leave it to the reader to show that: (i) the language generated by the given
S-extended left linear grammar G is equal to the language accepted by the given
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finite automaton M , and (ii) the language accepted by M is equal to the language
generated by the S-extended right linear grammar G′. �

Example 2.4.8. Let us consider the nondeterministic finite automaton depicted
in Figure 2.4.1. The left linear grammar with axiom S which accepts the same
language, has the following productions:

S → A a | a
A → A a | B b | a
B → B a | A b | b �

SA

B

a

a

b
b

a

Figure 2.4.1. A nondeterministic finite automaton which accepts
the language generated by the left linear grammar of Example 2.4.8.

Example 2.4.9. Let us consider the left linear grammar with the following pro-
ductions (see Example 2.4.8):

S → A a | a
A → A a | B b | a
B → B a | A b | b

If we apply Procedure 2.4.7 we get the nondeterministic finite automaton of Fig-
ure 2.4.2. In Section 2.3 we have presented the Powerset Construction Procedure for
generating a deterministic finite automaton which accepts the same language of a
given nondeterministic finite automaton, and in Section 2.8 we will present a proce-
dure for determining whether or not two deterministic finite automata are equivalent.
We leave it as an exercise to the reader to prove that, by applying those procedures,
the nondeterministic finite automaton of Figure 2.4.1 accepts the same language
which is accepted by the nondeterministic finite automaton of Figure 2.4.2. �

Remark 2.4.10. The following two observations may help the reader to realize
the correctness of Algorithm 2.2.2 (on page 34) and Algorithm 2.2.3 (on page 34) pre-
sented in the proof of Theorem 2.2.1 (on page 33), and Algorithms 2.4.5, 2.4.6, and
2.4.7 (on page 40, 41, and 42, respectively) presented in the proof of Theorem 2.4.4
(on page 40):

(i) in the right linear grammars every nonterminal symbol A corresponds to a
state qA which represents the set SA of words such that for every word w ∈ SA
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Figure 2.4.2. The nondeterministic finite automaton obtained from
the left linear grammar of Example 2.4.9 by applying Procedure 2.4.7.
States q0 and A are equivalent.

there exists a w-path from qA to a final state, that is, the language generated by the
nonterminal symbol A (see Definition 1.2.4 on page 11), and

(ii) in the left linear grammars every nonterminal symbol A corresponds to a state qA

which represents the set SA of words such that for every word w ∈ SA there exists
a w-path from the initial state to qA.

Thus, we can say that:
(i) in the right linear grammars every state encodes its future until a final state, and
(ii) in the left linear grammars every state encodes its past from the initial state. �

Exercise 2.4.11. (i) Construct the right linear grammar equivalent to the left
linear grammar GL, whose axiom is S and whose productions are:

S → A b B → B a
A → B a B → a
A → a

(ii) Construct the left linear grammar equivalent to the right linear grammar GR,
whose axiom is S and whose productions are:

S → a A B → a A
S → a B B → a B
A → b �

2.5. Finite Automata and Regular Expressions

In this section we prove a theorem due to Kleene which establishes the correspon-
dence between finite automata and regular expressions. In order to state the Kleene
Theorem we need the following definitions.

Definition 2.5.1. [Regular Expression] A regular expression over an alphabet
Σ is an expression e of the form:

e ::= ∅ | a | e1 � e2 | e1 + e2 | e∗
for any a ∈ Σ.
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Sometimes the concatenation e1 � e2 is simply written as e1e2. The regular expression
∅∗ will also be denoted by ε.

The reader should notice the overloading of the symbols in Σ. Indeed, each
symbol of Σ may also be a regular expression. Analogously, ε denotes the empty
word and also the regular expression ∅∗.

The set of regular expressions over Σ is denoted by RExprΣ, or simply RExpr,
when Σ is understood from the context.

Definition 2.5.2. [Language Denoted by a Regular Expression] A regular
expression e over the alphabet Σ denotes a language L(e) ⊆ Σ∗ which is defined by
the following rules:

(i) L(∅) = ∅,
(ii) for any a ∈ Σ, L(a) = {a},
(iii) L(e1 � e2) = L(e1) � L(e2), where on the left hand side ‘ � ’ denotes concatenation
of regular expressions, and on the right hand side ‘ � ’ denotes concatenation of
languages as defined in Section 1.1,

(iv) L(e1 + e2) = L(e1) ∪ L(e2), and

(v) L(e∗) = (L(e))∗, where on the right hand side ‘ ∗ ’ denotes the operation on
languages which is defined in Section 1.1.

The set of languages denoted by the regular expressions over Σ is called LRExpr, Σ

or simply LRExpr, when Σ is understood from the context. We will prove that
LRExpr,Σ is equal to REG, that is, the class of all regular languages subsets of Σ∗.

We have that L(ε) = {ε}. Since {ε} is the neutral element of language concate-
nation, we also have that L(ε � e) = L(e � ε) = L(e).

Definition 2.5.3. [Equivalence Between Regular Expressions] Two reg-
ular expressions e1 and e2 are said to be equivalent, and we write e1 = e2, iff they
denote the same language, that is, L(e1) = L(e2).

In Section 2.7 we will present an axiomatization of all the equivalences between
regular expressions.

In the following definition we generalize the notion of transition graph given in
Definition 2.3.1 by allowing the labels of the edges to be regular expressions, rather
than elements of Σ ∪ {ε}.

Definition 2.5.4. [RExpr Transition Graph] An RExprΣ transition graph
〈Q, Σ, q0, F, δ〉 over the alphabet Σ is a multigraph like that of a nondeterministic
finite automaton over Σ, except that the transition function δ is a total function from
Q×RExprΣ to 2Q such that for any q ∈ Q, q ∈ δ(q, ε). When Σ is understood from
the context, we will write ‘RExpr transition graph’, instead of ‘RExprΣ transition
graph’.

Similarly to a transition graph, an RExpr transition graph over Σ can be depicted
as a labeled multigraph. The edges of that multigraph are labeled by regular ex-
pressions over Σ.
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Definition 2.5.5. [Image of a Set of States with respect to a Regular
Expression] For every subset S of Q and every e ∈RExprΣ, the e-image of S is
the smallest subset of Q which includes every state qn+1 such that:
(i) there exists a word w ∈ L(e) which is the concatenation of the n (≥ 1) words
w1, . . . , wn of Σ∗,
(ii) there exists a sequence of edges 〈q1, q2〉, 〈q2, q3〉, . . . , 〈qn, qn+1〉 such that q1 ∈ S,
and
(iii) for i = 1, . . . , n, the word wi belongs to the language denoted by the regular
expression which is the label of 〈qi, qi+1〉.

Based on this definition, for every RExpr transition graph with transition function
δ we define a total function δ∗ from 2Q×RExpr to 2Q as follows:

for every set A ⊆ Q and e ∈RExpr, δ∗(A, e) is the e-image of A.

Given a RExpr transition graph, we say that there is a w-path from state p to state
q for some word w ∈ Σ∗ iff q ∈ δ∗({p}, w). Thus, given a subset A of Q and a regular
expression e over Σ, δ∗(A, e) is the set of all states q such that there exists a w-path
with w ∈ L(e), from a state in A to q.

Definition 2.5.6. [Language Accepted by an RExpr Transition Graph]
An RExpr transition graph 〈Q, Σ, q0, F, δ〉 accepts a word w in Σ∗ iff there exists
a state in δ∗({q0}, w) which belongs to F . An RExpr transition graph accepts a
language L iff it accepts every word in L and no other word. If an RExpr transition
graph T accepts a language L, we say that L is the language accepted by T .

When introducing the concepts of this definition, other textbooks use the terms ‘rec-
ognizes’ and ‘recognized’, instead of the terms ‘accepts’ and ‘accepted’, respectively.

We will prove that the set of languages accepted by the RExpr transition graphs
over Σ is equal to REG, that is, the class of all regular languages subsets of Σ∗.

Definition 2.5.7. [Equivalence Between RExpr Transition Graphs] Two
RExpr transition graphs are said to be equivalent iff they accept the same language.

Remark 2.5.8. As for transition graphs, one may assume that the transition
functions of the RExpr transition graphs are partial functions, rather than total
functions. Indeed, by using the sink state technique one can show that for every
RExpr transition graph with a partial transition function, there exists an RExpr
transition graph with a total transition function which accepts the same language,
and vice versa. 2

Definition 2.5.9. [Equivalence Between Regular Expressions, Finite
Automata, Transition Graphs, and RExpr Transition Graphs] (i) A regular
expression and a finite automaton (or a transition graph, or an RExpr transition
graph) are said to be equivalent iff the language denoted by the regular expression
is the language accepted by the finite automaton (or the transition graph, or the
RExpr transition graph, respectively).
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Analogous definitions will be assumed for the notions of: (ii) the equivalence
between finite automata and transition graphs (or RExpr transition graphs), and
(iii) the equivalence between transition graphs and RExpr transition graphs.

Now we can state and prove the following theorem due to Kleene.

Theorem 2.5.10. [Kleene Theorem] (i) For every deterministic finite automa-
ton D over the alphabet Σ there exists an equivalent regular expression over Σ, that
is, a regular expression which denotes the language accepted by D.
(ii) For every regular expression e over the alphabet Σ there exists an equivalent
deterministic finite automaton over Σ, that is, a finite automaton which accepts the
language denoted by e.

Proof. (i) Let us consider a finite automaton 〈Q, Σ, q0, F, δ〉. Obviously, any finite
automaton over Σ is a particular instance of an RExprΣ transition graph over Σ.

Then we apply the following algorithm which generates an RExprΣ transition
graph consisting of the two states qin and f and one edge from qin to f labeled by a
regular expression e. The reader may convince himself that the language accepted
by the given finite automaton is equal to the language denoted by e.

Algorithm 2.5.11.

Procedure: from Finite Automata to Regular Expressions.

Step (1). Introduction of ε-edges.
(1.1) We add a new, initial state qin and an edge from qin to q0 labeled by ε. Let qin

be the new unique, initial state.
(1.2) We add a single, new final state f and an edge from every element of F to f
labeled by ε. Let {f} be the new set of final states.

Step (2). Node Elimination.
For every node k different from qin and f , apply the following procedure:
Let 〈p1, k〉, . . . , 〈pm, k〉 be all the edges incoming to k and starting from nodes distinct
from k. Let the associated labels be the regular expressions x1, . . . , xm, respectively.
Let 〈k, q1〉, . . . , 〈k, qn〉 be all the edges outgoing from k and arriving at nodes distinct
from k. Let the associated labels be the regular expressions z1, . . . , zn, respectively.
Let the labels associated with the s (≥0) edges from k to k be the regular expressions
y1, . . . , ys, respectively.

We eliminate: (i) the node k, (ii) the m edges 〈p1, k〉, . . . , 〈pm, k〉, (iii) the n
edges 〈k, q1〉, . . . , 〈k, qn〉, and (iv) the s edges from k to k.

We add every edge of the form 〈pi, qj〉, with 1 ≤ i ≤ m and 1 ≤ j ≤ n, with
label xi (y1 + . . . + ys)

∗ zj .

We replace every set of n (≥ 2) edges, all outgoing from the same node, say h,
and all incoming to the same node, say k, whose labels are the regular expressions
e1, e2, . . . , en, respectively, by a unique edge 〈h, k〉 with label e1 + e2 + . . . + en.

(ii) Given a regular expression e over Σ, we construct a finite automaton D which
accepts the language denoted by e by performing the following two steps.
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Step (ii.1). From the given regular expression e, we construct a new transition
graph T by applying the following algorithm defined by structural induction on e.

Algorithm 2.5.12.

Procedure: from Regular Expressions to Transition Graphs (see also Figure 2.5.1).

From the given regular expression e, we first construct an RExprΣ transition graph G
with two states only: qin and f , qin being the only initial state and f being the only
final state. Let G have the unique edge 〈qin, f〉 labeled by e. Then, we construct
the transition graph T by performing as long as possible the following actions.

If e = ∅ then we erase the edge.

If e = a for some a ∈ Σ, then we do nothing.

If e = e1 � e2 then we replace the edge, say 〈a, b〉, with associated label e1 � e2, by
the two edges 〈a, k〉 and 〈k, b〉 for some new node k, with associated labels e1 and
e2, respectively.

If e = e1 + e2 then we replace the edge, say 〈a, b〉, with associated label e1 + e2, by
the two edges 〈a, b〉 and 〈a, b〉 with associated labels e1 and e2, respectively.

If e = e∗1 then we replace the edge, say 〈a, b〉, with associated label e∗1, by the three
edges 〈a, k〉, 〈k, k〉, and 〈k, b〉, for some new node k, with associated labels ε, e1,
and ε, respectively.

∅

a a

e1 � e2 e1 e2

e1 + e2
e1

e2
e

e∗ ε ε

=⇒

=⇒

=⇒

=⇒

=⇒

Figure 2.5.1. From Regular Expressions to Transition Graphs. a is
any symbol in Σ.

Step (ii.2). From the transition graph T we generate the finite automaton D which
accepts the same language accepted by T , by applying the Powerset Construction
Procedure (see Algorithm 2.3.8 on page 37).

The reader may convince himself that the language denoted by the given regular
expression e is equal to the language accepted by T and, by Theorem 2.3.7, also to
the language accepted by D. �
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In the proof of Kleene Theorem above, we have given two algorithms: (i) a first
one (Algorithm 2.5.11 on page 47) for constructing a regular expression equivalent
to a given finite automaton, and (ii) a second one (Algorithm 2.5.12 on page 48) for
constructing a finite automaton equivalent to a given regular expression.

These two algorithms are not the most efficient ones, and indeed, more efficient
algorithms can be found in the literature (see, for instance, [5]).

Figure 2.5.2 on page 50 illustrates the equivalence of finite automata, transition
graphs, and regular expressions as stated by the Kleene Theorem. In that figure
we have also indicated the algorithms which provide a constructive proof of that
equivalence.

Exercise 2.5.13. Show that, in order to allow a simpler application of the
Powerset Construction Procedure, one can simplify the transition graph obtained
by Algorithm 2.5.12 on page 48, by applying to that graph the following graph
rewriting rules, each of which (i) deletes one node and (ii) replaces three edges by
two edges:

ε ε ε

ε ε ε

e e

e e

=⇒

=⇒

R1.

R2.

A B A B

A B A B

×

×

Rule R1 is applied if no other edges, besides the one labeled by ε, departs from
node A. Rule R2 is applied if no other edges, besides the one edge labeled by ε,
arrives at node B. Crossed dashed edges denote these conditions. The transition
graphs obtained from the regular expressions ab∗ + b and a∗ + b∗ show that these
conditions are actually needed in the sense that, if we apply in those transition
graphs rules R1 and R2, we do not preserve the languages that they accept. �

Example 2.5.14. [From a Finite Automaton to an Equivalent Regular
Expression] Given the finite automaton of Figure 2.3.1 on page 39, we want to
construct the regular expression which denotes the language accepted by that finite
automaton. We apply Algorithm 2.5.11 on page 47.

After Step (1) of that algorithm we get the transition graph:

qin 1

2

123

12 f

T :

ε

ε

ε

ε

0

1

0

0

1

1
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Transition →
Introduction of ε-edges
and Node Elimination → Regular

Graphs (Algorithm 2.5.11 on page 47) Expressions

↑ obvious ↓ Structural Induction
(Algorithm 2.5.12 on page 48)

Finite Powerset Construction Transition
Automata ← (Algorithm 2.3.8 on page 37)← Graphs

Figure 2.5.2. A pictorial view of the Kleene Theorem: equivalence
of finite automata, transition graphs, and regular expressions.

Then by eliminating node 1 in the transition graph T (see subgraph S1 below), we
get the transition graph T1:

qin 1

2

123

qin

2

123

12 f

S1 : T1 :

ε

0

1

T :
ε

ε

ε

0

1

0

0

1

1

Then by eliminating node 2 in the transition graph T1 (see subgraph S2 below), we
get the transition graph T2:

qin

12

2 f qin

123

12 f

S2 : T2 :

0

0

ε

0

0
ε

ε

1
0

1

1

Then by eliminating node 12 in the transition graph T2 (see subgraph S3 below),
we get the transition graph:
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123 12

f

123

qin

123

f

S3 : T3 :

0
0+

ε

1

0

1 0+00+ε
1 + 01

Then by eliminating node 123 in the transition graph T3 (see subgraph S4 below),
we get the transition graph T4:

qin 123 f qin f

S4 : T4 :

0+00+ε1

1+01

0

1(1+01)∗(0+00+ε)

Thus, the resulting regular expression is: 0 + 1(1 + 01)∗(0 + 00 + ε). �

Example 2.5.15. [From a Regular Expression to an Equivalent Finite
Automaton] Given the regular expression:

0 + 1(1 + 01)∗(0 + 00 + ε),

we want to construct the finite automaton which accepts the language denoted by
that regular expression. We can do so into the following two steps:

(i) we construct a transition graph T which accepts the same language denoted by
the given regular expression by applying Algorithm 2.5.12 on page 48, and then

(ii) from T by using the Powerset Construction Procedure (see Algorithm 2.3.8 on
page 37), we get a finite automaton which is equivalent to T .

The transition graph T equivalent to the given regular expression is depicted in
Figure 2.5.3 on page 52.

By applying the Powerset Construction Procedure we get a finite automaton A
whose transition function is given in the following table where the final states have
been underlined.
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1

2 3

4

5 6

7
0

1

ε ε

1

0
1

0

0

0
ε

Figure 2.5.3. The transition graph T corresponding to the regular
expression 0 + 1(1 + 01)∗(0 + 00 + ε).

Transition function of
the finite automaton A:

input

state 0 1

1 7 2357

7 − −
2357 467 357

467 7 357

357 467 357

The initial state of the finite automaton A is 1 (note that in the transition graph T
there are no edges labeled by ε, outgoing from state 1). All states, except state 1,
are final states (and thus, we have underlined them) because they all include state 7
which is a final state in the transition graph T . (Recall that a state s of the finite
automaton A should be final iff it includes a state from which in the transition
graph T there is an ε-path to a final state of T and, in particular, if s includes a
final state of the transition graph.)

The entries of the above table are computed as stated by the Powerset Construc-
tion Procedure. For instance, from state 1 for input 1 we get to state 2357 because
in T :

(i) there is an edge from state 1 to state 2 labeled 1,
(ii) there is an (1 ε)-path (that is, an 1-path) from state 1 to state 3,
(iii) there is an (1 ε ε)-path (that is, an 1-path) from state 1 to state 5,
(iv) there is an (1 ε ε ε)-path (that is, an 1-path) from state 1 to state 7, and
(v) no other states in T are reachable from state 1 by an 1-path.

Likewise, from state 2357 for input 1 we get to state 357, because in T there is
the following transition subgraph:
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2 3 5 7
ε ε ε

1

As we will see in Section 2.8, the states 2357 and 357 are equivalent and we get a
minimal automaton M (see Figure 2.5.4) whose transition function is represented
in the following table.

Transition function of
the minimal finite
automaton M :

input

state 0 1

1 7 357

7 − −
357 467 357

467 7 357

In this table, according to our conventions, we have underlined the three final
states 7 , 357 , and 467 .

1

7

357

467

0

1

0

0

1

1

Figure 2.5.4. The minimal finite automaton M corresponding to
the transition graph T of Figure 2.5.3.

As expected, the finite automaton M of Figure 2.5.4 is isomorphic to the one of
Example 2.5.14 depicted in Figure 2.3.1 on page 39. �

We have the following theorem.

Theorem 2.5.16. [Equivalence Between Regular Languages and Regu-
lar Expressions] A language is a regular language iff it is denoted by a regular
expression.

Proof. By Theorem 2.2.1 we have that every regular language corresponds to a
nondeterministic finite automaton, and by Theorem 2.1.14 we have that every non-
deterministic finite automaton corresponds to deterministic finite automaton. By
Theorem 2.5.10 we also have that the set LFA of languages accepted by deterministic
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finite automata over an alphabet Σ is equal to the set LRExpr of languages denoted
by regular expressions over Σ. �

As a consequence of this theorem and Kleene Theorem (see Theorem 2.5.10 on
page 47), we have that there exists an equivalence between

(i) regular expressions,
(ii) finite automata, and
(iii) S-extended regular grammars.

Theorem 2.5.17. [The Boolean Algebra of the Regular Languages] The
set of languages accepted by finite automata (and thus, the set of languages denoted
by regular expressions and also the set of regular languages) is a boolean algebra.

Proof. We first show that the set of languages accepted by finite automata is
closed under: (i) complementation with respect to Σ∗, and (ii) intersection.

(i) Let us consider a finite automaton A over the alphabet Σ which accepts the
language LA. We want to construct a finite automaton A which accepts Σ∗ − LA.

In order to do so, we first add to the finite automaton A a sink state s which is
not final for A. Then for each state q and label a in Σ such that there is no outgoing
edge from q with label a, we add a new edge from q to s with label a. By doing
so the transition function of the derived augmented finite automaton is guaranteed
to be a total function. Finally, we get the automaton A by interchanging the final
states with non-final ones.

(ii) The finite automaton C which accepts the intersection of the language LA ac-
cepted by a finite automaton A (over the alphabet Σ) and the language LB accepted
by a finite automaton B (over the alphabet Σ), is constructed as follows.

The states of C are the elements of the cartesian product of the set of states of
A and B. For every a ∈ Σ we stipulate that δ(〈qi, qj〉, a) = 〈qh, qk〉 iff δ(qi, a) = qh

for the automaton A and δ(qj , a) = qk for the automaton B. The final states of the
automaton C are of the form 〈qr, qs〉, where qr is a final state of A and qs is a final
state of B.

The element 1 of the boolean algebra is the language Σ∗ and the element 0 is
the empty language, that is, the language with no words.

We leave it to the reader to check that the various axioms of the boolean algebra
are valid, that is, for every language x, y, and z ⊆ Σ∗, the following properties hold:

1.1 x ∪ y = y ∪ x 1.2 x ∩ y = y ∩ x

2.1 (x ∪ y) ∩ z = (x ∩ z) ∪ (y ∩ z) 2.2 (x ∩ y) ∪ z = (x∪z) ∩ (y∪z)

3.1 x ∪ x = Σ∗ 3.2 x ∩ x = ∅
4.1 x ∪ ∅ = x 4.2 x ∩ Σ∗ = x

5. ∅ 6= Σ∗

where x denotes Σ∗ − x. All these properties are obvious because the operations on
languages are set theoretic operations. �
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In the following definition we introduce the notion of an automaton, called the
complement automaton, which for any given alphabet Σ1 and automaton A, accepts
the language Σ∗

1 − L(A).

Definition 2.5.18. [Complement of a Finite Automaton] Given a finite
automaton A over the alphabet Σ the complement automaton A of A with respect
to any given alphabet Σ1, is a finite automaton over the alphabet Σ1 such that A
accepts the language L(A) = Σ∗

1 − L(A).

Now we present a procedure for constructing, for any given finite automaton over
an alphabet Σ, the complement finite automaton with respect to an alphabet Σ1.
This procedure generalizes the one presented in the proof of Theorem 2.5.17 above.

Algorithm 2.5.19.

Procedure: Construction of the Complement Finite Automaton with respect to an
Alphabet Σ1.

We are given a finite automaton A over the alphabet Σ. We construct the comple-
ment automaton A with respect to the alphabet Σ1 as follows.

We first add to the automaton A a sink state s which is not final for A. Then for
each state q (including the sink state s) and label a ∈ Σ1 such that there is no
outgoing edge from q with label a, we add a new edge from q to s with label a.
Then in the derived automaton we erase all edges labeled by the elements in Σ−Σ1.
Finally, we get the complement automaton A by interchanging the final states with
the non-final ones.

In the following definition we introduce the extended regular expressions over
an alphabet Σ. They are defined to be the regular expressions over Σ where we
also allow: (i) the complementation operation, denoted , and (ii) the intersection
operation, denoted ∧.

Definition 2.5.20. [Extended Regular Expressions] An extended regular
expressions over an alphabet Σ is an expression e of the form:

e ::= ∅ | a | e1 � e2 | e1 + e2 | e∗ | e | e1 ∧ e2

where a ranges over the alphabet Σ.

Definition 2.5.21. [Language Denoted by an Extended Regular Expres-
sion] The language L(e) ⊆ Σ∗ denoted by an extended regular expression e over the
alphabet Σ is defined by structural induction as follows (see also Definition 2.5.2):

L(∅) = ∅
L(a) = {a} for any a ∈ Σ

L(e1 � e2) = L(e1) � L(e2)

L(e1 + e2) = L(e1) ∪ L(e2)

L(e∗) = (L(e))∗
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L(e) = Σ∗ − L(e)

L(e1 ∧ e2) = L(e1) ∩ L(e2)

Extended regular expressions are equivalent to regular expressions because regular
expressions are closed under complementation and intersection.

There exists an algorithm which requires O((|w|+|e|)4) units of time to determine
whether or not a word w of length |w| is in the language denoted by a regular
expression e of length |e| [9, page 76].

2.6. Arden Rule

Let us consider the equation r = sr + t among regular expressions in the unknown
r. We look for a solution of that equation, that is, a regular expression r such that
L(r) = L(s) � L(r) ∪ L(t), where � denotes the concatenation of languages and it
is defined in Section 1.1.

We have the following theorem.

Theorem 2.6.1. Given the equation r = sr + t in the unknown r, its least
solution is s∗t, that is, for any other solution z we have that L(s∗t) ⊆ L(z). If
ε 6∈ L(s) then s∗t is the unique solution.

Proof. We divide the proof in the following three Points α, β, and γ.

Point (α). Let us first show that s∗t is a solution for r of the equation r = sr + t,
that is, s∗t = ss∗t + t.

In order to show Point (α) now we show that: (α.1) L(s∗t) ⊆ L(ss∗t)∪L(t), and
(α.2) L(ss∗t) ∪ L(t) ⊆ L(s∗t).

Proof of (α.1). Since L(s∗t) =
⋃

i≥0 L(sit) we have to show that for each i ≥ 0,

L(sit) ⊆ L(ss∗t) ∪ L(t), and this is immediate by induction on i because L(ss∗t) =⋃
i>0 L(sit).

Proof of (α.2). Obvious because we have that L(ss∗t) ⊆ L(s∗t) and L(t) ⊆ L(s∗t).

Point (β). Now we show that s∗t is the minimal solution for r of r = sr + t.
We assume that z is a solution of r = sr + t, that is, z = sz + t. We have to

show that L(s∗t) ⊆ L(z), that is,
⋃

i≥0 L(sit) ⊆ L(z). The proof can be done by
induction on i ≥ 0.
(Basis : i=0) L(t) ⊆ L(z) holds because z = sz + t.

(Step: i≥ 0) We assume that L(sit) ⊆ L(z) and we have to show that L(si+1t) ⊆
L(z). This can be done as follows. From L(sit) ⊆ L(z) we get L(si+1t) ⊆ L(sz).
We also have that L(sz) ⊆ L(z) because z = sz + t and thus, by transitivity,
L(si+1t) ⊆ L(z).

Point (γ). Finally, we show that if ε 6∈ L(s) then s∗t is the unique solution for
r of r = sr + t. Let us assume that there is a different solution z. Since z is a
solution we have that z = sz + t. By Point (β) L(s∗t) ⊆ L(z). Thus, we have that
L(z) = L(s∗t) ∪ A, for some A such that: A ∩ L(s∗t) = ∅ and A 6= ∅.
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Since z is a solution we have that L(s∗t) ∪ A = L(s) (L(s∗t) ∪ A) ∪ L(t). Now
L(s) (L(s∗t)∪A)∪L(t) = L(ss∗t)∪L(s)A∪L(t) = L(s∗t)∪L(s)A. Thus, L(s∗t) ∪A =
L(s∗t) ∪ L(s)A. From this equality we get: A ⊆ L(s)A because we have that
A∩L(s∗t) = ∅. However, A ⊆ L(s)A is a contradiction as we now show. Indeed, let
us take the shortest word, say x, in A. If ε 6∈ L(s) then the shortest word in L(s)A
is strictly longer than x. �

Analogously to Theorem 2.6.1, we also have that given the equation r = rs+t in the
unknown r, its least solution is ts∗, and if ε 6∈ L(s) then ts∗ is the unique solution
of the equation r = rs + t.

2.7. Equations Between Regular Expressions

Let us consider the alphabet Σ and the set RExprΣ of regular expressions over Σ.
An equation between regular expressions is an expression of the form x = y, where
the variables x and y range over the elements of RExprΣ.

Now we present an axiomatization of the equations between regular expressions
in the sense any equation holding between two regular expressions can be derived
from the axioms and the derivation rules which we now introduce. The axioms
are equations between regular expressions, and the derivation rules are rules which
allow us to derive new equations from old equations.

The set of axioms is infinite and, in order to present all the axioms, we will write
them as schematic axioms. A schematic axiom stands for all the axioms which can
be derived by replacing each variable occurring in the schematic axiom by a regular
expression in RExprΣ. Also the set of derivation rules is infinite and we will present
them as schematic derivation rules.

Here is an axiomatization, call it F , of the equations between regular expressions
given by schematic axioms and schematic derivation rules. First, we list the following
schematic axioms A1–A11, where the variables x, y, and z are implicitly universally
quantified and range over regular expressions in RExprΣ.

A1. x + (y + z) = (x + y) + z

A2. x (y z) = (x y) z

A3. x + y = y + x

A4. x (y + z) = x y + x z

A5. (y + z) x = y x + z x

A6. x + x = x

A7. ∅∗ x = x

A8. ∅ x = ∅
A9. x + ∅ = x

A10. x∗ = ∅∗ + x∗x

A11. x∗ = (∅∗ + x)∗
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The schematic derivation rules of F are the following ones:

R1. (Substitutivity) if y1 = y2 then x1 = x1[y1/y2]

where x1[y1/y2] denotes the expression x1 where every occurrence of y2 has been
replaced by y1.

R2. (Arden rule) if ε 6∈ L(x) and x = xy + z then x = zy∗.

As usual, the equality relation = is assumed to be reflexive, symmetric, and transi-
tive.

Given the axiomatization F of regular expression, an equation x = y between
the regular expression x and y, is said to be derivable in F iff it can be derived as
the last equation of a sequence of equations each of which is: (i) either an instance
of an axiom, or (ii) it can be derived by applying a derivation rule from previous
equations in the sequence.

An equation x = y is said to be valid iff L(x) = L(y). Thus, x = y is a valid
equation iff the regular expressions x and y are equivalent, that is, L(x) = L(y) (see
Definition 2.5.3 on page 45).

An axiomatization is said to be consistent iff all equations derivable in that
axiomatization are valid.

An axiomatization is said to be complete iff all valid equations are derivable in
that axiomatization.

Theorem 2.7.1. [Salomaa Theorem for Regular Expressions] The axiom-
atization F is consistent and complete.

One can show (see [17]) that no axiomatization of equations between regular
expressions can be done in a purely equational form (like, for instance, the schematic
axioms A1–A11), but one needs schematic axioms or derivation rules which are not
in an equational form (like, for instance, the schematic derivation rule R2).

Exercise 2.7.2. Show that: x ∅ = ∅.
Solution. x ∅ = {by A8} = x (∅ ∅) = {by A9} = x ∅ ∅+ ∅. From x ∅ = (x ∅) ∅+ ∅ by
R2 we get: x ∅ = ∅ ∅∗. From x ∅ = ∅ ∅∗ by A8 we get: x ∅ = ∅.

Note that the round brackets used in the expression (x ∅) ∅ are only for reasons
of readability. Indeed, they are not necessary because the concatenation operation,
which we here denote by juxtaposition, is associative. �

Exercise 2.7.3. Show that: x ∅∗ = x.

Solution. x = {by A9} = x +∅ = {by Exercise 2.7.2} = x +x ∅ = {by A3} = x ∅+x.
From x = x ∅+ x by R2 we get: x = x ∅∗. �

Given two regular expressions e1 and e2, one can check whether or not e1 = e2

by: (i) constructing the corresponding minimal finite automata (see the following
Section 2.8), and then (ii) checking whether or not these minimal finite automata
are isomorphic according to the following definition.
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Definition 2.7.4. [Isomorphism Between Finite Automata] Two finite
automata are isomorphic iff they differ only by: (i) a bijective relabelling of the
states, and (ii) the addition and the removal of the sink states and the edges from
and to the sink states.

2.8. Minimization of Finite Automata

In this section we present the Myhill-Nerode Theorem which expresses an important
property of the language accepted by any given finite automaton. We then present
the Moore Theorem and two algorithms for the minimization of the number of states
of the finite automata. Throughout this section we assume a fixed input alphabet Σ.

Definition 2.8.1. [Refinement of a Relation] Given two equivalence rela-
tions A and B subsets of S × S we say that A is a refinement of B or B is refined
by A iff for all x, y ∈ S we have that if xA y then xB y.

Definition 2.8.2. [Right Invariant Equivalence Relation] An equivalence
relation R over the set Σ∗ is said to be right invariant iff xR y implies that for all
z ∈ Σ∗ we have that xz R yz.

Definition 2.8.3. An equivalence relation R over a set S is said to be of finite
index iff the partition induced by R is made out of a finite number of equivalence
classes, also called blocks, that is, S =

⋃
i∈I Si where: (i) I is a finite set, (ii) for

each i ∈ I, block Si is a subset of S, and (iii) for for each i, j ∈ I, if i 6= j then
Si ∩ Sj = ∅.

Theorem 2.8.4. [Myhill-Nerode Theorem] Given an alphabet Σ, the follow-
ing three statements are equivalent, that is, (i) iff (ii) iff (iii).
(i) There exists a finite automaton A over the alphabet Σ which accepts the language
L ⊆ Σ∗.
(ii) There exists an equivalence relation RA over Σ∗ such that: (ii.1) RA is right
invariant, (ii.2) RA is of finite index, and (ii.3) the language L is the union of some
equivalence classes of RA (as we will see from the proof, these equivalence classes
are associated with the final states of the automaton A).
(iii) Let us consider the equivalence relation RL over Σ∗ defined as follows: for any
x and y in Σ∗, xRL y iff (for all z ∈ Σ∗, xz ∈ L iff yz ∈ L). RL is of finite index.

Proof. We will prove that (i) implies (ii), (ii) implies (iii), and (iii) implies (i).
Proof of: (i) implies (ii). Let L be accepted by a deterministic finite automaton
with initial state q0 and total transition function δ. Let us consider the equivalence
relation RA defined as follows:

for all x, y ∈ Σ∗, xRA y iff δ∗(q0, x) = δ∗(q0, y).

(ii.1) We show that RA is right invariant. Indeed, let us assume that for all x, y ∈ Σ∗,
δ∗(q0, x) = δ∗(q0, y). Thus, for all z ∈ Σ∗, we have:

δ∗(q0, xz) = δ∗(δ∗(q0, x), z) (by definition of δ∗)
= δ∗(δ∗(q0, y), z) (by hypothesis)
= δ∗(q0, yz) (by definition of δ∗)
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Now δ∗(q0, xz) = δ∗(q0, yz) implies that xz RAyz.
(ii.2) We show that RA is of finite index. Indeed, assume the contrary. Since
two different words x0 and x1 of Σ∗ are in the same equivalence class of RA iff
δ∗(q0, x0) = δ∗(q0, x1), we have that if RA has infinite index then there exists an
infinite sequence 〈xi | i ≥ 0 and xi ∈ Σ∗〉 of words such that the elements of the
infinite sequence 〈δ∗(q0, x0), δ∗(q0, x1), δ∗(q0, x2), . . .〉 are all pairwise distinct. This
is impossible because for every i ≥ 0, δ∗(q0, xi) belongs to the set of states of the
finite automaton A and A has a finite set of states.
(ii.3) We show that L is the union of some equivalence classes of RA. Indeed, assume
the contrary, that is, the language L is not the union of some equivalence classes
of RA. Thus, there exist two words x and y in Σ∗ such that xRA y and x ∈ L and
y 6∈ L. By xRA y we get δ∗(q0, x) = δ∗(q0, y). Since x ∈ L we have that δ∗(q0, x)
is a final state of the automaton A while δ∗(q0, y) is not a final state of A because
y 6∈ L. This is a contradiction.

Proof of: (ii) implies (iii). We first show that RA is a refinement of RL. Indeed,

for all x, y ∈ Σ∗, (xRA y) implies that (for all z ∈ Σ∗, xz RA yz)

because RA is right invariant. Since L is the union of some equivalence classes of
RA we also have that:

for all x, y ∈ Σ∗,
(for all z ∈ Σ∗, xz RA yz) implies that (for all z ∈ Σ∗, xz ∈ L iff yz ∈ L).

Then, by definition of RL, we have that:

for all x, y ∈ Σ∗, (xRL y) iff (for all z ∈ Σ∗, xz ∈ L iff yz ∈ L).

Thus, we get that for all x, y ∈ Σ∗, xRA y implies that xRL y, that is, RA is a
refinement of RL. Since RA is of finite index also RL is of finite index.

Proof of: (iii) implies (i). First we show that the equivalence relation RL over Σ∗ is
right invariant. We have to show that

for every x, y ∈ Σ∗, xRL y implies that for all z ∈ Σ∗, xz RL yz.

Thus, by definition of RL, we have to show that

for every x, y ∈ Σ∗, xRL y implies that for all z, w ∈ Σ∗, xzw ∈ L iff yzw ∈ L.

This is true because

for all z, w ∈ Σ∗, xzw ∈ L iff yzw ∈ L

is equivalent to

for all z ∈ Σ∗, xz ∈ L iff yz ∈ L

and, by definition of RL, this last formula is equivalent to xRL y.

Now, starting from the given relation RL, we will define a finite automaton
〈Q, Σ, q0, F, δ〉 and we will show that it accepts the language L. In what follows for
every w ∈ Σ∗ we denote by [w] the equivalence class of RL to which the word w
belongs.

Let Q be the set of the equivalence classes of RL. Since RL is of finite index, the
set Q is finite. Let the initial state q0 be the equivalence class [ε] and the set F of
final states be {[w] |w ∈ L}.
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For every w ∈ Σ∗ and for every v ∈ Σ, we define δ([w], v) to be the equivalence
class [wv]. This definition of the transition function δ is well-formed because for
every word w1, w2 ∈ [w] we have that:

for every v ∈ Σ, δ([w1], v) = δ([w2], v), that is, for every v ∈ Σ, [w1v] = [w2v].

This can be shown as follows. Since RL is right invariant we have that:

∀w1, w2 ∈ Σ∗, if w1 RL w2 then (∀v ∈ Σ, w1v RL w2v)

that is,

∀w1, w2 ∈ Σ∗, if [w1] = [w2] then (∀v ∈ Σ, [w1v] = [w2v]).

Now the finite automaton M = 〈Q, Σ, q0, F, δ〉 accepts the language L. Indeed, take
a word w ∈ Σ∗. We have that δ∗(q0, w) ∈ F iff δ∗([ε], w) ∈ F iff [εw] ∈ F iff [w] ∈ F
iff w ∈ L. �

Note that the equivalence relation RA has at most as many equivalence classes
as the states of the given finite automaton A. The fact that RA may have less
equivalence classes is shown by the finite automaton M over the alphabet Σ = {a, b}
depicted in Figure 2.8.1. The automaton M has two states, while RM has one
equivalence class only which is the whole set Σ∗, that is, for every x, y ∈ Σ∗, we have
that xRM y.

A B

a, b a, b

Figure 2.8.1. A deterministic finite automaton M with two states
over the alphabet Σ = {a, b}. The equivalence relation RM is Σ∗×Σ∗.

Theorem 2.8.4 is actually due to Nerode. Myhill in [12] proved the following Theo-
rem 2.8.7.

Definition 2.8.5. [Congruence over Σ∗] A binary equivalence relation R over
Σ∗ is said to be a congruence iff for all x, y, z1, z2 ∈ Σ∗, if xR y then z1xz2 R z1yz2.

Definition 2.8.6. A language L ⊆ Σ∗ induces a congruence CL over Σ∗ defined
as follows: ∀x, y ∈ Σ∗, xCL y iff (∀z1, z2 ∈ Σ∗, z1xz2 ∈ L iff z1yz2 ∈ L).

Theorem 2.8.7. [Myhill Theorem] L ⊆ Σ∗ is a regular language iff L is the
union of some equivalence classes of a congruence relation of finite index over Σ∗ iff
the congruence CL induced by L is of finite index.

The following theorem allows us to check whether or not two given finite au-
tomata are equivalent, that is, they accept the same language.

Theorem 2.8.8. [Moore Theorem] There exists an algorithm that given
any two finite automata, always terminates and tells us whether or not they are
equivalent.
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We will see this algorithm in action in the following Example 2.8.9 and Exam-
ple 2.8.10.

Example 2.8.9. Let us consider the two finite automata F1 and F2 of Fig-
ure 2.8.2. In order to test whether or not the two automata are equivalent, we
construct a table which represents what can be called ‘the synchronized superposi-
tion’ of the transition functions of the two automata as we now explain.

A B C

0

1

1

0

0

1
M Q

N P

automaton F1 : automaton F2 :

0

1

11
0

0

0
1

Figure 2.8.2. The two deterministic finite automata F1 and F2 of Example 2.8.9.

The rows and the entries of the table are labeled by pairs of states of the form
〈S1, S2〉. The first projection S1 of each pair is a state of the first automaton F1 and
the second projection S2 is a state of the second automaton F2. The columns of the
table are labeled by the input values 0 and 1.

Starting from the pairs 〈A, M〉 of the initial states there is a transition to the pair
〈A, M〉 for the input 0 and to the pair 〈B, N〉 for the input 1. Thus, we get the first
row of the table (see below). Since we got the new pair 〈B, N〉 we initialize a new
row with label 〈B, N〉. For the input 0 there is a transition to the pair 〈C, P 〉 and
for the input 1 there is a transition to the pair 〈A, M〉. We continue the construction
of the table by adding the new row with label 〈C, P 〉.

The construction continues until we get a table where every entry is a label of
a row already present in the table. At that point the construction of the table
terminates. In our case we get the following final table.

Synchronized transition
function of the two finite
automata F1 and F2 of
Figure 2.8.2:

0 1

〈A, M〉 〈A, M〉 〈B, N〉
〈B, N〉 〈C, P 〉 〈A, M〉
〈C, P 〉 〈B, Q〉 〈C, P 〉
〈B, Q〉 〈C, P 〉 〈A, M〉

Now in this table each pair of states is made out of states which are both final or
non-final. Precisely in this case, we say that the two automata are equivalent. �
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Example 2.8.10. Let us consider the two finite automata F1 and F3 of Fig-
ure 2.8.3. We construct a table which represents the synchronized superposition
of the transition functions of the two automata as we have done in Example 2.8.9
above.

A B C

0

1

1

0

0

1
M Q

N P

automaton F1 : automaton F3 :

0

0

1 0

1

1

0

1

Figure 2.8.3. The two deterministic finite automata F1 and F3 of Example 2.8.10.

Starting from the pairs 〈A, M〉 of the initial states there is a transition to the
pair 〈A, M〉 for the input 0 and to the pair 〈B, N〉 for the input 1. From the pair
〈B, N〉 there is a transition to the pair 〈C, Q〉 for the input 0 and the pair 〈A, P 〉
for the input 1. At this point it is not necessary to continue the construction of the
table, because we have found a pair of states, namely 〈A, P 〉, such that A is a final
state and P is not final. We may conclude that the two automata of Figure 2.8.3
are not equivalent. �

As a corollary of Moore Theorem (see Theorem 2.8.8 above) we have an enumer-
ation method for finding a finite automaton which has the minimal number of states
among all automata which are equivalent to the given one. Indeed, given a finite
automaton with k states with k ≥ 0, it is enough to generate all finite automata
with a number of states less than k and test for each of them whether or not it is
equivalent to the given one. However, this ‘generate and test’ algorithm has a very
high time complexity because there is exponential number of connected graphs with
n nodes. This implies that there is also an exponential number of finite automata
with n nodes over a fixed finite alphabet.

Fortunately, there is a much faster algorithm which given a finite automaton,
constructs an equivalent finite automaton with minimal number of states. We will
see this algorithm in action in the following example.

Example 2.8.11. Let us consider the finite automaton of Figure 2.8.4.
We construct the following table which has all pairs of states of the automaton to
be minimized. In this table in every column all pairs have the same first component
and in every row all pairs have the same second component.
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A

B C

DE

a

b

a

b
ba

a

ba

b

Figure 2.8.4. A deterministic finite automaton to be minimized.

B AB
C AC BC
D AD BD CD
E AE BE CE DE

A B C D

Then we cross out the pair XY of states iff state X is not equivalent to state Y .
Now, recalling Definition 2.1.3 on page 30, we have that a state X is not equivalent
to state Y iff there exists an element v of the alphabet Σ such that δ(X, v) is not
equivalent to δ(Y, v).

In particular, A is not equivalent to B because δ(A, a) = B, δ(B, a) = C, and B
is not equivalent to C (indeed, B is not a final state while C is a final state). Thus,
we cross out the pair AB and we write: AB×, instead of AB. Analogously, A is
not equivalent to C because δ(A, b) = E, δ(C, b) = D, and E is not equivalent to D
(indeed, E is not a final state while C is a final state). We cross out the pair AC as
well. We get the following table:

AB×
AC× BC
AD BD CD
AE BE CE DE

At the end of this procedure, we get the table:

AB×
AC× BC×
AD× BD× CDX
AE× BE× CE× DE×

We did not cross out the pair CD because the states C and D are equivalent (see the
checkmark X). Indeed, δ(C, a) = C, δ(D, a) = C, δ(C, b) = D, and δ(D, b) = D.

Given a finite automaton we get the equivalent minimal finite automaton by
repeatedly applying the following replacements:
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(i) any two equivalent states, say X and Y , are replaced by a unique state, say Z,
and

(ii) the edges are replaced as follows: (ii.1) every labeled edge from a state A to the
state X or Y is replaced by an edge from the state A to the state Z with the same
label, and (ii.2) every labeled edge from the state X or Y to a state A is replaced
by an edge from the state Z to the state A with the same label.

Thus, in our case we get the minimal finite automaton depicted in Figure 2.8.5. �

A

B

C

E

a

b

a

b
ba b

a

Figure 2.8.5. The minimal finite automaton which corresponds to
the finite automaton of Figure 2.8.4.

Note that the minimal finite automaton corresponding to a given one is unique
up to isomorphism, that is, up to: (i) the renaming of states, and (ii) the addition
and the removal of sink states and edges to sink states.

Now we present a second algorithm which given a finite automaton, constructs
an equivalent finite automaton with the minimal number of states. We will see this
algorithm in action in the following Example 2.8.13. First, we need the following
definition in which for any given finite automaton 〈Q, Σ, q0, F, δ〉, we introduce the
binary relation ∼i, for every i≥0. Each of the ∼i’s is a subset of Q×Q.

Definition 2.8.12. [Equivalence ∼ Between States] Given a finite automa-
ton 〈Q, Σ, q0, F, δ〉, for any p, q ∈ Q we define:

(i) p ∼0 q iff p and q are both final states or they are both non-final states,

and

(ii) for every i ≥ 0, p ∼i+1 q iff p ∼i q and ∀v ∈ Σ, we have that:

(ii.1) ∀p′ ∈ Q, if δ(p, v) = p′ then ∃q′ ∈ Q, (δ(q, v) = q′ and p′ ∼i q′),

and

(ii.2) ∀q′ ∈ Q, if δ(q, v) = q′ then ∃p′ ∈ Q, (δ(p, v) = p′ and p′ ∼i q′).

We have that: p ∼ q iff for every i≥ 0 we have that p ∼i q. Thus, we have that:
∼ =

⋂
i≥0 ∼i.

We say that the states p and q are equivalent iff p ∼ q.

It is easy to show that for every i ≥ 0, the binary relation ∼i is an equivalence
relation. Also the binary relation ∼ is an equivalence relation.
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We have that for every i ≥ 0, ∼i+1 is a refinement of ∼i, that is, for all p, q ∈ Q,
p ∼i+1 q implies that p ∼i q.

Moreover, if for some k≥0 it is the case that ∼k+1 = ∼k then ∼ =
⋂

0≤i≤k ∼i.

One can show that the notion of state equivalence we have now introduced is
equal to that of Definition 2.1.3 on page 30.

As a consequence of Myhill-Nerode Theorem, the relation ∼ partitions the set Q
of states into the minimal number of blocks such that for any two states p and q in
the same block and for all v ∈ Σ, δ(p, v) ∼ δ(q, v). Thus, we may minimize a given
automaton by constructing the relation ∼.

The following example shows how to the relation ∼ in practice.

Example 2.8.13. Let us consider the finite automaton R whose transition func-
tion is given in the following Table T (see page 66). The input alphabet of R is
Σ = {a, b, c} and the set of states of R is {1, 2, 3, 4, 5, 6, 7, 8}.

We want to minimize the number of states of the automaton R. The initial state
of R is state 1 and the final states of R are states 2, 4, and 6. According to our
conventions, in Table T and in the following tables we have underlined the final
states (recall Notation 2.3.10 introduced on page 38).

The finite automaton R has been depicted in Figure 2.8.6 on page 67.

In order to compute the minimal finite automaton which is equivalent to R we
proceed by constructing a sequence of tables T0, T1, . . . , as we now indicate. For
i≥ 0, Table T i denotes a partition of the set of states of the automaton R which
corresponds to the equivalence relation ∼i.

Table T which shows
the transition function
of the automaton R :

a b c

1 2 2 5

2 1 4 4

3 2 2 5

4 3 2 2

5 6 4 3

6 8 8 6

7 6 2 8

8 4 4 7

Initially, in order to construct the Table T0 we partition Table T into two blocks:
(i) the block A which includes the non-final states 1, 3, 5, 7, and 8, and
(ii) the block B which includes the final states 2, 4 and 6.

Then the transition function is computed in terms of the blocks A and B, in the
sense that, for instance, δ(1, a) = B because in Table T we have that δ(1, a) = 2
and state 2 belongs to block B.



2.8. MINIMIZATION OF FINITE AUTOMATA 67

1 2 3 4

5678

automaton R :

c

a, b

a
c

c

a, b

c

b

a

a a

a, b

b

c

c

a, b

b, c

b, c

Figure 2.8.6. The finite automaton R whose transition function is
shown in Table T on page 66. State 1 is the initial state and states 2,
4, and 6 are the final states.

Thus, we get the following Table T0 where the initial state is block A because the
initial state of the given automaton R is state 1 and state 1 belongs to block A. The
final state is block B which includes all the final states of the given automaton R.

Table T0 :

a b c

A 1 B B A

3 B B A

5 B B A

7 B B A

8 B B A

2 A B B

B 4 A B B

6 A A B

This Table T0 represents the equivalence relation ∼0 because any two states which
belong to the same block are either both final or non-final. The blocks of the
equivalence ∼0 are: {1, 3, 5, 7, 8} and {2 , 4 , 6 }.

Now, the states within block A are all pairwise equivalent because their entries
in Table T0 are all the same, namely [B B A], while the states within block B are
not all pairwise equivalent because, for instance, δ(4, b) = B and δ(6, b) = A.

Whenever a block contains two states which are not equivalent, we proceed by
constructing a new table which corresponds to a new equivalence relation which
is a refinement of the equivalence relation corresponding to the last table we have
constructed. Thus, in our case, we partition the block B into the two blocks: (i) B1
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which includes the states 2 and 4 which have the same row [A B B], and (ii) B2
which includes the state 6 with row [A A B]. We get the following new table:

Table T1 :

a b c

A 1 B1 B1 A

3 B1 B1 A

5 B2 B1 A

7 B2 B1 A

8 B1 B1 A

B1 2 A B1 B1

4 A B1 B1

B2 6 A A B2

Then the transition function is computed in terms of the blocks A, B1, and B2,
in the sense that, for instance, δ(1, a) = B1 because in Table T we have that
δ(1, a) = 2 and state 2 belongs to block B1 (see Table T1). Table T1 corresponds
to the equivalence relation ∼1. The blocks of the equivalence ∼1 are: {1, 3, 5, 7, 8},
{2 , 4 }, and {6 }.

Now states 1, 3, and 8 are not equivalent to states 5 and 7 because, for instance,
δ(1, a) = δ(3, a) = δ(8, a) = B1 while δ(5, a) = δ(7, a) = B2. Thus, we partition
block A into two blocks: (i) A1 which includes the states 1, 3, and 8 which have the
same row [B1 B1 A], and (ii) A2 which includes the states 5 and 7 which have the
same row [B2 B1 A]. We get the following new table:

Table T2 :

a b c

A1 1 B1 B1 A2

3 B1 B1 A2

8 B1 B1 A2

A2 5 B2 B1 A1

7 B2 B1 A1

B1 2 A1 B1 B1

4 A1 B1 B1

B2 6 A1 A1 B2

Then the transition function is computed in terms of the blocks A1, A2, B1, and
B2, in the sense that, for instance, δ(1, c) = A2 because in Table T we have that
δ(1, c) = 5 and state 5 belongs to block A2 (see Table 2). Table T2 corresponds to
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the equivalence relation ∼2. The blocks of the equivalence ∼2 are: {1, 3, 8}, {5, 7},
{2 , 4 }, and {6 }.

Now all rows within each block A1, A2, B1, and B2 of Table T2 are the same.
Thus, we get ∼3 = ∼2 and ∼ = ∼2. Therefore, the minimal finite automaton equiva-
lent to the automaton R has a transition function corresponding to Table T2. This
minimal automaton is depicted in Figure 2.8.7 below. �

A1 B1

A2 B2

b, c

c

c
c

a
b

a, b

a, b

a

Figure 2.8.7. The minimal finite automaton corresponding to the
finite automaton of Table T and Figure 2.8.6.

