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3Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Roma ‘Tor Vergata’, Roma, Italy
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Summary

Globins are generally considered as carriers of diatomic gas-
eous ligands (e.g., O2 and NO) in metazoa. Recently, the
(pseudo-)enzymatic activity of globins towards reactive nitrogen
and oxygen species has been elucidated. In particular, some glo-
bins (e.g., hemoglobin and myoglobin) catalyze the enzymatic
scavenging of NO and peroxynitrite in the presence of H2O2.
Indeed, H2O2 oxidizes some globins leading to the formation of
water and of the heme-protein ferryl derivative, which, in turn,
oxidizes NO and peroxynitrite leading to the formation of the
globin ferric species, NO2

2, and NO3
2. Here, we hypothesize that

NO, peroxynitrite, and H2O2 are co-substrates for the peroxi-
dase activity of some globins, this catalytic activity was reported
in 1900 for the first time, even though the substrates have never
been identified firmly up to now. � 2008 IUBMB
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The hemoglobin (Hb) superfamily includes several heme-

proteins, generally referred to as globins, which are found in all

kingdoms of living organisms (1, 2). Globin functions have

been the subject of active debate, in addition to dioxygen trans-

port and storage. Several functions have been proposed recently,

including control of nitrogen monoxide levels, O2 sensing, and

dehaloperoxidase activity (3–15).

Globins share physical, spectroscopic, and chemical similar-

ities with peroxidases (16, 17). In fact, as demonstrated first in

1900 (18), Hb reacts readily with hydrogen peroxide (H2O2). In

1923, the peroxidase activity of Hb has been reported (19), and

in 1938, the modulation of the peroxidase activity of Hb by

haptoglobin has been demonstrated (20). The reaction of myo-

globin (Mb) with H2O2, on the other hand, apparently was not

considered until 1952 (21), and the ability of Mb to catalyze

peroxide oxidation of substrates was not reported until 1955

(22). Upon reaction with H2O2, Mb and Hb form the cytotoxic

ferryl derivative (heme-Fe(IV)¼¼O), which is similar to com-

pound II formed by peroxidases (23, 24). Heme-Fe(IV)¼¼O is

able to oxidize a wide range of reducing substrates, such as

phenols and aromatic amines, even though substrate peroxida-

tion by Hb and Mb is far less efficient than that of peroxidases

(24, 25), ruling out the possibility that the potential peroxidase

activity of Hb and Mb is exerted on this class of substrates

under normal conditions.

Here, we hypothesize that the capability of some globins

(e.g., Hb and Mb) to form a compound II-like species under

oxidative stress may be actually exploited to avoid the building

up of NO and peroxynitrite,1 which can be then identified as

the ‘true’ substrates for the peroxidase activity of Hb and Mb.

Heme-proteins share the ability of detoxifying nitrogen reac-

tive species, for example, NO. Even though leukocyte peroxi-
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dases are believed to play a dominant role in the consumption

of NO-derived oxidants at sites of inflammation (as a part of

host defenses against oxidative tissue injury), ferrous oxygen-

ated Hb and Mb (HbO2 and MbO2, respectively) indeed are

involved in the major pathway for NO removal from the vascu-

lar compartment and in the protection of mitochondrial respira-

tion (4, 6, 10, 12, 14, 26), respectively. Hereafter, we deal with

these reactions under aerobic and anaerobic conditions, discrim-

inating between reducing environmental conditions and oxida-

tive conditions.

Under aerobic and reducing conditions, the rapid and irre-

versible reaction of the ferrous oxygenated derivative of heme-

proteins (heme-Fe(II)-O2) with NO and peroxynitrite occurs.

This reaction gives rise to the ferric species (heme-Fe(III)) and

nitrate (NO3
2) as the final reaction products, displaying as a

reaction intermediate the heme-Fe(III)-peroxynitrite complex

(27, 28) (see Table 1). On the other hand, the reaction of heme-

Fe(II)-O2 with peroxynitrite gives rise to heme-Fe(IV)¼¼O, ni-

trite (NO2
2), O2, and H1; then, heme-Fe(IV)¼¼O may react with

a second peroxynitrite molecule, leading to the formation of the

heme-Fe(III) species and the peroxynitrite radical (ONOO�) as

the final reaction products (28) (see Table 2).

