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Introduction

Human serum albumin (HSA), the most abundant

protein in plasma (reaching a blood concentration of

about 7.0 · 10)4
m), is a depot and a carrier for many

endogenous and exogenous compounds, affects the

pharmacokinetics of many drugs, holds some ligands

in a strained orientation which results in their meta-

bolic modification, renders potential toxins harmless

by transporting them to disposal sites, accounts for

most of the antioxidant capacity of human serum and

displays (pseudo-)enzymatic properties [1–13].

HSA is a single, nonglycosylated all-a-chain protein

of 585 amino acids, which contains three homologous

domains (labeled I, II and III). Each domain is com-

posed of two separate helical subdomains (named A and

B) connected by random coils. Terminal regions of

sequential domains contribute to the formation of inter-

domain helices linking domain IB to domain IIA, and

domain IIB to domain IIIA, respectively [3,7,11,13–21].

The structural organization of HSA provides a variety

of ligand-binding sites. The heme binds physiologically
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Heme endows human serum albumin (HSA) with heme-protein-like reactiv-

ity and spectroscopic properties. Here, the kinetics and thermodynamics of

reductive nitrosylation of ferric human serum heme-albumin [HSA-heme-

Fe(III)] are reported. All data were obtained at 20 �C. At pH 5.5,

HSA-heme-Fe(III) binds nitrogen monoxide (NO) reversibly, leading to the

formation of nitrosylated HSA-heme-Fe(III) [HSA-heme-Fe(III)-NO]. By

contrast, at pH ‡ 6.5, the addition of NO to HSA-heme-Fe(III) leads to

the transient formation of HSA-heme-Fe(III)-NO in equilibrium with

HSA-heme-Fe(II)-NO+. Then, HSA-heme-Fe(II)-NO+ undergoes nucleo-

philic attack by OH) to yield ferrous human serum heme-albumin

[HSA-heme-Fe(II)]. HSA-heme-Fe(II) further reacts with NO to give nitro-

sylated HSA-heme-Fe(II) [HSA-heme-Fe(II)-NO]. The rate-limiting step

for reductive nitrosylation of HSA-heme-Fe(III) is represented by the

OH)-mediated reduction of HSA-heme-Fe(II)-NO+ to HSA-heme-Fe(II).

The value of the second-order rate constant for OH)-mediated reduction

of HSA-heme-Fe(II)-NO+ to HSA-heme-Fe(II) is 4.4 · 103 m
)1Æs)1. The

present results highlight the role of HSA-heme-Fe in scavenging reactive

nitrogen species.

Abbreviations

CO, carbon monoxide; G. max Lb, Glycine max leghemoglobin; Hb, hemoglobin; HPX-heme-Fe, hemopexin-heme-Fe; HSA, human serum

albumin; HSA-heme-Fe(II), ferrous HSA-heme-Fe; HSA-heme-Fe(II)-NO, nitrosylated HSA-heme-Fe(II); HSA-heme-Fe(III), ferric HSA-heme-Fe;

HSA-heme-Fe(III)-NO, nitrosylated HSA-heme-Fe(III); HSA-heme-Fe, human serum heme-albumin; Mb, myoglobin; NO, nitrogen monoxide.

FEBS Journal (2010) ª 2010 The Authors Journal compilation ª 2010 FEBS 1



to the fatty acid site 1, located within the IB subdo-

main, with high affinity (Kheme � 1 · 10)8
m). The tet-

rapyrrole ring is arranged in a D-shaped cavity limited

by Tyr138 and Tyr161 residues that provide a p–p
stacking interaction with the porphyrin and supply a

donor oxygen (from Tyr161) for the heme-Fe(III)-atom

[11,20–22]. Heme endows HSA with heme-protein-like

reactivity [7,20,22–34] and spectroscopic properties

[12,23,25,27,32,34–37]. Remarkably, HSA–heme has

been reported to bind nitrogen monoxide (NO)

[24,25,27,30,33,35] and to act as a NO and peroxy-

nitrite scavenger [29,34].

Here, the kinetics and thermodynamics of the revers-

ible nitrosylation of ferric HSA-heme-Fe [HSA-heme-

Fe(III)] at pH 5.5 and of the irreversible reductive

nitrosylation of HSA-heme-Fe(III) between pH 6.5

and pH 9.5 are reported. The rate-limiting step of

reductive nitrosylation of HSA-heme-Fe(III) is repre-

sented by the OH)-mediated reduction of ferric nitro-

sylated HSA-heme-Fe [HSA-heme-Fe(III)-NO] to

ferrous HSA-heme-Fe [HSA-heme-Fe(II)]. In turn,

HSA-heme-Fe(II) undergoes fast nitrosylation [to

HSA-heme-Fe(II)-NO]. This purely fundamental study

highlights the role of HSA-heme-Fe in scavenging

reactive nitrogen species.

Results

The kinetics and thermodynamics of reversible nitrosy-

lation of HSA-heme-Fe(III) at pH 5.5, and of irreversible

reductive nitrosylation of HSA-heme-Fe(III) between

pH 6.5 and pH 9.5, were fitted to the minimum reac-

tion mechanism represented by the following reactions

in Scheme 1 [9,38–42]:

Reversible nitrosylation of HSA-heme-Fe(III) at pH 5.5

The addition of NO to the HSA-heme-Fe(III) solution

was accompanied by a shift in the maximum of

the optical absorption spectrum in the Soret band

from 403 nm [i.e. HSA-heme-Fe(III)] to 368 nm [i.e.