Exercise 2.8.14. We show that the equation (0 + 01 + 10)∗ = (10 + 0∗01)∗0∗

between regular expressions holds by:
(i) constructing the minimal finite automata corresponding to the regular expres-

sions, and then
(ii) checking that these two minimal finite automata are isomorphic (see Defini-
tion 2.7.4 on page 59).

For the regular expression (0 + 01 + 10)∗ we get the following transition graph:

A

B

C

D

E
ε ε

0

1

0 0

1

By applying the Powerset Construction Procedure we get the finite automaton:
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B

ACE CDE

BCECE

0

1

0

10

10

1

0

whose transition function is given by the following table where we have underlined
the final states:

0 1

(∗) ACE CDE B

CDE CDE BCE

(∗) BCE CDE B

B CE −

(∗) CE CDE B

Now the states ACE, BCE, and CE (marked with (∗)) are equivalent and we get
the following minimal finite automaton M1.

Finite automaton M1:

B

ACE/BCE/CE CDE

0

0

1

10

For the regular expression (10 + 0∗01)∗0∗ we get the following transition graph:
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A B C D

F

G

H

J

E

0

1ε

ε

ε ε ε ε

0

0

1
0

By applying the Powerset Construction we get the finite automaton:

J

ABCDEFG DEFGH

BCDEFG

1

0

0

0 1

1

0

whose transition function is given by the following table where we have underlined
the final states:

0 1

(∗) ABCDEFG DEFGH J

DEFGH DEFGH BCDEFG

(∗) BCDEFG DEFGH J

J BCDEFG −

Now the states ABCDEFG and BCDEFG (marked with (∗)) are equivalent and
we get the following minimal finite automaton M2.
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Finite automaton M2:

J

ABCDEFG/BCDEFG DEFGH

0

0

1

10

We have that the finite automaton M2 is isomorphic to the finite automaton M1.�

We leave it as an exercise to the reader to prove that (0+01+10)∗ = 0∗(01+10∗0)∗ by
finding the two minimal finite automata corresponding to the two regular expressions
and then showing their isomorphism, as we have done in Exercise 2.8.14 above.

2.9. Pumping Lemma for Regular Languages

We have the following theorem which provides a necessary condition which ensures
that a grammar is a regular grammar.

Theorem 2.9.1. [Pumping Lemma for Regular Languages] For every reg-
ular grammar G there exists a number p> 0, called a pumping length of the gram-
mar G, depending on G only, such that for all w ∈ L(G), if |w| ≥ p then there exist
the words x, y, z such that:

(i) w = x y z,

(ii) y 6= ε, and

(iii) for all i ≥ 0, x yi z ∈ L(G).

The minimum value of the pumping length p is said to be the minimum pumping
length of the grammar G.

Proof. Let p be the number of the productions of the grammar G. If we apply i
productions of the grammar G from S we generate a word of length i. If we choose
a word, say w, of length q = p+1, then every derivation of that word must have a
production which is applied at least twice. That production cannot be of the form
A → a because when we apply a production of the form A → a then derivation
stops. Thus, the production which during the derivation is applied at least twice, is
of the form A→ a B.

Case (1). Let us consider the case in which A is S. In this case the derivation of w
is of the form

S →∗ y S →∗ y z = w.

Thus, if we perform i times, for any i ≥ 0, the derivation S →∗ y S we get the
derivation S →∗ yi z. The word yi z is equal to x yi z for x = ε, and for any i ≥ 0,
x yi z ∈ L(G).
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Case (2). Let us consider the case in which A is different from S. In this case the
derivation of w is of the form

S →∗ xA→∗ x y A→∗ x y z = w.

Thus, if we perform i times, for any i ≥ 0, the derivation from A to y A we get
the derivation S →∗ xA →∗ x yi z and thus, for any i ≥ 0, we have that x yi z ∈
L(G). �

Corollary 2.9.2. The language L = {ai b ci | i ≥ 1} is not a regular language.
Thus, the language L = {ai b ci | i ≥ 0} cannot be generated by an S-extended
regular grammar.

Proof. Suppose that L is a regular language and let G be a regular grammar
which generates L. By the Pumping Lemma 2.9.1 there exist the words x, y 6= ε,
and z such that for a sufficiently large i, we have that w = ai b ci = x y z ∈ L and
also for any i ≥ 0, we have that x yi z ∈ L. Now,
(i) if y does not include b then there is a word in L with the number of a’s different
from the number of c’s,
(ii) if y = b then the word ai b2 ci should belong to L, and
(iii) if y includes b and it is different from b then also a word with two non-adjacent
b’s is in L.

In all cases (i), (ii), and (iii) we get a contradiction. �

We have the following fact.

Fact 2.9.3. [The Pumping Lemma for Regular Languages is not a Suf-
ficient Condition] The Pumping Lemma for regular languages is a necessary, but
not a sufficient condition for a language to be regular. Thus, there are languages
which satisfy this Pumping Lemma and are not regular.

Proof. Let us consider the alphabet Σ={0, 1} and following language L ⊆ Σ∗:

L =def {u uR v | u, v ∈ Σ+}
where uR denotes the reversal of the word u, that is, the word derived from u by
taking its symbols in the reverse order (see also Definition 2.12.3 on page 95).

Now we show that L satisfies the Pumping Lemma for regular languages.
Let us also consider the pumping length p = 4 and a word w =def u uR v with

u, v ∈ Σ+ such that |w|≥4. We have that w ∈ L. There are two cases: (α) |u| = 1,
and (β) |u| > 1.

In Case (α) we have that |v| ≥ 2 and we take the subword y of the Pumping
Lemma to be the leftmost character of the word v.

For instance, if u = 0 and v = 1 0 we have that u uR v = 0 0 1 0 and, for all i ≥ 0,
the word 0 0 1i 0 belongs to L (indeed, for all i ≥ 0, the leftmost part of 0 0 1i 0 is a
palindrome).

In Case (β) we take the subword y of the Pumping Lemma to be the leftmost
character of the word u.

For instance, if u = 0 1 and v = 1 we have: u uR v = 0 1 1 0 1 and, for all i ≥ 0,
the word 0i 1 1 0 1 belongs to L because, for all i ≥ 0, the leftmost part of 0i 1 1 0 1
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is a palindrome. Note that also for i = 0, the leftmost part of the word 0i 1 1 0 1 is
a palindrome.

Indeed, it is the case that, for any word (a s) ∈ Σ+, with a ∈ Σ and s ∈ Σ+, we
have that: (a s) (a s)R = a s sR a and, thus, if we take the leftmost character away,
we get the word s sR a whose leftmost part s sR is a palindrome.

This concludes the proof that the language L satisfies the Pumping Lemma for
regular languages.

It remains to show that L is not a regular language. This is an obvious conse-
quence of the fact that, as we will see on page 153, the language {u uR | u ∈ Σ+} is
not regular. �

Note that there is a statement which provides a necessary and a sufficient condi-
tion for a language to be regular: it is the Myhill-Nerode Theorem (see Theorem 2.8.7
on page 61).

2.10. A Parser for Regular Languages

Given a regular grammar G we can construct a parser for the language L(G) by
performing the following three steps.

Step (1). Construct a finite automaton A corresponding to the grammar G (see
Section 2.2 starting on page 33).

Step (2). Construct a finite automaton D as follows: if A is deterministic then D
is A else if A is nondeterministic then D is the finite automaton equivalent to A (it
can be constructed from A by using the Powerset Construction of Algorithm 2.3.11
on page 39).

Step (3). Construct the parser by using the transition function δ of the automaton D
as we now indicate.

Let stp be the string to parse. We want to check whether or not stp ∈ L(G). We
start from the initial state of D and, by taking one symbol of stp at a time, from left
to right, we make a transition from the current state to a new state according to the
transition function δ of the automaton D, until the string stp is finished. Let q be
the state reached when the transition corresponding to the rightmost symbol of stp
has been considered. If q is a final state then stp ∈ L(G), otherwise stp 6∈ L(G).

In order to improve the efficiency of the parser, instead of the transition func-
tion δ of the automaton D, we can consider the transition function of the minimal
automaton corresponding to D (see Section 2.8 starting on page 59).

Now we present a Java program which realizes a parser for the language generated
by a given regular grammar G, by using the finite automaton which is equivalent
to G, that is, the finite automaton which accepts the language generated by L(G).

Let us consider the grammar G with axiom S and the following productions:

S → a A | a
A→ a A | a | a B

B → bA | b
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The minimal finite automaton which accepts the language generated by the gram-
mar G, is depicted in Figure 2.10.1 on page 75. By using Kleene Theorem (see
Theorem 2.5.10 on page 47), one can show that this grammar generates the regular
language denoted by the regular expression a (a + a b)∗.

0 1 2

3

a

b
b

a

b

a

a, b

Figure 2.10.1. The minimal finite automaton which accepts the reg-
ular language generated by the grammar with axiom S and produc-
tions: S → a A | a, A→ a A | a | a B, B → bA | b.
States 0, 1, and 2 correspond to the nonterminals S, A, and B, re-
spectively. State 3 is a sink state.

In our Java program we assume that:

(i) the terminal alphabet is {a, b},
(ii) the states of the automaton are denoted by the integers 0, 1, 2, and 3,

(iii) the initial state is 0,

(iv) the set of final states is {1, 2}, and

(v) the transition function δ is defined as follows:

δ(0, a) = 1; δ(0, b) = 3; δ(1, a) = 2; δ(1, b) = 3;

δ(2, a) = 2; δ(2, b) = 1; δ(3, a) = 3; δ(3, b) = 3.

States 0, 1, and 2 correspond to the nonterminals S, A, and B, respectively. State 3
is a sink state.
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/**
* ========================================================================
* PARSER FOR A REGULAR GRAMMAR USING A FINITE AUTOMATON
* ========================================================================
*
* The terminal alphabet is {a,b}.
* The string to parse belongs to {a,b}*. It may also be the empty string.
*
* Every state of the automaton is denoted by an integer.
* The transition function is denoted by a matrix with two columns, one
* for ‘a’ and one for ‘b’, and as many rows as the number of states of
* the automaton.
* ========================================================================
*/

public class FiniteAutomatonParser {

// stp is the string to parse. It belongs to {a,b}*.
private static String stp = "aaba";

// lstp1 is (length -1) of the string to parse. It is only used
// in the for-loop below.
private static int lstp1 = stp.length()-1;

// The initial state is 0.
private static int state = 0;

// The final states are 1 and 2.
private static boolean isFinal (int state) {

return (state == 1 || state == 2);
};

// The transition function is denoted by the following 4x2 matrix.
// We have 4 states. The sink state is state 3.
private static int [] [] transitionFunction = {

{1,3}, // row 0 for state 0
{2,3}, // row 1 for state 1
{2,1}, // row 2 for state 2
{3,3}, // row 3 for state 3

};
// ------------------------------------------------------------------------

public static void main (String [] args) {

// In the for-loop below ps is the pointer to a character of
// the string to parse stp. We have that: 0 <= ps <= lstp1.
int ps;

// ‘a’ is at column 0 and ‘b’ is at column 1.
// Indeed, ‘a’ - ‘a’ is 0 and ‘b’ - ‘a’ is 1.
// There is a casting from char to int for the - operation.
for (ps=0; ps<=lstp1; ps++) {

state = transitionFunction [state] [stp.charAt(ps) - ’a’];
};

System.out.print("\nThe input string\n " + stp + "\nis ");
if (!isFinal(state)) { System.out.print("NOT "); };
System.out.print("accepted by the given finite automaton.\n");

}
}
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/**
* ========================================================================
* The transition function of our finite automaton is:
*
* 0 1
* | ‘a’ | ‘b’
* =====|=====|=====
* state 0 | 1 | 3
* -----|-----|-----
* state 1 | 2 | 3
* -----|-----|-----
* state 2 | 2 | 1
* -----|-----|-----
* state 3 | 3 | 3
* =====|=====|=====
*
* The initial state is 0. The final states are 1 and 2.
* ‘a’ is at column 0 and ‘b’ is at column 1.
* ------------------------------------------------------------------------
* input:
* ------
* javac FiniteAutomatonParser.java
* java FiniteAutomatonParser
*
* output:
* -------
* The input string
* aaba
* is accepted by the given finite automaton.
* ------------------------------------------------------------------------
* For stp = "baaba" we get:
*
* The input string
* baaba
* is NOT accepted by the given finite automaton.
* ========================================================================
*/

Now we present a different technique for constructing a parser for the language
L(G) for any given right linear grammar G. It is assumed that ε 6∈ L(G).

We will see that technique in action in the following example. Let us consider
the right linear grammar G with the following four productions:

1. P → a

2. Q→ b

3. P → a Q

4. Q→ b P

The number k (≥1) to the left of each production is the so called sequence order of
the production. These productions can be represented as a string which is the con-
catenation of the substrings, each of which represents a single production according
to the following convention:
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(i) every production of the form A → a B is represented by the substring A a B,
and
(ii) every production of the form A→ a is represented by the substring A a �, where
‘�’ is a special character not in VT ∪ VN .

Thus, the above four productions can be represented by the following string gg,
short for ‘given grammar’:

production =
gg =

position of the character =
sequence order of the production =

P → a
P a �
0 1 2
1

Q→ b
Q b �
3 4 5
2

P → a Q
P a Q
6 7 8
3

Q→ b P
Q b P
9 10 11
4

In the above lines the vertical bars have no significance: they have been drawn only
for making it easier to visualize the productions. Underneath the string gg, viewed as
an array of characters, we have indicated: (i) the position of each of its characters
(that position is the index of the array where the character occurs), and (ii) the
sequence order of each production. For instance, in the string gg the character Q
occurs at positions 3, 8, and 9, and the sequence order of the production Q → b P
is 4. By writing gg[i] = A we will express the fact that the character A occurs at
position i in the string gg.

Notation 2.10.1. [Identification of Productions] We assume that every pro-
duction represented in the string gg is identified by the position p of the nonterminal
symbol of its left hand side, or by its sequence order s. We have that: s = (p/3)+1.
Thus, for instance, for the grammar G above, we have that the production Q→ b P
is identified by the position 9 and also by the sequence order 4. �

We also assume that gg [0], that is, the leftmost character in gg, is the axiom of
the grammar G.

Recalling the results of Section 2.2 starting on page 33, we have that a right
linear grammar G corresponds to a finite automaton, call it M , which, in general, is a
nondeterministic automaton (recall Algorithm 2.2.2 on page 39. From an S -extended
type 3 grammar that algorithm constructs a nondeterministic finite automaton). We
also have that the nonterminal symbols occurring at the positions 0, 3, 6,. . . and
2, 5, 8,. . . of the string gg, that is, the nonterminal symbols of the grammar G, can
be viewed as the names of the states of the nondeterministic finite automaton M
corresponding to G. The symbol ‘�’ can be viewed as the name of a final state of
the automaton M , as we will explain below.

When a string stp is given in input, one character at a time, to the automaton
M for checking whether or not stp ∈ L(G), we have that M makes a move from
the current state to a new state, for each new character which is given in input. M
accepts the string stp iff the move it makes for the rightmost character of stp, takes
M to a final state. We have that:

(i) if we apply the production A → a B, then the automaton M reads the input
character a and makes a transition from state A to state B, and
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(ii) if we apply the production A→ a, the automaton M reads the input character a
and makes a transition from state A to a final state, if any.

The leftmost character of the string gg is gg [0] and it is P in our case. We denote
the length of gg by lgg. In our case lgg is 12. Thus, the rightmost character P of gg
is gg [lgg−1]. In the program below (see Section 2.10.1 starting on page 82), we have
used the identifier lgg1 to denote lgg−1. The pointer to a character of the string gg
is called pg, short for ‘pointer to grammar’. Thus, gg = gg[0] . . . gg [lgg−1], and for
pg = 0, . . . , lgg−1, the character of gg occurring at position pg is gg [pg ].

The leftmost character of the string stp to parse is stp[0]. We denote the length
of stp by lstp. Thus, the rightmost character of stp is stp[lstp−1]. In the program
below (see Section 2.10.1) we have used the identifier lstp1 to denote lstp−1. The
pointer to a character of the string stp is called ps, short for ‘pointer to string’.
Thus, stp = stp[0] . . . stp[lstp−1], and for ps = 0, . . . , lstp−1, the character of stp
occurring at position ps is stp[ps ].

In our example the finite automaton M obtained from the grammar G by ap-
plying Algorithm 2.2.2 on page 34, is nondeterministic. Indeed, for instance, for
the input character a, M makes a transition from state P either to state Q, if the
production P → a Q is applied, or to a final state, if the production P → a is
applied.

In order to check whether or not stp belongs to L(G), we may use the automa-
ton M . The nondeterminism of M can be taken into account by a backtracking
algorithm which explores all possible derivations from the axiom of G, and each
derivation corresponds to a sequence of moves of M .

The backtracking algorithm is implemented via a parsing function, called parse,
whose definition will be given below. The function parse has the following three
arguments:

(i) al (short for ancestor list), which is the list of the productions which are ancestors
of the current production, that is, the list of the positions of the nonterminal symbols
which are the left hand sides of the productions which have been applied so far for
parsing the prefix stp[0] . . . stp[ps−1] of string stp,

(ii) pg, which is the current production, that is, the position of the nonterminal
symbol which is the left hand side of the current production (that production is
represented by the substring: gg [pg ] gg [pg+1] gg [pg+2]), and

(iii) ps, which is the position of the current character of the string stp, that is, the
current character to be parsed is stp[ps ] (and we must have that stp[ps ] = gg [pg+1]
for a successful parsing of that character).

The initial call to the function parse is: parse([ ], 0, 0). In this function call
we have that: (i) the first argument [ ] is the empty list of ancestor productions,
(ii) the second argument 0 is the position of the left hand side gg [0] of the leftmost
production of the axiom of the given grammar G (that is, 0 is the position of the
axiom gg [0] of the grammar G), and (iii) the third argument 0 is the position of the
leftmost character stp[0] of the input string stp.
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Now, in order to explain how the function parse works, let us consider the
following situation during the parsing process.

Suppose that we have parsed the prefix a b of the string stp = a b a b and the
current character to be parsed is stp[2], which is the second character a from the
left. Thus, ps = 2 (see Figure 2.10.2 on page 81). Let us assume that in order
to parse the prefix a b, we have first applied the production P → a Q and then the
production Q→ b P . Thus, the ancestor list is [6 9] with head 9. Indeed, (i) the first
production P → a Q is identified by the position 6, and (ii) the second production
Q→ b P is identified by the position 9.

Remark 2.10.2. Contrary to what it is usually assumed, we consider that the
ancestor lists grows ‘to the right’, and its head is its rightmost element. �

Since the right hand side of the last production we have applied is b P , the current
production is the leftmost production of the grammar G whose left hand side is P .
This production is P → a (which is represented by the string P a � ) and its left
hand side P is at position 0 in the string gg. Thus, pg = 0.

Figure 2.10.2 depicts the parsing situation which we have described. The values
of the variables gg, stp, al, pg, and ps are as follows.

gg = P a � Q b � P a Q Q b P
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4

: the productions of the given grammar.
: the positions of the characters.
: the sequence order of the productions.

stp = a b a b : the string to parse.

al = [6 9] : the ancestors list with head 9.
pg = 0 : the current production is P → a

and its left hand side P is gg [pg ].
ps = 2 : the current character a is stp[ps].

Before giving the definition of the function parse, we will give the definition of two
auxiliary functions:

(i) findLeftmostProd(pg) and

(ii) findNextProd(pg).

The function findLeftmostProd(pg) returns the position, if any, which identifies in
the string gg the leftmost production for the nonterminal occurring in gg [pg ]. If there
is no such production, then findLeftmostProd(pg) returns a number which does not
denote any position. In the program below we have chosen to return the number
−1 (see Section 2.10.1). For instance, if (i) gg [pg ] = P , (ii) the leftmost production
for P in gg is P a � , and (iii) the symbol P of P a � occurs at position 0 in gg, then
findLeftmostProd(pg) returns 0.

The function findNextProd(pg) returns the smallest position greater than pg+2,
if any, which identifies in the string gg the next production whose left hand side
is the nonterminal in gg [pg ]. If there is no such production, then findNextProd(pg)
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ancestor list :

6 9

3. P → a Q 4. Q→ b P

current
production :

0

1. P → a

a b a : prefix of the string

The ancestor list is [6, 9]. It grows ‘to the right’ and its head is 9.
6 identifies the production P → a Q (indeed, gg [6]=P ) and
9 identifies the production Q→ b P (indeed, gg [9]=Q).

0 identifies the production P → a
(indeed, gg [0]=P ).

Figure 2.10.2. Parsing the string stp = a b a b, given the grammar
with the four productions: 1. P → a, 2. Q → b, 3. P → a Q, and
4. Q→ b P . We have parsed the prefix = a b, and the current character
is the second a from the left, that is, stp[2].

returns a number which does not denote any position. In the program below we
have chosen to return the number −1 (see Section 2.10.1).

Here is the tail recursive definition of the function parse. Note that in this
definition the order of the if-then constructs is significant, and when the condition
of an if-then construct is tested, we can rely on the fact that the conditions in all
previous if-then constructs are false.

parse(al , pg , ps) =
if al = [ ] ∧ pg = −1 then false
else if pg = −1 then parse(tail(al), findNextProd(head(al)), ps−1) (A)
else if (gg [pg+1] 6= stp[ps ]) ∨

(gg [pg+2] = ‘�’ ∧ ps 6= lstp1) ∨
(gg [pg+2] 6= ‘�’ ∧ ps = lstp1)

then parse(al , findNextProd(pg), ps) (B)
else if (gg [pg+2] = ‘�’ ∧ ps = lstp1) then true
else parse(cons(pg, al), findLeftmostProd(pg+2), ps+1) (C)

where tail, head, and cons are the usual functions on lists. For instance, given
the list l = [5 7 2] with head 2, we have that: tail(l) = [5 7], head(l) = 2, and
cons(2, [5 7]) = [5 7 2].

In Case (A) we have that al 6= [ ] and pg = −1. In this case we look for an
alternative production of the nonterminal symbol which occurs in the string gg in
the position indicated by the head of the ancestor list (see in the Java program of
Section 2.10.1 Case (A) named: "Alternative production from the father").
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In Case (B) we look for an alternative production for the nonterminal of the
left hand side of the current production (see in the Java program of Section 2.10.1
Case (B) named "Alternative production").

In Case (C) we have that gg [pg+2] 6= ‘�’ and ps < lstp1. In this case the cur-
rent production is capable to generate the terminal symbol in stp[ps ] and thus, we
‘go down the string’ by doing the following actions (see in the Java program of
Section 2.10.1 Case (C) named: "Go down the string"):

(i) the position in gg of the left hand side of the current production is added to the
ancestor list and becomes its new head,

(ii) the new current production becomes the leftmost production, if any, of the
nonterminal symbol, if any, at the rightmost position on the right hand side of the
previous current production, and

(iii) the new current character becomes the character which is one position to the
right of the previous current character in the string stp.

2.10.1. A Java Program for Parsing Regular Languages.

In this section (see pages 84–89) we present a program written in Java, that im-
plements the parsing algorithm which we have described at the beginning of Sec-
tion 2.10. This program has been successfully compiled and executed using the
Java 2 Standard Edition (J2SE) Software Development Kit (SDK), Version 1.4.2,
running under Linux Mandrake 9.0 on a Pentium III machine. The Java 2 Standard
Edition Software Development Kit can be found at http://java.sun.com/j2se/.

In our Java program we will print an element n, with 0 ≤ n ≤ lgg−1, of the
ancestor list as the pair k.P, where: (i) k is the sequence order (see page 77) of the
production identified by the position n in the string gg, and (ii) P is the production
whose sequence order is k. nonterminal symbol of the left hand side of that produc-
tion. Since in the string gg every production is represented by a substring of three
characters, we have that the sequence order of the production identified by n (that
is, whose left hand side occurs in the string gg at position n) is (n/3) + 1 (see the
method pPrint(int i) in our Java program below).

We will print the current production identified by the position pg, as the string:
gg [pg ] → gg [pg+1] gg [pg+2], and we will not print gg [pg+2] if it equal to ‘�’. The
current character in the string stp is the one at position ps. Thus, it is stp[ps ].

In the comments at the end of our Java program below (see page 89), we will
show a trace of the program execution when parsing the string stp = a b a, given
the right linear grammar (different from the one of Figure 2.10.2) with the following
productions:

1. P → a

2. P → a P

3. Q→ b P

4. P → a Q
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P (0)

• (1)

P (2)

• (3)

P (4)

Q (5) • (8)

P (9)

Q (10)

Q (6) P (7)

ancestor list :

4. P → a Q 3. Q→ b P

9 6

current

production :

1. P → a

0

a

a

a

a
a

a

a

a

b

a

Figure 2.10.3. The search space when parsing the string stp = a b a,
given the regular grammar whose four productions are: 1. P → a,
2. P → a P, 3. Q → b P, 4. P → a Q. The sequence order of the
productions corresponds to the top-down order of the nodes with the
same father node. During backtracking the algorithm generates and
explores node (0) through node (8) in ascending order. Nodes (9) and
(10) are not generated.

In Figure 2.10.3 we have shown the search space explored by our Java program when
parsing the string a b a. Using the backtracking technique, the program starts from
node 0, which is the axiom of our grammar, and then it generates and explores
node (1) through node (8) in ascending order. In the upper part of that figure we
have also shown the ancestor list and the last current production when parsing is
finished.
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/**
* ========================================================================
* PARSER FOR A REGULAR GRAMMAR
* ========================================================================
* The input grammar is given as a string, named ‘gg’, of the form:
*
* terminal ::= ‘a’..‘z’
* nonterminal ::= ‘A’..‘Z’
* rsides ::= terminal ‘.’ | terminal nonterminal
* symprod ::= nonterminal rsides
* grammar ::= symprod | symprod grammar
*
* Note that epsilon productions are not allowed.
* Note also that the definition of rsides uses a right linear production.
* When writing the string gg which encodes the productions of the given
* input grammar, the productions relative to the same nonterminal need
* not be grouped together. For instance, gg = "Pa.PaPQbPPaQ" encodes the
* following four productions:
*
* 1. P->a 2. P->aP 3. Q->bP 4. P->aQ
*
* where the number k (>=1) to the left of each production is the ‘sequence
* order’ of that production. The productions are ordered from left to
* right according to their occurrence in the string gg.
* The function ‘length’ gives the length of a string.
* The string to be parsed is the string ‘stp’. Each character in stp
* belongs to the set {‘a’,...,‘z’}.
* Note that a left linear grammar of the form:
* rsides ::= terminal ‘.’ | nonterminal terminal
* can always be transformed into a right linear grammar of the form:
* rsides ::= terminal ‘.’ | terminal nonterminal
* that is, left-recursion can be avoided in favour of right-recursion.
* (see: Esercise 3.7 in Hopcroft-Ullmann: Formal Languages and Their
* Relation to Automata. Addison Wesley. 1969)
* ------------------------------------------------------------------------
* A production in the string gg is identified by the position pg where
* its left hand side occurs. For instance, if gg = "Pa.PaPQbPPaQ",
* the production P->aQ is identified by pg == 9. The sequence order k of
* a production identified by pg is (pg/3)+1.
* It should be the case that: 0 <= pg <= length(gg)-1.
* If we have that pg == -1 then this means that:
* (i) either there is no production for ‘.’
* (ii) or the leftmost production or next production to be found for
* a given nonterminal does not exist (this is the case when no production
* exists for the given nonterminal or all productions for the given
* nonterminal have already been considered).
* ------------------------------------------------------------------------
* The ancestorList stores the productions which have been used so far for
* parsing. Each element n of the ancestorList is printed as a pair ‘k. P’
* where k is the sequence order of the production identified by n,
* that is, (n/3)+1, and P is the production whose sequence order is k.
* The ancestorList is printed with its head ‘to the right’.
* ------------------------------------------------------------------------
* There is a global variable named ‘traceon’. If it is set to ‘true’ then
* we trace the execution of the method parse(al,pg,ps).
* ========================================================================
*/
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import java.util.ArrayList;
import java.util.Iterator;

class List {
/** ---------------------------------------------------------------------
* The class ‘List’ is the type of a list of integers. The functions:
* cons(int i), head(), tail(), isSingleton(), isNull(), copy(), and
* printList() are available.
* ----------------------------------------------------------------------
*/
public ArrayList<Integer> list;
public List() {

list = new ArrayList<Integer>();
}

public void cons(int datum) {
list.add(new Integer(datum));

}

public int head() {
if (list.isEmpty())

{System.out.println("Error: head of empty list!");};
return (list.get(list.size() - 1)).intValue();

}

public void tail() {
if (list.isEmpty())

{System.out.println("Error: tail of empty list!");};
list.remove(list.size() - 1);

}

public boolean isSingleton() {
return list.size() == 1;

}

public boolean isNull() {
return list.isEmpty();

}
/*
// -------------------------- Copying a list using clone() --------------
public List copy() {

List copyList = new List();
copyList.list = (ArrayList<Integer>)list.clone();

// above: unchecked casting from Object toArrayList<Integer>
return copyList;

}
*/
// -------------------------- Copying a list without using clone() ------
public List copy() {

List copyList = new List();
for (Iterator iter = list.iterator(); iter.hasNext(); ) {

Integer k = (Integer)iter.next();
copyList.list.add(k);

};
return copyList;

}
// ----------------------------------------------
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public void printList() { // overloaded method: arity 0
System.out.print("[ ");
for (Iterator iter = list.iterator(); iter.hasNext(); ) {

System.out.print((iter.next()).toString() + " ");
};

System.out.print("]");
}

}
// ========================================================================
public class RegParserJava {

static String gg, stp; // gg: given grammar, stp: string to parse.
static int lgg1,lstp1;
static boolean traceon;

/** -----------------------------------------------------------------------
* The global variables are: gg, stp, lstp1, traceon.
* lgg1 is the length of the given grammar gg minus 1.
* lstp1 is the length of the given string to parse stp minus 1.
*
* The ‘minus 1’ is due to the fact that indexing in Java (as in C++)
* begins from 0.
* Thus, for instance,
* stp=abcab length(stp)=5 stp.charAt(2) is c.
* index: 01234 lstp1=4
* ------------------------------------------------------------------------
*/

// ------------------------------------------------------------------------
// printing a given production

private static void pPrint(int i) {
System.out.print(i/3+1 + ". " + gg.charAt(i) + "->" + gg.charAt(i+1));
if (gg.charAt(i+2) != ’.’ ) {System.out.print(gg.charAt(i+2));}

}
// ------------------------------------------------------------------------
// printing a given grammar

private static void gPrint() {
int i=0;
while (i<=lgg1) {pPrint(i); System.out.print(" "); i=i+3;};
System.out.print("\n");

}
// ------------------------------------------------------------------------
// printing the ancestorList: the head is ‘to the right’

private static void printNeList(List l) {
List l1 = l.copy();
if (l1.isSingleton())

{pPrint(l1.head());}
else
{l1.tail(); printNeList(l1);
System.out.print(", "); pPrint(l.head());};

}

private static void printList(List l) { // overloaded method: arity 1
if (l.isNull()) {System.out.print("[]");}
else {System.out.print("["); printNeList(l); System.out.print("]");};

}
// ------------------------------------------------------------------------
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// tracing
private static void trace(String s, List al, int pg, int ps) {
if (traceon)

{System.out.print("\n\nancestorsList: ");
printList(al); // Printing ancestorsList using printList of arity 1.
System.out.print("\nCurrent production: ");
if (pg == -1) { System.out.print("none"); } else { pPrint(pg); };
System.out.print("\nCurrent character: " + stp.charAt(ps));
System.out.print(" => " + s);

}
}

// ------------------------------------------------------------------------
// next production
private static int findNextProd(int p) {
char s = gg.charAt(p);
do {p = p+3;} while (!((p>(lgg1)) || (gg.charAt(p) == s)));
if (p <= lgg1) { return p; } else { return -1; }

}
// ------------------------------------------------------------------------
// leftmost production
private static int findLeftmostProd(int p) {
char s = gg.charAt(p);
int i=0;
while ( (i<=lgg1) && (gg.charAt(i) != s)) { i = i+3; };
if (i <= lgg1) { return i; } else { return -1; }

}
// ------------------------------------------------------------------------
// parsing
private static boolean parse(List al, int pg, int ps) {

if ((al.isNull()) && (pg == -1))
{trace("Fail.",al,pg,ps);
return false;

}
else if (pg == -1) // Case (A) ---

{trace("Alternative production from the father.",al,pg,ps);
int h = al.head(); // al.head() is computed before al.tail()
al.tail();
ps--;
return parse(al,findNextProd(h),ps);

}
else if ((gg.charAt(pg+1) != stp.charAt(ps)) || // Case (B) ---

((gg.charAt(pg+2)==’.’) && (ps != lstp1)) ||
((gg.charAt(pg+2)!=’.’) && (ps == lstp1)) )

{trace("Alternative production.",al,pg,ps);
return parse(al,findNextProd(pg),ps);

}
else if ((gg.charAt(pg+2) == ’.’) && (ps == lstp1))

{trace("Success.\n",al,pg,ps);
return true;

}
else {trace("Go down the string.",al,pg,ps); // Case (C) ----

al.cons(pg);
ps++;
return parse(al,findLeftmostProd(pg+2),ps);

}
}
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// ------------------------------------------------------------------------
public static void main(String[] args) {

traceon = true;
gg = "Pa.PaPQbPPaQ"; // example 0
stp = "aba"; // true

lgg1 = gg.length() - 1;
lstp1 = stp.length() - 1;
System.out.print("\nThe given grammar is: ");
gPrint();
char axiom = gg.charAt(0);
System.out.print("The axiom is " + axiom + ".");
List al = new List();
int pg = 0;
int ps = 0;
boolean ans = parse(al,pg,ps);
System.out.print("\nThe input string\n " + stp + "\nis ");
if (!ans) {System.out.print("NOT ");};
System.out.print("generated by the given grammar.\n");

}
}

/**
* ========================================================================
* In our system the Java compiler for Java 1.5 is called ‘javac’.
* Analogously, the Java runtime system for Java 1.5 is called ‘java’.
*
* Other examples:
* ---------------
* gg = "Pa.PbQPbP"; // example 1
* stp = "ba"; // true
*
* gg="PbPPa."; // example 2
* stp="aba"; // false
* stp="bba"; // true
*
* gg="Pa.PaQQb.QbP"; // example 3
* stp="ab"; // true
* stp="ababa"; // true
* stp="aaba"; // false
*
* gg="Pa.Qb.PbQQaQ"; // example 4
* stp="baaab"; // true
* stp="baab"; // true
* stp="bbaaba"; // false
*
* gg="Pa.Qb.PaQQbPPaP"; // example 5. Note: PaQ and PaP
* stp="aabaaa"; // true
* stp="aabb"; // false
*
* ------------------------------------------------------------------------
*
* input:
* ------
* javac RegParserJava.java
* java RegParserJava
*
*
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* output: traceon == true.
* -------------------------
* The given grammar is: 1. P->a 2. P->aP 3. Q->bP 4. P->aQ
* The axiom is P.
*
* ancestorsList: []
* Current production: 1. P->a
* Current character: a => Alternative production.
*
* ancestorsList: []
* Current production: 2. P->aP
* Current character: a => Go down the string.
*
* ancestorsList: [2. P->aP]
* Current production: 1. P->a
* Current character: b => Alternative production.
*
* ancestorsList: [2. P->aP]
* Current production: 2. P->aP
* Current character: b => Alternative production.
*
* ancestorsList: [2. P->aP]
* Current production: 4. P->aQ
* Current character: b => Alternative production.
*
* ancestorsList: [2. P->aP]
* Current production: none
* Current character: b => Alternative production from the father.
*
* ancestorsList: []
* Current production: 4.P->aQ
* Current character: a => Go down the string.
*
* ancestorsList: [4. P->aQ]
* Current production: 3. Q->bP
* Current character: b => Go down the string.
*
* ancestorsList: [4. P->aQ, 3. Q->bP]
* Current production: 1. P->a
* Current character: a => Success.
*
* The input string
* aba
* is generated by the given grammar.
* ========================================================================
*/
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2.11. Generalizations of Finite Automata

According to its definition, a deterministic finite automaton can be viewed as having
a read-only input tape without endmarkers, whose head, called the input head, moves
to the right only. No transition of states is made without reading an input symbol
and in that sense we say that a finite automaton is not allowed to make ε-moves
(recall Remark 30 on page 30). According to Definition 2.1.4 on page 30, we have
that a finite automaton accepts an input string if it makes a transition to a final state
when the input head has read the rightmost symbol of the input string. Initially,
the input head is on the leftmost cell of the input tape (see Figure 2.11.1).

6 -

i1 i2 i3 . . . in

Finite
Control

the input head moves from left to right

Read Only Input Tape without endmarkers

Figure 2.11.1. A one-way deterministic finite automaton with a
read-only input tape and without endmarkers.

A finite automaton can be generalized by assuming that it has an input read-only
tape without endmarkers and its head may move to the left and to the right. This
generalization is called a two-way deterministic finite automaton. We assume that
a two-way deterministic finite automaton accepts an input string iff it makes a
transition to a final state while the input head has read the rightmost input symbol.

We also assume that a move which (i) reads the input character in and makes
the input head to go to the right, or (ii) reads i1 and makes the input head to go
to the left, can be made but it is a final move, that is, no more transitions of states
can be made. After any such move, the finite automaton stops in the state where it
is after that move.

One can show that two-way deterministic finite automata accepts exactly the
regular languages [6].

If we allow any of the following generalizations (in any possible combination)
then the class of accepted languages remains that of the regular languages:
(i) at each move the input head may move left or right or remain stationary (this last
case corresponds to an ε-move, that is, a state transition when no input character
is read),
(ii) the automaton in the finite control is nondeterministic, and
(iii) the input tape has a left endmarker ¢ and a right endmarker $ (see Figure 2.11.2)
which are assumed not to be symbols of the input alphabet Σ. In this last general-
ization we assume that the input head initially scans the left endmarker ¢ and the
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i1 i2 i3 . . . in

Finite
Control

Read Only Input Tape
without endmarkers

6

Finite
Control
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i1 i2 i3 . . . in

Read Only Input Tape
with endmarkers

¢ $

the input head moves
from left to right
and vice versa

the input head moves
from left to right
and vice versa

Figure 2.11.2. A two-way deterministic finite automaton with a
read-only input tape, without and with endmarkers (see the left and
the right pictures, respectively).

acceptance of a word is defined by the fact that the automaton makes a transition
to a final state while the input head reads any cell of the input tape.

A different generalization of the basic definition of a finite automaton is done
by allowing the production of some output. The production of some output can
be viewed as a generalization of either (i) the notion of a state, and we will have
the so called Moore Machines (see Section 2.11.1), or (ii) the notion of a transition
and we will have the so called Mealy Machines (see Section 2.11.2). Acceptance is
by entering a final state while the input head moves to the right of the rightmost
input symbol. As for the basic notion of a finite automaton, ε-moves are not allowed
(recall Remark 2.1.2 on page 30).

2.11.1. Moore Machines.

A Moore Machine is a finite automaton in which together with the transition func-
tion δ, we also have an output function λ from the set of states Q to the so-called
output set Ω, which is a given set of symbols. No ε-moves are allowed, that is,
the transition function δ is a function from Q×Σ to Q and a new symbol of the
input string should be read each time the function δ is applied. Thus, we associate
an element of Ω with each state in Q , and we associate an element of Ω+ with a
(possibly empty) sequence of state transitions.

A Moore Machine with initial state q0 associates the string λ(q0) with the empty
sequence of state transitions.

2.11.2. Mealy Machines.

A Mealy Machine is a finite automaton in which together with the transition func-
tion δ, we have an output function µ from the set Q×Σ, where Q is a finite set of
states and Σ is the set of input symbols, to the output set Ω, which is a given set
of symbols. No ε-moves are allowed, that is, the transition function δ is a function
from Q×Σ to Q and a new symbol of the input string should be read each time the
function δ is applied. Thus, we associate an element of Ω∗ with a (possibly empty)
sequence of state transitions.
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A Mealy Machine associates the empty string ε with the empty sequence of state
transitions. If we forget about the output produced by the Moore Machine for the
empty input string then: (i) for each Moore Machine there exists an equivalent
Mealy Machine, that is, a Mealy Machine which accepts the same set of input words
and produces the same set of output words, and (ii) for each Mealy Machine there
exists an equivalent Moore Machine.

2.11.3. Generalized Sequential Machines.

Mealy Machines can be generalized to Generalized Sequential Machines which we
now introduce. These machines will allow us to introduce the notion of (deterministic
and nondeterministic) translation of words between two given alphabets.

Definition 2.11.1. [Generalized Sequential Machine and ε-free Gener-
alized Sequential Machine] A Generalized Sequential Machine (GSM, for short)
is a 6-tuple of the form: 〈Q, Σ, Ω, δ, q0, F 〉, where Q is finite set of states, Σ is the
input alphabet, Ω is the output alphabet, δ is a partial function from Q×Σ to the set
of the finite subsets of Q × Ω∗, called the transition function, q0 in Q is the initial
state, and F ⊆ Q is the set of final states.

A GSM is said to be ε-free iff its transition function δ is a partial function from
Q×Σ to the set of the finite subsets of Q×Ω+, that is, when an ε-free GSM makes
a state transition, it never produces the empty word ε.

Note that by definition a generalized sequential machine is a nondeterministic
machine.

The interpretation of the transition function of a generalized sequential machine
is as follows: if the generalized sequential machine is in the state p and reads the
input symbol a, and 〈q, ω〉 belongs to δ(p, a) then the machine makes a transition
to the state q, and produces the output string ω ∈ Ω∗.

As in the case of a finite automaton, a GSM can be viewed as having a read-only
input tape without endmarkers whose head moves to the right only. Acceptance is
by entering a final state, while the input head moves to the right of the rightmost
cell containing the input. Initially, the input head is on the leftmost cell of the input
tape. No ε-moves on the input are allowed, that is, a new symbol of the input string
should be read each time a move is made.

Generalized Sequential Machines are useful for studying the closure properties
of various classes of languages and, in particular, the closure properties of regular
languages. They may also be used for formalizing the notion of a nondeterministic
translation of words from Σ∗ to Ω∗ [9]. The translation is obtained as follows.

First, we extend the partial function δ whose domain is Q × Σ, to a partial
function, denoted by δ∗, whose domain is Q× Σ∗, as follows:

(i) for any p ∈ Q,

δ∗(p, ε) = {〈p, ε〉}
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(ii) for any p ∈ Q, x ∈ Σ∗, and a ∈ Σ,

δ∗(p, xa) = {〈q, ω1ω2〉 | 〈p1, ω1〉 ∈ δ∗(p, x) and 〈q, ω2〉 ∈ δ(p1, a)

for some state p1},
where q ∈ Q and ω1, ω2 ∈ Ω∗.

Definition 2.11.2. [GSM Mapping and ε-free GSM Mapping] Given a
language L, subset of Σ∗, a GSM M = 〈Q, Σ, Ω, δ, q0, F 〉 generates in output the
language M(L), subset of Ω∗, called a GSM mapping , which is defined as follows:

M(L) = {ω | 〈p, ω〉 ∈ δ∗(q0, x) for some state p ∈ F and for some x ∈ L}.
A GSM mapping M(L) is said to be ε-free iff the GSM M is ε-free, that is, for every
symbol a ∈ Σ and every state q ∈ Q, if 〈p, ω〉 ∈ δ(q, a) for some state p ∈ Q and
some ω ∈ Ω∗ then ω 6= ε.

Note that in this definition the terminology is somewhat unusual, because a GSM
mapping is a language, while in the mathematical terminology a mapping is a set
of pairs.

The language M(L) is the set of all the output words, each of which is generated
by M while M nondeterministically accepts one of the words of L. Note that, in
general, not all words of L are accepted by M .

Thus, given a language L, a generalized sequential machine M :
(i) performs on L a filtering operation by selecting the accepted subset of L, and
(ii) while accepting that subset, M generates the new language M(L) (see Fig-
ure 2.11.3 on page 94).

Since a GSM is a nondeterministic automaton, for each accepted word of L more
than one word of M(L) may be generated.

Definition 2.11.3. [Inverse GSM Mapping] Given a GSM M = 〈Q, Σ, Ω, δ,
q0, F 〉 and a language L subset of Ω∗, the corresponding inverse GSM mapping ,
denoted M−1(L), is the language subset of Σ∗, defined as follows:

M−1(L) = {x | there exists 〈p, ω〉 s.t. 〈p, ω〉 ∈ δ∗(q0, x) and p ∈ F and ω ∈ L}.

Since a GSM M is a nondeterministic machine and defines a binary relation in
Σ∗ × Ω∗ (which, in general, is not a bijection from Σ∗ to Ω∗), it is not always the
case that M(M−1(L)) = M−1(M(L)) = L.

Given the languages L1 = {anbn |n ≥ 1} and L2 = {0n10n |n ≥ 1}, in Fig-
ure 2.11.4 on page 2.11.4 we have depicted the GSM M12 which translates the
language L1 onto the language L2, and the GSM M21 which translates back the
language L2 onto the language L1. We have represented the fact that 〈q, ω〉 ∈ δ(p, a)
by drawing an arc from state p to state q labeled by a/ω.

Note that the GSM M12 and M21 are deterministic, and thus, they determine a
homomorphism from the domain language to the range language (see Definition 1.7.2
on page 27). Note also that M12 accepts a language which is a proper superset of L1.
Analogously, M21 accepts a language which is a proper superset of L2.
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Figure 2.11.3. The ε-free GSM mapping M(L). The GSM M gen-
erates the language M(L) from the language L. The word u1 is not
accepted by the generalized sequential machine M . Note that when
the word u2 is accepted by M , the two words v1 and v2 are generated.
No word exists in L such that while the machine M accepts that word,
the empty word ε is generated in output.

q0 q1 q0 q1

a/0

b/10

b/0 0/a

1/ε

0/b

M12 M21

Figure 2.11.4. The GSM M12 on the left translates the language
L1 = {anbn | n ≥ 1} onto the language L2 = {0n10n | n ≥ 1}. The
GSM M21 on the right translates back the language L2 onto L1. The
machine M12 is an ε-free GSM, while M21 is not.

2.12. Closure Properties of Regular Languages

We have the following results.

Theorem 2.12.1. The class of regular languages is closed by definition under:
(1) concatenation, (2) union, and (3) Kleene star.

Theorem 2.12.2. The class of regular languages over the alphabet Σ is a Boolean
Algebra in the sense that it is closed under: (1) union, (2) intersection, and (3) com-
plementation with respect to Σ∗.

Let us now introduce the following definition.
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Definition 2.12.3. [Reversal of a Language] The reversal of a language
L ⊆ Σ∗, denoted rev(L), is the set {rev(w) |w ∈ L}, where:

rev(ε) = ε

rev(a w) = rev(w) a for any a ∈ Σ and any w ∈ Σ∗.

Thus, rev(L) consists of all words in L with their symbols occurring in the reverse
order. We say that rev(w) is the reversal of the word w.

In what follows, for all words w, we will feel free to write wR, instead of rev(w),
and analogously, for all languages L, we will feel free to write LR, instead of rev(L).
For instance, if w = abac then wR = caba.

We have the following closure result.

Theorem 2.12.4. The class of regular languages is closed under reversal.

The class of regular languages is also closed under: (1) (ε-free or not ε-free) GSM
mapping, and (2) inverse GSM mapping. The proof of these properties is based on
the fact that GSM mappings can be expressed in terms of homomorphisms, inverse
homomorphisms, and intersections with regular sets (see [9, Chapter 11]).

Theorem 2.12.5. The class of regular languages is closed under: (i) substitution
(of symbols by a regular languages), (ii) (ε-free or not ε-free) homomorphism, and
(iii) inverse (ε-free or not ε-free) homomorphism.

Proof. Properties (i) and (ii) are based on the representation of a regular lan-
guage via a regular expression. The substitution determines the replacement of
a symbol in a given regular expression by a regular expression. (iii) Let h be
a homomorphism from Σ to Ω∗. We construct a finite automaton M1 accept-
ing h−1(V ) for any given regular language V ⊆ Ω∗ accepted by the automaton
M2 = 〈Q, Ω, δ2, q0, F 〉 by defining M1 to be 〈Q, Σ, δ1, q0, F 〉, where for any state
q ∈ Q and symbol a ∈ Σ, the value of δ1(q, a) is equal to δ∗2(q, h(a)), where the
function δ∗2 : Q × Ω∗ → Q is the usual extension which acts on words, of the tran-
sition function δ2 : Q × Ω → Q which acts on symbols (see Section 2.1 starting on
page 29). Indeed, we have to consider δ∗2 , rather than δ2, because for some a ∈ Σ,
the length of h(a) may be different from 1. In Figure 2.12.1 on page 96 we show the
automaton M1 which, given
- the set V = {bn | n ≥ 2} of words accepted by the automaton M2, and
- the homomorphism h such that h(a) = bb,
accepts the set h−1(V ) = {an | n ≥ 1}. �

We can use homomorphisms for showing that a given language is not regular as we
now indicate.

Suppose that we know that the language

L = {anbn |n≥1}
is not regular. Then we can show that also the language

N = {02n+11n |n≥1}
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q0 q2

q0 q1 q2 q3

M1 : h−1(V ) = {an | n ≥ 1}

h(a) = bb

M2 : V = {bn | n ≥ 2}

a

a

b b b

b

Figure 2.12.1. The automaton M2 accepts the set V ={bn | n≥2}
of words. Given the homomorphism h such that h(a) = bb, the au-
tomaton M1 accepts the set h−1(V ) = {an | n ≥ 1}.

is not regular. Indeed, let us consider the following homomorphisms f from {a, b, c}
to {0, 1}∗ and g from {a, b, c} to {a, b}∗:

f(a) = 00

f(b) = 1

f(c) = 0

g(a) = a

g(b) = b

g(c) = ε

We have that: g(f−1(N) ∩ a+cb+) = {anbn |n≥ 1}. If N were regular then, since
regular languages are closed under homomorphism, inverse homomorphism, and
intersection, also the language {anbn |n≥ 1} would be regular, and this is not the
case. �

2.13. Decidability Properties of Regular Languages

We state without proof the following decidability results. The reader who is not
familiar with the concept of decidable and undecidable properties (or problems)
may refer to Chapter 6.

For any given regular language L,

(i) it is decidable whether or not L is empty, and

(ii) it is decidable whether or not L is finite.

As a consequence of (ii), we have that for any given regular language L, it is
decidable whether or not L is infinite.

For any given two regular languages L1 and L2, it is decidable whether or not
L1 = L2. This result is based on the fact that given a regular language L, the finite
automaton M which accepts L and has the minimum number of states, is unique
up to isomorphism (see Definition 2.7.4 on page 59). Thus, L1 = L2 iff the minimal
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finite automata M1 and M2 which accept the languages L1 and L2 respectively, are
isomorphic.

For any regular grammar G, it is decidable whether or not G is ambiguous, that is,
whether or not there exists a word w of the language L(G) generated by that gram-
mar G such that w has at least two different derivations (see also Definition 3.12.1
on page 155). This decidability result is based on the following facts:

(i) we may assume, without loss of generality, that the given regular grammar has
the productions of the form: A→ a or A→ aB,

(ii) we may consider the finite automaton corresponding to the given regular gram-
mar, and

(iii) we may generate, using the Powerset Construction (see Algorithm 2.3.11 on
page 39), the graph of the states which are reachable from the initial state. If in
that graph there is a path from the initial state to a final state which goes through
a vertex with at least two states, then the given grammar is ambiguous. That
Powerset Construction gives us the word u of the language generated by the given
grammar such that u has at least two different derivations.

The following example will clarify the reader’s ideas.

Example 2.13.1. Let us consider the grammar with the following productions:

S → a S

S → bA

S → a B

S → b

B → bA

B → b

The state S is the initial state, and the state A the only final state. The graph of
the reachable states is depicted in Figure 2.13.1 (see page 98), where the final states
are denoted by double circles. Since the state {S, B} has cardinality 2, we may get
from {S} to {S, B} and then to the final state {A} into two different ways. Thus,
the word ab has the following two derivations:

(i) S → aS → ab

(ii) S → aB → ab �

Fact 2.13.2. For any regular grammar G1 it is possible to derive a regular
grammar G2 such that: (i) the language L(G1) is equal to the language L(G2), and
(ii) G2 is not an ambiguous grammar.

Proof. It is enough to construct a deterministic finite automaton which is
equivalent to the given grammar G1. This is a simple application of the Power-
set Construction Procedure (see Algorithm 2.3.11 on page 39). �
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Figure 2.13.1. A nondeterministic finite automaton F1 and the
equivalent deterministic finite automaton F2 obtained by the Pow-
erset Construction.



CHAPTER 3

Pushdown Automata and Context-Free Grammars

In this chapter we will study the class of pushdown automata and their relation
to the class of context-free grammars and languages. We will also consider various
transformations and simplifications of context-free grammars and we will show how
to derive the Chomsky normal form and the Greibach normal form of context-
free grammars. We will then study some fundamental properties of context-free
languages and we will present a few basic decidability and undecidability results.
We will also consider the deterministic pushdown automata and the deterministic
context-free languages and we will present two parsing algorithms for context-free
languages.

3.1. Pushdown Automata and Context-Free Languages

A pushdown automaton is a nondeterministic machine which consists of:

(i) a finite automaton,

(ii) a stack (also called a pushdown), and

(iii) an input tape, where the input string is placed.

