
Alberto Pettorossi Maurizio Proietti

First Order Predicate Calculus and

Logic Programming

Third Edition

ARACNE

Table of Contents

Preface . 7

Chapter 1. FIRST ORDER PREDICATE CALCULUS AND
FIRST ORDER THEORIES

1. Syntax of First Order Theories . 9

1.1 Scope, Variables, and Formulas . 10

1.2 Substitutions . 11

2. Axioms and Inference Rules of First Order Theories . 13

2.1 Classical Presentation . 13

2.2 Natural Deduction Presentation . 19

3. Some Properties of Connectives and Quantifiers . 24

3.1 Basic Equivalences for Implication and Equivalence 25

3.2 Distributivity of Quantifiers over Conjunctions and Disjunctions . . . 26

3.3 Prenex Conjunctive and Prenex Disjunctive Normal Form 27

3.4 Quantifiers and Implication . 28

3.5 Duality . 29

4. Semantics of First Order Theories and Completeness Theorem 30

5. First Order Predicate Calculus With Equality . 37

5.1 Definition of New Function Symbols . 40

6. Peano Arithmetic and Incompleteness Theorem . 40

6.1 More on Incompleteness . 43

Chapter 2. LOGIC PROGRAMMING

7. Towards Logic Programming: Skolem, Herbrand, and Robinson Theorems 47

8. Horn Clauses and Definite Logic Programs . 55

8.1 Least Herbrand Models of Definite Logic Programs 57

8.2 Fixpoint Semantics of Definite Logic Programs . 60

8.3 Operational Semantics of Definite Logic Programs 64

9. Computing with Definite Logic Programs . 69

9.1 Computing Functions . 70

9.2 Computing Function Inverses . 71

9.3 Computing Relations and Nondeterministic Computing 71

6

9.4 Constructing Knowledge-Based Systems . 76

9.5 Theorem Provers and Interpreters of Horn Clauses 79

10. Deriving Negative Information from Definite Logic Programs 85

11. Normal Programs . 90

12. Programs . 97

13. Appendix A: Truth in Mathematical Structures 102

14. Appendix B: Remarks on Resolution . 104

14.1 Resolution for Conjunction of Clauses . 104

14.2 SLD Resolution for Definite Programs . 104

14.3 SLDNF Resolution for Normal Programs . 106

Index . 108

References . 111

Preface

These lecture notes are intended to introduce the reader to the basic notions of the
first order predicate calculus and logic programming. We present the axioms and
the inference rules of the first order predicate calculus in two different styles: (i) the
Classical style (à la Hilbert), and (ii) the Natural Deduction style (à la Gentzen).
We also present the semantics of this calculus following Tarski’s approach. The
Skolem Theorem, the Herbrand Theorem, and the Robinson Theorem are the three
steps which lead us to the study of the Definite Logic programs. For these programs
we give the denotational semantics via the least Herbrand models, the fixpoint
semantics via the so called TP operator, and the operational semantics via SLD
trees. Finally, we consider the issue of deriving negative information from Definite
Logic programs, and we present the theory of normal programs and the theory of
programs as conjunctions of statements.

Sections are devoted to the Gödel’s Completeness Theorem, the first order pred-
icate calculus with equality, and the Peano Arithmetic.

We would like to thank Andrea Bastoni, Lorenzo Clemente, Simone D’Uffizi,
Alessandro Papaleo, Giorgio Ventrella, and the other students of the Theoretical
Computer Science courses during the academic years 2002-03 and 2003-04 for point-
ing out to us a few mistakes.

Many thanks also to Lorenzo Costantini of the Aracne Publishing Company for
his kind and helpful cooperation.
Roma, February 2005

In the second and third editions we have revised and improved many sections
of the book.
Roma, December 2011

Alberto Pettorossi
Department of Informatics, Systems, and Production
University of Roma Tor Vergata
Via del Politecnico 1, I-00133 Roma, Italy
email: adp@iasi.rm.cnr.it
URL: http://www.iasi.cnr.it/~adp

Maurizio Proietti
Consiglio Nazionale delle Ricerche - IASI
Viale Manzoni 30, I-00185 Roma, Italy
email: proietti@iasi.rm.cnr.it
URL: http://www.iasi.cnr.it/~proietti

Chapter 1

First Order Predicate Calculus and

First Order Theories

1 Syntax of First Order Theories

Let us consider a first order language L, that is, a language consisting of:

- a denumerable set of variables: {x, y, z, . . .} (we will feel free to use also subscripts),

- a finite or denumerable (possibly empty) set of function symbols (of arity r≥0):
{f, g, . . .} (function symbols of arity 0 are also called constant symbols),

- a finite or denumerable non-empty set of predicate symbols (of arity r ≥ 0):
{p, q, . . .} (in particular, we assume that there are two predicate symbols of arity 0,
called true and false),

- terms constructed from variables and function symbols of arity r applied to r
terms,

- atoms, also called atomic formulas, constructed from predicate symbols of arity r
applied to r terms,

- formulas which are either atoms or formulas constructed from formulas using the
following connectives: ¬ (not : forming negations), ∨ (or : forming disjunctions),
∧ (and : forming conjunctions), → (implies: forming implications), ← (reverse
implies: forming reverse implications), ↔ (equivalent to: forming equivalences),
and the quantifiers ∀ (for all : forming universal quantifications) and ∃ (there
exists: forming existential quantifications). The connective ¬ is unary, all others
are binary. A quantifier has two operands: a variable and a formula.

Different first order languages arise from different choices for the set of the function
symbols and the set of the predicate symbols.

Given any two formulas A and B, we will consider: (i) A∨B as an abbreviation
for (¬A) → B, (ii) A ∧ B as an abbreviation for ¬((¬A) ∨ (¬B)) , (iii) A ↔ B
as an abbreviation for (A → B) ∧ (B → A), and (iv) ∃xA as an abbreviation for
¬(∀x (¬A)).

9

10 1. First Order Predicate Calculus

Parentheses are used for grouping formulas. In order to avoid too many paren-
theses, we will assume the usual priorities among connectives, so that: (i) ∀x, ∃x,
and ¬ bind tighter than any other connective, i.e., they are applied to the small-
est possible formula or parenthesized formula following them, (ii) ∧ binds tighter
than ∨, (iii) ∨ binds tighter than →, and (iv) → binds tighter than ↔. Thus, for
instance, ∀x¬p(x) → q ∨ r(x) is the same as (∀x (¬p(x)))→ (q ∨ r(x)).
∀x1 . . .∀xm ϕ is also written as ∀x1 . . . xm ϕ or ∀x1, . . . , xm ϕ. Analogously for ∃,

instead of ∀.

By C[A] we denote an expression, that is, a term or a formula, C where we
singled out an occurrence of a subexpression A. Then, C[B] denotes C where the
subexpression A has been replaced by the subexpression B. The expression C[A]
where A is missing, is denoted by C[_] and it is called a context. In particular,
C[_] is also called a term context or a formula context, if C[A] is term or a formula,
respectively.

We will use the following auxiliary notions.

A literal is an atom or the negation of an atom. An atom is also called a positive

literal and the negation of an atom is also called a negative literal. For instance,
p(x, a) is a positive literal and ¬p(f(b, x), y) is a negative literal.

A clause is a disjunction of zero or more literals. A clause with zero literals is
called the empty clause, denoted by 2, and it is identified with the atom false. In
the sequel, by abuse of language, we will call clause also the universal closure of the
disjunction of zero or more literals. The context will disambiguate between these
two different uses of the word ‘clause’.

A formula is said to be in clausal form iff it is of the form:

∀x1 . . .∀xm (C1 ∧ . . . ∧ Ck)

where for 1 ≤ i ≤ k, Ci is a clause and the variables x1, . . . , xm are the distinct
variables occurring in C1 ∧ . . . ∧ Ck.

1.1 Scope, Variables, and Formulas

In the formula ∀xϕ the subformula ϕ is said to be the scope of ∀x. We say that the
quantifier ∀ in ∀xϕ binds the variable x. Analogously for ∃, instead of ∀.

An occurrence of a variable x is said to be bound in a formula ϕ iff either it
is the occurrence of x in ∀x or ∃x in ϕ or it occurs in the scope of an occurrence
of ∀x or ∃x in ϕ. An occurrence of a variable is said to be free iff it is not bound.
A variable x is said to be bound (or free) in a formula ϕ iff there is an occurrence
of x which is bound (or free, respectively) in ϕ.

Note that in the formula p(x) ∨ ∃x q(x) the variable x is both bound and free,
but obviously, any of the three occurrences of x is either bound or free. The only
free occurrence of x is the one in p(x).

1.2 Substitutions 11

Given the terms (or formulas) t1, . . . , tn, by vars(t1, . . . , tn) we denote the set of
variables occurring in those terms (or formulas).

Given a formula ϕ, (i) by freevars(ϕ) we denote the set of variables which are
free in ϕ, and (ii) by boundvars(ϕ) we denote the set of variables which are bound
in ϕ.

A formula ϕ is said to be a closed formula, or a sentence [10, page 46], if
freevars(ϕ) = ∅, where as usual ∅ denotes the emptyset. Thus, every formula in
clausal form is closed.

A formula is said to be an open formula if it does not contain any quantifier.
Note that according to this terminology, there are formulas which are both closed

and open, and formulas which are neither closed nor open. A formula is both closed
and open iff it has no variables. For instance, the formula p ∨ q is closed and open
and the formula p(x) ∨ ∃x q(x) is neither closed nor open.

A term (or a formula) is said to be a ground term (or a ground formula) if
no variable occurs in that term (or formula). A term without any occurrence of a
variable is also said to be a closed term [10, page 69].

Given a formula ϕ, the universal closure of ϕ is ∀x1 . . . xm ϕ, where x1, . . . , xm

are the distinct variables occurring free in ϕ. The universal closure is also denoted
by ∀(ϕ). Analogously for the existential closure of ϕ with ∃, instead of ∀.

We will feel free to write a formula ϕ as ϕ(x1,. . ., xn) to denote that {x1,. . .,xn}⊆
freevars(ϕ). For example, if A is the formula p(x, z)∨∃y q(y, x), then A can also be
written as A(x) or A(z) or A(x, z).

1.2 Substitutions

A substitution is a finite mapping from variables to terms. Given a substitution ϑ =
{x1/t1, . . . , xn/tn}, the set {x1, . . . , xn}, where for i = 1, . . . , n, the variables xi’s are
assumed to be distinct, is called the domain of ϑ and the set {t1, . . . , tn} is called
the range of ϑ. For i = 1, . . . , n, the pair xi/ti is said to be a binding for the variable
xi. x/x is said to be an identity binding for the variable x.

If we apply a substitution ϑ to a term (or formula) t we obtain a new term (or
formula), denoted by tϑ, which is said to be an instance of t. Recall that all bindings
of a substitution should be applied in parallel and once, so that, for instance,

f(g(x1, x1), g(x, b)) {x/x1, x1/a} = f(g(a, a), g(x1, b)).

The composition ϑσ of two substitutions ϑ={x1/t1, . . . , xn/tn} and σ={y1/s1, . . . ,
ym/sm} is the substitution obtained from the set {x1/t1σ, . . . , xn/tnσ, y1/s1, . . . ,
ym/sm} by deleting the identity bindings and every binding yi/si, for 1 ≤ i ≤ m,
such that yi belongs to {x1, . . . , xn}. This definition is motivated by the fact that
we want that for any term t and substitutions ϑ and σ, t(ϑσ) = (tϑ)σ. Composition
of substitutions is associative.

12 1. First Order Predicate Calculus

A substitution µ is more general than a substitution ϑ iff there exists a substi-
tution σ such that ϑ = µσ, apart from identity bindings.

A substitution ϑ = {x1/t1, . . . , xn/tn} is said to be in solved form iff for i =
1, . . . , n, the variable xi does not occur in {t1, . . . , tn}. Thus, a substitution in solved
form does not have identity bindings.

A substitution ϑ is idempotent iff domain(σ)∩vars(range(σ)) = ∅ where σ is the
substitution derived from ϑ by deleting the identity bindings. We have that ϑ is
idempotent iff ϑϑ = ϑ, apart from identity bindings.

Given n (≥ 2) terms (or atoms) u1, . . . , un, a substitution µ is said to be a
unifier of u1, . . . , un iff u1µ = . . . = unµ. If some terms (or atoms) have a unifier,
they are said to be unifiable. A unifier µ is said to be a most general unifier (or
mgu, for short) iff µ is more general than any other unifier. An mgu can always be
chosen to be an idempotent substitution. One can show that an idempotent mgu µ
is relevant , that is, each variable in domain(µ) ∪ range(µ) occurs in at least one of
the terms (or atoms) to be unified.

As for any function, a substitution ϑ restricted to a set S of variables, is a
substitution with domain S which agrees with ϑ for every variable in S.

A substitution ϑ is said to be grounding for a term t (or a formula ϕ) iff tϑ
(or ϕϑ) is ground.

Given a formula A(x) and a term t, we write A(t) to denote the formula obtained
fromA(x) by replacing every free occurrence of the variable x inA by t. For instance,
if A(x) is p(x, z) ∨ ∃y q(y, x) then A(f(a)) is p(f(a), z) ∨ ∃y q(y, f(a)).

We say that a term t is free (or can be substituted) for the variable x in a
formula A(x) iff no free occurrence of x in A(x) is in the scope of a quantifier which
binds a variable of t.

Thus, if a term t is free for x in A(x), every variable occurrence in t generates
after substitution in A(t), a free occurrence of that same variable. For example,
(i) r(y) is not free for x in p(x, z) ∨ (∃y q(y, x)) because the variable y of the term
r(y) is not free in ∃y q(y, r(y)),
(ii) the term g(x, a) is free for x in p(x, z) ∨ ∃y q(y, x), and
(iii) x is free for x in any formula A(x).

A variable renaming is a bijective mapping from the set of variables onto itself.

For other concepts not presented here we refer to [1,8,9,10].

Example 1. (i) The term g(x, a) is an instance of the term g(x, y).
(ii) The composition ϑσ of ϑ = {x/f(y), y/z} and σ = {x/a, y/b, z/y} is {x/f(b),
z/y}, which has been obtained by deleting the identity binding y/y and the bindings
x/a and y/b from the set {x/f(b), y/y, x/a, y/b, z/y}.
(iii) The composition ϑσ of ϑ = {x/y, y/b }and σ = {x/y, y/b} is {x/b, y/b}.

2. Axioms and Rules of Inference of First Order Theories 13

(iv) The substitution {x/y} is more general than the substitution {x/f(y), y/f(y)}.
(v) The most general unifier of p(a, f(y)) and p(x, f(t(x))) is {x/a, y/t(a)}. Given
the two terms x and z, the substitutions: {x/y, z/y}, {x/z}, and {z/x} are three
different unifiers. Only {x/z} and {z/x} are most general unifiers. Note that, in
particular, {x/z} is more general that {z/x} and vice versa.
(vi) The substitution {x/y, z/g(x, a)} restricted to {x} is the substitution {x/y}.

2 Axioms and Rules of Inference of First Order Theories

We will present the axioms and the rules of inference of first order theories in
two different way: the Classical presentation (à la Hilbert) [10], and the Natural
Deduction presentation (à la Gentzen) [9].

2.1 Classical Presentation

The logical axioms of any first order theory are instances of the following axiom
schemata:

A1. A→ (B → A)

A2. (A→ (B → C))→ ((A→ B)→ (A→ C))

A3. (¬A → ¬B)→ (B → A)

A4. (∀xA(x)) → A(t) if the term t is free for x in A(x)

A5. (∀x (A→ B)) → (A→ (∀xB)) if x is not a free variable in A

Now we explain in an informal way the given restrictions on the axioms A4 and A5.
Our explanation is based on the intuitive understanding of the notions of the im-
plication and the universal quantifier. We will return to this point when presenting
the semantics of a first order theory in Section 4.

The restriction on axiom A4 is explained as follows. Since y is not free for x
in ∀y A(x, y), we would have: ∀x¬∀y A(x, y) → ¬∀y A(y, y). Now consider the set
{a, b} such that A(a, a) and A(b, b) holds, while neither A(a, b) nor A(b, a) holds.
We have that ∀x¬∀y A(x, y) holds, while ¬∀y A(y, y) does not hold.

The restriction on axiom A5 is explained as follows. Let us consider the formula
(∀x (A(x) → A(x))) → (A(x) → (∀xA(x))), where we assume that A(x) holds
iff x is an even natural number. Now ∀x (A(x) → A(x)) holds. If we take x to be
an even number then A(x) holds, while ∀xA(x) does not hold because there are
natural numbers which are not even numbers. Thus, A(x) → (∀xA(x)) does not
hold.

The rules of inference of a first order theory are the following ones: for any
formula A, B, and C and any variable x,

14 1. First Order Predicate Calculus

A A→B

B
(MP : Modus Ponens)

A

∀xA
(Gen : Generalization)

The formulas written above the horizontal lines of the rules of inference are called
premises. The formulas written below the horizontal lines are called conclusions.

Given a rule of inference, its conclusion is said to be the direct consequence of each
of the premises of that rule. Axioms can be viewed as rules of inference with no
premises.

If from a formula A we derive the formula ∀xA, we say that the Generalization
rule has been applied to the variable x.

Note 1. Besides logical axioms, a first order theory may include also other axioms,
called proper axioms. They are formulas which may be either closed or not closed.
Recall, however, that from the Generalization rule and axiom A4, we have that for
any formula ϕ(x), we have that ϕ(x) ⊢ ∀xϕ(x) and ∀xϕ(x) ⊢ ϕ(x).

A first order theory without proper axioms is called a first order predicate calcu-

lus, or simply, a predicate calculus, when the qualification ‘first order’ is understood
from the context.

Note 2. Many notions or properties of the first order predicate calculi do not depend
on our choice of the first order language, and we will refer to ‘the first order predicate
calculus’ when we want to study the notions or properties common to all first order
predicate calculi.

In what follows, for reasons of simplicity, we will feel free to say ‘a theory’,
instead of ‘a first order theory’.

Let us now define the derivation relation, denoted by ⊢, in a first order theory.
Given a set Γ of formulas and a formula ϕ, a derivation (or a proof) of ϕ from Γ
is a sequence of formulas ending with ϕ, such that each of formula in the sequence
is either (i) a formula in Γ , or (ii) an axiom, or (iii) it can be obtained by the MP
rule from two preceding formulas of the sequence (and in this sense the premises of
the MP rule are assumed to form a conjunction), or (iv) it can be obtained by the
Gen rule from a preceding formula of the sequence.

If there exists a derivation of ϕ from Γ we write Γ ⊢ ϕ. We write Γ, ϕ ⊢ ψ to
denote Γ ∪ {ϕ} ⊢ ψ.

Note that if Γ ⊢ ϕ holds, then also Γ ′ ⊢ ϕ holds where Γ ′ is the conjunction of
the formulas in the set Γ . Thus, if Γ ⊢ ϕ holds, then we may think of it as either a
set of formulas or a conjunction of formulas.

A proof tree of a formula ϕ from a set Γ of formulas, is a tree T such that:

2.1 Classical Presentation 15

(i) the root of T is ϕ,

(ii) for every node δ of T with n (≥ 0) sons δ1, . . . , δn, there exists a rule of inference
with conclusion δ and premises δ1, . . . , δn, and

(iii) every leaf is either an axiom or an element of Γ .

Each derivation of ϕ from Γ can be viewed as a finite proof tree of ϕ from Γ ,
and every finite proof tree of ϕ from Γ can be viewed as a derivation by visiting
every node of that tree after its sons.

When Γ = ∅ we also write ⊢ ϕ, instead of ∅ ⊢ ϕ, and we say that ϕ is a theorem

of the first order predicate calculus.

The set of theorems of the first order predicate calculus is said to be the theory

of the first order predicate calculus and, in general, we will identify a first order
theory with the set of its theorems.

In general, given a first order theory T , possibly with proper axioms, we will
write T ⊢ ϕ, or ⊢T ϕ, to denote that ϕ is a theorem of T . We will feel free to omit
the subscript T , and we will simply write ⊢ ϕ, when the theory T is understood
from the context. When the theory T is a first order predicate calculus (and, thus,
there are no proper axioms), we will also write ϕ, instead of ⊢ ϕ.

The set of theorems of a first order theory does not change if together with
Modus Ponens and Generalization, we allow also the following rule of inference:

ϕ[p]

ϕ[ψ]
(Substitution Rule)

where ϕ[p] is a formula ϕ in which we have singled out all the occurrences of a
predicate symbol p (of arity 0), and ϕ[ψ] is the result of substituting all those
occurrences by a given closed formula ψ.

For instance, from (ϕ∧p)→ (p∧r(y)) by applying the Substitution rule we may
derive the formula (ϕ ∧ ∀x q(x))→ (∀x q(x)∧r(y)) (which is obtained by replacing
the predicate symbol p by the formula ∀x q(x)).

We have the following theorem which relates the implication connective → and
the derivation relation ⊢. We need the following notion.

Given two formulas ϕ and ψ occurring in a derivation from Γ , we say that ϕ
depends on ψ iff either ϕ is ψ or there exists a formula σ such that ϕ is a direct
consequence of σ and σ depends on ψ.

16 1. First Order Predicate Calculus

Theorem 1. [Deduction Theorem. Version 1] Let us consider any set of
formulas Γ and any two formulas ϕ and ψ. (i) If Γ ⊢ ϕ→ ψ then Γ, ϕ ⊢ ψ.
(ii) Let us assume that in a derivation of ψ from Γ ∪ {ϕ}, whenever we apply
the Generalization rule to a formula, say A, whereby deriving ∀xA,
either (ii.1) A does not depend on ϕ, or (ii.2) x does not belong to freevars(ϕ).
If Γ, ϕ ⊢ ψ then Γ ⊢ ϕ→ ψ.

In the above Theorem 1 if A depends on ϕ the Condition (ii.2) is needed. Indeed, by
Theorem 1 without Condition (ii.2), from A(x) ⊢ ∀xA(x) we get ⊢ A(x)→ ∀xA(x).
Now, A(x) ⊢ ∀xA(x) holds because of Gen, while ⊢ A(x)→ ∀xA(x) does not hold,
as shown in the following exercise (and it can be shown by using the Completeness
Theorem (see Theorem 7 on page 35).

Exercise 1. Show that in the Classical presentation of the first order predicate cal-
culus we have that:

(1) ϕ(x) ⊢ ∀xϕ(x) holds, and

(2) ⊢ ϕ(x)→ ∀xϕ(x) does not hold.

Proof of (1). ϕ(x) ⊢ ∀xϕ(x) is obtained by applying the Generalization rule.

Proof of (2). We have that: ⊢ ϕ(x) → ∀xϕ(x) iff |= ϕ(x) → ∀xϕ(x) (by The-
orem 7) iff for all I and σ, I, σ |= ϕ(x) implies I, σ |= ∀xϕ(x) (by definition).
Thus, in order to show that ⊢ ϕ(x) → ∀xϕ(x) does not hold, it is enough to ex-
hibit an interpretation I and a variable assignment σ such that I, σ |= ϕ(x) holds
and I, σ |= ∀xϕ(x) does not hold. Let us consider the interpretation I such that:
(i) domain(I) = {0, 1}, (ii) I |= ϕ(0), and (iii) I 6|= ϕ(1). We have that I, σ |= ϕ(x)
holds for σ(x) = 0. Since I, σ |= ϕ(x) does not hold for σ(x) = 1 we have that
I, σ |= ∀xϕ(x) does not hold.

Note 3. As a consequence of Theorem 1, if either ϕ is a closed formula or Gen is
never applied to a free variable of A(x), then the Deduction Theorem can be stated
in the following simpler form: Γ ⊢ ϕ → ψ iff Γ, ϕ ⊢ ψ. Therefore, in order to use
this simpler form, it is convenient to formally represent any given data base of facts
(with its rules of inference and integrity constraints) as a set (or a conjunction) of
closed formulas.

The properties stated in following theorem are useful when making proofs and
they may be viewed as extra inference rules, besides Modus Ponens and General-
ization. For the proof of this theorem the reader may refer to [10, pages 61–63].

Proposition 1. Let us consider any two formulas A and B, any formula context
C[_], and any term t. (In particular, in Points (i) and (ii) we assume that the
formula A may have the free variable x.)

2.1 Classical Presentation 17

(i) If t is free for x in A(x), then ∀xA(x) ⊢ A(t).

(ii) If t is free for x in A(x), then A(t) ⊢ ∃xA(x), where A(t) is obtained from A(x)
by replacing all free occurrences of x by t.

(iii) ⊢ (∀x1 . . . xn (A↔ B)) → (C[A]↔ C[B]),
where ((freevars(A) ∪ freevars(B)) ∩ boundvars(C[A])) ⊆ {x1, . . . , xn}.

(iv) ⊢ A↔ Aρ, where ρ is a renaming of the bound variables of A such that
vars(A) ∩ range(ρ) = ∅.

Now we list some derived deduction rules for the first order predicate calculus.
These rules can be proved by applying the Deduction Theorem on page 16 and the
above Proposition 1, and can be used, besides the Modus Ponens and Generalization
rules, for deriving new theorems (those below the horizontal line) from theorems
which have been already derived (those above the horizontal line).

For negation:

⊢¬¬A

⊢A

⊢A

⊢¬¬A

For conjunction:

⊢A∧B

⊢A

⊢A∧B

⊢B

⊢A ⊢B

⊢A∧B

For disjunction:

⊢A∨B ⊢¬A

⊢B

⊢A∨B ⊢¬B

⊢A

⊢A

⊢A∨B

⊢B

⊢A∨B

For implication:

⊢A→B ⊢¬B

⊢¬A

⊢¬ (A→B)

⊢A∧¬B

For equivalence (see also Property (xi) on page 25):

⊢A↔B ⊢A

⊢B

⊢A↔B ⊢B

⊢A

The following rule is called ‘proof by contradiction’:

if Γ,A ⊢ B ∧ ¬B and in this derivation from Γ ∪ {A} to B ∧ ¬B the General-
ization rule is never applied to a free variable of A (and this is the case if we
assume that A is a closed formula),

then Γ ⊢ ¬A

The Rule C. Suppose that during a proof we have derived ∃xA(x). Then we can
‘make a choice’ and derive A(b), where b is a constant which is the witness of the
existential quantifier. The constant b should never occurring before in the proof. In

18 1. First Order Predicate Calculus

the derivation step from ∃xA(x) to A(b), we say that we have applied the Rule C
(C for ‘choice’) [10, page 64] which is:

∃xϕ(x)

ϕ(b)
(Rule C)

If at the end of the proof we get a formula without the constant b, then the proof is
sound in the sense stated by Proposition 2 below. In order to state that proposition
we need the following notation.

Given a set Γ of formulas and a formula ϕ, we write Γ ⊢C ϕ to denote that there
exists a derivation of ϕ from Γ which (i) uses Rule C, besides Modus Ponens and
Generalization, (ii) uses axioms involving also the constants introduced in previous
steps where Rule C was applied, and (iii) if in that derivation there is an application
of Rule C with premise ∃y ψ(y) where x occurred free in ∃y ψ(y), then there is no
subsequent application of the Generalization rule introducing the quantification ∀x.

Now we are ready to present Proposition 2.

Proposition 2. Given any set Γ of formulas and any formula ϕ, we have that if
Γ ⊢C ϕ, then Γ ⊢ ϕ.

Exercise 2. Show that the following hold: (i) A(x) ⊢ ∀xA(x), (ii) ∀xA(x) ⊢ A(x),
and (iii) ⊢ ∀xA(x) → A(x). Recall that it is not the case that ⊢ A(x) → ∀xA(x)
(see Exercise 1 on page 16).

Now let us introduce the following notions which will useful in the sequel.

A first order theory is said to be axiomatic if the set of its axioms is recursive [10,
page 28]. (Here we stick to the standard terminology, but we think that one should
refer to the axiomatic theories as recursive axiomatic theories.)

A first order theory is said to be semidecidable (or recursively enumerable, or
r.e.) if the set of its theorems is recursively enumerable.

We leave it as an exercise to the reader to show the following.

Proposition 3. The set of theorems of an axiomatic first order theory is recursively
enumerable (and it can be shown that, in general, is not recursive).

A first order theory is said to be decidable if the set of its theorems is recursive.

A first order theory T is said to be complete iff for any closed first order for-
mula ϕ, either T ⊢ ϕ or T ⊢ ¬ϕ holds or both (this last case occurs only if T
is inconsistent, as we will see below). Thus, given a first order theory T , if T is
inconsistent then T is complete.

As a consequence of Post Theorem which states that if a set S and its comple-
ment are recursively enumerable, then S is recursive, we have the following propo-
sition.

2.2 Natural Deduction Presentation 19

Proposition 4. If a first order theory is axiomatic and complete, then it is decid-
able.

A first order formula ϕ is said to be undecidable in a first order theory T iff T ⊢ ϕ
does not hold and T ⊢ ¬ϕ does not hold. (Note that the word ‘undecidable’ here
has a different meaning with respect to the one it has in Computability Theory [10],
where a set is said to be undecidable iff it is not recursive.)

Thus, in a first order theory which is not complete there is an undecidable,
closed formula.

Exercise 3. A first order theory K is complete iff for any two closed formulas ϕ
and ψ in K we have that if K ⊢ ϕ ∨ ψ then (K ⊢ ϕ or K ⊢ ψ).

Solution. (only-if part) Assume that K is complete and K ⊢ ϕ ∨ ψ. We have to
show: K ⊢ ϕ or K ⊢ ψ. Indeed, assume that it is not the case that K ⊢ ϕ. By
completeness we have K ⊢ ¬ϕ. By the tautology (¬ϕ) → ((ϕ ∨ ψ) → ψ), we get:
K ⊢ ψ. (if part) Assume that K is not complete. We have to show that for some
formulas ϕ and ψ, K ⊢ ϕ∨ψ does not imply (K ⊢ ϕ or K ⊢ ψ). Take ψ to be ¬ϕ
for some closed formula ϕ such that it is not the case that K ⊢ ϕ and K ⊢ ¬ϕ. This
formula ϕ exists because K is not complete. We have to show that: (i) K ⊢ ϕ∨¬ϕ
holds and (ii) it is not the case that K ⊢ ϕ and K ⊢ ¬ϕ. Point (i) holds because
ϕ ∨ ¬ϕ follows from the Axioms A1–A3 (see page 13) as the reader may verify.
Point (ii) holds because of our choice of the formula ϕ.

We say that a set Γ of formulas is inconsistent iff for every (closed or not
closed) formula ϕ of the language, we have that Γ ⊢ ϕ. One can show that a set Γ
of formulas is inconsistent iff there is a (closed or not closed) formula ϕ such that
Γ ⊢ ϕ and Γ ⊢ ¬ϕ, that is, Γ ⊢ ϕ ∧ ¬ϕ.

By using false as an abbreviation of ϕ ∧ ¬ϕ, for some formula ϕ, we have that
a set Γ of formulas is inconsistent iff Γ ⊢ false. (One can show that this use of the
symbol false agrees with its identification with the atom false.)