HSA-heme-Fe(III)-NO] and a corresponding change

of the extinction coefficient from e403 nm = 1.1 · 105

m
)1Æcm)1 to e368 nm = 5.4 · 104 m

)1Æcm)1. The reac-

tion was completely reversible as the spectrum reverted

to the initial absorption spectrum by merely pumping

off gaseous NO or bubbling helium through the HSA-

heme-Fe(III)-NO solution. The optical absorption

spectra of HSA-heme-Fe(III) and HSA-heme-Fe(III)-

NO observed here correspond to those reported in the

literature [29,35,43].

Under all the experimental conditions, the time

course for reversible nitrosylation of HSA-heme-

Fe(III) conformed to a single-exponential decay for

94–98% of its course (Fig. 1 and Eqn 1). Values of

kobs were wavelength-independent and NO-indepen-

dent at a fixed concentration of NO. Figure 1 shows

the dependence of kobs for HSA-heme-Fe(III) nitrosy-

lation on the NO concentration (i.e. [NO]). The analy-

sis of data according to Eqn (2) allowed the values of

kon (= 1.3 · 104 m
)1Æs)1) and koff (= 2.0 · 10)1 s)1)

to be determined, at pH 5.5 and 20 �C (Table 1).

The dependence of the molar fraction of HSA-heme-

Fe(III)-NO (i.e. Y) on the NO concentration (i.e.

[NO]) is shown in Fig. 1. The analysis of data accord-

ing to Eqn (3) allowed the value of K (= 1.5 ·
10)5

m), at pH 5.5 and 20 �C (Table 1) to be deter-

mined. Consistently with the stoichiometry of reaction

(a) in Scheme 1, the Hill coefficient n was 1.01 ± 0.02.

As expected for simple systems [44], the experimentally

determined value of K (= 1.5 · 10)5
m) corresponded

to that calculated from koff and kon values (i.e.

K = koff ⁄kon = 1.5 · 10)5
m).

Note that HSA-heme-Fe(III)-NO does not undergo

significant reductive nitrosylation at pH 5.5 and 20 �C
(< 5% after 30 min).

Irreversible reductive nitrosylation of

HSA-heme-Fe(III) between pH 6.5 and pH 9.5

Mixing the HSA-heme-Fe(III) and NO solutions

induced a shift of the optical absorption maximum of

the Soret band from 403 nm [i.e. HSA-heme-Fe(III)]

to 368 nm [i.e. HSA-heme-Fe(III)-NO ⁄HSA-heme-

Fe(II)-NO+] and a corresponding change of the extinc-

tion coefficient from e403 nm = 1.1 · 105 m
)1Æcm)1 to

e368 nm = 5.4 · 104 m
)1Æcm)1. Then, the HSA-heme-

Fe(III)-NO ⁄HSA-heme-Fe(II)-NO+ solution underwent

a shift of the optical absorption maximum of the Soret

band from 368 nm [i.e. HSA-heme-Fe(III)-NO ⁄HSA-

heme-Fe(II)-NO+] to 389 nm [i.e. HSA-heme-Fe(II)-NO]

and a change of the corresponding extinction coefficient

from e368 nm = 5.4 · 104 m
)1Æcm)1 to e389 nm =

6.3 · 104 m
)1Æcm)1. The reaction was irreversible

Scheme 1. HSA-heme-Fe nitrosylation.
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because the spectrum of HSA-heme-Fe(II)-NO

reverted to HSA-heme-Fe(II) instead of to HSA-heme-

Fe(III) by merely pumping off gaseous NO or by

bubbling helium through the HSA-heme-Fe(II)-NO

solution; however, the denitrosylation process needs

about 12 h for completion.

The optical absorption spectra of the HSA-heme

derivatives observed here correspond to those reported

in the literature [29,35,43]. Free HSA-heme-Fe(II) was

never detected spectrophotometrically because of the

very rapid reaction between HSA-heme-Fe(II) and NO

(lon ‡ 1.2 · 107 m
)1Æs)1; see Table 1).

Over the whole NO concentration range explored,

the time course for HSA-heme-Fe(III) reductive nitro-

sylation corresponded to a biphasic process (Fig. 2 and

Eqn 4); values of kobs and hobs were wavelength-inde-

pendent at a fixed concentration of NO. The first step

of kinetics for HSA-heme-Fe(III) reductive nitrosyla-

tion (indicated by kon in Scheme 1) was a bimolecular

process, as observed under pseudo-first-order condi-

tions (Fig. 2). Plots of kobs versus [NO] were linear

(Eqn 2), the slope corresponding to kon. Values of kon
ranged between 7.5 · 103 and 2.4 · 104 m

)1Æs)1 over

the pH range explored (Table 1). The y intercept of

plots of kobs versus [NO] corresponded to koff; the

values of koff ranged between 1.9 · 10)1 and 4.8 ·
10)1 s)1 (Table 1). By contrast, the second step (indi-

cated by hobs in Scheme 1) followed an [NO]-indepen-

dent monomolecular behavior (Fig. 2) at all pH values

investigated. According to Scheme 1, the value of hobs

increased linearly on increasing [OH)] (i.e. from pH

6.5 to 9.5; see Fig. 3, Table 1 and Eqn 5). The slope

and the y intercept of the plot of hobs versus [OH)]

corresponded to hOH� (= 4.4 · 103 m
)1Æs)1) and to

hH2O (= 3.5 · 10)4 s)1), respectively (Table 1).