The input string can be read one symbol at a time by an input head which can move
on the input tape from left to right only. At any instant in time the input head is
placed on a particular cell of the input tape and reads the symbol written on that
cell (see Figure 3.1.1).

The following definition introduces the formal notion of a nondeterministic push-
down automaton.

Definition 3.1.1. [Nondeterministic Pushdown Automaton] A nondeter-
ministic pushdown automaton (also called pushdown automaton, or pda, for short)
M over the input alphabet Σ is a septuple of the form 〈Q, Σ, Γ, q0, Z0, F, δ〉 where:
- Q is a finite set of states,
- Γ is the stack alphabet , also called the pushdown alphabet ,
- q0 is an element of Q, called the initial state,
- Z0 is an element of Γ which is initially placed at the bottom of the stack and it
may occur on the stack at the bottom position only,
- F ⊆ Q is the set of final states, and
- δ is a total function, called the transition function, from Q× (Σ ∪ {ε})× Γ to set
of the finite subsets of Q× Γ∗.

In what follows, when referring to pda’s we will feel free to say ‘pushdown’, instead
of ‘stack’, and we will free to write ‘PDA’, instead of ‘pda’.

99
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w1 w2 . . . . . . wk
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-
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The input head moves from left to right
or it does not move.

input string α = w1 . . . wk ∈ Σ∗

finite automaton

states: Q
initial state: q0

final states: F

Z . . . . . . . . . Z0

top of stack

stack γ = Z . . . Z0 ∈ Γ∗

Figure 3.1.1. A nondeterministic pushdown automaton with the in-
put string α. The stack is assumed to grow to the left, and if we push
on the stack the string Z1 . . . Zn, the new top of the stack is Z1.

As in the case of finite automata (see Definition 2.1.4 on page 30), also pushdown
automata may behave as acceptors of the input strings which are initially placed on
the input tape (see Definition 3.1.7 on page 102 and Definition 3.1.8 on page 102).

Given a string of Σ∗, called the input string, on the input tape, the transition
function δ of a pushdown automaton is defined by the following two sequences S1
and S2 of actions, where by ‘or’ we mean the nondeterministic choice.

(S1) For every q ∈ Q, α ∈ Σ, Z ∈ Γ, we stipulate that δ(q, α, Z) = {〈q1, γ1〉, . . . ,
〈qn, γn〉} iff in state q the pda reads the symbol α ∈ Σ from the input tape, moves
the input head to the right, and
- replaces the symbol Z on the top of the stack by the string γ1 and makes a transition
to state q1,

or . . . or
- replaces the symbol Z on the top of the stack by the string γn and makes a
transition to state qn.

(S2) For every q ∈ Q, Z ∈ Γ, we stipulate that δ(q, ε, Z) = {〈q1, γ1〉, . . . , 〈qn, γn〉}
iff in state q the pda does not move the input head to the right, and
- replaces the symbol Z on the top of the stack by the string γ1 and makes a transition
to state q1,

or . . . or
- replaces the symbol Z on the top of the stack by the string γn and makes a
transition to state qn.

Note that the transition function δ is not defined when the pushdown is empty,
because the third argument of δ should be an element of Γ. (When the stack is
empty we could assume that the third argument of δ is ε, but in fact, ε is not an
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element of Γ). If the pushdown is empty, the automaton cannot make any move
and, so to speak, it stops in the current state.

Note also that when defining the transition function δ, one should specify the
order in which any of the strings γ1, . . ., γn is pushed onto the stack, one symbol per
cell. In particular, one should indicate whether the leftmost symbol or the rightmost
symbol of the strings γ1, . . ., γn will become after the push operation the new top of
the stack. Recall that we have assumed that pushing the string γ = Z1 . . . Zn−1Zn

onto the stack, means pushing Zn, then Zn−1, and eventually Z1, and thus, we have
assumed that the new top of the stack is Z1. This assumption is independent of the
way in which we draw the stack in the figures below. Indeed, we may draw a stack
which grows either ‘to the left’ or ‘to the right’. In Figure 3.1.1 we have assumed
that the stack grows to the left. Note also that the issue of the order in which any
of the strings γ1, . . ., γn is pushed onto the stack, can also be solved as suggested by
Fact 3.1.12. Indeed, by that fact we may assume, without loss of generality, that the
strings γ1, . . ., γn consist of one symbol only and so the order in which the symbols
of the strings should be pushed onto the stack, becomes irrelevant.

Remark 3.1.2. When we say ‘pda’ without any qualification we mean a non-
deterministic pushdown automaton, while when we say ‘finite automaton’ without
any qualification we mean a deterministic finite automaton. �

Definition 3.1.3. [Configuration of a PDA] A configuration of a pda M =
〈Q, Σ, Γ, q0, Z0, F, δ〉 is a triple 〈q, α, γ〉, where:
(i) q ∈ Q,
(ii) α ∈ Σ∗ is the string of symbols which remain to be read on the input tape (from
left to right), that is, if the input string is w1 . . . wn and the input head is on the
symbol wk, for some k such that 1≤k≤n, then α is the substring wk . . . wn, and
(iii) γ ∈ Γ∗ is a string of symbols on the stack where we assume that the top-to-
bottom order of the symbols on the stack corresponds to the left-to-right order of
the symbols in γ. We denote by CM be the set of configurations of the pda M .

We also introduce the following notions.

Definition 3.1.4. [Initial Configuration, Final Configuration by final

state, and Final Configuration by empty stack ] Given a pushdown automaton
M = 〈Q, Σ, Γ, q0, Z0, F, δ〉, a triple of the form 〈q0, α, Z0〉 for some input string
α ∈ Σ∗, is said to be an initial configuration.

The set of the final configurations ‘by final state’ of the pda M is

Finf
M = {〈q, ε, γ〉 | q ∈ F and γ ∈ Γ∗}.

The set of the final configurations ‘by empty stack ’ of the pda M is

Fine
M = {〈q, ε, ε〉 | q ∈ Q}.

Given a pda, now we define its move relation.

Definition 3.1.5. [Move (or Transition) and Epsilon Move (or Epsilon
Transition) of a PDA] Given a pda M = 〈Q, Σ, Γ, q0, Z0, F, δ〉, its move relation
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(or transition relation), denoted →M , is a subset of CM ×CM , where CM is the set
of configurations of M , such that for any p, q ∈ Q, a ∈ Σ, Z ∈ Γ, α ∈ Σ∗, and
β, γ ∈ Γ∗,

either if 〈q, γ〉 ∈ δ(p, a, Z) then 〈p, aα, Zβ〉 →M 〈q, α, γβ〉
or if 〈q, γ〉 ∈ δ(p, ε, Z) then 〈p, α, Zβ〉 →M 〈q, α, γβ〉

(this second kind ofmove is called an epsilon move or an epsilon transition).

Instead of writing ‘epsilon move’ or ‘epsilon transition’, we will feel free to write
‘ε-move’ or ‘ε-transition’, respectively.

When representing the move relation →M we have assumed that the top of the
stack is ‘to the left’ as depicted in Figure 3.1.1: this is why in Definition 3.1.5 we
have written Zβ, instead of βZ, and γβ, instead of βγ. Note that in every move
the top symbol Z of the stack is always popped from the stack and then the string
γ is pushed onto the stack.

If two configurations C1 and C2 are in the move relation, that is, C1 →M C2, we
say that the pda M makes a move (or a transition) from a configuration C1 to a
configuration C2, and we also say that there is a move from C1 to C2.

We denote by →∗
M the reflexive, transitive closure of →M .

Definition 3.1.6. [Instructions (or Quintuples) of a PDA] Given a pda
M = 〈Q, Σ, Γ q0, Z0, F, δ〉, for any p, q ∈ Q, any x ∈ Σ ∪ {ε}, any Z ∈ Γ, and
any γ ∈ Γ∗, if 〈p, γ〉 ∈ δ(q, x, Z) we say that 〈q, x, Z, p, γ〉 is an instruction (or a
quintuple) of the pda. An instruction 〈q, x, Z, p, γ〉 is also written as follows:

q x Z 7−→ push γ goto p

When we represent the transition function of a pda as a sequence of instructions, we
assume that δ(q, x, Z) = {} if in that sequence there is no instruction of the form
q x Z 7−→ push γ goto p, for some γ ∈ Γ∗ and p ∈ Q.

Definition 3.1.7. [Language Accepted by a PDA by final state ] An input
string w is accepted by a pda M by final state iff there exists a configuration C ∈
Finf

M such that 〈q0, w, Z0〉 →∗
M C. The language accepted by a pda M by final state,

denoted L(M), is the set of all words accepted by the pda M by final state.

Note that after accepting a string by final state, the pushdown automaton may
continue to make a finite or an infinite number of moves according to its transition
function δ, and these moves may go through final and/or non-final states.

Definition 3.1.8. [Language Accepted by a PDA by empty stack ] An
input string w is accepted by a pda M by empty stack iff there exists a configuration
C ∈Fine

M such that 〈q0, w, Z0〉 →∗
M C. The language accepted by a pda M by empty

stack, denoted N(M), is the set of all words accepted by the pda M by empty stack.

Note that after accepting a string by empty stack, the transition function δ is
not defined and the pushdown automaton cannot make any move.

Note also that, with reference to the above Definitions 3.1.7 and 3.1.8, other
textbooks use the terms ‘recognized string’ or ‘recognized language’, instead of the
terms ‘accepted string’ or ‘accepted language’, respectively.
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Remark 3.1.9. [Input String Completely Read] When an input string is
accepted, either by final state or by empty stack, that input string should be com-
pletely read, that is, before acceptance either the input string is empty or there
should be a move in which the transition function δ takes as an input argument the
rightmost character of the input string. On the contrary, if the transition function δ
has not yet taken as an input argument the rightmost character of the input string,
we will say that the input string has not been completely read. �

Theorem 3.1.10. [Equivalence of Acceptance by final state and by empty

stack for Nondeterministic PDA’s] (i) For every pda M which accepts by final
state a language A, there exists a pda M ′ which accepts by empty stack the same
language A, that is, L(M) = N(M ′). (ii) For every pda M which accepts by empty
stack a language A, there exists a pda M ′ which accepts by final state the same
language A, that is, N(M) = L(M ′).

Proof. (i) Let us consider the pda M = 〈Q, Σ, Γ, δ, q0, Z0, F 〉 and the language
L(M) it accepts by final state, we construct the M ′ such that L(M) = N(M ′) as
follows. We take M ′ to be the septuple 〈Q′, Σ, Γ′, δ′, q′0, Z0, F 〉, where Q′ = Q ∪
{q′0, qe} and q′0 and qe are two new, additional states not in Q. The state q′0 is the
initial, non-final state of M ′ and qe is a non-final state. We also consider a new,
additional stack symbol $ not in Γ, that is, Γ′ = Γ ∪ {$}. The transition function
δ′ is obtained from δ by adding to δ the following instructions (we assume that the
top of the stack is ‘to the left’, that is, when we push Z0 $ then the new top is Z0):

(1) q′0 ε Z0 7−→ push Z0 $ goto q0

(2) for each final state q ∈ F of the pda M , and for each Z ∈ Γ ∪ {$},
q ε Z 7−→ push ε goto qe

(3) for each Z ∈ Γ ∪ {$},
qe ε Z 7−→ push ε goto qe.

The new symbol $ is a marker placed at the bottom of the stack of the pda M ′.
That marker is necessary because, otherwise, M ′ may accept a word because of the
stack is empty, while for the same input word, M stops because its stack is empty
and it is not in a final state (thus, M does not accept the input word). Indeed, let
us consider the case where the pda M , reading the last input character, say a, of an
input word w, (1) makes a transition to a non-final state from which no transitions
are possible, and (2) by making that transition, it leaves the stack empty. Thus, M
does not accept w. In that case the pda M ′ when reads that character a, also leaves
the stack empty if $ were not on the stack and, thus, M ′ accepts the word w′.

We leave it to the reader to convince himself that L(M) = N(M ′).
(ii) Given a pda M = 〈Q, Σ, Γ, δ, q0, Z0, ∅〉 and the language N(M) it accepts by
empty stack, we construct the M ′ such that L(M ′) = N(M) as follows. We take
M ′ to be the septuple 〈Q ∪ {q′0, qf}, Σ, Γ ∪ {$}, δ′, q′0, $, {qf}〉, where q′0 and qf are
two new states, and $ is a new stack symbol. The transition function δ′ is obtained
from δ by adding to δ the following instructions (we assume that the top of the stack
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is ‘to the left’, and thus, for instance, if we push Z0 $ onto the stack then the new
top symbol is Z0):

(1) q′0 ε $ 7−→ push Z0 $ goto q0

(2) for each q ∈ Q,

q ε $ 7−→ push ε goto qf .

Instruction (1) causes M ′ to simulate the initial configuration of M , but the new
symbol $ is placed at the bottom of the stack of the pda M ′. If M erases its
entire stack, then M ′ erases its entire stack with the exception of the symbol $.
Instructions (2) cause M ′ to make a transition to its unique final state qf . We leave
it to the reader to convince himself that N(M) = L(M ′). �

We have the following facts.

Fact 3.1.11. [Restricted PDA’s with Acceptance by final state. (1)] For
any nondeterministic pda which accepts a language L by final state there exists an
equivalent nondeterministic pda which (i) accepts L by final state, (ii) has at most
two states, and (iii) makes no ε-moves on the input [9, page 120].

Fact 3.1.12. [Restricted PDA’s with Acceptance by final state. (2)] For
any nondeterministic pda which accepts by final state, there exists an equivalent
nondeterministic pda which accepts by final state, such that at each move:
- either (1.1) it reads one symbol of the input, or (1.2) it makes an ε-move on the
input, and
- either (2.1) it pops one symbol off the stack, or (2.2) it pushes one symbol on the
stack, or (2.3) it does not change the symbol on the top of the stack [9, page 121].

Fact 3.1.13. [Restricted PDA’s with Acceptance by empty stack ] For
any nondeterministic pda which accepts a language L by empty stack, there exists
an equivalent nondeterministic pda which (i) accepts L by empty stack, and (ii) if
ε ∈ L then it makes one ε-move on the input (this ε-move is necessary to erase the
symbol Z0 from the stack) else it makes no ε-moves on the input [8, page 159].

In the following theorem we show that there is a correspondence between the set
of the S-extended type 2 grammars whose set of terminal symbols is Σ, and the set
of the nondeterministic pushdown automata over the input alphabet Σ.

Theorem 3.1.14. [Equivalence Between Nondeterministic PDA’s and
S-extended Type 2 Grammars] (i) For every S-extended type 2 grammar which
generates the language L ⊆ Σ∗, there exists a pushdown automaton over the input
alphabet Σ which accepts L by empty stack , and (ii) vice versa.

Proof. Let us show Point (i). Given a context-free grammar G = 〈VT , VN , P, S〉,
the nondeterministic pushdown automaton which accepts by empty stack the lan-
guage L(G) generated by G, is the septuple of Figure 3.1.2 where δ is defined as
indicated in that figure. Note that, similarly to the case of finite automata (see
page 31), if we want to get a transition function δ which is a total function, it may
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pda: acceptance by empty stack

〈{q0, q1} , VT , VN∪VT ∪{Z0} , q0 , Z0 , {} , δ 〉
set Q of set Σ of set Γ of initial symbol at set F transition
states input stack state the bottom of final function

symbols symbols of the stack states

δ symbol old top new top new
state of input of stack of stack state
↓ ↓ ↓ ↓ ↓

(1) q0 ε Z0 7−→ push S Z0 goto q1 (initialization)
(2) q1 ε A 7−→ push Z1 . . . Zk goto q1 for each A→ Z1 . . . Zk in P

(3) q1 a a 7−→ push ε goto q1 for each a in VT

(4) q1 ε Z0 7−→ push ε goto q1

Figure 3.1.2. Above: the pda of Point (i) of the proof of Theo-
rem 3.1.14 on page 104. It accepts by empty stack the language gen-
erated by the S-extended context-free grammar 〈VT , VN , P, S〉. Be-
low : the transition function δ of that pda. In the instructions of type
(2) the string Z1 . . . Zk may also be the empty string ε. For the notion
of acceptance by final state, see Remark 3.1.16 on page 106.

be necessary: (i) to add to that pda a non-final sink state qs ∈ Q−F , and (ii) to
consider some additional instructions, besides those listed in Figure 3.1.2, each of
which is of the form:

either qi α Z 7−→ push β goto qs for some qi∈Q, α ∈ Σ∪{ε}, Z∈Γ, and β∈Γ∗

or qs α Z 7−→ push β goto qs for some α ∈ Σ∪{ε}, Z∈Γ, and β∈Γ∗.

Note that the pushdown automaton of Figure 3.1.2 is nondeterministic because we
may have more than one instruction of type (2) (see Figure 3.1.2) for the same
nonterminal A.

The reader may convince himself that given any context-free grammar G, the
pda defined as we have indicated above, accepts by empty stack the language L(G).

Let us show Point (ii). Given a pda M = 〈Q, Σ, Γ q0, Z0, F, δ〉 which accepts
by empty stack the language N(M), the context-free grammar G = 〈VT , VN , P, S〉
which generates the language L(G) = N(M) is defined as follows:

VN = {S} ∪ {[q Z q′] | for each q, q′ ∈ Q and each Z ∈ Γ}
VT = Σ

together with the following set P of productions:

(ii.1) for each q ∈ Q, S → [q0 Z0 q], and
(ii.2) for each q, q1, . . . , qm+1 ∈ Q, for each a ∈ Σ∪{ε}, for each A, B1, . . . , Bm ∈ Γ,
for each 〈q1, B1B2 . . . Bm〉 ∈ δ(q, a, A),

[q A qm+1] → a [q1 B1 q2] [q2 B2 q3] . . . [qm Bm qm+1]
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In particular, if m = 0, that is, 〈q1, ε〉 ∈ δ(q, a, A), for some q, q1 ∈ Q, a ∈ Σ ∪ {ε},
and A ∈ Γ, then the production to be inserted into the set P is: [q A q1] → a.

Since the pushdown automaton accepts by empty stack, without loss of general-
ity, we may assume that the set F of the final states is empty.

Note that when a leftmost derivation for the grammar G has generated the word:

x [q1 Z1 q2] [q2 Z2 q3] . . . [qk Zk qk+1]

- the pda has read the initial substring x ∈ V ∗
T from the input tape,

- the pda is in state q1,
- the stack of the pda holds Z1Z2 . . . Zk and the new top of the stack is Z1, and
- it is guessed that the pda will be in state q2 after popping Z1 and . . . and in state
qk+1 after popping Zk.

We have that the leftmost derivations of the grammar G simulate the moves
of M . The formal proof of this fact can be done in the following two steps (the
details are left to the reader).
Step (1). We first prove by induction on the number of moves of M that: for all
states q, p ∈ Q, for all symbols A ∈ Γ, and for all sentential forms x which are
generated from the start symbol according to the grammar G,

[q A p] →∗
G x iff 〈q, A, x〉 →∗

M 〈p, ε, ε〉.
Step (2). Then we have that:

w ∈ L(G)
iff S → [q0 Z0 q] →∗

G w for some q ∈ Q
iff 〈q0, w, Z0〉 →∗

M 〈q, ε, ε〉 for some q ∈ Q
iff w ∈ N(M).

This concludes the proof. �

Theorem 3.1.14 holds also if acceptance is by final state and not by empty stack,
because of Theorem 3.1.10. Thus, as a consequence of Theorems 3.1.14 and 3.1.10,
we have the following fact.

Fact 3.1.15. [Equivalence Between PDA’s and Context-Free Languages]
Every context-free language can be accepted by a nondeterministic pda either by
final state or by empty stack , and every nondeterministic pda accepts either by final
state or by empty stack a context-free language.

Remark 3.1.16. [Acceptance by final state ] If we change Figure 3.1.2 on
page 105 by considering Q = {q0, q1, q2}, F = {q2}, and the instruction (4) of the
form:

(4′) q1 ε Z0 7−→ push Z0 goto q2

then the pda of Figure 3.1.2 accepts the context-free language generated by the
grammar G by final state (and not by empty stack). Note that in the instruction (4′),
instead of ‘push Z0’, we may also write: ‘push γ’ for any γ ∈ Γ∗, because acceptance
depends on the state, not on the symbols in the stack.
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Similarly, in the proof of Point (ii) of Theorem 3.1.14 on page 105, if the pda M
accepts by final state (not by empty stack) we need to add to the set P of productions
also the following ones, besides those of Points (ii.1) and (ii.2):

(ii.3) for each q ∈ F , Z ∈ Γ, q′ ∈ Q, [q Z q′]→ ε

Example 3.1.17. The nondeterministic pda which accepts by final state the lan-
guage {w wR |w∈{0, 1}∗} is given by the following septuple:

〈{q0, q1, q2}, {0, 1}, {Z0, 0, 1}, q0, Z0, {q2}, δ〉
where δ is defined as follows (we assume that the top of the stack is ‘to the left’,
and thus, for instance, if we push 0 Z onto the stack then the new top symbol is 0):

q0 0 Z0 7−→ push 0 Z0 goto q0

q0 1 Z0 7−→ push 1 Z0 goto q0

q0 0 0 7−→ push 0 0 goto q0 or push ε goto q1

q0 0 1 7−→ push 0 1 goto q0

q0 1 1 7−→ push 1 1 goto q0 or push ε goto q1

q0 1 0 7−→ push 1 0 goto q0

q1 0 0 7−→ push ε goto q1

q1 1 1 7−→ push ε goto q1

q0 ε Z0 7−→ push Z0 goto q2 (†)
q1 ε Z0 7−→ push Z0 goto q2

In the definition of δ, we have written the expression

q a Z 7−→ push γ1 goto q1 or . . . or push γn goto qn

to denote that

δ(q, a, Z) = {〈q1, γ1〉, . . . , 〈qn, γn〉}.
The state q1 represents the state where the nondeterministic pda behaves as if the
middle of the input string has been already passed. The instruction (†) is for the
case where w wR = ε.

The transition function δ can be represented in a pictorial way as indicated in
Figure 3.1.3 where the arc:

qi qj
x, y w

denotes the instruction: qi x y 7−→ push w goto qj . x is the symbol read from
the input and y is the symbol on the top of the stack. We assume that after pushing
the string w onto the stack, the leftmost symbol of w becomes the new top of the
stack. An analogous notation will be introduced on page 209 for the transition
functions of (iterated) counter machines. �

The following example shows the constructions of the pda and the context-free
grammar we have indicated in the proof of Points (i) and (ii) of Theorem 3.1.14
above.
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q0

q1

q2

x, Z0 xZ0

x, y x y

x, x
ε

x, x ε

ε, Z
0

Z
0

ε, Z0

Z0

Figure 3.1.3. The transition function of a nondeterministic pda
which accepts by final state the language {w wR | w ∈ {0, 1}∗}. x and y
stand for 0 or 1. Thus, for instance, the arc labeled by ‘x, y xy’ stands
for four arcs labeled by: (i) ‘0, 0 00’, (ii) ‘0, 1 01’, (iii) ‘1, 0 10’, and
(iv) ‘1, 1 11’, respectively.

Example 3.1.18. Let us consider the grammar G whose set of production is
the singleton {S → ε}. The language it generates is the singleton {ε}, that is, the
language consisting of the empty word only. As indicated in Point (i) of the proof of
Theorem 3.1.14, the pda, call it M , which accepts by empty stack the language {ε}
has the following transition function δ (we assume that the top of the stack is ‘to
the left’, and thus, for instance, if we push S Z0 onto the stack then the new top
symbol is S):

q0 ε Z0 7−→ push S Z0 goto q1

q1 ε S 7−→ push ε goto q1

q1 ε Z0 7−→ push ε goto q1

Now, as indicated in the proof of Point (ii) of Theorem 3.1.14, the context-free
grammar which generates the language accepted by empty stack by the pda M , has
the following productions:

S → [q0 Z0 q0]
S → [q0 Z0 q1]

[q0 Z0 q0] → [q1 S q0] [q0 Z0 q0]
[q0 Z0 q0] → [q1 S q1] [q1 Z0 q0]
[q0 Z0 q1] → [q1 S q0] [q0 Z0 q1]
[q0 Z0 q1] → [q1 S q1] [q1 Z0 q1]

[q1 S q1] → ε
[q1 Z0 q1] → ε

By eliminating ε-productions, unit productions and useless symbols, we get, as ex-
pected, the production S → ε only. �

Remark 3.1.19. If we assume that the grammar G=〈VT , VN , P, S〉 is in Greibach
normal form (see Definition 3.7.1 on page 133), the pda M which accepts the lan-
guage L(G) by empty stack, can be constructed as follows: 〈{q0, q1}, VT , VT ∪ VN ∪
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{Z0}, q0, Z0, ∅, δ〉, where δ is given by the following instructions (we assume that
the top of the stack is ‘to the left’, and thus, for instance, if we push S Z0 onto the
stack then the new top symbol is S):

q0 ε Z0 7−→ push S Z0 goto q1

q1 a A 7−→ push γ goto q1 for each production A→ aγ
q1 ε S 7−→ push ε goto q1 if the production S → ε is in P
q1 ε Z0 7−→ push ε goto q1

Example 3.1.20. Given the grammar G with the axiom S and the following
productions in Greibach Normal form:

S → a S B | c | ε
B → b

Now we list the instructions which define the transition function δ of the pda

〈{q0, q1}, {a, b, c}, {a, b, c, S, B, Z0}, q0, Z0, ∅, δ〉
which accepts L(G) by empty stack (we assume that the top of the stack is ‘to the
left’, and thus, for instance, if we push S Z0 onto the stack then the new top symbol
is S):

q0 ε Z0 7−→ push S Z0 goto q1

q1 a S 7−→ push S B goto q1 (∗)
q1 c S 7−→ push ε goto q1

q1 ε S 7−→ push ε goto q1 (∗)
q1 b B 7−→ push ε goto q1

q1 ε Z0 7−→ push ε goto q1

Note that the instructions marked by (∗) show that the pda is nondeterministic. �

The context-free languages are sometimes called nondeterministic context-free lan-
guages to stress the fact that they are the languages accepted by nondeterministic
pda’s. In the following Section 3.3 we will introduce: (i) the deterministic context-
free languages which constitute a proper subclass of the context-free languages,
and (ii) the deterministic pda’s which constitute a proper subclass of the nonde-
terministic pda’s. Deterministic context-free languages and deterministic pushdown
automata are equivalent in the sense that, as we will see below, the deterministic
context-free languages are the languages accepted (by final state) by deterministic
pda’s.

Note that it is important that the input head of a pushdown automaton cannot
move to the left. Indeed, if we do not keep this restriction the computational power
of the pda’s increases as we now illustrate.

Definition 3.1.21. [Two-Way Nondeterministic Pushdown Automaton]
A two-way pda, or 2pda for short, is a pda where the input head is allowed to move
to the left and to the right, and there is a left endmarker and a right endmarker on
the input string.
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The computational power of 2pda’s is increased with respect to the usual (one-
way) pda’s. Indeed, the language L = {0n1n2n |n≥1} which is a context-sensitive
language can be accepted by a 2pda as follows [9, page 121]. The accepting 2pda
checks that the left portion of the input string is of the form 0n1n by reading the
input from left to right, and pushing the n 0’s on the stack and then popping one
0 for each symbol 1 occurring in the input string (by applying the technique shown
in Example 3.3.12 on page 120). Then, it moves to the left on the input string at
the beginning of the substring of 1’s (doing nothing on the stack). Finally, it checks
that the right portion of the input is of the form 1n2n by pushing the n 1’s on the
stack and then popping one 1 for each symbol 2 occurring in the input string.

Note that the language L cannot be accepted by any pda because it is not
a context-free language (see Corollary 3.11.2 on page 152) and pda’s can accept
context-free languages only (see Theorem 3.1.14 on page 104).

Before closing this section we would like to introduce the class LIN of the linear
context-free languages and relate that class to a subclass of the pda’s [9, page 105].

Definition 3.1.22. [Linear Context-Free Grammar] A context-free gram-
mar is said to be a linear context-free grammar iff the right hand side of each
production has at most one nonterminal symbol. A language generated by a linear
context-free grammar is said to be a linear context-free language (see also Defini-
tion 7.6.7 on page 228). The class of linear context-free languages is called LIN. In
particular, we allow productions of the form A→ ε, for some nonterminal symbol A.

Note that the language {anbn |n≥ 0} can be generated by the linear context-free
grammar with axiom S and the following productions:

S → a T

T → S b

S → ε

Since the language {anbn |n ≥ 0} cannot be generated by a regular grammar, we
have that the class of languages generated by linear context-free grammars properly
includes the class of languages generated by regular grammars.

Definition 3.1.23. [Single-turn Nondeterministic PDA] A nondetermin-
istic pda is said to be single-turn iff for all configurations 〈q0, α0, Z0〉, 〈q1, α1, γ1〉,
〈q2, α2, γ2〉, and 〈q3, α3, γ3〉, we have that if 〈q0, α0, Z0〉→∗ 〈q1, α1, γ1〉→∗ 〈q2, α2, γ2〉
→∗ 〈q3, α3, γ3〉 and |γ1| > |γ2| then |γ2| ≥ |γ3| (that is, when the content of the stack
starts decreasing in length, then it never increases again).

Theorem 3.1.24. [Equivalence Between Linear Context-Free Languages
and Single-Turn Nondeterministic PDA’s] A language is a linear context-free
language iff it is accepted by empty stack by a single-turn nondeterministic pda iff
it is accepted by final state by a single-turn nondeterministic pda [9, page 143].

In Section 6.4 starting on page 205, we will mention some undecidability results
for the class of linear context-free languages.
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3.2. From PDA’s to Context-Free Grammars and Back: Some Examples

In this section we present some examples in which we show how one can construct:
(i) given a context-free grammar, a pushdown automaton which is equivalent to that
grammar, and
(ii) given a pushdown automaton, a context-free grammar which is equivalent to
that pushdown automaton.

We will consider both the case of acceptance by final state and the case of
acceptance by empty stack.

For the reader’s convenience we recall here some assumptions that we make on
any given pda M = 〈Q, Σ, Γ, q0, Z0, F, δ〉:
(i) initially, only the symbol Z0 is on the stack,
(ii) acceptance either by final state or by empty stack can occur only if the input
is completely read, that is, the remaining part of the input string to be read (see
Remark 3.1.9 on page 103) is the empty string ε, and
(iii) if the stack is empty then no move is possible.

Recall also that we assume that when a pda makes a move and replaces the top
symbol of the stack, say A, by a string α, then the leftmost symbol of the string α
is the new top of the stack.

Example 3.2.1. [From Context-Free Grammars to PDA’s Which Accept
by final state or by empty stack ] Given the context-free grammar G with axiom
S and the following productions:

S → a S b | c | ε
we want to construct a pushdown automaton which accepts by final state the lan-
guage generated G, that is, {anc bn |n ≥ 0} ∪ {anbn |n ≥ 0}. We use the technique
indicated in the proof of Theorem 3.1.14 on page 104 and Remark 3.1.16 on page 106.
We construct a pda with three states: q0, q1, and q2. The state q0 is the initial state
and the set of final states is the singleton {q2}. The transition function δ of the
pda is as follows (we assume that the top of the stack is ‘to the left’, and thus, for
instance, when we push the string SZ0 onto the stack, we assume that the new top
symbol of the stack is S):

δ(q0, ε, Z0) = {〈q1, SZ0〉}
δ(q1, ε, S) = {〈q1, a S b〉, 〈q1, c〉, 〈q1, ε〉}
δ(q1, a, a) = {〈q1, ε〉}
δ(q1, b, b) = {〈q1, ε〉}
δ(q1, c, c) = {〈q1, ε〉}
δ(q1, ε, Z0) = {〈q2, Z0〉}

Note that in this last defining equation for δ it is not important whether or not we
push Z0 or any other string onto the stack.

Instead of a pda with three states, we may use a pda with two states, called q0

and q1, as we now indicate. We assume that acceptance is by final state and the
only final state is q1. The transition function δ for this pda with two states is the
following one:
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δ(q0, ε, Z0) = {〈q0, S Z0〉}
δ(q0, ε, S) = {〈q0, a S b〉, 〈q0, c〉, 〈q0, ε〉}
δ(q0, a, a) = {〈q0, ε〉}
δ(q0, b, b) = {〈q0, ε〉}
δ(q0, c, c) = {〈q0, ε〉}
δ(q0, ε, Z0) = {〈q1, Z0〉}

We leave it to the reader to show that this definition of δ is correct. Note that in
the last defining equation for δ it is not important whether or not we push Z0 or any
other string onto the stack. Note also that the transition function δ is not defined
when the pda is in state q1.

If we use acceptance by empty stack, this last pda may be simplified and reduced
to a pda with one state only, as follows:

δ(q0, ε, Z0) = {〈q0, S〉}
δ(q0, ε, S) = {〈q0, a S b〉, 〈q0, c〉, 〈q0, ε〉}
δ(q0, a, a) = {〈q0, ε〉}
δ(q0, b, b) = {〈q0, ε〉}
δ(q0, c, c) = {〈q0, ε〉}

Again we leave it to the reader to show that this definition of δ is correct. Note in
the first move the symbol S replaces Z0 at the bottom position of the stack. �

Example 3.2.2. [From PDA’s Which Accept by empty stack to Context-
Free Grammars] Let us consider the pda with one state described at the end of
the previous Example 3.2.1. It accepts by empty stack the language generated by
the grammar G whose productions are:

S → a S b | c | ε
The context-free grammar corresponding to that pda as indicated in the proof of
Theorem 3.1.14 on page 104, has the following productions (see the proof of Theo-
rem 3.1.14):

S → [q0 Z0 q0]
[q0 Z0 q0] → [q0 S q0]
[q0 S q0] → [q0 a q0] [q0 S q0] [q0 b q0]
[q0 S q0] → [q0 c q0]
[q0 S q0] → ε
[q0 a q0] → a
[q0 b q0] → b
[q0 c q0] → c

By suitable renaming of the nonterminal symbols we get:

S → R
R→ T
T → A T B | C | ε



3.2. FROM PDA’S TO CONTEXT-FREE GRAMMARS AND BACK: SOME EXAMPLES 113

A→ a
B → b
C → c

and, by unfolding the nonterminal symbols A, B, C, R, and T on the right hand
sides, and by eliminating useless symbols and their productions, we get:

S → a T b | c | ε
T → a T b | c | ε

Since S generates the same language as T (and this can be proved by induction
on the length of the derivation of a word of the language), we can eliminate the
productions for T and replace T by S in the productions for S. By doing so, we get:

S → a S b | c | ε
As one might have expected, these productions are those of the grammar G. �

Example 3.2.3. [From PDA’s Which Accept by final state to Context-
Free Grammars] Let us consider the following pda M with three states: q0, q1,
and q2. The state q0 is the initial state and the set of final states is the singleton
{q2}. The input alphabet VT is {a, b, c}. The transition function δ of the pda is as
follows (we assume that the top of the stack is ‘to the left’, and thus, for instance,
when we push the string SZ0 onto the stack, we assume that the new top symbol of
the stack is S):

δ(q0, ε, Z0) = {〈q1, SZ0〉}
δ(q1, ε, S) = {〈q1, a S b〉, 〈q1, c〉, 〈q1, ε〉}
δ(q1, a, a) = {〈q1, ε〉}
δ(q1, b, b) = {〈q1, ε〉}
δ(q1, c, c) = {〈q1, ε〉}
δ(q1, ε, Z0) = {〈q2, Z0〉}

As we have seen in Example 3.2.1 on page 111, the pda M accepts by final state all
words which are generated by the context-free grammar with axiom S and whose
productions are:

S → a S b | c | ε
We can construct a context-free grammar, call it G, which generates the same lan-
guage accepted by final state by the pda M by applying the techniques indicated
in the proof of Point (ii) of Theorem 3.1.14 on page 105 and in Remark 3.1.16 on
page 106.

The nonterminal symbols of the context-free grammar G are: S, which is the ax-
iom of G, and the 45 symbols which are of the form [q s q′], for any q, q′ ∈ {q0, q1, q2}
and s ∈ {S, Z0, a, b, c}, that is,

[q0 S q0], [q0 S q1], [q0 S q2], [q0 Z0 q0], [q0 Z0 q1], [q0 Z0 q2], . . ., [q0 c q2],

[q1 S q0], . . ., [q1 c q2],

[q2 S q0], . . ., [q2 c q2].
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We will collectively indicate those 45 symbols by the matrix





q0 S q0
q1 Z0 q1
q2 a q2

b
c



 and

in that matrix every path from left to right denotes a nonterminal symbol of the
grammar G. (Obviously, in that matrix there are 3×5×3 = 45 paths for every
possible choice of the first, second, and third component.) In what follows we will
use that matrix notation also for denoting the productions of the grammar G as we
will indicate.

These productions of the grammar G are the following ones:

1. S →



q0 Z0

q0

q1

q2





which in our matrix notation, by considering every path from left to right, denotes
the three productions:

1.1 S → [q0 Z0 q0]

1.2 S → [q0 Z0 q1]

1.3 S → [q0 Z0 q2].

Then we have the following production:

2.



q0 Z0

q0

q1

q2



→ ε



q1 S
q0

q1

q2








q0

q1

q2

Z0

q0

q1

q2





(α) (β) (β) (α)

This production 2 denotes the following nine productions 2.1–2.9 in our matrix
notation where the choices marked by the same Greek letter should be the same:

2.1 [q0 Z0 q0]→ [q1 S q0] [q0 Z0 q0]

2.2 [q0 Z0 q0]→ [q1 S q1] [q1 Z0 q0]

2.3 [q0 Z0 q0]→ [q1 S q2] [q2 Z0 q0]
...

2.9 [q0 Z0 q2]→ [q1 S q2] [q2 Z0 q2]

We also have the following productions (again here and in what follows the choices
marked by the same Greek letter should be the same):

3.1



q1 S
q0

q1

q2



→ ε



q1 a
q0

q1

q2








q0

q1

q2

S
q0

q1

q2








q0

q1

q2

b
q0

q1

q2





(α) (β) (β) (γ) (γ) (α)

(27 productions)
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3.2



q1 S
q0

q1

q2



→ ε



q1 c
q0

q1

q2





(α) (α)

(3 productions)

3.3 [ q1 S q1 ]→ ε

4. [ q1 a q1 ]→ a

5. [ q1 b q1 ]→ b

6. [ q1 c q1 ]→ c

7.



q1 Z0

q0

q1

q2



→ ε



q2 Z0

q0

q1

q2





(α) (α)

(3 productions)

8.




q2

S
Z0

a
b
c

q0

q1

q2




→ ε (15 productions)

These last fifteen productions 8 are required according to Remark 3.1.16 on page 106
because the acceptance of the given pda is by final state.

Now we will check that, indeed, all the productions 1–8 generate all words which
are generated from the axiom S by the productions:

S → a S b | c | ε
First note that in the productions 3.1 the choice q1 only can produce words in
{a, b, c}∗ (see, in particular, the productions 3.3, 4, 5, and 6). This fact can be
derived by applying the From-Below Procedure which we will present later (see
Algorithm 3.5.1 on page 123). Thus, we can replace the productions 3.1 by the
following one:

3.1′ [q1 S q1]→ [q1 a q1] [q1 S q1] [q1 b q1]

Analogously, in the productions 3.2 the choice q1 only can produce words in {a, b, c}∗
(see the productions 6). Thus, we can replace the productions 3.2 by the following
one:

3.2′ [q1 S q1]→ [q1 c q1]

In the productions 2, the only possible choice for the position (β) is q1, because
[q1 S q0] and [q1 S q2] cannot produce words in {a, b, c}∗ (recall that we have already
shown that the productions 3.1 can be replaced by the production 3.1′). Thus, we
can replace the productions 2 by the following three productions:
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2′.



q0 Z0

q0

q1

q2



→ [q1 S q1]



q1 Z0

q0

q1

q2





(α) (α)

By unfolding the productions 7 with respect to



q2 Z0

q0

q1

q2



 (see productions 8), we

get:

7′.



q1 Z0

q0

q1

q2



→ ε (3 productions)

By unfolding the productions 2′ with respect to



q1 Z0

q0

q1

q2



 (see productions 7′), we

get the following three productions:

2′′.



q0 Z0

q0

q1

q2



→ [q1 S q1]

By unfolding the productions 1 with respect to



q0 Z0

q0

q1

q2



 (see productions 2′′), we

get the following production:

1′. S → [q1 S q1]

At this point we have that the productions of the grammar G with axiom S are the
following ones:

1′. S → [q1 S q1]

3.1′ [q1 S q1]→ [q1 a q1] [q1 S q1] [q1 b q1]

3.2′ [q1 S q1]→ [q1 c q1]

3.3 [q1 S q1]→ ε

4. [q1 a q1]→ a

5. [q1 b q1]→ b

6. [q1 c q1]→ c

7′.



q1 Z0

q0

q1

q2



→ ε (3 productions)

Now the productions 7′ can be eliminated because they cannot be used in any
derivation from the axiom S. This fact can be obtained by applying the From-
Above Procedure which we will present later (see Algorithm 3.5.3 on page 124). By
unfolding; (i) the production 1′ with respect to [q1 S q1], (ii) the production 3.1′ with
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respect to [q1 a q1] and [q1 b q1], and (iii) the production 3.2′ with respect to [q1 c q1],
we get the following productions:

S → a [q1 S q1] b | c | ε

[q1 S q1]→ a [q1 S q1] b | c | ε

Since S generates the same language as [q1 S q1] (and this can be proved by induction
on the length of the derivation of a word of the language), we can eliminate the
productions for [q1 S q1] and replace [q1 S q1] by S in the productions for S. By
doing so, we get as expected, the following three productions:

S → a S b | c | ε �

3.3. Deterministic PDA’s and Deterministic Context-Free Languages

Let us introduce the notion of deterministic pushdown automaton and deterministic
context-free language.

Definition 3.3.1. [Deterministic Pushdown Automaton] A pushdown au-
tomaton 〈Q, Σ, Γ, q0, Z0, F, δ〉 is said to be a deterministic pushdown automaton (or
a dpda, for short) iff

(i) ∀q ∈ Q, ∀Z ∈ Γ, if δ(q, ε, Z) 6= {} then ∀a ∈ Σ, δ(q, a, Z) = {} (that is, no
other moves are allowed when an ε-move is allowed), and
(ii) ∀q ∈ Q, ∀Z ∈ Γ, ∀x ∈ Σ ∪ {ε}, δ(q, x, Z) is either {} or a singleton (that is,
if a move is allowed, then that move can be made in one way only, that is, there
exists only one next configuration for the dpda).

Thus, a deterministic pda has a transition function δ such that: (i) for each
input element in Σ ∪ {ε}, returns either a singleton or an empty set of states, and
(ii) returns a non-empty set of states for the input ε only if δ returns the empty set
of states for all other symbols in Σ.

In what follows, when referring to dpda’s we will feel free to write ‘DPDA’,
instead of ‘dpda’.

Definition 3.3.2. [Language Accepted by a DPDA by final state ] The
language accepted by a deterministic pushdown automaton M =〈Q, Σ, Γ, q0, Z0, F, δ〉
by final state is the following set L of words:

L = {w | there exists a configuration C ∈Finf
M such that 〈q0, w, Z0〉 →∗

M C}.

Definition 3.3.3. [Deterministic Context-Free Language] A context-free
language is said to be a deterministic context-free language iff it is accepted by a
deterministic pushdown automaton by final state.

Definition 3.3.4. [Language Accepted by a DPDA by empty stack ] The
language accepted by a deterministic pushdown automaton M =〈Q, Σ, Γ, q0, Z0, F, δ〉
by empty stack is the following set L of words:

L = {w | there exists a configuration C ∈Fine
M such that 〈q0, w, Z0〉 →∗

M C}.
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Note that when introducing the concepts of the above Definitions 3.3.2 and 3.3.4,
other textbooks use the terms ‘recognizes’ and ‘recognized’, instead of the terms
‘accepts’ and ‘accepted’, respectively.

Example 3.3.5. Let wR denote the string obtained from the string w by re-
versing the order of the symbols. A deterministic pda accepting by final state the
language L = {wcwR |w ∈ {0, 1}∗}, is the septuple:

〈{q0, q1, q2}, {0, 1, c}, {Z0, 0, 1}, q0, Z0, {q2}, δ〉
where the function δ is defined as follows (here we assume that the top of the stack
is ‘to the left’, that is, when, for instance, we push 0 Z on the stack then the new
top is 0):
for any Z ∈ {Z0, 0, 1},

q0 0 Z 7−→ push 0 Z goto q0

q0 1 Z 7−→ push 1 Z goto q0

q0 c Z 7−→ push Z goto q1

q1 0 0 7−→ push ε goto q1

q1 1 1 7−→ push ε goto q1

q1 ε Z0 7−→ push Z0 goto q2

Recall that acceptance by final state requires that: (i) the state q2 is final, and
(ii) the input string has been completely read. We do not care about the symbols
occurring in the stack. �

There are context-free languages which are nondeterministic in the sense that they
are accepted by nondeterministic pda’s, but they cannot be accepted by determin-
istic pda’s.

The language L = {w wR |w ∈ {0, 1}∗} of Example 3.1.17 on page 107 is a con-
text-free language which is not a deterministic context-free language [9, page 265].

Also the language L = {anbn |n ≥ 1}∪{anb2n |n ≥ 1} is a context-free language
which is not a deterministic context-free language ([3, page 717] and [9, page 265]).

Fact 3.3.6. [Restricted DPDA’s Which Accept by final state ] For any de-
terministic pda which accepts by final state, there exists an equivalent deterministic
pda which accepts by final state, such that at each move:
- either (1.1) it reads one symbol of the input, or (1.2) it makes an ε-move on the
input, and
- either (2.1) it pops one symbol off the stack, or (2.2) it pushes one symbol on the
stack, or (2.3) it does not change the symbol on the top of the stack, and
- if it makes an ε-move on the input then in that move it pops one symbol off the
stack [9, pages 234 and 264].

Fact 3.3.7. [DPDA’s Which Accept by final state Are More Powerful
Than DPDA’s Which Accept by empty stack ] (i) For any deterministic pda M
which accepts a language L by empty stack there exists an equivalent deterministic
pda M1 which accepts L by final state, and (ii) for any deterministic pda M1 which
accepts a language L by final state it may not exist an equivalent deterministic pda
M which accepts L by empty stack.
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Proof. (i) The proof of this point is like that of Theorem 3.1.10 on page 103.
(ii) Let us consider the language

E = {w |w ∈ {0, 1}∗ and in w the number of occurrences of 0’s and 1’s are
equal}.
This language is accepted by a deterministic iterated counter machine (see Sec-
tion 7.1 starting on page 207) with acceptance by final state (see Figure 7.3.3 on
page 221) and thus, it is accepted by a deterministic pushdown automaton by final
state. The language E cannot be accepted by a deterministic pushdown automaton
by empty stack. Indeed, let us assume, on the contrary, that there exists one such
automaton. Call it M . The automaton M should accept the words 01 and 0101, but
it should not accept the word 010. This means that the automaton M should have
its stack empty after reading the input strings 01 and 0101, but its stack should not
be empty after reading the input string 010. This is impossible, because when the
stack is empty, M cannot make any move. �

Thus, (i) for nondeterministic pda’s the notion of acceptance by final state and
by empty stack are equivalent (see Theorem 3.1.10 on page 103), while (ii) for de-
terministic pda’s the notion of acceptance by final state is more powerful than that
of acceptance by empty stack.

Below we will see that, if we assume that the input string is terminated by a
right endmarker, say $, with $ not in Σ, then deterministic pda’s with acceptance
by final state are equivalent to deterministic pda’s with acceptance by empty stack.

Theorem 3.3.8. For any deterministic pda M which accepts by final state a
language L (which, by definition, is a deterministic context-free language), there
exists an equivalent deterministic pda M1 which accepts by final state the language
L and for each word w ∈ L, M1 reads the whole input word w (in this case, if w 6= ε
then the rightmost symbol of w is an element of Σ, not the special symbol $). After
performing the complete reading of the input word w (which is always the case if
w = ε), if M1 is in a final state (that is, M1 accepts w) then M1 does not make any
ε-move on the input w. Thus, we can construct M1 so that, if a string w = a1 . . . ak,
for some k≥ 1, is accepted by final state by M1, then M1 accepts w immediately
after applying the transition function δ which has the rightmost input symbol ak as
its second argument (see [9, page 265, Exercise 10.7]).

Notice, however, that there are deterministic context-free languages which are
accepted by final state by deterministic pda’s which make ε-moves on the input, but
they are not accepted by final state by any deterministic pda which cannot make
ε-moves on the input [9, page 265, Exercise 10.6].

If ε-moves on the input are necessary for the acceptance by final state of a
deterministic context-free language L by a deterministic pda (that is, there exists at
least one word in L whose acceptance requires an ε-move), then by Theorem 3.3.8,
those ε-moves on the input are necessary only when the input string has not been
completely read [9, page 265, Exercise 10.7] (see Remark 3.1.9 on page 103).
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A deterministic context-free language which is accepted by final state by a de-
terministic pda which has to make ε-moves on the input is [9, page 265]:

Edet ,ε = {0i 1k a 2i | i, k≥1} ∪ {0i 1k b 2k | i, k≥1}.
By Theorem 3.3.8 we can construct a deterministic pda which accepts by final state
the language Edet ,ε and makes ε-moves on the input only when the input has not
been completely read.

Definition 3.3.9. [Prefix-Free Language] A language L is said to be prefix -
free (or to enjoy the prefix property) iff no string in L is a proper prefix of another
string in L, that is, for every string u ∈ L, the string uv for v 6= ε is not in L.

Theorem 3.3.10. [In the case of DPDA’s the Prefix Property Implies
the Equivalence of Acceptance by final state and by empty stack ] A de-
terministic context-free language L is accepted by empty stack by a deterministic
pda iff L is accepted by final state by a deterministic pda and L enjoys the prefix
property.

Proof. First, note that if the strings u and uv, with v different from ε, are in
the deterministic context-free language L, then a deterministic pushdown automaton
which accepts L by empty stack, after reading u, should: (i) make the stack empty
for accepting u, and also (ii) make the stack not empty for reading completely uv
and accepting it (recall that if the stack is empty, then a pda cannot make any
move, and the notion of acceptance of an input word by empty stack requires that
the input word has been completely read). The remaining part of the proof is based
on the constructions indicated in the proof of Theorem 3.1.10 on page 103. �

Thus, we have the following fact.

Fact 3.3.11. [Prefix-Free Context-Free Languages and DPDA’s] If we
add a right endmarker $ to every input string of a given language L ⊆ Σ∗, with
$ 6∈ Σ, then we get a language, denoted by L $, which enjoys the prefix property,
and L $ is accepted by a deterministic pda by final state iff L $ is accepted by a
deterministic pda by empty stack [9, page 121 and 248].

The reader may contrast this result by the one stated in Fact 3.3.7 on page 118.
Note that the addition of a left endmarker to a given input language does not
increase the computational power of a deterministic pda, because its input head on
the input tape moves to the right only.

Example 3.3.12. [Balanced Bracket Language] Let us consider the language
of balanced brackets, that is, the language L(G) generated by the context-free gram-
mar G with the following productions:

S → ( ) | ( S ) | S S

This language does not enjoy the prefix property because, for instance, both ( ) and
( ) ( ) are words in L(G). A pda accepting by empty stack the language L(G) $ is the
deterministic pda M given by the following septuple:

〈{q0}, {(, ), $}, {1, Z0}, q0, Z0, {}, δ〉
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where the function δ is defined by the following instructions (here we assume that
the top of the stack is ‘to the left’, and thus, for instance, if we push 1 Z0 onto the
stack then the new top symbol is 1):

q0 ( Z0 7−→ push 1 Z0 goto q0

q0 ( 1 7−→ push 1 1 goto q0

q0 ) 1 7−→ push ε goto q0

q0 $ Z0 7−→ push ε goto q0

We have that w ∈ L(G) iff w $ is accepted by the pda M . Since the language L(G)
does not enjoy the prefix property, it is impossible to construct a deterministic pda
which accepts L(G) by empty stack.

One can construct the grammar G1 corresponding to M as indicated in the proof
of Theorem 3.1.14. We get G1 = 〈{(, ), $}, {S, [q0 Z0 q0], [q0 1 q0]}, P, S〉, where
the set P of productions is the following one:

S → [q0 Z0 q0]

[q0 Z0 q0] → ( [q0 1 q0] [q0 Z0 q0]

[q0 1 q0] → ( [q0 1 q0] [q0 1 q0]

[q0 1 q0] → )

[q0 Z0 q0] → $

that is, by renaming the nonterminal symbols,

S → A

A→ ( B A | $

B → ( B B | )

We have that w ∈ L(G) iff w $ ∈ L(G1). For instance, for accepting by empty stack
the input string ( ( ) ) $, the pda M makes the following sequence of moves:

〈q0, ( ( ) ) $, Z0〉 →M 〈q0, ( ) ) $, 1 Z0〉
→M 〈q0, ) ) $, 1 1 Z0〉
→M 〈q0, ) $, 1 Z0〉
→M 〈q0, $, Z0〉
→M 〈q0, ε, ε〉 �

Example 3.3.13. [Language a∗ ∪ anbn] As the language of Example 3.3.12 on
page 120, also the language {an |n≥0} ∪ {anbn |n≥1} is a deterministic context-free
language which does not enjoy the prefix property.