NO scavenging is also facilitated by the direct interaction of

ferrous nitrosylated heme-Fe(II) (heme-Fe(II)-NO) with O2, giv-

ing rise to heme-Fe(III) and NO3
2 as the final reaction products.

However, the intermediate(s) are different for reaction(s) cata-

lyzed by the hexa-coordinated human neuroglobin (Ngb) on one

side and by penta-coordinated globins, such as Mb (29–31) (see

Table 3). O2-mediated NO scavenging by ferrous nitrosylated

horse heart Mb and human Hb (Mb(II)-NO and Hb(II)-NO,

respectively) appears to occur with a reaction mechanism, in

which NO that is initially bound to heme-Fe(II) is displaced by

O2 but may stay trapped in a protein cavity(ies) close to the

heme. In the second step, ferrous oxygenated horse heart Mb

and human Hb (Mb(II)-O2 and Hb(II)-O2, respectively) react

with NO giving the transient heme-Fe(III)-peroxynitrite species

preceding the formation of the final products. The rate-limiting

step in catalysis appears to be NO dissociation from heme-

Fe(II)-NO (29). A slight rearrangement within the protein struc-

ture, taking place after formation of ferric human Ngb

[Ngb(III)] and possibly reflecting the penta-to-hexa-coordination

transition of the heme-Fe-atom, has been postulated to be the

rate- limiting step in O2-mediated NO scavenging (30).

NO and peroxynitrite detoxification by heme-Fe(II)-O2 and

O2-mediated NO scavenging by heme-Fe(II)-NO, indeed, all

reflect the superoxide character of the initial or transient heme-

Fe(II)-O2 species (i.e., heme-Fe(III)-O2
2) (32) (see Tables 1, 2,

and 3).

Table 1

NO scavenging by heme-Fe(II)-O2

Heme-protein kon (M
21 s21) h (s21)

M. tuberculosis trHbNa 7.5 3 108 Fast

M. tuberculosis trHbOb 6.0 3 105 Fast

M. leprae trHbOc 2.1 3 106 3.4

E. coli flavoHbd ‡6.0 3 108 �2.0 3 102

Glycine max Lbe 8.2 3 107 Fast

Horse heart Mbf 4.4 3 107 [3.4 3 102

Murine Ngbg [7.0 3 107 �3.0 3 102

Human Hb 8.9 3 107f [5.8 3 101h

[3.3 3 101h

apH 5 7.5 and 23.08C. From (87).
bpH 5 7.5 and 23.08C. From (88).
cpH 5 7.3 and 20.08C. From (82).
dpH 5 7.0 and 20.08C. From (36).
epH 5 7.3 and 20.08C. From (89).
fpH 5 7.0 and 20.08C. From (90).
gpH 5 7.0 and 20.08C. From (91).
hThe two values represent the decay rates for Fe(III)OONO a- and b-Hb subunits. pH 5 7.5 and 20.08C. From (27).
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Heme-Fe(II)-NO also facilitates peroxynitrite scavenging;

this reaction proceeds in two steps, a rapid conversion from

heme-Fe(II)-NO to the heme-Fe(III)-NO intermediate, which

then dissociates into NO and heme-Fe(III) (28) (see Table 4).

Preliminary results (33, 34) indicate that deoxygenated and fer-

rous carbonylated globins may also facilitate peroxynitrite

detoxification, giving rise to the heme-Fe(III) species.

All reactions depicted in Tables 1–4 are considered as

‘pseudo-enzymatic processes’ because they need a reductase

partner(s) to restore heme-Fe(II), which is absolutely necessary

for a new catalytic cycle. In particular, NADH-metHb and -

metMb reductases catalyze the conversion of heme-Fe(III) to

heme-Fe(II) in vivo. As a matter of fact, the enzymatic heme-

Fe(III) reduction is the rate-limiting step of the whole process,

this representing a severe limitation for the efficiency of these

mechanisms in vivo (4, 28, 35–43).