We say that a set Γ of formulas is consistent iff Γ is not inconsistent.

Proposition 5. Any first order predicate calculus (thus, without proper axioms)
is consistent. Thus, it does not exist a (closed or not closed) formula ϕ such that
⊢ ϕ and ⊢ ¬ϕ.

Consistency is an important concept and, as we will see later, the fact that a
set Γ of formulas is consistent can be characterized by a semantic property, namely,
the fact that Γ has a model (see Proposition 19 on page 36).

2.2 Natural Deduction Presentation

In order to have the Deduction Theorem stated in the simpler form: Γ ⊢ϕ→ψ iff
Γ, ϕ ⊢ ψ, that is, without any extra condition on the derivation of the formula ψ (see

20 1. First Order Predicate Calculus

Theorem 1 on page 16), we now present the first order predicate calculus according
to the so called Natural Deduction presentation, where the ⊢ relation is understood
in a different way with respect to the Classical presentation.

In the Natural Deduction presentation we need the notion of a sequent.
A sequent is a pair consisting of: (i) a conjunction of formulas (denoted as a set

without curly brackets), and (ii) a formula. If the conjunction of formulas is Γ and
the formula is ϕ, the associated sequent is written as Γ ⊢ ϕ.

This notation should not be confused with the derivation relation of the Classical
presentation (see Section 2.1). As in the case of the derivation relation, we write
the sequent Γ ∪ {ϕ} ⊢ ψ as Γ, ϕ ⊢ ψ, and when Γ =∅ we also write ⊢ ϕ, instead of
∅ ⊢ ϕ.

The formulas of the Natural Deduction presentation of the first order predicate
calculus are those of the Classical presentation. Here are the axioms and the rules
of inference of the Natural Deduction presentation (see [9]), where Γ denotes any
set of formulas, and A, B, and C any formulas. By using these axioms and rules of
inference we may deduce new sequents from zero or more old sequents.

Γ,A⊢A
(Assumption Axiom)

Γ ⊢B

Γ,A⊢B
(Introduction of Assumption)

Γ,A⊢B Γ,¬A⊢B

Γ ⊢B
(Elimination of Assumption)

Γ ⊢ true
(true Axiom)

Γ ⊢¬false
(false Axiom)

Γ ⊢A

Γ ⊢A∨B

Γ ⊢B

Γ ⊢A∨B
(∨ Introduction)

Γ ⊢A∨B Γ,A⊢C Γ,B ⊢C

Γ ⊢C
(∨ Elimination)

Γ ⊢A Γ ⊢B

Γ ⊢A∧
(∧ Introduction)

Γ ⊢A∧B

Γ ⊢A

Γ ⊢A∧B

Γ ⊢B
(∧ Elimination)

2.2 Natural Deduction Presentation 21

Γ,A⊢B

Γ ⊢A→B

(→ Introduction)
(this rule is also called Discharge Rule)

Γ ⊢A Γ ⊢A→B

Γ ⊢B
(→ Elimination)
(this rule corresponds to Modus Ponens)

Γ,A⊢B Γ,A⊢¬B

Γ ⊢¬A
(¬ Introduction)

Γ ⊢A Γ ⊢¬A

Γ ⊢B
(¬ Elimination: «ex falso sequitur quodlibet »)

Γ ⊢A

Γ ⊢¬¬A
(¬¬ Introduction)

Γ ⊢¬¬A

Γ ⊢A
(¬¬ Elimination)

Γ ⊢A(x)

Γ ⊢∀xA(x)
if x is not free in Γ (∀ Introduction)

Γ ⊢∀xA(x)

Γ ⊢A(t)
if t is free for x in A(x) (∀ Elimination)

Γ ⊢A(t)

Γ ⊢∃xA(x)
if t is free for x in A(x) (∃ Introduction)

Γ ⊢∃xA(x) Γ,A(b)⊢C

Γ ⊢C

if b is a constant occurring
neither in Γ nor in ∃xA(x)
nor in C

(∃ Elimination)

In the (∀ Elimination), (∃ Introduction), and (∃ Elimination) rules, the formulas
A(t) and A(b) are obtained by replacing all free occurrences of x in A(x) by t and b,
respectively.

In the (∀ Elimination) rule a particular term t which is free for x in A(x), is x

itself, and thus, we also have that:
Γ ⊢∀xA(x)

Γ ⊢A(x)
.

Note that one could consider the following simpler (but incorrect!) rule for the
elimination of the existential quantifier:

Γ ⊢∃xA(x)

Γ ⊢A(b)

if b is a constant occurring
neither in Γ nor in ∃xA(x)

(E)

22 1. First Order Predicate Calculus

Using this rule we can derive our (∃ Elimination) rule above, as indicated by the
following proof tree:

Γ ⊢∃xA(x)

Γ ⊢A(b)
(E)

Γ,A(b) ⊢C

Γ ⊢A(b)→C
(→ Introduction)

Γ ⊢C
(→ Elimination)

However, the condition that the constant b should not occur in the formula C, cannot
be added to Rule (E) (simply, because in Rule (E) there is no reference to C) and
thus, in general, the simpler Rule (E) for the elimination of the existential quantifier
is not correct.

With reference to Rule (E), the reader may also look at what we said about
Rule (C) on page 18 (and, in particular, he may look at Proposition 2 on page 18).

Given a set Γ of formulas and any two formulas ϕ(x) and ψ(x), we have that
the following rules hold [9, pages 120 and 121]:

Γ, ϕ(x) ⊢ ψ(x)

Γ, ∀xϕ(x) ⊢ ∀xψ(x)
if x is not free in Γ (∀ ∀ Introduction)

Γ, ϕ(x) ⊢ ψ(x)

Γ, ∃xϕ(x) ⊢ ∃xψ(x)
if x is not free in Γ (∃ ∃ Introduction)

In the Natural Deduction presentation we say that a sequent Γ ⊢ ϕ holds iff there
exists a finite tree T such that: (i) the root of T is Γ ⊢ ϕ, (ii) for every node δ of T
with n (≥ 0) sons δ1, . . . , δn, there exists a rule of inference with conclusion δ and
premises δ1, . . . , δn, and (iii) every leaf is an axiom.

We say that a formula ϕ is a theorem iff the sequent ⊢ ϕ holds in the Natural
Deduction presentation.

In the Natural Deduction presentation we have the following version of the
Deduction Theorem.

Theorem 2. [Deduction Theorem. Version 2] Given a set Γ of (closed or
not closed) formulas and any two formulas ϕ and ψ, we have that Γ ⊢ ϕ→ψ iff
Γ, ϕ ⊢ ψ.

Proof. The if part is shown by the → Introduction rule. The only-if part is shown
as follows. By the Introduction of Assumption rule, from Γ ⊢ ϕ → ψ we get
Γ, ϕ ⊢ ϕ→ ψ (1). By the Assumption axiom from (1) we get Γ, ϕ ⊢ ϕ (2). From (2)
and (1) by the → Elimination rule, we get Γ, ϕ ⊢ ψ.

Note that while A(x) ⊢ ∀xA(x) is a derivation in the Classical presentation (by ap-
plying the Generalization rule), A(x) ⊢ ∀xA(x) is a sequent which does not hold in

2.2 Natural Deduction Presentation 23

the Natural Deduction presentation. Indeed, from the sequent A(x) ⊢ A(x) (which
holds by the Assumption Axiom) we cannot deduce the sequent A(x) ⊢ ∀xA(x),
because the variable x occurs free in A(x) and the ∀ Introduction rule cannot be
applied.

Let us consider the following rule, called the Cut rule: for all sets Γ of formulas,
for all formulas ϕ and ψ,

Γ, ϕ ⊢ψ Γ ⊢ϕ∨ψ

Γ ⊢ψ
(Cut rule)

We have the following Gentzen theorem.

Theorem 3. [Cut-Elimination. Gentzen’s Hauptsatz Theorem] Any se-
quent which has a derivation with the Cut rule, has a derivation without the Cut
rule.

We have the following theorem which relates the Classical presentation and the
Natural Deduction presentation of the first order theories.

Theorem 4. [Relationship between Classical presentation and Natural
Deduction presentation of the First Order Theories] For every set Γ of
closed formulas (which is the possibly empty set of proper axioms of a first order
theory) and for any (closed or not closed) formula ϕ, there exists a derivation
of ϕ from Γ , that is, Γ ⊢ ϕ holds in the Classical presentation, iff Γ ⊢ ϕ is a
sequent which holds in the Natural Deduction presentation.

Thus, starting from a set of closed first order formulas, the two presentations
of the first order predicate calculus determine two theories which have the same
theorems, that is, for any formula ϕ, we have that ϕ is a theorem in the Classical
presentation iff ϕ is a theorem in the Natural Deduction presentation.

Note 4. Theorem 4 indicates one more reason, besides the one given in Note 3 on
page 16, for the convenience of formalizing any given data base of facts (with its rules
of inference and integrity constraints) as a conjunction of closed formulas. Indeed,
if we use a conjunction of closed formulas, we may equivalently understand the
symbol ⊢ as denoting either the derivation relation (as in the Classical presentation)
or a sequent (as in the Natural Deduction presentation).

Exercise 4. Show the correctness of the following rule for eliminating the existential
quantifier:

Γ ⊢∃xA(x) Γ,A(x)⊢B

Γ ⊢B
if x occurs free
neither in Γ nor in B

(∃ Elimination-1)

24 1. First Order Predicate Calculus

Solution. We have that:

Γ,A(x) ⊢ B given

Γ ⊢ A(x)→ B → Introduction

Γ, ∃xA(x) ⊢ A(x)→ B Introduction of Assumption

Γ, ∃xA(x) ⊢ ∀x (A(x)→ B) ∀ Introduction (x not free in Γ)

Γ, ∃xA(x) ⊢ A(b)→ B ∀ Elimination (x not free in B and constant b
free for x in A(x)→ B)

Γ, ∃xA(x), A(b) ⊢ A(b)→ B Introduction of Assumption

Γ, ∃xA(x), A(b) ⊢ A(b) Assumption Axiom

Γ, ∃xA(x), A(b) ⊢ B → Elimination (1)

Γ, ∃xA(x) ⊢ ∃xA(x) Assumption Axiom (2)

Γ, ∃xA(x) ⊢ B ∃ Elimination (1,2) (b occurring neither in Γ ,
nor in ∃xA(x), nor in B)

From the facts that: (i) Γ, ∃xA(x) ⊢ B can be derived from Γ,A(x) ⊢ B, and (ii) by
using the (→ Introduction) and the (→ Elimination) rules, we have that:

Γ ⊢∃xA(x) Γ, ∃xA(x) ⊢B

Γ ⊢B
,

we get the above Rule (∃ Elimination-1).

3 Some Properties of Connectives and Quantifiers

In this section we state some important theorems of the first order predicate cal-
culus. From now on, unless otherwise specified, the symbol ⊢ is used for denoting
theorems in the Classical presentation (not sequents in the Natural Deduction pre-
sentation). However, the reader should bear in mind the result stated in Theorem 4
on page 23.

We have the following proposition [10, page 73] (see also Proposition 9 on
page 31).

Proposition 6. For any formula ϕ of a first order predicate calculus without quan-
tifiers (possibly with free variables), we have that ⊢ ϕ iff ϕ is an instance of a
propositional tautology, that is, ϕ can be derived from the axiom schemata A1, A2,
and A3 (see page 13) by using Modus Ponens.

In a first order theory, axioms and theorems may be expressed by formulas
which are not closed and, thus, free variables may occur in them. Note, however,
that we have the following result (see also Proposition 10 on page 32 for its semantic
counterpart).

3.1 Basic Equivalences for Implication and Equivalence 25

Proposition 7. [Derivation of Formulas and Their Universal Closures] For
every formula ϕ, we have that: ⊢ ϕ(x) iff ⊢ ∀xϕ(x).

Proof. The only-if part is a consequence of the Generalization rule and the if part
is a consequence of the fact the variable x is free for x in ϕ(x).

Thus, it is possible (and actually convenient, as indicated in Note 3 on page 16)
to write every axiom of a first order theory, not as a formula, say ϕ(x), with free
occurrences of the variable x, but as the associated universally quantified, closed
formula ∀xϕ(x) (see also Note 4 on page 23).

3.1 Basic Equivalences for Implication and Equivalence

We have the following facts concerning → (implication) and ↔ (equivalence).

For any formulas A, B, and C (with or without occurrences of x), we have that:

(i) ⊢ ¬¬A ↔ A

(ii) ⊢ (A→ B) ↔ (¬A ∨B)

(iii) ⊢ (A ∧B → C ∨D) ↔ (A ∧ B ∧ ¬C → D) (moving to premises)

(iv) ⊢ (A ∧B → C ∨D) ↔ (A → ¬B ∨ C ∨D) (moving to conclusions)

(v) if ⊢ A→ B then ⊢ (A ∧ C) → (B ∧ C) (∧ monotonicity)

(vi) if ⊢ A→ B then ⊢ (A ∨ C) → (B ∨ C) (∨ monotonicity)

(vii) if ⊢ A→ B then ⊢ (B → C) → (A→ C)

(viii) ⊢ ∀xA(x) ↔ ¬∃x¬A(x)

(ix) ⊢ A ↔ ∀xA if x does not occur free in A

(x) ⊢ A ↔ ∃xA if x does not occur free in A

(xi) if ⊢ A↔ B then (⊢ A iff ⊢ B)

This Property (xi) follows from Point (iii) of Proposition 1 on page 16.

Note that the reverse implication, that is, if (⊢ A iff ⊢ B) then ⊢ A ↔ B,
does not hold. Indeed, we have that: (i) ⊢ A iff ⊢ ¬A by duality (see Section 3.5
on page 29), and (ii) it is not the case that ⊢ A↔ ¬A.

In many formal languages one introduces the if-then and if-then-else constructs.

For those constructs one assumes that:

(i) if A then B stands for A→ B

(ii) if A then B else C stands for (A→ B) ∧ ((¬A)→ C)

or, equivalently, ((¬A) ∨ B) ∧ (A ∨ C)

or, equivalently, (A ∧B) ∨ ((¬A) ∧ C)

26 1. First Order Predicate Calculus

3.2 Distributivity of Quantifiers over Conjunctions and Disjunctions

For any formulas A and B (with or without occurrences of x),

∀ distributes over ∧: ⊢ ∀x (A ∧B) ↔ (∀xA) ∧ (∀xB)

∃ distributes over ∨: ⊢ ∃x (A ∨B) ↔ (∃xA) ∨ (∃xB)

If an operand of ∧ or ∨ does not have the bound variable of the quantifier ∀ or ∃,
then ‘it can go in and out the scope of the quantifier’ and equivalence is preserved.
By this sentence we mean that, if x does not occur free in B, then:

(i) ⊢ ∀x (A(x) ∨ B) ↔ (∀xA(x)) ∨B, and

(ii) ⊢ ∃x (A(x) ∧ B) ↔ (∃xA(x)) ∧B.

Note that the analogous equivalences, ⊢ ∀x (A(x) ∧ B) ↔ (∀xA(x)) ∧ B and
⊢ ∃x (A(x) ∨ B) ↔ (∃xA(x)) ∨ B, trivially hold by distributivity.

Note also that if an operand of→ does not have the bound variable of the quan-
tifier ∀ or ∃, then ‘it cannot go in and out the scope of the quantifier’. In particular,
we have that ⊢ ∀x (A(x)→B) ↔ ((∃xA(x))→B) (note the interchange of the
quantifiers ∀ and ∃) (see also Section 3.4).

If a formula has the outermost quantifier which does not distribute over the top
operator of its scope, then ‘that formula is in the middle between ∀ and ∃’. By this
sentence we mean that the following implications hold:

Case 1. ∀ does not distribute over ∨:

⊢ ∀xA(x) ∨ ∀xB(x) → ∀x (A(x) ∨ B(x)) and

⊢ ∀x (A(x) ∨ B(x)) → ∀xA(x) ∨ ∃xB(x)

Case 2. ∃ does not distribute over ∧:

⊢ ∃xA(x) ∧ ∀xB(x) → ∃x (A(x) ∧ B(x)) and

⊢ ∃x (A(x) ∧ B(x)) → ∃xA(x) ∧ ∃xB(x)

Here is the proof of Case 1. The proof of Case 2 is similar and is left to the reader.

⊢ ∀xA(x) ∨ ∀xB(x) {x is not free in ∀xB(x)}

iff ⊢ ∀x (A(x) ∨ ∀xB(x)) {∀ elimination}

implies ⊢ ∀x (A(x) ∨ B(x)) {∃ introduction}

implies ⊢ ∀x (A(x) ∨ ∃xB(x)) {x is not free in ∃xB(x)}

iff ⊢ ∀xA(x) ∨ ∃xB(x)

Figure 1 on page 27 shows some implications involving quantifiers, ∧, and ∨.

3.3 Prenex Normal Forms 27

6

6

6 6

6

6

������*

HHHHHHY

HHHHHHY

������*

true

∃x(A(x) ∨ B(x)) (↔ ∃xA(x) ∨ ∃xB(x)) (1)

∃xA(x) ∨ ∀xB(x)

∀x(A(x) ∨B(x)) ∃xA(x) ∧ ∃xB(x)

∃x(A(x) ∧B(x))∀xA(x) ∨ ∀xB(x)

∃xA(x) ∧ ∀xB(x)

∀xA(x) ∧ ∀xB(x) (↔ ∀x(A(x) ∧ B(x))) (2)

false

Fig. 1. Some implications involving quantifiers, ∧, and ∨. If the formula ϕ1 is below
the formula ϕ2, then ⊢ ϕ1 → ϕ2. Equivalence (1) is the distributivity of ∃ over ∨
and Equivalence (2) is the distributivity of ∀ over ∧.

3.3 Prenex Conjunctive and Prenex Disjunctive Normal Form

Definition 1. A formula is said to be in prenex conjunctive normal form if it is of
the form:

Q1 x1, . . . , Qn xn ((A1 1 ∨ . . . ∨A1, k1
) (†)

∧ (A2 1 ∨ . . . ∨ A2, k2
)

...
∧ (Am 1 ∨ . . . ∨ Am, km

))

where for i = 1, . . . , n, Qi is either a universal or an existential quantifier and
each Ai j is either an atomic formula or a negation of an atomic formula. Similarly,
a formula is said to be in prenex disjunctive normal form if it is of the form (†)
above, except that the operators ∨ and ∧ have been interchanged.

Note that a formula in prenex conjunctive normal form is not necessarily closed.

Theorem 5. Every formula can be transformed into an equivalent formula in
prenex conjunctive normal form and prenex disjunctive normal form [9, page 104].

28 1. First Order Predicate Calculus

Proof. We transform the given formula into an equivalent formula in prenex con-
junctive normal form by applying the following six step algorithm. Each step of
the algorithm preserves logical equivalence. We leave it to the reader to specify the
similar algorithm for deriving an equivalent formula in prenex disjunctive normal
form.

Construction of the prenex conjunctive normal form of a given formula ϕ

1. Eliminate all quantifiers in whose scope there is no occurrence of the correspond-
ing bound variable.

2. Rename the bound variables, so that any two quantifiers have two distinct bound
variables and no variable has an occurrence which is both bound and free.

3. Eliminate all occurrences of connectives different from ¬, ∧, and ∨.

4. Push ¬ inward by replacing: (i) ¬∃x A by ∀x ¬A, (ii) ¬∀x A by ∃x ¬A, (iii) ¬¬A
by A, and (iv) by using De Morgan’s laws: ¬(A ∨ B) ↔ (¬A ∧ ¬B) and
¬(A ∧ B)↔ (¬A ∨ ¬B).

5. Push quantifiers outward (that is, to the left) by using the following rules (modulo
commutativity of ∨ and ∧):

∀x (A(x) ∨B)↔ (∀xA(x)) ∨ B ∀x (A(x) ∧B)↔ (∀xA(x)) ∧ B

∃x (A(x) ∨B)↔ (∃xA(x)) ∨ B ∃x (A(x) ∧B)↔ (∃xA(x)) ∧ B

Note that the variable x does not occur free in B (this is ensured by Step 2).

6. Distribute ∨ over ∧.

For instance, given the formula A = ∀x (((∀y p(y))∨ q)→ ¬ (∀y ¬ r(x, y))) we have
that:

A↔ {by renaming bound variables} ∀x (((∀y p(y)) ∨ q)→ ¬ (∀z ¬ r(x, z)))

↔ {by eliminating →} ∀x (¬ ((∀y p(y)) ∨ q) ∨ ¬ (∀z ¬ r(x, z)))

↔ {by pushing ¬ inward} ∀x (((∃y ¬ p(y)) ∧ ¬ q) ∨ (∃z r(x, z)))

↔ {by pushing quantifiers outward} ∀x∃y ∃z ((¬ p(y) ∧ ¬ q) ∨ r(x, z))

↔ {by distributing ∨ over ∧} ∀x∃y ∃z ((¬ p(y) ∨ r(x, z))
∧ (¬ q ∨ r(x, z)))

This last formula is the prenex conjunctive normal form of the given formula A.

3.4 Quantifiers and Implication

Let us assume that x does not occur free in B. We have that:

(i) ⊢ ∀x (A(x)→ B) ↔ ((∃xA(x))→ B) (note that ∀x becomes ∃x)

(ii) ⊢ ∀x (B → A(x)) ↔ (B → (∀xA(x)))

3.5 Duality 29

For Point (i) we have:

⊢ (∀x (A(x)→ B)) iff ⊢ (∀x (¬A(x) ∨ B)) iff ⊢ ((∀x¬A(x)) ∨B) iff

iff ⊢ (¬(∃xA(x)) ∨B) iff ⊢ ((∃xA(x))→ B).

The proof of Point (ii) is similar and is left to the reader.

Figure 2 on page 29 shows some implications involving quantifiers and →.

������*

HHHHHHY

HHHHHHY

������*

6

6

6

true

∀xA(x)→ ∃xB(x) (↔ ∃x(A(x)→ B(x)))

∀xA(x)→ ∀xB(x) ∃xA(x)→ ∃xB(x)

∀x(A(x)→ B(x))

∃xA(x)→ ∀xB(x)

false

Fig. 2. Some implications involving quantifiers and →. If the formula ϕ1 is below
the formula ϕ2, then ⊢ ϕ1 → ϕ2.

3.5 Duality

Given a formula A, the dual formula, denoted Ad, is obtained by:

(i) replacing all connectives in A in favour of ¬, ∨, and ∧ only, and

(ii) interchanging ∨ with ∧, ∃ with ∀, and true with false.

Note that variables should not be interchanged with their negations.

We have that ⊢ A iff ⊢ ¬Ad.

For instance, ⊢ true → a iff ⊢ ¬(true → a)d. It reduces to ⊢ a iff ⊢ ¬ a.

Indeed: (i) (true → a)↔ a, and

(ii) ¬(true → a)d ↔ ¬(¬true ∨ a)d ↔ ¬(¬false ∧ a) ↔ ¬a. Obviously, neither ⊢ a
nor ⊢ ¬ a holds.

30 1. First Order Predicate Calculus

4 Semantics of First Order Theories and

Gödel’s Completeness Theorem

An interpretation I for a first order language L is defined as follows.

(1) We take a non-empty set D, called the domain of the interpretation.

(2) To each function symbol of arity r (≥ 0) we assign a function, that is, a mapping
from Dr to D. The elements of Dr are r-tuples of elements in D. To each constant
symbol we assign an element of D.

(3) To each predicate symbol of arity r (≥ 0) we assign an r-ary relation, that is,
a subset of Dr. To true we assign the subset of D0, which is the whole D0, which
is {〈〉}, that is, the set whose only element is the tuple 〈〉 with 0 components. To
false we assign the subset of D0 which is the empty set, denoted as usual by ∅.

A variable assignment σ for L is obtained by assigning an element of D to each
variable of L. Thus, given I and σ, we assign an element d of D to every term t of
L as follows:

(i) if t is a variable, say x, then d = σ(x), and

(ii) if t is f(t1, . . . , tr) then d = fI(d1, . . . , dr) where fI is the mapping from Dr to
D assigned to f according to I, and 〈d1, . . . , dr〉 is the r-tuple of Dr assigned to
〈t1, . . . , tr〉.

By σ[x/d] we denote the variable assignment which is equal to σ except that
σ(x) = d.

Now we define the satisfaction relation, which is a ternary relation denoted by |=
(see [10]).

Given an interpretation I, a variable assignment σ, and a formula ϕ, we define
when I, σ |= ϕ holds by structural induction as we now indicate.

If I, σ |= ϕ holds, we say that I and σ satisfies ϕ, or equivalently, ϕ is true

in the interpretation I for the variable assignment σ. To denote that I, σ |= ϕ
holds we simply write I, σ |= ϕ. To denote that I, σ |= ϕ does not hold, we write:
not (I, σ |= ϕ), or equivalently, I, σ 6|= ϕ.

For any interpretation I, variable assignment σ, and atom p(t1, . . . , tr) with r≥0,
I, σ |= p(t1, . . . , tr) iff the r-tuple 〈v1, . . . , vr〉 belongs to the relation assigned to the
predicate symbol p by I, where for i = 1, . . . , r, we have that vi is the value assigned
to ti according to the given I and σ. Thus, since true and false have arity 0, for
every I and σ we have that I, σ |= true, because 〈〉 belongs to {〈〉}, and I, σ 6|= false,
because 〈〉 does not belong to ∅.

Note that the relations assigned to true and false do not depend on the inter-
pretation I, and for any interpretation I and any variable assignment σ, we have
that I, σ |= true and I, σ 6|= false.

4. Semantics of First Order Theories 31

For any interpretation I, variable assignment σ, and formula ϕ, we stipulate
that:

I, σ |= ¬ϕ iff not (I, σ |= ϕ)

I, σ |= ϕ ∧ ψ iff I, σ |= ϕ and I, σ |= ψ

I, σ |= ϕ ∨ ψ iff I, σ |= ϕ or I, σ |= ψ

I, σ |= ϕ→ ψ iff I, σ |= ϕ implies I, σ |= ψ, that is, (not I, σ |= ϕ) or I, σ |= ψ

I, σ |= ∃xϕ iff there exists d in D such that I, σ[x/d] |= ϕ

I, σ |= ∀xϕ iff for all d in D we have that I, σ[x/d] |= ϕ

We say that ϕ is true in an interpretation I or I is a model of ϕ or else ϕ has

model I, and we write I |= ϕ, iff for all σ we have that I, σ |= ϕ. Note that the
symbol |= is overloaded in the two relations I |= ϕ and I, σ |= ϕ.

We say that ϕ is false in an interpretation I iff it does not exist σ such that
I, σ |= ϕ, that is, for all σ it is not the case that I, σ |= ϕ.

Note that there exist a formula ϕ and an interpretation I such that neither ϕ
is true in I nor ϕ is false in I. However, any such formula ϕ cannot be closed [10,
page 50].

For a closed ϕ, in fact, the quantification ‘for all σ’ is not significant, and thus,
we have the following fact.

Proposition 8. Given an interpretation I and a closed formula ϕ, either (i) ϕ is
true in I (that is, for all σ, it is the case that I, σ |= ϕ), or (ii) ϕ is false in I (that
is, for all σ it is not the case that I, σ |= ϕ).

We say that a formula ϕ is satisfiable iff there exist I and σ such that I, σ |= ϕ.
Thus, a closed formula ϕ is satisfiable iff there exists an interpretation I such

that I |= ϕ. In words, a closed ϕ is satisfiable iff there exists an interpretation I
which is a model of ϕ.

A formula ϕ is unsatisfiable iff ϕ is not satisfiable.

Note 5. In [1] (page 513) Apt uses the following different definition of satisfiability:
the formula ϕ is satisfiable iff there exists an interpretation I such that I |= ϕ, that
is, iff there exists an interpretation I such that for all σ we have that I, σ |= ϕ.
When ϕ is a closed formula Apt’s definition of satisfiability is equivalent to ours.

We say that a formula ϕ is valid (or logically valid) and we write |= ϕ, iff for
every interpretation I we have that I |= ϕ, that is, for all I and for all σ we have
that I, σ |= ϕ.

We have the following result (see [12, page 297]).

Proposition 9. For any formula ϕ of a first order predicate calculus without quan-
tifiers (possibly with free variables), we have that |= ϕ holds iff ϕ is an instance of

32 1. First Order Predicate Calculus

a propositional tautology, that is, ϕ can be derived from the axiom schemata A1,
A2, and A3 by using Modus Ponens (see page 13) (This proposition follows from
Proposition 6 on page 24 and Gödel’s Completeness Theorem on page 35).

For instance, (p(x) ∧ ∀y p(y))→ p(x) is an instance of the propositional tautol-
ogy (A ∧ B)→ A.

Proposition 10. [Generalization Preserves Models] For every interpretation
I and every formula ϕ we have that: I |= ϕ (that is, I is a model of ϕ) iff I |= ∀xϕ.
(Note that it does not matter whether or not x occurs in ϕ.) In particular, for every
interpretation I and formula ϕ we have that: I |= ϕ iff I |= ∀(ϕ).

Proof. See [10] (page 310). Hint: by applying the definitions we have to show that:
for all σ we have that I, σ |= ϕ iff for all σ′ and for all d in the domain of I we have
that I, σ′[x/d] |= ϕ.

Note that this theorem is the semantic counterpart of Proposition 7 on page 25.
We leave it to the reader to show the following dual statement.

Proposition 11. For every formula ϕ there exist an interpretation I and a vari-
able assignment σ such that I, σ |= ϕ (that is, ϕ is satisfiable) iff there exist an
interpretation I and a variable assignment σ such that I, σ |= ∃xϕ (that is, ∃xϕ is
satisfiable).

Note that Proposition 11 does not depend on the fact that x occurs free or does
not occur free in ϕ.

As a consequence of Propositions 10 and 11 we have the following statements:
- a formula ϕ has a model iff its universal closure ∀(ϕ) has a model,
- a formula ϕ is valid iff its universal closure ∀(ϕ) is valid, and
- a formula ϕ is satisfiable iff its existential closure ∃(ϕ) is satisfiable (note that this
property is not true for Apt’s definition of satisfiability).

Definition 2. We say that a formula ϕ logically implies a formula ψ (or ψ is a
logical consequence of ϕ), and we write ϕ |= ψ, iff for every interpretation I, for
every variable assignment σ, we have that I, σ |= ϕ implies I, σ |= ψ.

We have the following proposition.

Proposition 12. For all formulas ϕ and ψ, we have that: ϕ |= ψ iff |= ϕ → ψ
(that is, for all interpretations I, for all assignment σ, I, σ |= ϕ→ ψ).

In general, by considering a set Γ of formulas and a formula ψ, we write Γ |= ψ
iff for all formulas ϕ ∈ Γ , for all interpretations I, for all assignment σ, if I, σ |= ϕ,
then I, σ |= ψ.

When Γ is the empty set of formulas, we write |= ψ, instead of ∅ |= ψ, and if Γ
is a singleton, say {ϕ}, we will feel free to write ϕ |= ψ, instead of {ϕ} |= ψ.