3.4. Deterministic PDA’s and Grammars in Greibach Normal Form

A language generated by a grammar in Greibach normal form in which there
are no two productions with the same nonterminal symbol on the left hand side
and the same leftmost terminal symbol on the right hand side, can be accepted by
a deterministic pushdown automaton and, thus, it is a deterministic context-free
language.
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Note, however, that there are deterministic context-free languages such that
every grammar in Greibach normal form which generates them, should have at least
two productions of the form:

A→ a β1 A→ a β2

for some A ∈ VN , a ∈ VT , and β1, β2 ∈ V ∗, that is, there should be at least two
productions such that: (i) they have the same nonterminal symbol on the left hand
side, and (ii) they have the same leftmost terminal symbol on the right hand side.

The existence of such deterministic context-free languages follows from the fact
that when accepting a deterministic context-free language, a deterministic pushdown
automaton may be forced to make ε-moves when reading the input string. Indeed, if
every grammar in Greibach normal form which generates a context-free language L
is such that for each nonterminal A ∈ VN , for each terminal a ∈ VT , there exists at
most one production of the form A → a β, for some β ∈ V ∗

N , then for every word
w ∈ L, we can construct a leftmost derivation of w that generates in any derivation
step one more terminal symbol of w and, thus, no ε-moves on the input are required
during parsing.

As already mentioned on page 120, a deterministic context-free language for
which every deterministic pushdown automaton which recognizes it, is forced to
make ε-moves on the input is:

Edet ,ε = {0i 1k a 2i | i, k≥1} ∪ {0i 1k b 2k | i, k≥1}.
A grammar in Greibach normal form which generates the language Edet ,ε, is the one
with axiom S and the following productions:

S → 0 L T | 0 R L→ 0 L T | 1 A R→ 0 R | 1 B T

T → 2 A→ 1 A | a B → 1 B T | b

(Note that the two productions for S have the right hand side which begins by the
same symbol 0.) The production S → 0 L T and those for the nonterminals L, A,
and T generate the language {0i 1k a 2i | i, k≥1}, while the production S → 0 R and
those for the nonterminals R, B, and T generate the language {0i 1k b 2k | i, k≥1}.

A deterministic pda M that accepts this language by final state works as follows:

(i) first, M pushes on the stack the 0’s and 1’s of the input string, and then

(ii.1) if a is the next input symbol, M pops off the stack all the 1’s (by making
ε-moves) and then checks whether or not the remaining string of the input has as
many 2’s as the 0’s on the stack, otherwise,

(ii.2) if b is the next input symbols, M checks whether or not the remaining string
of the input has as many 2’s as the 1’s on the stack.

By using the conventions of Figure 3.1.3 on page 108, the pda M can be repre-
sented as in Figure 3.4.1 on page 123. Recall that M accepts by final state a given
input string w if M enters a final state and w has been completely read. The pda M
of Figure 3.4.1 makes ε-moves on the input only when the input string has not been
completely read.

Given an input word w of the form 0i 1k a 2i, for some i, k≥ 1, the stack of the
pda M , when M enters for the first time the state qa2, has i−1 0’s. Thus, the last
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symbol 2 of w is read exactly when the top of the stack is Z0 (see the arc from qa2

to q02). In the state qa we pop off the stack all the 1’s which are on the stack.
Given an input word w of the form 0i 1k b 2k, for some i, k ≥ 1, the stack of

the pda M , when M enters for the first time the state qb, has k−1 1’s (besides
the 0’s). Thus, the last symbol 2 of w is read exactly when the top of the stack is
the topmost 0 (see the arc from qb to q12).

q0 q1 qa

qb

qa2 q02

q12

0, Z0 0 Z0

0, 0 00

1, 0 10

1, 1 11 ε, 1 ε

a, 1 ε

b, 1
ε

ε, 0 ε

2, 0 ε

2, Z0 x

2, 1 ε

2, 0 y

Figure 3.4.1. The transition function of the deterministic pda M
that accepts by final state the language Edet ,ε ={0i 1k a 2i | i, k≥1} ∪
{0i 1k b 2k | i, k≥1}. When pushing on the stack the string ‘n m’, the
new top of the stack is n. x and y stands for any stack symbol, but y
cannot be Z0.

3.5. Simplifications of Context-Free Grammars

In this section we will consider some algorithms for modifying and simplifying
context-free grammars while preserving equivalence, that is, keeping unchanged the
language they generate. The proof of correctness of these algorithms is left to the
reader.

3.5.1. Elimination of Nonterminal Symbols That Do Not Generate
Words.

Let us consider a context-free grammar G = 〈VT , VN , P, S〉. We construct an equiv-
alent context-free grammar G′ = 〈VT , V ′

N , P ′, S〉 such that:
(i) V ′

N only includes the nonterminal symbols which generate words in V ∗
T , that is,

for all A ∈ V ′
N there exists a word w ∈ V ∗

T such that A →∗
G ′ w, and

(ii) P ′ includes only the productions whose symbols are elements of VT ∪ V ′
N .

The set V ′
N can be constructed by using the following procedure called the From-

Below Procedure.

Algorithm 3.5.1. From-Below Procedure.
Elimination of symbols which do not generate words.

V ′
N := ∅;

do add the nonterminal symbol A to V ′
N

if there exists a production A→ α with α ∈ (VT ∪ V ′
N)∗

until no new nonterminal symbol can be added to V ′
N
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Then the set P ′ of productions is derived by considering every production of P
which includes symbols in VT ∪ V ′

N only. In particular, if A ∈ V ′
N and A → ε is a

production of P , then A→ ε should be included in P ′.

Example 3.5.2. Given the grammar G with productions:

S → XY | a
X → a

by keeping the nonterminals which generate words, we get a new grammar whose
productions are:

S → a
X → a �

As a consequence of the From-Below Procedure we have the following decision pro-
cedure for the emptiness of the context-free language generated by a context-free
grammar G:

L(G) = ∅ iff S 6∈ V ′
N .

In general, the language which can be generated by the nonterminal A (see Defini-
tion 1.2.4 on page 11) is empty iff A 6∈ V ′

N .

3.5.2. Elimination of Symbols Unreachable from the Start Symbol.

Let us consider a context-free grammar G = 〈VT , VN , P, S〉. We construct an equiv-
alent context-free grammar G′ = 〈V ′

T , V ′
N , P ′, S〉 such that the symbols in V ′

T ∪ V ′
N

can be reached from the start symbol S in the sense that for all x ∈ V ′
T ∪ V ′

N there
exist α, β ∈ (V ′

T ∪ V ′
N)∗ such that S →∗

G′ αxβ.

The sets V ′
T and V ′

N can be constructed by using the following procedure called
the From-Above Procedure.

Algorithm 3.5.3. From-Above Procedure.
Elimination of symbols unreachable from the start symbol.

V ′
T := ∅;

V ′
N := {S};

do add the nonterminal symbol B to V ′
N

if there exists a production A → α B β with A ∈ V ′
N , B ∈ VN ,

and α, β ∈ (VT ∪ VN)∗;

add the terminal symbol b to V ′
T

if there exists a production A → α b β with A ∈ V ′
N , b ∈ VT ,

and α, β ∈ (VT ∪ VN)∗;

until no new nonterminal symbol can be added to V ′
N

Then the set P ′ of productions is derived by considering every production of P
which includes symbols in V ′

T ∪ V ′
N only. In particular, if A ∈ V ′

N and A → ε is a
production of P , then A→ ε should be included in P ′.
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Example 3.5.4. Let us consider the same grammar G of Example 3.5.2, that is:

S → XY | a
X → a

If we first keep the nonterminals which generate words, we get (see Example 3.5.2
on page 124) the two productions S → a and X → a and then, if we keep only
the symbols reachable from S, we get the production:

S → a

Note that if given the initial grammar G, we first keep only the symbols reachable
from S (which are the nonterminals S, X, and Y , and the terminal a) we get the
same grammar G and then by keeping the nonterminals which generate words we
get the two productions S → a and X → a, where the symbol X is useless (see
Definition 3.5.5 on page 125). �

Example 3.5.4 above shows that, in order to simplify context-free grammars it
is important to: first, (i) eliminate the nonterminal symbols which do not generate
words by applying the From-Below Procedure, and then (ii) eliminate the symbols
which are unreachable from the start symbol by applying the From-Above Proce-
dure.

Now we state an important property of the From-Below and From-Above pro-
cedures we have presented above.

Definition 3.5.5. [Useful Symbols and Useless Symbols] Given a grammar
G = 〈VT , VN , P, S〉 a symbol X ∈ VT ∪ VN is useful iff S →∗

G αXβ →∗
G w for

some α, β ∈ (VN ∪ VT )∗ and w ∈ V ∗
T . A symbol is useless iff it is not useful.

Theorem 3.5.6. [Elimination of Useless Symbols] Given a context-free
grammar G = 〈VT , VN , P, S〉 by applying first the From-Below Procedure and then
the From-Above Procedure we get an equivalent grammar without useless symbols.

Further simplifications of the context-free grammars are possible. Now we will indi-
cate three more simplifications: (i) elimination of epsilon productions, (ii) elimina-
tion of unit productions, and (iii) elimination of left recursion.

3.5.3. Elimination of Epsilon Productions.

In this section we prove Theorem 1.5.4 (iii) which we stated on page 20. We recall
it here for the reader’s convenience:

(iii) For every extended context-free grammar G such that ε 6∈ L(G), there exists
an equivalent context-free grammar G′ without ε-productions. For every extended
context-free grammar G such that ε ∈ L(G), there exists an equivalent, S-extended
context-free grammar G′.

The proof of that theorem is provided by the correctness of the following Algo-
rithm 3.5.8. Recall that:
(i) an extended context-free grammar is a context-free grammar where we also allow
one or more productions of the form: A→ ε for some A ∈ VN , and
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(ii) an S-extended context-free grammar is a context-free grammar where we also
allow a production of the form: S → ε.

Let us first introduce the following definition.

Definition 3.5.7. [Nullable Nonterminal] Given a grammar G, a nontermi-
nal symbol A is said to be nullable if A→∗

G ε.

Given an extended context-free grammar G = 〈VT , VN , P, S〉 we get the equiva-
lent S-extended context-free grammar by applying the following procedure. In the
derived S-extended grammar we have the production S → ε iff ε ∈ L(G).

Algorithm 3.5.8. Procedure: Elimination of ε-productions (different from the
production S → ε).

Step (1). Construct the set of nullable symbols by applying the following two rules
until no new symbols can be declared as nullable:

(1.1) if A→ ε is a production in P then A is nullable,
(1.2) if B → α is a production in P and all symbols in α are nullable

then B is nullable.

Step (2). If S is nullable then add the production S → ε.

Step (3). Replace each production A → x1 . . . xn, for any n> 0, by all productions
of the form: A→ y1 . . . yn, where:

(3.1) (yi = xi or yi = ε) for every xi in {x1, . . . , xn} which is nullable, and

(3.2) yi = xi for every xi in {x1, . . . , xn} which is not nullable.

Step (4). Delete all ε-productions, but keep the production S → ε, if it was intro-
duced at Step (2).

Note that after the elimination of ε-productions, some useless symbols may be gen-
erated as shown by the following example.

Example 3.5.9. Let us consider the grammar with the following productions:

S → A
A→ ε

In this grammar no symbol is useless. After the elimination of the ε-productions we
get the grammar with productions:

S → A
S → ε

where the symbol A is useless and it can be eliminated by applying the From-Below
Procedure. �

3.5.4. Elimination of Unit Productions.

We first introduce the notion of a unit production.

Definition 3.5.10. [Unit Production and Trivial Unit Production] Given
a context-free grammar G = 〈VT , VN , P, S〉, a production of the form A → B for
some A, B ∈ VN , not necessarily distinct, is said to be a unit production. A unit
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production is said to be a trivial unit production if it is of the form A → A, for
some A ∈ VN .

Let us consider a context-free grammar G = 〈VT , VN , P, S〉 without ε-productions.
We want to construct an equivalent context-free grammar G′ = 〈VT , VN , P ′, S〉
without unit productions.

The set P ′ consists of all non-unit productions of P together with all productions
of the form A → α, if A →+ B via unit productions and B → α with |α| > 1 or
α ∈ VT .

One can show that the construction of the set P ′ can be done by applying the
following procedure which starting from the set P , generates a sequence of sets of
productions, the last of which is P ′.

Algorithm 3.5.11. Procedure: Elimination of unit productions.

Let G = 〈VT , VN , P, S〉 be the given a context-free grammar without ε-productions.
We will derive an equivalent context-free grammar G′ = 〈VT , VN , P ′, S〉 without
ε-productions and without unit productions.

Step (1). We modify the set P of productions by discarding all trivial unit produc-
tions. Then we consider a first-in-first-out queue U of unit productions, initialized
by the non-trivial unit productions of P in any order. Then we modify the set P
of productions and we modify the queue U by performing as long as possible the
following Step (2).

Step (2). We extract from the queue U a unit production. It will be of the form
A→ B, with A, B ∈ VN and A different from B.

(2.1) We unfold B in A → B, that is, we replace in P the production A → B
by the productions A → β1 | . . . | βn, where B → β1 | . . . | βn are all the
productions for B.

(2.2) Then we discard from P all trivial unit productions.
(2.3) We insert in the queue U , one after the other, in any order, all the non-

trivial unit productions, if any, which have been generated by the unfolding
Step (2.1).

Note that after the elimination of the unit productions, some useless symbols may
be generated as the following example shows.

Example 3.5.12. Let us consider the grammar with the productions:

S → AS | A
A→ a | B
B → b | S | A

In this grammar there are no useless symbols. Let us assume that initially the
queue U is [A→ B, S → A, B → S, B → A]. The first production we extract from
the queue (assuming that an element is inserted in the queue ‘from the right’ and is
extracted ‘from the left’) is: A → B. Thus, we perform Step (2) by first unfolding
B in A→ B. At the end of Step (2) we get:
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S → AS | A
A→ a | b | S
B → b | S | A

Note that we have discarded the production A→ A. Since the new unit production
A→ S has been generated, we get the new queue [S → A, B → S, B → A, A→ S].
Then we extract the production S → A. After a new execution of Step (2) we get:

S → AS | a | b
A→ a | b | S
B → b | S | A

and the new queue [B → S, B → A, A → S]. We extract B → S from the queue
and after unfolding S in B → S, we get:

S → AS | a | b
A→ a | b | S
B → b | AS | a | A

and the new queue [B → A, A→ S]. We extract B → A from the queue and after
unfolding A in B → A, we get:

S → AS | a | b
A→ a | b | S
B → b | AS | a | S

and the new queue [A → S, B → S], because the new nontrivial unit production
B → S has been generated. We extract A→ S from the queue and after unfolding
S in A→ S, we get:

S → AS | a | b
A→ a | b | AS
B → b | AS | a | S

and the new queue [B → S]. We extract B → S from the queue and we get (after
rearrangement of the productions):

S → AS | a | b
A→ AS | a | b
B → AS | a | b

and the new queue is now empty and the procedure terminates. In this final grammar
without unit productions the symbol B is useless and we can eliminate it, together
with the three productions for B, by applying the From-Above Procedure. �

Remark 3.5.13. The use of a stack, instead of a queue, in Algorithm 3.5.11 on
page 127 for the elimination of unit productions, is not correct. This can be shown
by considering the grammar with the following productions and axiom S:

S → a | A
A→ B | b
B → A | a

and considering the initial stack [S → A, A→ B, B → A] with top item S → A. �
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Remark 3.5.14. When eliminating the unit productions from a given extended
context-free grammar G, we should start from a grammar without ε-productions,
that is, we have first to eliminate from the grammar G the ε-productions and then
in the derived grammar, call it G′, we have to eliminate the unit productions by
considering aside the production S → ε, which is present in the grammar G′ iff
ε ∈ L(G). If we do not do so and we do not consider the production S → ε aside,
we may end up in an endless loop. This is shown by the following example.

Example 3.5.15. Let us consider the grammar with the following set P of pro-
ductions and axiom S:

P : S → AS | a | ε
A→ SA | a | ε

We first eliminate the ε-productions and we get the following set P1 of productions:

P1: S → AS | A | S | a | ε
A→ SA | A | S | a

Then we eliminate the unit productions, but we do not keep aside the production
S → ε. Thus, we do not start from the productions:

S → AS | A | S | a
A→ SA | A | S | a

but, indeed, we apply the procedure for eliminating unit productions starting from
the set P1 of productions. We get the following productions:

S → AS | SA | a | ε
A→ SA | AS | a | ε

This set of productions includes the initial set P of productions: we are in an endless
loop. �

3.5.5. Elimination of Left Recursion.

Let us consider a context-free grammar G = 〈VT , VN , P, S〉 without ε-productions
and without unit productions. We want to construct an equivalent context-free
grammar G′ = 〈VT , V ′

N , P ′, S〉 such that in P ′ there are no left recursive productions
(see Definition 1.6.5 on page 27).

The construction of the set P ′ can be done by applying the following procedure.

Algorithm 3.5.16. Procedure: Elimination of left recursion.

Let G = 〈VT , VN , P, S〉 be the given context-free grammar without ε-productions
and without unit productions. We derive an equivalent context-free grammar G′ =
〈VT , VN , P ′, S〉 without left recursive productions.

For every nonterminal A for which there is a left recursive production, do the
following two steps.
Step (1). Consider all the productions with A in the left hand side. Let they be:

A→ Aα1 | . . . | Aαn (left recursive productions for A)
A→ β1 | . . . | βm (non-left recursive productions for A)
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Step (2). Add a new nonterminal symbol B and replace all the productions whose
left hand side is A, by the following ones:

A→ β1 | . . . | βm (non-left recursive productions for A)
A→ β1B | . . . | βmB (productions for A involving B)
B → α1 | . . . | αn (non-right recursive productions for B)
B → α1B | . . . | αnB (right recursive productions for B)

Note that after the elimination of left recursion according to this procedure, some
unit productions may be generated as shown by the following example.

Example 3.5.17. Let us consider the grammar with the following set of produc-
tions and axiom S:

S → SA | a
A→ a

After the elimination of left recursion we get the following set of productions:

S → a | aZ
Z → A | AZ
A→ a

Then by eliminating the unit production Z → A, we get the set of productions:

S → a | aZ
Z → a | AZ
A→ a �

The correctness of the above Algorithm 3.5.16 follows from the Arden rule. We
present the basic idea of that correctness proof through the following example where
that algorithm is applied in the case n=m=1, α1 =b, and β1 =a.

Example 3.5.18. Let us consider the following two productions: A → Ab | a.
By the Arden rule the language produced by A is given by the regular expression
ab∗. Now ab∗ can be generated from A by using two productions corresponding to
the two summands of the regular expression: a + ab+ (which is equal to ab∗). We
need introduce a new nonterminal symbol, say B, which generates the words in b+.
Thus, we have:

A→ a | aB (A generates the words in a + ab+)
B → b | bB (B generates the words in b+) �

In the literature we have the following strong notion of a left recursive context-free
grammar which should not be confused with the one of Definition 1.6.5 on page 27.

Definition 3.5.19. [Left Recursive Context-Free Grammar. Strong Ver-
sion] A context-free grammar G = 〈VT , VN , P, S〉 is said to be left recursive if there
exists a nonterminal symbol A such that S →∗

G α A β and A →+
G A γ, for some

α, β, γ ∈ (VT ∪ VN)∗.



3.6. CONSTRUCTION OF THE CHOMSKY NORMAL FORM 131

3.6. Construction of the Chomsky Normal Form

In this section we show that every extended context-free grammar G has an equiva-
lent context-free grammar G′ in Chomsky normal form which we now define in the
case where the grammar G has epsilon productions.

Definition 3.6.1. [Chomsky Normal Form. Version with Epsilon Pro-
ductions] An extended context-free grammar G is said to be in Chomsky normal
form if its productions are of the form:

A→ BC for A, B, C ∈ VN or
A→ a for A ∈ VN and a ∈ VT , and

if ε ∈ L(G) then (i) the set of productions of G includes also the production S → ε,
and (ii) S does not occur on the right hand side of any production [1].

If ε 6∈ L(G) as we assume in the proofs of Theorem 3.11.1 on page 150 and Theo-
rem 3.14.2 on page 159, then S may occur on the right hand side of the productions.

Theorem 3.6.2. [Chomsky Theorem. Version with Epsilon Productions]
Every extended context-free grammar G has an equivalent S-extended context-free
grammar G′ in Chomsky normal form.

Proof. It is based on: (i) the procedure for eliminating the ε-productions (see
Algorithm 3.5.8 on page 126), followed by (ii) the procedure for eliminating the
unit productions (see Algorithm 3.5.11 on page 127), and by (iii) the procedure for
putting a grammar in Kuroda normal form (see the proof of Theorem 1.3.11 on
page 17). �

The proof of this Theorem 3.6.2 justifies the algorithm for constructing the
Chomsky normal form of an extended context-free grammar which we now present.
This algorithm is correct even if the axiom S of the given grammar G occurs in
the right hand side of some production of G. Recall, however, that without loss of
generality, by Theorem 1.3.6 on page 16 we may assume that the axiom S does not
occur in the right hand side of any production of G.

Algorithm 3.6.3.
Procedure: from an extended context-free grammar G = 〈VT , VN , P, S〉 to an equiv-
alent context-free grammar G′ = 〈VT , V ′

N , P ′, S〉 in Chomsky normal form.

Step (1). Simplify the grammar. Transform the given grammar G by:
(i) eliminating ε-productions, with the possible exception of S → ε iff ε ∈ L(G),
and
(ii) eliminating unit productions.
(The elimination of useless symbols is not necessary). Let the derived grammar Gs

be 〈VT , V s
N , P s, S〉. We have that S→ε ∈ P s iff ε ∈ L(G).

Let us consider: (i) a set W of nonterminal symbols initialized to V s
N , and (ii) a

set R of productions initialized to P s − {S → ε}.
Step (2). Reduce the order of the productions. In the set R of productions replace as
long as possible every production of the form: A → x1x2α, with A ∈ VN , x1, x2 ∈
VT ∪ VN , and α ∈ (VT ∪ VN )+, by the two productions:
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A→ x1B
B → x2α

where B is a new nonterminal symbol which is added to W .
Note that any such replacement reduces the order of a production (see Defini-

tion 1.3.10 on page 17) by at least one unit.

Step (3). Promote the terminal symbols. In every production of the form: A→ BC
with A ∈ VN and B, C ∈ (VT ∪VN ), (i) replace every terminal symbol f occurring in
BC by a new nonterminal symbol F , (ii) add F to W , and (iii) add the production
F → f to R.

The set V ′
N of nonterminal symbols and the set P ′ of productions we want to

construct, are defined in terms of the final values of the sets W and R as follows:

V ′
N = W , and

P ′ = if ε ∈ L(G) then R ∪ {S → ε} else R.

Example 3.6.4. Let us consider the grammar with the following productions
and axiom E:

E → E + T | T
T → T × F | F
F → (E) | a

Note that the axiom E does occur on the right hand side of a production. There are
no ε-productions, but there are unit productions. After the elimination of the unit
productions (it is not necessary to perform the elimination of the left recursion), we
get:

E → E + T | T × F | (E) | a
T → T × F | (E) | a
F → (E) | a

Then we apply Step (2) of our Algorithm 3.6.3 for deriving the equivalent grammar
in Chomsky normal form. For instance, we replace E → E + T by:

E → EA A→ PT P → +

where we have introduced the new nonterminal symbols A and P . By continuing this
replacement process we get the following equivalent grammar in Chomsky normal
form:

E → EA | TB | LC | a
A→ PT
P → +
T → TB | LC | a
B →MF
M → ×
F → LC | a
C → ER
L→ (
R→ ) �
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3.7. Construction of the Greibach Normal Form

In this section we prove Theorem 1.4.4 on page 19. We show that every extended
context-free grammar G = 〈VT , VN , P, S〉 has an equivalent context-free grammar
G′ in Greibach normal form which we now define in the case where the grammar G
has epsilon productions.

Definition 3.7.1. [Greibach Normal Form. Version with Epsilon Pro-
ductions] An extended context-free grammar G = 〈VT , VN , P, S〉 is said to be in
Greibach normal form if its productions are of the form:

A→ a α for A ∈ VN , a ∈ VT , α ∈ V ∗
N , and

if ε ∈ L(G) then the set of productions of G includes also the production S → ε.

We do not insist, as some other authors do (see, for instance, [1, pages 270, 272]),
that if S → ε is a production of the grammar in Greibach normal form, then the
axiom S does not occur on the right hand side of any production. Indeed, if S
occurs on the right hand side of some production then we can always construct an
equivalent grammar in Greibach normal form where S does not occur on the right
hand side of any production.

Theorem 3.7.2. [Greibach Theorem. Version with Epsilon Produc-
tions] Every extended context-free grammar G = 〈VT , VN , P, S〉 has an equivalent
S-extended context-free grammar G′ = 〈VT , V ′

N , P ′, S〉 in Greibach normal form.

The proof of this theorem is based on the following procedure for constructing
the sets V ′

N and P ′. This procedure is correct even if the axiom S of the given
grammar G occurs in the right hand side of some production of G. Recall, however,
that without loss of generality, by Theorem 1.3.6 on page 16 we may assume that
the axiom S does not occur in the right hand side of any production of G.

Algorithm 3.7.3.
Procedure: from an extended context-free grammar G = 〈VT , VN , P, S〉 to an equiv-
alent context-free grammar G′ = 〈VT , V ′

N , P ′, S〉 in Greibach normal form. (Ver-
sion 1)

Step (1). Simplify the grammar. Transform the given grammar G by:
(i) eliminating ε-productions, with the possible exception of S → ε iff ε ∈ L(G),
and
(ii) eliminating unit productions.
(The elimination of useless symbols is not necessary). Let the derived grammar Gs

be 〈VT , V s
N , P s, S〉. We have that S→ε ∈ P s iff ε ∈ L(G).

Step (2). Draw the dependency graph. Let us consider a directed graph D, called the
dependency graph, whose set of nodes is V s

N and whose set of arcs is:

{Ai → Aj |Ai, Aj ∈ V s
N and Ai → Ajγ ∈ P s for some γ ∈ (VT ∪ V s

N)+}.
Step (3). Break the self-loops and the loops. Let us consider: (i) a set W of non-
terminal symbols initialized to V s

N , and (ii) a set R of productions initialized to
P s − {S → ε}.
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For each loop in D of the form A0 → A1 → . . . → An → A0, for n≥ 0, starting
from the self-loops, that is, the loops of the form A0 → A0 (in which case we have
that n=0 and Steps (3.1), (3.2), and (3.3) require no action) do the following steps,
where we assume that γ stands for any string in (VT ∪W )∗:

(3.1) unfold A1 with respect to R in all productions of R of the form A0 → A1γ,
thereby updating R, and

(3.2) unfold A2 with respect to R in all productions of R of the form A0 → A2γ,
thereby updating R, and

. . ., and

(3.3) unfold An with respect to R in all productions of R of the form A0 → Anγ,
thereby updating R, and

(3.4) eliminate left recursion in the productions of A0 (we do so by applying
Algorithm 3.5.16, thereby updating R, and when that algorithm is applied,
one has to choose a fresh, new nonterminal symbol which is added to the
set W ), and

(3.5) update the graph D as follows:
(i) if n=0 then erase the arc A0 → A0, and
(ii) if n>0 then erase the arc A0 → A1, and
(iii) if the new nonterminal symbol chosen at Step (3.4) is Z and in R there
is a production of the form Z → Aγ, for some A ∈ W , then add to the
graph D the node Z and the arc Z → A.

Step (4). Go upwards from the leaves. For every arc Ai → Aj in D such that Ai

and Aj belong to W and Aj is a leaf of D (that is, it has no outgoing arcs), do the
following steps:

(4.1) unfold Aj with respect to R in all productions of R of the form Ai → Ajγ,
for some γ ∈ (VT ∪W )∗, thereby updating R, and

(4.2) erase the arc Ai → Aj and erase also the node Aj if it has no incoming arcs.

Step (5). Promote the intermediate terminal symbols. In every production of the
form: Vi → aγ with a ∈ VT and γ ∈ (VT ∪W )+, (i) replace every terminal symbol f
occurring in γ by a new nonterminal symbol F , (ii) add F to W , and (iii) add the
production F → f to R.

The set V ′
N of nonterminal symbols and the set P ′ of productions we want to

construct, are defined in terms of the final values of the sets W and R as follows:

V ′
N = W , and

P ′ = if ε ∈ L(G) then R ∪ {S → ε} else R.

Now we make a few remarks on the above Algorithm 3.7.3.

Remark 3.7.4. (i) The updating of the dependency graph D at the end of
Step (3.5) never generates new loops in D. Thus, at the end of Step (3) the graph
D does not contain loops.



3.7. CONSTRUCTION OF THE GREIBACH NORMAL FORM 135

(ii) At Step (3) the loops with n 6= 0 can be considered in any order, while the
self-loops should be considered first.

(iii) Step (5) is similar to the step required for constructing the separated form of
a given grammar and, similarly to the Chomsky normal form, also in the Greibach
normal form each terminal symbol is generated by a nonterminal symbol. �

Example 3.7.5. Let us consider the following grammar with axiom S:

S → AS | a | ε
A→ SA | b

We start by eliminating the occurrence of the axiom S on the right hand side of
the productions. This transformation is not actually needed for the construction of
the Greibach normal form of the given grammar, but we do it anyway (see what we
have said after Definition 3.7.1 on page 133).

We introduce the new axiom S ′ and we get:

S ′ → S
S → AS | a | ε
A→ SA | b

Then, in the derived grammar we eliminate the ε-productions and we get:

S ′ → S | ε
S → AS | A | a
A→ SA | A | b

We consider the production S ′ → ε aside, and we construct the Greibach normal
form of the grammar:

S ′ → S
S → AS | A | a
A→ SA | A | b

We eliminate the trivial unit production A → A. Then we eliminate the unit
production S ′ → S, and by unfolding S in the production S ′ → S we get:

S ′ → AS | A | a
S → AS | A | a
A→ SA | b

By unfolding A in S ′ → A and in S → A, we get:

S ′ → AS | SA | a | b
S → AS | SA | a | b
A→ SA | b

— (α)

Now we perform Steps (2) and (3) of the Algorithm 3.7.3. We have the following
dependency graph D:
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S ′ S

A

We first break the self-loop of S due to the production S → SA. By applying
Algorithm 3.5.16 (Elimination of Left Recursion) we replace the productions for S,
that is:

S → AS | SA | a | b
by the following productions:

S → AS | a | b | ASZ | aZ | bZ
Z → A | AZ

— (β)
— (γ)

where Z is a new nonterminal. We have the new dependency graph:

S ′ S

A Z

We break the loop A→ S → A from A to A in the dependency graph by unfolding
S in A→ SA | b and we get:

A→ ASA | aA | bA | ASZA | aZA | bZA | b
Then, by eliminating the left recursion for the nonterminal symbol A, we get:

A→ aA | bA | aZA | bZA | b
| aAY | bAY | aZAY | bZAY | bY

Y → SA | SZA | SAY | SZAY — (δ)

where Y is a new nonterminal. We get the new dependency graph without self-loops
or loops:

S ′ S

A Z

Y

Now we apply Step (4) of Algorithm 3.7.3. First, (i) we have to unfold A in the
leftmost positions of the productions (α), (β), and (γ), and then (ii) we have to
unfold S in the productions S ′ → SA and (δ). We leave these unfolding steps to
the reader. After these steps one gets the desired grammar in Greibach normal form
which, for brevity reasons, we do not list here. Note that in our case Step (5) of
Algorithm 3.7.3 requires no actions. �
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Example 3.7.6. Let us consider the following grammar with axiom S:

S → SA | A | a
A→ aA | Aab | ε

It is not necessary to take away the axiom S from the right hand side of the pro-
ductions. We eliminate the ε-production A → ε and, after the elimination of the
trivial unit production S → S, we get:

S → SA | A | a | ε
A→ aA | a | Aab | ab

We consider the production S → ε aside and we eliminate the unit production
S → A. We get the following productions:

S → SA | aA | a | Aab | ab
A→ aA | a | Aab | ab

We have the following dependency graph:

S A

We first break the self-loop of A due to the production A→ Aab. By applying Algo-
rithm 3.5.16 (Elimination of Left Recursion) on page 129, we replace the productions
for A by the following productions:

A→ a | ab | aA | aZ | abZ | aAZ
Z → ab | abZ

where Z is a new nonterminal symbol. We then break the self-loop of S due to the
production S → SA. By applying again Algorithm 3.5.16 we replace the productions
for S by the following productions:

S → a | aA | Aab | ab | aY | aAY | AabY | abY
Y → A | AY

— (α)
— (β)

where Y is a new nonterminal symbol. Now we apply Step (4) of Algorithm 3.7.3.
We have to unfold A in the leftmost positions of the productions (α) and (β). We
leave these unfolding steps to the reader. We leave to the reader also Step (5). After
these steps one gets the desired Greibach normal form.

Note that the language L generated by the given grammar is a regular language.
Indeed, by the Arden rule, the language generated by the nonterminal A (see Def-
inition 1.2.4 on page 11) is a∗(ab)∗, and L, that is, the language generated by the
nonterminal S is ε + (a + a∗(ab)∗) (a∗(ab)∗)∗ which is equivalent to (a+b)∗a∗. The
minimal finite automaton which accepts L can be derived by using the techniques of
Sections 2.5 and 2.8 and it is depicted in Figure 3.7.1. The corresponding grammar
in Greibach normal form, obtained as the right linear grammar corresponding to
that finite automaton, is:

S → aA | a | ε
A→ aA | a | bS | b �
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S A

a

a

b

Figure 3.7.1. The minimal finite automaton corresponding to the
grammar of Example 3.7.6 on page 137 with axiom S and the following
productions S → SA | A | a, A → aA | Aab | ε. The language
generated by this grammar and accepted by this automaton is
(a+b)∗a∗.

Exercise 3.7.7. Let us consider the grammar (see Example 3.6.4 on page 132)
with the following productions and axiom E:

E → E + T | T
T → T × F | F
F → (E) | a

As indicated in Example 3.6.4 on page 132, after the elimination of the unit pro-
ductions T → F and E → T (in this order), we get:

E → E + T | T × F | (E) | a
T → T × F | (E) | a
F → (E) | a

We have the following dependency graph:

E T

We then break the self-loop of E due to E → E + T and the self-loop of T due to
T → T × F , and we get:

E → T×F | (E) | a | T×FZ | (E)Z | aZ
Z → +T | +TZ
T → (E) | a | (E)Y | aY
Y → ×F | ×FY
F → (E) | a

Then, (i) by ‘going up from the leaves’, that is, by unfolding T in the productions
E → T ×F and E → T ×FZ, and (ii) by promoting the two intermediate terminal
symbols ‘)’ and ‘×’, we get the following grammar in Greibach normal form:
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E → (ERMF | aMF | (ERY MF | aY MF | (ER | a
| (ERMFZ | aMFZ | (ERY MFZ | aY MFZ | (ERZ | aZ

Z → +T | + TZ
T → (ER | a | (ERY | aY
Y → ×F | ×FY
F → (ER | a
M → ×
R → ) �

Exercise 3.7.8. Let us consider again the grammar of Exercise 3.7.7 on page 137
with the following productions and axiom E:

E → E + T | T
T → T × F | F
F → (E) | a

In this exercise we present a new derivation of a grammar in Greibach normal form
equivalent to that grammar. We will apply an algorithm which is proposed in [9,
Section 4.6]. In our case it amounts to perform the following actions. We first
eliminate the left recursive productions for E and T and we get:

E → T | TZ
Z → +T | + TZ
T → F | FY
Y → ×F | × FY
F → (E) | a

Then, (i) we unfold F in the productions for T and then we unfold T in the pro-
ductions for E, and (ii) we promote the intermediate terminal symbol ‘)’. We get
the following productions:

E → (ER | a | (ERY | aY | (ERZ | aZ | (ERY Z | aY Z
Z → +T | + TZ
T → (ER | a | (ERY | aY
Y → ×F | × FY
F → (ER | a
R→ ) �

Exercise 3.7.9. Let us consider again the same grammar of Exercise 3.7.7 with
the following productions and axiom E:

E → E + T | T
T → T × F | F
F → (E) | a

We can get an equivalent grammar in Greibach normal form by first transforming
the left recursive productions into right recursive productions, that is, transforming
every production of the form: A → Aα into a production of the form: A → βA,
where A ∈ VN , α, β ∈ (VT ∪ VN)+ and A does not occur in α and β.
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Here is the resulting right recursive grammar, which is equivalent to the given
grammar:

E → T + E | T
T → F × T | F
F → (E) | a

The correctness proof of this transformation derives from the fact that, given the
productions E → E + T | T , the nonterminal symbol E generates the regular lan-
guage L(E) = T (+T )∗ which is equal to (T+)∗T (we leave it to the reader to do
the easy proof by induction on the length of the generated word), and thus, L(E)
can be generated also by the two productions:

E → T + E | T
None of these productions is left recursive. Analogous argument can be applied to
the two productions T → T × F | F and we get the new productions:

T → F × T | F
Then, (i) we unfold F in the productions for T , (ii) we unfold T in the productions
for E, and (iii) we promote the intermediate terminal symbols ‘)’, ‘×’, and ‘+’. We
get the following grammar in Greibach normal form:

E → aMT | a | (ERMT | (ER | aMTPE | aPE | (ERMTPE | (ERPE
T → aMT | a | (ERMT | (ER
F → (ER | a
P → +
M → ×
R→ )

Note that in this derivation of the Greibach normal form of the given grammar each
terminal symbol is generated by a nonterminal symbol. �

It can be shown that every extended context-free grammar has an equivalent
grammar in Short Greibach normal form and in Double Greibach normal form which
are defined as follows.

Definition 3.7.10. [Short Greibach Normal Form] A context-free gram-
mar G is said to be in Short Greibach normal form if its productions are of the
form:

A→ a for a ∈ VT

A→ aB for a ∈ VT and B ∈ VN

A→ aBC for a ∈ VT and B, C ∈ VN

The set of productions of G includes also the production S → ε iff ε ∈ L(G) (see
also Definition 3.7.1 on page 133).

Definition 3.7.11. [Double Greibach Normal Form] A context-free gram-
mar G is said to be in Double Greibach normal form if its productions are of the
form:
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A→ a for a ∈ VT

A→ ab for a, b ∈ VT

A→ aY b for a, b ∈ VT and Y ∈ VN

A→ aY Zb for a, b ∈ VT and Y, Z ∈ VN

The set of productions of G includes also the production S → ε iff ε ∈ L(G) (see
also Definition 3.7.1).

3.8. Theory of Language Equations

In this section we will present the so called Theory of Language Equations which
will allow us to present a new algorithm for deriving the Greibach normal form
of a given context-free grammar. By applying this algorithm, which is based on
a generalization of the Arden rule (see Section 2.6 starting on page 56), usually
the number of productions of the derived grammar is smaller than the number
of productions which are generated by applying Algorithm 3.7.3 (see page 133).
However, the number of nonterminal symbols may be larger.

The Theory of Language Equations is parameterized by two alphabets: (i) the
alphabet VT of the terminal symbols, and (ii) the alphabet VN of the nonterminal
symbols. As usual, we assume that: VT ∩ VN = ∅ and we denote by V the set
VT ∪ VN . The alphabets VT and VN are supposed to be fixed for each instance of
the Theory of Language Equations we will consider.
A language expression over V is an expression α of the form:

α ::= ∅ | ε | x | α1 + α2 | α1 �α2

where x ∈ V . Instead of α1 �α2, we also write α1α2. The operation + between
language expressions is associative and commutative, while the operation � is asso-
ciative, but not commutative (indeed, as we will see, it denotes language concate-
nation).

Every language expression over V denotes a language as we now specify.
(i) The language expression ∅ denotes the language {} consisting of no words.
(ii) The language expression ε denotes the language {ε}, where ε is the empty word.
(iii) For each x ∈ VT , the language expression x denotes the language {x}.
(iv) The operation +, called sum or addition, denotes union of languages.
(v) The operation � , called multiplication, denotes concatenation of languages (see
Section 1.1).

As usual, the denotation of the language expression x, with x ∈ VN , is determined
by an interpretation which associates a language, subset of V ∗

T , with each element
of VN .

For every language expression α, α1, and α2, we have that:

(i) α + α = α
(ii) α + ∅ = ∅+ α = α
(iii) α ∅ = ∅α = ∅
(iv) α ε = ε α = α
(v) α (α1 + α2) = (α α1) + (α α2)
(vi) (α1 + α2) α = (α1 α) + (α2 α)
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Each of the above equalities (i)–(vi) holds because it holds between the languages
denoted by the language expressions occurring to the left and to the right of the
equality signs ‘=’. Note that, by using the distributivity laws (v) and (vi), every
language expression α, with α 6= ∅, is equal to the sum of one or more monomial
language expressions, that is, language expressions without addition.

For instance, the language expression a(b + ε) is equal to ab + a, which is the
sum of the two monomial language expressions ab and a.

A language equation (or an equation, for short) eA over the pair 〈VN , V 〉 is a
construct of the form A = α, where A ∈ VN and α is a language expression over V
different from A itself.

A system E of language equations over the pair 〈VN , V 〉 is a set of language
equations over 〈VN , V 〉, one for each nonterminal of VN .

A solution of a system of language equations over the pair 〈VN , V 〉 is a function s
which for each A ∈ VN , defines a language s(A) ⊆ V ∗, called solution language, such
that if for each A ∈ VN we consider s(A), instead of A, in every equation of E, and
we consider union of languages and concatenation of languages, instead of + and � ,
respectively, then we get valid equalities between languages. A solution of a system
of language equations over the pair 〈VN , V 〉 can also be given by providing for each
A ∈ VN , a language expression which denotes the language s(A).

Note that given any system of language equations over the pair 〈VN , V 〉, we can
define a partial order, denoted ., between two solutions s1 and s2 of that system as
follows:

s1 . s2 iff for all A ∈ VN , s1(A) ⊆ s2(A).

The following definition establishes a correspondence between the sets of context-
free productions (which may also include ε-productions) and the sets of systems of
language equations.

Definition 3.8.1. [Systems of Language Equations and Context-Free
Productions] With each system E of language equations over 〈VN , V 〉, we can
associate a (possibly empty) set P of context-free productions as follows: we start
from P being the empty set and then, for each equation A = α in the given system
E of language equations,

(i) we do not modify P if α = ∅, and

(ii) we add to P the n productions A → α1 | . . . |αn, if α = α1 + . . . + αn and the
αi’s are all monomial language expressions.

Conversely, given any extended context-free grammar G = 〈VT , VN , P, S〉 we can
associate with G a system E of language equations over the pair 〈VN , VT ∪ VN〉
defined as follows: E is the smallest set of language equations containing for each
A ∈ VN , the equation A = α1 + . . . + αn, if A→ α1 | . . . |αn are all the productions
in P for the nonterminal A.

Definition 3.8.2. [Systems of Language Equations Represented as Equa-
tions Between Vectors of Language Expressions] Given the terminal alphabet
VT and the nonterminal alphabet VN = {A1, A2, . . . , Am}, a system E of language
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equations over 〈VN , V 〉, where V = VT ∪ VN , can be represented as an equation
between vectors as follows:

[A1 A2 . . . Am] = [A1 A2 . . . Am]




α11 α12 . . . α1m

α21 α22 . . . α2m

. . . . . . . . . . . .
αm1 αm2 . . . αmm





+ [B1 B2 . . . Bm]

where: (i) [A1 A2 . . . Am] is the vector of the m (≥ 1) nonterminal symbols in VN ,
and (ii) each of the αij ’s and Bi’s is a language expression over V . A solution of
that system E can be represented as a vector [α1, α2, . . . , αm] of language expressions
such that for i = 1, . . . , m, we have that αi denotes the solution language s(Ai).

In the above Definition 3.8.2 matrix addition, denoted by +, and matrix multiplica-
tion, denoted by � or juxtaposition, are defined, as usual, in terms of addition and
multiplication of the elements of the matrices themselves. We have, in fact, that
these elements are language expressions.

The following example illustrates the way in which we can derive the representa-
tion of a system of language equations as an equation between vectors as indicated
in Definition 3.8.2 above.

Example 3.8.3. A System of Language Equations Represented as an Equation
between Vectors of Language Expressions. Let us consider the terminal alphabet
VT = {a, b, c}, the nonterminal alphabet VN = {A, B}, and the context-free produc-
tions:

A→ AaB | BB | b
B → aA | BAa | Bd | c

These productions can be represented as the following two language equations over
〈VN , VT ∪ VN〉:

A = AaB + BB + b
B = aA + BAa + Bd + c

These two equations can be represented as the following equation between vectors
of language expressions:

[A B] = [A B]
[

aB ∅
B Aa+d

]
+ [ b aA+c ]

�

Given the nonterminal alphabet VN = {A1, A2, . . . , Am}, for simplicity reasons, in

what follows we will write
−→
A , instead of [A1 A2 . . . Am] when m is understood from

the context. Given an m×m matrix R whose elements are language expressions,
- by R0 we denote the matrix whose elements are all ∅, with the exception of the
elements of the main diagonal which are all the language expression ε,
- for i ≥ 0, by Ri+1 we denote Ri �R, where � denotes multiplication of matrices,
and
- by R∗ we denote

∑
i≥0 Ri.
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We have the following theorems which are the generalizations to n dimensions of
the Arden rule presented in Section 2.6. In stating these theorems we assume that
m (≥ 1) denotes the cardinality of the non-empty nonterminal alphabet VN .

Theorem 3.8.4. A system of m (≥ 1) language equations over 〈VN , V 〉, rep-

resented as the equation
−→
A =

−→
A R +

−→
B , where

−→
A is the m-dimensional vec-

tor [A1 A2 . . . Am] and VN = {A1, A2, . . . , Am}, has the minimal solution
−→
B R∗.

This minimal solution can also be expressed as the function s such that for each
i = 1, . . . , m, s(Ai) =

⋃
j=1,...,m s(Bj) � s(R∗

ij), where � denotes concatenation of
languages.

Theorem 3.8.5. Let us consider the system E of m (≥ 1) language equations

over 〈VN , V 〉, represented as
−→
A =

−→
A R+

−→
B . Let us also consider: (i) the system F1

of m (≥ 1) language equations over 〈VN , V 〉 represented as
−→
A =

−→
B Q +

−→
B , where

Q is an m×m matrix of new nonterminal symbols of the form:




Q11 Q12 . . . Q1m

Q21 Q22 . . . Q2m

. . . . . . . . . . . .
Qm1 Qm2 . . . Qmm





and (ii) the system F2 of m2 language equations over the pair 〈{Q11, . . . , Qmm},
{Q11, . . . , Qmm} ∪ V 〉 represented as the equation Q = R Q + R whose left hand
side and right hand side are m×m matrices. The system of language equations
consisting of the language equations in F1 and in F2, has a minimal solution that,

when restricted to VN , is equal to
−→
B R∗ (thus, this minimal solution is equal to the

minimal solution of the system E).

Proof. It is obtained by generalizing the proof of the Arden rule from one
dimension to n dimensions. Note that the solution of a system of language equations
is unique if we assume that they are associated with context-free productions none
of which is a unit production (see Definition 3.5.10 on page 126) or an ε-production.
This condition generalizes to n dimensions the condition ‘ε 6∈ S’ in the case of
the equation X = S X+T , which we stated for the Arden rule (see Section 2.6 on
page 56). �

On the basis of the above Theorem 3.8.4 on page 144 and Theorem 3.8.5 on
page 144, we get the following new algorithm for constructing the Greibach normal
form of a given context-free grammar G.

Algorithm 3.8.6.
Procedure: from an extended context-free grammar G = 〈VT , VN , P, S〉 to an equiv-
alent context-free grammar in Greibach normal form. (Version 2)

Step (1). Simplify the grammar. Transform the given grammar G by:
(i) eliminating ε-productions, with the exception of S → ε iff ε ∈ L(G), and
(ii) eliminating unit productions.
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(The elimination of useless symbols or left recursion is not necessary). Let the
derived grammar Gs be the 4-tuple 〈VT , V s

N , P s, S〉. We have that S→ ε ∈ P s iff
ε ∈ L(G).

Step (2). Construct the associated system of language equations represented as an
equation between vectors. We write the system of language equations over 〈V s

N ,
VT ∪ V s

N〉 associated with the grammar Gs without the production S → ε if it
occurs in P s. Let that system of language equations be:
−→
A =

−→
A R +

−→
B .

Step (3). Construct two systems of language equations represented as equations be-
tween vectors. We construct the two systems of language equations:
−→
A =

−→
B Q +

−→
B

Q = R Q + R

Step (4). Construct the productions associated with the two systems of language
equations. We derive a context-free grammar H by constructing the productions as-
sociated with the two systems of language equations of Step (3). In this grammar H :
(4.1) for each A ∈ VN , the right hand side of the productions for A begins with a
terminal symbol in VT , and (4.2) for each Qij ∈ {Q11, . . . , Qmm} the right hand
side of the productions for Qij begins with a symbol in VT ∪ VN . By unfolding the
productions of Point (4.2) with respect to the production of Point (4.1), we make
the right hand side of all productions to begin with a terminal symbol.

Step (5). Promote the intermediate terminal symbols. In every production of the
grammar H : (5.1) replace every terminal symbol f which does not occur at the
leftmost position of the right hand side of a production, by a new nonterminal
symbol F , and (5.2) add the production F → f to H . The resulting grammar,
together with the production S → ε if it occurs in P s, is a grammar in Greibach
normal form equivalent to the given grammar G.

Note that by applying the above Algorithm 3.8.6, we may generate a grammar with
useless symbols, as indicated by the following example.

Example 3.8.7. Let us consider the grammar with axiom A and the following
productions:

A→ AaB | BB | b
B → aA | BAa | Bd | c

These productions can be represented (see Example 3.8.3 on page 143) as follows:[
A B

]
=

[
A B

] [
aB ∅
B Aa+d

]
+ [ b aA+c ]

From this equation we construct the following two vectors of equations:[
A B

]
= [ b aA+c ]

[
Q11 Q12

Q21 Q22

]
+ [ b aA+c ]

[
Q11 Q12

Q21 Q22

]
=

[
aB ∅
B Aa+d

] [
Q11 Q12

Q21 Q22

]
+

[
aB ∅
B Aa+d

]
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From these equations we get the productions:

A → bQ11 | a A Q21 | c Q21 | b — (α)
B → bQ12 | a A Q22 | c Q22 | a A | c — (β)
Q11 → a B Q11 | a B
Q12 → a B Q12 — (γ)
Q21 → B Q11 | A a Q21 | d Q21 | B
Q22 → B Q12 | A a Q22 | d Q22 | A a | d

We leave it to the reader to complete the construction of the Greibach normal form
by: (i) unfolding the nonterminals A and B occurring on the leftmost positions of
the right hand sides of the above productions by using the productions (α) and (β),
and (ii) replacing the terminal symbol a occurring on a non-leftmost positions on
the right hand side of some productions, by the new nonterminal Aa and add the
new production Aa → a.

As the reader may verify, the symbol Q12 is useless and thus, the productions (γ),
B → bQ12, and Q22 → B Q12 can be discarded. �

Note that in order to compute the language generated by a context-free grammar
using the Arden rule, it is not required that the solution be unique. It is enough that
the solution be minimal. For instance, if we consider the grammar G with axiom S
and productions:

S → b | A S | A A→ a | ε
we get the language equations:

S = b + A S + A A = a + ε

The Arden rule gives us the solution: S = A∗(b + A) with A = a + ε. Thus,
S = (a + ε)∗(b + a + ε), that is, S = a∗b + a∗. This solution for S denotes the
language generated by the given grammar G and it is not a unique solution because
ε ∈ A. A non-minimal solution for S is the language a∗b + a∗ + a∗bb, which is not
generated by the grammar G.

3.9. Summary on the Transformations of Context-Free Grammars

In this section we present a sequence of steps for simplifying and transforming ex-
tended context-free grammars. During these steps we use various procedures which
have been introduced in Sections 3.5, 3.6, and 3.7.

Let us consider an extended context-free grammar G = 〈VT , VN , P, S〉 which we
want to simplify and transform. We perform the following four steps.

Step (1). We first apply the From-Below Procedure (see Algorithm 3.5.1 on page 123)
for eliminating the symbols which do not produce words in V ∗

T , and then the From-
Above Procedure (see Algorithm 3.5.3 on page 124) for eliminating the symbols which
do not occur in any sentential form γ such that S →∗ γ.

Step (2). We eliminate the ε-productions and derive a grammar which may include
the production S → ε, and no other ε-productions (see Algorithm 3.5.8 on page 126).
After this step useless symbols may be generated and we may want to apply again
the From-Below Procedure.
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Step (3). We leave aside the production S → ε, if it has been derived during the
previous Step (2), and we eliminate the unit productions from the remaining pro-
ductions (see Algorithm 3.5.11 on page 127). After the elimination of the unit
productions, useless symbols may be generated and we may want to apply again the
From-Above Procedure.

Step (4). We produce the Chomsky normal form (see Algorithm 3.6.3 on page 131)
or the Greibach normal form (see Algorithm 3.7.3 on page 133). In order to do so we
start from a grammar without unit productions and without ε-productions, leaving
aside the production S → ε if it occurs in the set of productions of the grammar
derived after Step (2). During this step we may need to apply the procedure for
eliminating left recursive productions (see Algorithm 3.5.16 on page 129).

Recall that during the elimination of the left recursive productions, unit pro-
ductions may be generated and we may want to eliminate them by using Algo-
rithm 3.5.11 on page 127. Note, however, that in this Step (4), after the elimination
of unit productions, no subsequent generation of useless symbols is possible.