Between pH 6.5 and pH 9.5, the molar fraction of

HSA-heme-Fe(III)-NO (i.e. Y) increased on free [NO],

tending to level off at [NO] > 10 · K, according to

Eqn (3). The analysis of data according to Eqn (3)

allowed us to determine values of K, ranging between

1.3 · 10)5 and 3.1 · 10)5
m, at 20 �C over the pH

range investigated (Table 1). According to the HSA-

heme-Fe(III) : NO 1 : 1 stoichiometry of reaction (a)

in Scheme 1, the Hill coefficient n was 1.00 ± 0.02. As

expected for a simple system [44], values of K corre-

sponded to those of koff ⁄kon, under all the experimen-

tal conditions investigated (Table 1).

Determination of nitrite, nitrate and

S-nitrosothiols

The concentrations of nitrite, nitrate and S-nitroso-

thiols were determined after HSA-heme-Fe(III) reductive

Fig. 1. NO binding to HSA-heme-Fe(III), at pH 5.5 and 20 �C.

(A) Normalized averaged time courses of HSA-heme-Fe(III) nitrosy-

lation. The NO concentrations were 2.5 · 10)5
M (trace a),

5.0 · 10)5
M (trace b) and 2.0 · 10)4

M (trace c). The time course

analysis according to Eqn (1) allowed the determination of the fol-

lowing values of kobs and Y: trace a, kobs = 5.2 · 10)1 s)1 and

Y = 0.64; trace b, kobs = 8.7 · 10)1 s)1 and Y = 0.78; and trace c,

kobs = 2.8 s)1 and Y = 0.95. (B) Dependence of kobs for HSA-heme-

Fe(III) nitrosylation on [NO]. The continuous line was generated

from Eqn (2) with kon = (1.3 ± 0.2) · 104
M

)1Æs)1 and koff =

(2.0 ± 0.2) · 10)1 s)1. (C) Dependence of Y for HSA-heme-Fe(III)

nitrosylation on free [NO]. Open and filled triangles indicate values

of Y obtained from equilibrium and kinetic experiments, respec-

tively. The continuous line was generated from Eqn (3) with

K = (1.5 ± 0.2) · 10)5
M. The HSA-heme-Fe(III) concentration was

3.3 · 10)6
M. The equilibration time was 10 min. For details, see

the text.
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nitrosylation, at pH 7.5 and 20 �C. As shown in

Table 2, reductive nitrosylation of HSA-heme-Fe(III)

yielded essentially NO�2 (NO�3 < 10%). Under condi-

tions where [NO] £ [HSA-heme-Fe(III)], [NO�2 ] +

[NO�3 ] = ½[NO]. However, where [NO] = 2 · [HSA-

heme-Fe(III)], [NO�2 ] + [NO�3 ] = [HSA-heme-Fe(III)].

Moreover, the [HSA-heme-Fe(III)] : NO : [HSA-heme-

Fe(II)-NO] : NO�2 stoichiometry is 1 : 2 : 1 : 1. Lastly,

S-nitrosylation of the single thiol present in HSA (i.e.

Cys34) does not significantly occur during reductive

nitrosylation of HSA-heme-Fe(III) (< 10%; data not

shown).

Reversible nitrosylation of HSA-heme-Fe(II)

between pH 5.5 and pH 9.5

The addition of NO (either gaseous or dissolved in the

buffer solution) to the HSA-heme-Fe(II) solution

brings about a shift in the maximum of the optical

absorption spectrum in the Soret band from 418 nm

[i.e. HSA-heme-Fe(II)] to 389 nm [i.e. HSA-heme-

Fe(II)-NO] and a corresponding change of the extinc-

tion coefficient from e418 nm = 8.7 · 104 m
)1Æcm)1 to

e389 nm = 6.4 · 104 m
)1Æcm)1. The optical absorption

spectra of HSA-heme-Fe(II) and HSA-heme-Fe(II)-NO

Table 1. Values of thermodynamic and kinetic parameters for reductive nitrosylation of HSA-heme-Fe(III), at 20 �C. ND, not determined.

pH K (M) kon (M)1Æs)1) koff (s)1) koff ⁄ kon (M) hobs (s)1) L (M) lon (M)1Æs)1) loff (s)1) loff ⁄ lon (M)

5.5 1.5 · 10)5 1.3 · 104 2.0 · 10)1 1.5 · 10)5 a– £ 3.3 · 10)8 1.6 · 107 1.3 · 10)4 8.1 · 10)12

6.5 2.9 · 10)5 1.5 · 104 4.8 · 10)1 3.2 · 10)5 2.1 · 10)4 £ 3.3 · 10)8 ND 2.4 · 10)4 ND

7.5 1.8 · 10)5 2.1 · 104 3.1 · 10)1 1.5 · 10)5 1.7 · 10)3 £ 3.3 · 10)8 2.1 · 107 1.4 · 10)4 6.7 · 10)12