Under highly oxidative conditions, the redox equilibrium of

globins is shifted in favor of the heme-Fe(III) form, impairing

their role as O2 carriers. However, under these conditions, usu-

ally the high H2O2 concentration facilitates the oxidation of the

heme-Fe(III) of some globins (e.g., Hb and Mb), giving rise to

the formation of the compound II-like species heme-Fe(IV)¼¼O.

This highly oxidative form facilitates NO, peroxynitrite and

NO2
2 scavenging (see Tables 2, 5, and 6), because NO detoxifi-

cation by heme-Fe(IV)¼¼O leads to the formation of heme-

Fe(III) and NO2
2 (44–47) (see Table 5). The reactions of heme-

Fe(IV)¼¼O with peroxynitrite and NO2
2 generate ONOO� and

the nitrogen dioxide radical (�NO2), respectively, which could

contribute to tyrosine nitration and thus to the inactivation of

proteins (28, 48–51) (see Tables 2 and 6). The reaction of

heme-Fe(IV)¼¼O with NO (see Table 5) is significantly faster

than those of heme-Fe(IV)¼¼O with peroxynitrite and NO2
2 (see

Tables 2 and 6). These reactions, depicted in Tables 2, 5, and

6, do not require partner oxido-reductive enzyme(s), because

the system oscillates between the oxidation of the heme-Fe(III)

species to heme-Fe(IV)¼¼O by H2O2, and the heme-Fe(IV)¼¼O

reduction back to heme-Fe(III) by NO, peroxynitrite, and NO2
2

(28, 44–47). Interestingly, catalytic parameters for NO scaveng-

ing by heme-Fe(II)-O2 (43) and heme-Fe(IV)¼¼O (47) are

closely similar (see Tables 1 and 5) and high enough to indicate

that both reactions could occur efficiently in vivo.

In contrast with penta-coordinated globins (e.g., Hb and Mb)

(28, 44–51), heme-Fe(III) human Ngb apparently does not

generate the heme-Fe(IV)¼¼O form when exposed to H2O2 and

peroxynitrite, another feature of Ngb that may contribute to

neuronal survival after hypoxia and that may be related to

heme-Fe-atom hexa-coordination (28, 30, 31).

Beside globins, heme-Fe(IV)¼¼O peroxidases may facilitate

NO and NO2
2 detoxification (see Tables 5, 6, and 7). However,

in the case of mammalian peroxidases, such as myeloperoxidase

(MPO) and eosinophil peroxidase (EPO), the rate constants for

NO oxidation to NO2
2 are 2–3 orders of magnitude lower than

Table 2

Peroxynitrite scavenging by heme-Fe(II)-O2 and heme-Fe(IV)¼¼O

Heme-protein kon (M
21 s21) hon (M

21 s21)

M. leprae trHbOa 4.8 3 104 1.3 3 104

Glycine max Lbb 5.5 3 104 2.1 3 104

Horse heart Mbc 5.4 3 104 2.2 3 104

Human Hbd 3.3 3 104 3.3 3 104

apH 7.3 and 20.08C. From (83).
bpH 7.3 and 20.08C. From (89).
cpH 7.5 and 20.08C. From (92).
dpH 7.4 and 20.08C. From (93).
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those reported for the heme-Fe (IV)¼¼O derivative of globins,

whereas in the case of plant peroxidases, such as horseradish

peroxidase (HRP), the rate constant is only 10-fold slower than

for globins (47, 48, 52–59) (see Table 5). Further, the formation

of the heme-Fe(III)-ONO species is significantly faster in glo-

bins than in peroxidases (and possibly in catalase), where the

formation of the heme-Fe(III)-ONO species is the rate-limiting

step. Conversely, the dissociation of the heme-Fe(III)-ONO spe-

cies and the O-nitrito isomerization is significantly faster in per-

oxidases than in the heme-Fe(III) species of globins where

it represents instead the rate-limiting step (44–47, 52–55)

(see Table 5). On the other hand, the rate constant for NO2
2

scavenging by heme-Fe(IV)¼¼O MPO is similar to that observed

for heme-Fe(IV)¼¼O globin action (44–47, 53) (see Table 6).