In any of the above four steps we do not need the axiom S of the grammar to
occur only on the left hand side of productions, although it is always possible to get
an equivalent grammar which satisfies that condition.

3.10. Self-Embedding Property of Context-Free Grammars

Definition 3.10.1. [Self-Embedding Context-Free Grammars] We say
that an S-extended context-free grammar G = 〈VT , VN , P, S〉 is self-embedding
iff there exists a nonterminal symbol A such that:

(i) A→∗ α A β with α 6= ε and β 6= ε, that is, α, β ∈ (VT ∪ VN)+, and

(ii) A is a useful symbol, that is, S →∗
G α A β →∗

G w for α, β ∈ (VT ∪ VN)∗ and
w ∈ V ∗

T . In that case also the nonterminal symbol A is said to be self -embedding.

Here are the productions of a self-embedding context-free grammar which gen-
erates the regular language {an |n ≥ 1}: S → a | a a | a S a

Theorem 3.10.2. [Context-Free Grammars That Are Not Self-Embed-
ding] If G is an S-extended context-free grammar which is not self-embedding then
L(G) is a regular language.

Proof. Without loss of generality, we may assume that the grammar G has no
unit productions, no ε-productions, no useless symbols, and the axiom S does not
occur to the right hand side of any production. If the production S → ε exists in
the grammar G, it may only contribute to the word ε, and thus, its presence is not
significant for this proof. The proof consists of the following two points.

Point (1). We first prove that given any context-free grammar which is not self-
embedding, its Greibach normal form is not self-embedding either. This comes from
the following two facts:
(1.1) the elimination of left recursion does not introduce self-embedding, and
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(1.2) the application of the rewritings of Step (1) through Step (5) when producing
the Greibach normal form (see Algorithm 3.7.3 on page 133), does not introduce
self-embedding.
Proof of (1.1). Let us consider, without loss of generality, the transformation from
the old productions:

A→ Aβ | γ
to the new productions:

A→ γ | γT T → β | βT

We will show that:
(1.1.1) if A is self-embedding in the new grammar then A is self-embedding in the
old grammar, and
(1.1.2) if T is self-embedding in the new grammar then T is self-embedding in the
old grammar.
Proof of (1.1.1) If A is self-embedding in the new grammar we have that: either
γ →∗ uAv, with u 6= ε and v 6= ε, in which case A is self-embedding in the old
grammar, or T →∗ uAv, with u 6= ε and v 6= ε, in which case β →∗ uAv in the new
grammar and this implies that A is self-embedding in the old grammar.
Proof of (1.1.2) If T is self-embedding in the new grammar we have that: β →∗ uTv,
with u 6= ε and v 6= ε. But this is impossible because T is a fresh, new nonterminal
symbol.
Proof of (1.2). The rewritings of Step (1) through Step (5) when producing the
Greibach normal form do not introduce self-embedding because they correspond to
possible derivations in the grammar we have before the rewritings, and we know
that that grammar is not self-embedding. This completes the proof of Point (1).

Point (2). Now we prove that for every context-free grammar H in Greibach normal
form which is not self-embedding, there exists a constant k such that for all u if
S →∗

lm u then u has at most k nonterminal symbols.
Proof of (2). Let us consider a context-free grammar H . Let VN be the set of
nonterminal symbols of H and let VT be the set of terminal symbols of H . The
productions of H are of one of the following three forms:

(a) A→ a (b) A→ a B (c) A→ a σ

where A, B ∈ VN , a ∈ VT , σ ∈ V +
N , and |σ| ≥ 2.

Suppose also that in the productions of H , |σ| is at most m. Suppose also that
|VN | = h ≥ 1. We have that every sentential form obtained by a leftmost derivation
has at most h·m nonterminal symbols. This can be proved by absurdum.

Indeed, if a sentential form, say ϕ, has more than h·m nonterminal symbols
then the number of the leftmost derivation steps using productions of the form (c),
when producing ϕ from S, is at least ⌈(h ·m)/(m−1)⌉, because at most m− 1
nonterminal symbols are added to the sentential form in each leftmost derivation
step which uses a production of the form (c). Since h ≥ 1 and m ≥ 2, we have that
⌈(h ·m)/(m−1)⌉ ≥ h+1, and since h is the number of nonterminal symbols in the
grammar H , we also have that the leftmost derivation S →∗

H ϕ is such that there
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Figure 3.10.1. Parse tree of the word ϕ = abbcabCABCABAC con-
structed by leftmost derivations. The grammar is assumed to be in
Greibach normal form. A production of type (a) is of the form: A→ a,
a production of type (b) is of the form: A → a B, and a production
of type (c) is of the form: A → a σ, with |σ| ≥ 2. In this picture |σ|
is always 3.

exists a nonterminal symbol A ∈ VN such that S →∗
H uAy →∗

H vAz →∗
H ϕ where

u, v ∈ V ∗
T and y, z ∈ V ∗

N . In other words, (i) at least one nonterminal symbol, say A,
occurs twice in a path of the parse tree of ϕ from the root S to a leaf, and (ii) that
path is constructed by applying more than h times a production of the form (c).
Thus, the grammar H is self-embedding.

To see this the reader may also consider Figure 3.10.1, where we have depicted a
parse tree from the axiom S to the sentential ϕ = abbcabCABCABAC. If the path
from S down to the lowest occurrence of C is due to more than h derivation steps
of the form (c) then there must be a nonterminal symbol which occurs twice in the
labels of the black nodes. This means that the grammar is self-embedding.

This completes the proof that every sentential form obtained by a leftmost deriva-
tion has at most h ·m nonterminal symbols. Now we can conclude the proof of the
theorem as follows.

We recall that in the construction of a finite automaton corresponding to a
regular grammar the production A → a B corresponds to an edge from a state
A to a state B labeled by a. Thus, we can encode each k-tuple of nonterminal
symbols which occurs in any sentential form of any production of any grammar H
in Greibach normal form which is not self-embedding, into a distinct state and we
can derive a finite automaton corresponding to H . This shows that L(H) is a regular
language. �

Remark 3.10.3. In the above proof the condition that the derivation should be
a leftmost derivation is necessary. Indeed, let us consider the grammar G whose
productions are:

S → a A S | a A→ a
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It is not self-embedding because: (i) S is not self-embedding and (ii) A is not self-
embedding. However, the following derivation which is not a leftmost derivation
(indeed, it is a rightmost one), produces a sentential form with n nonterminal sym-
bols, for any n ≥ 1:

S → a A S → a A a A S → . . .→ (a A)n S. �

Theorem 3.10.4. A context-free language (possibly including ε) is regular iff
it can be generated by an S-extended context-free grammar which is not self-
embedding.

Proof. (if part) See Theorem 3.10.2. (only if part) No regular grammar is self-
embedding because nonterminal symbols, if any, are only on the rightmost positions
of any sentential form. �

3.11. Pumping Lemma for Context-Free Languages

The following theorem has been proved in [4]. It is also called the Pumping Lemma
for context-free languages. Recall that for every grammar G, by L(G) we denote the
language generated by G. This lemma provides a necessary condition which ensures
that a grammar is a context-free grammar.

Theorem 3.11.1. [Bar-Hillel Theorem. Pumping Lemma for Context-
Free Languages] For every context-free grammar G there exists n > 0, called a
pumping length of the grammar G, depending on G only, such that for all z ∈ L(G),
if |z| ≥ n then there exist the words u, v, w, x, y such that:

(i) z = uvwxy,

(ii) vx 6= ε,

(iii) |vwx| ≤ n, and

(iv) for all i ≥ 0, uviwxiy ∈ L(G).

The minimum value of the pumping length n is said to be the minimum pumping
length of the grammar G.

Proof. Let L denote the language L(G). Consider the grammar GC in Chomsky
normal form which generates L− {ε}. Thus, in particular, the production S → ε
does not belong to GC . We first prove by induction the following property where
we assume that the length of a path n1 — n2 — . . . — nm on a parse tree from node
n1 to node nm, is m−1.

Property (A): for any i ≥ 1, if a word x ∈ L has a parse tree according to the
grammar GC with its longest path of length i then |x| ≤ 2i−1.

(Basis) For i = 1 the length of x is 1 because the parse tree of x is the one with
root S and a unique son-node x (recall that every production in a grammar in
Chomsky normal form whose right hand side has terminal symbols only, is of the
form A→ a).

(Step) We assume Property (A) for i = h ≥ 1. We will show it for i = h+1. If the
length of the longest path of the parse tree of x is h+1 then the root S of the parse
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S

A

≤ k+1

A

b•• • • • • •
z1 z2 z3 z4 z5

Figure 3.11.1. The parse tree of the word z1 z2 z3 z4 z5. The gram-
mar has no ε-productions and it is in Chomsky normal form with k
nonterminal symbols. All the nonterminal symbols on the path from
the upper A to the leaf b are distinct, except for the two A’s. That
path A — . . . — A — . . . — b includes at most k +2 nodes and, thus,
its length is at most k+1.

tree of x has two son-nodes which are the roots of two subtrees, say t1 and t2, each
of which has its longest path whose length is no greater than h. By induction, the
yield of t1 is a word whose length is not greater than 2h−1. Likewise the yield of t2
is a word whose length is not greater than 2h−1. Thus, the length of x is not greater
than 2h. This concludes the proof of Property (A).

Now let k be the number of nonterminal symbols in the grammar GC . Let us
consider a word z such that |z| > 2k. By Property (A) in any parse tree of z
there is a path, say p, of length greater than k. Thus, since in GC there are k
nonterminal symbols, in the path p there is at least a nonterminal symbol which
appears twice. Let us consider the two nodes, say n1 and n2, of the path p with
the same nonterminal symbol, say A, such that the node n1 is an ancestor of the
node n2 and the nonterminal symbols in the nodes below n1 are all distinct (see
Figure 3.11.1).
Now,
- at node n1 we have that A→∗ z2Az4 and
- at node n2 we have that A→∗ z3.

We also have that the length of the path from n1 to (and including) a leaf of the
subtree rooted in n2 is at most k+1 because the nonterminal symbols in that path
are all distinct. Thus, by Property (A), |z2z3z4| ≤ 2k. The value n whose existence
is stipulated by the lemma is 2k and it depends on the grammar GC only, because
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k is the number of nonterminal symbols in GC . The fact that |z2z3z4| ≤ 2k shows
Point (iii) of the lemma.

We also have that A→∗ zi
2Azi

4 for any i ≥ 0 because we can replace the occur-
rence A on the right hand side of A →∗ z2Az4 by z2Az4 as many times as desired.
This shows Point (iv) of this theorem.

The yield z of the given parse tree can be written as uz2z3z4y for some word u
and y.

Since in the grammar GC in Chomsky normal form there are no unit productions,
we cannot have A→∗ A and thus, we have that |z2z4| > 0. This shows Point (ii) of
the lemma and the proof is completed. �

Corollary 3.11.2. The language L = {aibici | i ≥ 1} is not a context-free lan-
guage, and the language L = {aibici | i ≥ 0} cannot be generated by an S-extended
context-free grammar.

Proof. Suppose that L is a context-free language and let G be a context-free
grammar which generates L. Let us apply the Pumping Lemma (see Theorem 3.11.1
on page 150) to a word uvwxy = anbncn where n is the number whose existence is
stipulated by the lemma. Then uv2wx2y is in L(G).
Case (1). Let us consider the case when v 6= ε. The word v cannot be across the
a-b boundary because otherwise in uv2wx2y there will be b’s to the left of some a’s.
Likewise v cannot be across the b-c boundary. Thus, v lies entirely within an or bn

or cn. For the same reason x lies entirely within an or bn or cn.
Assume that v is within an. In uv2wx2y the number of a’s is n+ |v|. Since x lies

entirely within an or bn or cn it is impossible to have in uv2wx2y the number of b’s
equal to n + |v| and also the number of c’s equal to n + |v|, because x should lie at
the same time within the b’s and the c’s without lying within across any boundary.
Thus, uv2wx2y is not in L(G).
Case (2). Let us consider the case when v = ε. The word x is different from ε. x lies
within the a’s or b’s or c’s because it cannot lie across any boundary (In that case,
in fact, in x2 there will be a b to the left of an a). Let us assume that x lies within
the a’s. The number of a’s in uv2wx2y = uwx2y is n + |x|, while the number of b’s
and c’s is n. Thus, uv2wx2y is not in L(G). Likewise, one can show that x cannot
lie within the b’s or within the c’s, and the proof of the corollary is completed. �

We have that also the following languages are not context-free:

L1 = {aibicj | 1≤ i≤j},
L2 = {aibjck | 1≤ i≤j≤k},
L3 = {aibjck | i 6=j and j 6=k and i 6=k and 1≤ i, j, k},
L4 = {aibjcidj | 1≤ i, j},
L5 = {aibjaibj | 1≤ i, j},
L6 = {aibjckdl | i=0 or 1≤j =k= l}.
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Let us consider the alphabet Σ with at least two symbols distinct from c. We have
that the following languages are not context-free:

L7 = {wcw | w ∈ Σ∗},
L8 = {ww | w ∈ Σ+}.

The above results concerning the languages L1 through L6 can be extended to the
case where the bound ‘1 ≤ . . .’ is replaced by the new bound ‘0 ≤ . . .’ in the sense
that the languages with the new bounds cannot be generated by any S-extended
context-free grammar. Also the language {ww |w ∈ Σ∗} cannot be generated by
any S-extended context-free grammar.

Notice, however, that the following languages are context-free:

L9 = {aibi | 1≤ i},
L10 = {aibjck | (i 6=j or j 6=k) and 1≤ i, j, k},
L11 = {aibi cjdj | 1≤ i, j},
L12 = {ai bjcj di | 1≤ i, j},
L13 = {aibjck | (i=j or j =k) and 1≤ i, j, k} where ‘or’ is the ‘inclusive or’.

In particular, the following grammar G13:

S → S1 C | A S2

S1 → a S1 b | a b

S2 → b S2 c | b c

A → a A | a
C → c C | c

generates the language L13.
The above results concerning the languages L9 through L13 can be extended to

the case where the bound ‘1 ≤ . . .’ is replaced by the new bound ‘0 ≤ . . .’ in the
sense that the languages with the new bounds can be generated by an S-extended
context-free grammar.

Let us consider the alphabet Σ with at least two symbols distinct from c. Let
wR denote the word w with its symbols in the reverse order (see Definition 2.12.3
on page 95). We have that the following languages are context-free:

L14 = {w c wR | w ∈ Σ∗},
L15 = {w wR | w ∈ Σ+}.

The language {wwR |w ∈ Σ∗} can be generated by an S-extended context-free
grammar and, in particular, the grammar:

S → ε | a S a | b S b

generates the language {w wR | w ∈ {a, b}∗}.
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Exercise 3.11.3. Show that the languages {0 2n | n ≥ 1}, {0n2 | n ≥ 1}, and
{0 p | p ≥ 2 and prime(p)}, where prime(p) holds iff p is a prime number, are not
context-free languages.

Hint. Use the Pumping Lemma for context-free languages. Alternatively, use
Theorem 7.8.1 on page 232 and show that these languages are not regular because
they do not satisfy the Pumping Lemma for regular languages (see Theorem 2.9.1
on page 72). �

We have the following fact.

Fact 3.11.4. [The Pumping Lemma for Context-Free Languages is not
a Sufficient Condition] The Pumping Lemma for context-free languages is a nec-
essary, but not a sufficient condition for a language to be context-free. Thus, there
are languages which satisfy this Pumping Lemma and are not context-free.

Proof. Let us first consider the following languages Lℓ and Lr, where prime(p)
holds iff p is a prime number:

Lℓ = {an b c | n ≥ 0}
Lr = {ap b an c an | p ≥ 2 and prime(p) and n ≥ 0}

Let L be the language Lℓ∪Lr . First, in Point (i) we will prove that L is not context-
free, and then in Point (ii) we will show that L satisfies the Pumping Lemma for
the context-free languages.

Point (i). Assume by absurdum that L is context-free. We have that Lr =
L ∩ (Σ∗ − a∗ b c) is context-free because regular languages are closed under comple-
ment (see Theorem 2.12.2 on page 94) and context-free languages are closed under
intersection with regular languages (see Theorem 3.13.4 on page 158).

Now the class of context-free languages is a full AFL and it is closed under GSM
mapping (see Table 4 on page 227 and Table 5 on page 229).

Let us consider the following generalized sequential machine which realizes the
GSM mapping:

1 2

a/a

b/ε

a/ε
b/ε

c/ε

Thus, the language M(Lr) is {ap | p ≥ 2 and prime(p)} and it is context-free. By
Theorem 7.8.1 on page 232 M(Lr) is a regular language. Now we get a contradiction
by showing that M(Lr) is not regular because it does not satisfy the Pumping
Lemma for the regular languages. Indeed, for any d ≥ 1 we have that there exist
p≥2 and k≥0 such that p+k d is not prime (if we take k=p we get that: p+k d =
p+p d = p(1+d), and thus, p+k d is not prime).
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Point (ii). Now we prove that L satisfies the Pumping Lemma for the context-
free languages. If the word w which is sufficiently long (that is, |w| ≥ n, where
n is the constant whose existence is stated by the Pumping Lemma) belongs to
a∗ b c then the Pumping Lemma holds by placing the four divisions of w within the
subword a∗. Otherwise, if w ∈ Lr, then there are two cases:

Case (ii.1) w = ap b an c an and n=0, and
Case (ii.2) w = ap b an c an and n>0.

Case (ii.1) is similar to the case where w is in a∗ b c.
In Case (ii.2) the four divisions of w can be taken as follows: ap b | an | c | an |. (Note
that if n=1 then the word ap b c ∈ a∗ b c.) This completes the proof of Point (ii). �

Remark 3.11.5. As it is clear from the proof of Point (i), in order to get a
language L which satisfies the Pumping Lemma for the context-free languages and
it is not context-free, instead of the predicate π(p) =def p≥2 and prime(p), we may
use any other definition of the predicate π(p) such that {ap | π(p)} is not a regular
language.

3.12. Ambiguity and Inherent Ambiguity

Definition 3.12.1. [Ambiguous and Unambiguous Context-Free Gram-
mar] A context-free grammar such that there exists a word w with at least two
distinct parse trees is said to be ambiguous. A context-free grammar is not ambigu-
ous is said to be unambiguous.

We get an equivalent definition if in the above definition we replace ‘two parse trees’
by ‘two leftmost derivations’ or ‘two rightmost derivations’. This is due to the fact
that there is a bijection between the parse trees and the leftmost (or rightmost)
derivations of the words which are their yield.

The grammar with the following productions is ambiguous:

S → A1 | A2

A1 → a

A2 → a

Indeed, we have these two parse trees for the word a :

S

A1

a

and

S

A2

a

Let us consider the grammar G which generates the language

L(G) = {w |w has an equal number of a’s and b’s and |w|>1}
and whose productions are:
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S → bA | a B

A→ a | a S | bA A

B → b | b S | a B B

The grammar G is an ambiguous grammar. Indeed, for the word a a b b a b ∈ L(G)
there are the two parse trees depicted in Figure 3.12.1.

A grammar G may be ambiguous into two different ways: either (i) there exists
a word in L(G) with two derivation trees which are different without taking into
consideration the labels in their nodes, or (ii) there exists a word in L(G) with
two different derivation trees which are different if we take into consideration the
symbols in their nodes.

We have Case (i) for the grammar with productions:

S → a A | a a
A→ a

and for the word a a (see the trees Ua and Ub in Figure 3.12.2 on page 156).
We have Case (ii) for the grammar with productions:

S → a S | a | a A
A→ a

and for the word a a (see the trees Va and Vb in Figure 3.12.2).

S

a B

a B B

b b S

a B

b

S

a B

a B B

b S b

b A

a

Figure 3.12.1. Two parse trees of the word a a b b a b.

Tree Ua

S

a a

Tree Ub

S

a A

a

Tree Va

S

a S

a

Tree Vb

S

a A

a

Figure 3.12.2. Two pairs of derivation trees for the word a a.
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Definition 3.12.2. [Inherently Ambiguous Context-Free Language] A
context-free language L is said to be inherently ambiguous iff every context-free
grammar which generates L is ambiguous.

We state without proof the following statements.
The language L13 = {aibjck | (i= j or j = k) and i, j, k≥ 1} where the ‘or’ is an

‘inclusive or’, is a context-free language which is inherently ambiguous. On page 153
we have given the context-free grammar G13 which generates this language.

Also the language {anbncmdm |m, n ≥ 1} ∪ {anbmcmdn |m, n ≥ 1} is a context-
free language which is inherently ambiguous.

3.13. Closure Properties of Context-Free Languages

In this section we present some closure properties of the context-free languages. We
have the following results.

Theorem 3.13.1. The class of context-free languages are closed under: (i) con-
catenation, (ii) union, and (iii) Kleene star.

Proof. Let the language L1 be generated by the context-free grammar G1 =
〈V1T , V1N , P1, S1〉 and the language L2 be generated by the context-free grammar
G2 = 〈V2T , V2N , P2, S2〉. We can always enforce that the terminal and nonterminal
symbols of the two grammars to be disjoint.
(i) L1 � L2 is generated by the grammar

G = 〈V1T ∪ V2T , V1N ∪ V2N ∪ {S}, P1 ∪ P2 ∪ {S → S1S2}, S〉.
(ii) L1 ∪ L2 is generated by the grammar

G = 〈V1T ∪ V2T , V1N ∪ V2N ∪ {S}, P1 ∪ P2 ∪ {S → S1 |S2}, S〉.
(iii) L∗

1 is generated by the grammar G = 〈V1T , V1N ∪ {S}, P1 ∪ {S → ε |S1S}, S〉
(this grammar is an S -extended context-free grammar). Note that L+

1 is generated
by the context-free grammar G = 〈V1T , V1N ∪ {S}, P1 ∪ {S → S1 |S1S}, S〉. �

Theorem 3.13.2. The class of context-free languages are not closed under
intersection.

Proof. Let us consider the language L1 = {aibicj | i≥ 1 and j ≥ 1} generated
by the grammar with axiom S1 and the following productions:

S1 → A C

A → aA b | a b

C → c C | c

and the context-free language L2 = {aibjcj | i ≥ 1 and j ≥ 1} generated by the
grammar with axiom S2 and the following productions:

S2 → A B

A → aA | a

B → bB c | b c



158 3. PUSHDOWN AUTOMATA AND CONTEXT-FREE GRAMMARS

The language L1 ∩ L2 = {aibici | i≥ 1} is not a context-free language (see Corol-
lary 3.11.2 on page 152). �

Theorem 3.13.3. The class of context-free languages are not closed under com-
plementation.

Proof. Since the context-free languages are closed under union, if they were
closed under complementation, then they would also be closed under intersection,
and this is not the case (see Theorem 3.13.2 on page 157). �

One can show that the complement of a context-free language is a context-
sensitive language.

Theorem 3.13.4. If L is a context-free language and R a regular language then
L ∩ R is a context-free language.

Proof. The reader may find the proof in [9, page 135]. The proof is based
on the fact that the pda which accepts L can be run in parallel with the finite
automaton which accepts R. The resulting parallel machine accepts L ∩ R. �

Given a language L, LR denotes the language {wR |w ∈ L}, where wR denotes
the word w with its characters in the reverse order (see Definition 2.12.3 on page 95).
We have the following theorem.

Theorem 3.13.5. If L is a context-free language then the language LR is context-
free.

Proof. Consider the Chomsky normal form G of a grammar which gener-
ates L. The language LR is generated by the grammar G′ where for every production
A→ BC in G we consider, instead, the production A→ CB. �

Theorem 3.13.6. The language LD = {ww |w ∈ {0, 1}∗} is not context-free.

Proof. If LD were a context-free language then by Theorem 3.13.4, also the
language Z = LD ∩ 0+1+0+1+, that is, {0i1j0i1j | i ≥ 1 and j ≥ 1} would be a
context-free language, while it is not (see language L5 on page 152). �

With reference to Theorem 3.13.6, if we know that L ⊆ {0}∗, then LD is made
of all words with even length. Thus, LD is regular. Indeed, we have the following
result whose proof is left to the reader (see also Section 7.8 on page 232).

Theorem 3.13.7. If we consider an alphabet Σ with one symbol only, then a
language L ⊆ Σ∗ is a context-free language iff L is a regular language.

3.14. Basic Decidable Properties of Context-Free Languages

In this section we present a few decidable properties of context-free languages. The
reader who is not familiar with the concept of decidable and undecidable proper-
ties (or problems) may refer to Chapter 6, where more results on decidability and
undecidability of properties of context-free languages are listed.
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Theorem 3.14.1. Given any context-free grammar G, it is decidable whether
or not L(G) is empty.

Proof. We can check whether or not L(G) is empty by checking whether or not
the axiom of the grammar G produces a string of terminal symbols. This can be
done by applying the From-Below Procedure (see Algorithm 3.5.1 on page 123). �

Theorem 3.14.2. Given any context-free grammar G, it is decidable whether
or not L(G) is finite.

Proof. We consider the grammar H such that: (i) L(H) = L(G)−{ε}, and
(ii) H is in Chomsky normal form with neither useless symbols nor ε-productions.
We construct a directed graph whose nodes are the nonterminals of H such that
there exists an edge from node A to node B iff there exists a production of H of the
form A→ BC or A→ CB for some nonterminal C. L(G) is finite iff in the directed
graph there are no loops. If there are loops, in fact, there exists a nonterminal A
such that A→∗ αAβ with |αβ| > 0 [9, page 137]. �

As an immediate consequence of this theorem we have that given any context-free
grammar G, it is decidable whether or not L(G) is infinite.

3.15. Parsers for Context-Free Languages

In this section we present two parsing algorithms for context-free languages: (i) the
Cocke-Younger-Kasami Parser, (ii) the Earley Parser.

3.15.1. The Cocke-Younger-Kasami Parser.

The Cocke-Younger-Kasami algorithm is a parsing algorithm which works for any
context-free grammar G in Chomsky normal form without ε-productions. The com-
plexity of this algorithm is, as we will show, of order O(n3) in time and O(n2) in
space, where n is the length of the word to parse. We have to check whether or not a
given word w = a1 . . . an is in L(G). The Cocke-Younger-Kasami algorithm is based
on the construction of a matrix n×n, called the recognition matrix. The element of
the matrix in row i and column j is the set of the nonterminal symbols from which
the substring aj aj+1 . . . aj+i−1 can be generated (this substring has length i and its
first symbol is in position j).

We will see this algorithm in action in the following example.

Let G be the grammar 〈{S, A, B, C, D, E, F}, {a, b}, P, S〉 whose set P of produc-
tions is:

S → CB | FA | FB

A→ CS | FD | a
B → FS | CE | b
C → a

D → AA

E → BB
F → b
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a a b a b b

j =1 2 3 4 5 6

i=1 A, C A, C B, F A, C B, F B, F

2 D S S S E, S

3 A A B A, B

4 D S S, E

5 A A, B

6 D, S

Figure 3.15.1. The recognition matrix for the string a a b a b b of
length n = 6 and the grammar G given at the beginning of this Sec-
tion 3.15.1.

The recognition matrix for the string w = a a b a b b is the one depicted in Fig-
ure 3.15.1. We have the following correspondence between the symbols of w and
their positions:

w: a a b a b b
position: 1 2 3 4 5 6

In the given string w we have that the substring of length 3 starting at position 3
is b a b, and the substring of length 2 starting at position 4 is a b.

The recognition matrix is upper triangular and only half of its entries are sig-
nificant (see Figure 3.15.1). The various rows of the recognition matrix are filled as
we now indicate.

In the recognition matrix we place the nonterminal symbol V in row 1 and
column j, that is, in position 〈1, j〉, for j = 1, . . . , n, iff the terminal symbol, say
aj , in position j, that is, the substring of length 1 starting at position j, can be
generated from V , that is, V → aj is a production in P . Now, since a is the
terminal symbol in position 1 of the given string, we place in row 1 and column 1
of the recognition matrix the two nonterminal symbols A (because A → a) and C
(because C → a).

In the recognition matrix we place the nonterminal symbol V in row 2 and
column j, that is, in position 〈2, j〉, for j = 1, . . . , n−1, iff the substring of length 2
starting at position j can be generated from V , that is, V →∗ aj aj+1 (and this is
the case iff V → X Y and X → aj and Y → aj+1). For instance, since the substring
of length 2 starting at position 3 is b a, we place in row 2 and column 3 of the
recognition matrix the nonterminal symbol S because S → FA and F → b and
A→ a.
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In general, in the recognition matrix we place the nonterminal symbol V in row
i and column j, that is, in position 〈i, j〉, for i = 1, . . . , n, and j = 1, . . . , n−(i−1),
iff

V → X Y and X is in position 〈1, j〉 and Y is in position 〈i−1, j+1〉 or

V → X Y and X is in position 〈2, j〉 and Y is in position 〈i−2, j+2〉 or

. . . or

V → X Y and X is in position 〈i−1, j〉 and Y is in position 〈1, j+i−1〉.
In Figure 3.15.2 we have indicated as small black circles the pairs of positions of the
recognition matrix that we have to consider when filling the position 〈i, j〉 (depicted
as a white circle).

,

vv vv
v

v
A
A
AA�
�

�
�

��

1 . . . j . . . j+i−1

1
...

i−1

i

...

n S©

Figure 3.15.2. Construction of the element , in row i and col-
umn j, that is, in position 〈i, j〉, of the recognition matrix of the
Cocke-Younger-Kasami parser. That element is derived from the ele-
ments in the following i−1 pairs of positions: 〈〈1, j〉, 〈i−1, j+1〉〉, . . . ,
〈〈i−1, j〉, 〈1, j+i−1〉〉. The length of the string to parse is n and the
position 〈n, 1〉 is indicated by S©.

It is easy to see that the given string w belongs to L(G) iff the axiom S occurs
in position 〈|w|, 1〉 (see the position S© in Figure 3.15.2).

The time complexity of the Cocke-Younger-Kasami algorithm is given by the
time of constructing the recognition matrix which is computed as follows.

Let n be the length of the string to parse. Let us assume that given a context-free
grammar G = 〈VT , VN , P, S〉 in Chomsky normal form without ε-productions:

(i) given a set Sa subset of VT , it takes one unit of time to find the maximal subset
SA of VN such that for each A ∈ SA, (i.1) there exists a ∈ Sa, and (i.2) A→ a is a
production in P ,

(ii) given any two subsets SB and SC of VN , it takes one unit of time to find the
maximal subset SA of VN such that for each A ∈ SA, (ii.1) there exist B ∈ SB and
C ∈ SC , and (ii.2) A→ BC is a production in P , and

(iii) any other operation takes 0 units of time.
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We have that:

– row 1 of the recognition matrix is filled in n units of times,

– row 2 of the recognition matrix is filled in (n−1)× 1 units of times,

· · · , and in general, for any i, with 2≤ i≤ n,

– row i of the recognition matrix is filled in (n − i + 1) × (i − 1) units of times
(indeed, in row i we have to fill n− 1 + i entries and to fill each entry it requires
i− 1 operations of the type (ii) above).

Thus, since
∑n

i=1 i2 = n(n + 0.5)(n + 1)/3 (see [11, page 55]), we have that:

n +
∑n

i=2(n− i + 1)(i− 1) = (n3 + 5n)/6. (†)

This equality shows that the time complexity of the Cocke-Younger-Kasami algo-
rithm is of the order O(n3). (In order to validate the above equality (†), it is enough
to check it for four distinct values of n, because it is an equality between polynomials
of degree 3. For instance, we may choose the values 0, 1, 2, and 3.)

3.15.2. The Earley Parser.

Let us consider an extended context-free grammar G = 〈VT , VN , P, S〉. We do not
make any restrictive assumption on this grammar: it may be ambiguous or not, it
may be with or without ε-productions, it may or may not include unit productions,
it may or may not be left recursive, and the axiom S may or may not occur on the
right hand side of the productions.

Let us begin by introducing the following notion.

Definition 3.15.1. Given an extended context-free grammar G = 〈VT , VN , P, S〉
and a word w ∈ V ∗

T of length n, a [dotted production, position] pair is a construct of
the form: [A→ α � β, i] where: (1) A→ αβ is a production in P , that is, A ∈ VN

and α, β ∈ (VN ∪ VT )∗, and (2) i is an integer in {0, 1, . . . , n}.

Algorithm 3.15.2. Earley Parser.

Given an extended context-free grammar G, let us consider a word w = a1 . . . an

and let us check whether or not w belongs to L(G). If n = 0, w is the empty string,
denoted ε.
We construct a sequence 〈I0, I1, . . . In〉 of n+1 sets of [dotted production, position]
pairs.

Construct the set I0 as follows:

R1. (Initialization Rule for I0)
For each production S → α in the set of productions P , add [S → � α, 0].
In particular, if α = ε we add [S → � , 0].

R2. Apply the closure rules C1 and C2 (see below) to the set I0.
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For each 0 < j ≤ n, construct the set Ij from the set Ij−1 as follows:

R3. (Initialization Rule for Ij with j >0)
For each [A→ α � aj β, i] ∈ Ij−1, add [A→ α aj � β, i] to Ij.

R2. Apply the closure rules C1 and C2 (see below) to the set Ij.

The closure rules C1 and C2 for the set Ij, for j = 0, . . . , n, are as follows:

C1. (Forward Closure Rule)
if [A→ α � B β, i] ∈ Ij and B → γ is a production
then add [B → � γ, j] to Ij.

C2. (Backward Closure Rule)
if [A→ α �, i] ∈ Ij

then for every [B → β � A γ, k] in Ii with i≤j, add [B → β A � γ, k] to Ij.

As established by the following Corollary 3.15.4, we have that w ∈ L(G) iff
[S → α �, 0] ∈ In, for some production S → α of G.

We have the following theorem and corollary which establish the correctness of the
Earley parser. We state them without proof.

Theorem 3.15.3. For every i ≥ 0, j ≥ 0, for every a1 . . . ai ∈ V ∗
T , and for every

α, β ∈ V ∗, [A→ α � β, i] ∈ Ij iff there is a leftmost derivation

S →∗
lm a1 . . . ai A γ →lm a1 . . . ai α β γ →∗

lm a1 . . . aj β γ.

The reader will note that i ≤ j because we have considered a leftmost derivation.

As a consequence of Theorem 3.15.3 we have the following corollary.

Corollary 3.15.4. Given an extended context-free grammar G, the word w =
a1 . . . an ∈ L(G) iff [S → α �, 0] ∈ In for some production S → α of G.

Thus, in particular, for any extended context-free grammar G, we have that:

ε ∈ L(G) iff [S → α �, 0] ∈ I0 for some production S → α of G.

We will not explain here the ideas which motivate the Forward Closure Rule C1
and the Backward Closure Rule C2 of the Earley Parser. (The expert reader will
understand those rules by comparing them with the Closure Rule for constructing
LR(1) parsers (see [15, Section 5.4]).) However, in order to help the reader’s in-
tuition now we give the following informal explanations of the occurrences of the
[dotted production, position] pairs in the set Ij ’s, for j = 0, . . . , n.

Let us assume that the input string is a1 . . . an for some n ≥ 0. Let j be an
integer in {0, 1, . . . , n}.

(1) [A→ α � B γ, i] ∈ Ij means that :
if the input string has been parsed up to the symbol ai, then we parse the
input string up to the symbol aj (the string ‘α �’ starts at position i and
ends at position j).

(2) [B → � γ, j] ∈ Ij means that :
the input string has been parsed up to aj (‘�’ is in position j).
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(3) [S → α �, 0] ∈ In means that :
the input has been parsed from position 0 up to position n (the string ‘α �’
starts at position 0 and ends at position n).

Now let us see the Earley parser in action for the input word:

a + a × a

(thus, in our case the length n of the word is 5) and the grammar with axiom E
and the following productions:

E → E + T E → T

T → T × F T → F

F → (E) F → a

We construct the following sets I0, I1, . . . , I5 of [dotted production, position] pairs.
For k = 1, . . . , 5, the set Ik is in correspondence with the k-th character of the given
input word. We can arrange the sets I0, I1, . . . , I5 in a sequence whose elements
correspond to the symbols of the input word, as indicated by the following table:

I0 :

I1 : a

I2 : +

I3 : a

I4 : ×
I5 : a

For k = 0, . . . , 5, in the set Ik we will list two subsets of [dotted production, position]
pairs separated by a horizontal line. Above that horizontal line we will list the
[dotted production, position] pairs which are generated by the rule R1 and R3,
and below that line we will list the [dotted production, position] pairs which are
generated by the closure rules C1 and C2.

For k = 0, . . . , 5, the [dotted production, position] pairs of the set Ik are identified
by the label (k m), for m≥1. When writing [dotted production, position] pairs, for
reasons of simplicity, we will feel free to drop the square brackets.

I0 :

(01) E → � E + T, 0 : by R1
(02) E → � T, 0 : by R1

(03) T → � T × F, 0 : from (02) by C1
(04) T → � F, 0 : from (02) by C1
(05) F → � (E), 0 : from (04) by C1
(06) F → � a, 0 : from (04) by C1
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I1 : a

(11) F → a �, 0 : from (06) by R3

(12) T → F �, 0 : from (04) and (11) by C2
(13) T → T � ×F, 0 : from (03) and (12) by C2
(14) E → T �, 0 : from (02) and (12) by C2
(15) E → E � + T, 0 : from (01) and (14) by C2

I2 : +

(21) E → E + � T, 0 : from (15) by R3

(22) T → � F, 2 : from (21) by C1
(23) T → � T × F, 2 : from (21) by C1
(24) F → � (E), 2 : from (22) by C1
(25) F → � a, 2 : from (22) by C1

I3 : a

(31) F → a �, 2 : from (25) by R3

(32) T → F �, 2 : from (22) and (31) by C2
(33) T → T � ×F, 2 : from (23) and (32) by C2
(34) E → E + T �, 0 : from (21) and (32) by C2
(35) E → E � + T, 0 : from (01) and (34) by C2

I4 : ×
(41) T → T × � F, 2 : from (33) by R3

(42) F → � (E), 4 : from (41) by C1
(43) F → � a, 4 : from (41) by C1

I5 : a

(51) F → a �, 4 : from (43) by R3

(52) T → T × F �, 2 : from (41) and (51) by C2
(53) E → E + T �, 0 : from (21) and (52) by C2
(54) E → E � + T, 0 : from (01) and (53) by C2
(55) T → T � ×F, 2 : from (23) and (52) by C2

The word a+a×a belongs to the language generated by the given grammar because
[E → E + T �, 0] belongs to I5 (see line (53) in the set I5). Then, in order to get
the parse tree of a + a× a, we can proceed as specified by the following procedure
in three steps.

Algorithm 3.15.5.
Procedure for generating the parse tree of a given word w of length n parsed by the
Earley parser.
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Step (1). Tracing back. First we construct a tree T1 whose nodes are labeled by
[dotted production, position] pairs as we now indicate.

(i) The root of the tree is labeled by the [dotted production, position] pair of the
form [S → α �, 0] belonging to the set In, that is, the pair which indicates that the
given word w belongs to the language generated by the given grammar.

(ii) A node is a leaf iff in the right hand side of its dotted production there is not
nonterminal symbol to the left of ‘�’.

(ii.1) If a node p is not a leaf and is generated from node q by applying Rule R3 or
Rule C1, then we make q to be the only son-node of p.

(ii.2) If a node p is not a leaf and is generated from the nodes q1 and q2 by applying
Rule C2, then we create two son-nodes of the node p: we make q1 to be the left
son-node of p and q2 to be the right son-node of p iff q1 ∈ Ii and q2 ∈ Ij with
0≤ i≤j≤n.

Step (2). Pruning. Then, we prune the tree T1 produced at the end of Step (1) by
erasing every node which is labeled by a [dotted production, position] pair whose
dot does not occur at the rightmost position. If the node to be erased is not a leaf
we apply the Rule E1 depicted in Figure 3.15.3 on page 167. We also erase in each
[dotted production, position] pair its label, its dot, and its position. Let T2 be the
tree obtained at the end of this Step (2).

Step (3). Redrawing. Finally, we apply in a bottom-up fashion, the Rule E2 depicted
in Figure 3.15.3 to the tree T2 obtained at the end of Step (2), thereby getting the
parse tree T3 of the given word w.

Figure 3.15.4 on page 168 shows the tree T1 obtained at the end of Step (1) for the
word a+a×a. Figure 3.15.5 Part (α) on page 168 shows the tree T2 obtained at the
end of Step (2) from the tree T1 depicted in Figure 3.15.4. Figure 3.15.5 Part (β)
on page 168 shows the tree T3 obtained at the end of Step (3) from the tree T2
depicted in Figure 3.15.5 (α).

We have the following time complexity results concerning the Earley parser.
First we need the following definition.

Definition 3.15.6. [Strongly Unambiguous Context-Free Grammar] A
context-free grammar G = 〈VT , VN , P, S〉 is said to be strongly unambiguous if for
every nonterminal symbol A ∈ VN and for every string w ∈ VT

∗ there exists at most
one leftmost derivation starting from A and producing w.

Given any context-free grammar, the Earley parser takes O(n3) steps to parse
any string of length n. If the given context-free grammar is strongly unambiguous
then the Earley parser takes O(n2) steps to parse any string of length n. Note that
from any unambiguous context-free grammar (recall Definition 3.12.1 on page 155)
we can obtain an equivalent strongly unambiguous context-free grammar in linear
time.

Every deterministic context-free language can be generated by a context-free
grammar for which the Earley parser takes O(n) steps to parse any string of length n.
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Figure 3.15.3. Above: Rule E1 for erasing a node q which is labeled
by a [dotted production, position] pair whose dot does not occur at
the rightmost position. Below : Rule E2 for constructing the parse
tree starting from the tree produced at the end of Step (2). A and B
are nonterminal symbols, a and c are terminal symbols, and α, β, γ,
and δ are strings in (VT ∪VN)∗. By E2(t) we denote the tree obtained
from the tree t by applying Rule E2.

3.16. Parsing Classes of Deterministic Context-Free Languages

In the previous section we have seen that parsing context-free languages can be done,
in general, in cubic time. Indeed, there is an algorithm for parsing any context-free
language which in the worst case takes no more than O(n3) time, for an input of
length n. Actually, L. Valiant [23] proved that the upper bound of the time com-
plexity for parsing context-free languages is equal to that of matrix multiplication.
Thus, for the evaluation of the asymptotic complexity, the exponent 3 of n3 can be
lowered to log2 7 (recall the Strassen algorithm for multiplying matrices [20]), and
even to smaller values.

However, for the construction of efficient compilers we should be able to parse
strings of characters in linear time, rather than cubic time. Thus, the strings to be
parsed should be generated by particular context-free grammars which allow parsing
in O(n) time complexity.
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(53) : E → E + T �, 0

(21) : E → E + � T, 0 (52) : T → T×F �, 2

(15) : E → E � +T, 0 (41) : T → T×�F, 2 (51) : F → a �, 4

(01) : E→ � E+T, 0 (14) : E → T �, 0 (33) : T → T �×F, 2

(23) : T → � T × F, 2 (32) : T → F �, 2

(22) : T → �F, 2 (31) : F → a �, 2(11) : F → a �, 0(04) : T → � F, 0

(02) : E → � T, 0 (12) : T → F �, 0

Figure 3.15.4. The tree T1 for the word a + a × a (see page 166).
We have underlined the productions with the symbol ‘�’ at the right-
most position. The corresponding nodes occur in the tree T2 of Fig-
ure 3.15.5 (α) on page 168.
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Figure 3.15.5. The trees T2 and T3 for the word a+a×a. Tree T3
is the parse tree of a + a× a (see page 166).
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There are, indeed, particular classes of context-free languages which allow parsing
in linear time. Some of these classes are subclasses of the deterministic context-
free languages (see Section 3.3). Thus, given a context-free language L, it may
be important to know whether or not L is a deterministic context-free language.
Unfortunately, in general, we have the following negative result (see also Section 6.1.1
on page 201).

Fact 3.16.1. [Undecidability of Testing Determinism of Languages Gen-
erated by Context-Free Grammars] It is undecidable given a context-free gram-
mar G, whether or not it generates a deterministic context-free language.

Given a context-free language L, one can show that L is a nondeterministic
context-free language by showing that either the complement of L is a nondeter-
ministic context-free language or that the complement of L is not a context-free
language.

The validity of this test follows from the fact that deterministic context-free
languages are closed under complementation (see Section 3.17 below), while nonde-
terministic context-free languages are not closed under complementation (see Sec-
tion 3.13) [1].

In the book [15] we have presented some parsing techniques for various subclasses
of the deterministic context-free languages and, in particular, for: (i) the LL(k)
languages, (ii) the LR(k) languages, and (iii) the operator-precedence languages [1,
9]. These techniques are used in the parsing algorithms of the compilers of many
popular programming languages such as C++ and Java.

In the following two sections we will present some basic closure and decidability
results about deterministic context-free languages. These results may allow us to
check whether or not a given context-free language is deterministic. Thus, if by those
results one can show that a language is not a deterministic context-free language,
then one cannot apply the faster parsing techniques for LL(k) languages or LR(k)
languages or operator-precedence languages that we have mentioned above.

Recall that a deterministic context-free language can be given by providing either
(i) the instructions of a deterministic pda which accepts it, or (ii) a context-free
grammar which is an LR(k) grammar, for some k≥1 [15, Section 5.1].

Actually, for any deterministic context-free language one can find an LR(1) gram-
mar, which generates it [9].

3.17. Closure Properties of Deterministic Context-Free Languages

We have the following results (see also Section 7.5 on page 224).

Theorem 3.17.1. [Closure of Deterministic Context-Free Languages Un-
der Complementation] Let L be a deterministic context-free language. Then
Σ∗−L is a deterministic context-free language.

Proof. It is not immediate and can be found in [9, page 238]. �
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Theorem 3.17.2. The class of the deterministic context-free languages is closed
under intersection with a regular set.

Proof. Similar to the one of Theorem 3.13.4 on page 158. �

Theorem 3.17.3. The class of the deterministic context-free languages is not
closed under concatenation, union, intersection, Kleene star, reversal.

Proof. See [9, pages 247 and 281] and also [8, page 346]. �

3.18. Decidable Properties of Deterministic Context-Free Languages

In this section we will present some decidable properties of deterministic context-
free languages. A more comprehensive list of decidability and undecidability results
concerning deterministic context-free languages can be found in Sections 6.1–6.4 (see
also [9, pages 246–247]).

We assume that every deterministic context-free language we consider in this
section is a subset of V ∗

T for some terminal alphabet VT with at least two symbols.

(D1) It is decidable given a deterministic context-free language L and a regular
language R, to test whether or not L = R.

(D6) It is decidable given a deterministic context-free language L, to test whether
or not L is prefix-free (see Definition 3.3.9 on page 120) [8, page 355].

(D7) It is decidable given any two deterministic context-free languages L1 and L2,
to test whether or not L1 = L2 [19].

Properties (D2)–(D5) that do not appear in this listing, are some more decid-
able properties of the deterministic context-free languages which we will present in
Section 6.2 starting on page 204.

With reference to Property (D7), note that, on the contrary, it is undecidable to
test whether or not L(G1) = L(G2) for any given two context-free grammars G1
and G2.

We have also the following undecidability results.

(U1) It is undecidable given any two deterministic context-free languages L1 and L2,
to test whether or not L1 ∩ L2 = ∅, and

(U2) It is undecidable given any two deterministic context-free languages L1 and L2,
to test whether or not L1 ⊆ L2.

Note that the problem (U2) of testing whether or not L1 ⊆ L2 can be reduced
to the problem of testing whether or not L1 ∩ (VT

∗−L2) = ∅. Since deterministic
context-free languages are closed under complementation, we get that VT

∗−L2 is
a deterministic context-free language and, thus, undecidability of (U1) follows from
undecidability of (U2).



CHAPTER 4

Linear Bounded Automata and Context-Sensitive Grammars

In this chapter we first show that the notions of context-sensitive grammars and
type 1 grammars are equivalent. Then we show that every context-sensitive language
is a recursive set. Finally, we introduce the class of the linear bounded automata
and we show that these automata are characterized by the fact that they accept the
context-sensitive languages.

We assume that the reader is familiar with the basic notions and properties of
Turing Machines which we will present in Chapter 5 below. More information on
Turing Machines can be found in textbooks such as [9].

In this chapter, unless otherwise specified, we use the notions of type 1 produc-
tions, grammars, and languages which we have introduced in Definition 1.5.7 on
page 21. We recall them here for the reader’s convenience.

Definition 4.0.1. [Type 1 Production, Grammar, and Language. Ver-
sion with Epsilon Productions] Given a grammar G = 〈VT , VN , P, S〉, we say
that a production in P is of type 1 iff
(i.1) either it is of the form α → β, where α ∈ (VT ∪ VN)+, β ∈ (VT ∪ VN)+, and
|α| ≤ |β|, or it is S → ε, and
(i.2) the axiom S does not occur on the right hand side of any production if the
production S → ε is in P .
A grammar is said to be of type 1 if all its productions are of type 1. A language is
said to be of type 1 if it is generated by a type 1 grammar.

We also use the following notions of context-sensitive productions, grammars,
and languages which we have introduced in Definition 1.5.7.

Definition 4.0.2. [Context-Sensitive Production, Grammar, and Lan-
guage. Version with Epsilon Productions] Given a grammar G=〈VT , VN , P, S〉,
a production in P is said to be context-sensitive iff
(i) either it is of the form uAv → uwv, where u, v ∈ V ∗, A ∈ VN , and w ∈ (VT∪VN )+,
or it is S → ε, and
(ii) the axiom S does not occur on the right hand side of any production if the
production S → ε is in P .
A grammar is said to be context-sensitive if all its productions are context-sensitive.
A language is said to be context-sensitive if it is generated by a context-sensitive
grammar.

171
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Let us start by proving the following Theorem 4.0.3. This theorem generalizes
Theorem 1.3.4 which we stated on page 13. Indeed, in this Theorem 4.0.3 the equiv-
alence between type 1 grammars and context-sensitive grammars is established with
reference to the above Definitions 4.0.1 and 4.0.2, rather than to the Definitions 1.3.1
and 1.3.3 (see pages 13 and 13, respectively).

Theorem 4.0.3. [Equivalence Between Type 1 Grammars and Context-
Sensitive Grammars. Version with Epsilon Productions] With reference to
Definitions 4.0.1 and 4.0.2 we have that: (i) for every type 1 grammar there exists an
equivalent context-sensitive grammar, and (ii) for every context-sensitive grammar
there exists an equivalent type 1 grammar.

Proof. (i) For every given type 1 grammar G we first construct the equivalent
grammar, call it Gs, in separated form. Let Gs be 〈VT , VN , P, S〉. Then, from Gs we
construct the grammar G′ = 〈VT , V ′

N , P ′, S〉 which is a context-sensitive grammar
as follows. The set P ′ of productions is constructed from the set P by considering
the following productions:

(i.1) S → ε, if it occurs in P ,

(i.2) every production of P of the form A→ a, and

(i.3) for every not context-sensitive production of P of the form:

(α) A1 . . . Am → B1 . . . Bn

with 1 ≤ m ≤ n, such that A1, . . . , Am, B1, . . . , Bn ∈ VN , the following context-
sensitive productions, where the symbols Ci’s are new nonterminal symbols not
in VN :

(β)

A1 . . . Am → C1A2 . . . Am

C1A2 . . . Am → C1C2 . . . Am

...

C1C2 . . . Cm−1Am → C1C2 . . . CmBm+1 . . . Bn

C1C2 . . . CmBm+1 . . . Bn → B1C2 . . . CmBm+1 . . . Bn

...

B1B2 . . . Bm−1CmBm+1 . . . Bn → B1B2 . . . BmBm+1 . . . Bn

We leave it to the reader to show that the replacement of every production of the
form (α) by the productions of the form (β) does not modify the language generated
by the grammar. The set V ′

N consists of the nonterminal symbols of VN and all the
symbols Ci’s which occur in the productions of the form (β).
(ii) The proof of this point is obvious because every context-sensitive production is
a production of type 1. �

Having proved this theorem, when speaking about languages, we will feel free to
use the qualification ‘type 1’, instead of ‘context-sensitive’, and vice versa.
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Let us consider an alphabet VT and the set of all words in V ∗
T .

Definition 4.0.4. [Recursive (or Decidable) Language] We say that a lan-
guage L ⊆ V ∗

T is recursive (or decidable) iff there exists a Turing Machine M which
accepts every word w belonging to L and rejects every word w which does not belong
to L (see Definition 5.0.6 on page 186 and Definition 6.0.5 on page 195).

Theorem 4.0.5. [Recursiveness (or Decidability) of Context Sensitive
Languages] Every context-sensitive grammar G = 〈VT , VN , P, S〉 generates a lan-
guage L(G) which is a recursive subset of V ∗

T .

Proof. Let us consider a context-sensitive grammar G = 〈VT , VN , P, S〉 and a
word w ∈ (VT ∪ VN)∗. We have to check whether or not w ∈ L(G). If w = ε it is
enough to check whether or not the production S → ε is in P . Now let us assume
that w 6= ε. Let the length |w| of w be n (≥1) and let d be the cardinality of VT ∪VN .

Since context-sensitive grammars are type 1 grammars, during every derivation
we get a sequence of sentential forms whose length cannot decrease. Now, since for
any k≥0, there are dk distinct words of length k in (VT ∪VN )∗, if during a derivation
a sentential form has length k, then at most dk derivation steps can be performed
before deriving either an already derived sentential form or a new sentential form of
length at least k+1.