8.1 3.1 · 10)5 8.5 · 103 2.5 · 10)1 2.9 · 10)5 6.3 · 10)3 £ 3.3 · 10)8 ND 2.1 · 10)4 ND

8.5 1.3 · 10)5 1.6 · 104 1.9 · 10)1 1.2 · 10)5 1.4 · 10)2 £ 3.3 · 10)8 1.2 · 107 1.7 · 10)4 1.4 · 10)11

9.0 1.9 · 10)5 2.4 · 104 3.6 · 10)1 1.5 · 10)5 3.5 · 10)2 £ 3.3 · 10)8 ND 1.9 · 10)4 ND

9.5 2.6 · 10)5 7.5 · 103 2.1 · 10)1 2.8 · 10)5 1.4 · 10)1 £ 3.3 · 10)8 1.8 · 107 2.6 · 10)4 1.4 · 10)11

a HSA-heme-Fe(III)-NO does not undergo significant reductive nitrosylation at pH 5.5 (< 5% in 30 min).

Fig. 2. HSA-heme-Fe(III) reductive nitrosylation, at pH 7.5 and 20 �C. (A) Normalized averaged time courses of HSA-heme-Fe(III) reductive

nitrosylation. The NO concentrations were 2.5 · 10)5
M (trace a), 5.0 · 10)5

M (trace b) and 2.0 · 10)4
M (trace c). The time course analysis

according to Eqn (4a–c) allowed the determination of the following values of kobs, hobs and Y: trace a, kobs = 8.1 · 10)1 s)1,

hobs = 1.8 · 10)3 s)1 and Y = 0.64; trace b, kobs = 1.5 s)1, hobs = 1.7 · 10)3 s)1 and Y = 0.73; and trace c, kobs = 4.7 s)1,

hobs = 1.9 · 10)3 s)1 and Y = 0.93. (B) Dependence of kobs for HSA-heme-Fe(III) reductive nitrosylation on [NO]. The continuous line was

generated from Eqn (2) with kon = (2.1 ± 0.2) · 104
M

)1Æs)1 and koff = (3.1 ± 0.3) · 10)1 s)1. (C) Dependence of hobs for HSA-heme-Fe(III)

reductive nitrosylation on [NO]. The average hobs value is 1.7 · 10)3 s)1. (D) Dependence of Y for HSA-heme-Fe(III) reductive nitrosylation

on free [NO]. The continuous line was generated from Eqn (3) with K = (1.8 ± 0.2) · 10)5
M. The HSA-heme-Fe(III) concentration was

3.3 · 10)6
M. For details, see the text.
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determined here correspond to those reported in the

literature [25,27,28,32,34,35,43]. The reaction is com-

pletely reversible because the spectrum reverts to the

initial absorption spectrum by merely pumping off

gaseous NO or bubbling helium through the solution;

however, the denitrosylation process needs about 12 h

to be completed.

Under all the experimental conditions investigated,

the time course for reversible nitrosylation of HSA-

heme-Fe(II) conformed to a single-exponential decay

for 90–94% of its course (Fig. 4 and Eqn 6). Values of

lobs were wavelength- and NO-independent at fixed

NO concentrations. Figure 4 shows the linear depen-

dence of lobs for HSA-heme-Fe(II) nitrosylation on the

NO concentration (i.e. [NO]). The analysis of data

according to Eqn (7) allowed us to determine values of

kon ranging between 1.2 · 107 and 2.1 · 107 m
)1Æs)1

(Table 1).

Under all the experimental conditions, the time-

course for HSA-heme-Fe(II)-NO denitrosylation

[i.e. NO replacement by carbon monoxide (CO)] con-

forms to a single-exponential decay (from 97% to

102%) of its course (Fig. 4). The analysis of data

according to Eqn (8) allowed us to determine loff val-

ues ranging between 1.3 · 10)4 and 2.6 · 10)4 s)1, at

20 �C over the pH range explored (Table 1). Values of

loff are pH-, wavelength- and CO-independent in the

presence of an excess of sodium dithionite. The loff val-

ues reported here correspond to those determined pre-

viously in the absence of allosteric effectors [24,30,33].

Figure 4 shows the dependence of the molar fraction

of HSA-heme-Fe(II)-NO (i.e. Y) on the NO concentra-

tion (i.e. [NO]). The value of Y increased linearly with

the NO concentration, reaching the maximum

(= 1.0 ± 0.05) at the 1 : 1 HSA-heme-Fe(II):NO

molar ratio, even at the minimum HSA-heme-Fe(II)

concentration investigated (= 3.3 · 10)6
m). Accord-

ing to the literature [45], this behavior reflects a very

high affinity of NO for HSA-heme-Fe(II), the value of

the dissociation equilibrium constant L being lower

than that of the HSA-heme-Fe(II) concentration by at

least two orders of magnitude; thus, L £ 3 · 10)8
m

over the whole pH range explored, at 20 �C (Table 1).

As expected for a simple reversible ligand-binding sys-

tem [44], the values of L agree with those calculated

from lon and loff (i.e. L = loff ⁄ lon), under all the experi-

mental conditions investigated (Table 1).