Table 3

O2-mediated NO scavenging by heme-Fe(II)-NO

apH 7.5 and 25.08C. From (30).
bpH 7.0 and 20.08C. From (94).
cpH 7.2 and room temperature. From (95).
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Table 4

Peroxynitrite scavenging by heme-Fe(II)-NO

Heme-protein kon (M
21 s21) h (s21)

M. leprae trHbOa [1.0 3 108 2.6 3 101

Glycine max Lbb 8.8 3 103 2.0

Horse heart Mbc 3.1 3 104 �1.2 3 101

Human Ngbd [1.3 3 105 1.2 3 1021

Human Hbe 6.1 3 103 �1.0

apH 7.3 and 20.08C. From (83).
bpH 7.3 and 20.08C. From (46).
cpH 7.5 and 20.08C. From (96).
dpH 7.2 and 25.08C. From (30).
epH 7.2 and 20.08C. From (97).

Table 5

NO scavenging by heme-Fe(IV)¼¼O

Heme-protein kon (M
21 s21) h (s21)

M. leprae trHbOa 7.8 3 106 2.1 3 101

Glycine max Lbb 1.8 3 106 [5.0 3 101

Horse heart Mbc 1.7 3 107 6.0

Human Hbd 2.4 3 107 4.8 3 1021

1.2 3 1021

Horseradish peroxidasee 1.0 3 106 Fast

Porcine eosinophyl peroxidasef 1.7 3 104 Fast

Bovine lactoperoxidasef 8.7 3 104 Fast

Human myeloperoxidaseg 8.0 3 103 Fast

apH 5 7.2 and 20.08C. From (47)
bpH 5 7.0 and 20.08C. From (46).
cpH 5 7.0 and 20.08C. From (44).
dpH 5 7.0 and 20.08C. Biphasic kinetics of heme-Fe(III)-ONO decay (represented by values of h) has been attributed to a- and b-chains. From (45).
epH 5 7.4 and 20.08C. From (52).
fpH 5 7.0 and 25.08C. From (54).
gpH 5 7.0 and 25.08C. From (53).
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Both peroxidases and globins are able to perform the peroxy-

nitrite detoxification under oxidative stress conditions. In the

case of peroxidases, the reaction with peroxynitrite brings about

the fast formation of the compound II-like heme-Fe(IV)¼¼O

species (60), likely through the formation of a transient Fe(III)-

peroxynitrite complex, followed by its conversion to heme-

Fe(IV)¼¼O and �NO2 (61). This fast event is then followed by a

very slow reduction of heme-Fe(IV)¼¼O back to Fe(III), which

is driven by the oxidation of NO2
2 (in a redox equilibrium with

�NO2) to NO3
2 (61) (see Table 7). Although no kinetic parame-

ters are instead available for these reactions in catalase, a role

played by catalase in the detoxification of NO has been reported

(55).

In the case of globins, horse heart heme-Fe(III) Mb and

human heme-Fe(III) Hb catalyze the isomerization of peroxyni-

trite to NO3
2 (27, 62) (see Tables 1, 3, 5, and 7); in contrast,

peroxynitrite does not react with hexa-coordinated heme-Fe(III)

human Ngb, as reported for H2O2 (28, 30, 31).