4. Semantics of First Order Theories 33

Definition 3. We say that a formula ϕ is logically equivalent to a formula ψ, and
we write |= ϕ↔ ψ, iff ϕ logically implies ψ (that is, |= ϕ → ψ) and ψ logically
implies ϕ (that is, |= ψ → ϕ).

We have the following proposition.

Proposition 13. For all formulas ϕ and ψ, we have that: |= ϕ↔ ψ iff (ϕ |= ψ and
ψ |= ϕ).

Note 6. In the relations ϕ |= ψ and I |= ϕ we have overloaded the symbol |=.
Indeed, on the left of ϕ |= ψ we have a formula, while on the left of I |= ϕ we have
an interpretation. This overloading of |=, however, does not generate any ambiguity
even when no formula occurs to the left of |=. Indeed, |= ϕ stands for true |= ϕ and
this is equivalent to say that ‘for every interpretation I, I |= ϕ’.

The following propositions follow directly from the definitions.

Proposition 14. For all formulas ϕ and ψ, if (i) ϕ |= ψ then (ii) (for all I, I |= ϕ
implies I |= ψ). In words, if ϕ |= ψ then every model of ϕ is a model of ψ.

Proposition 15. For all formulas ϕ and ψ, if ϕ is a closed formula then (i) ϕ |= ψ
iff (ii) (for all I, I |= ϕ implies I |= ψ). In words, if ϕ is a closed formula, then
ϕ |= ψ is equivalent to say that every model of ϕ is a model of ψ.

Proof. By Proposition 14 we only need to show that if ϕ is a closed formula then
(ii) implies (i). This can be shown as follows:
(ii) for all I, I |= ϕ implies I |= ψ {by definition}

iff for all I, ((for all σ, I, σ |= ϕ) implies (for all σ, I, σ |= ψ))
{since ϕ is a closed formula, σ does not modify the value of the terms in ϕ
and, thus, σ may be moved on the left}

iff for all I, for all σ, (I, σ |= ϕ) implies (I, σ |= ψ).

Proposition 16. For all formulas ϕ and ψ, if ϕ is not a closed formula, then
(ii) (for all I, I |= ϕ implies I |= ψ) does not imply (i) ϕ |= ψ.

Proof. Let ϕ be x=a and ψ be ∀y y=a. For these formulas we have that:
(ii) (for all I, I |= x=a implies I |= ∀y y=a) holds by Proposition 10, and
(i) x=a |= ∀y y=a does not hold (take the interpretation with domain {a, b}, and
let σ(x) be a, and = be interpreted as the identity on {a, b}).

The notions of model, satisfiability, validity, logical implication, and logical
equivalence we have defined above, can be extended to a set of formulas, instead of
a formula only. Thus, for instance, we have the following definition.

34 1. First Order Predicate Calculus

Definition 4. [Models of Sets of Formulas] Given a set Γ of formulas, a model

of Γ is an interpretation I such that for every formula ϕ of Γ we have that I is a
model of ϕ, that is, I |= ϕ. If I is model of Γ we write I |= Γ .

When making this extension, a set of formulas represents a conjunction of for-
mulas and we write Γ ∪ {ϕ} |= ψ to mean that the conjunction of every formula
in Γ and ϕ logically implies ψ. Moreover, for reasons of simplicity, we often write
Γ, ϕ |= ψ, instead of Γ ∪ {ϕ} |= ψ.

Definition 5. [Models of First Order Theories] Given a first order theory T ,
a model of T is any interpretation I such that for every axiom ϕ of T , we have that
I |= ϕ (see [10, page 56]).

In this Definition 5, instead of saying ‘every axiom ϕ of T ’, we can equivalently
say ‘every theorem ϕ of T ’ because the following theorem holds [10, pages 67]. Recall
also that a first order theory is identified with the set of its theorems (see page 15).

Theorem 6. [Soundness of the derivation relation ⊢ with respect to
the satisfiability relation |=] Given any first theory T , for all formulas ϕ, if
T ⊢ ϕ (that is, ϕ is a theorem of T), then T |= ϕ (that is, every model of T is
a model of ϕ).

Proof. It is a consequence of: (i) Proposition 10 on page 32 which states that the
Generalization rule preserves models, and (ii) the following Proposition 17 which
states that Modus Ponens preserves models.

Proposition 17. [Modus Ponens Preserves Models] If I |= ϕ and I |= ϕ→
ψ, then I |= ψ.

Proof. It is left as an exercise to the reader.

The following Theorem 7 on page 35 which is the well known Gödel Com-
pleteness Theorem, establishes the converse of Theorem 6 and, thus, shows the
equivalence between the derivability relation (⊢) and the satisfiability relation (|=).

Here are some lemmata which allow us to prove that theorem. Their proofs can
be found in [10, pages 67–71]. First we need the following definitions.

Definition 6. [Denumerable Sets] A set D is denumerable if there is a bijection
between D and the set of natural numbers.

Definition 7. [Recursively Enumerable Sets] A set D is said to be recursively

enumerable (or r.e., for short) of there exists a Turing Machine M such that: (i) for
any natural number n, M with input n halts and returns an element d ∈ D, and
(ii) for every element d ∈ D, there exists a natural number i such that M with
input i halts and returns d.

4. Semantics of First Order Theories 35

If a set is recursively enumerable then it is denumerable. There are sets which
are denumerable that are not recursively enumerable.

Lemma 1. The set of terms of a first order theory is denumerable and it is re-
cursively enumerable. The same holds for the set of formulas and the set of closed
formulas. (Recall the hypotheses we have made on the first order language (see
page 9) and, in particular, the fact that we have denumerably many variables.)

Lemma 2. Given a first order theory K, if A is a closed formula such that it is
not the case that K ⊢ ¬A, then the theory K ∧A is consistent.

A first order theory K ′ is said to be an extension of a first order theory K iff
every theorem of K is also a theorem of K ′.

Lemma 3. (Lindenbaum). If a first order theory K is consistent, then there exists
a consistent, complete extension of K. That extension has the same symbols as K.

The proof of Lindenbaum’s Lemma uses Zorn’s Lemma [10, page 213].
Lindenbaum’s Lemma can be strengthened as follows: a consistent, decidable

first order theory has an extension that is consistent, complete, and decidable [14,
pages 15–16].

Definition 8. [Witness Theory] A first order theory is said the be a witness

theory if for every formula A(x) with one free variable only, say x, there exists a
closed term t such that K ⊢ (∃x¬A(x))→ ¬A(t).

Lemma 4. Let us consider a first order theory K which is consistent. Then K has
a consistent extension which is a witness theory. That extension has a denumerable
set of closed terms.

The proof of Lemma 4 can be done by introducing in the language denumerably
many new constant symbols.

Lemma 5. Let us consider a first order theory J which is consistent, complete,
and it is also a witness theory. Then J has a model whose domain is the set of the
closed terms of J .

Lemma 6. (Henkin 1949). Every first order theory which is consistent has a model
whose domain is a denumerable set [10, Proposition 2.17 on page 71].

Theorem 7. [Gödel’s Completeness Theorem] (1930) For any set Γ of
(closed or not closed) first order formulas and for any formula ϕ, we have that
Γ ⊢ ϕ iff Γ |= ϕ. In particular, for Γ = ∅, we have ⊢ ϕ iff |= ϕ, that is, the
theorems of the first order predicate calculus are precisely the logically valid
formulas.

36 1. First Order Predicate Calculus

Note that Gödel’s Completeness Theorem holds even if the set Γ of first order
formulas is inconsistent and, thus, from Γ we may derive any formula. In that case,
in fact, Γ has no models and, trivially, every model of Γ is a model of any formula.

Figure 3 gives a pictorial view of the relationship between Gödel’s Completeness
Theorem and the Deduction Theorem (Version 1) on page 16.

Γ, ϕ |= ψ

Γ, ϕ ⊢ ψ Γ ⊢ ϕ→ ψ

Γ |= ϕ→ ψ
iff (by definition of |=)

iff (by Gödel’s Completeness)

closed ϕ or (D1) or (D2)

closed ϕ or
(D1) or (D2)

Fig. 3. A pictorial view of the relationship between Gödel’s Completeness Theorem
(see page 35) and the Deduction Theorem (Version 1) (see page 16). Γ is a set
of (closed or not closed) formulas. The symbol ⊢ denotes the derivation relation
in the Classical presentation of the first order predicate calculus. (D1) and (D2)
denote Condition (ii.1) and Condition (ii.2), respectively, of the Deduction Theorem.
A solid arrow α −→ β denotes the fact that if α holds, then β holds. A dashed arrow

α
λ

99K β denotes the fact that if α holds and λ holds, then β holds.

We have the following results whose proofs can be found in [10].

Proposition 18. (Skolem-Löwenheim, 1920, 1915). Any first order theory that has
a model, has a denumerable model (that is, a model whose domain is a denumerable
set).

Proposition 19. A first order theory K is consistent iff it has a model.

Proof. The only-if part is Lemma 6 above on page 35. The if part is a consequence
of the fact that ifK is not consistent then K has no models, as we now show. Indeed,
if K is not consistent, then there is a formula A such that K ⊢ A and K ⊢ ¬A.
Then, by Gödel’s Completeness Theorem, we get that K |= A and K |= ¬A. Thus,
for every model M of K we have that M |= A and M |= ¬A. But this is impossible
by definition of |=. Thus, K has no models.

Proposition 20. Let ℵ0 denote the cardinality of the set of the natural numbers.
For any cardinal number α ≥ ℵ0, any consistent first order theory has a model with
cardinality α.

5. First Order Predicate Calculus With Equality 37

Proposition 21. There is no first order theory whose models are exactly all inter-
pretations with finite domains.

Proposition 22. [Compactness] Every finite subset of the axioms of a first order
theory K has a model iff the theory K has a model [10, page 73] and [13, page 69].

5 First Order Predicate Calculus With Equality

In this section we consider the first order theory which is the first order predicate
calculus with an extra binary predicate symbol = and the following two extra axiom
schemata:

E1. ∀x x = x
E2. ∀x∀y (x = y → (A(x, x)→ A(x, y)))

In the axiom schema E2 the formula A(x, y) stands the formula A(x, x) where some

(maybe all) free occurrences of the variable x have been replaced by the variable y
and y is free for x in A(x, x). (Note that A(x, y) may contain or may not contain
free occurrences of the variable x.)

From E1 and E2 we get the usual properties of equality:

(i) reflexivity,

(ii) symmetry,

(iii) transitivity, and

(iv) substitutivity, that is, ∀x∀y (x=y → (A(x, x)↔ A(x, y)))
(this Point (iv) follows from E2 and symmetry of =).

In particular, from E2 it follows that the equality predicate is symmetric, that is,
∀x∀y (x=y → (A(x, y) → A(x, x))). Indeed, from E2, by taking A(x, y) to be the
formula y = x, we get:

∀x∀y (x = y → (x = x→ y = x)), that is,

∀x∀y (x = y → (true → y = x)), that is,

∀x∀y (x = y → y = x).

We have that ⊢ t = t for all terms t [10, page 75].

In what follows we will write ∃1xϕ(x) to denote the formula

(∃xϕ(x)) ∧ (∀x1, x2 (ϕ(x1) ∧ ϕ(x2))→ x1 = x2)

which states that there is a unique x such that ϕ(x).

In the Natural Deduction presentation of the first order predicate calculus with
equality we have the following two extra rules for deducing new sequents from old
sequents. In these rules t, t1, and t2 are any terms and, for i = 1, 2, A(ti) stands for
a formula A where we have singled out an occurrence of the term ti.

38 1. First Order Predicate Calculus

Γ ⊢ t= t
(= Axiom)

Γ ⊢ t1 = t2

Γ ⊢ A(t1) ↔ A(t2)
if t1 and t2 are free for x in A(x) (= Rule)

Exercise 5. Show that axiom schemata E1 and E2 are true in every interpretation I
in which = is interpreted as the identity relation of the domain D of I, that is, as
the set {〈x, x〉 | x ∈ D}.

Let us consider the formula B(x) with free occurrences of the variable x. Let
the variable y be free for x in B(x) and let B(y) denote the result of substituting
all free occurrences of x by y. We have that:

⊢ ∀x (B(x) ↔ ∃y (x = y ∧ B(y)))
⊢ ∀x (B(x) ↔ ∀y (x = y → B(y)))
⊢ ∀x∃y x = y

Thus, if t is free for y in B(y) and y does not occur in t, we have that:

⊢ B(t) ↔ ∀y (y = t → B(y)) (α)

⊢ B(t) ↔ ∃y (y = t ∧ B(y)) (β)

In these equivalences (α) and (β) we need the condition that y does not occur in t
because, for instance, if t is y, we have B(y) ↔ ∀y B(y), which does not hold (see
page 16).

Now we give the proofs of (α) and (β). We leave it as an exercise to the reader
construct the similar proofs in the Classical presentation.

Proof of (α).

1. B(t), y= t ⊢ y= t Assumption Axiom

2. B(t), y= t ⊢ B(y)↔ B(t) = Rule (t is free for y in B(y) and y is
free for y in B(y))

3. B(t), y= t ⊢ B(t)→ B(y) ↔ Elimination

4. B(t), y= t ⊢ B(t) Assumption Axiom

5. B(t), y= t ⊢ B(y) → Elimination (3, 4)

6. B(t) ⊢ y= t→ B(y) → Introduction

7. B(t) ⊢ ∀y (y= t→ B(y)) ∀ Introduction (y is not free in B(t))

8. ⊢ B(t)→ ∀y (y= t→ B(y)) → Introduction

9. ∀y (y= t→ B(y)) ⊢ ∀y (y= t→ B(y)) Assumption Axiom

10. ∀y (y= t→ B(y)) ⊢ t= t→ B(t) ∀ Elimination (t is free for y in
(y= t→B(y)) and y does not occur in t).
t= t→ B(t) is the result of substituting
all free occurrences of y in y= t→ B(y)
by t.

5. First Order Predicate Calculus With Equality 39

11. ∀y (y= t→ B(y)) ⊢ t= t = Axiom

12. ∀y (y= t→ B(y)) ⊢ B(t) → Elimination (10, 11)

13. ⊢ (∀y (y= t→ B(y)))→ B(t) → Introduction

14. ⊢ B(t)↔ (∀y (y= t→ B(y))) ↔ Introduction (8, 13) 2

Proof of (β). The symbol b stands for a constant not occurring elsewhere.

1. B(t) ⊢ B(t) Assumption Axiom

2. B(t) ⊢ t= t = Axiom

3. B(t) ⊢ t= t ∧B(t) ∧ Introduction (2, 1).
t= t→ B(t) is the result of sub-
stituting all free occurrences of y
in y= t→ B(y) by t.

4. B(t) ⊢ ∃y (y= t ∧B(y)) ∃ Introduction (y does not oc-
cur in t and t is free for y in
(y= t ∧B(y)))

5. ⊢ B(t)→ ∃y (y= t ∧ B(y)) → Introduction

6. ∃y (y= t ∧B(y)) ⊢ ∃y (y= t ∧B(y)) Assumption Axiom

7. ∃y (y= t ∧B(y)), b= t ∧ B(b) ⊢ b= t ∧ B(b) Assumption Axiom

8. ∃y (y= t ∧B(y)), b= t ∧ B(b) ⊢ b= t ∧ Elimination (7)

9. ∃y (y= t ∧B(y)), b= t ∧ B(b) ⊢ B(b) ∧ Elimination (7)

10. ∃y (y= t ∧ B(y)), b= t ∧B(b) ⊢ B(b)↔ B(t) = Rule (8) (b and t are free for y
in B(y))

11. ∃y (y= t ∧ B(y)), b= t ∧B(b) ⊢ B(b)→ B(t) ↔ Elimination

12. ∃y (y= t ∧ B(y)), b= t ∧B(b) ⊢ B(t) → Elimination (9, 11).

13. ∃y (y= t ∧ B(y)) ⊢ B(t) ∃ Elimination (6, 12). Since y
does not occur in t, the formula
b= t ∧B(b) is the result of sub-
stituting b for y in y= t ∧B(y).

14. ⊢ ∃y (y= t ∧B(y))→ B(t) → Introduction

15. ⊢ B(t)↔ (∃y (y= t ∧B(y))) ↔ Introduction (5, 14) 2

Now we present the group theory which is an example of a first order theory with
equality. The first order language of the group theory has the two function symbols 0
(with arity 0) and + (with arity 2).

The proper axioms are as follows.

G1. ∀xyz (x+ y) + z = x+ (y + z) (associativity)

G2. ∀xyz 0 + x = x (identity)

G3. ∀x∃y y + x = 0 (inverse)

40 1. First Order Predicate Calculus

Theorem 8. (Gödel, 1930) Any consistent first order theory with equality: (i) has
a normal model, that is, a model where the equality symbol = is interpreted as the
identity relation in the domain of the model, and (ii) that domain is a finite or
denumerable set.

5.1 Definition of New Function Symbols

Let K be a first order theory with equality. If for all y1, . . . , yn there exists a unique

object u such that A(y1, . . . , yn, u), with n≥ 0 and free variables y1, . . . , yn, u, we
may introduce a new function symbol f and stipulate that

∀y1, . . . , yn ∀u f(y1, . . . , yn) = u → A(y1, . . . , yn, u). (†)

More formally, let us consider a first order theory K with equality such that
K ⊢ ∃1uA(y1, . . . , yn, u). Let K ′ be the first order theory with equality obtained
from K by adding: (i) a new function symbol f , (ii) the axiom (†), and (iii) all
instances of the axiom schemata A1, A2, A3, A4, A5 (see page 13) and E1 and E2
(see page 37) with some occurrences of f .

Then we can transform, as we will indicate below, any given formula ϕ′ of K ′

into a formula ϕ of K such that:

(i) K ′ ⊢ ϕ′ ↔ ϕ, and

(ii) if K ′ ⊢ ϕ′, then K ⊢ ϕ.

The transformation, call it Elim, from ϕ′ to ϕ is by induction on the structure of the
formula and, for the atomic formulas, by induction on the number of occurrences
of the function symbol f .

Given an atomic formula B′, the procedure Elim returns B′ itself if there are
no occurrences of f in B′, otherwise it returns the formula ∃uA(t1, . . . , tn, u) ∧ Bu,
where Bu is obtained from B′ by replacing a term of the form f(t1, . . . , tn), with an
innermost occurrence of the symbol f , by the fresh new variable u.

Since in K ′ we have the axiom (†) and K ⊢ ∃1uA(y1, . . . , yn, u) holds (and the
same holds for K ′), we have that: K ′ ⊢ Elim(B′) ↔ B′. From this equivalence we
easily get Point (i) above. For Point (ii) above the reader may refer to [10, page 80].

Thus, in first order theories with equality, only predicate symbols are needed
while function symbols are dispensable. Indeed, we can replace a function symbol f
with arity n (≥ 0), by a new predicate symbol A of arity n+1 if we add the new
axiom ∀y1, . . . , yn ∃1uA(y1, . . . , yn, u).

6 Peano Arithmetic and Incompleteness Theorem

Let us consider the first order predicate calculus with equality and one constant 0
and three function symbols: s (unary), called successor, + (binary), called plus,
and × (binary), called times, and the following extra axioms:

6. Peano Arithmetic and Incompleteness Theorem 41

PA1. ∀xyz (x = y → (x = z → y = z))

PA2. ∀xy (x = y → (s(x) = s(y)))

PA3. ∀x 0 6= s(x)

PA4. ∀xy (s(x) = s(y) → x = y)

PA5. ∀x x+ 0 = x

PA6. ∀xy x+ s(y) = s(x+ y)

PA7. ∀x x× 0 = 0

PA8. ∀xy x× s(y) = (x× y) + x

PA9. for any formula ϕ(x), (ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(s(x))))→ ∀xϕ(x)

Let us refer to this first order predicate calculus as Peano Arithmetic or PA, for
short.

Note that: (i) PA1 is a consequence of E1, and (ii) PA2 is a consequence of E1
and E2. PA9 is an axiom schema and it provides an axiom for each given first order
formula ϕ(x). PA9 is called the principle of mathematical induction. Note that it is
not possible to present PA using a finite number of axioms only, that is, PA is not
finitely axiomatizable.

Exercise 6. Show that PA is a witness theory (see Definition 8 on page 35).

The following theorem establishes the incompleteness of Peano Arithmetic [10,
page 163].

Theorem 9. [Gödel-Rosser Incompleteness Theorem. Version 1] (1936)
If PA is consistent, then there exists a closed formula which is undecidable in PA,
that is, there exists a closed formula ϕ such that neither PA ⊢ ϕ nor PA ⊢ ¬ϕ.

Now, in order to present some more results about Peano Arithmetic we introduce
the notion of a Gödel number [10, page 149].

Let us consider a first order language L. Let a symbol σ of L be one of the
following syntactic tokens (as usual, the vertical bar | separates the different alter-
natives):

σ ::= (|) | , | ¬ | → | ∀ | ∃ | x | f | p

where x is any variable symbol, f is any function symbol, and p is any predicate
symbol of L. An expression of L be either a symbol of L, or a term of L, or a formula
of L.

The Gödel number of a symbol, or an expression, or a finite sequence of expres-
sions of L, is a natural number which is the value of a Turing computable injection.
Thus, in particular, any two different expressions have two different Gödel numbers.

42 1. First Order Predicate Calculus

Here we will not give the details of how to define such an injection and, actually,
many definitions are possible. The interested reader may refer to [10, page 149].

One can define such an injection so that types are made explicit, in the sense
that: (i) the Gödel number of any symbol σ is different from the Gödel number
of the expression made out of that single symbol σ and, similarly, (ii) the Gödel
number of any expression e is different from the Gödel number of the sequence of
expressions made out of that single expression e.

One can define a particular injection that is a primitive recursive function (and,
thus, Turing computable) whose inverse is a primitive recursive function (when
restricted to its domain of definition).

In what follows we will assume a fixed primitive recursive injection (with a
primitive recursive inverse) that provides the Gödel number of every symbol, or
expression, or sequence of expressions we will consider. That fixed injection will be
denoted by G. The number n returned by the function G, when expressed within PA,
is the term s(. . . s(0) . . .) with n occurrences of the function symbol s. That term
will be denoted also by n.

In order to state the following Theorem 10 we need the definition we now
present [10, page 165].

Definition 9. Let us consider a first order theory K. We define the predicate
PrAxK such that for any natural number n, PrAxK(n) is true iff n is the Gödel
number of a proper axiom of K.

If PrAxK is recursive there is a Turing Machine, say M , which always halts and
for any given natural number n, M tells us whether or not n is the Gödel number
of a proper axiom of K (and that proper axiom is the value of G−1(n)).

Theorem 10. For any theory K which has the same symbols as PA (that is, 0, s,
+, ×, and =) and it is a consistent extension of PA such that the predicate PrAxK

is recursive, we have that K has an undecidable, closed formula.

Let us consider the following interpretation N of Peano Arithmetic. The domain
of the interpretation, also denoted N , is the set of the natural numbers. The nullary
symbol 0 is interpreted as the number 0, the unary symbol s is interpreted as
the successor function λn. n + 1, the binary symbol + is interpreted as the sum
function λm, n.m + n, the binary symbol × is interpreted as the product function
λm, n.m×n, and the binary symbol = is interpreted as the identity relation on N .

The interpretation N is a model of PA and it is said to be the standard model

of Peano Arithmetic. Note that the standard model N is a normal model because
of the interpretation of = as the identity relation on N .

Models of PA which are not isomorphic to the standard model are said to be
non-standard .

6.1 More on Incompleteness 43

The fact that N is a model of PA implies that PA is consistent (by Proposi-
tion 19 on page 36). Unfortunately, this model theoretic proof of consistency of PA
is often considered not very satisfactory (simply because it is based on semantics)
and logicians have been looking for a syntactic proof of consistency of PA.

However, the Gödel Second Theorem [10, page 166] (which we do not prove here)
states that such a syntactic proof of consistency (when consistency is formulated as
the absence of a formula ϕ for which we have a proof of ϕ and a proof of ¬ϕ) cannot
be done within PA. There is syntactic proof of consistency of PA [4,5] which uses an
induction principle, the so called ǫ0 induction principle, that is much stronger than
mathematical induction (see the axiom schema PA9 on page 41). Obviously, ǫ0 in-
duction cannot be reduced to mathematical induction and, thus, such a consistency
proof of PA is not within PA.

Definition 10. A subset A of natural numbers is said to be arithmetical if in PA
there is a formula α(x) with a single free variable x such that for all n, n ∈ A iff
α(sn(0)) is true in the standard model of PA, that is, N |= α(sn(0)).

The following theorem states that in PA there is no formula (with a single free
variable) which is true in the standard model of PA exactly for those numbers
which are the Gödel numbers of the formulas that are true in the standard model
of PA [10, page 169].

Theorem 11. [Tarski Theorem] (1936) The set of the Gödel numbers of all the
formulas which are true in the standard model of PA is not arithmetical. That is, in
PA no formula α(x) (with a single free variable x) exists such that for all formulas
ϕ of PA, N |= α(G(ϕ)) holds iff N |= ϕ. (Note that, since α(G(ϕ)) should be a
formula of PA, by G(ϕ) we denote the Gödel number of the formula ϕ written in
unary notation by making use of the symbols s and 0.)

Note that Tarski Theorem refers to the standard model N of PA, while Gödel-
Rosser Incompleteness Theorem (see Theorem 9 on page 41) refers to the derivabil-
ity relation ⊢ and, thus, to all models of PA (recall that by Gödel Completeness
Theorem (see Theorem 7 on page 35) we have that ⊢ is equivalent to |=).

6.1 More on Incompleteness

In this section we would like to investigate more on the incompleteness properties
of first order theories. Let us introduce the following notions.

Let N denote, as usual, the set of the natural numbers.

Definition 11. A function f from Nn to N is said to be representable in a first
order theory K with equality with the same symbols as PA (that is, 0, s, +, ×, =)
if there exists a formula α(x1, . . . , xn, xn+1) with the free variables x1, . . . , xn, xn+1,
such that for all natural numbers k1, . . . , kn, kn+1,

44 1. First Order Predicate Calculus

(i) if f(k1, . . . , kn) = kn+1 then K ⊢ α(k1, . . . , kn, kn+1), and

(ii) K ⊢ ∃1xn+1 α(k1, . . . , kn, xn+1)

We say that f from Nn to N is strongly representable in a first order theory K with
equality with the same symbols as PA iff we have: (i) and

(ii)* K ⊢ ∃1xn+1 α(x1, . . . , xn, xn+1).

One can show that strong representability is equivalent to representability.

Let us consider the first order theory with equality with the same symbols as PA,
called Raphael Robinson Arithmetic, or RR for short, whose proper axioms are the
following ones [10, page 157]:

RR1. ∀x x = x

RR2. ∀xy x = y → y = x

RR3. ∀xyz x = y → (y = z → x = z)

RR4. ∀xy x = y ↔ s(x) = s(y)

RR5. ∀xyz x = y → (x+ z = y + z ∧ z + x = z + y)

RR6. ∀xyz x = y → (x× z = y × z ∧ z × x = z × y)

RR7. ∀x 0 6= s(x)

RR8. ∀xy 0 6= x → ∃y x = s(y)

RR9. ∀x x+ 0 = x

RR10. ∀xy x+ s(y) = s(x+ y)

RR11. ∀x x× 0 = 0

RR12. ∀xy x× s(y) = (x× y) + x

In [10, page 157], for reasons of simplicity, the following extra axiom (uniqueness of
remainder) is also considered:

RR13. ∀xyzr ∀x1y1z1r1
(x = y×z+r ∧ r<y ∧ x1 = y1×z1+r1 ∧ r1<y1) → r = r1

where x<y stands for ∃z x + z = y. However, this axiom is a consequence of the
other axioms.

We have the following result for which we assume familiarity with the theory of
the partial recursive functions.

Proposition 23. Every partial recursive function which is a total function, is rep-
resentable (and strongly representable) in RR.

The first order theory RR is a proper subtheory of PA in the sense that every
theorem of RR is a theorem of PA and not vice versa.

Note also that RR is finitely axiomatizable, while it can be shown that PA does
not admit a finite axiomatization.

6.1 More on Incompleteness 45

Let us consider any first order theory K with equality with the same symbols
as PA such that:

(A1) the predicate PrAxK is recursive (see page 42),

(A2) K ⊢ 0 6= s(0), and

(A3) every partial recursive function that is a total function, is representable in K.

Examples of a theory K are RR, PA, and any extension of RR which satisfies
assumption (A1).

Definition 12. [ω-consistency] We say that a first order theory K with equality
with the same symbols as PA is ω-consistent iff for every formula α(x), we have
that if K ⊢ ¬α(n) for every natural number n, then K ⊢ ∃xα(x) does not hold.

Every theory for which N is a model, is an ω-consistent theory. Thus, both PA
and RR are ω-consistent.

We have that ω-consistency implies consistency, but not vice versa [10, page 161].

Theorem 12. [Gödel Incompleteness Theorem] (1931) For every first order
theory K with equality with the same symbols as PA satisfying assumptions (A1),
(A2), and (A3), there exists a closed formula G such that:

if K is consistent, then it is not the case that K ⊢ G
if K is ω-consistent, then it is not the case that K ⊢ ¬G.

Definition 13. [ω-incompleteness] We say that a first order theory K with
equality with the same symbols as PA is ω-incomplete iff there exists a formula α(x)
such that K ⊢ α(n) for every natural number n, and K ⊢ ∀xα(x) does not hold.

Proposition 24. Every first order theory with equality with the same symbols
as PA such that assumptions (A1), (A2), and (A3) hold, is ω-incomplete [10, Exer-
cise 3.45].

Thus, both PA and RR are ω-incomplete.

Theorem 13. [Gödel-Rosser Incompleteness Theorem. Version 2] (1936)
Consider any first order theory K with equality with the same symbols as PA sat-
isfying assumptions (A1), (A2), and (A3), and also the following two assumptions:
for every natural number n,

(A4) K ⊢ x ≤ n → x = 0 ∨ x = s(0) ∨ . . . ∨ x = n, and

(A5) K ⊢ x ≤ n ∨ n ≤ x.

Then, there exists a closed formula R such that if K is consistent, then R is unde-
cidable. (Note that RR and PA are particular instances of any such theory K.)

46 1. First Order Predicate Calculus

Exercise 7. If K is a first order theory with the symbols 0 and s, we have that if K
is consistent and is not ω-consistent, then it is ω-incomplete [10, Exercise 3.46].
Solution. Since K is not ω-consistent we have that there exists a formula α(x)
such that for every natural number n, K ⊢ ¬α(n) and K ⊢ ∃xα(x). Thus, from
consistency of K, we get that it cannot be the case that K ⊢ ¬∃xα(x), that is, it
cannot be the case that K ⊢ ∀x¬α(x).

We also have the following undecidability result [10, page 165] which is the reason
why we have introduced the theory RR. Since RR is finitely axiomatizable, we see
that undecidability due to Gödel-Rosser Incompleteness Theorem (see Theorem 9
on page 41) is not related to the fact that PA is not finitely axiomatizable.