Discussion

HSA-heme-Fe(III) undergoes irreversible reductive

nitrosylation between pH 6.5 and pH 9.5, under anaer-

obic conditions. In fact, the addition of NO to

HSA-heme-Fe(III) leads to the transient formation of

HSA-heme-Fe(III)-NO in equilibrium with HSA-heme-

Fe(II)-NO+. Then, HSA-heme-Fe(II)-NO+ undergoes

nucleophilic attack by OH) to yield HSA-heme-Fe(II).

HSA-heme-Fe(II) thus produced reacts further with

NO to give HSA-heme-Fe(II)-NO. By contrast, at pH

5.5, HSA-heme-Fe(III) undergoes fully reversible NO

binding. In fact, the HSA-heme-Fe(III)-NO derivative

does not convert significantly to HSA-heme-Fe(II)-NO

(Fig. 1 and Table 1). The data reported here match

well with Scheme 1, the NO : NO�2 stoichiometry

being 2 : 1. Moreover, no significant formation of

S-nitrosothiol occurs during the reductive nitrosylation

of HSA-heme-Fe(III).

The analysis of kinetic and thermodynamic parame-

ters reported in Table 3 allows the following consider-

ations.

(a) The values of kon and lon for the reductive nitrosy-

lation of ferric rabbit hemopexin-heme-Fe (HPX-

heme-Fe) [46] and horse cytochrome c [38,39] are

lower than those reported for HSA-heme-Fe (the

present study), Glycine max leghemoglobin

(G. max Lb) [42], sperm whale myoglobin (Mb)

[38,39] and tetrameric human hemoglobin (Hb)

[39]. This reflects the hexa-coordination of the

heme-Fe atom of rabbit HPX-heme-Fe and horse

Fig. 3. Dependence of hobs on [OH)] for HSA-heme-Fe(III) reduc-

tive nitrosylation, at 20 �C. The continuous line was generated

from Eqn (5) with hOH� = (4.4 ± 0.3) · 103
M

)1Æs)1 and hH2O =

(3.5 ± 0.4) · 10)4 s)1 For details, see the text.

Table 2. NO�2 and NO�3 concentration obtained by reductive

nitrosylation of HSA-heme-Fe(III), at pH 7.5 and 20 �C. The HSA-

heme-Fe(III) concentration was 1.0 · 10)4
M.

[NO] (M) [NO�2 ] (M) [NO�3 ] (M)

[NO�2 ] +

[NO�3 ] (M)

5.0 · 10)5 (2.4 ± 0.3) · 10)5 (1.2 ± 0.2) · 10)6 2.5 · 10)5

1.0 · 10)4 (4.7 ± 0.5) · 10)5 (3.1 ± 0.4) · 10)6 5.0 · 10)5

2.0 · 10)4 (9.2 ± 0.9) · 10)5 (7.1 ± 0.8) · 10)6 9.9 · 10)5

P. Ascenzi et al. Reductive nitrosylation of HSA-heme-Fe(III)
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cytochrome c, which must undergo transient

penta-coordination to allow exogenous ligand (i.e.

NO) binding [47,48].

(b) Values of koff for NO dissociation from heme-

Fe(III)-NO complexes range between £ 10)4 and

1.4 · 101 s)1, while values of loff for NO dissocia-

tion from heme-Fe(II)-NO complexes are always

£ 10)3 s)1. This may reflect the different stabiliza-

tion mode of the heme-Fe bound (e.g. NO) by

heme distal residues [32,47–53].

(c) Although values of kon and koff for NO binding to

heme-Fe(III) proteins are very different, values of

K (= koff ⁄kon) are closely similar, indicating the

occurrence of kinetic compensation phenomena. By

contrast, values of L (= loff ⁄ lon) are markedly dif-

ferent, primarily as a result of lon values. As a

whole, this may reflect the interplay between the

redox state of the heme-Fe atom and the nitrosyla-

tion process.

(d) The hOH� value for reductive nitrosylation of

rabbit HPX-heme-Fe(III) (‡ 7 · 105 m
)1Æs)1) [46] is

larger than those reported for HSA-heme-Fe(III)

(the present study), horse cytochrome c(III)

[38,39], G. max Lb(III) [42], sperm whale Mb(III)

[38,39] and human Hb(III) [39], ranging between

3.2 · 102 and 4.4 · 103 m
)1Æs)1. This may reflect

different anion accessibility to the heme pocket

[44,54] and heme-protein reduction potentials

[39,42].

(e) Although the values of hOH� and hH2O cannot be

compared directly, OH) ions catalyze reductive

nitrosylation of HSA-heme-Fe(II)-NO+ much

more efficiently than H2O (the present study), as

previously reported for G. max Lb(III) [42] and

human Hb(III) [39], reflecting the role of OH) in

heme-Fe(II) formation [39]. According to the litera-

ture [39,42], the pH dependence of hobs has been

attributed to changes of the OH) concentration.

The linear dependence of hobs on [OH)] indicates

that no additional elements appear to be involved

in irreversible reductive nitrosylation of HSA-

heme-Fe(III) (see Scheme 1, Eqn 5 and Fig. 3).