Heme-Fe(III) species also facilitate NO scavenging through

the formation of the Fe(III)-NO complex, giving rise to heme-

Fe(II)-NO as the final reaction product. This reaction proceeds

in three steps: (i) reversible heme-Fe(III) nitrosylation (i.e.,

heme-Fe(III)-NO formation) followed by fast conversion to

heme-Fe(II)-NO1; (ii) H2O/OH
2 catalyzed conversion of heme-

Fe(II)-NO1 to heme-Fe(II); and (iii) reversible heme-Fe(II)

nitrosylation by a second NO molecule (i.e., heme-Fe(II)-NO

formation). NO binding to heme-Fe(III) S. inaequivalvis HbI

and human Ngb(III) (30, 63) appears to be rate limiting,

whereas the conversion of heme-Fe(II)-NO1 to heme-Fe(II) is

the rate-limiting step for the reductive nitrosylation of heme-

Fe(III) Glycine max leghemoglobin (Lb(III)), sperm whale

Mb(III), human Hb(III), and human myeloperoxidase (46, 53,

64) (see Table 8).

Lastly, heme-based reactions involving peroxynitrite appear

to be facilitated by carbon dioxide (CO2). Indeed, peroxynitrite

may rapidly react with CO2 forming an adduct, believed to

be 1-carboxylato-2-nitrosodioxidane (ONOOC(O)O2). This

transient intermediate decays by homolysis of the O��O bond

giving rise to NO3
2 and CO2 as final products, trioxo-

carbonate(�12) (CO3
�2) and �NO2 being the reaction intermedi-

ates. Note that CO3
�2 and �NO2 are stronger oxidant species

than peroxynitrite (50, 65).

The comparison of globin and peroxidase action (see Tables

5, 6, 7, and 8) allows the following considerations. (i) The

detoxification activity of NO and peroxynitrite by the heme-

Fe(IV)¼¼O species of globins (occurring under oxidative condi-

tions) is higher than that of peroxidases. (ii) The NO2
2 detoxifi-

cation activity of mammalian peroxidases is higher than that

reported for plant peroxidases and globins. (iii) The heme-

Fe(III) derivative of peroxidases detoxifies peroxynitrite more

efficiently than the heme-Fe(IV)¼¼O species of globins.

Peroxidation of classical peroxidase substrates (e.g., phenols)

by globins occurs at a much slower rate, with respect to the

heme-enzymes (24, 48, 58). The different catalytic behavior of

globins and peroxidases for different substrates might be due to

the strong hydrogen bond present in peroxidases between the

proximal histidyl residue and a conserved aspartate residue

(45). Moreover, it may be also referred to the highly positive

charge present in the heme distal side of peroxidases (see

Fig. 1), which significantly lowers the pKa values of catalytic

His and Arg distal residues (66, 67). This idea is further

strengthened by the following: (i) the evidence that site-directed

mutants of horse heart Mb (Thr39Ile, Lys45Asp, Phe46Leu, and

Ile107Phe) and sperm whale Mb (Thr67Arg and Thr67Arg/

Ser92Asp) display a significant increase of the peroxidase activ-

ity (25, 68, 69), and (ii) site-directed mutants of cytochrome c

peroxidase (His175Gln, His175Glu, and His175Cys) and horse-

radish peroxidase (Arg38Leu, His42Glu, His42Gln) show a sub-

stantial decrease of the peroxidase activity (70–72).

The peroxidase activity of globins appears to be at the root

of the Mycobacterium leprae ability to persist in vivo in the

presence of reactive nitrogen and oxygen species. Indeed, dur-

ing infection, M. leprae is faced with the host macrophagic

environment, where low pH, low pO2, high pCO2, combined

with the toxic activity of reactive nitrogen and oxygen species

(including NO, superoxide (O2
�2), and H2O2) contribute to limit

the growth of the bacilli in vivo (43, 47, 73–78).