Proposition 25. Consider any first order theory K with equality with the same
symbols as PA. IfK is a consistent extension of RR such that there exists a theoryH
with the same theorems of K such that PrAxH is recursive, then in K there exists
a closed formula which is undecidable.

Chapter 2

Logic Programming

7 Towards Logic Programming: Skolem, Herbrand, and

Robinson Theorems

In this section we return to the first order predicate calculus and we consider three
theorems, namely:
(i) the Skolem Theorem (see Theorem 14 on page 47),
(ii) the Herbrand Theorem (see Theorem 16 on page 49), and
(iii) the Robinson Theorem (see Theorem 17 on page 49)
that introduce us to the theory of logic programming which we will present in the
next chapter.

Theorem 14. (Skolem 1920). For any given (closed or not closed) formula ϕ
there exists a closed formula ψ in clausal form such that ϕ is satisfiable iff ψ is
satisfiable.

Obviously, we get an equivalent formulation of the Skolem theorem if we replace
‘satisfiable’ by ‘unsatisfiable’. Here is the construction of ψ from ϕ, according to [9].

Construction of a formula ψ in clausal form which is satisfiable iff ϕ is
satisfiable (Use of Skolemization)

1. Take the existential closure ∃(ϕ) of ϕ (recall that ϕ is satisfiable iff ∃(ϕ) is
satisfiable), and eliminate all quantifiers in whose scope there is no occurrence
of the corresponding bound variable.

2. Rename the bound variables, so that any two quantifiers have two distinct bound
variables.

3. Eliminate all occurrences of connectives different from ¬, ∧, and ∨.

4. Push ¬ inward by replacing: (i) ¬∃x A by ∀x ¬A, (ii) ¬∀x A by ∃x ¬A, (iii) ¬¬A
by A, and (iv) by using De Morgan’s laws: ¬(A∨B)↔ (¬A∧¬B) and ¬(A∧
B)↔ (¬A ∨ ¬B).

47

48 1. First Order Predicate Calculus

5. Push quantifiers inward by using distributivity of ∃ over ∨ and distributivity of
∀ over ∧.

6. (Skolemization Step) Eliminate all existential quantifiers by replacing the formula
∀x1 . . . xm ∃y B(y), where ∃y is the leftmost existential quantifier occurring in
the formula at hand, by ∀x1 . . . xm B(f(x1, . . . , xm)), where f is a new function
symbol. If m = 0 then ∃y B(y) is replaced by B(c) where c is a new constant
symbol.

7. Push universal quantifiers outward (that is, to the left).

8. Distribute ∨ over ∧.

9. (Optional) Simplify the derived formula by: (i) using factoring (the definition of
factoring and the fact that it preserves satisfiability are presented in Section 7)
or any other transformation which preserves satisfiability (in particular, any
transformation based on logical equivalence because logical equivalence preserves
satisfiability), or (ii) eliminating tautologies.

For instance, by using factoring ∀x(¬p(x) ∨ ¬p(a)) is replaced by ¬p(a) (because
∀x (¬p(x)∨¬p(a)) is satisfiable iff ∀x¬p(a) is satisfiable) and the tautology q ∨¬q
is replaced by true.

Example 2. From:

(α) ∀x (p(x)→ ∃z (¬∀y (q(x, y)→ p(f(w))) ∧ ∀y (q(x, y)→ p(x))))
we get the following sequence of formulas where we have underlined some relevant
parts to highlight the changes, and we have used square brackets for improving
readability:

1. ∃w ∀x (p(x)→ (¬∀y (q(x, y)→ p(f(w))) ∧ ∀y (q(x, y)→ p(x))))

2. ∃w ∀x (p(x)→ (¬∀y (q(x, y)→ p(f(w))) ∧ ∀z (q(x, z)→ p(x))))

3. ∃w ∀x (¬p(x) ∨ (¬∀y (¬q(x, y) ∨ p(f(w))) ∧ ∀z (¬q(x, z) ∨ p(x))))

4. ∃w ∀x (¬p(x) ∨ (∃y (q(x, y) ∧ ¬p(f(w))) ∧ ∀z (¬q(x, z) ∨ p(x))))

5. ∃w ∀x (¬p(x) ∨ ((∃y q(x, y) ∧ ¬p(f(w))) ∧ (∀z ¬q(x, z) ∨ p(x))))

6. ∀x (¬p(x) ∨ ((q(x, g(x)) ∧ ¬p(f(c))) ∧ (∀z ¬q(x, z) ∨ p(x))))

7. ∀x∀z [¬p(x) ∨ [(q(x, g(x)) ∧ ¬p(f(c))) ∧ (¬q(x, z) ∨ p(x))]]

8. ∀x∀z [[¬p(x) ∨ (q(x, g(x)) ∧ ¬p(f(c)))] ∧ [¬p(x) ∨ ¬q(x, z) ∨ p(x)]]

(from 7 by distributivity)

9.1 ∀x∀z [¬p(x) ∨ [q(x, g(x)) ∧ ¬p(f(c))]] (from 8 by tautology elimination)

9.2 ∀x∀z [[¬p(x) ∨ q(x, g(x))] ∧ [¬p(x) ∨ ¬p(f(c))]] (from 9.1 by distributivity)

9.3 ∀x [[¬p(x)∨q(x, g(x))]∧¬p(f(c))](from 9.2 by factoring and elimination of ∀z)

7. Skolem, Herbrand, and Robinson Theorems 49

The two clauses of formula 9.3 are: ¬p(x) ∨ q(x, g(x)) and ¬p(f(c)). We have that
the formula (α) is satisfiable iff formula 9.3 is satisfiable. 2

Now let us introduce the notions of Herbrand Universe, Herbrand Base, and
Herbrand interpretation. We assume that the first order language L we consider,
has at least one constant symbol.

The Herbrand Universe HU of L is the set of all ground terms which can be
constructed using symbols from L. The Herbrand Universe of L is not empty because
there is at least one constant symbol.

The Herbrand Base HB of L is the set of all ground atoms which can be con-
structed using symbols from L. The Herbrand Base is empty iff in L there are no
predicate symbols.

An Herbrand interpretation on L is an interpretation I such that:

- the domain of I is HU,

- to every function symbol f of arity r (≥ 0) I assigns the mapping from HU r to
HU which maps every r-tuple 〈t1, . . . , tr〉 of ground terms t1, . . . , tr to the ground
term f(t1, . . . , tr), and

- to every predicate symbol of arity r (≥ 0) I assigns a set of r-tuples of terms, each of
which belongs to HU. For any predicate symbol p and Herbrand interpretation I, we
write p(t1, . . . , tr) ∈ I for denoting that 〈t1, . . . , tr〉 belongs to the relation assigned
to p by I. Thus, an Herbrand interpretation I of L uniquely determines a subset SI

of the Herbrand Base HB of L and vice versa. Actually, we identify an Herbrand
interpretation I with the corresponding subset SI of the Herbrand Base.

For any formula ϕ of the language L, an Herbrand interpretation which is a
model of ϕ is said to be an Herbrand model of ϕ.

Theorem 15. A formula ϕ in clausal form is satisfiable iff ϕ has an Herbrand
model.

Thus, we have that ϕ in clausal form is satisfiable iff there exists an Herbrand
interpretation I such that I |= ϕ. Thus, a formula ϕ in clausal form is unsatisfiable
iff ϕ has no Herbrand models iff ϕ is false in all Herbrand interpretations (recall
that every formula in clausal form is a closed formula).

Theorem 16. (Herbrand 1930). A formula ϕ in clausal form is unsatisfiable
iff there exists a finite conjunction of ground instances of its clauses which is
unsatisfiable.

Theorem 17. (Robinson 1965). A formula ϕ in clausal form is unsatisfiable iff
starting from the set of clauses of ϕ we can get the empty clause 2 by zero or
more resolution steps.

50 1. First Order Predicate Calculus

Now we define a resolution step.

Resolution Step
Given a set of clauses, consider two of them, say
C1: L1 ∨ . . . ∨ Li ∨ Li+1 ∨ . . . ∨ Lk and C2: M1 ∨ . . . ∨Mj ∨Mj+1 ∨ . . . ∨Mh.
Without loss of generality, we may assume that these clauses do not have variables
in common.

(1) Choose nondeterministically from clause C1 a disjunction of i (≥ 1) atoms, say
p(u11, . . . , u1r) ∨ . . . ∨ p(ui1, . . . , uir)

and from clause C2 a disjunction of j (≥ 1) negated atoms, say
¬p(v11, . . . , v1r) ∨ . . . ∨ ¬p(vj1, . . . , vjr)

They all share the same predicate symbol p. Without loss of generality, we may
assume that those disjunctions are at the leftmost positions in the correspond-
ing clauses. Let ϑ be a most general unifier of the i+j atoms p(u11, . . ., u1r), . . .,
p(ui1, . . ., uir), p(v11, . . ., v1r), . . . , p(vj1, . . ., vjr) occurring in those disjunctions, that
is, ϑ is a most general substitution such that:
p(u11, . . . , u1r)ϑ = . . . = p(ui1, . . . , uir)ϑ = p(v11, . . . , v1r)ϑ = . . . = p(vj1, . . . , vjr)ϑ.

(2) Add to the set of clauses the following clause: (Li+1∨. . .∨Lk∨Mj+1∨. . .∨Mh)ϑ.

Given a set P of clauses, a resolution step generates a new set Q of clauses such
that P ⊆ Q and P is satisfiable iff Q is satisfiable. (We adopt the convention of
Section 2.2 where sets of formulas denote conjunctions of formulas.) In other words,
a resolution step preserves satisfiability (and unsatisfiability) of a set of clauses.

To compute a most general unifier of two atoms one can use the following al-
gorithm. Let u1, . . . , ur, v1, . . . , vr, s1, . . . , sn, t1, . . . , tn, and t denote terms and x
denote a variable.

Unification Algorithm (Martelli-Montanari) [1] (page 501).

Input : two atoms p(u1, . . . , ur) and p(v1, . . . , vr) without variables in common.

Output : an idempotent most general unifier of p(u1, . . . , ur) and p(v1, . . . , vr), if
there exists one. Otherwise, the algorithm halts with failure, that is, it halts by
declaring failure of unification.

Consider the set of equations {u1=v1, . . . , ur =vr}.

REPEAT choose nondeterministically one equation, say E, from the set of equations
at hand and perform one of the following actions:

(i) if E is f(s1, . . . , sn) = f(t1, . . . , tn) then replace E by: s1 = t1, . . . , sn = tn

(ii) if E is f(s1, . . . , sn) = g(t1, . . . , tm) and f is different from g
then ‘halt with failure’

7. Skolem, Herbrand, and Robinson Theorems 51

(iii) if E is x=x then delete E

(iv) if E is t=x where t is not a variable then replace E by: x= t

(v) if E is x= t where: (1) t is not x and (2) x occurs either in t or in another
equation of the set of equations at hand

then if x occurs in t then ‘halt with failure’ else substitute t for x
in every other equation

UNTIL ‘halt with failure’ or no action in (i)–(v) can be performed.

This unification algorithm can be extended to any finite set of atoms with the
same predicate symbol. Indeed, it is enough to start from a set equations which, for
any two atoms in the given set, entails the equalities of their corresponding argu-
ments. For instance, if we have to unify the set {p(u11, u12), p(u21, u22), p(u31, u32)}
of atoms, a possible set of equations to be given as input to the Martelli-Montanari’s
Unification Algorithm is {u11 =u21, u21 =u31, u12 =u22, u22 =u32}.

The notions of a unifier and a most general unifier of atoms can be extended
to terms as follows. The unifier of the terms t1, . . . , tn is the unifier of the atoms
p(t1), . . . , p(tn), where p is a new unary predicate symbol. Analogously, for the most
general unifier.

Now we present a different algorithm for computing the most general unifier, if
any, of n (≥ 2) atoms, say p(u11, . . . , u1r), . . ., p(un1, . . . , unr). Let σ be a substitu-
tion and p1, . . . , pn be n variables ranging over atoms. Let {} denote the identity
substitution.

Unification Algorithm (Robinson) [9] (page 139).
Input : n atoms p(u11, . . . , u1r), . . . , p(un1, . . . , unr) without variables in common.

Output : an idempotent most general unifier of p(u11, . . . , u1r), . . . , p(un1, . . . , unr),
if there exists one. Otherwise, the algorithm halts with failure, that is, it halts by
declaring failure of unification.

〈σ, p1, . . . , pn〉 := 〈{}, p(u11, . . . , u1r), . . . , p(un1, . . . , unr)〉;

WHILE (T does not ‘halt with failure’) and
there exist i and j in {1, . . . , n} such that pi 6= pj

DO 〈σ, p1, . . . , pn〉 := T (σ, p1, . . . , pn);
where the transformation T , given a substitution σ and the atoms p1, . . ., pn, either

generates the new substitution σ′ and the new atoms p′1, . . ., p
′

n or halts with failure,
as we now indicate.

Let us consider two atoms, say pi and pj, in the set {p1, . . . , pn} such that pi 6= pj .
Let s1 and s2 be the two terms (or subterms) in pi and pj, respectively, such that
s1 and s2 are rooted at the leftmost position where pi and pj, when considered as
strings of symbols, have different symbols.

52 1. First Order Predicate Calculus

If either 〈s1, s2〉 or 〈s2, s1〉 is equal to 〈x, t〉, where x is a variable and t is a term
in which x does not occur,

then 〈σ′, p′1, . . . , p
′

i, . . . , p
′

j, . . . , p
′

n〉 :=
〈σ{x/t} ∪ {x/t}, p1{x/t}, . . . , pi{x/t}, . . . , pj{x/t}, . . . , pn{x/t}〉

else T ‘halts with failure’.

OD

Note that σ{x/t} ∪ {x/t} is equal to σ{x/t} because we have assumed that pi and
pj do not have variables in common.

Example 3. (See [9], page 139) Given the two atoms p1 = p(a, x, f(g(y))) and
p2 = p(z, h(z, w), f(w)), their idempotent most general unifier ϑ computed by the
Robinson’s unification algorithm, is {z/a, x/h(a, g(y)), w/g(y)} and p1ϑ = p2ϑ =
p(a, h(a, g(y)), f(g(y))). This algorithm generates the following sequence of substi-
tutions and atoms during the iterated executions of the body of the while-do

statement:
substitution σ atom p1 atom p2

initialization {} p(a, x, f(g(y))) p(z, h(z,w), f(w))

1st execution {z/a} p(a, x, f(g(y))) p(a, h(a,w), f(w))

2nd execution {z/a, x/h(a,w)} p(a, h(a,w), f(g(y))) p(a, h(a,w), f(w))

3rd execution {z/a, x/h(a,w), w/g(y)} (= ϑ) p(a, h(a,g(y)), f(g(y))) p(a, h(a,g(y)), f(g(y))) �

When performing a resolution step we may restrict ourselves to a version of the
resolution, called 1-to-1 resolution, where each disjunction to be chosen, consists of
one literal only and we need to unify two atoms only. However, there is a price to pay,
as we now explain. (In the literature 1-to-1 resolution is called binary resolution.)

Factoring Step. (Instantiation and deletion of duplicates literals) Given a clause C,
a factoring step first generates a suitable instance of C with duplicated literals and
then produces as output that instance without duplicated literals.

Here are two examples of factoring.

(i) Given the clause p(x, b)∨p(a, y)∨¬q(x), by factoring we consider its instance for
{x/a, y/b} and we get the new clause p(a, b)∨¬q(a).

(ii) Given the clause p(x)∨p(f(y))∨¬q(x), by factoring we consider its instance for
{x/f(y)} and we get the new clause p(f(y))∨¬q(f(y)).

A factoring step preserves satisfiability as it is easy to show by recalling that:

(i) clauses are implicitly universally quantified at the front,

(ii) for all formulas ϕ, for all variables x, for all terms t which are free for x in ϕ(x),
we have that ∀x ϕ(x) implies ϕ(t), and (∀x ϕ(x)) ∨ ϕ(t)) is satisfiable iff ϕ(t) is
satisfiable, and

(iii) for all formulas ϕ, we have that ϕ∨ϕ is equivalent to ϕ.

7. Skolem, Herbrand, and Robinson Theorems 53

Theorem 18. (Robinson 1965). A formula ϕ in clausal form is unsatisfiable iff
starting from the set of clauses of ϕ we can get the empty clause 2 by zero or more
steps of 1-to-1 resolution and factoring.

Factoring is required, for instance, in the case of the following two clauses:
p(x)∨p(y) and ¬p(a)∨¬p(b). Indeed, by 1-to-1 resolution we always get clauses with
two literals (and never the empty clause), while by factoring we get the clauses p(x)
and ¬p(a)∨¬p(b), and then, from these clauses by two steps of 1-to-1 resolution we
get the empty clause.

Paramodulation. Let us consider the equality predicate = which, as usual, is
assumed to be reflexive, symmetric, transitive, and substitutive, that is, given any
two terms r and s, and any context C[. . .], if r = s then C[r] = C[s] (i. e., = is a
congruence). In order to deal with the equality predicate, we can use the following
inference rule, called paramodulation [3, page 168].

Let C1 be the clause L[t] ∨ D1 and C2 be either the clause r = s ∨ D2 or the
clause s = r ∨ D2, where L[t] is a (positive or negative) literal where we singled
out an occurrence of the term t, and D1 and D2 are disjunctions of literals. Let us
assume that the clauses C1 and C2 have no variables in common and let ϑ be the
idempotent mgu of t and r.

Let us consider the instances C1ϑ and C2ϑ of the clauses C1 and C2, respectively.
Thus, in (L[t])ϑ we have an occurrence of the term tϑ which is identical to rϑ. By
a paramodulation step from C1 and C2 we get the clause:

(L[s] ∨ D1 ∨ D2)ϑ
where L[s] is the result of replacing the selected occurrence of t in L[t] by s.

Example 4. From clause C1: q(x, a)∨ p(x) and clause C2 : a=b by paramodulation
we can get: q(x, b) ∨ p(x). In this case we have singled out the term a in C1 and r
is taken to be a. Thus, ϑ is the empty substitution, because it is the most general
unifier of a and a. From clauses C1 and C2 by paramodulation we can also get
q(b, a) ∨ p(a), obtained for ϑ = {x/a}. We can also get q(a, a) ∨ p(b). However,
we cannot get q(a, b) ∨ p(a), because the occurrence of the term a which has been
replaced by b, does not correspond to an occurrence of x in C1.

Example 5. From clause C1: p(f(g(y), z), z)∨w(z)=m and clause C2: a=f(x, g(x))
by paramodulation we can get: p(a, g(g(y))) ∨ w(g(g(y))) =m. In this case, with
reference to the definition of paramodulation above, we have that the term t is
f(g(y), z) and the term r is f(x, g(x)). Their idempotent mgu ϑ is the substitution
{x/g(y), z/g(g(y))}.

Given a formula ϕ, let us consider the conjunction E(ϕ) of the following equality

clauses relative to ϕ: (i) x=x, and (ii) for each function symbol f of arity n (≥ 0)
occurring in ϕ: f(x1, . . . , xn) = f(x1, . . . , xn). We have the following theorem.

54 1. First Order Predicate Calculus

Theorem 19. (i) A formula ϕ in clausal form is unsatisfiable iff starting from the
clauses of ϕ together with E(ϕ), by zero or more steps of resolution and paramod-
ulation we can get the empty clause 2.
(ii) A formula ϕ in clausal form is unsatisfiable iff starting from the clauses of ϕ to-
gether with E(ϕ), by zero or more steps of 1-to-1 resolution, factoring, and paramod-
ulation we can get the empty clause 2.

The following remarks and exercise conclude this section.

Remark 1. In the propositional calculus, that is, in the fragment of predicate cal-
culus with neither variables nor quantifiers, we have that factoring is not significant
and we can drop factoring from Theorem 18.

Remark 2. (i) Unsatisfiability, satisfiability, and validity are all decidable in propo-
sitional calculus (in at most exponential time on the length of the given formula).

(ii) In first order predicate calculus unsatisfiability and validity are semidecidable.

Satisfiability is undecidable and not semidecidable (Recall that by Post Theorem [10,
page 256], if satisfiability were semidecidable then both unsatisfiability and satisfi-
ability would be decidable.)

(iii) In second order predicate calculus (where we may quantify also over predi-
cate symbols) unsatisfiability, satisfiability, and validity are all undecidable and not

semidecidable.

A theory T is said to be a decidable theory (or a semidecidable theory) if for all
formulas ϕ there is a recursive (or semirecursive) procedure to test whether of not ϕ
is a theorem of T , that is, T ⊢ ϕ.

Thus, the propositional calculus is decidable (in exponential time with respect
to the number of propositions in the formula) and the first order predicate calculus
is semidecidable.

Remark 3. For any given closed formula P and a formula A, the reader should not
confuse the formula P → A and the relation P |= A. Indeed, P → A is a formula
which may be true or false in a given interpretation, while P |= A is a relation
stating that every model of P is also a model of A. By Gödel’s Completeness (see
Theorem 7 on page 35) we have that: P ⊢ A iff P |= A. We also have that P ⊢ A
iff ⊢ P → A by the Deduction Theorem 2.

Remark 4. Given a set Γ of closed formulas and a formula ϕ. We have that:
if Γ ⊢ ϕ and there exists an interpretation I such that for each ψ in Γ , I |= ψ,
then I |= ϕ.
Indeed, by Theorem 7, Γ ⊢ ϕ implies Γ |= ϕ, that is, every model of Γ is a model
of ϕ. Since I is a model of Γ we have that I is also a model of ϕ.

8. Horn Clauses and Definite Logic Programs 55

Remark 5. The resolution approach to theorem proving is based on the fact that
given a set (that is, a conjunction) Γ of closed formulas and a closed formula ϕ, we
have that Γ ∪ {¬ϕ} is unsatisfiable iff Γ ⊢ ϕ. Indeed,

Γ ∪ {¬ϕ} is unsatisfiable

iff (by definition) it does not exist an interpretation I and a variable assignment σ
such that for every ψ in Γ ∪ {¬ϕ}, we have that I, σ |= ψ

iff (by pushing negation inside) for all interpretation I and variable assignment σ
there exists a formula ψ in Γ ∪ {¬ϕ} such that I, σ 6|= ψ

iff (by the hypothesis that Γ and ϕ are closed) for all interpretation I there exists
a formula ψ in Γ ∪ {¬ϕ} such that I 6|= ψ

iff for all interpretation I, I 6|= Γ ∧ ¬ϕ

iff for all I, I |= ¬(Γ ∧ ¬ϕ)

iff for all I, I |= Γ → ϕ

iff |= Γ → ϕ

iff ⊢ Γ → ϕ (by Gödel’s Completeness Theorem 7 on page 35)

iff Γ ⊢ ϕ (by the Deduction Theorem 1 on page 16 because Γ is a set of
closed formulas).

Remark 6. When studying computations in logic programming (see Section 8.3),
we will introduce a restricted form of resolution, called SLD resolution [7]. Dur-
ing SLD resolution steps, substitutions are recorded and composed and, as we will
see, this allows us to execute programs and compute their results. Indeed, in logic
programming the process of computing is reduced to the process of recording sub-
stitutions while constructing proofs. This will be explained in Section 8.3.

8 Horn Clauses and Definite Logic Programs

In this section and in the following Section 9 (starting on page 69), we will consider
a restricted class of clauses, called Horn clauses, for which a particular form of
1-to-1 resolution, called SLD resolution, is complete, that is, given any formula ϕ
which is a conjunction of Horn clauses, ϕ is unsatisfiable iff starting from ϕ, we can
get the empty clause 2 by zero or more steps of SLD resolution (see the definition
of an SLD resolution step on page 65 and Theorem 24 on page 68).

Note that, although Horn clauses are a particular class of clauses, they are
Turing-complete in the sense that every computable function can be expressed using
a conjunction of Horn clauses (see Theorem 26 on page 69).

Let us consider a first order language L. A literal is an atom or a negated atom in
the language L. A clause is a disjunction of literals. The disjunction of zero literals

56 2. Logic Programming

is called the empty clause, denoted by 2, and it is identified with the atom false

(see page 10).

Let atom0, atom1, . . . , atomn be atoms in the language L. A definite clause C is
a clause of the form: atom0 ∨¬atom1 ∨ . . .∨¬atomn, for n≥0, which is written as
follows:

atom0 ← atom1, . . . , atomn for n≥0

where atom0 is not the atom false. (We will see that if we allow atom0 to be false

then a definite program may have no models.) Comma stands for ∧. All variables in
a definite clause are implicitly universally quantified at the front.← denotes reverse
logical implication, that is, a← b stands for b→ a. If n = 0 then a← stands for
true→a.

The atom atom0 is said to be the head of the definite clause C and it is denoted
by hd(C). The sequence atom1, . . . , atomn of atoms is said to be the body of the
definite clause C and it is denoted by bd(C).

A definite goal is a formula of the form:

← atom1, . . . , atomn for n ≥ 0

Comma stands for ∧. All variables in a definite goal are implicitly universally quan-
tified at the front. ← b stands for b→ false. If n=0 then a definite goal is said to
be the empty goal , denoted by 2. The empty goal is the same as the empty clause.

A variant of a definite clause C (or a definite goal G) is obtained by applying
to C (or G) a substitution of the form {x1/y1, . . . , xn/yn}, such that: (i) the set of
variables {x1, . . . , xn} is contained in the set V of variables occurring in C (or G),
(ii) the variables yi’s are distinct, and (iii) (V − {x1, . . . , xn}) ∩ {y1, . . . , yn} = ∅.

A Horn clause is either a definite clause or a definite goal. Thus, a Horn clause
is a clause with at most one positive literal.

A definite program is a finite conjunction of n (≥ 1) definite clauses. Given a
definite program, we get an equivalent definite program if we delete a clause whose
head is the atom true. The program C1∧. . .∧Cn will also be written as {C1, . . . , Cn},
using the set notation.

Remark 7. For the rest of this Section 8, and throughout Section 9, unless otherwise
specified or understood from the context, by ‘clauses’, ‘goals’, and ‘programs’ we
mean ‘definite clauses’, ‘definite goals’, and ‘definite programs’, respectively. 2

Given a program P, below we will define the denotational semantics of P by
introducing the so called least Herbrand model of P, denoted by M (P). We will
also define the operational semantics of P for a given goal ← A via the so called
SLD tree for P and ← A. We will show that these two semantics are equivalent in
the sense specified by Theorems 24 and 25 below.

8.1 Least Herbrand Models 57

8.1 Least Herbrand Models of Definite Logic Programs

Let us consider a definite program P. The first order language L associated with P
has exactly the constant symbols, the function symbols, and the predicate symbols
occurring in P . We assume the following:

(α) if in P there is one variable then in P there is at least one constant symbol.

This assumption is due to technical reasons and it can always be fulfilled by adding
to P the clause: newp(b) ← newp(b), where b is a new constant symbol and newp

is new predicate symbol. We will see that the addition of this extra clause modifies
neither the fixpoint semantics nor the operational semantics of the given program P
w.r.t. goals where newp does not occur.

The notions of Herbrand Universe and the Herbrand Base generated by L can
be extended to the case when we are given, together with a definite program P , also
a definite goal ← A. In that case: (i) the language L associated with P and ← A
has exactly the constant symbols, the function symbols, and the predicate symbols
occurring in P or in← A, and (ii) if in P or in← A there is one variable then in P
or in ← A there is at least one constant symbol.

When referring to ‘ground instances of clauses’ or ‘ground atoms’ or ‘ground
literals’ we mean instances of clauses or atoms or literals, respectively, whose terms
belong to the Herbrand Universe generated by the given program and goal.

As already mentioned in Section 7, we will identify an Herbrand interpretation
with a subset of the Herbrand Base. Let the definite program P be the conjunction
C1 ∧ . . . ∧ Cm of clauses.

For every Herbrand interpretation I, for all ground atoms A,A1, . . . , An, we have
that:

(i) I |= A iff A ∈ I,

(ii) I |= (A1 ∧ . . . ∧ An) iff {A1, . . . , An} ⊆ I,

(iii) I |= ((A1 ∧ . . . ∧ An)→ A) iff (if {A1, . . . , An} ⊆ I then A ∈ I), and

(iv) I |= P

iff (1) I |= ∀(C1) ∧ . . . ∧ ∀(Cm)

iff (2) for each ground instance A← A1, . . . , An of a clause of P,

I |= A1, . . . , An → A

iff for each ground instance A← A1, . . . , An of a clause of P,

if {A1, . . . , An} ⊆ I then A ∈ I.

Formula (2) is derived from formula (1) because by the definition of the satisfac-
tion relation, for a universally quantified formula we have to consider all variable
assignments which assign to every variable a term of the Herbrand Universe (recall
that the Herbrand Universe is a set of ground terms).

58 2. Logic Programming

We will show that every definite program P has a model which is the least
subset I of the Herbrand Base such that I |= P . This model of the program P is
called the least Herbrand model of P and it is denoted by M (P).

As usual in the literature (see, for instance, [8]), we follow the convention that
when considering the Herbrand models and the least Herbrand models, the atoms
true and false do not belong to the Herbrand Base.

Example 6. For P = {p← q(y), q(a)←} we have that M(P) = {p, q(a)}.
For Q = {p(0)←, p(s(x))← p(x), p(s(s(a)))←} we have that:

M(Q) = {p(0), p(s(0)), p(s(s(0))), . . . , p(s(s(a))), p(s(s(s(a)))), . . .}.

M(Q) ∪ {p(a)} is an Herbrand model of Q and it properly includes the least Her-
brand model.

Theorem 20. (Model Intersection Property) Given a definite program P and a set
{Mj | j ∈ J} of Herbrand models of P, their intersection

⋂
j∈J Mj is an Herbrand

model of P.

Proof. Obviously,
⋂

j∈J Mj is an Herbrand interpretation. Moreover,
⋂

j∈J Mj is
a model of P because for each ground instance A ← A1, . . . , An of a clause of
P, if {A1, . . . , An} ⊆

⋂
j∈J Mj then A ∈

⋂
j∈J Mj . This can be shown as follows.

{A1, . . . , An} ⊆
⋂

j∈J Mj implies that for every j ∈ J , {A1, . . . , An} ⊆ Mj , which
in turn, implies that for every j ∈ J , A ∈ Mj , because Mj is a model of P. Thus,
A ∈

⋂
j∈J Mj .

Note that for set of clauses which are not definite programs, the Model Intersection
Property does not hold. Indeed, let us consider the set of clauses Q = {p(a) ∨ p(b)}
which consists of one clause only, namely, p(a) ∨ p(b). This clause is not a definite
clause. Thus, Q is not a definite program. The sets {p(a)} and {p(b)} are two
distinct Herbrand models of Q, but their intersection which is the empty set, is not
a model of Q.

By Theorem 20 the intersection of all Herbrand models of a given program P is
an Herbrand model. It always exists. It is the least Herbrand model. It may be the
empty model, that is, the empty subset of the Herbrand Base. Note that the empty
model, as every interpretation, has a non-empty domain, which is the Herbrand
Universe.