Thus, for any given word w ∈ V +
T , by exploring all possible derivations starting

from the axiom S, for at most d + d2 + . . . + d|w| derivation steps, we will encounter
w iff w ∈ L(G). �

The generate-and-test algorithm we have described in the proof of the above
Theorem 4.0.5, can be considerably improved as indicated by the following Algo-
rithm 4.0.6.

Algorithm 4.0.6. Testing whether or not a given word w belongs to the lan-
guage generated by the type 1 grammar G = 〈VT , VN , P, S〉 (see Definition 4.0.1 on
page 171).

We are given a type 1 grammar G = 〈VT , VN , P, S〉. Without loss of generality,
we may assume that the axiom S does not occur on the right hand side of any
production. We are also given a word w ∈ V ∗

T .
We have that ε ∈ L(G) iff the production S → ε is in P . If w 6= ε and |w| = n,

we construct a sequence 〈T0, T1, . . . , Ts〉 of subsets of (VT ∪ VN)+ recursively defined
as follows:

T0 = {S}
Tm+1 = Tm ∪ {α | for some σ ∈ Tm, σ →G α and |α| ≤ n}

until we construct a set Ts such that Ts = Ts+1.
We have that w ∈ V +

T is in L(G) iff w ∈ Ts.
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We leave it to the reader to prove the correctness of this algorithm. That proof is a
consequence of the following facts, where n denotes the length of the word w and d
denotes the cardinality of VT ∪ VN :

(i) for any m ≥ 0, the set Tm is a finite set of strings in (VT ∪ VN)+ such that
S →m

G α and |α| ≤ n,

(ii) the number of strings in (VT ∪ VN)+ whose length is not greater than n, is
d + d2 + . . . + dn,

(iii) for all m ≥ 0, if Tm 6= Tm+1 then Tm ⊂ Tm+1, and

(iv) if for some s ≥ 0, Ts = Ts+1 then for all p with p ≥ s, Ts = Tp.

From these facts it follows that the sequence 〈T0, T1, . . . , Ts〉 of sets of words is
finite and the algorithm terminates.

Now we give an example of use of Algorithm 4.0.6.

Example 4.0.7. Let us consider the grammar with axiom S and the following
productions:

1. S → a S B C

2. S → a B C

3. C B → B C

4. a B → a b

5. bB → b b

6. bC → b c

7. c C → c c
The language generated by that grammar is L(G) = {anbncn |n ≥ 1}. Let us
consider the word w = abac and let us check whether or not abac ∈ L(G). We have
that |w| = 4. By applying Algorithm 4.0.6 we get the following sequence of sets:

T0 = {S }
T1 = {S, aSBC, aBC }
T2 = {S, aSBC, aBC, abC }
T3 = {S, aSBC, aBC, abC, abc }
T4 = T3

Note that when constructing T2 from T1, we have not included the sentential form
aaBCBC which can be derived from aSBC by applying the production S → a B C,
because |aaBCBC| = 6 > 4 = |w|. We have that abac 6∈ L(G) because abac 6∈ T3.
Indeed, abac 6= anbncn for all n ≥ 1. �

Now we show the correspondence between linear bounded automata and context-
sensitive languages.
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Definition 4.0.8. [Linear Bounded Automaton] A linear bounded automa-
ton (or LBA, for short) is a nondeterministic Turing Machine M (see Definition 5.0.1
on page 184) such that:
(i) the input alphabet is Σ∪{¢, $}, where ¢ and $ are two distinguished symbols not
in Σ, which are used as the left endmarker and the right endmarker of any input
word w ∈ Σ, so that the initial tape configuration is ¢ w $ (see Definition 5.0.3 on
page 185) and the cell scanned by the tape head is the leftmost one with the symbol
¢, and
(ii) M moves neither to the left of the cell with ¢, nor to the right of the cell with $,
and if M scans the cell with ¢ (or $) then M prints ¢ (or $, respectively) and moves
to the right (or to the left, respectively).

More formally, a linear bounded automaton is a tuple of the form 〈Q, Σ, Γ, q0, ¢,
$, F, δ〉, where: Q is a finite set of states, Σ is the input alphabet, Γ is the tape
alphabet, q0 in Q is the initial state, ¢ is the left endmarker, $ is the right endmarker,
F ⊆ Q is the set of final states, and δ is a partial function from Q×Γ to Powerset(Q×
Γ× {L, R}), called the transition function.

With respect to the definition of a Turing Machine we note that:

(i) for a linear bounded automaton there is no need of the blank symbol B, and

(ii) the codomain of the transition function δ is Powerset(Q×Γ×{L, R}), rather than
Q× (Γ− {B})× {L, R}, because we have assumed that unless otherwise specified,
a linear bounded automaton is nondeterministic.

The notion of a language accepted by an LBA is the one used for a Turing
Machine, that is, the notion of acceptance is by final state (see Definition 5.0.6 on
page 186).

It can be shown that if we extend the notion of a linear bounded automaton so
to allow the automaton to use a number of cells which is limited by a linear function
of n, where n is the length of the input word (instead of being limited by n itself),
then the class of languages which is accepted by linear bounded automata, does not
change.

Now we prove that:
(i) if L ⊆ Σ∗ is a type 1 language then it is accepted by a linear bounded automaton,
and
(ii) if a linear bounded automaton accepted a language L ⊆ Σ∗ then L is a type 1
language in the sense of Definition 4.0.1 on page 171.

These proofs are very similar to the ones relative to the equivalence of type 0
grammars and Turing Machines we will present in the following chapter.

Theorem 4.0.9. [Equivalence Between Type 1 Grammars and Linear
Bounded Automata. Part 1] Let us consider any language R ⊆ Σ∗, generated
by a type 1 grammar G = 〈VT , VN , P, S〉 (thus, we have that the axiom S does not
occur on the right hand side of any production). Then there exists a linear bounded
automaton M such that L(M) = R.
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Proof. Given the grammar G which generates the language R, we construct
the LBA M with two tapes such that L(M) = R, as follows. Initially, for every
w ∈ V ∗

T , M has on the first tape the word ¢ w $. We define L(M) to be the set of
words w such that ¢ w $ is accepted by M .

If w=ε then we make M to accept ¢ w $ (that is, ¢ $) iff the production S → ε
occurs in P . Otherwise, if w 6= ε, M writes on the second tape the initial string
¢ S $. Then M simulates a derivation step of w from S by performing the follow-
ing Steps (1), (2), and (3). Let σ denote the current string on the second tape.
Step (1): M chooses in a nondeterministic way a production in P , say α → β, and
an occurrence of α on the second tape such that |σ|−|α|+|β| ≤ |¢ w $|. If there is
no such a choice M stops without accepting ¢ w $. Step (2): M rewrites the chosen
occurrence of α by β, thereby changing the value of σ. In order to perform this
rewriting, when |α|< |β|, the LBA M should shift to the right the content of its sec-
ond tape by applying the so called shifting-over technique for Turing Machines [9].
Step (3): M checks whether or not the string σ produced on the second tape is equal
to the string ¢ w $ which is kept unchanged on the first tape. If the two strings are
equal, M accepts ¢ w $ and stops. If the two strings are not equal, M simulates one
more derivation step of w from S by performing again Steps (1), (2), and (3) above.

Now, since for each word w ∈ R, there exists a sequence of moves of the LBA M
such that M accepts ¢ w $, we have that w ∈ R iff w ∈ L(M). �

Theorem 4.0.10. [Equivalence Between Type 1 Grammars and Linear
Bounded Automata. Part 2] For any language A ⊆ Σ∗ such that there exists a
linear bounded automaton M = 〈Q, Σ, Γ, δ, q0, ¢, $, F 〉 which accepts a language A,
that is, A = L(M), then there exists a type 1 grammar G = 〈Σ, VN , P, A1〉, where
Σ is the set of terminal symbols, VN is the set of nonterminal symbols, P is the
finite set of productions, and A1 is the axiom, such that A = L(G), that is, A is the
language generated by G.

Proof. Given the linear bounded automaton M and a word w ∈ Σ∗, we construct
a type 1 grammar G which first makes two copies of w and then simulates the
behaviour of M on one copy. If M accepts w then G generates w, otherwise G does
not generate w. In order to avoid the shortening of the generated sentential form
when the state and the endmarker symbols need to be erased, we have to incorporate
the state and the endmarker symbols into the nonterminals.

We will now give the rules for constructing the set P of productions of the
grammar G. In these productions the pairs of the form [−,−] are symbols of the
nonterminal alphabet VN .

The productions 0.1, 1.1, N.1, N.2, and N.3, listed below, are necessary for gen-
erating the initial configuration q0 ¢ a1 a2 . . . aN $ (see Definition 5.0.2 on page 184)
when the input word is a1 a2 . . . aN, for N≥ 1. For N = 0, the input word is the
empty string ε and the initial configuration is q0 ¢ $. As usual, in any configuration
we write the state immediately to the left of the scanned symbol and thus, for N≥ 0,
the tape head initially scans the symbol ¢.
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Here are the productions needed when N =0. Their label is of the form 0.k. If
the linear bounded automaton M eventually enters a final state and N =0, then M
accepts a set of words which includes the empty string ε. We need the production:

0.1 A1 → [ε, q0¢$]

and for every p, q ∈ Q, the productions:

0.2 [ε, p¢$]→ [ε, ¢q$] if δ(p, ¢) = (q, ¢, R)

0.3 [ε, ¢p$]→ [ε, q¢$] if δ(p, $) = (q, $, L)

0.4 A1 → ε if there exists a final state in any of the configurations occurring in
the productions 0.1, 0.2, and 0.3.

Here are the productions needed when N =1. Their label is of the form 1.k. For
every a, b, d ∈ Σ, and q, p ∈ Q, we need the productions:

1.1 A1 → [a, q0¢a$]

1.2 [a, q¢b$]→ [a, ¢pb$] if δ(q, ¢) = (p, ¢, R)

1.3 [a, ¢qb$]→ [a, p¢d$] if δ(q, b) = (p, d, L)

1.4 [a, ¢qb$]→ [a, ¢dp$] if δ(q, b) = (p, d, R)

1.5 [a, ¢bq$]→ [a, ¢pb$] if δ(q, $) = (p, $, L)

For every a, b ∈ Σ, and q ∈ F , we need the productions:

1.6 [a, q¢b$]→ a

1.7 [a, ¢qb$]→ a

1.8 [a, ¢bq$]→ a

The above productions of the form 1.6, 1.7, and 1.8 should be used for generating a
word in Σ∗ when the linear bounded automaton M enters a final state.

Here are the productions needed when N >1. Their label is of the form N.k. For
each a, b, d ∈ Σ, and q, p ∈ Q, we need the productions:

N.1 A1 → [a, q0¢a] A2

N.2 A2 → [a, a] A2

N.3 A2 → [a, a$]

N.4 [a, q¢b]→ [a, ¢pb] if δ(q, ¢) = (p, ¢, R)

N.5 [a, ¢qb]→ [a, p¢d] if δ(q, b) = (p, d, L)

For every a, b ∈ Σ, q, p ∈ Q such that δ(q, a) = (p, b, R), for every ak, ak+1, d ∈ Σ,
we need the productions:

N.6.1 [ak, ¢qa] [ak+1, d] → [ak, ¢b] [ak+1, pd]

N.6.2 [ak, ¢qa] [ak+1, d$] → [ak, ¢b] [ak+1, pd$]
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N.6.3 [ak, qa] [ak+1, d] → [ak, b] [ak+1, pd]

N.6.4 [ak, qa] [ak+1, d$] → [ak, b] [ak+1, pd$]

For every a, b ∈ Σ, q, p ∈ Q, such that δ(q, a) = (p, b, L), for every ak, ak+1, d ∈ Σ,
we need the productions:

N.7.1 [ak, ¢d] [ak+1, qa] → [ak, ¢pd] [ak+1, b]

N.7.2 [ak, ¢d] [ak+1, qa$] → [ak, ¢pd] [ak+1, b$]

N.7.3 [ak, d] [ak+1, qa] → [ak, pd] [ak+1, b]

N.7.4 [ak, d] [ak+1, qa$] → [ak, pd] [ak+1, b$]

For every a, b, d ∈ Σ, and q, p ∈ Q, we need the productions:

N.8 [a, qb$]→ [a, dp$] if δ(q, b) = (p, d, R)

N.9 [a, bq$]→ [a, pb$] if δ(q, $) = (p, $, L)

For every a, b, d ∈ Σ, and q ∈ F , the productions:

N.10 [a, q¢b] → a

N.11 [a, ¢qb] → a

N.12 [a, qb$] → a

N.13 [a, bq$] → a

N.14 [a, qb] → a

N.15 [a, d] b → ab

N.16 [a, ¢d] b → ab

N.17 b [a, d] → ba

N.18 b [a, d$] → ba

The productions of the form N.10–N.18 should be used for generating a word in Σ∗

when the linear bounded automaton M enters a final state.

We will not prove that these productions simulate the behaviour of the LBA M ,
that is, for any w ∈ Σ+, w is generated by G iff w ∈ L(M). We simply make the
following two observations:
(i) the ‘first component’ of the nonterminals [−,−] are never touched by the pro-
ductions, so that the given word w is kept unchanged, and
(ii) never a nonterminal [−,−] is made to be a terminal symbol if a final state q is
not encountered first. �

We have the following facts which we state without proof.

Every context-free language is accepted by a deterministic linear bounded au-
tomaton.

The problem of determining whether or not a given context-sensitive grammar
G = 〈VT , VN , P, S〉 without the production S → ε, generates the language Σ∗ is
trivial. The answer is ‘no’, because the empty string ε does not belong to L(G).
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However, the problem of determining whether or not a given context-sensitive
grammar G without the production S → ε, generates the language Σ+ is undecid-
able.

Fact 4.0.11. [Recursively Enumerable Languages Are Generated by
Homomorphisms From Context-Sensitive Languages] Given any r.e. set A,
which is a subset of Σ∗, there exists a context-sensitive language L such that ε 6∈ L,
and a homomorphism h from Σ to Σ∗ such that A = h(L). This homomorphism is
not, in general, an ε-free homomorphism [9, page 230].

The class of context-sensitive languages is a Boolean Algebra. Indeed, it is closed
under: (i) union, (ii) intersection, and (iii) complementation.

It is open whether or not every context-sensitive language is a deterministic
context-sensitive language, that is, it is generated by a deterministic linear bounded
automaton [9, page 229–230].

4.1. Recursiveness of Context-Sensitive Languages

In this section we prove that the class of the context-sensitive languages is a proper
subclass of the class of the recursive languages. Without loss of generality, let us as-
sume that the alphabet Σ of the languages we consider, is the binary alphabet {0, 1}.

Lemma 4.1.1. [Context-Sensitive Languages are Recursive Languages]
Every context-sensitive language is a recursive language.

Proof. It follows from the fact that membership for context-sensitive languages is
decidable (see Theorem 4.0.5 on page 173). We can also reason directly as follows.
Given a context-sensitive grammar G = 〈VT , VN , P, S〉, we need to show that there
exists an algorithm which always terminates such that given any word w ∈ V ∗

T , tells
us whether or not w ∈ L(G). It is enough to construct a directed graph whose
nodes are labeled by strings s in (VT ∪ VN )∗ such that |s| ≤ |w|. Obviously, there is
a finite number of those strings. In this graph there is an arc from the node labeled
by the string s1 to the node labeled by the string s2 iff we can derive s2 from s1

in one derivation step, by application of a single production of G. The presence
of an arc between any two nodes can be determined in finite time because there is
only a finite number of productions in P and the string s1 is of finite length. We
can then determine whether or not there is a path from the node labeled by S to
the node labeled by w, by applying a reachability algorithm (see, for instance, [13,
page 45]). �

Let us introduce the following concept.

Definition 4.1.2. [Enumeration of Turing Machines or Languages] An
enumeration of Turing Machines (or languages, subsets of Σ∗) is an algorithm E
(that is, a Turing Machine or a computable function [14, 18]) which given a natural
number n, always terminates and returns a Turing Machine Mn (or a language Ln,
subset of Σ∗). By abuse of language, also the sequence produced by the algorithm E
for the input values: 0, 1, . . ., is said to be an enumeration.
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Let |N | be the cardinality of the set N of natural numbers. In the literature |N |
is also denoted by ℵ0 (pronounced alef-zero).

Lemma 4.1.3. The cardinality of the set of all Turing Machines which always
halt is |N |.

Proof. This lemma is an easy consequence of the Bernstein Theorem (see The-
orem 7.9.2 on page 235). Indeed,

(i) | {T | T is a Turing Machine which always halts} |
≤ | {T | T is a Turing Machine} | = |N |, and

(ii) for any n ∈ N , we can construct a Turing Machine Tn which always halts and
returns n. �

As a consequence of the following lemma we have that the set of all Turing
Machines which always halt is not recursively enumerable.

Lemma 4.1.4. For every given enumeration 〈M0, M1, . . .〉 of Turing Machines
each of which always halts and recognizes a recursive language subset of {0, 1}∗,
there exists a Turing Machine M which always halts and recognizes a recursive
language subset of {0, 1}∗, such that it is not in the enumeration.

Proof. We stipulate that every word w in {0, 1}∗, when used as a subscript of a
Turing Machine of an enumeration as we will do below, denotes the natural number n
such that n+1 has the binary expansion 1w. Thus, for instance, ε denotes 0, and 10
denotes 5 (indeed, the binary expansion of 6 is 110). We leave it to the reader to
show that this denotation provides a bijection between {0, 1}∗ and N .

Given the enumeration 〈M0, M1, . . .〉, let us consider the language L ⊆ {0, 1}∗
defined as follows:

L = {w |Mw does not accept w}. (α)

Now, L is recursive because given any word w ∈ {0, 1}∗, we can compute the num-
ber n which w denotes when w is used as a subscript of a Turing Machine. Then,
given n, from the enumeration we get a Turing Machine Mw which always halts.
Therefore, it is decidable whether or not w ∈ L by checking whether or not Mw

accepts w.
If by absurdum we assume that all Turing Machines which always terminate are

in the enumeration, then since L is recursive, there exists in the enumeration also
the Turing Machine, say Mz , which always halts and accepts L, that is,

∀w ∈ {0, 1}∗, w ∈ L iff Mz accepts w. (β)

In particular, for w = z, from (β) we get that:

z ∈ L iff Mz accepts z. (βz)

Now, by (α) we have that:

z ∈ L iff Mz does not accept z. (γ)

We have that the sentences (βz) and (γ) are contradictory. This completes the proof
of the lemma. �
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Theorem 4.1.5. [Context-Sensitive Languages are a Proper Subset of
the Recursive Languages] There exists a recursive language which is not context-
sensitive.

Proof. It is enough: (i) to exhibit an enumeration 〈L0, L1, . . .〉 of all context-
sensitive languages (no context-sensitive language should be omitted in that enu-
meration), and
(ii) to construct for every context-sensitive language Li in the enumeration, a Turing
Machine which always halts and accepts Li.

From (i) we have that there is an enumeration of all context-sensitive languages.
Then, by (ii) we have that there exists an enumeration of Turing Machines, each
of which always halts. Then, by Lemma 4.1.4 there exists a Turing Machine which
always halts and it is not in the enumeration. This means that there exists a
recursive language, say L, which is accepted by a Turing Machine which always
halts and it is not in the enumeration. Thus, L is a recursive language which is not
a context-sensitive language.

Proof of (i). Any context-sensitive grammar can be encoded by a natural number
whose binary expansion is obtained by using the following mapping, where 10n

stands for 1 followed by n 0’s, for any n ≥ 1:

0 7→ 101

1 7→ 102

, 7→ 103

{ 7→ 104

} 7→ 105

S 7→ 106

〈 7→ 107

〉 7→ 108

A 7→ 109

For instance, the grammar 〈{0, 1}, {S, A}, {S → 0S1, S → A10, A1 → 01}, S〉 is
encoded by a number whose binary expansion is:

107 104 10 103 102 105 103 104 106 103 109 105 103 . . . 103 106 108

〈 { 0 , 1 } , { S , A } , . . . , S 〉

Now if we assume that:
(i.1) every natural number which encodes a context-sensitive grammar, denotes the
corresponding context-sensitive language, and
(i.2) every natural number which is not the encoding of a context-sensitive grammar,
denotes the empty language (which is a context-sensitive language),
we have that the sequence 〈0, 1, 2, . . .〉 denotes an enumeration 〈L0, L1, L2, . . .〉 (with
repetitions) of all context-sensitive languages.
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Note that the test we should make at Point (i.2) for checking whether or not a
natural number is the encoding of a context-sensitive grammar, can be done by a
Turing Machine which terminates for every given natural number.

Proof of (ii). This Point (ii) is Lemma 4.1.1 on page 179. Now we give a different
proof. Let us consider the context-sensitive language Ln which is generated by the
context-sensitive grammar which is encoded by the natural number n. Then the
Turing Machine Mn which always halts and accepts Ln, is the algorithm which by
using n as a program, tests whether or not a given input word w is in Ln. The
Turing Machine Mn works as follows. Mn starts from the axiom S and generates
all sentential forms derivable from S by exploring in a breadth-first manner the tree
of all possible derivations from S. We construct Mn so that no sentential form is
generated by Mn, unless all shorter sentential forms have already been generated.
Mn can decide whether or not w is in Ln by computing the sentential forms whose
length is not greater than the length of w. (Note that the set of all sentential forms
whose length is not greater than the length of w is a finite set.) Thus, Mn always
halts and it accepts Ln. �

Note that in the proof of this theorem we have constructed an enumeration of
all context-sensitive languages by providing an enumeration of all context-sensitive
grammars. Indeed, since a context-sensitive language may be an infinite set of words,
we need a finite object to denote it and we have chosen that finite object to be the
grammar which generates the language.



CHAPTER 5

Turing Machines and Type 0 Grammars

In this chapter we establish the equivalence between the class of Turing computable
languages and the class of type 0 grammars. Before presenting this result, we recall
some basic notions about the Turing Machines. These machines were introduced by
the English mathematician Alan Turing in 1936 for formalizing the intuitive notion
of an algorithm [22].

Informally, a Turing Machine M consists of:
(i) a finite automaton FA, also called the control,
(ii) a one-way infinite tape, which is an infinite sequence {ci | i ∈ N, i > 0} of cells
ci’s, and
(iii) a tape head which at any given time is on a single cell. When the tape head is
on the cell ci we will also say that the tape head scans the cell ci.

The cell which the tape head scans, is called the scanned cell and it can be read
and written by the tape head. Each cell contains exactly one of the symbols of the
tape alphabet Γ. The states of the automaton FA are also called internal states, or
simply states, of the Turing Machine M .

We say that the Turing Machine M is in state q, or q is the current state of M ,
if the automaton FA is in state q, or q is the current state of FA, respectively.

We assume a left-to-right orientation of the tape by stipulating that for any
i > 0, the cell ci+1 is immediately to the right of the cell ci.

A Turing Machine M behaves as follows. It starts with a tape containing in
its leftmost n (≥ 0) cells c1 c2 . . . cn a sequence of n input symbols from the input
alphabet Σ, while all other cells contain the symbol B, called blank, belonging to Γ.
We assume that: Σ ⊆ Γ−{B}. If n = 0 then, initially, the blank symbol B is
in every cell of the tape. The Turing Machine M starts with its tape head on the
leftmost cell, that is, c1, and its control, that is, the automaton FA in its initial
state q0.

An instruction (or a quintuple) of the Turing Machine is a structure of the form:

qi, Xh 7−→ qj, Xk, m

where: (i) qi ∈ Q is the current state of the automaton FA,

(ii) Xh ∈ Γ is the scanned symbol, that is, the symbol of the scanned cell that is
read by the tape head,

(iii) qj ∈ Q is the new state of the automaton FA,

(iv) Xk ∈ Γ is the printed symbol, that is, the non-blank symbol of Γ which replaces
Xh on the scanned cell when the instruction is executed, and

183
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(v) m ∈ {L, R} is a value which denotes that, after the execution of the instruction,
the tape head moves either one cell to the left, if m = L, or one cell to the right,
if m=R. Initially and when the tape head of a Turing Machine scans the leftmost
cell c1 of the tape, m must be R.

Given a Turing Machine M , if no two instructions of that machine have the
same current state qi and scanned symbol Xh, we say that the Turing Machine M
is deterministic.

Since it is assumed that the printed symbol Xk is not the blank symbol B, we
have that if the tape head scans a cell with a blank symbol then: (i) every symbol
to the left of that cell is not a blank symbol, and (ii) every symbol to the right of
that cell is a blank symbol.

Here is the formal definition of a Turing Machine.

Definition 5.0.1. [Turing Machine] A Turing Machine (or a deterministic
Turing Machine) is a septuple of the form 〈Q, Σ, Γ, q0, B, F, δ〉, where:
- Q is the set of states,
- Σ is the input alphabet,
- Γ is the tape alphabet,
- q0 in Q is the initial state,
- B in Γ is the blank symbol,
- F ⊆ Q is the set of final states, and
- δ is a partial function from Q× Γ to Q× (Γ−{B})×{L, R}, called the transition
function, which defines the set of instructions or quintuples of the Turing Machine.
We assume that Q and Γ are disjoint sets and Σ ⊆ Γ−{B}.

We may extend the definition of a Turing Machine by allowing the transition
function δ to be a partial function from the set Q × Γ to the set of the subsets of
Q × (Γ−{B}) × {L, R} (not to the set Q × (Γ−{B}) × {L, R}). In that case it
is possible that two quintuples of δ have the same first two components and if this
is the case, we say that the Turing Machine is nondeterministic. Unless otherwise
specified, the Turing Machines we consider are assumed to be deterministic.

Let us consider a Turing Machine whose leftmost part of the tape consists of the
cells:

c1 c2 . . . ch−1 ch . . . ck

where ck, with 1≤ k, is the rightmost cell with a non-blank symbol, and ch, with
1 ≤ h ≤ k+1, is the cell scanned by the tape head.

Definition 5.0.2. [Configuration of a Turing Machine] A configuration of
a Turing Machine M whose tape head scans the cell ch for some h ≥ 1, such that
the cells containing a non-blank symbol in Γ are c1 . . . ck, for some k ≥ 0, with
1 ≤ h ≤ k+1, is the triple α1 q α2, where:

- α1 is the (possibly empty) word in (Γ−{B})h−1 written in the cells c1 c2 . . . ch−1,
one symbol per cell from left to right,

- q is the current state of the Turing Machine M , and
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?

-� (the tape head moves
to the left and to the right)

b b a a b d B B B

α2

final states: F
initial state: q0

states: Q
finite automaton FA in state q

Σ = {a, b, c, d}
Γ = {a, b, c, d, B}

α1

. . .

Figure 5.0.1. A Turing Machine in the configuration α1 q α2, that
is, b b a q a b d. The head scans the cell c4 and reads the symbol a.

- if the tape head scans a cell with a non-blank symbol, that is, 1≤h≤k, then α2

is the non-empty word of Γk−h+1 written in the cells ch . . . ck, one symbol per cell
from left to right, else if the tape head scans a cell with the blank symbol B, then
α2 is the sequence of one B only, that is, h = k+1.

For each configuration γ = α1 q α2, we assume that: (i) the tape head scans the
leftmost symbol of α2, and (ii) we say that q is the state in the configuration γ.

In Figure 5.0.1 we have depicted a Turing Machine whose configuration is α1qα2.

If the word w = a1a2 . . . an is initially written, one symbol per cell, on the n
leftmost cells of the tape of a Turing Machine M and all other cells contain B, then
the initial configuration of M is q0 w, that is, the configuration where: (i) α1 is
the empty sequence ε, (ii) the state of M is the initial state q0, and (iii) α2 = w.
The word w of the initial configuration is said to be the input word for the Turing
Machine M .

Definition 5.0.3. [Tape Configuration of a Turing Machine] Given a Tur-
ing Machine whose configuration is α1 q α2, we say that its tape configuration is the
string α1 α2 in Γ∗.

Now we give the definition of a move of a Turing Machine. By this notion we
characterize the execution of an instruction as a pair of configurations, that is, (i) the
configuration ‘before the execution’ of the instruction, and (ii) the configuration
‘after the execution’ of the instruction.

Definition 5.0.4. [Move (or Transition) of a Turing Machine] Given a
Turing Machine M , its move relation (or transition relation), denoted →M , is a
subset of CM × CM , where CM is the set of configurations of M , such that for any
state p, q ∈ Q, for any tape symbol X1, . . . , Xi−2, Xi−1, Xi, Xi+1, . . . , Xn, Y ∈ Γ,
either:
1. if δ(q, Xi) = 〈p, Y, L〉 and X1 . . .Xi−2Xi−1 6= ε then

X1 . . .Xi−2Xi−1 q XiXi+1 . . .Xn →M X1 . . . Xi−2 p Xi−1 Y Xi+1 . . .Xn

or
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2. if δ(q, Xi) = 〈p, Y, R〉 then

X1 . . .Xi−2Xi−1 q XiXi+1 . . .Xn →M X1 . . .Xi−2Xi−1 Y p Xi+1 . . .Xn

In Case (1) of this definition we have added the condition X1 . . .Xi−2Xi−1 6= ε
because the tape head has to move to the left, and thus, ‘before the move’, it should
not scan the leftmost cell of the tape.

When the transition function δ of a Turing Machine M is applied to the current
state and the scanned symbol, we have that the current configuration γ1 is changed
into a new configuration γ2. In this case we say that M makes the move from γ1

to γ2 and we write γ1 →M γ2.
As usual, the reflexive and transitive closure of the relation →M is denoted

by →∗
M .

The following definition introduces various concepts about the halting behaviour of
a Turing Machine. They will be useful in the sequel.

Definition 5.0.5. [Final States and Halting Behaviour of a Turing Ma-
chine] (i) We say that a Turing Machine M enters a final state when making the
move γ1 →M γ2 iff the state in the configuration γ2 is a final state.
(ii) We say that a Turing Machine M stops (or halts) in a configuration α1 q α2 iff
no quintuple of M is of the form: q, X 7−→ qj , Xk, m, where X is the leftmost
symbol of α2, for some state qj ∈ Q, symbol Xk ∈ Γ, and value m ∈ {L, R}. Thus,
in this case no configuration γ exists such that α1 q α2 →M γ.
(iii) We say that a Turing Machine M stops (or halts) in a state q iff no quintuple
of M is of the form: q, Xh 7−→ qj , Xk, m for some state qj ∈ Q, symbols Xh, Xk ∈ Γ,
and value m ∈ {L, R}.
(iv) We say that a Turing Machine M stops (or halts) on the input w iff for the
initial configuration q0 w there exists a configuration γ such that: (i) q0w →∗

M γ,
and (ii) M stops in the configuration γ.
(v) We say that a Turing Machine M stops (or halts) iff for every initial configuration
q0 w there exists a configuration γ such that: (i) q0w →∗

M γ, and (ii) M stops in the
configuration γ.

In Case (v), instead of saying: ‘the Turing Machine M stops’ (or halts), we also
say: ‘the Turing Machine M always stops’ (or always halts, respectively). Indeed, we
will do so when we want to stress the fact that M stops for all initial configurations
of the form q0w, where q0 is the initial state and w is an a input word (in particular,
we have used this terminology in Lemma 4.1.4 on page 180).

Definition 5.0.6. [Language Accepted by a Turing Machine. Equiva-
lence Between Turing Machines] Let us consider a deterministic Turing Machine
M with initial state q0, and an input word w ∈ Σ∗ for M .

(1) We say that M answers ‘yes’ for w (or M accepts w) iff (1.1) there exist
q ∈ F, α1 ∈ Γ∗, and α2 ∈ Γ+ such that q0w →∗

M α1 q α2, and (1.2) M stops in the
configuration α1 q α2 (that is, M stops in a final state, not necessarily the first final
state which is entered by M).
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(2) We say that M answers ‘no’ for w (or M rejects w) iff (2.1) for all configura-
tions γ such that q0w →∗

M γ, the state in γ is not a final state, and (2.2) there
exists a configuration γ such that q0w →∗

M γ and M stops in γ (that is, M never
enters a final state and there is a state in which M stops).

(3) The set {w |w ∈ Σ∗ and q0w →∗
M α1 q α2 for some q ∈ F , α1 ∈ Γ∗, and α2 ∈ Γ+}

which is a subset of Σ∗, is said to be the language accepted by M and it denoted
by L(M). Every word w in L(M) is said to be a word accepted by M , and for all
w ∈ L(M), M accepts w. A language accepted by a Turing Machine is said to be
Turing computable.

(4) Two Turing Machines M1 and M2 are said to be equivalent iff L(M1) = L(M2).

When the input word w is understood from the context, we will simply say: M
answers ‘yes’ (or ‘no’), instead of saying: M answers ‘yes’ (or ‘no’) for the word w.

Note that in other textbooks, when introducing the concepts of Definition 5.0.6
above, the authors use the expressions ‘recognizes’, ‘recognized’, and ‘does not rec-
ognize’, instead of ‘accepts’, ‘accepted’, and ‘rejects’, respectively.

Remark 5.0.7. [Halting Hypothesis] Unless otherwise specified, we will as-
sume the following hypothesis, called the Halting Hypothesis:
for all Turing Machines M , for all initial configuration q0w, and for all configura-
tions γ, if q0w →∗

M γ and the state in γ is final then no configuration γ′ exists such
that γ →M γ′ (that is, the first time M enters a final state, M stops in that state).

Thus, by assuming the Halting Hypothesis, we will consider only Turing Ma-
chines which stop whenever they are in a final state. �

It is easy to see that this Halting Hypothesis can always be assumed without chang-
ing the notions introduced in the above Definition 5.0.6. In particular, for any given
Turing Machine M which accepts the language L, there exists an equivalent Turing
Machine which complies with the Halting Hypothesis.

As in the case of finite automata, we say that the notion of acceptance of a
word w (or a language L) by a Turing Machine M is by final state, because the
word w (or every word of the language L) is accepted by the Turing Machine M ,
if M is in a final state or ever enters a final state, as specified by Definition 5.0.6.

The notion of acceptance of a word, or a language, by a nondeterministic Turing
Machine is identical to that of a deterministic Turing Machine.

Definition 5.0.8. [Word and Language Accepted by a Nondeterminis-
tic Turing Machine] A word w is accepted by a nondeterministic Turing Machine
M with initial state q0, iff there exists a configuration γ such that q0w →∗

M γ and
the state of γ is a final state. The language accepted a nondeterministic Turing
Machine M is the set of words accepted by M .

Sometimes in the literature, one refers to this notion of acceptance by saying that
every nondeterministic Turing Machine has angelic nondeterminism. The qualifi-
cation ‘angelic’ is due to the fact that a word w is accepted by a nondeterministic
Turing Machine M if there exists a sequence of moves (and not ‘for all sequences of
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moves’) such that M makes a sequence of moves from the initial configuration q0 w
to a configuration with a final state.

Similarly to what happens for finite automata (see page 29), Turing Machines can
be presented by giving their input alphabet and their transition functions, assuming
that they are total (see also Remark 5.0.10 on page 189). Indeed, from the transition
function of a Turing Machine M one can derive also its set of states and its tape
alphabet. The transition function δ of a Turing Machine can be represented as a
multigraph, by representing each quintuple of δ of the form:

qi, Xh 7−→ qj , Xk, m

as an arc from node qi to a node qj labeled by ‘Xh (Xk, m)’ as follows:

qi qj
Xh (Xk, m)

In Figure 5.0.2 below we present a Turing Machine M which accepts the language
{anbn | n ≥ 0}. Note that this language can also be accepted by a deterministic
pushdown automaton, but it cannot be accepted by any finite automaton, because
it is not a regular language.

q0

q4

q1

q2

q3

q5

a (#, R)

B

(#, R) a

(#, R)

B
(#, L)

#
(#, L)

b

(#, L)
#

(#, R)

#(#, L)

a (a, R)

b (b, R)

a (a, L)

b (b, L)

Figure 5.0.2. The transition function of a Turing Machine M which
accepts the language {anbn | n≥0}. The input alphabet is {a, b}. The
initial state is q0. The unique final state is q5. If the machine M halts
in a state which is not final, then the input word is not accepted. The
arc labeled by ‘B (#, L)’ from state q1 to state q2 is followed only on
the first sweep from left to right, and the arc labeled by ‘# (#, L)’
from state q1 to state q2 is followed in all other sweeps from left to
right.

Note also that deterministic pushdown automata are devices which are computation-
ally ‘less powerful’ than Turing Machines, because deterministic pushdown automata
accept deterministic context-free languages while, as we will see below, Turing Ma-
chines accept type 0 languages.

The Turing Machine M whose transition function is depicted in Figure 5.0.2,
accepts the language {anbn | n≥0} by implementing the following algorithm.
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Algorithm 5.0.9. Acceptance of the language {anbn |n≥0} by the Turing Ma-
chine M of Figure 5.0.2. The input alphabet is Σ = {a, b}. The tape alphabet is
Γ = {a, b, B, #}.

Initially the tape head of M scans the leftmost cell;
α : if the tape head reads the symbol B or # then M accepts the input

word (which is the empty word if the symbol read is B)
else begin

- M performs a sweep to the right until # or B is found
(B is found only when the first left-to-right sweep is performed)
and during that sweep it changes the leftmost a into #;
if this change is not possible then M rejects the input word;

- M performs a sweep to the left until # is found and
during that sweep it changes the rightmost b into #;
if this change is not possible then M rejects the input word;

- go to α
end

If during a left-to-right or right-to-left sweep of the tape head going from a symbol
# to another symbol #, no change of character can be made according to Algo-
rithm 5.0.9, then the input word should be rejected. We leave it to the reader to
prove this fact. This proof is based on the property that if no change of character
can be made, then the number of a’s is different from the number of b’s.

As a consequence of our definitions, we have that a language L is accepted by
some Turing Machine iff there exists a Turing Machine M such that for all words
w ∈ L, starting from the initial configuration q0w, the state q0 is a final state or the
state of the Turing Machine M will eventually be a final state. For words which are
not in L, the Turing Machine M may halt without ever being in a final state or it
may run forever without ever entering a final state.

Remark 5.0.10. Without loss of generality, we may assume that the transition
function δ of any given Turing Machine is a total function by adding a sink state to
the set Q of states as we have done in the case of finite automata (see Section 2.1).
We stipulate that: (i) the sink state is not final, and (ii) for every tape symbol which
is in the scanned cell, the transition from the sink state takes the Turing Machine
back to the sink state. �

We have the following result which we state without proof (see [14]).

Theorem 5.0.11. [Equivalence of Deterministic and Nondeterministic
Turing Machines] For any nondeterministic Turing Machine M there exists a
deterministic Turing Machine which accepts the language L(M).

There are other kinds of Turing Machines which have been described in the
literature and one may want to consider. In particular, (i) one may allow the tape
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Figure 5.0.3. An off-line Turing Machine (the lower tape may equiv-
alently be two-way infinite or one-way infinite).

of a Turing Machine to be two-way infinite, instead of one-way infinite, and (ii) one
may allow k (≥1) tapes, instead of one tape only.

We will not give here the formal definitions of these kinds of Turing Machines.
It will suffice to say that if a Turing Machine M has k (≥ 1) tapes then: (i) each
move of the machine M depends on the sequence of k symbols which are read by
the k heads, (ii) before moving to the left or to the right, each tape head prints
a symbol on its tape, and (iii) after printing a symbol on its tape, each tape head
moves either to the left or to the right, independently of the moves of the other tape
heads.

The following theorem tells us that these kinds of Turing Machines have no
greater computational power with respect to the basic kind of Turing Machines
which we have introduced in Definition 5.0.1.

Theorem 5.0.12. [Equivalence of Turing Machines with 1 One-Way In-
finite Tape and k (≥1) Two-Way Infinite Tapes] Given any nondeterministic
Turing Machine M with k (≥1) two-way infinite tapes, there exists a deterministic
Turing Machine (with one one-way infinite tape) which accepts the language L(M).

Now let us introduce the notion of an off-line Turing Machine (see also Fig-
ure 5.0.3 on page 190). It is a Turing Machine with two tapes (and, thus, the moves
of the machine are done by reading the symbols on the two tapes, and by changing
the positions of the two tape heads) with the limitation that one of the two tapes,
called the input tape, is a tape which contains the input word between the two spe-
cial endmarker symbols ¢ and $. The input tape can be read, but not modified.
Moreover, it is not allowed to use the input tape outside the cells where the input
is written. The other tape of an off-line Turing Machine will be referred to as the
working tape, or the standard tape.

5.1. Equivalence Between Turing Machines and Type 0 Languages

Now we can state and prove the equivalence between Turing Machines and type 0
languages.

Theorem 5.1.1. [Equivalence Between Type 0 Grammars and Turing
Machines. Part 1] For any language R ⊆ Σ∗, if R is generated by the type 0
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grammar G = 〈Σ, VN , P, S〉, where Σ is the set of terminal symbols, VN is the set
of nonterminal symbols, P is the finite set of productions, and S is the axiom, then
there exists a Turing Machine M such that L(M) = R.

Proof. Given the grammar G which generates the language R, we construct a
nondeterministic Turing Machine M with two tapes as follows. Initially, on the first
tape there is the word w to be accepted iff w ∈ R, and on the second tape there is
the sentential form consisting of the axiom S only. Then M simulates a derivation
step of w from S by performing the following Steps (1), (2), and (3). Step (1): M
chooses in a nondeterministic way a production of the grammar G, say α → β,
and an occurrence of α on the second tape. Step (2): M rewrites that occurrence
of α by β, thereby changing the string on the second tape. In order to perform
this rewriting, M may apply the shifting-over technique for Turing Machines [9] by
either shifting to the right if |α|< |β|, or shifting to the left if |α|> |β|. Step (3):
M checks whether or not the string produced on the second tape is equal to the
word w which is kept unchanged on the first tape. If this is the case, M accepts w
and stops. If this is not the case, M simulates one more derivation step of w from
S by performing again Steps (1), (2), and (3) above.

We have that w ∈ R iff w ∈ L(M). �

Theorem 5.1.2. [Equivalence Between Type 0 Grammars and Turing
Machines. Part 2] For any language R ⊆ Σ∗ such that there exists a Turing Ma-
chine M such that L(M) = R then there exists a type 0 grammar G = 〈Σ, VN , P, A1〉,
where Σ is the set of terminal symbols, VN is the set of nonterminal symbols, P is the
finite set of productions, and A1 is the axiom, such that R is the language generated
by G, that is, R = L(G).

Proof. Given the Turing Machine M and a word w ∈ Σ∗, we construct a type 0
grammar G which first makes two copies of w and then simulates the behaviour of
M on one copy. If M accepts w then w ∈ L(G), and if M does not accept w then
w 6∈ L(G). The detailed construction of G is as follows.
Let M = 〈Q, Σ, Γ, q0, B, F, δ〉. The productions of G are the following ones, where
the pairs of the form [−,−] are elements of the set VN of the nonterminal symbols:

1. A1 → q0 A2

The following productions nondeterministically generate two copies of w:

2. A2 → [a, a] A2 for each a ∈ Σ

The following productions generate all tape cells necessary for simulating the com-
putation of the Turing Machine M :

3.1 A2 → [ε, B] A2

3.2 A2 → [ε, B]

The following productions simulate the moves to the right:

4. q [a, X]→ [a, Y ] p

for each a ∈ Σ ∪ {ε},
for each p, q ∈ Q,
for each X ∈ Γ, Y ∈ Γ− {B} such that δ(q, X) = (p, Y, R)
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The following productions simulate the moves to the left:

5. [b, Z] q [a, X]→ p [b, Z] [a, Y ]

for each a, b ∈ Σ ∪ {ε},
for each p, q ∈ Q,
for each X, Z ∈ Γ, Y ∈ Γ− {B} such that δ(q, X) = (p, Y, L)

When a final state q is reached, the following productions propagate the state q to
the left and to the right, and generate the word w, making q to disappear when all
the terminal symbols of w have been generated:

6.1 [a, X] q → q a q
6.2 q [a, X]→ q a q
6.3 q → ε

for each a ∈ Σ ∪ {ε}, X ∈ Γ, q ∈ F

We will not formally prove that all the above productions simulate the behaviour of
M , that is, for any w ∈ Σ∗, w ∈ L(G) iff w ∈ L(M).

The following observations should be sufficient:
(i) the first components of the nonterminal symbols [−,−] are never touched by the
productions so that the given word w is kept unchanged,
(ii) never a nonterminal symbol [−,−] is made to be a terminal symbol if a final
state q is not encountered first,
(iii) if the acceptance of a word w requires at most k (≥0) tape cells, we have that
the initial configuration of the Turing Machine M for the word w = a1 a2 . . . an, with
n≥0, on the leftmost cells of the tape, is simulated by the derivation:

A1 →∗ q0 [a1, a1] [a2, a2] . . . [an, an] [ε, B] [ε, B] . . . [ε, B]

where there are k (≥n) nonterminal symbols to the right of q0. �

We end this chapter by recalling that every Turing Machine can be encoded by
a natural number. This property has been used in Chapter 4 (see Definition 4.1.2
on page 179). In particular, we will prove that there exists an injection from the set
of Turing Machines into the set of natural numbers. Without loss of generality, we
will assume that: (i) the Turing Machines are deterministic, (ii) the input alphabet
of the Turing Machines is {0, 1}, (iii) the tape alphabet of the Turing Machines is
{0, 1, B}, and (iv) the Turing Machines have one final state only.

For our proof it will be enough to show that a Turing Machine M with tape
alphabet {0, 1, B} can be encoded by a word in {0, 1}∗. Then each word in {0, 1}∗
with an 1 in front, is the binary expansion of a natural number. The desired encoding
is constructed as follows.

Let us assume that:
- the set of states of M is {qi | 1 ≤ i ≤ n}, for some value of n ≥ 2,
- the tape symbols 0, 1, and B are denoted by X1, X2, and X3, respectively, and
- L (that is, the move to the left) and R (that is, the move to the right) are denoted
by 1 and 2, respectively.

The initial and final states are assumed to be q1 and q2, respectively.
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Then, each quintuple ‘qi, Xh 7−→ qj , Xk, m’ of M corresponds to a string of five
positive numbers 〈i, h, j, k, m〉. It should be the case that 1 ≤ i, j ≤ n, 1 ≤ h, k ≤ 3,
and 1 ≤ m ≤ 2. Thus, the quintuple ‘qi, Xh 7−→ qj , Xk, m’ can be encoded by the
sequence: 1i01h01j01k01m. The various quintuples can be listed one after the other,
so to get a sequence of the form:

000 code of the first quintuple 00 code of the second quintuple 00 . . . 000. (†)
Every sequence of the form (†) encodes one Turing Machine only.

Remark 5.1.3. Since when describing a Turing Machine the order of the quin-
tuples is not significant, a Turing Machine can be encoded by several sequences of
the form (†). In order to get a unique sequence of the form (†), we take, among all
possible sequences obtained by permutations of the quintuples, the sequence which
is the binary expansion of the smallest natural number.

There is an injection from the set N of natural numbers into the set of Turing
Machines because for each n ∈ N we can construct the Turing Machine which
computes n. Thus, by the Bernstein Theorem (see Theorem 7.9.2 on page 235) we
have that there is a bijection between the set of Turing Machines and the set of
natural numbers.





CHAPTER 6

Decidability and Undecidability in Context-Free Languages

Let us begin by recalling a few elementary concepts of Computability Theory which
are necessary for understanding the decidability and undecidability results we will
present in this chapter. More results can be found in [9] and the interested reader
may refer to that book.

Definition 6.0.4. [Recursively Enumerable Language] Given an alphabet
Σ, we say that a language L ⊆ Σ∗ is recursively enumerable, or r.e., or L is a
recursive enumerable subset of Σ∗, iff there exists a Turing Machine M such that
for all words w ∈ Σ∗, M accepts the word w iff w ∈ L.

If a language L ⊆ Σ∗ is r.e. and M is a Turing Machine that accepts L, we have
that for all words w ∈ Σ∗, if w 6∈ L then either (i) M rejects w or (ii) M ‘runs
forever’ without accepting w, that is, for all configurations γ such that q0w →∗

M γ,
where q0w is the initial configuration of M , there exists a configuration γ′ such that:
(ii.1) γ →M γ′ and (ii.2) the states in γ and γ′ are not final.

Recall that the language accepted by a Turing Machine M is denoted by L(M).
Given the alphabet Σ, we denote by R.E. the class of the recursively enumerable

languages subsets of Σ∗.

Definition 6.0.5. [Recursive Language] We say that a language L ⊆ Σ∗ is
recursive, or L is a recursive subset of Σ∗, iff there exists a Turing Machine M such
that for all words w ∈ Σ∗, (i) M accepts the word w iff w ∈ L, and (ii) M rejects
the word w iff w 6∈ L (see also Definition 4.0.4 on page 173).

Given the alphabet Σ, we denote by REC the class of the recursive languages
subsets of Σ∗. One can show that the class of recursive languages is properly con-
tained in the class of the r.e. languages.

Now we introduce the notion of a decidable problem. Together with that notion
we also introduce the related notions of a semidecidable problem and an undecidable
problem. We first introduce the following three notions.

Definition 6.0.6. [Problem, Instance of a Problem, Solution of a Prob-
lem] Given an alphabet Σ, (i) a problem is a language L ⊆ Σ∗, (ii) an instance of a
problem L ⊆ Σ∗ is a word w ∈ Σ∗, and (iii) a solution of a problem L ⊆ Σ∗ is an algo-
rithm, that is, a Turing Machine, which accepts the language L (see Definition 5.0.6
on page 186).

Given a problem L, we will also say that L is the language associated with that
problem.

195
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As we will see below (see Definitions 6.0.7 and 6.0.8), a problem L is said to be
decidable or semidecidable depending on the properties of the Turing Machine, if
any, which provides a solution of L.

Note that an instance w ∈ Σ∗ of a problem L ⊆ Σ∗ can be viewed as a mem-
bership question of the form: «Does the word w belong to the language L?». For
this reason in some textbooks a problem, as we have defined it in Definition 6.0.6
above, is said to be a yes-no problem, and the language L associated with a yes-no
problem is also called the yes-language of the problem. Indeed, given a problem L,
its yes-language which is L itself, consists of all words w such that the answer to
the question: «Does w belong to L?» is ‘yes’. The words of the yes-language L are
called yes-instances of the problem.

We introduce the following definitions.

Definition 6.0.7. [Decidable and Undecidable Problem] Given an alpha-
bet Σ, a problem L ⊆ Σ∗ is said to be decidable (or solvable) iff L is recursive. A
problem is said to be undecidable (or unsolvable) iff it is not decidable.

As a consequence of this definition, every problem L such that the language L
is finite, is decidable.

Definition 6.0.8. [Semidecidable Problem] A problem L is said to be
semidecidable (or semisolvable) iff L is recursive enumerable.

We have that the class of decidable problems is properly contained in the class of the
semidecidable problems, because for any fixed alphabet Σ, every recursive subset of
Σ∗ is a particular recursively enumerable subset of Σ∗, and there exists a recursively
enumerable subset of Σ∗ which is not a recursive subset of Σ∗.

Now, in order to fix the reader’s ideas, we present two problems: (i) the Primality
Problem, and (ii) the Parsing Problem.

Example 6.0.9. [Primality Problem] The Primality Problem is the subset of
{1}∗ defined as follows:

Prime = {1n | n is a prime number}.
An instance of the Primality Problem is a word of the form 1n, for some n≥ 0. A
Turing Machine M is a solution of the Primality Problem iff for all words of the
form 1n with n≥ 1, we have that M accepts w iff 1n ∈Prime. Obviously, the yes-
language of the Primality Problem is Prime. We have that the Primality Problem
is decidable.

Note that we may choose other ways of encoding the prime numbers, thereby
getting other equivalent ways of presenting the Primality Problem. �

Example 6.0.10. [Parsing Problem] The Parsing Problem is the subset Parse
of {0, 1}∗ defined as follows:

Parse = {[G] 000 [w] | w ∈ L(G)}
where [G] is the encoding of a grammar G as a string in {0, 1}∗ and [w] is the
encoding of a word w as a string in {0, 1}∗, as we now specify.
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Let us consider a grammar G = 〈VT , VN , P, S〉. Let us encode every symbol of
the set VT ∪ VN ∪ {→} as a string of the form 01n for some value of n, with n≥1,
so that two distinct symbols have two different values of n. Thus, a production of
the form: x1 . . . xm → y1 . . . yn, for some m ≥ 1 and n ≥ 0, with the xi’s and the
yi’s in VT ∪ VN , will be encoded by a string of the form: 01k101k2 . . . 01kp0, where
k1, k2, . . . , kp are positive integers and p = m+n+1. The set of productions of the
grammar G can be encoded by a string of the form: 0σ1 . . . σt0, where each σi is the
encoding of a production of G, and two consecutive 0’s denote the beginning and
the end (of the encoding) of a production. Then [G] can be taken to be the string
01ka0σ1 . . . σt0, where 01ka encodes the axiom of G. We also stipulate that a string
in {0, 1}∗ which does not comply with the above encoding rules, is the encoding of
a grammar which generates the empty language.

The encoding [w] of a word w ∈ V ∗
T as a string in {0, 1}∗, is a word of the form

01k101k2 . . . 01kq0, where k1, k2, . . . , kq are positive integers.
An instance of the Parsing Problem is a word of the form [G] 000 [w], where:

(i) [G] is the encoding of a grammar G, and (ii) [w] is the encoding of a word
w ∈ V ∗

T .
A Turing Machine M is a solution of the Parsing Problem if given a word of

the form [G] 000 [w] for some grammar G and word w, we have that M accepts
[G] 000 [w] iff w ∈ L(G), that is, M accepts [G] 000 [w] iff [G] 000 [w] ∈Parse.