The ability of M. leprae to persist in vivo in the presence of

reactive nitrogen and oxygen species implies the presence in

this elusive mycobacterium of (pseudo-)enzymatic detoxification

systems, including truncated hemoglobin O (trHbO) (43, 77–

84). M. leprae trHbO has been reported to facilitate NO and

peroxynitrite scavenging using O2, NO, and H2O2 as co-factors

(43, 47, 78, 82–84) (see Tables 1, 2, 4, 5, and 6). Interestingly,

kinetics of NO detoxification by the heme-Fe(IV)¼¼O derivative

Table 6

NO2
2 scavenging by heme-Fe(IV)¼¼O

Heme-protein kon (M
21 s21)

M. leprae trHbOa 3.1 3 103

Glycine max Lbb 2.1 3 102

Horse heart Mbc 1.6 3 101

Human Hbd 7.5 3 102

Human myeloperoxidasee 5.5 3 102

apH 5 7.2 and 20.08C. From (47).
bpH 5 7.0 and 20.08C. From (46).
cpH 5 7.5 and 20.08C. From (44).
dpH 5 7.0 and 20.08C. From (45).
epH 5 7.0 and 15.08C. From (53).
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of M. leprae, induced by H2O2, is faster than any other myco-

bacterial reactions involved in scavenging of reactive nitrogen

and oxygen species (47) (see Tables 1, 2, 4, 5, and 6). This

appears to be in agreement with the absence in M. leprae of a

specific reductase(s) converting heme-Fe(III) (obtained from the

reaction of heme-Fe(II)-O2 and heme-Fe(II)-NO with NO and

peroxynitrite) to heme-Fe(II), this enzymatic process being piv-

otal to start a new catalytic cycle (43, 47, 77, 78, 82–84).

Paradoxically, NO, peroxynitrite, and NO2
2 can serve as anti-

oxidants of the highly oxidizing heme-Fe(IV)¼¼O derivative of

globins, which could be responsible for the oxidative damage of

biological membranes (85) and inactivation of heme-based

enzymes (e.g., cytochrome c peroxidase) (86).

As a whole, peroxidases appear to be able to detoxify from

oxidative compounds (such as peroxynitrite) through the oxida-

tion of the resting heme-Fe(III) state to heme-Fe(IV)¼¼O under

normal oxidizing conditions. Whenever the environment

becomes highly oxidative massive oxidation of globins to

heme-Fe(IV)¼¼O takes place; this facilitates NO, peroxynitrite,

and NO2
2 detoxification, boosting the detoxification mechanism,

because NO, peroxynitrite, and NO2
2 can serve as antioxidants

of the highly oxidizing heme-Fe(IV)¼¼O species. Therefore,

under these highly oxidative conditions globins appear to facili-

tate NO, peroxynitrite, NO2
2, and H2O2 scavenging without

needing a reductase partner(s), which in such condition is

potentially devoid of reducing co-factors (e.g., NADH and

FADH2). Although the in vivo role of heme-Fe(IV)¼¼O globins

in scavenging reactive nitrogen species is still uncertain, NO,

peroxynitrite, and NO2
2 could be the ‘true’ substrates of globins

when acting as peroxidases, H2O2 being the co-substrate.
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Sarti, P. (2006) Nitric oxide and the respiratory enzyme. Biochim. Bio-

phys. Acta 1757, 1144–1154.

87. Ouellet, H., Ouellet, Y., Richard, C., Labarre, M., Wittenberg, B., Wit-

tenberg, J., and Guertin, M. (2002) Truncated hemoglobin HbN pro-

tects Mycobacterium bovis from nitric oxide. Proc. Natl. Acad. Sci.

USA 99, 5902–5907.

88. Ouellet, H., Juszczak, L., Dantsker, D., Samuni, U., Ouellet, Y. H.,

Savard, P. Y., Wittenberg, J. B., Wittenberg, B. A., Friedman, J. M.,

and Guertin, M. (2003) Reactions of Mycobacterium tuberculosis trun-

cated hemoglobin O with ligands reveal a novel ligand-inclusive

hydrogen bond network. Biochemistry 42, 5764–5774.

89. Herold, S. and Puppo, A. (2005) Oxyleghemoglobin scavenges nitro-

gen monoxide and peroxynitrite: a possible role in functioning nod-

ules? Biol. Inorg. Chem. 10, 935–945.
90. Herold, S., Exner, M., and Nauser, T. (2001) Kinetic and mechanistic

studies of the NO�-mediated oxidation of oxymyoglobin and oxyhemo-

globin. Biochemistry 40, 3385–3395.
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