For instance, the least Herbrand model of the program {p(0) ← q(y)} is the
empty model.

Theorem 21. (Kowalski-van Emden 1976). Let us consider a definite pro-
gram P. M (P) is the set of ground atoms which are logical consequences of P,
that is, M (P) = {A | A is a ground atom and P |= A}. Equivalently, for any
ground atom A, P |= A iff A ∈M(P) (that is, M(P) |= A).

8.1 Least Herbrand Models 59

Proof. Let A be a ground atom of the Herbrand Base.

P |= A (that is, every model of P is a model of A, that is, for every interpretation
I if P is true in I then A is true in I)

iff P ∧ ¬A is false in all interpretations (a)

iff P ∧ ¬A is false in all Herbrand interpretation (because a formula in clausal
form is unsatisfiable iff it has no Herbrand models (see Theorem 15 on
page 49)) (b)

iff ¬A is false in all Herbrand models of P

iff A is true in all Herbrand models of P (because A is ground (see Note 5 on
page 31)) (c)

iff A is true in the least Herbrand model of P, that is, A ∈M(P). (d)

Remark 8. In the above proof, we have that (b) implies (a) because P and ¬A are
in clausal form. Moreover, (d) implies (c) because P is a definite program and the
Model Intersection Property holds.

As a consequence of Theorem 21, for any definite program P and any ground

conjunction A1 ∧ . . . ∧ An of atoms, we have that:

P |= (A1 ∧ . . . ∧ An) iff M(P) |= (A1 ∧ . . . ∧ An) (†)

Now we show that if A1 ∧ . . . ∧ An is not ground, then (i) formula (†) holds with
‘implies’, instead of ‘iff’, and (ii) formula (†) with ‘if’, instead of ‘iff’, does not hold.

Property (i) follows from the fact that P |= (A1 ∧ . . .∧An) holds iff (A1∧ . . . ∧An)
holds in every model of P, and thus, it holds also in the least Herbrand model of P.

Property (ii) follows from this counterexample.
Let us consider the program P = {p(0)←} and the goal ← p(x). Now we show

that:
(ii.1) P |= p(x) does not hold, and (ii.2) M(P) |= p(x) holds.

Proof of (ii.1). P does not implies p(x), that is, p(x) is not true in every model of P ,
because we have that: (i) P is equivalent to p(0), and (ii) it is not the case that
{p(0)} |= p(x) because it is not the case that {p(0)} ⊢ p(x), that is, it is not the
case that ⊢ p(0)→ p(x) (note that p(0) is a closed formula).

Proof of (ii.2). In the least Herbrand model of P which is {p(0)}, the formula p(x)
holds, because ∀x p(x) holds (Recall that by Proposition 10 on page 32 we have
that: M(P) |= p(x) holds iff M(P) |= ∀x p(x)). Indeed, the variable x may only be
assigned to the value 0 which is the only element in the Herbrand Universe of P.2

Finally, note that formula (†) with ‘implies’ instead of ‘iff’, that is,

P |= (A1 ∧ . . . ∧ An) implies M(P) |= (A1 ∧ . . . ∧An)

does not hold, if when constructing the domain of an interpretation we use symbols
which do not occur in the given program P or goal A1 ∧ . . . ∧ An.

60 2. Logic Programming

Indeed, let us consider the program P = {p(x) ←, q(0) ←}. We have that:
P |= p(b) for some constant b which does not belong to the Herbrand Universe gen-
erated by P, and it is not the case that M(P) |= p(b) because M(P) = {p(0), q(0)}.

8.2 Fixpoint Semantics of Definite Logic Programs

Let us first recall a few basic definitions.

A lattice L is a set, which we denote by the same letter L, together with a partial
order, denoted by ≤, and two binary operations, denoted by glb and lub, called the
greatest lower bound (w.r.t. ≤) and the least upper bound (w.r.t. ≤), respectively.

By definition, we have that for any x, y, and z in L,

(i.1) glb(x, y)≤ x and glb(x, y)≤ y, that is, glb(x, y) is a lower bound of x and y,
and

(i.2) if z≤x and z≤y then z≤glb(x, y), that is, glb(x, y) is the greatest among the
lower bounds of x and y.

Analogously, by definition, we have that for any x, y, and z in L,

(ii.1) x ≤ lub(x, y) and y ≤ lub(x, y), that is, the lub(x, y) is a upper bound of x
and y, and

(ii.2) if x≤ z and y≤ z then lub(x, y)≤ z, that is, lub(x, y) is the least among the
upper bounds of x and y.

Conditions (i.1), (i.2), (ii.1), and (ii.2) above implies that given any two ele-
ments x and y in L, glb(x, y) and lub(x, y) are unique.

A lattice L is said to be complete iff the glb and the lub operations are defined
for every (finite or infinite) subset H of L, that is, for every set S ⊆ L, we have
that: glb(S) ∈ L, lub(S) ∈ L, and for all x ∈ S:
(i.1) glb(S) ≤ x, and (i.2) for all z ∈ L, if z ≤ x then z ≤ glb(S), and

(ii.1) x ≤ lub(S), and (ii.2) for all z ∈ L, if x ≤ z then lub(S) ≤ z.

Instead of glb(S) and lub(S), we will also write glb S and lub S, respectively.

The greatest lower bound of a complete lattice L is denoted by ⊥. Thus, ⊥ is
the least element of L, that is, for all x ∈ L, ⊥ ≤ x.

Let L be a complete lattice ordered by ≤ and T be a function from L to L. We
say that x is a prefixpoint of T iff T (x) ≤ x. We say that x is a postfixpoint of T iff
x ≤ T (x). We also say that x is a fixpoint of T iff T (x) = x.

Let us define:

T 0(x) = x

T k+1(x) = T (T k(x)) for any k ≥ 0

T ω(x) = lub{T k(x) | k ≥ 0}.

The function T : L → L is said to be monotonic on L (or monotonic, for short) iff
for every x and y if x ≤ y then T (x) ≤ T (y).

8.2 Fixpoint Semantics 61

The function T : L→ L is said to be continuous on L (or continuous, for short) iff it is
monotonic on L and for every infinite sequence x0 ≤ x1 ≤ . . . ≤ xn ≤ . . . of elements
(not necessarily distinct) of L we have that: T (lub{xi | i ≥ 0}) = lub{T (xi) | i ≥ 0}.

Now we recall a few known lemmata.

Lemma 7. Let T : L→ L be a monotonic function on a complete lattice L ordered
by ≤. glb{x | T (x) ≤ x}, that is, the glb of all prefixpoints of T, is the least
prefixpoint of T.

Proof. We have to show that: (1) glb{x | T (x) ≤ x} is a prefixpoint of T, that is,
T (glb{x | T (x) ≤ x}) ≤ glb{x | T (x) ≤ x}, and (2) given any other prefixpoint z of
T we have that glb{x | T (x) ≤ x} ≤ z.
Proof of (1). For every y such that T (y) ≤ y, we have that:

glb{x | T (x) ≤ x} ≤ y (by definition of glb, because y ∈ {x | T (x) ≤ x})
T (glb{x | T (x) ≤ x}) ≤ T (y) (by monotonicity of T)
T (glb{x | T (x) ≤ x}) ≤ y (by transitivity and T (y) ≤ y). (†)

Now since (†) holds for every y such that T (y) ≤ y, T (glb{x | T (x) ≤ x}) is a lower
bound of the set {x | T (x) ≤ x}. Since glb{x | T (x) ≤ x} is the greatest among the
lower bounds of the set {x | T (x) ≤ x}, we get (1).
Proof of (2). Given a complete lattice L, for every subset S of L, we have that
glb(S) ≤ x for every element x in S. The thesis follows from: (i) glb(S) ≤ x by
taking S to be {x | T (x) ≤ x}, and (ii) the fact that z is a prefixpoint of T , that is,
z is an element of {x | T (x) ≤ x}. 2

Lemma 8. (Knaster-Tarski 1955). Let T : L→ L be a monotonic function on
a complete lattice L ordered by ≤. T has a least fixpoint, denoted by lfp(T).
We have that: lfp(T) = glb{x | T (x) = x} = glb{x | T (x) ≤ x}, that is,
glb{x | T (x) = x} is the least fixpoint of T, and it is equal to glb{x | T (x) ≤ x}
which, by Lemma 7, is the least prefixpoint of T.

Proof. We first show that:

(1) T (glb{x | T (x) ≤ x}) = glb{x | T (x) ≤ x},

that is, glb{x | T (x) ≤ x} is a fixpoint of T. This can be shown by proving that:

(1.1) T (glb{x | T (x) ≤ x}) ≤ glb{x | T (x) ≤ x}, and

(1.2) T (glb{x | T (x) ≤ x}) ≥ glb{x | T (x) ≤ x}.

The proof of (1.1) is Point (1) of proof of Lemma 7. The proof of (1.2) is as follows.

From (1.1) by monotonicity of T we get:

T (T (glb{x | T (x) ≤ x})) ≤ T (glb{x | T (x) ≤ x}).

62 2. Logic Programming

Thus, T (glb{x | T (x) ≤ x}) is a prefixpoint of T and hence, it belongs to the set
{x | T (x) ≤ x}. Thus, glb{x | T (x) ≤ x} ≤ T (glb{x | T (x) ≤ x}), as stated in
(1.2).
We also have:

(2) glb{x | T (x) = x} ≤ glb{x | T (x) ≤ x}

because glb{x | T (x) = x} ≤ x for every x which is a fixpoint of T, and
glb{x | T (x) ≤ x} is a fixpoint of T, as we have shown in (1).
We also have that:

(3) glb{x | T (x) ≤ x} ≤ glb{x | T (x) = x}

because {x | T (x) = x} ⊆ {x | T (x) ≤ x}.

From (2) and (3) we get: glb{x | T (x) ≤ x} = glb{x | T (x) = x}. Now, since
glb{x | T (x) ≤ x} is a fixpoint of T, as we have shown in (1) above, we have that:

(4) glb{x | T (x) = x} is a fixpoint of T.

To complete the proof of this lemma we have to show that:

(5) glb{x | T (x) = x} is the least fixpoint of T.

From (4) we have that glb{x | T (x) = x} is a fixpoint of T. We have to show that
glb{x | T (x) = x} is smaller than every other fixpoint of T.

Now, since by (2) and (3), glb{x | T (x) = x} is equal to glb{x | T (x) ≤ x},
it is enough to show that glb{x | T (x) ≤ x} is smaller than every other fixpoint
of T . By Lemma 7, glb{x | T (x) ≤ x} is the least prefixpoint of T. Thus, since
glb{x | T (x) ≤ x} is smaller than every prefixpoint of T, it is also smaller than
every fixpoint of T. 2

Note 7. The proof of Lemma 8 shows the usefulness of introducing the notion of
prefixpoint, besides the notion of fixpoint.

Lemma 9. Let T : L→ L be a monotonic function on a complete lattice L ordered
by ≤. T has a greatest fixpoint, denoted by gfp(T). We have that:

gfp(T) = lub{x | T (x) = x} = lub{x | x ≤ T (x)},

that is, lub{x | T (x)=x} is the greatest fixpoint of T , and this fixpoint is equal to
lub{x | x≤T (x)} which is the greatest postfixpoint of T .

Proof. It follows from Lemma 8 because the complete lattice L ordered by the partial
order ≤ is also a complete lattice ordered by the converse relation ≥, defined as
follows: for all x and y in L, x ≥ y iff y ≤ x. Note that also ≥ is a partial order. 2

Lemma 10. (Kleene 1952). Let T : L → L be a continuous function on a
complete lattice L ordered by≤, with least element ⊥. T ω(⊥) is the least fixpoint
of T and the least prefixpoint of T.

8.2 Fixpoint Semantics 63

Proof. Note that L has the least element ⊥ because L is a complete lattice and
glb(L) exists in L. We called this least element ⊥.

(1) We first show that T ω(⊥) is a fixpoint of T.
Indeed, T (T ω(⊥)) = T (lub{T k(⊥) | k ≥ 0}) = {by continuity of T} =
= lub{T (T k(⊥)) | k ≥ 0} = lub{T k(⊥) | k ≥ 1} = {by ⊥≤ T (⊥)} =
= lub{T k(⊥) | k ≥ 0} = T ω(⊥).

(2) We then show that T ω(⊥) is the least fixpoint of T.
Indeed, take any other fixpoint z of T. We have that: T (z) = z. In order to show
that T ω(⊥) ≤ z we need to show that lub{T k(⊥) | k ≥ 0} ≤ z, or equivalently, we
have to show that for any k ≥ 0, T k(⊥) ≤ z.

This can be shown by induction on k.
(Basis) Obviously, ⊥≤ z.
(Step) Assume that T k(⊥) ≤ z. Then T k+1(⊥) ≤ T (z) (by monotonicity of T) and
since T (z) = z we get: T k+1(⊥) ≤ z, as desired.

(3) We finally have that T ω(⊥) is the least prefixpoint of T.
Indeed, T ω(⊥) which is the least fixpoint of T by Point (2), is also the least prefix-
point of T by Lemma 8. 2

Since an Herbrand interpretation is a subset of the Herbrand Base, the set of all
Herbrand interpretations is a complete lattice, that is, the lattice of all the subsets
of the Herbrand Base. This complete lattice is ordered by set inclusion, denoted
by ⊆. The least element of this complete lattice is the empty set ∅, and the greatest
element is the whole Herbrand Base. The glb and lub operations are, respectively,
set intersection, denoted by ∩, and set union, denoted by ∪.

Given a definite program P, let us consider the following function TP which takes
an Herbrand interpretation and returns a new Herbrand interpretation:

TP (I) = {A | A← A1, . . . , An is a ground instance of a clause of P and
{A1, . . . , An} ⊆ I}.

Lemma 11. An Herbrand interpretation I is a model of a definite program P ,
written I |= P , iff TP (I)⊆I.

Proof. I |= P
iff for each ground instance A← A1, . . . , An of a clause of P we have that
I |= A1, . . . , An → A

iff for each ground instance A← A1, . . . , An of a clause of P we have that
if {A1, . . . , An} ⊆ I then A ∈ I

iff A ∈ TP (I) implies A ∈ I
iff TP (I) ⊆ I. 2

Compare this Lemma 11 with Point (iv) of Proposition 27 on page 90, where it
is stated that for every Herbrand interpretation I, for every definite program P ,
I |= comp(P) iff TP (I) = I.

64 2. Logic Programming

Theorem 22. Given a definite program P, TP is a continuous function on the
complete lattice of all Herbrand interpretations.

Proof. From the definition of TP it follows that it is a monotonic function on the
complete lattice of all Herbrand interpretations, that is, if I1 ⊆ I2 then TP (I1) ⊆
TP (I2). To show that TP is a continuous function on that lattice, let us consider an
infinite sequence I0 ⊆ I1 ⊆ . . . of Herbrand interpretations. We have to show that:
TP (

⋃
{Ik | k ≥ 0}) =

⋃
{TP (Ik) | k ≥ 0}. This follows from:

(1) TP (
⋃
{Ik | k ≥ 0}) ⊇

⋃
{TP (Ik) | k ≥ 0} and

(2) TP (
⋃
{Ik | k ≥ 0}) ⊆

⋃
{TP (Ik) | k ≥ 0}.

Inclusion (1) easily follows from the fact that: for all k ≥ 0,
⋃
{Ik | k ≥ 0} ⊇ Ik

which implies that for all k ≥ 0, TP (
⋃
{Ik | k ≥ 0}) ⊇ TP (Ik) by monotonicity

of TP . Thus, TP (
⋃
{Ik | k ≥ 0}) is an upper bound of the set {TP (Ik) | k ≥ 0}, and

the least upper bound
⋃
{TP (Ik) | k ≥ 0} of that set is included in the upper bound

TP (
⋃
{Ik | k ≥ 0}).

Inclusion (2) is proved as follows. Let us consider an infinite sequence I0 ⊆ I1 ⊆ . . .
of Herbrand interpretations and let us suppose that A ∈ TP (

⋃
{Ik | k ≥ 0}). Then,

there exist some atoms A1, . . . , An such that the clause A← A1, . . . , An is a ground
instance of a clause of P and {A1, . . . , An} ⊆

⋃
{Ik | k ≥ 0}. Since for i = 1, . . . , n,

the atom Ai belongs to
⋃
{Ik | k ≥ 0} iff it belongs to Ihi

for some hi ≥ 0, we
have that there exists h = max{h1, . . . , hn} such that {A1, . . . , An} ∈ Ih. Thus,
A ∈ TP (Ih), and hence, A ∈

⋃
{TP (Ik) | k ≥ 0}. 2

Theorem 23. (van Emden-Kowalski 1976). M(P) = least fixpoint of TP = T ω
P (∅).

Proof. M(P) = {by Theorem 20} =
=

⋂
{I | I is an Herbrand model of P} = {by set theory} =

= glb{I | I is an Herbrand model of P} = {by Lemma 11} =
= glb{I | TP (I) ⊆ I} = {by Lemma 7} =
= the least prefixpoint of TP = {by Lemma 8} =
= the least fixpoint of TP = {by continuity of TP and Lemma 10} =
= T ω

P (∅). 2

8.3 Operational Semantics of Definite Logic Programs

A computation rule, also called a selection rule, is a total function that given a
non-empty goal, selects an atom in that goal. A search rule is a partial function
that given a program and an atom, selects a clause in that program.

Given a program P, a goal G, and a computation rule R, an SLD derivation

for P, G, and R consists in: (i) choosing a search rule, and (ii) constructing a
(finite or infinite) sequence 〈G0, G1, . . .〉 of goals, with G0 = G, together with a

8.3 Operational Semantics 65

corresponding sequence 〈C0, C1, . . .〉 of variants of clauses of P and a corresponding
sequence 〈ϑ0, ϑ1, . . .〉 of most general unifiers.

The construction of these three sequences is done incrementally, starting from
the three sequences: 〈G0〉, 〈〉, and 〈〉, respectively. Then, for any i ≥ 0, goal Gi+1,
clause Ci, and mgu ϑi are constructed from goal Gi by performing an SLD resolution
step, as we now indicate.

An SLD resolution step
Let Gi be the goal ← A1, . . . , Am−1, Am, Am+1, . . . , An, with n > 0.
(1) The computation rule R selects in Gi an atom, say Am. (Recall that R is a total
function.)
(2) Given P and Am, the search rule determines a clause Di, if any, in P such
that the head of a variant of Di unifies with Am. We construct a variant Ci of
clause Di with no variable in common with 〈G0, G1, . . . , Gi〉. Clause Ci is said to be
constructed by renaming apart clause Di. Then we compute an idempotent mgu,
call it ϑi, such that hd(Ci)ϑi = Amϑi.

(3) Gi+1 is the goal ← (A1, . . . , Am−1, bd(Ci), Am+1, . . . , An)ϑi. We say that goal
Gi+1 is obtained by SLD resolution from goal Gi and clause Ci.

If goal Gi is empty or no variant of clause Di exists whose head unifies with Am,
then Gi+1, Ci, and ϑi are not constructed and the SLD derivation ends with the
current sequences of goals, clauses, and mgu’s.

Note that in order to perform an SLD resolution step, we have to consider
a variant of a clause of the program P . This requirement is essential because it may
be the case that a variant of a clause allows unification while a clause does not.
Indeed, let us consider the goal ← p(a,X) and the clause p(X, b) ←. Obviously,
p(a,X) does not unify with p(X, b), but it unifies with p(Y, b) which is the head of
a variant of p(X, b)←.

When performing an SLD resolution step from Gi, we require that clause Ci

does not have any variable in common with the sequence 〈G0, G1, . . . , Gi〉 of goals,
for the generation of the computed answer substitutions (see below).

Note that an SLD resolution step is a 1-to-1 resolution step, and thus, the
unification algorithm involves two atoms only.

Now we explain the acronym SLD.
(i) S stands for Selection of the atom chosen for unification (this selection is done
at Point (1) of the SLD resolution step by the computation rule),
(ii) L stands for Linear resolution, because as in Linear resolution [3, page 131], at
each step the new resolvent comes from the resolvent of the previous step and one
clause of the program at hand (actually, in Linear resolution at each step the new
resolvent comes from the resolvent of the previous step and either one clause of the
program or a resolvent obtained in one of the previous Linear resolution steps), and

66 2. Logic Programming

(iii) D stands for Definite logic programs.

An SLD derivation which ends with the empty goal 2, is called an SLD refuta-

tion.

The computed answer substitution (c.a.s., for short) of an SLD refutation for a
program P , a goal G, and a computation rule R, is obtained by: (i) taking the com-
position of the most general unifiers of the sequence relative to that SLD refutation,
and (ii) restricting the resulting substitution to the variables of G.

Independence of the computation rule. If there is an SLD refutation for a program P ,
a goal G, and a computation rule R with c.a.s. ϑ, then for any other computation
rule R′ there exists an SLD refutation for P, G, and R′ with c.a.s. ϑ′ such that Gϑ′

is a variant of Gϑ.

This independence may also be called horizontal independence, because it is
related to the atoms in a goal which we usually write in a horizontal list.

Dependence on the search rule. Let P be the program {p(x)← p(x), p(a)←}. For
the goal ← p(x) if we always choose the clause p(x)← p(x) for performing an SLD
resolution step then we always derive a variant of the goal← p(x) and we never get
the empty goal. On the contrary, if we choose the clause p(a)← for performing an
SLD resolution step, we derive the empty goal in one step.

This dependence may also be called vertical dependence, because it is related to
the clauses in a program which in the programming language Prolog we often write
in a vertical list, one below the other.

Let us introduce the notion of SLD tree for a program P, a goal G, and a
computation rule R.

Construction of an SLD tree

Given a program P , a goal G, and a computation rule R, the root of the correspond-
ing SLD tree, say T, is a node with the associated goal G. Every node of T has an
associated goal and zero or more children. Every node N of T has one child-node for
each clause Di of P such that the head of a renamed apart variant Ci of Di unifies
with the atom selected by R in the goal, say H , associated with N . Renaming apart
should ensure that no variable of Ci is in common with the goal associated with any
ancestor of N . The goal Hi associated with node Ni which is a child of the node N ,
is obtained by performing an SLD resolution step from goal H using clause Ci.

Note that, by definition, any SLD tree is maximal in the sense that, if during the
construction of an SLD tree, a node may have one (or one more) child-node, then
we should include that child-node in the SLD tree. The various branches below a
node of the SLD tree are generated by varying the search rule, and every root-to-leaf
path in the SLD tree corresponds to an SLD derivation.

8.3 Operational Semantics 67

A finite root-to-leaf path of an SLD tree is said to be successful , or to have a
success leaf , or simply to have a success, iff it ends with the empty goal 2, that is,
it is an SLD refutation. A finite root-to-leaf path of an SLD tree for a program P ,
a goal G, and a computation rule R, is said to be failed , or to have a failure leaf ,
or simply to have a failure, denoted by �, iff the atom selected by R in the goal at
the leaf of the path does not unify with the head of any variant of a clause in P .
An SLD tree is said to be finitely failed iff it is finite and all its root-to-leaf paths
are failed.

Note that a failed root-to-leaf path is a maximal root-to-leaf path which is not
an SLD refutation. Note also that the set of successful root-to-leaf paths in an SLD
tree does not depend on the computation rule, but the set of failed root-to-leaf
paths does depend on the computation rule. For instance, given the program:

a← q, r

q ← q

the SLD tree starting from the goal← a does not have any failed root-to-leaf path
if we choose the leftmost selection rule, that is, the computation rule which always
selects the leftmost atom. However, that SLD tree has a failed root-to-leaf path if
we choose the rightmost selection rule, that is, the computation rule which always
selects the rightmost atom.

In Figure 4 (adapted from [8, page 57]) we have shown an SLD tree for the
program whose clauses are:

C 1. p(x, z)← q(x, y), p(y, z)

C 2. p(x, x)←

C 3. q(a, b)←

and the goal ← p(x, b) and the leftmost selection rule (which is the computation
rule used by the programming language Prolog). The underlined atoms are the ones
selected by the computation rule for SLD resolution. Every arc of the SLD tree cor-
responds to an SLD resolution step. We have labelled every arc by:
(i) the variant of the clause which has been used for the SLD resolution (for 1≤k≤2,
clause Cki is the variant of clause Ck, where every variable of Ck has been sub-
scripted by i for 1 ≤ i ≤ 2, for avoiding clashes of variable names during SLD
resolution), and
(ii) the corresponding most general unifier.

We have also marked the leaves as ‘success’ or ‘failure’ according to the fact
that the corresponding root-to-leaf path is or is not an SLD refutation. In the two
success leaves we have written the corresponding c.a.s.

The explanation of the c.a.s. ϑ1 is as follows. An idempotent most general unifier
of clause C21 which is p(x1, x1)←, and goal← p(x, b), is {x/b, x1/b}. By restricting
this most general unifier {x/b, x1/b} to {x} we get {x/b} which is ϑ1. Note that

68 2. Logic Programming

,
,

,
,

,,

l
l

l
l

ll

,
,

,
,

,,

l
l

l
l

ll

�

	

�

�

	

�

�

	

�

�

	

�

← p(x, b)

C11, {x/x1, z1/b} C21, {x/b, x1/b}

← q(x1, y1), p(y1, b)

← p(b, b)

2 c.a.s.: ϑ1 = {x/b}
success

C3, {x1/a, y1/b}

C22, {x2/b}C12, {x2/b, z2/b}

← q(b, y2), p(y2, b)

�

failure

2 c.a.s.: ϑ2 = {x/a}
success

Fig. 4. A finite SLD tree for program {C 1, C 2, C 3}, goal ← p(x, b), and the
leftmost selection rule.

{x/x1, x1/b} is not a unifier of p(x1, x1) and p(x, b), because p(x1, x1){x/x1, x1/b}
is p(b, b) and p(x, b){x/x1, x1/b} is p(x1, b).

The explanation of the c.a.s. ϑ2 is as follows. The composition of the idem-
potent most general unifiers along the path from the root to the corresponding
success leaf is: {x/a, z1/b, x1/a, y1/b, x2/b}. The restriction of this substitution to
the set {x} which is the set of variables of the root goal ← p(x, b), is {x/a}, and
this is indeed ϑ2.

Theorem 24. [Soundness and Completeness of SLD Resolution] (Clark
1979). Let us consider a programP , a (non necessarily atomic) goal ← A, and
a computation rule R.

Soundness of SLD resolution: If a substitution ϑ is the c.a.s. of an SLD refutation
for P, ← A, and R then P |= ∀(Aϑ).

Completeness of the SLD resolution: If a substitution ϑ for the variables of A

is such that P |= ∀(Aϑ) then there exists a c.a.s. µ of an SLD refutation for P,

9. Computing with Definite Logic Programs 69

← A, and R such that µ (whose domain is the set of variables of A, as it is
the case for every c.a.s. for the program P, the goal← A, and any computation
rule) is more general than ϑ.

Proof. See [8, Theorem 7.1 (page 43) and Theorem 9.5 (page 52)].

In particular, if a substitution ϑ is the c.a.s. of an SLD refutation for the program
P, the goal ← A, and the computation rule R, and we have that Aϑ is ground,
then P |= Aϑ, or equivalently, by Theorem 21, M(P) |= Aϑ. If Aϑ is not ground,
then P |= Aϑ implies M(P) |= Aϑ, but it is not the case that M(P) |= Aϑ implies
P |= Aϑ, as shown at the end of Section 8.1.

The success set SS (P) of a program P is {p(t1, . . . , tr) | p(t1, . . . , tr) ∈ HB and
there exists an SLD tree with the goal ← p(t1, . . . , tr) at its root and at least one
success leaf}.

Theorem 25. (Apt-van Emden 1982). Given a program P, SS (P) = M(P).

Proof. Let A be a ground atom. We have that: A ∈M(P)
iff P |= A (by Theorem 21)
iff there exists an SLD refutation for program P, goal ← A, and

a computation rule R (by Theorem 24)
iff A ∈ SS(P) (by definition of SS (P)). 2

9 Computing with Definite Logic Programs

In this section we show through some examples that definite logic programs can be
used for:
(9.1) computing functions,
(9.2) computing function inverses,
(9.3) computing relations, that is, providing all computed answer substitutions for
a given program and a given goal, and
(9.4) constructing knowledge-based systems.

We begin by presenting a theorem which states that definite logic programs are
Turing-complete. In this theorem N denotes the set of natural numbers and for all
natural numbers n, n is a term which denotes n. For instance, by using the constant
symbol 0 and the unary successor function symbol s, we have that s(s(0)) is a term
which denotes the natural number 2.

Theorem 26. For every partial recursive function f :N → N , there exists a definite
program P and a binary predicate symbol r such that for all natural numbers n
and m we have that:

f(n) = m iff P |= r(n,m).

Turing completeness of definite logic programs is proved in [8].

70 2. Logic Programming

9.1 Computing Functions

Suppose you are given the following program Sum:

1. sum(0, X,X)←

2. sum(s(X), Y, s(Z))← sum(X, Y, Z)

where sum(X, Y, Z) holds iff Z denotes the sum of X and Y . We can use this
program to compute the sum of two natural numbers as follows. Let the natural
number n be denoted by the term s(s(. . . s(0) . . .)), where we have n occurrences of
the symbol s.

As usual in logic programming, we use upper case letters to denote variables and
lower case letters to denote constant symbols, function symbols, and predicate sym-
bols.

Suppose we want to compute the value of 2+3, which is 5. We start from the
corresponding goal:

p. ← sum(s(s(0)), s(s(s(0))), Z)

and we look for a variant of a clause of Sum whose head unifies with this goal.
One such variant is a variant of clause 2. Thus, we rename apart clause 2, whereby
getting:

2.1 sum(s(X1), Y1, s(Z1))← sum(X1, Y1, Z1)

The unification gives us the substitution ϑ1 = {X1/s(0), Y1/s(s(s(0))), Z/s(Z1)}.
We then replace the given goal p by the new goal p1, obtained by SLD resolution
from goal p and clause 2.1:

p1. ← sum(X1, Y1, Z1)ϑ1

that is, ← sum(s(0), s(s(s(0))), Z1). The process continues by looking again for a
variant of a clause whose head unifies the new goal p1:← sum(s(0), s(s(s(0))), Z1).
One such variant is again a variant of clause 2. We rename apart clause 2, whereby
getting:

2.2 sum(s(X2), Y2, s(Z2))← sum(X2, Y2, Z2)

The unification gives us the substitution ϑ2 = {X2/0, Y2/s(s(s(0))), Z1/s(Z2)}. We
then replace the goal p1 by the new goal p2, obtained by SLD resolution from goal
p1 and clause 2.2:

p2. ← sum(X2, Y2, Z2)ϑ2

that is, ← sum(0, s(s(s(0))), Z2). The process continues by looking again for a
variant of a clause whose head unifies with the new goal p2:← sum(0, s(s(s(0))), Z2)
and this time one such variant is a variant of clause 1. We rename apart clause 1
and we get:

1.1 sum(0,W,W)←

9.2 Computing Function Inverses 71

The unification gives us the substitution ϑ3 = {W/s(s(s(0))), Z2/s(s(s(0)))}. By
SLD resolution from goal p2 and clause 1.1, we get the empty goal and the compu-
tation halts.