Fig. 4. HSA-heme-Fe(II) nitrosylation at pH 5.5 and 7.5, and at 20 �C. (A) Normalized averaged time course of HSA-heme-Fe(II) nitrosylation

at pH 5.5 (trace a) and 7.5 (trace b), and at 20 �C. The time course analysis according to Eqn (6) allowed the determination of the following

values of lobs: 1.0 · 102 s)1 (trace a) and 1.2 · 102 s)1 (trace b). For clarity, the time course obtained at pH 7.5 was up-shifted by 0.4. The

HSA-heme-Fe(II) and NO concentrations were 1.2 · 10)6 and 6.0 · 10)6
M, respectively. (B) Dependence of lobs for HSA-heme-Fe(II) nitrosy-

lation on [NO] at pH 5.5 (triangles) and 7.5 (circles), and at 20 �C. The continuous lines were generated from Eqn (7) using the following

values of lon: (1.6 ± 0.2) · 107
M

)1Æs)1 (pH 5.5) and (2.1 ± 0.2) · 107
M

)1Æs)1 (pH 7.5). (C) Normalized averaged time courses of HSA-heme-

Fe(II)-NO denitrosylation, at pH 5.5 (trace a) and 7.5 (trace b), and at 20 �C. The time course analysis according to Eqn (8) allowed the deter-

mination of the following values of loff: 1.3 · 10)4 s)1 (trace a) and 1.4 · 10)4 (trace b). For clarity, the time course obtained at pH 7.5 was

up-shifted by 0.4. The HSA-heme-Fe(II)-NO, CO and sodium dithionite concentrations were 3.3 · 10)6, 2.0 · 10)4 and 1.0 · 10)2
M, respec-

tively. (D) Dependence of Y on [NO] for HSA-heme-Fe(II) nitrosylation at pH 5.5 (triangles) and 7.5 (circles), and at 20 �C. The arrow indicates

the 1 : 1 molar ratio of HSA-heme-Fe(II) : NO. For clarity, the values of Y obtained at pH 7.5 were up-shifted by 0.4. The HSA-heme-Fe(II)

concentration was 3.3 · 10)6
M. For details, see the text.
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However, we cannot exclude that the observed pH

effects could also reflect reversible pH-dependent

conformational transitions of HSA. In fact,

between pH 4.3 and pH 8.0, HSA displays the neu-

tral form, while at pH > 8.0, HSA exhibits the

basic form [3,9,36,37].

(f) Different rate-limiting steps affect the reductive

nitrosylation of heme-Fe(III) proteins. Indeed,

reductive nitrosylation of HSA-heme-Fe(III) (the

present study), G. max Lb(III) [42], sperm whale

Mb(III) [39] and human Hb(III) [39] is limited by

the OH)-mediated reduction of HSA-heme-Fe(II)-

NO+ to HSA-heme-Fe(II) (reaction (c) in Scheme

1). By contrast, NO binding to hexa-coordinated

rabbit HPX-heme(III) and horse cytochrome c(III)

(reaction (a) in Scheme 1) represents the rate-limit-

ing step [39,46].

The present results highlight the role of HSA-heme-

Fe in the scavenging of reactive nitrogen species. In

fact, HSA-heme-Fe(III) facilitates the conversion of

NO to NO�2 (reaction (c) in Scheme 1, and Table 2;

the present study) and peroxynitrite isomerization to

NO�3 [34]. Moreover, HSA-heme-Fe(II)-NO catalyzes

peroxynitrite detoxification [29]. NO and peroxynitrite

scavenging by HSA-heme-Fe (the present study and

[29,34]) could occur in patients displaying a variety of

severe hemolytic diseases characterized by excessive

intravascular hemolysis [29,34]. In fact, under

these pathological conditions, the HSA-heme-Fe

plasmatic level increases from the low physiological

concentration (approximately 1 · 10)6
m), which

appears to be irrelevant for catalysis, to high concen-

trations (> 1 · 10)5
m), which appear to be enzymati-

cally relevant [34].

Lastly, HSA, acting not only as a heme carrier but also

displaying transient heme-based properties, represents a

case for ‘chronosteric effects’ [31], which opens the

scenario towards the possibility of a time- and metabo-

lite-dependent multiplicity of roles for HSA.

Materials and methods

Materials

HSA (essentially fatty-acid free, ‡ 96%), hemin [iron(III)–

protoporphyrin(IX)], Bis-Tris propane and Mes were

obtained from Sigma-Aldrich (St Louis, MO, USA). Gas-

eous NO was purchased from Aldrich Chemical Co.

(Milwaukee, WI, USA) and purified by flowing through a

NaOH column in order to remove acidic nitrogen oxides.

CO was purchased from Linde AG (Höllriegelskreuth,

Germany). All other chemicals were obtained from

Sigma-Aldrich and Merck AG (Darmstadt, Germany). All
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products were of analytical or reagent grade and used with-

out purification unless stated otherwise.

The HSA-heme-Fe(III) solution (1.2 · 10)6, 3.3 · 10)6

and 2.0 · 10)4
m) was prepared by adding a 0.7 m defect of

the heme-Fe(III) stock solution (1.0 · 10)2
m NaOH) to

the HSA solution (1.0 · 10)1
m Mes, pH 5.5, or

1.0 · 10)1
m Bis-Tris propane, pH 6.5 to 9.5) at 20 �C [35].

Then, the HSA-heme-Fe(III) solution was degassed and

kept under helium.