Obviously, the yes-language of the Parsing Problem is Parse.

We have the following decidability results if we restrict the class of the grammars
we consider in the Parsing Problem. In particular,
(i) if the grammars of the Parsing Problem L are type 1 grammars then the Parsing
Problem is decidable, and
(ii) if the grammars which are considered in the Parsing Problem L are type 0
grammars then the Parsing Problem is semidecidable and it is undecidable. �

Definition 6.0.11. [Property Associated with a Problem] With every
problem L ⊆ Σ∗ for some alphabet Σ, we associate a property PL such that PL(x)
holds iff x ∈ L.

For instance, in the case of the Parsing Problem, PParsing(x) iff x is a word in {0, 1}∗
of the form [G]000[w], for some grammar G and some word w such that w ∈ L(G).

Instead of saying that a problem L is decidable (or undecidable, or semidecid-
able, respectively), we will also say that the associated property PL is decidable (or
undecidable, or semidecidable, respectively).

Remark 6.0.12. [Specifications of a Problem] As it is often done in the
literature, we will also specify a problem {x |PL(x)} by using the sentence:

« Given x, determine whether or not PL(x) holds »

or by asking the question: « PL(x) ? »

Thus, for instance, (i) instead of saying ‘the problem {x |PL(x)}’, we will also say
‘the problem of determining, given x, whether or not PL(x) holds’, and (ii) instead of
saying ‘the problem of determining, given a grammar G, whether or not L(G) = Σ∗
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holds’, we will also ask the question ‘L(G) = Σ∗ ?’ (see the entries of Table 1 on
page 201 and Table 2 on page 222). �

We have the following results which we state without proof.

Fact 6.0.13. (i) The complement Σ∗−L of a recursive set L is recursive.
(ii) The union of two recursive languages is recursive. The union of two r.e. languages
is r.e.

For the proof of Part (i) of the above fact, it is enough to make a simple mod-
ification to the Turing Machine M which accepts L. Indeed, given any w ∈ Σ∗, if
M accepts (or rejects) w then the Turing Machine M1 which accepts Σ∗−L, rejects
(or accepts, respectively) w.

Theorem 6.0.14. [Post Theorem] If a language L and its complement Σ∗−L
are r.e. languages, then L is recursive.

Thus, given any set L ⊆ Σ∗, there are four mutually exclusive possibilities:

(i) L is recursive and Σ∗−L is recursive

(ii) L is not r.e. and Σ∗−L is not r.e.

(iii.1) L is r.e. and not recursive and Σ∗−L is not r.e.

(iii.2) L is not r.e. and Σ∗−L is r.e. and not recursive

As a consequence, in order to show that a problem is unsolvable and its associated
language L is not recursive, it is enough to show that Σ∗−L is not r.e.

An alternative technique for showing that a problem is unsolvable and its asso-
ciated language is not recursive, is the so called reduction technique which can be
described as follows. We say that a problem A whose associated yes-language is LA,
subset of Σ∗, is reduced to a problem B whose associated yes-language is LB, also
subset of Σ∗, iff there exists a total, computable function, say r, from LA to LB such
that for every word w in Σ∗, w is in LA iff r(w) is in LB. Thus, if the problem B
is decidable then the problem A is decidable, and if the problem A is undecidable
then the problem B is undecidable.

Now let us consider a problem, called the Halting Problem. It is defined to be
the set of the encodings of all pairs of the form 〈Turing Machine M , word w〉 such
that M halts on the input w. Thus, the Halting Problem can also be formulated
as follows: given a Turing Machine M and a word w, determine whether or not M
halts on the input w.

We have the following result which we state without proof [9, 14].

Theorem 6.0.15. [Turing Theorem] The Halting Problem is semidecidable
and it is not decidable.

By reduction of the Halting Problem, one can show that also the following two
problems are undecidable:

(i) Blank Tape Halting Problem: given a Turing Machine M , determine whether or
not M halts in a final state when its initial tape has blank symbols only, and
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(ii) Uniform Halting Problem (or Totality Problem): given a Turing Machine M
with input alphabet Σ, determine whether or not M halts in a final state for every
input word in Σ∗.

6.1. Some Basic Decidability and Undecidabilty Results

In this section we present some more decidability and undecidability results about
context-free languages (see also [9, Section 8.5]) besides those which have been
presented in Section 3.14.

By using the fact that the so called Post Correspondence Problem is undecidable
(see [9, Section 8.5]), we will show that it is undecidable whether or not a given
context-free grammar G is ambiguous, that is, it is undecidable whether or not there
exists a word w generated by G such that w has two distinct leftmost derivations
(see Theorem 6.1.3 on page 199).

An instance of the Post Correspondence Problem, PCP for short, over the alpha-
bet Σ, is given by (the encoding of) two sequences of k words each, say 〈u1, . . . , uk〉
and 〈v1, . . . , vk〉, where the ui’s and the vi’s are elements of Σ∗. A given instance of
the PCP is a yes-instance, that is, it belongs to the yes-language of the PCP, iff there
exists a sequence 〈i1, . . . , in〉 of indexes, with n≥ 1, taken from the set {1, . . . , k},
such that the following equality between two words of Σ∗, holds:

ui1 . . . uin= vi1 . . . vin

This sequence 〈i1, . . . , in〉 of indexes is called a solution of the given instance of the
PCP.

Theorem 6.1.1. [Unsolvability of the Post Correspondence Problem]
The Post Correspondence Problem over the alphabet Σ, with |Σ|≥2, is unsolvable
if its instances are given by two sequences of k words, with k≥2.

Proof. One can show that the Halting Problem can be reduced to it. �

Theorem 6.1.2. [Semisolvability of the Post Correspondence Problem]
The Post Correspondence Problem is semisolvable.

Proof. One can find the sequence of indexes which solves the problem, if there
exists one, by checking the equality of the two words corresponding to the two
sequences of indexes taken one at a time in the canonical order over the set {1, . . . , k}
(where we assume that 1< . . . <k), that is, 1, 2, . . . , k, 11, 12, . . . , 1k, 21, 22,. . . ,
2k, . . . ,kk, 111, . . . , kkk, . . . �

There is a variant of Post Correspondence Problem, called the Modified Post Corre-
spondence Problem, where it is assumed that in the solution sequence i1 is 1. Also
the Modified Post Correspondence Problem is unsolvable.

Theorem 6.1.3. [Undecidability of Ambiguity for Context-Free Gram-
mars] The ambiguity problem for context-free languages is undecidable.



200 6. DECIDABILITY AND UNDECIDABILITY IN CONTEXT-FREE LANGUAGES

Proof. It is enough to reduce the PCP to the ambiguity problem of context-free
grammars. Consider a finite alphabet Σ and two sequences of k (≥ 1) words, each
word being an element of Σ∗:

U = 〈u1, . . . , uk〉, and

V = 〈v1, . . . , vk〉.
Let us also consider the set A of k new symbols {a1, . . . , ak} such that Σ ∩ A = ∅,
and the following two languages which are subsets of (Σ ∪ A)∗:

UL = {ui1ui2 . . . uirair . . . ai2ai1 | r ≥ 1 and 1 ≤ i1, i2, . . . , ir ≤ k}, and

VL = {vi1vi2 . . . virair . . . ai2ai1 | r ≥ 1 and 1 ≤ i1, i2, . . . , ir ≤ k}.
A grammar G for generating the language UL ∪ VL is as follows:

〈Σ ∪ A, {S, SU , SV }, P, S〉, where P is the following set of productions:

S → SU

SU → ui SU ai | ui ai for any i = 1, . . . , k,

S → SV

SV → vi SV ai | vi ai for any i = 1, . . . , k.

Now in order to prove the theorem we need to show that the instance of the PCP
for the sequences U and V has a solution iff the grammar G is ambiguous.

(only-if part) If ui1 . . . uin= vi1 . . . vin for some n ≥ 1, then we have that the word w
which is

ui1ui2 . . . uinain . . . ai2ai1

is equal to the word

vi1vi2 . . . vinain . . . ai2ai1

and w has two leftmost derivations:
(i) a first derivation which first uses the production S → SU , and
(ii) a second derivation, which first uses the production S → SV .
Thus, G is ambiguous.

(if part) Assume that G is ambiguous. Then there are two leftmost derivations for a
word generated by G. Since every word generated by SU has one leftmost derivation
only, and every word generated by SV has one leftmost derivation only (and this is
due to the fact that the ai’s symbols force the uniqueness of the productions used
when deriving a word from SU or SV ), it must be the case that a word generated
from SU is the same as a word generated from SV . This means that we have:

ui1ui2 . . . uinain . . . ai2ai1 = vi1vi2 . . . vinain . . . ai2ai1

for some sequence 〈i1, i2, . . . , in〉 of indexes with n ≥ 1, where each index is taken
from the set {1, . . . , k}.
Thus, ui1ui2 . . . uin= vi1vi2 . . . vin

and this means that the corresponding PCP has the solution 〈i1, i2, . . . , in〉. �
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(1.a) L(G) = R ? (1.b) R ⊆ L(G) ?

(2.a) L(G1) = L(G2) ? (2.b) L(G1) ⊆ L(G2) ?

(3.a) L(G) = Σ∗ ? (3.b) L(G) = Σ+ ?

(4) L(G1) ∩ L(G2) = ∅ ?

(5) Is Σ∗−L(G) a context-free language ?

(6) Is L(G1) ∩ L(G2) a context-free language ?

Table 1. Undecidable problems for S-extended context-free gram-
mars. The grammars G, G1, and G2 are S-extended context-free
grammars with terminal alphabet Σ. R is a regular language, possibly
including the empty string ε. Explanations about these problems are
given in Section 6.1.1.

6.1.1. Basic Undecidable Properties of Context-Free Languages .

We start this section by listing in Table 1 on page 201 some undecidability results
about S-extended context-free grammars with terminal alphabet Σ.

For understanding these results and the others decidability and undecidability
results we will list in the sequel, it is important that the reader correctly identifies
the infinite set of instances of the problems to which those results refer. For example,
an instance of Problem (1.a) is given by (the encoding of) a context-free grammar G
and (the encoding of) a regular grammar which generates the language R, and an
instance of Problem (5) is given by (the encoding of) a context-free grammar G.

Let us now make a few comments on the undecidable problems listed in Table 1.

• Problem (1.a) is undecidable in the sense that it does not exist a Turing Ma-
chine which given an S-extended context-free grammar G and a regular language R,
which may also include the empty string ε, always terminates and answers ‘yes’
iff L(G) = R. This problem is not even semidecidable because the negated prob-
lem, that is, «L(G) 6= R ?», is semidecidable and not decidable (recall Post Theo-
rem 6.0.14 on page 198). Problem (1.b) is undecidable in the same sense of Prob-
lem (1.a), but instead of the formula L(G) = R one should consider the formula
R ⊆ L(G).

• Problem (2.a) is undecidable in the sense that it does not exist a Turing Machine
which given two S-extended context-free grammar G1 and G2, always terminates and
answers ‘yes’ iff L(G1) = L(G2). Problem (2.b) is undecidable in the same sense
of Problem (2.a), but instead of the formula L(G1) = L(G2), one should consider
the formula L(G1) ⊆ L(G2). Problems (2.a) and (2.b) are not even semidecidable,
because the negated problems are semidecidable and not decidable.

• Problem (3.a) is undecidable in the sense that it does not exist a Turing Machine
which given and S-extended context-free grammar G with terminal alphabet Σ,
always terminates and answers ‘yes’ iff L(G) = Σ∗. Actually, Problem (3.a) is
not even semidecidable because its complement is semidecidable and not decidable.
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Problems (3.b) is undecidable in the same sense of Problem (3.a), but instead of the
formula L(G) = Σ∗, one should consider the formula L(G) = Σ+.
Problems (5) is undecidable in the same sense of Problem (3.a), but instead of the
formula L(G) = Σ∗, one should consider the formula Σ∗ − L(G) = A, for some
context-free language A.

• Problem (4) is undecidable in the sense that it does not exist a Turing Machine
which given two S-extended context-free grammar G1 and G2, always terminates and
answers ‘yes’ iff L(G1)∩L(G2) = ∅. Actually, Problem (4) is not even semidecidable
because its complement is semidecidable and not decidable.
Problem (6) is undecidable in the same sense of Problem (4), but instead of the
formula L(G1) ∩ L(G2) = ∅, one should consider the formula L(G1) ∩ L(G2) = L,
for some context-free language L.

With reference to Problem (1.b) of Table 1 above, note that given a context-free
grammar G and a regular language R, it is decidable whether or not L(G) ⊆ R. This
follows from the following facts: (i) L(G) ⊆ R iff L(G) ∩ (Σ∗−R) = ∅, (ii) Σ∗−R
is a regular language, (iii) L(G) ∩ (Σ∗−R) is a context-free language because the
intersection of a context-free language and a regular language is a context-free lan-
guage (see Theorem 3.13.4 on page 158), and (iv) it is decidable whether or not
L(G) ∩ (Σ∗−R) = ∅, because the emptiness problem for the language generated by
a context-free grammar is decidable (see Theorem 3.14.1 on page 159).

The construction of the context-free grammar, say G1, which generates the lan-
guage L(G)∩ (Σ∗−R) can be done in two steps: (iii.1) we first construct the pda M
accepting L(G) ∩ (Σ∗−R) as indicated in [9, pages 135–136] and in the proof of
Theorem 3.13.4 on page 158, and then (iii.2) we construct G1 as the context-free
grammar which is equivalent to M (see the proof of Theorem 3.1.14 on page 104).

Here are some more undecidability results relative to context-free languages. (We
start the numbering of these results from (7) because the results (1.a)–(6) are those
listed in Table 1 on page 201.)

(7) It is undecidable whether or not a context-sensitive grammar generates a context-
free language [2, page 208].

(8) It is undecidable whether or not a context-free grammar generates a regular
language. This result is a corollary of Theorem 6.1.6 below.

(9) It is undecidable whether or not a context-free grammar generates a prefix-free
language. Indeed, this problem can be reduced to the problem of checking whether
or not two context-free languages have empty intersection [8, page 262]. Note that
if we know that the given language is a deterministic context-free language then the
problem is decidable [8, page 355].

(10) It is undecidable whether or not the language L(G) generated by a context-free
grammar G, can be generated by a linear context-free grammar (see Definition 3.1.22
on page 110 and Definition 7.6.7 on page 228).
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(11) It is undecidable whether or not a context-free grammar generates a determin-
istic context-free language (see Fact 3.16.1 on page 169).

(12) It is undecidable whether or not a context-free grammar is ambiguous.

(13) It is undecidable whether or not a context-free language is inherently ambiguous.

Now we present a theorem which allows us to show that it is undecidable whether
or not a context-free grammar defines a regular language. We need first the following
two definitions.

Definition 6.1.4. [Languages Effectively Closed Under Concatenation
With Regular Sets and Union] We say that a class C of languages is effectively
closed under concatenation with regular sets and union iff there exists a Turing
Machine which for all pairs of languages L1 and L2 in C and all regular languages
R, from the encodings (for instance, as strings in {0, 1}∗) of the grammars which
generate L1, L2, and R, constructs the encodings of the grammars which generate
the following three languages:

(i) R � L1, (ii) L1 � R, (iii) L1 ∪ L2,

and these languages are in C.

Definition 6.1.5. [Quotient of a Language] Given an alphabet Σ, a language
L ⊆ Σ∗, and a symbol b ∈ Σ, we say that the set {w |wb ∈ L} is the quotient
language of L with respect to b.

Theorem 6.1.6. [Greibach Theorem on Undecidability] Let us consider a
class C of languages which is effectively closed under concatenation with regular sets
and union. Let us assume that for that class C the problem of determining, given
a language L, whether or not L = Σ∗ for any sufficient large cardinality of Σ, is
undecidable. Let P be a nontrivial property of C, that is, P is a non-empty subset
of C and P is different from C.

If P holds for all regular sets and it is preserved under quotient with respect to
any symbol in Σ, then P is undecidable for C.

By this Theorem 6.1.6, it is undecidable whether or not a context-free grammar
defines a regular language (see the undecidability result (8) on page 202 and also
Property (D5) on page 204 below). Indeed, we have that:

(1) the class of context-free languages is effectively closed under concatenation with
regular sets and union, and for context-free languages it is undecidable the problem
of determining whether or not L = Σ∗ for |Σ| ≥ 2,

(2) the class of regular languages is a nontrivial subset of the context-free languages,

(3) the property of being a regular language obviously holds for all regular languages,
and

(4) the class of regular languages is closed under quotient with respect to any symbol
in Σ (see Definition 6.1.5 above). Indeed, it is enough to delete the final symbol
in the corresponding regular expression. (Note that in order to do so it may be
necessary to apply first the distributivity laws of Section 2.7.)
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Theorem 6.1.6 allows us to show that also inherent ambiguity for context-free
languages is undecidable. We recall that a context-free language L is said to be
inherently ambiguous iff every context-free grammar G generating L is ambiguous,
that is, there is a word of L which has two distinct leftmost derivations according
to G (see Section 3.12).

We also have the following result.

Fact 6.1.7. [Undecidability of the Regularity Problem for Context-Free
Languages] (i) It does not exist an algorithm which always terminates and given
a context-free grammar G, tells us whether or not there exists a regular grammar
equivalent to G. (ii) It does not exist an algorithm which given a context-free
grammar G, if the language generated by G is a regular language, then teminates
and constructs a regular grammar which generates that language.

Point (i) of the above Fact 6.1.7 is the undecidability result (8) of page 202 and
should be contrasted with Property (D5) of deterministic context-free languages
(see page 204). Point (ii) follows from the fact that the problem «L(G) = R ?» is
undecidable and not semidecidable (see Problem (1.a) on page 201).

In the following two sections we list some decidability and undecidability results
for the class of deterministic context-free languages. We divide these results into
two lists:

(i) the list of the decidable properties of deterministic context-free languages which
are undecidable for context-free languages (see Section 6.2), and

(ii) the list of the undecidable properties of deterministic context-free languages
which are undecidable also for context-free languages (see Section 6.3).

6.2. Decidability in Deterministic Context-Free Languages

The following properties are decidable for deterministic context-free languages.
These properties are undecidable for context-free languages in the sense that we
will indicate in Fact 6.2.1 below [9, page 246].

We assume that the terminal alphabet of the grammars and languages under
consideration is Σ with |Σ| ≥ 2.

Given a deterministic context-free language L and a regular language R, it is
decidable to test whether or not:

(D1) L = R,

(D2) R ⊆ L,

(D3) L = Σ∗, that is, the complement of L is empty,

(D4) Σ∗−L is a context-free language (recall that the complement of a deterministic
context-free language is a deterministic context-free language),

(D5) L is a regular language, that is, it is decidable whether or not there exists a
regular language R1 such that L = R1 (note that, since the proof of this property is
constructive, one can effectively exhibit the finite automaton which accepts R1 [24]),
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(D6) L is prefix-free [8, page 355].

Fact 6.2.1. If L is known to be a context-free language (not a deterministic
context-free language), then the above Problems (D1)–(D6) are all undecidable.

Recently the following result has been proved [19].

(D7) It is decidable given any two deterministic context-free languages L1 and L2,
to test whether or not L1 = L2.

Note that, on the contrary, as we will see in Section 6.3, it is undecidable given
any two deterministic context-free languages L1 and L2, to test whether or not
L1 ⊆ L2.

Note also that it is undecidable given any two context-free grammars G1 and
G2, to test whether or not L(G1) = L(G2) (see Section 6.1.1 starting on page 201).

6.3. Undecidability in Deterministic Context-Free Languages

The following properties are undecidable for deterministic context-free languages.
These properties are undecidable also for context-free languages in the sense that we
will indicate in Fact 6.3.1 below [9, page 247].

We assume that the terminal alphabet of the grammars and languages under
consideration is Σ with |Σ| ≥ 2.

Given any two deterministic context-free languages L1 and L2, it is undecidable
to test whether or not:

(U1) L1 ∩ L2 = ∅,
(U2) L1 ⊆ L2,

(U3) L1 ∩ L2 is a deterministic context-free language,

(U4) L1 ∪ L2 is a deterministic context-free language,

(U5) L1 � L2 is a deterministic context-free language, where � denotes concatena-
tion of languages,

(U6) L1∗ is a deterministic context-free language,

(U7) L1 ∩ L2 is a context-free language.

Fact 6.3.1. If the languages L1 and L2 are known to be context-free languages
(and it is not known whether or not they are deterministic context-free languages,
or L1 or L2 is a deterministic context-free language) and in (U3)–(U6) we keep the
word ‘deterministic’, then the above Problems (U1)–(U7) are still undecidable.

6.4. Undecidable Properties of Linear Context-Free Languages

The results presented in this section refer to the linear context-free languages and
are taken from [9, pages 213–214]. The definition of linear context-free languages is
given on page 110 (see Definition 3.1.22).

We assume that the terminal alphabet of the grammars and languages under
consideration is Σ with |Σ| ≥ 2.
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(U8) It is undecidable given a context-free language L, to test whether or not L is
a linear context-free language.

It is undecidable given a linear context-free language L, to test whether or not:

(U9) L is a regular language,

(U10) the complement of L is a context-free language,

(U11) the complement of L is a linear context-free language,

(U12) L is equal to Σ∗.

(U13) It is undecidable given a linear context-free grammar L, to test that all linear
context-free grammars generating L are ambiguous grammars, that is, it is undecid-
able given a linear context-free grammar L, to test whether or not for every linear
context-free grammar G generating L, there exists a word in L with two different
leftmost derivations according to G. (Obviously, L may be generated also by a
context-free grammar which is not linear.)



CHAPTER 7

Appendices

7.1. Iterated Counter Machines and Counter Machines

In a pushdown automaton the alphabet Γ of the stack can be reduced to two symbols
without loss of computational power. However, if we allow one symbol only, we
loose computational power. In this section we will present the class of pushdown
automata, called counter machines, in which one symbol only is allowed in a cell
different from the bottom cell of the stack.

Actually, there are two kinds of counter machines: (i) the iterated counter ma-
chines [8], and (ii) the counter machines, tout court. Note that, unfortunately,
some textbooks (see, for instance, [9]) refer to iterated counter machines as counter
machines.

Let us begin by defining the iterated counter machines.

Definition 7.1.1. [Iterated Counter Machine, or (0?+1−1)-counter Ma-
chine] An iterated counter machine, also called a (0?+1−1)-counter machine, is
a pda whose stack alphabet has two symbols only: Z0 and ∆. Initially, the stack,
also called the iterated stack or iterated counter, holds only the symbol Z0 at the
bottom. Z0 may occur only at the bottom of the stack. All other cells of the stack
may have the symbol ∆ only. An iterated counter machine allows on the stack the
following three operations only: (i) test-if-0, (ii) add 1, and (iii) subtract 1.

The operation ‘test-if-0’ tests whether or not the top of the stack is Z0. The
operation ‘add 1’ pushes one ∆ onto the stack, and the operation ‘subtract 1’ pops
one ∆ from the stack.

For any n ≥ 0, we assume that the stack stores the value n by storing n symbols
∆’s and the symbol Z0 at the bottom. Before subtracting 1, one can test if the
value 0 is stored on the stack and this test avoids performing the popping of Z0,
which would lead the iterated counter machine to a configuration with no successor
configurations because the stack is empty.

Definition 7.1.2. [Counter Machine, or (+1− 1)-counter Machine] A
counter machine, also called a (+1−1)-counter machine, is a pda whose stack al-
phabet has one symbol only, and that symbol is ∆. Initially, the stack, also called
the counter, holds only one symbol ∆ at the bottom. All cells of the stack may
have the symbol ∆ only. A counter machine allows on the stack the following two
operations only: (i) ‘add 1’, and (ii) ‘subtract 1’.

The operation ‘add 1’ pushes one ∆ onto the stack, and the operation ‘subtract 1’
pops one ∆ from the stack. Before subtracting 1, one cannot test if after the

207
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subtraction, the stack becomes empty. If the stack becomes empty, the counter
machine gets into a configuration which has no successor configurations.

Iterated counter machines and counter machines behave as usual pda’s as far as
the reading of the input tape is concerned. Thus, the transition function δ of any
iterated counter machine (or counter machine) is a function from Q × Σ ∪ {ε} × Γ
to the set of finite subsets of Q × Γ∗. A move of an iterated counter machine (or
a counter machine) is made by: (i) reading a symbol or the empty string from the
input tape, (ii) popping the symbol which is the top of the stack (thus, the stack
should not be empty), (iii) changing the internal state, and (iv) pushing a symbol
or a string of symbols onto the stack.

As for pda’s, also for iterated counter machines (or counter machines) we assume
that when a move is made, the symbol on top of the iterated counter (or the counter)
is popped. Thus, for instance, the string σ ∈ Γ∗ which is the output of the transition
function δ of an iterated counter machine, is such that: (i) |σ| = 2 if we add 1,
(ii) |σ|=1 if we test whether or not the top of the stack is Z0, that is, we perform
the operation ‘test-if-0’, and (iii) |σ|=0 (that is, σ=ε) if we subtract 1.

As the pda’s, also the iterated counter machines and the counter machines are
assumed, by default, to be nondeterministic machines. However, for reasons of clar-
ity, sometimes we will explicitly say ‘nondeterministic iterated counter machines’,
instead of ‘iterated counter machines’, and analogously, ‘nondeterministic counter
machines’, instead of ‘counter machines’.

We have the following notions of deterministic iterated counter machines and
deterministic counter machines. They are analogous to the notion of deterministic
pda’s (see Definition 3.3.1 on page 117).

Definition 7.1.3. [Deterministic Iterated Counter Machine and Deter-
ministic Counter Machine] Let us consider an iterated counter machine (or a
counter machine) with the set Q of states, the input alphabet Σ, and the stack
alphabet Γ = {Z0, ∆} (or {∆}, respectively). We say that the iterated counter
machine (or a counter machine) is deterministic iff the transition function δ from
Q × Σ ∪ {ε} × Γ to the set of finite subsets of Q × Γ∗ satisfies the following two
conditions:

(i) ∀q ∈ Q, ∀Z ∈ Γ, if δ(q, ε, Z) 6= {} then ∀a ∈ Σ, δ(q, a, Z)={}, and

(ii) ∀q ∈ Q, ∀Z ∈ Γ, ∀x ∈ Σ ∪ {ε}, δ(q, x, Z) is either {} or a singleton.

As for pda’s, acceptance of an iterated counter machine (or a counter machine)
M is defined by final state, in which case the accepted language is denoted by L(M),
or by empty stack, in which case the accepted language is denoted by N(M).

Remark 7.1.4. Recall that, as for pda’s, acceptance of an input string by a
nondeterministic (or deterministic) iterated counter machine (or counter machine)
may take place only if the input string has been completely read (see Remark 3.1.9
on page 103).
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Fact 7.1.5. [Equivalence of Acceptance by final state and by empty

stack for Nondeterministic Iterated Counter Machines] For each nonde-
terministic iterated counter machine which accepts a language L by final state there
exists a nondeterministic iterated counter machine which accepts L by empty stack,
and vice versa [8, pages 147–148].

Thus, as it is the case for nondeterministic pda’s, the class of languages accepted
by nondeterministic iterated counter machines by final state is the same as the class
of languages accepted by nondeterministic iterated counter machines by empty stack
(see Theorem 3.1.10 on page 103).

Notation 7.1.6. [Transitions of Iterated Counter Machines and Counter
Machines] When we depict the transition function of an iterated counter machine
or a counter machine, we use the following notation (an analogous notation has been
introduced on page 107 for the pda’s). An edge from state A to state B of the form:

A B
x, y w

where x is the symbol read from the input, and y is the symbol on the top of the
stack, means that the machine may move from state A to state B by: (1) reading x
from the input, (2) popping y from the (iterated) counter, and (3) pushing w onto
to the (iterated) counter so that the leftmost symbol of w becomes the new top of
the counter (actually, for counter machines we need not specify the new top of the
counter because only the symbol ∆ can occur in the counter). �

We have the following fact.

Fact 7.1.7. (1) A deterministic counter machine accepts by empty stack the
one-parenthesis language, denoted LP , generated by the grammar with axiom P
and productions:

P → ( ) | (P )

(2) A nondeterministic iterated counter machine accepts by empty stack the iterated
one-parenthesis language, denoted LR, generated by the grammar with axiom R and
productions:

R→ ( ) | (R) | R R

and there is no nondeterministic counter machine which accepts by empty stack the
language LR.

(3) There is no nondeterministic iterated counter machine which accepts by empty
stack the iterated two-parenthesis language, denoted LD, generated by the grammar
with axiom D and productions:

D → ( ) | [ ] | (D) | [D] | D D �

Proof. Point (1) is shown by Figure 7.1.1 on page 210 where we have depicted
the deterministic counter machine which accepts by empty stack the language LP .
That figure is depicted according to Notation 7.1.6 on page 209.
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q0 q1 q2
(, ∆ ∆ ), ∆ ε

(, ∆ ∆∆ ), ∆ ε

Figure 7.1.1. A deterministic counter machine which accepts by
empty stack the language generated by the grammar with axiom P
and productions P → ( ) | (P ). We assume that after pushing the
string b1 . . . bn onto the stack, the new top symbol is b1. The word
( )) is not accepted because the second closed parenthesis is not read
when the stack is empty.

q0 q1 q2 q3
(, Z0 ∆Z0

), ∆ ε

∆ Z0 (, Z0

ε, Z0 ε

(, ∆ ∆∆ ), ∆ ε

Figure 7.1.2. A nondeterministic iterated counter machine which
accepts by empty stack the language LR. The nondeterminism is due
to the two arcs outgoing from q2. We assume that after pushing the
string b1 . . . bn onto the stack, the new top symbol is b1.

The first part of Point (2) is shown by Figure 7.1.2 on page 210 where we have
depicted a nondeterministic iterated counter machine which accepts by empty stack
the language LR. That figure is depicted according to Notation 7.1.6 on page 209.

The second part of Point (2), that is, the fact that the language LR cannot be
recognized by any nondeterministic counter machine by empty stack, follows from
the following facts.

Without loss of generality, we assume that for counting the open and closed
parentheses occurring in the input word, we have to push exactly one symbol ∆
onto the stack for each open parenthesis, and we have to pop exactly one symbol ∆
from the stack for each closed parenthesis.

When we have read the prefix of an input word in which the number of open
parentheses is equal to the number of closed parentheses, the stack cannot be empty
because, otherwise, the word ()() cannot be accepted (recall that when the stack is
empty no move is possible). But if the stack is not empty, it should be made empty
because the acceptance is by empty stack. Now, in order to make the stack empty,
we must have at least two transitions of the following form (and this fact makes the
counter machine to be nondeterministic):

p

q1

q2

ε, ∆ ε

(, ∆
∆ ∆
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q0 q1 q2 q3

(, Z0 (Z0

[, Z0 [Z0

), (
ε

], [ ε

p1, p2p1 p2

ε, Z0 Z0

( Z0 (, Z0

[ Z0 [, Z0

p1, p2 p1 p2

), ( ε

], [ ε

Figure 7.1.3. A deterministic pda which accepts by final state the
language generated by the grammar with axiom D and productions
D → ( ) | [ ] | (D) | [D ] | D D. An arrow labeled by
‘p1, p2 p1 p2’ stands for the four arrows obtained for p1 = ( or [,
and p2 = ( or [. In the pair p1, p2 the symbol p1 is the input character
and p2 is the top of the stack. We assume that after pushing the string
p1 p2 onto the stack, the new top of the stack is p1.

leaving from the state p which is reached when the prefix of the input word in LR

has the number of open parentheses equal to the number of closed parentheses.
However, since: (i) the counter machine should pop one ∆ from the stack for each
closed parenthesis, (ii) the counter machine cannot store the value of n, for any given
n, using a finite automaton, and (iii) the counter machine cannot know whether or
not the symbol at hand is the last closed parenthesis of a word of the form (n)n

(because by Point (ii), when it reads a ∆ on the top of the stack it cannot know
whether or not it is the only one left on the stack), the counter machine would accept
also any input word of the form (n)n+1, but such words should not be accepted.

Point (3) follows from the fact that in order to accept the two-parenthesis lan-
guage LD, any nondeterministic iterated counter machine has to keep track of both
the number of the round parentheses and the number of square parentheses, and
this cannot be done by having one iterated counter only (see also Section 7.3 be-
low). Indeed, a nondeterministic iterated counter machine with one iterated counter
cannot encode two numbers into one number only. �

Note that the languages LP , LR, and LD of Fact 7.1.7 on page 209 are deter-
ministic context-free languages, and they can be accepted by a deterministic pda by
final state. Figure 7.1.3 shows the deterministic pda which accepts by empty stack
the language LD. That figure is depicted according to Notation 7.1.6 on page 209
and, in particular, we assume that when we push the string w onto the stack, the
new top is the leftmost symbol of w.
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f f1
ε, ∆ ε

εε, ∆

Figure 7.1.4. The stack of a nondeterministic counter machine can
be made empty starting from any final state f , by adding one extra
state f1 and two extra ε-transitions which do not use any symbol of
the input: a first transition from f to f1 and a second transition from
f1 to f1.

Now we present three facts which, together with Fact 7.1.5 on page 209, prove
the following relationships among classes of automata (these relationships are based
on the classes of languages which are accepted by the automata):

nondeterministic iterated counter machines with acceptance by final state
= nondeterministic iterated counter machines with acceptance by empty stack
> nondeterministic counter machines with acceptance by empty stack
≥ nondeterministic counter machines with acceptance by final state

In these relationships: (i) = means ‘same class of accepted languages’, (ii) > means
‘larger class of accepted languages’, and (iii) ≥ means > or =.

Fact 7.1.8. Nondeterministic iterated counter machines accept by empty stack
a class of languages which is strictly larger than the class of languages accepted by
empty stack by nondeterministic counter machines.

Proof. This fact is a consequence of Fact 7.1.7 Point (2) on page 209. �

Fact 7.1.9. Nondeterministic counter machines accept by empty stack a class
of languages which includes the class of languages accepted by final state by non-
deterministic counter machines.

Proof. The proof is based on the fact that from every final state f we can
perform a sequence of ε-moves which makes the stack empty, as indicated in Fig-
ure 7.1.4. �

Fact 7.1.10. Nondeterministic iterated counter machines accept by final state
a class of languages which is strictly larger than the class of languages accepted by
final state by nondeterministic counter machines.

Proof. This fact is a consequence of Fact 7.1.5 on page 209, Fact 7.1.8 on
page 212, and Fact 7.1.9 on page 212. �

Fact 7.1.11. [Acceptance by final state and by empty stack are Incom-
parable for Deterministic Counter Machines] For deterministic counter ma-
chines the class of languages accepted by final state is incomparable with the class
of languages accepted by empty stack.
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q0 q1 q2 p0 p1 p2

(α) (β)

a, ∆ ∆
a, ∆ ∆

∆ a, ∆

a, ∆ ∆

a, ∆ ε

ε a, ∆

a, ∆ ∆∆

a, ∆∆∆

Figure 7.1.5. (α) A deterministic counter machine which accepts
by final state the language A = {a2n|n≥ 1}. (β) A nondeterministic
counter machine which accepts by empty stack the language A. The
number of a’s which have been read from the input word is odd in the
states q1 and p1, while it is even in the states q2 and p2.

Indeed, we have the following Facts 7.1.12 and 7.1.13.

Fact 7.1.12. (i) The language A = {a2n |n≥ 1} is accepted by final state by
a deterministic counter machine, and (ii) there is no deterministic counter machine
which accepts the language A by empty stack.

Proof. (i) The language A is accepted by the deterministic counter machine
depicted in Figure 7.1.5 (α) (actually the language A is accepted by a finite automa-
ton).
(ii) This follows from the fact that when the stack is empty no move is possible.
Thus, it is impossible for a deterministic counter machine to accept aa and aaaa,
both belonging to A, and to reject aaa which does not belong to A. Note that
there exists a nondeterministic counter machine which accepts by empty stack the
language A as shown in Figure 7.1.5 (β). With reference to that figure we have that:
(i) the stack may be empty only in state p2, (ii) in state p1 an odd number of a’s
of the input word has been read, and (iii) in state p2 an even number of a’s of the
input word has been read. Recall also that in order to accept an input word w, all
symbols of w should be read. �

Fact 7.1.13. (i) The language B = {anbn |n≥1} is accepted by empty stack by
a deterministic counter machine, and (ii) there is no deterministic counter machine
which accepts the language B by final state.

Proof. (i) The language B is accepted by empty stack by the deterministic
counter machine depicted in Figure 7.1.6. This machine is obtained from that of
Figure 7.1.1 by replacing the symbols ‘(’ and ‘)’ by the symbols a and b, respectively.

(ii) This is a consequence of the following two points: (ii.1) a finite number of states
cannot recall an unbounded number of a’s, and (ii.2) there is no way of testing that
the number of a’s is equal to the number of b’s without making the stack empty and
if the stack is empty, no more moves can be made so to enter a final state.
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q0 q1 q2
a, ∆ ∆ b, ∆ ε

a, ∆ ∆∆ b, ∆ ε

Figure 7.1.6. A deterministic counter machine which accepts by
empty stack the language {anbn | n≥1}.

Note that if in Figure 7.1.6 we make the state q2 to be a final state, then also
words which are not of the form anbn are accepted (for instance, the word aab is
accepted). �

We have also the following fact.

Fact 7.1.14. (i) The language C = {ambnc |n≥m≥ 1} is accepted by empty
stack by a deterministic iterated counter machine.
(ii) There is no deterministic counter machine which can accept the language C by
empty stack.
(iii) The language C is accepted by empty stack by a nondeterministic counter
machine.

Proof. (i) The language C is accepted by empty stack by the deterministic
iterated counter machine depicted in Figure 7.1.7.
Point (ii) follows from the fact that in order to count the number of b’s and make
sure that n is greater than or equal to m, one has to leave the counter empty. Then
no more moves can be made and the input symbol c cannot be read.
Point (iii) is shown by the construction of the nondeterministic counter machine of
Figure 7.1.8. That machine accepts the language C by empty stack. Indeed, given
the input string ambnc, with n≥m≥1, after the sequence of m a’s, the counter of
the counter machine of Figure 7.1.8 holds m+1 ∆’s. Then, by reading the n b’s
from the input string, it can pop off the counter at most n ∆’s. Since n≥m, there
exists a sequence of moves which leaves exactly one ∆ on the counter. This last ∆ is
popped when reading the last symbol c. Note that, for n<m, there is no sequence
of moves which leaves exactly one ∆ on the counter and thus, the transition due to
the last symbol c cannot leave the counter empty. �

We close this section by recalling the following two facts concerning the iterated
counter machines, the counter machines, and the Turing Machines:

(i) Turing Machines are as powerful as finite state automata with one-way input
tape and two deterministic iterated counters, and

(ii) Turing Machines are more powerful than finite state automata with one-way
input tape and two deterministic counters.
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q0 q1 q2 q3
a, Z0 ∆Z0 b, ∆ ε

a, ∆ ∆∆ b, ∆ ε

b, Z0 Z0

c, Z0 ε

Figure 7.1.7. A deterministic iterated counter machine which ac-
cepts by empty stack the language {ambnc | n≥m≥1}.

q0 q1 q2 q3
a, ∆ ∆∆ b, ∆ ε

a, ∆ ∆∆ b, ∆ ε

b, ∆ ∆

c, ∆ ε

Figure 7.1.8. A nondeterministic counter machine which accepts by
empty stack the language {ambnc | n≥m≥1}. The nondeterminism
is due to the two loops from state q2 to state q2.

7.2. Stack Automata

In Chapter 3 we have considered the class of pushdown automata. In this section
we will consider a related class of automata which are called stack automata [9, 25].
They are defined as follows.

Definition 7.2.1. [Stack Automaton or Stack Machine] A stack automa-
ton or a stack machine (often abbreviated as SA, short for stack automaton) is a
pushdown automaton with the following two additional features: (i) the read-only
input tape is a two-way tape with left and right endmarkers, that is, the input head
can move to the left and to the right, and (ii) the head of the stack can behave as
for a pda, but it can also look at all the symbols in the stack in a read-only mode,
without being forced to pop symbols off the stack.

In the stack of a SA we have a bottom-marker which allows us to avoid reaching
configurations which do not have successor configurations (like, for instance, those
with an empty stack).

When the stack head scans the top of the stack, an SA can either (i) push a
symbol, or (ii) pop a symbol, or (iii) can move down the stack without pushing or
popping symbols.

The class of deterministic SA’s is called DSA. The class of nondeterministic SA’s
is called NSA. In our naming conventions we add the prefix ‘NE-’ for denoting that
the stack automata are non-erasing, that is, they never pop symbols off the stack.
For instance, NE-NSA is the class of the nondeterministic SA’s such that they never
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pop symbols off the stack. We also add the prefix ‘1-’ to denote that the input tape
is one-way, that is, the head of the input tape moves to the right only.

In Figure 7.2.1 we have depicted the containment relationships among some
classes of stack automata and some complexity classes. For these complexity classes
the reader may refer to [9, Chapter 14]. In that figure an edge from class B (below)
to class A (above) denotes that B ⊆ A. Some of the containments in that figure are
proper. In particular, we have that the class of deterministic context-free languages,
denoted DCF, is properly contained in the class of context-free languages, denoted
CF, and the class of context-free languages is properly contained in the class of
context-sensitive languages, denoted CS. (Recall that we assume that the empty
word ε may occur in the classes of languages DCF, CF, and CS.)

•

•

•

•

•

NSA =
⋃

c>0 DTIME(2cn2

)

DSA =
⋃

c>0 DTIME(2cn log n) NE-NSA = NSPACE(n2)

NE-DSA = DSPACE(n log n) CS = NSPACE(n)

DSPACE(n)

DCF

1-NSA

1-DSA CF

1NE-DSA

1NE-NSA

Figure 7.2.1. Relationships among some complexity classes for non-
deterministic (NSA) and deterministic (DSA) stack automata and
their subclasses. An arrow from class B class A denotes that B ⊆ A.
The prefix ‘NE-’ means that the automaton is non-erasing, that is,
symbols are never popped off the stack. The prefix ‘1-’ means that
the input tape is one-way, that is, the head of the input tape moves
to the right only. DCF, CF, and CS are the classes of the deter-
ministic context-free languages, the context-free languages, and the
context-sensitive languages, respectively (see [9, page 393]). The ar-
rows marked by ‘•’ show that the nondeterministic classes include the
corresponding deterministic classes.
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From Figure 7.2.1 the reader can see that the ‘computational power’ of the
nondeterministic machines is, in general, not smaller than the ‘computational power’
of the corresponding deterministic machines (see the edges marked by ‘•’).

The classes of 1-NSA and 1NE-NSA are full AFL (see Section 7.6 starting on
page 225).

7.3. Relationships Among Various Classes of Automata

In this section we summarize some basic results on equivalences and containments for
various classes of automata. Some of these results have been already mentioned in
previous sections of the book. Some other results may be found in [9]. Equivalences
and containments will refer to the class of languages which are accepted by the
automata.

Let us begin by relating Turing Machines and finite automata with stacks or
iterated counters or queues.

Turing Machines of various kinds.
◮ Turing Machines (with acceptance by final state) are equivalent to: (i) finite
automata with two stacks, or (ii) finite automata with two deterministic iterated
counters, or (iii) finite automata with one queue (these kind of automata are called
Post Machines) (see, for instance, [9]).
◮ Nondeterministic Turing Machines are equivalent to deterministic Turing Ma-
chines.
◮ Off-line Turing Machines are equivalent to standard Turing Machines (that is,
Turing Machines as introduced in Definition 5.0.1 on page 184). Off-line Turing
Machines do not change their computational power if we assume that the input
word on the input tape has both a left and a right endmarker, or a right endmarker
only. Obviously, we may assume that the input word has no endmarkers if the input
word is placed on the working tape, that is, we consider a standard Turing Machine.
◮ Turing Machines with acceptance by final state, are more powerful than nondeter-
ministic pda’s with acceptance by final state. Nondeterministic pda’s are equivalent
to finite automata with one stack only.

Nondeterministic and deterministic pushdown automata.
◮ Nondeterministic pda’s with acceptance by final state are equivalent to nondeter-
ministic pda’s with acceptance by empty stack.
◮ Nondeterministic pda’s with acceptance by final state are more powerful than
deterministic pda’s with acceptance by final state.

In particular, the language

N = {ak bm | (m=k or m=2k) and m, k≥1}
is a nondeterministic context-free language which can be accepted by final state by a
nondeterministic pda, but it cannot be accepted by final state by any deterministic
pda. A grammar which generates the language N has axiom S and the following
productions:

S → L | R L→ a L b | ab R→ a R b b | a b b
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q0

q1

q2

q3 q4

a, Z0

bZ0

a, Z0

b bZ0

b, b
ε

b, b

ε
ε, Z0 Z0

a, b b b

a, b b b b

b, b ε

Figure 7.3.1. A nondeterministic pda which accepts by final state
the language N generated by the grammar with axiom S and the
productions: S → L | R, L→ a L b | a b, R→ a R b b | a b b.

This grammar is unambiguous, that is, no word has two distinct parse trees (see
Definition 3.12.1 on page 155). In Figure 7.3.1 we have depicted the nondeterministic
pda which accepts by final state the language N . In that figure we used the same
conventions used of Figures 7.1.1 and 7.1.3. In particular, when the string b1 . . . bn

is pushed onto the stack, then the new top symbol is the leftmost symbol b1.

Note that a pushdown automaton can be simulated by a finite automaton with
two deterministic iterated counters, and a finite automaton with two deterministic
iterated counters is equivalent to a Turing Machine.

◮ Deterministic pda’s with acceptance by final state are more powerful than deter-
ministic pda’s with acceptance by empty stack.
◮ However, if we restrict ourselves to languages which enjoy the prefix property
(see Definition 3.3.9 on page 120) then deterministic pda’s with acceptance by final
state accept exactly the same class of languages which are accepted by deterministic
pda’s with acceptance by empty stack.

Deterministic pushdown automata and deterministic counter machines
with n counters.
◮ For any n ≥ 0, the class of the deterministic pda’s with acceptance by final state
is incomparable with the class of the deterministic counter machines with n counters
with acceptance by all n stacks empty.

This result is proved by Points (A) and (B) below. The formal definition of
a deterministic counter machine with n counters is derived from Definitions 7.1.2
and 7.1.3 on pages 207 and 208, respectively, by allowing n counters, instead of one
counter only. In each move of a deterministic counter machine with n counters the
configuration of one or more counters may change simultaneously. A deterministic
counter machine with n counters cannot make any move if all counters are empty
or if it tries to perform an ‘add 1’ or a ‘subtract 1’ operation on a counter that is
empty.

Point (A). A language which is accepted by a deterministic pda by final state and
it is not accepted by any deterministic counter machine with n counters, for any
n ≥ 0, with acceptance by all n counters empty, is the iterated two-parenthesis
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language generated by the grammar with axiom D and the following productions
(see Fact 7.1.7 on page 209 and Figure 7.1.3 on page 211):

D → ( ) | [ ] | (D) | [D] | DD

The proof of this fact is similar to the proof of Fact 7.1.7 Point (2) on page 210. In
particular, we have that in order to accept a word with balanced parentheses of the
form: (h1[k1(h2[k2 . . . (hn[kn ]kn)hn . . .]k2)h2]k1)h1, we need at least the computational
power of a deterministic counter machine with 2n counters. Recall also that the
encoding of two numbers by one number only is not possible when we have counters,
because it is not possible to test when a counter holds the value 0.

Point (B). Now we present a language L which is not context-free (and thus, it can
be accepted neither by a nondeterministic pda nor a deterministic pda) and it is
accepted by a deterministic counter machine with two counters with acceptance by
the two counters empty.

Let us start by considering, for i = 1, 2, the parenthesis language Li generated
by the context-free grammar with axiom Si and productions Si → ai Si bi | ai bi.
The symbol ai corresponds to an open parenthesis and the symbol bi corresponds
to a closed parenthesis. Then, we consider the language L which is made out of the
words each of which is an interleaving of a word of L1 and a word of L2. Recall that,
for instance, the interleavings of the two words w1 = a1 b1 and w2 = a2 b2 are the
following six words:

a1b1a2b2 (= w1w2), a1a2b1b2, a1a2b2b1, a2a1b1b2, a2a1b2b1, a2b2a1b1 (= w2w1).

Now we have that L is not a context-free language. Indeed, let us assume, by
absurdum, that L were context-free. Then, the intersection of L with the regular
language a∗

1 a∗
2 b∗1 b∗2 should be context-free. But this is not the case (see language L4

on page 152). We leave it to the reader to show that L is accepted by a deterministic
counter machine with two counters with acceptance by the two counters empty.

Hierarchy of deterministic counter machines with n counters, for n≥1.
◮ For any n≥1, deterministic counter machines with n+1 counters with acceptance
by all n+1 counters empty, are more powerful than deterministic counter machines
with n counters with acceptance by all n counters empty.

More formally, for all n ≥ 1, for all deterministic counter machines M with n
counters which accepts a language L with acceptance by all counters empty, there
exists a deterministic counter machine M ′ with n+1 counters which accepts L with
acceptance by all counters empty.

This result can be established as follows. First, note that the machine M should
made at least one move in which it makes its n counters empty and, thus, accepts a
word in L. The first move of the machine M ′ is equal to the first move of M , except
that in that move M ′ also makes its (n+1)-st counter empty. Then the machine M ′

proceeds by making the same sequence of moves made by the machine M .
Now, for any n ≥ 1, we present a language Ln which can be accepted by a

deterministic counter machine with m counters, with m≥n, with acceptance by all
counters empty, but it cannot be accepted by a deterministic counter machine with
a number of counters smaller than n, with acceptance by all counters empty. The
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q0 q1 q2

a2, ∆2 ∆2

ε b2, ∆2

a1, ∆1 ∆1

ε b1, ∆1

a2, ∆2 ∆2∆2 a1, ∆1 ∆1∆1

ε b1, ∆1ε b2, ∆2

Figure 7.3.2. A deterministic counter machine with two counters
which accepts the parenthesis language L(P2) by the two counters
empty. The productions for P2 are: P2 → a2 P2 b2 | a2 P1 b2

and P1 → a1 P1 b1 | a1 b1. For i = 1, 2, by ∆i we denote the symbol
∆ on the counter i.

language Ln is the language ‘with n different kinds of parentheses’ generated by the
grammar with axiom Pn and the following productions:

Pn → an Pn bn | an Pn−1 bn · · · P2 → a2 P2 b2 | a2 P1 b2 P1 → a1 P1 b1 | a1 b1

For i = 1, . . . , n, the symbol ai corresponds to the open parenthesis of kind i and
the symbol bi corresponds to the closed parenthesis of kind i. The counters 1, . . . , n,
are used by the accepting machine for counting the numbers of the a1’s, . . . , an’s,
respectively, while the counters n+1, . . . , m are made empty on the first move and
never used henceforth (see also Figure 7.3.2).

For every n≥ 1, Ln is a deterministic context-free language, and it is accepted
with acceptance by empty stack by a deterministic pda. That deterministic pda,
whose construction is left to the reader, can be derived from the one of Figure 7.1.3
on page 211 by making some minor modifications and considering n kinds of paren-
theses, instead of the square parentheses and the round parentheses only.

Deterministic iterated counter machines with one iterated counter and
deterministic counter machines with one counter.
◮ Deterministic iterated counter machines with one iterated counter (see Defini-
tion 7.1.1 on page 207) with acceptance by final state are more powerful than deter-
ministic counter machines with one counter (see Definition 7.1.2 on page 207) with
acceptance by empty stack.

In particular, we have that the language

E = {w ∈ {0, 1}∗ | equal number of occurrences of 0’s and 1’s in w}
is accepted by a deterministic iterated counter machine with acceptance by final
state (see Figure 7.3.3 where we used Notation 7.1.6 on page 209), but it cannot be
accepted by a deterministic counter machine with acceptance by empty stack. This
result is due to the fact that there is a word w ∈ E such that w 0 6∈ E and w 0 1 ∈ E.
For that input word w, in fact, the counter should become empty, but then no move
can be made for accepting w 0 1 (recall that for accepting an input word, that word
should be completely read).
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A

0

f

1

1, Z0

∆ Z0

0, Z0

∆ Z0

1, Z0

∆ Z0

ε, Z0

Z0

ε, Z0

Z0

0, Z0

∆ Z0

1, ∆ ε

0, ∆ ∆ ∆

1, ∆ ∆ ∆

0, ∆ ε

Figure 7.3.3. A deterministic iterated counter machine with one
iterated counter which accepts by final state (when the input string is
completely read) the language {w | w ∈ {0, 1}∗ and in w the number
of 0’s is equal to the number of 1’s}.

With reference to Figure 7.3.3 recall that Z0 is initially at the bottom of the
iterated counter, and in any other cell of the iterated counter only the symbol ∆
may occur. In state 1, if there is a character 1 in input then we add 1 to the iterated
counter (that is, we push one ∆), and if there is a character 0 in input then we
subtract 1 from the iterated counter (that is, we pop one ∆). Similarly, in state 0,
if there is a character 0 in input then we add 1 to the iterated counter (that is, we
push one ∆), and if there is a character 1 in input then we subtract 1 from the
iterated counter (that is, we pop one ∆). When the string b1 b2 is pushed on the
iterated counter, the new top symbol is b1.