The result of the computation is given by the number which is bound by the
substitution (ϑ1ϑ2ϑ3) to the variable Z occurring in the given goal p. We have that:
Z(ϑ1ϑ2ϑ3) = ((Zϑ1)ϑ2)ϑ3 = (s(Z1)ϑ2)ϑ3 = (s(s(Z2)))ϑ3 = s(s(s(s(s(0))))), which
represents 5, as expected.

9.2 Computing Function Inverses

We can use logic programs for computing function inverses. In particular, we may
use the above program Sum (see Section 9.1) for computing both additions and
subtractions. Indeed, we can use it for computing subtractions as follows. Let us
assume, for instance, that we want to compute 4−1. We start from the goal:

r. ← sum(s(0), Y, s(s(s(s(0)))))

We proceed as above. We look for a variant of a clause of Sum whose head unifies
with this goal. One such variant is a variant of clause 2. Thus, we rename apart
clause 2, whereby getting:

2.3 sum(s(X3), Y3, s(Z3))← sum(X3, Y3, Z3)

The unification gives us the substitution σ1 = {X3/0, Y3/Y, Z3/s(s(s(0)))}. We
then replace the given goal r by the new goal r1, obtained by SLD resolution from
goal r and clause 2.3:

r1. ← sum(X3, Y3, Z3)σ1

that is,← sum(0, Y, s(s(s(0)))). The process continues by looking again for a variant
of a clause whose head unifies the new goal r1: ← sum(0, Y, s(s(s(0)))). One such
variant is a variant of clause 1. We rename apart clause 1 and we get:

1.2 sum(0, X4, X4)←

The unification gives us the substitution σ2 = {X4/s(s(s(0))), Y/s(s(s(0)))}. By
SLD resolution from goal r1 and clause 1.2, we get the empty goal and the compu-
tation halts.

The result of the computation is given by the number which is bound by the
substitution (σ1σ2) to the variable Y of the given goal r. We have that: Y (σ1σ2) =
(Y σ1)σ2 = Y σ2 = s(s(s(0))), which represents 3, as expected.

9.3 Computing Relations and Nondeterministic Computing

We can use logic programs for computing relations, and this can be done by comput-
ing all computed answer substitutions for a given program and a given goal. For in-
stance, let us consider the problem of computing all pairs of numbers whose sum is 3.

72 2. Logic Programming

This problem is solved by computing all computed answer substitutions for the pro-
gram Sum and the goal g0:← sum(X, Y, s(s(s(0)))). We expect to get the following
4 computed answer substitutions: (i) {X/0, Y/s(s(s(0)))}, (ii) {X/s(0), Y/s(s(0))},
(iii) X/s(s(0)), Y/s(0)}, and (iv) {X/s(s(s(0))), Y/0}, representing the 4 pairs:
〈0, 3〉, 〈1, 2〉, 〈2, 1〉, and 〈3, 0〉, respectively. Indeed, for each pair 〈a, b〉 we have that
a+b = 3.

Now let us see how these 4 pairs are computed by executing the definite logic
program starting from the initial goal:

g0. ← sum(X, Y, s(s(s(0))))

We proceed as above. We look for a variant of a clause whose head unifies with this
goal. One such variant is a variant of clause 1. Thus, we rename apart clause 1,
whereby getting:

1.3 sum(0, X5, X5)←

The unification gives us the substitution ρ1 = {X/0, Y/s(s(s(0))), X5/s(s(s(0)))}.
By SLD resolution from goal g0 and clause 1.3, we get the empty goal and the
computation halts with the c.a.s. {X/Xρ1, Y/Y ρ1} which is {X/0, Y/s(s(s(0)))},
corresponding to the pair 〈0, 3〉.

There are, however, other computed answer substitutions because also the head
of a variant of clause 2 unifies with the given goal g0. In this sense the computation
is nondeterministic, and together with one path of the computation which halts
with the c.a.s. corresponding to 〈0, 3〉, there is another path of the computation

which is generated as follows. We rename apart clause 2, whereby getting:

2.4 sum(s(X6), Y6, s(Z6))← sum(X6, Y6, Z6)

The unification of the head of clause 2.4 with goal g0 gives us the substitution
ρ2 = {X/s(X6), Y/Y6, Z6/s(s(0))}. We then replace the given goal g0 by the new
goal g1, obtained by SLD resolution from goal g0 and clause 2.4:

g1. ← sum(X6, Y6, Z6)ρ2

that is, ← sum(X6, Y6, s(s(0))). We then look for a variant of a clause whose head
unifies with goal g1. One such variant is a variant of clause 1. Thus, we rename
apart clause 1, whereby getting:

1.4 sum(0, X7, X7)←

The unification gives us the substitution ρ3 = {X6/0, Y6/s(s(0)), X7/s(s(0))}. By
SLD resolution from goal g1 and clause 1.4, we get the empty goal and the compu-
tation halts with the c.a.s. {X/X(ρ2ρ3), Y/Y (ρ2ρ3)} = {X/(Xρ2)ρ3, Y/(Y ρ2)ρ3} =
{X/(s(X6))ρ3, Y/(Y6)ρ3} = {X/s(0), Y/s(s(0))}, corresponding to the pair 〈1, 2〉.

There are, however, other computed answer substitutions because also the head
of a variant of clause 2 unifies with goal g1. We again rename apart clause 2, whereby
getting:

2.5 sum(s(X8), Y8, s(Z8))← sum(X8, Y8, Z8)

9.3 Computing Relations 73

@
@

@@R

�
�

��	

@
@

@@R

�
�

��	

@
@

@@R

�
�

��	

?

(1, ρ1) (2, ρ2)

(1, ρ3) (2, ρ4)

(1, ρ5) (2, ρ6)

(1, ρ7)

{X/0, Y/s(s(s(0)))}

{X/s(0), Y/s(s(0))}

{X/s(s(0)), Y/s(0)}

{X/s(s(s(0))), Y/0}

g0 : ← sum(X, Y, s(s(s(0))))

g1 : ← sum(X6, Y6, s(s(0)))

g2 : ← sum(X8, Y8, s(0))

g3 : ← sum(X10, Y10, 0)

Fig. 5. The SLD tree for the program Sum, the goal g0 : ← sum(X, Y, s(s(s(0)))),
and the leftmost computation rule. An arc labelled by (n, ρm) from node gi to node
gj denotes the unification of goal gi with the head of a variant of clause n of program
Sum via the substitution ρm and the SLD resolution step which uses that unification
produces the goal gj.

The unification gives us the substitution ρ4 = {X6/s(X8), Y6/Y8, Z8/s(0)}. We
then replace the given goal g1 by the new goal g2, obtained by SLD resolution from
goal g1 and clause 2.5:

g2. ← sum(X8, Y8, Z8)ρ4

that is, ← sum(X8, Y8, s(0)). We proceed as above, by looking for a variant of a
clause whose head unifies with goal g2. One such variant is a variant of clause 1.
We rename apart clause 1, whereby getting:

1.5 sum(0, X9, X9)←

The unification gives us the substitution ρ5 ={X8/0, Y8/s(0), X9/s(0)}. By SLD res-
olution from goal g2 and clause 1.5, we get the empty goal and the computation halts
with the c.a.s. {X/X(ρ2ρ4ρ5), Y/Y (ρ2ρ4ρ5)}= {X/((Xρ2)ρ4)ρ5, Y/((Y ρ2)ρ4)ρ5} =
{X/(s(X6)ρ4)ρ5, Y/(Y6ρ4)ρ5} = {X/s(s(X8))ρ5, Y/Y8ρ5} = {X/s(s(0)), Y/s(0)},
corresponding to the pair 〈2, 1〉.

Besides the head of a variant of clause 1, also the head of a variant of clause 2
unifies with goal g2. Thus, we rename apart clause 2 and we get:

2.6 sum(s(X10), Y10, s(Z10))← sum(X10, Y10, Z10)

74 2. Logic Programming

The unification gives us the substitution is ρ6 = {X8/s(X10), Y8/Y10, Z10/0}. We
then replace goal g2 by the new goal g3, obtained by SLD resolution from goal g2
and clause 2.6:

g3. ← sum(X10, Y10, Z10)ρ6

that is, ← sum(X10, Y10, 0). We proceed as above, by looking for a variant of a
clause whose head unifies with goal g3. Only clause 1 has a variant whose head
unifies with g3. We rename apart clause 1 and we get:

1.6 sum(0, X11, X11)←

The unification of goal g3 with the head of clause 1.6 gives us the sub-
stitution ρ7 = {X10/0, Y10/0, X11/0}. By SLD resolution from goal g3 and
clause 1.6, we get the empty goal and the computation halts with the c.a.s.
{X/X(ρ2ρ4ρ6ρ7), Y/Y (ρ2ρ4ρ6ρ7)} = {X/(((Xρ2)ρ4)ρ6)ρ7, Y/(((Y ρ2)ρ4)ρ6)ρ7}
= {X/((s(X6)ρ4)ρ6)ρ7, Y/((Y6ρ4)ρ6)ρ7} = {X/(s(s(X8))ρ6)ρ7, Y/(Y8ρ6)ρ7} =
{X/s(s(s(X10)))ρ7, Y/(Y10)ρ7} = {X/s(s(s(0))), Y/0}, corresponding to the pair
〈3, 0〉.

The various computation paths starting from goal g0, can be arranged as the
SLD tree depicted in Figure 5, where: (i) goal g0 is the father of the empty goal
(via ρ1) and the goal g1 (via ρ2), (ii) goal g1 is the father of the empty goal (via ρ3)
and the goal g2 (via ρ4), (iii) goal g2 is the father of the empty goal (via ρ5) and
the goal g3 (via ρ6), and (iv) goal g3 is the father of the empty goal (via ρ7). Every
empty goal corresponds to a c.a.s. for the program Sum and the given initial goal
g0: ← sum(X, Y, s(s(s(0)))).

Note that our procedure computes the four computed answers substitutions for
the program Sum and the goal g0 without taking into account the commutativity
of the predicate sum, that is, without exploiting the fact that, for all terms u and v
in the set {0, s(0), s(s(0)), . . .} there exists a term w in the same set such that
sum(u, v, w) iff sum(v, u, w).

In the above examples we have seen that the computation proceeds by: (i) uni-
fying in a nondeterministic manner, that is, in all possible ways, a goal with the
head of a variant of a clause in the program, (ii) replacing old goals (correspond-
ing to heads of clauses) by new goals (corresponding to bodies of clauses), thereby
generating a tree of goals, and (iii) recording the unifying substitutions along the
arcs of that tree. In order to avoid clashes when composing substitutions, we make
sure that the variables of the clauses involved in the unification process are all new,
and this is ensured by a suitable renaming apart of the clauses.

The whole process of: (i) performing unifications, (ii) replacing old goals by new
goals, (iii) recording substitutions, and (iv) renaming apart clauses, is formalized
in the SLD resolution process (see Section 8.3).

9.3 Computing Relations 75

e

dc

b

a
�

��	�
���

?

?

--

Fig. 6. A directed graph G with the set of nodes {a, b, c, d, e}.

Let us end this section by providing one more example of computing relations.
From this example it will be clear that logic programming can be used for solving
search problems in a very simple manner.

Example 7. We are given the directed graph G of Figure 6 and we want to compute
all nodes reachable from node c.

The following clauses define the predicate reach(X, Y) which holds iff from node X
we can reach node Y via a sequence of directed arcs:

R.1 reach(X,X)←
R.2 reach(X,Z)← arc(X, Y), reach(Y, Z)

The encoding of the graph G is given by the conjunction of the following clauses
defining the predicate arc(X, Y) which holds iff in G there exists an arc from node
X to node Y :

R.3 arc(a, c)←
R.4 arc(b, c)←
R.5 arc(c, d)←
R.6 arc(c, e)←
R.7 arc(d, e)←
R.8 arc(e, d)←

Let Reach be the program made out of clauses R.1–R.8. If we want to compute
the set of nodes of G reachable from node c, we may use the program Reach with
the initial goal ← reach(c, Z). By using SLD resolution starting from that goal, we
get the following three computed answer substitutions: (i) {Z/c}, (ii) {Z/d}, and
(iii) {Z/e}, and indeed, in the graph G from node c we can reach the nodes c, d,
and e.

We do not give the full account of how the computation proceeds in this case.
Instead, in Figure 7 we represent the SLD tree for the program Reach, the initial
goal ← reach(c, Z), and the leftmost computation rule.

Note also that the SLD tree of Figure 7 is infinite (see the occurrences of the
underlined nodes ← reach(d, Z) and ← reach(e, Z)). Thus, it may be necessary to
control the SLD resolution process to avoid the generation of infinite computations

76 2. Logic Programming

�
�

��+

HHHHHj

�����
HHHHj

HHHHHj
�

�
�	

�
�

�	

@
@@R

? ?

�
�	

�
�	

@
@R

@
@R.

← arc(c, Y), reach(Y, Z)

← arc(d, V), reach(V, Z) ← arc(e, T), reach(T, Z)

← reach(c, Z)

← reach(e, Z)← reach(d, Z)

← reach(d, Z)← reach(e, Z)

{Z/c} {}

{Y/d} {Y/e}

{Z/e} {}{Z/d}

{T/d}{V/e}

Fig. 7. The SLD tree for the program Reach, the initial goal ← reach(c, Z), and
the leftmost computation rule. {} denotes the identity substitution and 2 denotes
the empty goal.

which are useless, that is, incapable of producing new computed answer substitu-
tions, that is, new reachable nodes. We will not discuss this control issue here.

9.4 Constructing Knowledge-Based Systems

Now we present a simple example of a knowledge-based system realized by using
definite logic programs. As we will see, we can ask questions to a knowledge-based
system, and by performing SLD resolution steps, we can also get the desired answers.

A knowledge-based system is encoded as a conjunction K of closed first-order
predicate calculus formulas. We stipulate that the answer to a question of the form:
‘Is there any X such that the property p(X) holds?’ is ‘yes’ if K ⊢ ∃X p(X).
Otherwise, if K 6⊢ ∃X p(X), the answer is ‘no’.

Given a knowledge-based system K, we may compute the answer to the question:
‘Is there any X such that property p(X) holds?’ as we now indicate.

Let us first note that K ⊢ ∃X p(X) holds iff K ∧ ¬∃X p(X) is unsatisfiable iff
K ∧ ∀X ¬p(X) is unsatisfiable iff, by Theorem 14, D ∧ ∀X ¬p(X) is unsatisfiable,
whereD is a closed formula in clausal form which can be derived fromK as described
in Section 4 (page 47) (note that ∀X ¬p(X) is already a clause). Thus, K ⊢ ∃X p(X)
holds iff D ⊢ ∃X p(X) holds.

9.4 Constructing Knowledge-Based Systems 77

Now let us consider the case when D is a definite logic program. In this case if
ϑ is the c.a.s. of an SLD refutation for the program D, the goal ← p(X), and some
computation rule R, then by Theorem 24, we have that D ⊢ ∀(p(X)ϑ).

Thus, we have that D ⊢ ∃X p(X) holds. Hence, also K ⊢ ∃X p(X) holds and we
get the answer ‘yes’. Otherwise, if there is no SLD refutation for the program D,
the goal ← p(X), and some computation rule R, then again by Theorem 24, we
have that D ⊢ ∃X p(X) does not hold and we get the answer is ‘no’.

Moreover, in the particular case when the knowledge-base D is a definite logic
program andK is equivalent to D, we get that K ⊢ ∀(p(X)ϑ) and if ϑ = {X/t} then
K ⊢ ∀(p(t)), that is, any instance of p(t) is a witness for the existential quantifier
of the formula ∃X p(X).

Now let us see how this method of computing answers to questions works in an
example, which we take from [2].

Let us consider the following three facts which constitute our knowledge-based
system:

F1. Some of Fiorecchio’s men entered the premises unaccompanied
by anyone else.

F2. The guard searched all who entered the premises,
except those who were accompanied by members of the firm.

F3. The guard searched none of Fiorecchio’s men.

and let us also suppose that we want to compute the answer to the following ques-
tion:

Q. Were any of Fiorecchio’s men members of the firm?

We proceed by encoding the above facts and question as first-order predicate cal-
culus formulas. Let us first introduce the following predicate symbols:

predicate symbols meaning

e(X) X entered the premises
f(X) X is a Fiorecchio’s man
a(X, Y) X entered the premises accompanied by Y

(that is, X entered the premises together with Y)
m(X) X is a member of the firm
ns(X) the guard did not search X

(Note that is our formalization we have not specified that if a(X, Y) holds for
some X and Y , then X and Y are not the same term.)

Then, the following four formulas encode Facts F1, F2, F3, and question Q, re-
spectively:

78 2. Logic Programming

1. ∃X [f(X) ∧ e(X) ∧ ∀Y (a(X, Y)→ f(Y))]
2. ∀X [(e(X) ∧ ns(X)) → ∃Y (a(X, Y) ∧m(Y))]
3. ∀X [f(X) → ns(X)]
4. ∃X [f(X) ∧m(X)]

Formula 1 derives from the following understanding of Fact F1: there are Fiorec-
chio’s men who entered the premises and everybody, if any, who accompanied them
was Fiorecchio’s man.

Formula 2 can be explained as follows. From Fact F2 we have that everyone
who entered the premises either was searched by the guard (that is, it was not the
case that he was not searched) or was accompanied by a member of the firm. Thus,
we get the formula:

∀X [e(X) → (¬ns(X) ∨ ∃Y (a(X, Y) ∧m(Y)))].

Then, Formula 2 derives from this formula by replacing ¬ns(X) in the conclusions
by ns(X) in the premises.

Formulas 3 and 4 are immediate from Fact F3 and question Q, respectively.

As we have stipulated above, the answer to the question Q is ‘yes’ iff 1∧2∧3 ⊢ 4,
that is, 1∧2∧3∧¬4 is unsatisfiable. Now we look for a conjunction D of clauses such
that D is unsatisfiable iff 1∧2∧3∧¬4 is unsatisfiable. This can be done by applying
the procedure described in Section 4 (page 47) and, in particular, by eliminating
the existential quantifiers from 1 and 2 by Skolemization (the existential quantifier
in ¬4 can be eliminated in favour of a universal quantifier by pushing ¬ inside).
By using the new constant 0 and the new unary function r, we get the following
formulas, where the superscript s tells us that we have performed Skolemization:

1s. f(0) ∧ e(0) ∧ ∀Y (a(0, Y)→ f(Y))
2s. ∀X [(e(X) ∧ ns(X)) → (a(X, r(X)) ∧m(r(X)))]
3. ∀X [f(X) → ns(X)]
¬4. ∀X ¬(f(X) ∧m(X))

The conjunction 1s ∧ 2s ∧ 3 is a definite logic program, call it P , made out of the
following clauses (recall that, as usual, clauses are implicitly quantified at the front):

1.1 f(0)←
1.2 e(0)←

1.3 f(Y) ← a(0, Y)

2.1 a(X, r(X)) ← e(X), ns(X)
2.2 m(r(X)) ← e(X), ns(X)

3.1 ns(X) ← f(X)

Thus, we get that P ⊢ ∃X p(X) iff there exists an SLD refutation for the program P ,
the goal ← f(X), m(X) and some computation rule R. In our case such an SLD
refutation exists and it is presented in Table 1 on page 79.

9.5 Theorem Provers and Interpreters 79

goal variant of a clause of P mgu

G0 :← f(X), m(X) 1.3: f(Y)← a(0,Y) ϑ0 : {X/Y }
G1 :← a(0,Y), m(Y) 2.1: a(X1,r(X1))←e(X1), ns(X1) ϑ1 : {X1/0, Y/r(0)}
G2 :← e(0), ns(0), m(r(0)) 1.2: e(0)← ϑ2 : {}
G3 :← ns(0), m(r(0)) 3.1: ns(X3)← f(X3) ϑ3 : {X3/0}
G4 :← f(0), m(r(0)) 1.1: f(0)← ϑ4 : {}
G5 :← m(r(0)) 2.2: m(r(X5))← e(X5), ns(X5) ϑ5 : {X5/0}
G6 :← e(0), ns(0) 1.2: e(0)← ϑ6 : {}
G7 :← ns(0) 3.1: ns(X7)← f(X7) ϑ7 : {X7/0}
G8 :← f(0) 1.1: f(0)← ϑ8 : {}
G9 : 2

Table 1. SLD refutation for the program P , the goal ← f(X), m(X), and the
leftmost seclection rule.

The c.a.s. ϑ of this SLD refutation is {X/r(0)}. The substitution ϑ is obtained
by: (i) composing the mgu’s ϑ0, ϑ1, . . . , and ϑ8, whereby getting the substitution
{X/r(0), X1/0, X3/0, X5/0, X7/0}, and then (ii) restricting this substitution to
vars(f(X), m(X)). The existence of the c.a.s. ϑ tells us that ‘yes’ is the answer to
the question Q : «Were any of Fiorecchio’s men members of the firm?».

Remark 9. A different understanding of Fact F2 leads to its encoding as the con-
junction of formula 2 and the following formula:

2*. ∀X, Y (e(X) ∧ a(X, Y) ∧m(Y)) → ns(X)

Formula 2* corresponds to the clause:

2.3 ns(X) ← e(X), a(X, Y), m(Y)

Note also that: (i) 2 is not equivalent to 2*, and (ii) if we replace clauses 2.1 and
2.2 by clause 2.3 in program P the answer to the question Q does not change. 2

Remark 10. As a consequence of clause 2.1, sinceX does not unify with r(X), we
have that if a(X, Y) holds for some X and Y then X and Y are not the same
term. 2

9.5 Theorem Provers and Interpreters of Horn Clauses

Now we present an example of use of definite logic programs for proving theorems
holding in an algebraic theory. The example is taken from the landmark paper by
J. A. Robinson where resolution was first presented [11].

80 2. Logic Programming

We want to show that:

“ in any associative system in which all equations of the form: X � a = b and
a �Y = b have left and right solutions X and Y , respectively, we have that there
is a unique right identity ”, that is,

∃Y ∀X X �Y = X. (id.1)

By ‘an associative system’ we mean that the operation � is associative, that is,

∀X, Y, Z (X � Y) �Z = X � (Y �Z)

If we introduce the predicate p(X, Y, Z) which holds iff X �Y = Z, then every
associative system in which all equations X � a = b and a �Y = b have left and
right solutions X and Y , respectively, is characterized by the fact that the following
formulas hold, where f , ℓ, and r are new, binary function symbols:

1. ∀X, Y p(X, Y, f(X, Y))

2. ∀X, Y p(ℓ(X, Y), X, Y)

3. ∀X, Y p(X, r(X, Y), Y)

4. ∀X, Y, Z, U, V, W (p(X, Y, U) ∧ p(Y, Z, V))→ (p(U,Z,W)↔ p(X, V,W))

Formula 1 states that the given system is closed under � , that is, for all elements
X and Y in the system, there is in the system a unique element Z which equal
to X �Y . Formula 2 (with renaming of variables) states that every equation of the
form: X �Y = Z has a left solution, that is, X is ℓ(Y, Z)). Similarly, formula 3 (with
renaming of variables) states that every equation of the form: X �Y = Z has a right
solution, that is, Y is r(X,Z). Formula 4 states that � is associative, that is, if both
p(X, Y, U) and p(Y, Z, V) hold then we have that: p(U,Z,W) holds iff p(X, V,W)
holds.

Now in order to check Property (id.1), we construct a conjunction D of Horn
clauses which is unsatisfiable iff 1 ∧ 2 ∧ 3 ∧ 4 ∧ ¬(id.1) is unsatisfiable.

The conjunction D can be constructed by using Skolemization as follows. From
formulas 1–4 above we immediately derive the following clauses (recall that the
order of the atoms in the body of clauses is not significant because comma, that is,
‘and’, is commutative):

1c. p(X, Y, f(X, Y))←

2c. p(ℓ(X, Y), X, Y)←

3c. p(X, r(X, Y), Y)←

4.1c p(U,Z,W)← p(X, Y, U), p(X, V,W), p(Y, Z, V)

4.2c p(X, V,W)← p(X, Y, U), p(U,Z,W), p(Y, Z, V)

From the formula ¬(id.1), that is, ¬∃Y ∀X p(X,Y,X), we get by pushing negation
inside, the equivalent formula ∀Y ∃X ¬p(X,Y,X). From this formula, after Skolem-
ization, we get: ∀Y ¬p(k(Y), Y, k(Y)), where k is a new, unary function symbol.

9.5 Theorem Provers and Interpreters 81

Thus, we get the following definite goal (where the bound variable Y has been
replaced by X):

5c. ← p(k(X), X, k(X))

Now we present a SLD refutation starting from the goal 5c: ← p(k(X), X, k(X))
by using the leftmost computation rule. This refutation shows that the conjunction
1c ∧ 2c ∧ 3c ∧ 4.1c ∧ 4.2c ∧ 5c of Horn clauses is unsatisfiable and, thus, it shows that
Property (id.1) holds.
From the goal:

← p(k(X), X, k(X))

by using clause 4.1c (renamed with X ′, instead of X) and the idempotent mgu
{U/k(X), Z/X, W/k(X)}, we get:

← p(X ′, Y, k(X)), p(X ′, V, k(X)), p(Y,X, V)

By using clause 2c (renamed with X ′′ and Y ′′, instead of X and Y , respectively)
and the idempotent mgu {X ′/ℓ(X ′′, k(X)), Y/X ′′, Y ′′/k(X)}, we get:

← p(ℓ(X ′′, k(X)), V, k(X)), p(X ′′, X, V)

By using clause 2c (renamed with X ′′′ and Y ′′′, instead of X and Y , respectively)
and the idempotent mgu {X ′′/X ′′′, Y ′′′/k(X), V/X ′′′, }, we get:

← p(X ′′′, X,X ′′′)

By using clause 3c (renamed with X ′ and Y ′, instead of X and Y , respectively) and
the idempotent mgu {X ′/X ′′′, Y ′/X ′′′, X/r(X ′′′, X ′′′)}, we get the empty goal 2.

We leave to the reader to show that also the following property holds:

∀X ∃Y. X �Y = X (id.2)

The proof can be done along the same lines of the above proof of Property (id.1). In
particular, we have that ¬∀X ∃Y p(X, Y,X) is equivalent to ∃X ∀Y ¬p(X, Y,X).
From this formula, after Skolemization, we get: ∀Y ¬p(a, Y, a), where a is a new,
0-ary function symbol. Thus, we get the definite goal (where the bound variable Y
has been replaced by X):

← p(a,X, a)

The following Prolog program named rightIdentity.pl, can be used to automat-
ically prove the above Properties (id.1) and (id.2).

Since often, by default, Prolog systems perform unification without performing
occurs-check [6] (while, as indicated in Point (v) of the Unification Algorithm on
page 50, occurs-check should be performed), in the program below, written in Sicstus
Prolog [6], we make sure that a unifying term t is finite (i.e., acyclic) by enforcing
the satisfaction of the extra atom acyclic_term(t) (ac(t), for short). Indeed, in
Sicstus Prolog (i) acyclic_term(X) holds iff X is finite (i.e., acyclic), and (ii) an
unbound variable is assumed to be an acyclic (finite) term.

82 2. Logic Programming

At the end of the program rightIdentity.pl we have listed some execution
traces, where a variable name beginning with an underscore ‘_’, denotes an unbound
variable. In particular, X = r(_A,_A) denotes that the variable X is bound to a term
whose top, binary function symbol r has two subterms which are both bound to
the same unbound variable, different from X itself.

% ==
% Filename: rightIdentity.pl
% Sicstus Prolog
% ==
:- use_module(library(terms)). % needed for using acyclic_term(X)
ac(X) :- acyclic_term(X). % for reasons of brevity

%
% --
% Unification with occurs_check
q(Y,Y).
unif0(X) :- q(X,f(X)).

% success: the unifying value of X is an infinite (i.e., cyclic)
% term, that is, X = f(f(f(f(f(f(f(f(f(f(...)))))))))).
unif1(X) :- q(X,f(X)), ac(X).

% failure: the unifying value of X is an infinite (i.e., cyclic)
% term.
% ==
% Right identity property
% in any associative system which has left and right solutions X and
% Y for all equations X.a=b and a.Y=b, there is a right identity.
% --
% closure under ‘.’: p(X,Y,Z) means that X.Y=Z.
p(X,Y,f(X,Y)) :- ac(X), ac(Y).

% left and right unique solutions of equations:
p(l(X,Y),X,Y) :- ac(X), ac(Y).
p(X,r(X,Y),Y) :- ac(X), ac(Y).

% associativity of ‘.’: (X.Y=U /\ Y.Z=V) <=> U.Z=W=X.V
% The order of the atoms in the body of the following clauses is
% relevant for termination. It is enough to enforce acyclicity
% (finiteness) of the terms to which the variables of the heads are
% bound, because this enforces acyclicity also of the terms to which
% the variables of the bodies are bound.
p(U,Z,W) :- p(X,Y,U), p(X,V,W), p(Y,Z,V), ac(U), ac(Z), ac(W).
p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W), ac(X), ac(V), ac(W).

% --
% Right identity: \exists Y \forall X p(X,Y,X) (id.1)
% Negation of (id.1): \neg \exists Y \forall X p(X,Y,X), that is,
% \forall Y \exists X \neg p(X,Y,X)
% After Skolemization: \forall Y \neg p(k(Y),Y,k(Y))
% By replacing Y by X and enforcing that X be bound a to finite term
% we get:
t1(X) :- p(k(X),X,k(X)), ac(X).

9.5 Theorem Provers and Interpreters 83

% --
% Weak right identity: \forall X \exists Y p(X,Y,X) (id.2)

t2(X) :- p(a,X,a), ac(X).
/* ===
| ?- unif0(X). (only one success with X bound to an infinite term)
X = f(f(f(f(f(f(f(f(f(f(...)))))))))) ? ;
no
| ?- unif1(X). (failure)
no
| ?- t1(X).
X = r(_A,_A) ? ; (looking for one more solution)
X = r(_A,_A) ?
yes
| ?- t2(X).
X = r(a,a) ? ; (looking for one more solution)
X = r(_A,_A) ? ; (looking for one more solution)
X = r(_A,_A) ?
yes */
% ==

In order to automatically prove the Properties (id.1) and (id.2), we can also use the
Prolog program rightIdentityDemo.pl, which we list below. In this program uni-
fication is performed with occurs-check by using an interpreter (which, for historical
reasons, is also called a meta-interpreter) of Horn clauses.

This interpreter assumes that every clause C of the form: H ← B1, . . . , Bn,
is represented as an atom of the form: cl(H, [B1, . . . , Bn]), where cl is a binary
predicate whose first argument is the head of C and whose second argument is the
list of the atoms of the body of C (as usual, lists are represented by using the square
bracket notation).