HSA-heme-Fe(II) was prepared by adding very few

grains of sodium dithionite to the HSA-heme-Fe(III) solu-

tion (1.2 · 10)6 and 3.3 · 10)6
m) either at pH 5.5

(1.0 · 10)1
m Mes) or between pH 6.5 and pH 9.5

(1.0 · 10)1
m Bis-Tris propane) and 20 �C, under anaerobic

conditions [44].

The NO and CO stock solutions were prepared anaerobi-

cally by keeping distilled water in a closed vessel under

purified NO or CO, at 760.0 mmHg and 20 �C. The solu-

bility of NO and CO in the water is 2.05 · 10)3 and

1.03 · 10)3
m, respectively, at 760.0 mmHg and 20 �C [44].

The NO and CO stock solutions were diluted with degassed

1.0 · 10)1
m Mes buffer (pH 5.5) or Bis-Tris propane

buffer (pH 6.5–9.5) to reach the desired concentration

(3.0 · 10)6
m £ [NO] £ 4.0 · 10)4

m, and 1.0 · 10)4
m £

[CO] £ 5.0 · 10)4
m).

Methods

Reversible nitrosylation of HSA-heme-Fe(III) at pH 5.5

Values of the pseudo-first-order rate constant (i.e. kobs; reac-

tion (a) in Scheme 1) and of the dissociation equilibrium

constant (i.e. K = koff ⁄ kon; reaction (a) in Scheme 1) for

HSA-heme-Fe(III) nitrosylation were obtained by mixing

the HSA-heme-Fe(III) solution (final concentration

3.3 · 10)6
m) with the NO solution (final concentration,

3.0 · 10)6 to 4.0 · 10)4
m) under anaerobic conditions. No

gaseous phase was present. HSA-heme-Fe(III) nitrosylation

was monitored between 350 and 470 nm.

Values of kobs were obtained according to Eqn (1) [44]:

½HSA� heme� FeðIIIÞ�t¼ ½HSA� heme� FeðIIIÞ�i�e�kobs�t

ð1Þ

Values of the second-order rate constant for HSA-heme-

Fe(III) nitrosylation (i.e. kon; reaction (a) in Scheme 1) and

of the first-order rate constant for the dissociation of the

HSA-heme-Fe(III)-NO adduct (i.e. koff; reaction (a) in

Scheme 1) were determined from the dependence of kobs on

[NO], according to Eqn (2) [44]:

kobs ¼ kon � ½NO� þ koff ð2Þ

The value of K (= koff ⁄ kon; reaction (a) in Scheme 1)

was determined from the dependence of the molar fraction

of HSA-heme-Fe(III)-NO (i.e. Y) on the free NO concen-

tration (i.e. [NO]), according to Eqn (3) [44]:

Y ¼ ½NO�
K þ ½NO� ð3Þ

Values of K, kon and koff for HSA-heme-Fe(III) nitrosy-

lation (reaction (a) in Scheme 1) were obtained at pH 5.5

(Mes buffer) and 20 �C.
HSA-heme-Fe(III)-NO was also obtained anaerobically

by keeping the HSA-heme-Fe(III) solution under purified

gaseous NO (760 mmHg), at pH 5.5 (1.0 · 10)1
m Mes

buffer) [38,39].

Irreversible reductive nitrosylation of HSA-heme-Fe(III)

between pH 6.5 and pH 9.5

Values of the pseudo-first-order rate constants (i.e. kobs and

hobs; reactions (a, c) in Scheme 1, respectively) and of the

dissociation equilibrium constant [i.e. K (= koff ⁄ kon); reac-
tion (a) in Scheme 1] for HSA-heme-Fe(III) reductive nitro-

sylation were obtained by mixing the HSA-heme-Fe(III)

solution (final concentration 3.3 · 10)6
m) with the NO

solution (final concentration, 1.2 · 10)5 to 4.0 · 10)4
m)

under anaerobic conditions. No gaseous phase was present.

HSA-heme-Fe(III) reductive nitrosylation was monitored

between 350 and 470 nm.

Values of the pseudo-first-order rate constants kobs and

hobs were obtained according to Eqn (4a–c) [38–42,46,55]:

½FeðIIIÞ�t¼ ½FeðIIIÞ�i�e�kobs�t ð4aÞ

½FeðIIIÞ �NO�t ¼ ½FeðIIIÞ�i

� kobs � e�kobs�t

hobs � kobs
þ e�hobs�t

kobs � hobs

 !
ð4bÞ

½FeðIIÞ �NO�t ¼ ½FeðIIIÞ�i � ½FeðIIIÞ�t
þ ½FeðIIIÞ �NO�t

ð4cÞ

Values of kon and koff (reaction (a) in Scheme 1) were

determined from the dependence of kobs on [NO], according

to Eqn (2) [44].

Values of K (= koff ⁄ kon; reaction (a) in Scheme 1) were

determined from the dependence of Y on [NO], according

to Eqn (3) [44].