Note that, if we consider the language E $, instead of E (that is, we consider an
endmarker for each input word), then we can accept E $ by a deterministic counter
machine by empty stack. In that case, in fact, we can store in the counter one
extra symbol ∆ which we will pop only when the symbol $ is read from the input.
Obviously, the language E $ can be accepted by empty stack also by a deterministic
iterated counter machine. We leave it to the reader to construct that iterated counter
machine.

7.4. Decidable Properties of Classes of Languages

In Table 2 on page 222 we summarize some decidable and undecidable properties of
various classes of languages and grammars in the Chomsky Hierarchy. In this table
REG, DCF, CF, CS, and Type 0, denote the classes of regular languages, deter-
ministic context-free languages, context-free languages, context-sensitive languages,
and Type 0 languages, respectively. We assume that REG, CF, and CS also denote
the classes of grammars corresponding to those classes of languages.

For Problems (a)–(g) of Table 2, the input language L(G) of the class REG (or
CF, or CS, or Type 0) is given by a grammar of the class REG (or CF, or CS, or
Type 0, respectively). The input language L(G) of the class DCF is given, as we said
on page 169, by providing either (i) the instructions of a deterministic pda which
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Language L(G)

Problem REG DCF CF CS Type 0

(a) w ∈ L(G) ? S (2) S S S U (9)

(b) IsL(G) empty ? IsL(G)finite ? S (3) S S U (8) U (10)

(c) L(G) = Σ∗ ? (1) S (4) S U (6) U U

(d) L(G1) = L(G2) ? S S (5) U (7) U U

(e) Is L(G) context-free ? S (yes) S (yes) S (yes) U (13) U

(f) Is L(G) regular ? S (yes) S U U U

(g) IsL(G) inherently ambiguous ? S (no) S (no) U U U

(h) Is grammar G ambiguous ? S (11) S (no) (12) U U U

Table 2. Decidability and undecidability of problems for various
classes of languages and grammars. REG, DCF, CF, CS, and Type 0
stands for regular, deterministic context-free, context-free, context-
sensitive, and type 0, respectively. S, S (yes), and S (no) mean
solvable, solvable with answer ‘yes’, and solvable with answer ‘no’,
respectively. U means unsolvable. Entries in positions (1)–(13) are
explained in Remarks (1)–(13), respectively, starting on page 222.

accepts it, or (ii) a context-free grammar which is an LR(k) grammar, for some
k≥1 [15, Section 5.1]. Recall also that any deterministic context-free language can
be generated by an LR(1) grammar [9, page 260–261].

For Problem (h) of Table 2 the input grammar G of the class DCF is given by
providing an LR(k) grammar, for some k≥1 [9, Section 10.8] (see also Remark (12)
on page 223).

For the results shown in Table 2, except for those concerning Problem (c):
«L(G) = Σ∗ ?», it is not relevant whether or not the empty word ε is allowed
in the classes of languages REG, DCF, CF, and CS (see also Remark (1) below).

An entry S in Table 2 means that the problem is solvable. An entry S (yes) means
that the problem is solvable and the answer is ‘yes’. Likewise for the answer ‘no’.
An entry U means that the problem is unsolvable.

Note that the two problems: (i) «Is L(G) finite ?» and (ii) «Is L(G) infinite ?»
have the same decidability properties for the classes of languages REG, DCF, CF,
CS, Type 0, that is, either they are both decidable or they are both undecidable.

Now we make some remarks on the entries of Table 2 on page 222.

Remark (1). The problem «L(G) = Σ∗ ?» is trivial for the classes of languages
REG, DCF, CF, and CS, if we assume that those languages cannot include the
empty string ε. However, here we assume that: (i) the languages in REG, DCF,
and CF are generated by extended grammars, that is, grammars that may have extra



7.4. DECIDABLE PROPERTIES OF CLASSES OF LANGUAGES 223

productions of the form A→ ε, and (ii) the languages in the class CS are generated
by grammars that may have the production S → ε with the start symbol S which
does not occur in the right hand side of any production. With these hypotheses,
the problem of checking whether or not L(G) = Σ∗, is not trivial and it is solvable
or unsolvable as shown in Table 2. The problem «L(G) = Σ+ ?» will have entries
equal to the ones listed in Table 2 for the problem «L(G) = Σ∗ ?» if we assume
that REG, DCF, CF, and CS denote classes of languages which are generated by
grammars without any production whose right hand side is ε.

Remark (2). This problem can be solved by constructing the finite automaton
which is equivalent to the given grammar.

Remark (3). Having constructed the finite automaton F corresponding to the given
grammar G, we have that: (i) L(G) is empty iff there are no final states in F ,
(ii) L(G) is finite iff there are no paths from a state to itself in F .

Remark (4). Having constructed the minimal finite automaton M corresponding
to the given grammar G, we have that L(G) is equal to Σ∗ iff M has one state only
and for each symbol in Σ there is an arc from that state to itself.

Remark (5). This problem has been shown to be solvable in [19]. Note that for
deterministic context-free languages the problem «L1 ⊆ L2 ?» is unsolvable (see
Property (U2) on page 205). Recall that a deterministic context-free language can be
given either by an LR(1) grammar that generates it, or by a deterministic pushdown
automaton that recognizes it.

Remark (6). The problem of determining given a context-free grammar G, whether
or not L(G) = Σ∗ is undecidable (see Section 6.1.1).

Remark (7). The problem of determining given two context-free grammars G1 and
G2, whether or not L(G1) = L(G2) is undecidable (see Section 6.1.1).

Remark (8). The problem of determining whether or not a context-sensitive gram-
mar generates an empty language [9, page 230] is undecidable, and it is also unde-
cidable the problem of determining whether or not a context-sensitive generates a
finite language [8, page 295].

Remark (9). The membership problem for a type 0 grammar is a Σ1-problem of
the Arithmetical Hierarchy (see, for instance, [14, 18]).

Remark (10). The problem of deciding whether or not given a type 0 grammar G,
the language L(G) is empty is a Π1-problem of the Arithmetical Hierarchy (see, for
instance, [14, 18]).

Remark (11). This problem is solvable because from a given right linear (or left
linear) regular grammar G we may construct a (possibly nondeterministic) finite
automaton F using Algorithm 2.2.2 on page 34 (or Algorithm 2.4.7 on page 42,
respectively). Then G is ambiguous iff F is not a deterministic finite automaton.

Remark (12). For all k ≥ 1 (and, in particular, also for k = 1), the problem of
deciding given an LR(k) grammar G, whether or not G is ambiguous, is trivially
solvable (with answer ‘no’) [9, page 261].
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Boolean

class of languages closed under not closed under Algebra?

type 0 � ∪ ∗ ∩ rev ¬ (4) no

Context-Sensitive � ∪ ∗ (1) ¬ ∩ rev (2) yes

Context-Free � ∪ ∗ rev ¬ ∩ (5) no

Deterministic Context-Free ¬ (3) � ∪ ∗ ∩ rev no

Regular � ∪ ∗ ¬ ∩ rev yes

Table 3. Algebraic and closure properties for various classes of lan-
guages. The operations indicated in this table are explained in Sec-
tion 7.5. Entries in positions (1)–(5) are explained in Remarks (1)–(5),
respectively, starting on page 224.

Remark (13). The problem of determining whether or not a context-sensitive gram-
mar generates a context-free language is undecidable [2, page 208].

7.5. Algebraic and Closure Properties of Classes of Languages

Table 3 on page 224 shows some algebraic and closure properties of some classes of
languages of the Chomsky Hierarchy.

The operations � , ∗, and ¬ on languages have been defined in Section 1.1 start-
ing on page 9. The operations ∪ and ∩ on languages are defined as the union
and intersection operations on sets. The operation rev has been defined in Defini-
tion 2.12.3 on page 95. Note, in particular, that the classes of regular languages and
context-sensitive languages are Boolean Algebras, if we interpret in a set theoretical
sense the boolean operations lub, glb, complement, 0, and 1, that is, if we interpret
them as union, intersection, λx.Σ∗−x, ∅, and Σ∗, respectively.

We assume that the empty word ε can be an element of the Regular, Determin-
istic Context-Free, Context-Free, and Context-Sensitive languages.

Now we make some remarks on the entries of Table 3.

Remark (1). If we assume that the empty word ε is not an element of any context-
sensitive language (the assumption that ε is not an element of any context-sensitive
language is also done in [9, page 271]) then for context-sensitive languages the Kleene
closure, denoted by ∗, should be replaced by the positive closure, denoted by +.

Remark (2). The proof of the fact that the class of context-sensitive languages is
closed under ¬ is in [10, 21].

Remark (3). The fact that the class of the deterministic context-free languages is
closed under ¬, is stated in Theorem 3.17.1 on page 169.

Remark (4). By the Post Theorem, if a set A and its complement Σ∗−A (with
respect to Σ∗ for some given alphabet Σ) are both r.e., then A and Σ∗−A are both
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recursive. Thus, the class of type 0 languages which is the class of r.e. languages, is
not closed under ¬.

Remark (5). Both {ai bi cj | i≥1, j≥1} and {ai bj cj | i≥1, j≥1} are context-free
and their intersection is {ai bi ci | i≥0} which is not context-free. The complement
of a context-free language is, in general, a context-sensitive language.

7.6. Abstract Families of Languages

In this section we deal with classes of languages defined by the closure properties
they enjoy. All languages we consider in this section are over some alphabet which
is assumed to be finite.

The interested reader is encouraged to look at [9, Chapter 11] for further infor-
mation and results on this subject.

The following definition introduces four classes of languages, namely,
(i) the trio’s, (ii) the full trio’s, (iii) the AFL’s, and (iv) the full AFL’s.

The reader will find the notions of homomorphism and ε-free homomorphism in Def-
inition 1.7.2 on page 27 , and the notion of inverse homomorphism in Definition 1.7.4
on page 28.

Definition 7.6.1. [Trio, Full Trio, AFL, full AFL] (i) A trio is a set of
languages which is closed under ε-free homomorphism, inverse homomorphism, and
intersection with regular languages.
(ii) A full trio is a set of languages which is closed under homomorphism, inverse
homomorphism, and intersection with regular languages.
(iii) An Abstract Family of Languages (or AFL, for short) is a set of languages which
is a trio and it is also closed under concatenation, union, and + closure.
(iv) A full Abstract Family of Languages (or full AFL, for short) is a set of languages
which is a full trio and it is also closed under concatenation, union, and ∗ closure. �

Obviously, the closure under homomorphism and the ∗ closure extend the closure
under ε-free homomorphism and the + closure, respectively. One can show that:
(i) the set of all regular languages each of which does not include the empty word ε,
is the smallest trio and also the smallest AFL [9, page 270 and 278], and
(ii) the set of all regular languages each of which may also include the empty word ε,
is the smallest full trio and also the smallest full AFL [9, page 270 and 278].

Now we will give the definitions which introduce three closure properties. These
definitions are parametric with respect to the choice of two, not necessarily distinct,
finite alphabets. Let us call them A and B.

Let REGA be the set of regular languages, each of which is a subset of A∗, and
let C be a family of languages, each of which is a subset of B∗.

Given any language R ∈ REGA and any substitution σ from A to C (see Defini-
tion 1.7.1 on page 27), that is, for all a ∈A, σ(a) is a language in C, let us consider
the following language, which is a subset of B∗ (not necessarily in C):

LR,σ = {w |n≥0 and a1 . . . an ∈ R and w ∈ σ(a1) � . . . � σ(an)} (L1)

where � denotes language concatenation.
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Then we consider the class SinR(REGA, C) of all languages of the form of LR,σ,
for every possible choice of the regular language R ∈ REGA and the substitution σ
from A to C. Formally, we have that:

SinR(REGA, C) = {LR,σ |R ∈ REGA and for all a ∈A, σ(a) ∈ C}
Definition 7.6.2. [Closure under SinR and ε-freeR-SinR] (i) A class C

of languages is said to be closed under substitution into the regular languages of
REGA (or SinR, for short) iff SinR(REGA, C) ⊆ C.
(ii) A class C of languages is said to be closed under substitution into the ε-free
regular languages of REGA (or ε-freeR-SinR, for short) iff (i) SinR(REGA, C) ⊆ C
and (ii) when constructing the languages LR,σ (see Definition (L1) above) we assume
that for all R ∈REGA, we have that ε 6∈ R.

Let C be a family of languages each of which is a subset of A∗.
Given any language D ∈ C and any substitution σ from A to REGA, that is, for

all a ∈A, σ(a) is a language in REGA, let us consider the following language, which
is a subset of A∗ (not necessarily in C):

LD,σ = {w |n≥0 and a1 . . . an ∈ D and w ∈ σ(a1) � . . . � σ(an)} (L2)

where � denotes language concatenation.
Then we consider the class SbyR(C, REGA) of all languages of the form of LD,σ,

for every possible choice of the language D ∈ C and the substitution σ from A
to REGA. Formally, we have that:

SbyR(C, REGA) = {LD,σ |D ∈ C and for all a ∈A, σ(a) ∈ REGA}
Definition 7.6.3. [Closure under SbyR and ε-freeR-SbyR] (i) A class

C of languages is said to be closed under substitution by the regular languages of
REGA (or SbyR, for short) iff SbyR(C, REGA) ⊆ C.
(ii) A class C of languages is said to be closed under substitution by the ε-free regular
languages of REGA (or ε-freeR-SbyR, for short) iff (i) SbyR(C, REGA) ⊆ C and
(ii) when constructing the languages of the form LD,σ (see Definition (L2) above)
we assume that for all a ∈ A, the empty word ε does not belong to the regular
language σ(a) ∈REGA.

In the following Definition 7.6.4 we present the closure property under substitu-
tion. As the reader may verify, Definition 7.6.4 can be obtained from Definition 7.6.2
by replacing REGA by C, that is, by considering R to be a language in C, instead
of a regular language in REGA. Equivalently, the Definition 7.6.4 can be obtained
from Definition 7.6.3 by replacing REGA by C.

Let C be a family of languages, each of which is a subset of A∗.
Given any language D ∈ C and any substitution σ from A to C, that is, for all

a ∈ A, σ(a) is a language in C, let us consider the following language, which is a
subset of A∗ (not necessarily in C):

LD,σ = {w |n≥0 and a1 . . . an ∈ D and w ∈ σ(a1) � . . . � σ(an)}
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(a) (b) (c) (d) (e)

trio ε-free-h h−1 ∩R ε-free-GSM GSM−1 ε-freeR-SbyR
full trio h h−1 ∩R GSM GSM−1 SbyR

AFL ε-free-h h−1 ∩R � ∪ + ε-free-GSM GSM−1 ε-freeR-SinR ε-freeR-SbyR
full AFL h h−1 ∩R � ∪ ∗ GSM GSM−1 SinR SbyR

Table 4. Columns (b), (c) and (d) show the closure properties of the
classes of languages indicated on the same row in Column (a). The
class of languages indicated in a row of Column (a) is, by definition,
the class of languages which enjoys the closure properties listed in the
same row of Column (b). The abbreviations used in this table are
explained in Points (1)–(11) starting on page 227.

Then we consider the class Subst(C) of all languages of the form of LD,σ, for every
possible choice of the language D ∈ C and the substitution σ from A to C. Formally,
we have that:

Subst(C) = {LD,σ |D ∈ C and for all a ∈A, σ(a) ∈ C}
Definition 7.6.4. [Closure under Substitution] A class C of languages is

said to be closed under substitution (or Subst, for short) iff Subst(C) ⊆ C.
We state without proofs the following results. For the notions of: (i) GSM mapping,
(ii) ε-free GSM mapping, and (iii) inverse GSM mapping, the reader may refer to
Definition 2.11.2 on page 93 and Definition 2.11.3 on page 93.

In Table 4 we show various closure properties of the families of languages: (i) trio,
(ii) full trio, (iii) AFL, and (iv) full AFL. These families of languages are indicated
in Column (a). The properties we have listed in a row of Column (b) hold, by
definition, for the family of languages indicated in the same row of Column (a).

In that table we have used the following abbreviations:

1) h stands for closure under homomorphism (see Definition 1.7.2 on page 27),
2) ε-free-h stands for closure under ε-free homomorphism (that is, the empty

word ε is not in the image of h),
3) h−1 stands for closure under inverse homomorphism,
4) ∩R stands for closure under intersection with regular languages,
5) GSM stands for closure under GSM mapping,
6) ε-free-GSM stands for closure under ε-free GSM mapping,
7) GSM−1 stands for closure under inverse GSM mapping,
8) � stands for closure under language concatenation,
9) ∪ stands for closure under language union,

10) + stands for + closure (see page 10), and
11) ∗ stands for ∗ closure (see page 9).
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For instance, Table 4 tells us that: (i) any trio is closed under ε-free GSM mapping,
inverse GSM mapping, and ε-freeR-SbyR (see the first row which shows the prop-
erties of trio’s), and (ii) any full trio is closed under GSM mapping, inverse GSM
mapping, and SbyR (see the second row which shows the properties of full trio’s).

The result stated for the AFL’s in Column (d) of Table 4 can be slightly im-
proved. Indeed, it can be shown that:

for each AFL, if in that AFL there exists a language L such that ε ∈ L, then
that AFL is closed under SinR, and not only ε-freeR-SinR [9, Theorem 11.5 on
page 278].

Fact 7.6.5. [Closure Under Substitution of the Classes of Languages
REG, CF, CS, REC, and R.E.] Regular languages (with the empty word ε
allowed), context-free languages (with the empty word ε allowed), context-sensitive
languages (with the empty word ε allowed), recursive sets, and r.e. sets are closed
under Subst (see also [9, page 278]).

In Table 5 on page 229 we have shown some examples of full trios, AFL’s, and
full AFL’s. REG, ε-free REG, LIN, DCF, CF, ε-free CF, CS, ε-free CS, REC, and
R.E. denote, respectively, the class of regular, ε-free regular, linear context-free,
deterministic context-free, context-free, ε-free context-free, context-sensitive, ε-free
context-sensitive, recursive, and recursively enumerable languages.

We already know these classes of languages, except for the ε-free classes which
we will now define.

Definition 7.6.6. [Epsilon-Free Class of Languages and Epsilon-Free
Language] A class C of languages is said to be ε-free if the empty word ε is not an
element of any language in C. A language L is said to be ε-free if the empty word ε
is not an element of L.

Thus, in particular: (i) ε-free REG is the class of the regular languages L such
that ε 6∈ L, (ii) ε-free CF is the class of the context-free languages L such that ε 6∈ L,
and (iii) ε-free CS is the class of the context-sensitive languages L such that ε 6∈ L.

Recall that we assume that the empty word ε is allowed in the languages of the
classes REG, DCF, CF, CS, REC, and R.E. In particular, we allow the empty word
in the context-sensitive languages (see Definition 1.5.7 on page 21). Note that, on
the contrary, J. E.Hopcroft and J.D.Ullman assume in their book [9] that every
context-sensitive language does not include the empty word (see, in particular, [9,
page 271]).

Note that the classes of languages ε-free CS, CS, and REC are not full AFL’s
because they are not closed under homomorphisms. However, they are closed under
ε-free homomorphisms (recall Fact 4.0.11 on page 179).

The class LIN of the linear context-free languages has been introduced in Defi-
nition 3.1.22 on page 110. Now we present an alternative, equivalent definition.



7.6. ABSTRACT FAMILIES OF LANGUAGES 229

not a trio DCF

trio
full trio LIN

AFL ε-free REG ε-free CF ε-free CS, CS REC
full AFL REG CF R.E.

Table 5. Abstract Families of Languages and their relation to the
Chomsky Hierarchy. The classes REG, ε-free REG, LIN, DCF, CF,
ε-free CF, CS, ε-free CS, REC, and R.E. are, respectively, the classes
of the regular, ε-free regular, linear context-free, deterministic context-
free, context-free, ε-free context-free, context-sensitive, ε-free context-
sensitive, recursive, and recursively enumerable languages.

Definition 7.6.7. [Linear Context-free Language] The class LIN is the class
of the linear context-free languages. A linear context-free language is generated by
a context-free grammar whose productions are of the form:

A→ a B
A→ B a
A→ a

where A and B are nonterminal symbols and a is a terminal symbol. In a linear
context-free language we also allow the production S → ε iff ε ∈ L, where S denotes
the axiom of the grammar.

The closure properties of the classes of languages shown in Table 5 on page 229
can be determined by considering also Table 4 on page 227. For instance, we have
that the class REG of languages is closed under SinR (that is, substitution into
regular languages) and under SbyR (that is, substitution by regular languages).
The same holds for the classes CF and R.E.

The classes ε-free CS, CS, and REC, being AFL’s and a not full AFL’s, are
closed under ε-free-SinR (that is, substitution into ε-free regular languages) and
ε-free-SbyR (that is, substitution by ε-free regular languages).

Note that the class of deterministic context-free languages (DCF) is not a trio.
The class of deterministic context-free languages is closed under:

1) complementation,
2) inverse homomorphism,
3) intersection with any regular language,
4) difference with any regular language, that is, if L is a DCF language and

R is a regular language then L−R is a DCF language.

However, the class of deterministic context-free languages is not closed under any
of the following operations:
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1) ε-free homomorphism (thus, the class DCF of the deterministic context-free
languages is not a trio),

2) concatenation,
3) union,
4) intersection,
5) + closure,
6) ∗ closure,
7) substitution, and
8) reversal.

Fact 7.6.8. Any class of languages which is an AFL and it is closed under
intersection, is also closed under substitution (see Definition 7.6.4 on page 227).

The six closures properties which, by definition, are enjoyed by the class AFL
of languages, that is, ε-free homomorphism, inverse homomorphism, intersection
with regular languages, concatenation, union, and + closure, are not all independent.
For instance, we have that concatenation follows from the other five properties.
Analogously, union follows from the other five, and intersection with any regular
language follows from the other five [9, Section 11.5].

7.7. From Finite Automata to Left Linear and Right Linear Grammars

In this section we will present an algorithm which given any nondeterministic finite
automaton, derives an equivalent left linear or right linear grammar.

This algorithm uses techniques for the simplifications of context-free gram-
mars which we have been presented in Section 3.5.3 on page 125 (elimination of
ε-productions) and Section 3.5.4 on page 126 (elimination of unit productions).

This algorithm is perfectly symmetric with respect to the left linear case and
the right linear case and, in that sense, it is better than any of the algorithms we
have presented in Sections 2.2 and 2.4, that is, (i) Algorithm 2.2.3 on page 34,
(ii) Algorithm 2.4.5 on page 40, and (iii) Algorithm 2.4.6 on page 41.

Algorithm 7.7.1.

Procedure: from Finite Automata
to Right Linear or Left Linear Grammars.

Input : a deterministic or nondeterministic finite automaton which accepts the lan-
guage L ⊆ Σ∗.
Output : a right linear or a left linear grammar which generates the language L.

If the finite automaton has no final states, then the right linear or the left linear
grammar has an empty set of productions. If the finite automaton has at least one
final state, then we perform the following steps.

Step (1). Add a new initial state S with an ε-arc to the old initial state, which will
no longer be the initial state. Add a new final state F with ε-arcs from the old final
state(s) which will no longer be final state(s).
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Step (2). For every arc A
a−→ B, with a ∈ Σ ∪ {ε}, add the production:

A→ a B for the right linear grammar. B → A a for the left linear grammar.

Step (3). The symbol which occurs only on the left of a production, is the axiom,
and the symbol which occurs only on the right of a production, has an ε-production,
that is,

for the right linear grammar : for the left linear grammar :
take S as the axiom take F as the axiom
add F → ε add S → ε

Step (4). Eliminate by unfolding the ε-production and the unit productions.

Note 1. If the given automaton has no final states, then the language accepted by
that automaton is empty, and both the left linear and right linear grammars we
want to construct, have an empty set of productions.

Note 2. After the introduction of the new initial state and the new final state, never
the initial state is also a final state. Moreover, no arc goes to the initial state and
no arc departs from the final state. The form of the productions A → a B and
B → A a for the right linear grammar and the left linear grammar, respectively,
can be recalled by thinking at the boxed parts of the following diagrams of the arc

A
a−→ B:

for the right linear grammar :

A
a−→ B

A → a B

for the left linear grammar :

A
a−→ B

B → A a

Note that for the right linear grammar and the left linear grammar, the two symbols
occurring on the right hand side of the production (a B and A a, respectively), are

in the same order in which they occur in the arc A
a−→ B.

Note 3. We add exactly one production for every arc A
a−→ B. With reference to

what we have said on page 44, we have that:
(i) for the right linear grammar every state encodes its future until a final state and
thus, A→ a B tells us that the future of A is a followed by the future of B, and
(ii) for the left linear grammar every state encodes its past from the initial state and
thus, B → A a tells us that the past of B is the past of A followed by a.

Note 4. At Step (3) the choice of the axiom and the addition of the ε-production
make every symbol of the derived grammar, to be a useful symbol.

At Step (3) we add one ε-production only, and that ε-production forces an empty
future of the final state F (for the right linear grammar), and an empty past of the
initial state S (for the left linear grammar).

At the end of Step (3) the grammar may have one or more unit productions. 2
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7.8. Context-Free Grammars over Singleton Terminal Alphabets

In this section we show the following result.

Theorem 7.8.1. If the terminal alphabet of a context-free grammar G is a
singleton, then the language L(G) generated by the grammar G is a regular language.

Let us consider a context-free grammar G which, without loss of generality, does
not have ε-productions besides, possibly, the production S → ε. Let us also assume
that its terminal alphabet of G is a singleton.

Let us first recall the Pumping Lemma for context-free languages (see Theo-
rem 3.11.1 on page 150).

Lemma 7.8.2. [Pumping Lemma for Context-Free Languages] For every
context-free grammar G with terminal alphabet Σ, there exists n> 0 such that for
all z ∈ L(G), if |z| ≥ n then there exist u, v, w, x, y ∈ Σ∗, such that

(1) z = uvwxy,
(2) vx 6= ε,
(3) |vwx| ≤ n, and
(4) for all i ≥ 0, uviwxiy ∈ L(G).

Let us assume that the terminal alphabet of G is the set Σ={a} with cardinality 1.
Since Σ has cardinality 1, commutativity holds, that is, for all u, v ∈ Σ∗, u v = v u.

The following lemma easily follows from the above Lemma 7.8.2.

Lemma 7.8.3. [Pumping Lemma for a Terminal Alphabet of Cardinal-
ity 1] Given a context-free grammar G with a terminal alphabet Σ of cardinality 1,
there exists n>0 such that for all z ∈ L(G), if |z|≥n then there exists p≥0, there
exists q, such that

(1.1) |z| = p+q,
(2.1) q>0,
(3.1) there exists m, with 0≤m≤p, such that 0<m+q≤n, and
(4.1) for all s ∈ Σ∗, for all i≥0, if |s| = p + i q then s ∈ L(G).

Proof. The final part of the statement of Lemma 7.8.2 on page 232 can be
rewritten as follows. By commutativity, we can absorb vx into v (note that v and x
are both existentially quantified) and we get:

. . . there exist u, v, w, y ∈ Σ∗, such that
z = uvwy,
v 6= ε,
|vw| ≤ n, and
for all i ≥ 0, uviwy ∈ L(G).

By commutativity, we can absorb uy into u (note that u and y are both existentially
quantified) and we get:

. . . there exist u, v, w ∈ Σ∗, such that
z = uvw,
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v 6= ε,
|vw| ≤ n, and
for all i ≥ 0, uviw ∈ L(G).

By commutativity we can put the v’s after w, and we get:

. . . there exist u, v, w ∈ Σ∗, such that
z = uwv,
v 6= ε,
|wv| ≤ n, and
for all i ≥ 0, uwvi ∈ L(G).

Let p denote |uw| and q denote |v|. By taking the lengths of the words, which are
non-negative integers, we get:

. . . there exists p≥0, there exists q≥0, there exists w ∈ Σ∗, such that
(1.1) |z| = p + q,
(2.1) q>0,
(3*) |w|+ q ≤ n, and
(4.1) for all s ∈ Σ∗, for all i≥0, if |s| = p + i q then s ∈ L(G).

By Condition (2.1) we can write ‘there exists q’, instead of ‘there exists q≥0’. Let
m denote |w|. Since p = |uw|, we have that m≤ p, and since q > 0, we can write
0<m+q≤n, instead of |w|+q≤n. We get:

. . . there exists p≥0, there exists q, such that
(1.1) |z| = p + q,
(2.1) q>0,
(3.1) there exists m, with 0≤m≤p, such that 0<m+q≤n, and
(4.1) for all s ∈ Σ∗, for all i≥0, if |s| = p + i q then s ∈ L(G). �

By Condition (3.1) of the above Pumping Lemma 7.8.3 on page 232, we can replace
Condition (2.1) of that lemma by the stronger condition: 0<q≤n.

Let n denote the number whose existence is asserted by the Pumping Lemma 7.8.3.
Let us consider the following two languages subsets of L(G):

(i) L<n = {w ∈ L(G) | |w| < n} and
(ii) L≥n = {w ∈ L(G) | |w| ≥ n}.

Obviously, we have that L(G) = L<n∪L≥n. Since L<n is finite, L<n is a regular
language.

Thus, in order to show that L(G) is a regular language it is enough to show, as we
now do, that also L≥n is a regular language.

Given any word z ∈ L≥n, we have that by Lemma 7.8.3, there exist p0≥0 and

q0 >0 such that z = ap0 + q0 (take i=1) and ap0 ∈ L(G) (take i=0).

Since q0 >0 we have that p0 < |z|. Now, if p0≥n, starting from ap0 , instead of

z, we get that there exist p1≥0 and q1 >0 such that ap0 = ap1 + q1 , and thus,

z = a(p1 + q1) + q0 .
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In general, there exist p0, q0, p1, q1, p2, q2, . . . , ph, qh, and h≥0, such that:

z = ap0 + q0 =

= a(p1 + q1) + q0 =

= a(p2 + q2) + q1 + q0 =

= . . . =

= a(ph + qh) + qh−1 + . . . + q2 + q1 + q0 (†)
where: (C1) ph < n, and (C2) for all i, with 0≤ i<h, we have that pi≥n.

Note that, when writing Expression (†), we do not insist that all the qi’s are
distinct.

Since for all i, with 0 ≤ i ≤ h, we have that qi > 0, it is the case that for any
z ∈ L≥n, we can always construct an expression of the form (†) satisfying (C1)

and (C2).
Thus, by writing i q, instead of the term q + . . .+ q where the summand q occurs

i times, we have that every word z ∈ L≥n is of the form:

aph + i0q0 + . . . + ikqk

for some k, ph, i0, . . . , ik, q0, . . . , qk such that:

(ℓ 0) 0≤k,
(ℓ 1) 0≤ph <n,
(ℓ 2) i0 >0, . . . , ik >0,
(ℓ 3) 0< q0≤n, . . ., 0< qk≤n, and
(ℓ 4) the values of q0, . . . , qk are all distinct integers and since there are at most n

distinct integers r such that 0<r≤n, we have that k<n.

Thus, the language L≥n, is the union of languages each of which is of the form:

L〈ph, q0, . . . , qk〉 = {aph + i0q0 + . . . + ikqk | 0≤k≤n, 0≤ph <n, i0 >0, . . . , ik >0,

0< q0≤n, . . . , 0< qk≤n} ∩ ({a}∗ − L<n)

Note that L≥n is a finite union of such languages, because there exists only a finite

number of tuples of the form 〈ph, q0, . . . , qk〉 such that (ℓ 0), (ℓ 1), (ℓ 3), and (ℓ 4)
hold.

Note also that for any tuple of the form 〈ph, q0, . . . , qk〉 such that (ℓ 0), (ℓ 1),
(ℓ 3), and (ℓ 4) hold, we have that L〈ph, q0, . . . , qk〉 is a regular language. Indeed,

the finite automaton which recognizes L〈ph, q0, . . . , qk〉 is as follows:

A B

...
...

aph+q0

aph+qk

aq0

aqk
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By recalling that the class of regular languages is closed under finite union, finite
intersection, and complementation, we get that L≥n is a regular language.

This concludes the proof that every context-free grammar G over a terminal
alphabet of cardinality 1 generates a regular language.

Note that the proof we have given does not require Parikh’s Lemma. In the
literature there is also a proof based on Parikh’s Lemma (see [8], Sections 6.3, 6.9,
and Problem 4 on page 231).

7.9. The Bernstein Theorem

In this section we present a lattice theoretic proof of the Bernstein Theorem based
on the following lemma due to Knaster and Tarski whose proof can be found in the
literature (see, for instance, [16, pages 31–32]).

Lemma 7.9.1. [Knaster-Tarski, 1955] Let T : L→ L be a monotonic function
on a complete lattice L ordered by a partial order denoted ≤. T has a least fixpoint
which is glb{x | T (x) = x}, that is, T (glb{x | T (x) = x}) = glb{x | T (x) = x} (note
that T (x) = x stands for T (x) ≤ x and x ≤ T (x)).

Theorem 7.9.2. [Bernstein, 1898] Given any two sets X and Y , and two
injections f : X → Y and g : Y → X then there exists a bijection h : X → Y .

Proof. Let us consider: (i) the function f ∗ : 2X → 2Y such that given any set
A ⊆ X, f ∗(A) = {f(x) | x ∈ A}, (ii) the function g∗ : 2Y → 2X such that given any
set B ⊆ Y , g∗(B) = {g(y) | y ∈ B}, and (iii) the function c∗ : 2X → 2X such that
given any set A ⊆ X, c∗(A) = X−g∗(Y −f ∗(A)).

The function c∗ is a monotonic function from the complete lattice 〈2X ,⊆〉 to
itself. Indeed, if A1 ⊆ A2 then X−g∗(Y −f ∗(A1)) ⊆ X−g∗(Y −f ∗(A2)).

Thus, as a consequence of the monotonicity of c∗, by Lemma 7.9.1, we have

that there exists a fixpoint, say X̂, of c∗. Since X̂ is a fixpoint, we have that

X̂ = X−g∗(Y−f ∗(X̂)). From this equality we get: X−X̂ = X−(X−g∗(Y−f ∗(X̂)))
and since X−(X−A) = A for any set A ⊆ X, we get:

X−X̂ = g∗(Y −f ∗(X̂)) (†)
Let us consider the relation h ⊆ X × Y defined as follows: for any x ∈ X,

h(x) = if x ∈ X̂ then f(x) else g−1(x).

We have that the relation h is a total function from X to Y because: (i) f is a

total function from X̂ to Y , being f an injection from X to Y , and (ii) g−1 is a

total function from X−X̂ to Y because: (ii.1) g is an injection from Y to X and

(ii.2) X−X̂ ⊆ g∗(Y ) (this is a consequence of the equality (†) above).
Now we show that h is a bijection from X to Y (see also Figure 7.9.1) by showing

that there exists a relation k ⊆ Y ×X such that:

(1) k is a total function from Y to X,

(2) for any x ∈ X, k(h(x)) = x , and

(3) for any y ∈ Y , h(k(y)) = y.
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Figure 7.9.1. Given the two injections f : X → Y and g : Y → X,
the definition of the bijection h : X → Y is as follows: for any x ∈ X,

h(x) = if x ∈ X̂ then f(x) else g−1(x) , where X̂ is a subset of X

such that X̂ = X − g∗(Y − f ∗(X̂)). The functions f ∗ and g∗ denote,
respectively, the pointwise extensions of the injections f and g, in the
sense that f ∗ and g∗ act on sets of elements, rather than on elements,
as the functions f and g do. The function k : Y → X is the inverse
of the function h.

We claim that k is defined as follows: for any y ∈ Y ,

k(y) = if y ∈ f ∗(X̂) then f−1(y) else g(y).

Proof of (1). k is the union of two total functions with disjoint domains whose

union is Y . Indeed, (i) f−1 is a total function from f ∗(X̂) to X because f is an

injection from X to Y , and (ii) g is total function from Y −f ∗(X̂) to X, because g
is an injection from Y to X.

Proof of (2). Case (2.1) Take any x ∈ X̂. By the definition of h we have that
h(x)) = f(x). Thus, we get:

(2.1.1) k(h(x)) = k(f(x)).

Now, since x ∈ X̂ we have that f(x) ∈ f ∗(X̂), and by the definition of k we have
that:

(2.1.2) k(f(x)) = f−1(f(x)).

From Equations (2.1.1) and (2.1.2), by transitivity, we get: k(h(x)) = f−1(f(x)),
and from this last equation, since f is an injection, we get: k(h(x)) = x.

Case (2.2) Take any x 6∈ X̂. By the definition of h we have that h(x) = g−1(x).
Thus, we get:

(2.2.1) k(h(x)) = k(g−1(x)).

Now, since x 6∈ X̂ we have that g−1(x) 6∈ f ∗(X̂) (by (†)), and by the definition of k
we have that:
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(2.2.2) k(g−1(x)) = g(g−1(x)).

From Equations (2.2.1) and (2.2.2), by transitivity, we get: k(h(x)) = g(g−1(x)),
and from this last equation, since g is an injection, we get: k(h(x)) = x.

Proof of (3). Case (3.1) Take any y ∈ f ∗(X̂). By the definition of k we have that
k(y)) = f−1(y). Thus, we get:

(3.1.1) h(k(x)) = h(f−1(x)).

Now, since y ∈ f ∗(X̂) we have that f−1(y) ∈ X̂, and by the definition of h we have
that:

(3.1.2) h(f−1(y)) = f(f−1(y)).

From Equations (3.1.1) and (3.1.2), by transitivity, we get: h(k(y)) = f(f−1(y)),
and from this last equation, since f is an injection, we get: h(k(y)) = y.

Case (3.2) Take any y 6∈ f ∗(X̂). By the definition of k we have that k(y) = g(y).
Thus, we get:

(3.2.1) h(k(y)) = h(g(y)).

Now, since y 6∈ f ∗(X̂) we have that g(y) 6∈ X̂ (by (†)), and by the definition of h we
have that:

(3.2.2) h(g(y)) = g−1(g(y)).

From Equations (3.2.1) and (3.2.2), by transitivity, we get: h(k(y)) = g−1(g(y)),
and from this last equation, since g is an injection, we get: h(k(y)) = y. �

7.10. Existence of Functions That Are Not Computable

In this section we will show that there exist functions from the set of natural numbers
to the set of natural numbers which are not Turing computable, that is, computable
by a Turing Machine. We will not define this concept here and we refer to books on
Computability Theory such as, for instance, [7, 18]. For reasons of simplicity, we
will also say ‘computable’, instead of ‘Turing computable’.

Let us first recall a few notational conventions.

(i) N denotes the set of natural numbers {0, 1, 2, . . .},
(ii) R(0,1) denotes the set of reals in the open interval (0, 1) with 0 and 1

excluded,
(iii) R(−∞,+∞) denotes the set of all reals, also denoted by R,

(iv) Prog denotes the set of all programs, written in Pascal or C++ or Java or

any other programming language in which one can write any computable
function,

(v) xω denotes the infinite sequence of x’s.

We stipulate that, given any two sets A and B:
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(vi) |A |= |B | means that there exists a bijection between A and B,

(vii) |A | ≤ |B | means that there exists an injection between A and B,

(viii) |A |< |B | means that there exists an injection between A and B and

there is no bijection from A to B.

In what follows we will make use of the Bernstein Theorem (see Theorem 7.9.2 on
page 235), that is, if |A | ≤ |B | and |B | ≤ |A | then |A |= |B |.

We begin by proving the following theorems.

Theorem 7.10.1. We have the following facts:

(i) |N |= |N∪{a}| for any a 6∈ N

(ii) |N |= |N×N |
(iii) |N |= |N∗ |
(iv) |N → {0, 1}|= |N → N |
(v) |{0, 1}∗ |= |N |

Proof. (i) We apply the Bernstein Theorem. The two injections which are required
are: the injection from N to N∪{a} which maps n to n, for any n ∈ N , and the
injection from N∪{a} to N maps a to 0 and n to n+1, for any n ∈ N .

(ii) We apply the Bernstein Theorem. The injection δ from N to N ×N is defined
as follows. We stipulate that:

for any z ∈ N , s =⌊
√

8z+1+1
2
⌋−1

where ⌊x⌋ denotes the largest natural number less than or equal to x.
We also stipulate that:

n = z− s2+s
2

Then for any z ∈ N , we define δ(z) to be 〈n, s−n〉. The injection π from N ×N to
N is defined as follows:

for any n, m ∈ N , π(n, m) =
(n+m)2+3n+m

2
We leave it to the reader to show that π is the inverse of δ and vice versa.

Figure 7.10.1 shows the bijection δ between N and N × N . The function δ is
called the dove-tailing bijection.

(iii) We can construct a bijection between N and N×N×N by using twice the bijection
between N and N×N . Thus, by induction, we get that, for any k = 1, 2, . . ., there
exists a bijection between N and Nk. Then, the bijection between N and N∗ can be
constructed by considering a table, call it A, like that of Figure 7.10.1, where in the
first row, for n=0, we have the elements of N , in the second row, for n=1, we have
the elements of N×N ordered according to the bijection δ between N and N2, and
in the generic row, for n=k, we have the elements of Nk, ordered according to the
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m=0 1 2 3 4 5 . . .

n = 0 0 1 3 6 10 15 . . .
1 2 4 7 11 16 . . .
2 5 8 12 17 . . .
3 9 13 18 . . .
4 14 19 . . .
5 20 . . .

. . . . . .

Figure 7.10.1. The dove-tailing bijection δ between N and N×N .
For instance, δ(18) = 〈3, 2〉.

bijection between N and Nk. Table A gives a bijection between N and
⋃

k>0 Nk,
also denoted N+, by applying the dove-tailing bijection as in Figure 7.10.1. To
get the bijection between N and

⋃
k≥0 Nk, also denoted N∗, it is enough to recall

Point (i) above because N0 is a singleton.

(iv) Since N → {0, 1} is a subset of N → N , by the Bernstein Theorem, it is enough
to construct an injection h from N → N to N → {0, 1}. Each function f in N → N
can be viewed as a 2-dimensional matrix M , like the one in Figure 7.10.1 above,
where for i, j≥0, M(i, j) = 1 iff f(i) ≤ j and M(i, j) = 0 iff f(i) > j. The matrix M
provides the unary representation of the value of f(i), for all i ∈ N . Then, h(f) is
the function in N → {0, 1}, such that for each n ∈ N , (h(f))(n) = M(δ(n)). By
construction, h is an injection.

(v) We apply the Bernstein Theorem. The injection from {0, 1}∗ to N is obtained by
adding 1 to the left of any given sequence in {0, 1}∗ and considering the correspond-
ing natural number. The injection from N to {0, 1}∗ is obtained by considering the
binary representation of any given natural number. �

Theorem 7.10.2. [Cantor Theorem] For any set A, we have that |A |<|2A |.
Proof. An injection from A to 2A is the function which for any a ∈ A, maps a to
{a}. It remains to show that there is no bijection between A and 2A. The proof is
by contradiction. Let us assume that there a bijection g : A→ 2A. Let us consider
the set X = {a | a ∈ A and a 6∈ g(a)}. Thus, X ⊆ A. Since g is a bijection there
exists y in A such that g(y) = X. Now, if we suppose that y ∈ X we get that
y ∈ g(y) and thus, y 6∈ g(y). If we suppose that y 6∈ X, we get that y 6∈ g(y) and
thus, y ∈ g(y). This is a contradiction. �

Now we prove the following facts:

|N | (T1)
= |Prog |

(T2)
< |N → {0, 1}| (T3)

= |2N | (T4)
= |R(0,1) |

(T5)
= |R(−∞,+∞) |
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Theorem 7.10.3. (T1): |N | = |Prog |.
Proof. We apply the Bernstein Theorem. The injection from N to Prog is as
follows. For any n≥0, we consider the Pascal program:

program num;
var x : integer ;
begin x := 0; ... x := 0; end

where the statement x := 0 occurs n times. The injection from Prog to N is as
follows. Given a program P in Prog as a sequence of characters and consider the
ASCII code of each character. We get a sequence of bits. By adding a 1 to the left
of that sequence we get the binary representation of a natural number. �

Theorem 7.10.4. (T2) and (T3): |N |
(T2)
< |N → {0, 1}| (T3)

= |2N |.
Proof. (T2) holds because of Cantor Theorem. (T3) holds because a bijection
between N → {0, 1} and 2N is obtained by mapping an element of N to 1 iff it
belongs to the given subset of N in 2N . �

As a consequence of |N |= |Prog | and |N |< |N → {0, 1} |, we have that there
are functions from N to {0, 1} which do not have their corresponding programs
written in Pascal or C++ or Java or any other programming language in which one
can write any computable function. Thus, there are functions from N to N which
are not computable.

From Theorem 7.10.1 we have that:

(i) |N |= |N×N |, and (ii) |N → {0, 1}|= |N → N |.
Thus, |Prog |< |(N×N)→ N |.

Now we present a particular total function, called decide, from N×N to {true,
false} for which there is no program that always halts and computes the value of
decide(m, n) for all inputs m and n.

Note that if we encode true by 1 and false by 0, the function decide can be
viewed as a function from N×N to N . The function decide is the one that given
a program prog (as a finite sequence of characters) and a value inp (as a finite
sequence of characters), tells us whether or not prog halts for the input inp. (Recall
that by Property (v) of Theorem 7.10.1 above, a finite a sequence of characters
can be encoded by a natural number.) We will assume that whenever the number
m is the encoding of a sequence of characters which is not a legal program, then
m is the encoding of the program that halts for all inputs. We also assume that:
(i) decide(m, n) = true iff the program which is encoded by m terminates for the
input encoded by n, and (ii) decide(m, n) = false iff the program which is encoded
by m does not terminate for the input encoded by n.

In order to show that for the function decide there is no program that always
halts and computes the value of decide(m, n) for all inputs m and n, we will reason
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by contradiction. Let us assume that the function decide can be computed by the
following Pascal-like program, called Decide, that always halts.

function decide(prog, inp: text): boolean; Program Decide
...

begin ... end

Thus, decide(prog, inp) is true iff prog(inp) terminates, and decide(prog, inp) is false
iff prog(inp) does not terminate. If program Decide exists, then it also exists the
following program that always halts:

function selfdecide(prog: text): boolean; Program SelfDecide

var inp: text ;
begin inp := prog; selfdecide :=decide(prog, inp) end

This program tests whether or not the program prog halts for the input sequence
of characters which is prog itself. Thus, selfdecide(prog) is true iff prog(prog) ter-
minates, and selfdecide(prog) is false iff prog(prog) does not terminate. Now, if
program Decide exists, then also the following program exists:

function selfdecideloop(prog: text): boolean; Program SelfDecideLoop

var x : integer ;
begin if selfdecide(prog) then while true do x := 0

else selfdecideloop := false

end

Now, since the program SelfDecide always halts, the value of selfdecide(prog) is
either true or false, and we have that:

selfdecideloop(prog) does not terminate iff prog(prog) terminates. (††)
Now, if we consider the execution of the call selfdecideloop(selfdecideloop), we have
that:

selfdecideloop(selfdecideloop) does not terminate iff
selfdecideloop(selfdecideloop) terminates.

This contradiction is derived by instantiating Property (††) for prog equal selfdecide-
loop. Thus, since all program construction steps from the initial program Decide are
valid program construction steps, we conclude that the program Decide that always
halts, does not exist.

We also have the following theorems.

Theorem 7.10.5. (T4): |2N |= |R(0,1) |.
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Proof. We apply the Bernstein Theorem. The injection from R(0,1) to 2N is ob-
tained by considering the binary representation of each element in R(0,1). In the
binary representations we assume that the decimal point is at the left, that is, the
most significant bit is the leftmost one. Moreover, in the binary representations
we identify a sequence of the form σ01ω, where σ is a finite binary sequence, with
the sequence σ10ω because they represent the same real number. (Recall that the
same identifications are done in the decimal notation where, for instance, the infinite
strings 5.169ω and 5.170ω are assumed to represent the same real number.) Thus, for
instance, 0101ω is the binary representation of the real number 0.375 when written
in the decimal notation. Indeed, in that infinite string the leftmost 1 corresponds
to 0.250 and 01ω corresponds to 0.125).

The injection from 2N to R(0,1)∪N is obtained by considering that the infinite
sequences of 0’s and 1’s are either binary representations of real numbers or sequences
of the form σ10ω, where σ is any finite binary sequence, and by Theorem 7.10.1, there
are |N | such finite binary sequences. It remains to show that |R(0,1)∪N |= |R(0,1) |.
The injection from R(0,1) to R(0,1)∪N is obvious. The injection from R(0,1)∪N to
R(0,1) is obtained by injecting R(0,1)∪N into R(−∞,+∞) and then injecting R(−∞,+∞)

into R(0,1) (see the proof of Theorem 7.10.6 below). �

Theorem 7.10.6. (T5): |R(0,1) |= |R(−∞,+∞) |.
Proof. The bijection between R(0,1) and R(−∞,+∞) is the composition of the fol-
lowing functions: (i) λx. ex from R(−∞,+∞) to R(0,+∞), (ii) λx. arctg(x) from R(0,+∞)

to R(0, π/2), and (iii) λx. (2x/π) from R(0, π/2) to R(0,1). �

In the proof of the following theorem we provide a direct proof of the fact that
there is no bijection between N and R(−∞,+∞).

Theorem 7.10.7. |N |< |R(−∞,+∞) |.
Proof. Since |N | ≤ |R(−∞,+∞) | and |R(0,1) |= |R(−∞,+∞) |, it is enough to show
that there is no bijection between N and R(0,1). We prove this fact by contradiction.
Let us assume that there is a bijection between N and R(0,1), that is, there is a
listing of all the reals in R(0,1). This listing can be represented as a 2-dimensional
matrix T with 0’s and 1’s of the form:

T :

m

...

rn n . . . 1

For n, m≥0, in row n and column m, we put the m-th bit of the binary representation
n-th real number rn of that listing (in the above matrix T we have assumed that
the m-th bit of the binary representation of rn is 1).
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Now we construct a real number, say d, in the open interval (0, 1) which is not
in that listing. Thus, the listing is not complete (that is, it is not a bijection) and
we get the desired contradiction. We construct the infinite binary representation of
d, that is, the sequence d0d1 . . . di . . . of the bits of d where d0 is the most significant
bit, as indicated by the following Procedure Diag1:

Procedure Diag1

i := 0;
nextone := 0;
while i≥0 do if T (i, i)=0 then di := 1;

if T (i, i)=1 then
if i≤nextone then di := 0
else begin di := 1; nextone := next(i); end

i := i + 1;
od

where next(i) computes any value of j, with j >i, such that T (i, j)=1. Obviously,
we can choose j to be the smallest such value for making next to be a function.

The correctness of Procedure Diag1 which generates the binary representation of
a real number d in (0, 1) which is not in the given listing, derives from the following
facts:
(i) no binary representation of a real number in (0, 1) is of the form σ0ω, where σ
is a finite binary sequence of 0’s and 1’s, and thus, for any given i≥ 0, next(i) is
always defined, and
(ii) the above Procedure Diag1 is an enhancement, in the sense that we will explain
below, of the following Procedure Diag0:

Procedure Diag0

i := 0;

while i≥0 do if T (i, i)=0 then di := 1;
if T (i, i)=1 then di := 0;
i := i + 1;

od

which constructs the infinite binary representation of d by taking the diagonal of the
matrix T and interchanging 0’s and 1’s. The real number d is not in listing because
it differs from any number in the listing for at least one bit.

In order to construct the binary representation of the real number d we have to
use Procedure Diag1, instead of Procedure Diag0, because we have to make sure
that, as required by our conventions, the binary representation of d is not of the
form σ0ω, for some finite binary sequence σ, that is, it does not end with an infinite
sequence of 0’s.
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Indeed, in order to get a binary representation of the form σ0ω by using Proce-
dure Diag0, we need that for some k≥0, for all h≥k, T (h, h)=1. In this case let
us consider the following portion of the matrix T :

T :

i j

...

ri i 1 . . . 1

...

rj j 1

where: (i) i≥h, (ii) j is a bit position greater than i, such that the j-th bit of ri is
1 (recall that next(i) is always defined), and (iii) the j-th bit of rj is 1.

Then Procedure Diag1, that behaves differently from Procedure Diag0, generates
di = 1 in position 〈i, i〉 and dj = 0 in position 〈j, j〉. This makes d to be different
both from ri and rj in the j-th bit. Thus, after applying Procedure Diag1, we get
a new value T1 of the matrix T of the following form:

T1 :

i j

...

ri i 1 . . . 1

...

rj j 0

Moreover, the fact that di =1 ensures that the binary representation of d does not
end with an infinite sequence of all 0’s, as desired. In particular, we have that the
real number d is different from 0.

Finally, in order to show that d ∈R(0,1), it remains to show that d is different
from 1. Indeed, this is the case if we assume that the initial value of the matrix T
which represents the chosen bijection between N and R(0,1), satisfies the following
property:

there exists i≥0 such that T (i, i)=1. (α)

In this case, in fact, at least one bit of d is 0 and thus, d is different from 1.
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Now, without loss of generality, we may assume that Property (α) holds, be-
cause the existence of a bijection between N and R(0,1) which is represented by a
matrix T which does not satisfy Property (α), implies the existence of a different
bijection between N and R(0,1) which is represented by a matrix which does satisfy
Property (α).

This implication is a consequence of the following two facts:
(i) in any matrix which represents a bijection between N and R(0,1), every row has
at least one occurrence of the bit 1, and
(ii) in any matrix which represents a bijection between N and R(0,1), we can permute
two of its rows so that in the derived matrix, which represents a different bijection
between N and R(0,1), we have that, for some i≥ 0, the bit in row i and column i
is 1. �
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Machine, 187
word recognized ‘by empty stack’ by a pda,
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