Then, our interpreter is written as the following conjunction of Horn clauses
which define the predicate demo:

d.1 demo([])←

d.2 demo([A|As])← demo(A), demo(As)

d.3 demo(A)← cl(H,B), A = H, demo(B)

Clause d.1 and d.2 state that a list of atoms are proved by proving each atom of the
list. Clause d.3 states that an atom A is proved by finding a clause H ← B1, . . . , Bn,
whose head unifies with A via the mgu ϑ, and then proving the list [B1ϑ, . . . , Bnϑ]
of atoms.

For instance, let us consider the two clauses:

cl(p(0), [])←

cl(p(s(X)), [p(X)])←

which represent the two clauses: p(0)←, and p(s(X))←p(X), respectively. Then,
for the goal demo(p(X)), we get, as expected, the following answers:

84 2. Logic Programming

X = 0,
X = s(0),
X = s(s(0)), and so on.

Recall that in Sicstus Prolog: unify_with_occurs_check(X,Y) holds iff X and Y

unify to a finite (acyclic) term.

% ==
% Filename: rightIdentityDemo.pl
% Sicstus Prolog
% ==
% USING THE META-INTERPRETER demo
%
% A clause of the form: p :- a,b,c is denoted by: cl(p, [a,b,c])
%
demo([]). % (1)
demo([A|As]) :- demo(A), demo(As). % (2)
demo(A) :- cl(H,B), unify_with_occurs_check(A,H), demo(B). % (3)

%
% cl(H,B) should be ‘to the left’ of unify_with_occurs_check(A,H)
% because both A and H should be bound when the goal
% unify_with_occurs_check(A,H) is evaluated.
% --
% Unification with occurs_check
cl(q(Y,Y),[]). % clause: q(Y,Y).
cl(unif0(X), [q(X,X)]). % clause: unif0(X) :- q(X,X).
cl(unif1(X), [q(X,f(X))]). % clause: unif1(X) :- q(X,f(X)).

d0(X) :- demo(unif0(X)). % success
d1(X) :- demo(unif1(X)). % failure

% ==
% Right identity property
% in any associative system which has left and right solutions X and
% Y for all equations X.a=b and a.Y=b, there is a right identity.
% --
cl(p(X,Y,f(X,Y)),[]). % clause: p(X,Y,f(X,Y)).
cl(p(l(X,Y),X,Y),[]). % clause: p(l(X,Y),X,Y).
cl(p(X,r(X,Y),Y),[]). % clause: p(X,r(X,Y),Y).
cl(p(U,Z,W), [p(X,Y,U), p(X,V,W), p(Y,Z,V)]).

% clause: p(U,Z,W) :- p(X,Y,U), p(X,V,W), p(Y,Z,V).
cl(p(X,V,W), [p(X,Y,U), p(Y,Z,V), p(U,Z,W)]).

% clause: p(X,V,W) :- p(X,Y,U), p(Y,Z,V), p(U,Z,W).
% ---------------------
d2(X) :- demo(p(k(X),X,k(X))). % success
d3(X) :- demo(p(a,X,a)). % success

/* ===
| ?- d0(X). (only one success with X bound to a finite term)
yes

10. Deriving Negative Information from Definite Programs 85

| ?- d1(X). (failure)
no
| ?- d2(X).
X = r(_A,_A) ? ; (looking for one more solution)
X = r(_A,_A) ?
yes
| ?- d3(X).
X = r(a,a) ? ; (looking for one more solution)
X = r(_A,_A) ? ; (looking for one more solution)
X = r(_A,_A) ?
yes */
% ==

10 Deriving Negative Information from Definite Logic

Programs

Given a definite program P, it is impossible to derive a negative literal as a logical
consequence of P, because every clause in P has a positive literal in the head.
However, given a definite program P we now define a set of atoms, which by abuse
of language, we call the negative consequences of P. This set is also called the finite

failure set of P and it is denoted by FF (P).

Definition 14. Given a definite program P , we say that an atom A belongs to
the finite failure set of P, written A ∈ FF (P), iff there exists a computation rule
R such that there exists a finitely failed SLD tree for program P , goal ← A, and
computation rule R.

Given a node, say N, and one of its child-nodes, say M, in an SLD tree, we
may relate via the descendant relation δNM , an occurrence of an atom of the goal
in N to an occurrence of an atom of the goal in M. Instead of giving the formal
definition of the descendant relation, we now give an example which, we hope, will
allow the reader to construct the descendant relation δNM for any given node N

and child-node M in a given SLD tree.

Let us consider the node N with goal ← A,B,C and let us assume that
from N we generate a child-node M via an SLD resolution step by: (i) select-
ing the atom B, and (ii) considering the clause H ← B1, B2 such that Hϑ = Bϑ.
Thus, the node M is associated with the goal← Aϑ,B1ϑ,B2ϑ, Cϑ. In this case the
descendant relation δNM consists of the following four pairs of atom occurrences:
〈A,Aϑ〉, 〈B,B1ϑ〉, 〈B,B2ϑ〉, and 〈C,Cϑ〉.

From the above example one can see that given a node N and one of its child-
nodes M, the relation δNM is constructed as the union of two relations:

86 2. Logic Programming

(i) the head-body relation αNM relative to the clause which has been used for gener-
ating the child-node M from the node N via an SLD resolution step (in our example
this relation is the set made out of the two pairs 〈B,B1ϑ〉 and 〈B,B2ϑ〉), and
(ii) the inheritance relation βNM due to the occurrences of the atoms which are not

selected for the SLD resolution step (in our example this relation is the set made
out of the two pairs 〈A,Aϑ〉 and 〈C,Cϑ〉).

Given a definite program P, a goal← A, and a computation rule F, we say that
F is fair iff in the (finite or infinite) SLD tree T for P, ← A, and F it does not
exist an infinite sequence 〈N0, N1, N2, . . .〉 of nodes such that:
- in the goal at node N0 there is the atom A0,
- in the goal at node N1 which is a child-node of N0, there is the atom A1,
- in the goal at node N2 which is a child-node of N1, there is the atom A2,...
with 〈A0, A1〉 ∈ βN0N1

, 〈A1, A2〉 ∈ βN1N2
, ... and none of the atoms A0, A1, A2, . . . is

selected by F. Note that by definition of an SLD tree, for every atom B occurring
in a leaf of T there is no variant of a clause of P whose head unifies with B.

Thus, any computation rule which constructs a finite SLD tree is surely fair.

Theorem 27. Given any definite program P , any definite goal ← A, and any fair
computation rule F , A ∈ FF (P) iff the SLD tree for program P , goal ← A, and
computation rule F , is finitely failed.

Thus, given a definite program P , any definite goal ← A, by constructing the
SLD tree for P and ← A, using any fixed fair computation rule, we construct a
finitely failed SLD tree if there exists one which can be constructed by using any

other (fair or not fair) computation rule.
The finite failure set FF (P) of a definite program P is the set of all literals

which are assumed to be negative consequences of P, but the definition of FF (P)
is arbitrary in the sense that, as we remarked above, there are no negative literals
which are logical consequences of P. However, the finite failure set of a definite
program P enjoys an important property (see Theorem 28 below) with respect to
a formula related to P, called the completion of P, which we now define.

Completion of a definite program

Given a definite program P, its completion also called Clark completion, denoted by
comp(P), is a conjunction of first order formulas constructed as follows [1, page 535].
Assume that = is a new binary predicate symbol not occurring in P.

(1) For each clause of P :

(1.1) Replace every term in the arguments of the head in favour of new variables
and add suitable equalities in the body, so that all clauses in P with the same
predicate symbol in the head, have identical heads.

For instance, the conjunction (p(t, u) ← G1), (p(r, f(V)) ← G2) of clauses is

10. Deriving Negative Information from Definite Programs 87

transformed into
(p(X, Y)← X= t, Y =u, G1), (p(X, Y)← X=r, Y =f(V), G2).

(1.2) Existentially quantify the body w.r.t. the variables occurring in the body and
not in the head.

For instance, if vars(t, u, G1) − {X, Y } = {W,Z}, then p(X, Y) ← X = t,
Y =u,G1 is transformed into p(X, Y)← ∃W∃Z (X= t, Y =u, G1).

(2) Fuse all clauses with equal head into one implication by using ∨.

For instance, the conjunction (p(X, Y)← Body1), (p(X, Y)← Body2) of clauses is
transformed into the implication p(X, Y)← (Body1 ∨ Body2).

(3) Universally quantify every implication derived at Step (2) w.r.t. the variables
occurring in its conclusion and replace ← by ↔.

For instance, p(X, Y)← (Body1 ∨ Body2) is transformed into
∀X, Y (p(X, Y)← (Body1 ∨ Body2)).

(4) Introduce a formula of the form: ∀X1 . . .Xn ¬r(X1, . . . , Xn) for each predicate
symbol r occurring in the body of a clause of P , and not in any head of P .

(5) Consider the (infinite) conjunction of the following formulas of the first order
predicate calculus, which define the so called Clark Equality Theory, or CET, for
short. This theory axiomatizes the usual equality predicate for the Herbrand inter-
pretation.

(5.1) For each function symbol f ,

∀X1 . . .XnY1 . . . Yn

[(X1 = Y1 ∧ . . . ∧Xn = Yn) ↔ f(X1, . . . , Xn) = f(Y1, . . . , Yn)].

(In any Herbrand interpretation function symbols are interpreted as them-
selves)

(5.2) For each pair of distinct function symbols f and g,

∀X1 . . .XnY1 . . . Ym ¬(f(X1, . . . , Xn) = g(Y1, . . . , Ym)).

(5.3) For each predicate symbol p,

∀X1 . . .XnY1 . . . Yn

[(X1 = Y1 ∧ . . . ∧Xn = Yn) → (p(X1, . . . , Xn)↔ p(Y1, . . . , Yn))].

(5.4) ∀X X=X.

(5.5) For each term t such that vars(t) = {X,X1, . . . , Xn} and t is not X,

∀X X1 . . .Xn ¬(X = t).

88 2. Logic Programming

The completion comp(P) of P is the conjunction of:

- the formulas derived at Step (3), denoted by iff (P) (these formulas have, in
general, the symbols ∃,∨, ∀, and ↔),

- the formulas introduced at Step (4) (these formulas have also the symbol ¬), and

- the formulas introduced at Step (5), that is, CET (these formulas have also the
symbol =).

Note that in Point (5.3) → cannot be replaced by ↔ because, for instance, it may
be the case that both p(0) and p(1) hold and yet 0 6=1.

For any program P , we have that CET is a consistent and complete theory for
the set of closed first order formulas whose predicate symbols are true, false, and =
only, and thus, for any closed first order formula ϕ in that set, either CET ⊢ ϕ or
CET ⊢ ¬ϕ holds, but not both.

Remark 11. From the formulas (5.3) and (5.4) we have that = denotes an equiva-
lence relation [8, page 79], and CET forces the predicate symbol = to be interpreted
as the identity relation on the domain of I, for every Herbrand interpretation I. We
also have that:
CET ⊢ ∃X1 . . .Xn u = v iff

the terms u and v are unifiable, where {X1, . . . , Xn} = vars(u, v).

Thus,
CET ⊢ ∀X1 . . .Xn ¬(u = v) iff

the terms u and v are not unifiable, where {X1, . . . , Xn} = vars(u, v).

Example 8. (i) Given the definite program P1 = {p(0) ←, p(s(Y)) ← p(Y)},
comp(P1) is ∀X (p(X)↔ (X=0 ∨ ∃Y (X=s(Y) ∧ p(Y))))∧CET.

(ii) Given the definite program P2 = {p(0) ←, p(s(Y)) ← r(a, Z)}, comp(P2)
is ∀X (p(X)↔ (X=0 ∨ ∃Y ∃Z (X=s(Y) ∧ r(a, Z)))) ∧ ∀X∀Y ¬r(X, Y)∧CET.

The following theorem establishes for any given definite program P, the relationship
between its least Herbrand model M(P), the finite failure set FF (P), and the
completion comp(P).

Theorem 28. Let us consider a definite program P and a ground atom A. By
M (P) we denote, as usual, the least Herbrand model of P.
(i) A ∈M(P) iff comp(P) |= A, and (ii) A ∈ FF (P) iff comp(P) |= ¬A.

As a consequence of Theorem 7 on page 35, Theorem 28 also holds if we write ⊢,
instead of |=.

10. Deriving Negative Information from Definite Programs 89

Proposition 26. For every definite program P and for every ground atom A,
(i) if comp(P) |= ¬A then A 6∈M(P), and thus, P 6|= A, and
(ii) M(P) |= comp(P). Thus, for every formula ϕ, if comp(P) |= ϕ then M(P) |= ϕ.

Proof. Point (i) follows from Theorem 28, because comp(P) |= ¬A iff comp(P) 6|= A,
and by Theorem 21, M(P) |= A iff P |= A. Point (ii) follows from the fact that, as
stated in Proposition 27 on page 90, for every definite program P , every fixpoint of
the TP operator is an Herbrand model of comp(P), and M(P) is a fixpoint of TP

(see Theorem 23 on page 64). 2

← A
�

�
�

�
�

�

T
T
T
T
T
T

� � �

A ∈ FF(P) iff there exists a computation
ruleR such that the SLD tree for programP ,
goal ← A, and rule R is finitely failed.

A ∈ FF(P) iff comp(P) |= ¬A

comp(P) |= ¬A implies M(P) 6|= A

comp(P) |= ¬A implies P 6|= A

← A

�
�

�
�

��

S
S

S
S

SS
. . . � . . . �

For all computation rules R,
the SLD tree for program P , goal ← A,
and rule R, is infinite,
has no success node �, and
may have zero or more failure nodes �.

%
%

%
%

%
%

e
e

e
e

e
e

�
�
��QQ
�

�
. . . �� . . .

← A A∈M(P) iff there exists a computation
ruleR such that the SLD tree for programP ,
goal ← A, and rule R has at least one
success node �. M(P) |= comp(P)

A ∈M(P) iff comp(P) |= A

comp(P) |= A iff M(P) |= A iff P |= A

Herbrand Base of
program P :

�

	

�
�������*

-

HHHHHHj

M(P) = SS (P)

FF (P)

Fig. 8. The Herbrand Base of a definite program P with the least Herbrand
model M(P), the success set SS(P), and the finite failure set FF (P). By definition,
we have that M(P) and FF (P) are disjoint sets of atoms.

As illustrated in Figure 8 we have the following theorem.

Theorem 29. For every definite program P and definite goal ← (A1 ∧ . . . ∧ An),
where A1, . . . , An are (possibly non-ground) atoms, we have that:

90 2. Logic Programming

(i) P |= ∀((A1 ∧ . . . ∧ An)ϑ) iff comp(P) |= ∀((A1 ∧ . . . ∧ An)ϑ), where ϑ is any
substitution such that domain(ϑ) = vars(A1 ∧ . . . ∧ An) [8, Theorem 14.6 on
page 82], and

(ii) comp(P) |= ¬(A1∧ . . .∧An) iff there exists a computation rule R and a finitely
failed SLD tree for program P, goal← (A1∧. . .∧An), and rule R [8, Theorem 16.5
on page 102] iff
for every fair computation rule F we get a finitely failed SLD tree for program P,
goal← (A1∧. . .∧An), and rule F [8, Theorem 16.1 on page 95, and Theorem 16.5
on page 102].

Recall that since comp(P) is a closed formula, then comp(P) |= ¬(A1 ∧ . . . ∧ An)
iff comp(P) |= ∀(¬(A1 ∧ . . . ∧ An)). More properties of the completion of definite
programs are stated in the following section with reference to the class of normal
programs which includes the class of definite programs. In particular, we have the
following proposition (where the first point has number (iii), because Points (i) and
(ii) are assumed to be those of Theorem 29).

Proposition 27. For every definite program P,

(iii) comp(P) |= P , and
(iv) for every Herbrand interpretation I, I |= comp(P) iff TP (I) = I.
(v) for a ground atom A in the Herbrand Base, A ∈ gfp(TP) iff comp(P)∪ {A}

has a Herbrand model.

Compare Point (iv) of this Proposition with Lemma 11 on page 63, where it is stated
that for every Herbrand interpretation I, for every definite program P , I |= P iff
TP (I)⊆I.

Contrary to the case of definite programs, we have that: (i) a normal program
may not have a least Herbrand model (see Proposition 30 on page 96), and (ii) there
exists a normal program P with least Herbrand modelM(P) andM(P) 6|= comp(P)
(see Proposition 31 on page 96).

11 Normal Programs

We may extend the class of definite programs by allowing negated atoms to occur in
the body of the clauses. By doing so, we get the class of normal programs, also called
general programs. Similarly, we may extend the class of definite goals by allowing
negated atoms to occur in them and we get the class of normal goals, also called
general goals.

As for the case of definite programs, given a normal program P, it is impossible
to derive a negative literal as a logical consequence of P, because every clause in P

has a positive literal in its head.

11. Normal Programs 91

We can extend the definition of the completion of a program P also to the case of
normal programs by making the same construction we have described in Section 10
for definite programs.

For any given definite program, definite goal, and computation rule, we have
introduced in the previous section the concepts of SLD derivation, SLD refutation,
and SLD tree. These concepts are all based on the concept of the SLD resolution
step. Analogously, for any given normal program, normal goal, and computation
rule, now we introduce the concepts of SLDNF derivation, SLDNF refutation, and
SLDNF tree, which are all based on the concept of SLDNF resolution step. This
step is identical to an SLD resolution step, except for the case when negated atoms
are selected. In this case special actions must be taken as we specify below in the
definition of the SLDNF derivation.

The definitions of SLDNF resolution, SLDNF derivation, SLDNF refutation, and
SLDNF tree will be given in a mutually dependent way (see also [8, Chapter 3]).

For constructing an SLDNF derivation we use a safe computation rule, that is,
a partial function from the set of non-empty goals to the set of literals such that
given a goal, (i) it selects either a positive literal or a ground negative literal in
that goal, and (ii) it does not select any literal iff the given goal has non-ground
negative literals only. Safe computation rules are needed to ensure the soundness of
the SLDNF resolution (see Theorem 31 below).

An SLDNF derivation
The definition of an SLDNF derivation for a normal program P, a normal goal
G, and a safe computation rule R, is like the one of an SLD derivation in the
case of definite programs (see page 64), except that in any goal of the sequence
〈G0, G1, . . .〉 of goals and in any clause of the sequence 〈C0, C1, . . .〉 of clauses we
allow also negative literals to occur, and

(1) if goalGi is← A1, . . . , Am−1,¬A,Am+1, . . . , An, and the literal ¬A is the selected
one, and there exists a finitely failed SLDNF tree (defined below) for P,← A, and R,
then: (1.i) goal Gi+1 is ← A1, . . . , Am−1, Am+1, . . . , An, (1.ii) ϑi is the identity
substitution, and (1.iii) the element Ci in the sequence 〈C0, C1, . . .〉 of clauses is the
negative literal ¬A,

(2) if goalGi is← A1, . . . , Am−1,¬A,Am+1, . . . , An, and the literal ¬A is the selected
one, and there exists an SLDNF refutation (defined below) for P,← A, and R, then
the SLDNF derivation ends with that goal Gi, and

(3) if in Gi there are non-ground negative literals only, then the SLDNF derivation
ends with that goalGi. In this case we also say that the SLDNF derivation flounders.

An SLDNF derivation which ends with the empty goal 2, is called an SLDNF

refutation.

92 2. Logic Programming

The computed answer substitution (c.a.s., for short) of an SLDNF refutation
for a normal program P, a normal goal G, and a computation rule R, is obtained
by: (i) taking the composition of the most general unifiers of the sequence relative
to that SLDNF refutation, and (ii) restricting the resulting substitution to the
variables occurring in G.

Let us now specify how to construct an SLDNF tree. We need first the following
definition.

Definition 15. (i) We say that an SLDNF tree T has an SLDNF refutation (or
has a path with a success leaf) iff T has a finite root-to-leaf path which ends with
the empty goal. (ii) An SLDNF tree T is said to be finitely failed iff T is finite and
every root-to-leaf path in T ends with a failure leaf (see page 66 and Point (α) in
the following algorithm for the construction of an SLDNF tree).

Construction of an SLDNF tree
The construction of an SLDNF tree for a normal program P, a normal goal G,
and a safe computation rule R, proceeds as the one of an SLD tree in the case of
definite programs, except when a ground negative literal, say ¬A, is selected by the
computation rule R at a node, say N. In that case we proceed as follows.

(α) If the SLDNF tree for P, ← A, and R has an SLDNF refutation then: (α.1) we
do not generate any child-node of N and N is made a failure leaf of T, and (α.2) we
resume the construction of the SLDNF tree T as specified at Point (γ).

(β) If the SLDNF tree for P, ← A, and R is finitely failed then: (β.1) we generate
a child-node, say N 1, of the node N (which will have exactly one child-node) and
we attach to N 1 the same goal of N without the literal ¬A, and (β.2) we resume
the construction of T as specified at Point (γ).

(γ) The construction of the tree T is resumed by considering a node which is not
a failure leaf and whose goal is non-empty and it has either a positive literal or a
ground negative literal.

Let us now make the following notes.

(1) It is not necessary to completely construct the SLDNF tree of Point (α). It is
enough to construct an SLDNF refutation, that is, a suitable path of that tree.

(2) Step (α.1) is based on the fact that if there exists an SLDNF refutation for P,
← A, and R then comp(P) ⊢ A.

(3) The deletion of ¬A at Step (β.1) is said to be an application of the negation-

as-failure rule. Indeed, by applying that rule, if there exists a finitely failed SLDNF
tree for P, ← A, and R, we replace the literal ¬A by true. The negation-as-failure
rule is justified by Theorem 31 below, whereby if there exists a finitely failed SLDNF
tree for P, ← A, and R, then comp(P) ⊢ ¬A.

11. Normal Programs 93

(4) As it is the case for SLD trees, also SLDNF trees are maximal in the sense that,
if during the construction of an SLDNF tree, a node can have one (or one more)
child-node, then we should include that child-node in the SLDNF tree.

As a consequence of this fact, we have that for every non-empty goal H at a leaf
of a finitely failed SLDNF tree for a program P , a goal G, and a safe computation
rule R, either: (i) no clause head in P unifies with the positive literal in H selected
by R, or (ii) there is in H a negative literal, say ¬A, such that there is an SLDNF
refutation for P, ← A, and R.

(5) There are cases in which an SLDNF tree cannot be constructed. For instance,
let us consider the program P = {p ← p} and the goal G :← ¬p. No SLDNF tree
can be constructed for program P , goal G, and any computation rule R because for
the goal← p there exists neither an SLDNF refutation nor a finitely failed SLDNF
tree.

It is undecidable whether or not an SLDNF derivation for a normal program,
a normal goal, and a safe computation rule, does not flounders [1, Theorem 6.12].
The same holds if we do not require that the computation rule be safe.

As we will see below, it is important to know whether or not the SLDNF deriva-
tion for a given normal program, a given normal goal, and a given safe computation
rule, does flounder. We now give a sufficient condition which ensures that an SLDNF
derivation does not flounder [8, Proposition 15.1 on page 89]. This condition is based
on the following concepts.

A clause is admissible iff every variable in that clause has at least one occurrence
either in the head or in a positive literal in the body.

A clause is allowed iff every variable in that clause has at least one occurrence
in a positive literal in the body.

A goal ← L1, . . . , Ln is allowed iff every variable in that goal has at least one
occurrence in a positive literal of that goal.

Thus, if a clause C is allowed and it has an empty body then the head of C

must be ground.

Given a normal program P and a normal goal G, the pair [P,G] is said to be
allowed iff
(i) every clause of P is admissible,
(ii) G is allowed, and
(iii) every clause of P whose head predicate occurs either in a positive literal of the
body of a clause of P or in a positive literal of G, is allowed.

For the following theorem recall that a substitution ϑ is said to be grounding

for a formula ϕ iff ϕϑ has not free variables.

Theorem 30. Let us consider a normal program P, a normal goal G, and a safe
computation rule R. Assume that [P,G] is allowed. Then every SLDNF derivation

94 2. Logic Programming

for P, G, and R does not flounder and the corresponding c.a.s. is a grounding
substitution for G [8, Proposition 15.1].

A program P is said to be hierarchical iff we can assign to every predicate p of P a
non-negative integer, called the level of p, such that in every clause C of P the level
of the predicate in the head of C is strictly greater than the level of every predicate
in the body of C.

Theorem 31. [Soundness and Relative Completeness of SLDNF Reso-
lution for Normal Programs] Let us consider a normal program P, a normal
goal G : ← L where L is a literal, and a safe computation rule R.

Soundness of SLDNF resolution: If ϑ is the c.a.s. of an SLDNF refutation for P,
G, and R then comp(P) |= ∀(Lϑ) [8, Theorem 15.6]. If there exists a finitely
failed SLDNF tree for P, G, and R then comp(P) |= ∀(¬L) [8, Theorem 15.4].

Completeness of the SLDNF resolution for hierarchical normal programs : If P is
hierarchical, [P,G] is allowed, comp(P) |= Lϑ, and ϑ is grounding substitution
for L, then ϑ is a c.a.s. of an SLDNF refutation for P, G, and R. (Actually, for
every safe computation rule R the SLDNF tree for P, G, and R is finite and ϑ
is the c.a.s. of one of its SLDNF refutations [8, Theorem 16.3].)

Theorem 31 can be stated for the goal ← (L1, . . . , Ln), with n≥ 1, instead of
← L, by replacing the literal L by the conjunction L1 ∧ . . . ∧ Ln of literals.

Note also that for the soundness of SLDNF resolution the hypothesis that R is
a safe computation rule is indeed necessary as the following example shows.

Let us consider the normal program P = {p ← ¬q(x) q(a) ←}. We have that:
(i) there exists a finitely failed SLDNF tree for P, ← p, and a computation rule
which is not safe and selects the negative literal ← ¬q(x) (because there exists a
SLDNF refutation for P, ← q(x), and the computation rule which selects the atom
q(x)), and (ii) it is not the case that comp(P) |= ∀(¬p). Point (ii) holds because:
(ii.1) comp(P) is p↔ ∃X ¬q(X) ∧ ∀X (q(X)↔ X=a)∧CET, (ii.2) ∀(¬p)↔ ¬p,
and (ii.3) it is not the case comp(P) |= ¬p. In order to show Point (ii.3) let us
consider the interpretation I with domain {a, b} such that both q(a) and p are
true in I and q(b) is false in I. Thus, comp(P) 6|= ∀X q(X) and we have that
(∀X q(X))↔ ¬p.

In the completeness of SLDNF resolution for hierarchical normal programs, we
have that ϑ should be grounding for L because of Theorem 30. Note that SLDNF
resolution is not complete for all normal programs (in particular, in Theorem 31 the
normal programs are required to be hierarchical), while SLD resolution is complete
for all definite programs as stated in Theorem 24.

11. Normal Programs 95

The incompleteness of SLDNF resolution is due to the following two limitations
of the negation-as-failure rule (see page 92):
(1) the negation-as-failure rule does not generate bindings for variables, because a
safe computation rule selects negative literals only if they are ground, and
(2) the negation-as-failure rule does not take into account infinite failures, in the
sense that it does not allow to infer ¬A in the case when the SLDNF tree for the
given program, the goal ← A, and the given computation rule, has no success leaf
and it is infinite.

These two limitations are shown through the following two examples.

Example 9. [Limitation 1] Let us consider the program P = {p(x) ←, q(a) ←,
r(b) ←} and the goal ← p(x),¬q(x). We have that comp(P) |= p(b) ∧ ¬q(b), and
yet {x/b} is not a computed answer substitution for program P, goal← p(x),¬q(x),
and any safe computation rule, because any safe computation rule does not select
the non-ground literal ¬q(x). 2

Example 10. [Limitation 2] Let us consider the program P = {p← q, p←¬q, q←
q} and the goal← p. We have that comp(P) |= p, and yet the identity substitution
{} is not a computed answer substitution for program P, goal ← p, and any safe
computation rule, because the SLDNF tree for P, ← q, and any safe computation
rule has no success leaf and it is infinite. 2

Now given a normal program P, we define a class of operators, called T J
P , where J

is a so called pre-interpretation defined as follows.
Given a domain D, a pre-interpretation J assigns a function in Dr → D to

every function symbol of arity r (≥ 0). An interpretation I based on the pre-
interpretation J , assigns an r -ary relation, that is, a subset of Dr, to every predicate
symbol of arity r (≥0).

Given an interpretation I based on a pre-interpretation J, a variable assign-
ment σ which assigns an element of D to every variable, and given an atom
p(t1, . . . , tr), we stipulate that: I, σ |= p(t1, . . . , tr) holds iff the r -tuple 〈v1, . . . , vr〉
belongs to the relation assigned to the predicate symbol p by I, where 〈v1, . . . , vr〉
is the r-tuple of elements of D assigned to 〈t1, . . . , tr〉, according to J and σ.

Analogously to the case of the Herbrand interpretations for definite programs,
we identify an interpretation I based on a pre-interpretation J, with the set of
expressions of the form p(v1, . . . , vr), where: (i) p is a predicate symbol in the
program P, and (ii) 〈v1, . . . , vr〉 is an r -tuple of elements of D which belongs to the
relation assigned to p by I.

Definition 16. Given a normal program P and a pre-interpretation J, we define T J
P

to be a function which maps an interpretation I based on the pre-interpretation J
into a new interpretation T J

P (I) also based on J, as follows:

96 2. Logic Programming

T J
P (I) = {Aσ | A← L1, . . . , Ln in P and

I, σ |= L1 ∧ . . . ∧ Ln for some variable assignment σ}

To understand this definition the reader should recall that:
(i) if A is the atom p(t1, . . . , tr) then Aσ is the atom p(v1, . . . , vr), where 〈v1, . . . , vr〉
is the r-tuple of elements of D assigned to 〈t1, . . . , tr〉, according to J and σ, and
(ii) given an atom A, we have that I, σ |= ¬A iff it is not the case that I, σ |= A.

The pre-interpretation J is said to be an Herbrand pre-interpretation iff
(i) we take the domain D to be the Herbrand Universe of a language (which we
assume to have at least one constant) which includes the symbols occurring in the
program P , and
(ii) we assign to every function symbol f of arity r (≥0), the function which maps
the terms t1, . . . , tr into the term f(t1, . . . , tr).

An interpretation based on an Herbrand pre-interpretation is said to be an
Herbrand interpretation. We will write TP , instead of T J

P , iff J is an Herbrand
pre-interpretation.

Let us now state some facts about the TP operator and the completion in the
case of normal programs.

Proposition 28. For a normal program P which is not a definite program, the TP

operator may be not monotonic.

Proof. Take, for instance, the program {p ← ¬p}. We have: TP (∅) = {p}, and
Tp({p}) = ∅. Recall that if P is a definite program then TP is monotonic.

Proposition 29. For any normal program P, comp(P) |= P [8, Proposi-
tion 14.1].

Proposition 30. Every normal program P has an Herbrand model. This model is
constructed by taking the ground atoms which are the instances of the heads of the
clauses of P . A normal program may not have the least Herbrand model.

Proof. Indeed, for instance, the program {p← ¬q} has two Herbrand models: {p}
and {q}, and none of them is included in the other.