The value of the second-order rate constant for OH)-cata-

lyzed conversion of HSA-heme-Fe(II)-NO+ to HSA-heme-

Fe(II) (i.e. hOH� ; reaction (c) in Scheme 1) was deter-

mined from the dependence of hobs on [OH)] according

to Eqn (5) [38,39]:

hobs ¼ hOH� � ½OH�� þ hH2O ð5Þ

Reductive nitrosylation of HSA-heme-Fe(III) P. Ascenzi et al.
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where hH2Ois the first-order rate constant for the H2O-

catalyzed conversion of HSA-heme-Fe(II)-NO+ to

HSA-heme-Fe(II).
Values of K, kon, koff and hobs for HSA-heme-Fe(III)

reductive nitrosylation [reactions (a, c) in Scheme 1] were

obtained between pH 6.5 and pH 9.5 (1.0 · 10)1
m Bis-Tris

propane buffer) and at 20 �C.
HSA-heme-Fe(III) reductive nitrosylation was also

obtained anaerobically by keeping the HSA-heme-Fe(III)

solution under purified gaseous NO (760 mmHg), between

pH 6.5 and pH 9.5 (1.0 · 10)1
m Bis-Tris propane buffer)

and at 20 �C [38,39].

Determination of nitrite, nitrate and S-nitrosothiols

The concentrations of nitrite, nitrate and S-nitrosothiols

were determined after HSA-heme-Fe(III) reductive nitrosy-

lation at pH 7.5 (1.0 · 10)1
m Bis-Tris propane buffer) and

at 20 �C. The HSA-heme-Fe(III) concentration was

1.0 · 10)4
m. The NO concentration ranged between

5.0 · 10)5 and 2.0 · 10)4
m. Analysis for nitrite, nitrate

and S-nitrosothiols was carried out using the Griess and

Saville assays, as described previously [34,56–58].

Reversible nitrosylation of HSA-heme-Fe(II) between

pH 5.5 and pH 9.5

Values of the pseudo-first-order rate constant [i.e. l obs; see

Scheme 1, reaction (d)] for HSA-heme-Fe(II) nitrosylation

were obtained by mixing the HSA-heme-Fe(II) (final

concentration, 1.2 · 10)6
m) solution with the NO (final

concentration, 3.0 · 10)6 to 2.0 · 10)5
m) solution, under

anaerobic conditions [44]. No gaseous phase was present.

HSA-heme-Fe(II) nitrosylation was monitored between 360

and 460 nm.

Values of lobs were obtained according to Eqn (6) [44]:

½HSA� heme� FeðIIÞ�t ¼ ½HSA� heme� FeðIIÞ�i � e�lobs�t

ð6Þ

Values of the second-order rate constant for HSA-heme-

Fe(II) nitrosylation [i.e. lon; see Scheme 1, reaction (a)] were

determined from the dependence of lobs on [NO], according

to Eqn (7) [44]:

lobs ¼ lon � ½NO� ð7Þ

Values of the first-order rate constant for NO dissocia-

tion from HSA-heme-Fe(II)-NO (i.e. for NO replacement

with CO; loff; reaction (d) in Scheme 1) were obtained by

mixing the HSA-heme-Fe(II)-NO (final concentration,

3.3 · 10)6
m) solution with the CO (final concentration,

1.0 · 10)4 to 5.0 · 10)4
m) sodium dithionite (final concen-

tration, 1.0 · 10)2
m) solution, under anaerobic conditions

[30,33]. No gaseous phase was present. Kinetics was moni-

tored between 360 and 460 nm.

The time course for HSA-heme-Fe(II)-NO denitrosyla-

tion [i.e. for HSA-heme-Fe(II) carbonylation] was fitted to

a single-exponential process according to the minimum

reaction mechanism represented by the following reaction

in Scheme 2 [30,34]:

Values of loff were determined from data analysis accord-

ing to Eqn (8) [30,34]:

½HSA� heme� FeðIIÞ �NO�t
¼ ½HSA� heme� FeðIIÞ �NO�i � e�loff�t

ð8Þ

Minimum values of the dissociation equilibrium constant

for HSA-heme-Fe(II) nitrosylation (i.e., L = loff ⁄ lon; reac-

tion (d) in Scheme 1) were estimated by titrating the HSA-

heme-Fe(II) (final concentration 3.3 · 10)6
m) solution with

the NO (final concentration, 1.0 · 10)6 to 2.0 · 10)5
m)

solution, under anaerobic conditions. The equilibration

time was 5 min. No gaseous phase was present. Thermo-

dynamics was monitored between 360 and 460 nm.

The molar fraction of HSA-heme-Fe(II)-NO (i.e. Y)

increases linearly with the NO concentration, reaching the

maximum (= 1.0) at the 1 : 1 HSA-heme-Fe(II):NO molar

ratio. According to the literature [45], values of L must be

lower than the HSA-heme-Fe(II) concentration by at least

two orders of magnitude (i.e. £ 3.3 · 10)8
m) [44].

Values of L, lon and loff for HSA-heme-Fe(II) nitrosyla-

tion [reaction (d) in Scheme 1, and Scheme 2] were

obtained either at pH 5.5 (1.0 · 10)1
m Mes buffer) or

between pH 6.5 and pH 9.5 (1.0 · 10)1
m Bis-Tris propane

buffer) and 20 �C.
HSA-heme-Fe(II)-NO was also obtained anaerobically by

keeping the HSA-heme-Fe(II) (3.3 · 10)6
m) solution under

purified gaseous NO (760 mmHg), either at pH 5.5

(1.0 · 10)1
m Mes buffer) or between pH 6.5 and pH 9.5

(1.0 · 10)1
m Bis-Tris propane buffer) and at 20 �C

[24,25,27,30,33,35].
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