Proposition 31. Let us consider a normal program P and let us assume that P has
the least Herbrand model M(P). Then it may be the case that M(P) |= comp(P)
does not hold.

Proof. Indeed, for instance, the program P = {p ← ¬p} has {p} as its least Her-
brand model. However, comp(P) implies that p ↔ ¬p. Thus, comp(P) is inconsis-
tent and it has no models.

12. Programs 97

Proposition 32. Let us consider a normal program P and an interpretation I
based on a pre-interpretation J . (i) Then I is a model of P iff T J

P (I) ⊆ I.
(ii) Let us suppose that in the interpretation I the predicate symbol = is interpreted
as the identity relation on the domain of I. If I |= CET then (I |= comp(P) iff
T J

P (I) = I) [8, Proposition 14.3].

Let us consider a normal program P . We have that if I is an Herbrand inter-
pretation where the predicate symbol = is interpreted as the identity relation on
the Herbrand Universe, then I |= CET. Thus, by Proposition 32 above, we have the
following proposition.

Proposition 33. Let P be a normal program. For any Herbrand interpretation
I, I |= comp(P) iff TP (I) = I [1, Theorem 5.18].

Note 8. The notion of pre-interpretation is required only for the above Proposi-
tion 32.

Since the completion of normal programs may be inconsistent, many properties
of the completion of definite programs presented in Section 10, no longer hold in
the case of normal programs. In particular, for every normal program P and atom
A, it is not the case that: comp(P) |= ¬A iff there exists a computation rule R and
a finitely failed SLDNF tree for program P, goal ← A, and R (see Theorem 29,
page 89). Indeed, take P to be {p ← ¬p, a ←} and A to be a. We have that
comp(P) is inconsistent, and thus, comp(P) |= ¬A, while there is no finitely failed
SLDNF tree for program P, goal ← a, and any computation rule.

12 Programs

Now we make a further extension to the class of programs and goals we consider.
We allow arbitrary first order formulas (possibly not closed) to occur in bodies of
clauses and in goals. By this extension we get the so called programs and goals

(without further qualifications).

Programs are conjunctions of so called statements [8]. Statements and goals are
formulas of the form: A ← W and ← W , respectively, where A is an atom and W

is any first order logic formula. Given the statement A ← W , we say that A is its
head and W is its body. As for clauses, statements and goals are assumed to be
universally quantified at the front.

We can also introduce the notion of the completion of a program as we did for
definite logic programs. Indeed, the form of the body of a clause does not play any
role in the definition of the completion we have given in Section 10.

98 2. Logic Programming

For programs and goals we can introduce the notions of SLDNF derivation,
SLDNF refutation, SLDNF tree, computed answer substitution, and finitely failed
SLDNF tree as follows. Given a program P, a goal G, and a safe computation rule R,
those notions are assumed to be the ones for a normal program, say P ′, a normal
goal, say G′, and the safe computation rule R, where P ′ and G′ are constructed
from P and G by using the so called Lloyd-Topor transformation, which we now
present.

The Lloyd-Topor transformation takes a conjunction of statements and pro-
duces a conjunction of normal clauses. What is preserved by that transformation is
indicated in the Facts 1 and 2 below.

As usual, we will feel free to denote conjunctions as sets.

In order to present the Lloyd-Topor transformation we introduce the following
notation.

We write C[γ] to denote a first order formula where the subformula γ occurs as
an outermost conjunct , that is, C[γ] = ρ1 ∧ . . . ∧ ρr ∧ γ ∧ σ1 ∧ . . . ∧ σs for some
first order formulas ρ1, . . . , ρr, σ1, . . . , σs, with r≥0 and s≥0. We will say that the
formula C[γ] is transformed into the formula C[δ] if C[δ] is obtained from C[γ] by
replacing the conjunct γ by the new conjunct δ.

Lloyd-Topor Transformation

Input : a conjunction P of statements.

Output : a conjunction P ′ of normal clauses such that Facts 1 and 2 below hold.

(Rule A) Eliminate from the body of every statement all occurrences of logical con-
stants, connectives, and quantifiers other than true, ¬,∧, and ∃. For every statement
st rename the bound variables occurring in ∀(st) so that all of them are distinct.
For instance, p(x, y)← ((∃w q(w, y))→∀w r(w)) is transformed into

p(x, y)← ¬((∃w q(w, y)) ∧ (∃z ¬r(z))).

(Rule B) Apply as long as possible the following rules:

(Rule B.1) A←C[¬true] is deleted
(Rule B.2) A←C[¬¬ϕ] is transformed into A←C[ϕ]
(Rule B.3) A←C[¬(ϕ ∧ ψ)] is transformed into A←C[¬newp(y1, . . . , yk)] ∧

newp(y1, . . . , yk)← ϕ ∧ ψ

where newp is a new predicate symbol and {y1, . . . yk} = freevars(ϕ∧ψ). We assume
that ϕ 6= true and ψ 6= true.

(Rule B.4) A←C[¬∃x1 . . . xn ϕ] is transformed into A←C[¬newp(y1, . . . , yk)] ∧
newp(y1, . . . , yk)← ϕ

12. Programs 99

where newp is a new predicate symbol and {y1, . . . yk} = freevars(∃x1 . . . xn ϕ).

(Rule B.5) A←C[∃x1 . . . xn ϕ] is transformed into A←C[ϕ].

During the Lloyd-Topor transformation, in order to simplify programs, we may
use tautologies. Thus, for instance, we may replace a formula of the form ϕ ∧ ϕ
by ϕ and vice versa.

Example 11. Let us apply the Lloyd-Topor transformation starting from the state-
ment:

r ← ∀x (q(x, v, w)→ (∃v p(x, v)))
By renaming the bound variables and eliminating → (Rule A), we get:

r ← ∀x (¬q(x, v, w) ∨ ∃y p(x, y))
By eliminating ∀x (Rule A), we get:

r ← ¬∃x¬(¬q(x, v, w) ∨ ∃y p(x, y))
By eliminating ¬∃x (Rule B.4), we get:
{r ← ¬new1(v, w), new1(v, w)← ¬(¬q(x, v, w) ∨ ∃y p(x, y))}

By pushing ¬ inward (Rule B.2), we get:
{r ← ¬new1(y, w), new1(y, w)← q(x, v, w) ∧ ¬∃y p(x, y)}

By eliminating ¬∃y (Rule B.4), we get:
{r ← ¬new1(y, w), new1(v, w)← q(x, v, w) ∧ ¬new2(x), new2(x)← p(x, y)}

which is a set of three normal clauses. 2

Now given a program P and a goal G :←W , where W is a first order formula, we
may construct the new program PG which is P ∧(ans(x1, . . . , xn)← W), where ans

is a new predicate symbol and x1, . . . , xn are the free variables occurring in W. Then
we may apply the Lloyd-Topor transformation to the program PG, thereby deriving
a normal program P ′. Let G′ be the normal goal ← ans(x1, . . . , xn) (actually, G′ is
a definite goal).

The normal program P ′ and the normal goal G′ are said to be a normal form

of program P and goal G.

Note that we said ‘a normal form’ and not ‘the normal form’, because the
outcome of the Lloyd-Topor transformation is not uniquely determined if we do not
specify the tautologies which we apply. However, the results we will state below do
not depend on the particular normal form of P and G we consider.

Let us consider a program P and let P ′ be a normal form of P. We have the
following facts.

Fact 1. If the formula ϕ contains only predicate symbols occurring in P and
comp(P ′) |= ϕ then comp(P) |= ϕ [8, Lemma 18.4 on page 115]. (This fact is
needed for the soundness result of Theorem 32 below.)

100 2. Logic Programming

Fact 2. We have that comp(P ′) |= comp(P) [8, Lemma 18.8 on page 118]. (This
fact is needed for the completeness result of Theorem 32 below.)

Note that every rule of the Lloyd-Topor transformation is based on a logical
equivalence, except for Rules B.3 and B.4. However, for Rule B.3 we have that:

(B.3.i)
A←C[¬newp(y1, . . . , yk)] ∧
newp(y1, . . . , yk)↔ (ϕ ∧ ψ)

implies A←C[¬(ϕ ∧ ψ)]

(B.3.ii)
A←C[¬newp(y1, . . . , yk)] ∧
newp(y1, . . . , yk)← (ϕ ∧ ψ)

does not imply A←C[¬(ϕ ∧ ψ)]

(For (B.3.ii) take, for instance, ϕ∧ψ to be false and C[. . .] to be the empty context.)
Analogously for Rule B.4, we have that:

(B.4.i)
A←C[¬newp(y1, . . . , yk)] ∧
newp(y1, . . . , yk)↔ ϕ

implies A←C[¬∃x1 . . . xn ϕ]

(B.4.ii)
A←C[¬newp(y1, . . . , yk)] ∧
newp(y1, . . . , yk)← ϕ

does not imply A←C[¬∃x1 . . . xn ϕ]

These facts easily follow from the hypotheses that: (i) every statement is implic-
itly universally quantified at the front, (ii) variables have been renamed as specified
in Rule A, (iii) {y1, . . . ym} = freevars(∃x1 . . . xn ϕ), and (iv) newp is a new predi-
cate symbol.

Let us now introduce the following concepts. Let us consider a program P, a
goal G : ← W , and a computation rule R. Let P ′ and G′ be a normal form of P

and G.

(i) We define a c.a.s. of an SLDNF refutation for P, G and R to be a c.a.s. of an
SLDNF refutation for P ′, G′, and R.

(ii) We define a finitely failed SLDNF tree for P, G, and R is a finitely failed SLDNF
tree for P ′, G′, and R.

(iii) As for normal programs, a program P is said to be hierarchical iff we can assign
to every predicate p of P a non-negative integer, called the level of p, such that in
every statement C of P the level of the predicate in the head of C is strictly greater

than the level of every predicate in the body of C. Note that if P is hierarchical
then any normal form P ′ of P is hierarchical.

(iv) We say that [P,G] is allowed iff [P ′, G′] is allowed.

12. Programs 101

Theorem 32. [Soundness and Relative Completeness of SLDNF Res-
olution for Programs] Let us consider a program P, a goal G : ← W , and a
safe computation rule R.

Soundness of SLDNF resolution for programs: If ϑ (not necessarily a grounding
substitution for W) is the c.a.s. of an SLDNF refutation for P, G and R, then
comp(P) |= ∀(Wϑ). If there exists a finitely failed SLDNF tree for P, G and R

then comp(P) |= ∀(¬W) [8, Theorem 18.6 and 18.7 on page 117].

Completeness of the SLDNF resolution for hierarchical programs : If P is hi-
erarchical, [P,G] is allowed, comp(P) |= Wϑ, and ϑ is grounding substitution
for W, then we have that ϑ is the c.a.s. of an SLDNF refutation for P, G, and R.
(Actually, for every safe computation rule R, the SLDNF tree for P, G, and R

is finite, and ϑ is a c.a.s. of one of its SLDNF refutations [8, Theorem 18.9 on
page 119].) 2

102 2. Logic Programming

13 Appendix A: Truth in Mathematical Structures

Here we discuss a few basic issues about the notion of truth in logic. We begin by
asking ourselves the following question: Is 1+1 equal to 2 (as in ordinary arithmetic)
or equal to 10 (as in binary arithmetic)?

To distinguish between these two answers, and in general, to establish what is
a true statement in a mathematical structure, say M , we may characterize that
structure by a set of axioms and inference rules, collectively called AR(M). Then
we say that ϕ is true in a structure M iff ϕ can be deduced using the axioms and
the inference rules in AR(M).

In order to illustrate these ideas let us now consider the following example
referring to boolean algebras.

A boolean algebra is a non-empty set B together with two binary operations ∨
and ∧, one unary operation ¬, and two nullary operations 0 and 1. Below we will
present the set Bool of axioms for boolean algebras. In these axioms it is assumed
that all free variables are implicitly universally quantified at the front.

1.a x ∧ y = y ∧ x 1.b x ∨ y = y ∨ x
2.a x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 2.b x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
3.a x ∧ (¬x) = 0 3.b x ∨ (¬x) = 1
4.a x ∨ 0 = x 4.b x ∧ 1 = x
5. 0 6= 1

We say that a property ϕ is true in any boolean algebra iff ϕ can be deduced from
Bool by using the replacement of equals by equals as the only rule of inference. This
rule allows us to deduce E[a] = E[b] from a = b, for any given expression context
E[_] and expressions a and b. (As usual, E[a] denotes the expression context E[_]
with the subexpression a, instead of the missing expression.)

Here is the proof that in every boolean algebra 〈B,∨,∧,¬, 0, 1〉 it is true that
∀x∈B, 1 = x∨ 1. For brevity we omit to write ‘∀x ∈ B’ and we write within curly
brackets the axioms used for the deduction.

1 = {3.b} = x ∨ ¬x = {4.b} = x ∨ (¬x ∧ 1) = {2.b} = (x ∨ ¬x) ∧ (x ∨ 1) =
= {3.b} = 1 ∧ (x ∨ 1) = {1.a} = (x ∨ 1) ∧ 1 = {4.b} = x ∨ 1.

Note, however, that it is not always the case that given a structure M , we can indeed
construct AR(M) so that every statement ϕ which is true in M can be derived from
AR(M). Here we cannot provide more evidence for this fact (see the Gödel-Rosser
Incompleteness Theorem 9 on page 41). Let us simply recall that the mathemati-
cal structures are, indeed, very rich structures and not all their properties can be
captured by deductive systems based on axioms and inference rules. Obviously, to
formalize this claim, we should give a formal definition of what we mean by axioms
and inference rules. But we do not do that here.

13. Truth in Mathematical Structures 103

We may follow the approach of defining in an independent way the notions
of: (1) what we mean for a statement ϕ to be true in a structure M , denoted
M |= ϕ, and (2) what we mean for a statement to be derivable via a deductive
system associated with M . Then, we may study the relationship between these two
notions.

Indeed, when presenting the first order predicate calculus we have followed this
approach and, in particular, we have provided the notion of truth in that calculus,
that is, its semantics (see Section 4), by using a technique due to Tarski. Note also
that, since every statement of the first order predicate calculus is a formula in a
given formal language, we began by presenting that formal language (see Section 1).

104 2. Logic Programming

14 Appendix B: Remarks on Resolution

Here we present some results concerning the application of resolution steps to:
(i) conjunctions of clauses, (ii) definite programs, and (iii) normal programs.

14.1 Resolution for Conjunction of Clauses

Let us consider any conjunction A of clauses (not necessarily Horn clauses) and let
us assume that from A we get the new conjunction B of clauses by performing a
resolution step. We have that: ∀(A) is unsatisfiable iff ∀(B) is unsatisfiable. (Recall
that ∀(ϕ) denotes the universal closure of the formula ϕ.)

Since ∀(A) is a closed formula, we have that ∀(A) is unsatisfiable iff ∀(A) is
false in all interpretations. Thus, for all interpretations I, it is not the case that
I |= ∀(A), that is, for all I, I |= ¬∀(A). As a consequence, |= ¬∀(A) and, by
Theorem 7 on page 35, we have that ⊢ ¬∀(A), that is, ∀(A) ⊢ ϕ ∧ ¬ϕ, for some
formula ϕ. Thus, we have that:

(α) ∀(A) is inconsistent iff ∀(B) is inconsistent.

14.2 SLD Resolution for Definite Programs

Let us consider: (i) a definite program P, (ii) a definite goal← Conj 0, where Conj 0 is
the conjunction A1∧ . . .∧An of possibly non-ground atoms, and (iii) a computation
rule R. Let us construct a finite upper portion of the SLD tree starting from the goal
← Conj 0 by performing some SLD resolution steps according to the computation
rule R (see Figure 9).

6

?

�
�

�
�

�
�

�
��

A
A
A
A
A
A
A
AA

r

r r

�
�
�

�
�
�

�
��

B
B
B
B
B
B
B
BBN

← Conj 0

ϑ1 ϑk. . .

← Conj 1 ← Conj k. . .

Fig. 9. An upper portion of an SLD tree for program P , goal ← Conj 0, and a
selection rule. The up-arrow and the down-arrow depict the iff relation of the
formula (β∗) (see page 105).

Suppose that the k leaves (≥ 0) of this upper portion of the SLD tree have the
following goals: ← Conj 1, . . ., ← Conj k. For i = 1, . . . , k, the substitution ϑi

denotes the composition of the mgu’s from the root to the leaf with goal ← Conj i.

14. Remarks on Resolution 105

As usual, we assume that the clauses of P are implicitly universally quantified
at the front. Thus, P is the same as ∀(P). We have that:

(β) P ∧ ∀(¬Conj 0) is inconsistent (β.1)

iff P ∧ ∀(¬Conj 1ϑ1) ∧ . . . ∧ ∀(¬Conj kϑk) is inconsistent (β.2)

iff P ∧ ∀(¬Conj 1ϑ1) is inconsistent or . . .

. . . or P ∧ ∀(¬Conj kϑk) is inconsistent. (β.3)

We will not provide a proof of (β), but for the reader’s convenience we make the
following remarks.

(i) The goal ¬Conj 0 and the goals ¬Conj iϑi’s, for i = 1, . . . , k, are universally
quantified at the front because they are Horn clauses and, as usual, Horn clauses
are universally quantified at the front.

(ii) (β.1) iff (β.2) holds because of Theorems 17 on page 49 and 24 on page 68 (note
also that in order to show inconsistency, we need to explore all possible resolution
steps).

(iii) (β.2) iff (β.3) holds because P is a definite program, the goals ¬Conj iϑi’s for
i = 1, . . . , k, are definite goals.

Thus, inconsistency cannot arise from the conjunctions of some definite goals,
because they have negative literals only (once written in terms of ¬ and ∨ only).
Instead, inconsistency can arise from the conjunction of a goal with clauses of P .
We will see in Section 14.3 that this property does not hold for normal programs
and normal goals.

Formula (β) can also be written as follows:

(β∗) P ⊢ ∃(Conj 0)

iff P ⊢ ∃(Conj 1ϑ1) ∨ . . . ∨ ∃(Conj kϑk)

iff P ⊢ ∃(Conj 1ϑ1) or . . . or P ⊢ ∃(Conj kϑk)

because P is a closed formula and thus, P ∧ ∀(¬ϕ) is inconsistent iff P ⊢ ∃(ϕ)
holds. Since ∀ distributes over ∧ and ∃ distributes over ∨, we have that in (β) the
formula ∀(¬Conj 1ϑ1) ∧ . . . ∧ ∀(¬Conj kϑk) can also be written as ∀(¬Conj 1ϑ1 ∧
. . . ∧ ¬Conj kϑk), and in (β∗) the formula ∃(Conj 1ϑ1) ∨ . . . ∨ ∃(Conj kϑk) can also
be written as ∃(Conj 1ϑ1 ∨ . . . ∨ Conj kϑk).

The above two formulas (β) and (β∗) also hold if we replace P by comp(P).
Indeed, recall that, for every definite program P and every definite goal ← Conj ,
where Conj is the conjunction A1∧ . . .∧An of possibly non-ground atoms, we have
that:

P ⊢ ∀(Conj ϑ) iff comp(P) ⊢ ∀(Conj ϑ)

106 2. Logic Programming

where ϑ is any substitution for the variables in Conj (see Theorem 14.6 in [8,
page 82] and replace |= with ⊢ because of Theorem 7 on page 35).

14.3 SLDNF Resolution for Normal Programs

Let us consider a normal program P, a normal goal← Conj 0, and a safe computation
rule R.

Let us construct a finite upper portion of the SLDNF tree starting from the
goal ← Conj 0 by performing some SLDNF resolution steps according to the safe
computation rule R. Suppose that the k (≥ 0) leaves of this upper portion of the
SLDNF tree have goals:← Conj 1,. . .,← Conj k. For i = 1, . . . , k, the substitution ϑi

denotes the composition of the mgu’s from the root to the leaf with goal ← Conj i.

Analogously to the case of definite programs, we have that:

(γ) comp(P) ∧ ∀(¬Conj 0) is inconsistent

iff comp(P) ∧ ∀(¬Conj 1ϑ1) ∧ . . . ∧ ∀(¬Conj kϑk) is inconsistent

is implied by comp(P) ∧ ∀(¬Conj 1ϑ1) is inconsistent or . . .

. . . or comp(P) ∧ ∀(¬Conj kϑk) is inconsistent

which can also be written as follows (see Figure 10):

(γ∗) comp(P) ⊢ ∃(Conj 0)

iff comp(P) ⊢ ∃(Conj 1ϑ1) ∨ . . . ∨ ∃(Conj kϑk)

is implied by comp(P) ⊢ ∃(Conj 1ϑ1) or . . . or comp(P) ⊢ ∃(Conj kϑk).

6
�

�
�

�
�

�
�

��

A
A
A
A
A
A
A
AA

r

r r

�
�

�
�

�
�
�

��

B
B
B
B
B
B
B
BBN

← Conj 0

ϑ1 ϑk. . .

← Conj 1 ← Conj k. . .

Fig. 10. An upper portion of an SLD tree for program P , goal ← Conj 0, and a se-
lection rule. The up-arrow depicts the if relation of the formula (γ∗) (see page 106).

Note that in (γ) and (γ∗) above, we cannot replace ‘is implied by’ by ‘iff ’.

14. Remarks on Resolution 107

�
�

�
�	

@
@

@
@R

← p

← q ← ¬q

{} {}

Fig. 11. An upper portion of the SLDNF tree for program P = {p← q, p←¬q,
q←q}, goal ← p, and the leftmost selection rule. {} denotes the identity substitu-
tion.

Indeed, let us consider the normal program P = {p← q, p← ¬q, q ← q} and the
goal← p. By performing two SLDNF steps we get the upper portion of the SLDNF
tree shown in Figure 11 on page 107.

Now, we have that: comp(P) = p∧CET, Conj 1 = q, Conj 2 =¬q, and ϑ1 =ϑ2 ={}.
Note that, since q ↔ q is true, we have discarded q ↔ q from the expression of
comp(P).

We also have that:
comp(P) ⊢ ∃(Conj 1) ∨ ∃(Conj 2)

does not imply comp(P) ⊢ ∃(Conj 1) or comp(P) ⊢ ∃(Conj 2)

because
p∧CET ⊢ true

does not imply p∧CET ⊢ q or p∧CET ⊢ ¬q .
2

Index

ǫ0 induction principle, 43
∃1 quantifier, 37
N : standard model, 42
ω-consistency, 45
ω-incompleteness, 45

admissible clause, 93
allowed [program, goal] pair, 93
allowed clause, 93
allowed goal, 93
atom, atomic formula, 9
axiom, axiom schema, 13
axiomatic first order theory, 18

binding, 11
body of a clause, 56
boolean algebra, 102
boolean algebra: axioms, 102
boundvars, 11

c.a.s., computed answer substitution, 92
Clark completion, 86
Clark equality theory, CET, 87
clausal form, 10
clause, 10, 55
closed term, 11
complete lattice, 60
complete theory, 18
completeness of SLD resolution for definite pro-
grams, 68
completeness of SLDNF resolution for hierachical
programs, 101
completeness of SLDNF resolution for hierarchical
normal programs, 94
completion of a definite program, 86
computation rule, 64
computed answer substitution, c.a.s., 66, 92, 100
conclusion, 14
conjunction, 9
connective, 9
consistency, 19
context, 10
continuous function, 61
Cut rule, 23

decidable first order theory, 18
decidable theory, 54
deduction theorem (for Natural Deduction), 22, 23
deduction theorem (for the Classical Presentation),
16

definite clause, 56
definite goal, 56
definite program, 56
denumerable set, 34
dependence relation between formulas, 15
derivation, 14
descendant relation, 85
direct consequence, 14
disjunction, 9
distributivity, 26
domain of an interpretation, 30
duality, dual formula, 29

empty clause, 10, 56
empty goal, 56
enumerable set, 34
equivalence, 9
existential closure, 11
existential quantification, 9
expression, 10
expression of a first order language, 41
extension of a first order theory, 35

factoring step, 52
failed path in an SLD tree, 67
failed path in an SLDNF tree, 92
failure leaf in an SLD tree (failure), 67
failure leaf in an SLDNF tree (failure), 92
fair computation rule, 86
false, 9, 56
finite failure set, FF(P), 85
finitely failed SLD tree, 67
finitely failed SLDNF tree, 92, 100
first order language, 9
first order predicate calculus, 14
first order predicate calculus with equality, 37
first order predicate calculus: classical presentation,
13
first order predicate calculus: natural deduction
presentation, 19
first order predicate calculus: theory, 15
fixpoint, 60
floundering, 91
formula, 9
formula context, 10
formula: (logically) valid, 31
formula: closed, 11
formula: false in an interpretation, 31
formula: logical consequence, 32

109

formula: logical equivalence, 33
formula: open, 11
formula: satisfiable, 31
formula: true in a interpretation, 30
formula: unsatisfiable, 31
freevars, 11
function TP , 63
function symbol, 9, 40

general goals, 90
general programs, 90
Generalization rule, 14
goals, 97
greatest lower bound, glb, 60
ground formula, 11
ground term, 11
group theory, 39
Gödel completeness theorem, 35
Gödel incompleteness theorem, 45
Gödel-Rosser incompleteness theorem, 41, 45

head of a clause, 56
head-body relation, 86
Henkin lemma, 35
Herbrand base, 49
Herbrand interpretation, 49, 96
Herbrand model, 49
Herbrand pre-interpretation, 96
Herbrand theorem, 49
Herbrand universe, 49
hierarchical program, 94, 100
Horn clause, 56

identity binding, 11
if-then, 25
if-then-else, 25
iff-formula of a definite program, 88
implication, 9
inconsistency, 19
inheritance relation, 86
instance, 11
interpretation, 30
interpretation based on a pre-interpretation, 95

Kleene lemma, 62
Knaster-Tarski lemma, 61

lattice, 60
least Herbrand model, 58
least upper bound, lub, 60
Lindenbaum lemma, 35
literal, 10, 55
Lloyd-Topor transformation, 98
logical axioms, 13

lower bound, 60

mathematical induction, 41
model, 31
model intersection property, 58
model of a first order theory, 34
model of a set of formulas, 34
Modus Ponens rule, 14
monotonic function, 60
most general unifier, mgu, 12
most general unifier: relevant, 12

negation, 9
negation-as-failure rule, 92
negative consequences of a definite logic program,
85
non-standard model of PA, 42
normal form of a program, 99
normal goals, 90
normal model of a first order predicate calculus with
equality, 40
normal programs, 90

outermost conjunct, 98

PA theory, 40
paramodulation, 53
partial recursive functions, 44
Peano arithmetic, 40
postfixpoint, 60
pre-interpretation, 95
predicate symbol, 9
prefixpoint, 60
premise, 14
prenex conjunctive normal form, 27
prenex disjunctive normal form, 27
programs, 97
proof, 14
proof tree, 14
proper axiom, 14
propositional tautology, 32

r.e. first order theory, 18
r.e. set, 34
Raphael Robinson Arithmetic, 44
recursively enumerable first order theory, 18
recursively enumerable set, 34
renaming apart, 65
representable function, 43
resolution for conjunctions of clauses: properties,
104
resolution step, 50
resolution: 1-to-1, 52
resolution: binary, 52

110

reverse implication, 9
Robinson theorem, 49
RR theory, 44
rule C, 18
rule of inference, 13
rule: Generalization, 14
rule: Modus Ponens, 14

safe computation rule, 91
satisfaction relation, 30
satisfiability, preservation using Skolemization, 47
scope, 10
search rule, 64
selection rule, 64
semidecidable first order theory, 18
semidecidable theory, 54
sentence, 11
sequent, 20
Skolem theorem, 47
SLD derivation, 64
SLD refutation, 66
SLD resolution for definite programs: properties,
104
SLD resolution step for definite programs, 65
SLD tree, 66
SLDNF derivation, 91
SLDNF refutation, 91
SLDNF resolution for normal programs: properties,
106
SLDNF resolution step for normal programs, 91
SLDNF tree, 92
soundness of first order predicate calculus, 34
soundness of SLD resolution for definite programs,
68
soundness of SLDNF resolution for normal pro-
grams, 94
soundness of SLDNF resolution for programs, 101
standard model N , 42
standard model of PA, 42
statements, 97
strongly representable function, 44
substitution, 11

Substitution rule, 15
substitution: composition, 11
substitution: domain, 11
substitution: grounding, 12
substitution: idempotent, 12
substitution: more general substitution, 12
substitution: range, 11
substitution: restricted to, 12
substitution: solved form, 12
success leaf in an SLD tree (success), 67
success leaf in an SLDNF tree (success), 92
success set, SS(P), 69
successful path in an SLD tree, 67
successful path in an SLDNF tree, 92

Tarski theorem, 43
term, 9
term context, 10
term: free for a variable, 12
theorem, 15, 22
theory: first order theory, 15
true, 9
Turing completeness of definite logic programs, 69

undecidable formula, 19
unifiable terms (or atoms), 12
unification algorithm (Martelli-Montanari), 50
unification algorithm (Robinson), 51
unifier, 12
universal closure, 11
universal quantification, 9
upper bound, 60

variable, 9
variable assignment, 30
variable renaming, 12
variable: bound and free, 10
variable: bound and free occurrence, 10
variant, 56
vars, 11

witness theory, 35

111

References

1. K. R. Apt. Introduction to logic programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, pages 493–576. Elsevier, 1990.

2. F. Black. A deductive question-answering system. In Marvin Minsky, editor,
Semantic Information Processing, pages 354–402. The MIT Press, Cambridge,
Massachusetts, USA, 1968.

3. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Prov-

ing. Academic Press Inc., 1973.
4. G. Gentzen. Die Widerspruchfreiheit der reinen Zahlentheorie. Mathematische

Annalen, 112:493–565, 1936.
5. G. Gentzen. Neue Fassung des Widerspruchsfreiheitsbeweises fuer die reine

Zahlentheorie. Forschungen zur Logik und zur Grundlagen der exakten Wis-

senschaften. New series, 4:19–44, 1938.
6. Intelligent Systems Laboratory. SICStus Prolog User’s Manual. Swedish Insti-

tute of Computer Science, 1995.
7. R. A. Kowalski. Logic for Problem Solving. North Holland, 1979.
8. J. W. Lloyd. Foundations of Logic Programming. Second Edition. Springer-

Verlag, Berlin, 1987.
9. Z. Manna. Mathematical Theory of Computation. MacGraw-Hill, 1974.

10. E. Mendelson. Introduction to Mathematical Logic. Third Edition. Wadsworth
& Brooks/Cole Advanced Books & Software, Monterey, California, Usa, Mon-
terey, California, Usa, 1987.

11. J. A. Robinson. A machine-oriented logic based on the resolution principle.
Journal of the ACM, 12(1):23–41, 1965.

12. H. Rasiowa and R. Sikorski. The Mathematics of Metamathematics. Third
Edition. Tom 41. PWN, Polish Scientific Publishers, Warszawa, Poland, 1970.

13. J. R. Shoenfield. Mathematical Logic. Addison-Wesley Publishing Company,
1967.

14. A. Tarski, A. Mostowski, and R. Robinson. Undecidable Theories. North-
Holland Publishing Company, 1953.

