Mathematische Zeitschrift

Lines in G/P

Elisabetta Strickland

Dipartimento di Matematica, Università di Roma "Tor Vergata" (e-mail: strickla@mat.uniroma2.it)

Received: 18 September 2000; in final form: 8 December 2000 / Published online: 18 January 2002 – © Springer-Verlag 2002

1. Introduction

Let G be a semisimple algebraic group over an algebraically closed field k (char $k \neq 2$). Let $P \subset G$ denote a parabolic subgroup. Consider the projective homogeneous space G/P and a very ample line bundle L on G/P. In this paper we shall give an answer to the following two questions:

- (1) For which L the image of G/P inside the projective space $\mathbb{P}((H^0(G/P,L))^*)$ contains a line.
- (2) Supposing such a line exists, which is its class in H₂(G/P, Z) and, for a fixed class, describe the subvariety of the Grassmannian of lines in P((H⁰(G/P, L))*) which lie in G/P and represent this class.

Our goal is reached as follows. Fix a maximal torus T in G and a Borel subgroup $B \supset T$, so that we can consider the corresponding root lattice Q, weight lattice Π , set of simple roots $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ and set of fundamental weights $\Omega = \{\omega_1, \ldots, \omega_n\}$. We then choose $P \supset B$ so that P corresponds to a subset S of Δ or equivalently Ω or also equivalently of the Dynkin diagram of G. Recall that the Picard group of G/P can be identified with a sublattice of Π . Taken an ample $L \in Pic(G/P)$, and setting $\lambda = \sum_i n_i \omega_i$ equal to the corresponding element in Π , we show that: 1) $G/P \subset \mathbb{P}((H^0(G/P, L))*)$ contains a line if and only if $n_i = 1$ for at least one i.

Suppose now this is the case, and recall that we can identify $H_2(G/P, \mathbb{Z})$ with a sublattice of the lattice ${}^{\vee}Q$ spanned by coroots. Then:

2) The homology class of a line in $G/P \subset \mathbb{P}((H^0(G/P, L))^*)$ is exactly equal to one of the ${}^{\vee}\alpha_i$ for which $n_i = 1$. The corresponding variety of lines in G/P, Z_{S_i} , then depends only on ${}^{\vee}\alpha_i$.

Once this has been shown, we describe the structure of our variety Z_{S_i} . In Sect. 3 we achieve this under some additional assumptions (see Lemma 1, in particular this works in full generality in the simply laced case). In this case once *i* has been fixed, we can define a new parabolic subgroup P' and consider the parabolic $Q = P \cap P'$. We then show that Z_{S_i} is G/P' and that the natural map $G/Q \to G/P'$ is the family of such lines. In the general case we show that Z_{S_i} has at most two orbits and we give a detailed description of the exceptional cases in which Z_{S_i} is not homogeneous in Sect. 4. In the case in which P is maximal, similar results to ours have been obtained in [CC] (see also [LM]).

2. Some lemmas on root systems

As in the introduction, let G be a semisimple algebraic group over an algebraically closed field k. We choose a maximal torus T and a Borel subgroup B and let W = N(T)/T be the Weyl group. We denote by Q the corresponding root lattice, Π the weight lattice, $^{\vee}Q$ the lattice of coroots. We also let $\Phi \subset Q$ be the root system, $\Delta = \{\alpha_1, \ldots, \alpha_n\}$ be the set of simple roots and $\Omega = \{\omega_1, \ldots, \omega_n\}$ be the set of fundamental weights.

We choose a W invariant scalar product (,) on $Q \otimes \mathbb{Q}$. Given a root α , we define the corresponding coroot ${}^{\vee}\alpha$ by

$$\langle x, {}^{\vee} \alpha \rangle := \frac{2(x, \alpha)}{(\alpha, \alpha)}$$

We shall denote by $D := D_{\Phi}$ the Dynkin diagram of our root system. The vertex of D corresponding to a simple root α_j will be simply denoted by j.

The height of a positive root $\alpha = \sum_{i} n_i \alpha_i$, $n_i \ge 0$ for all *i*, is defined by $ht\alpha = \sum_{i} n_i$.

We set $A(j) = \{i | (\alpha_i, \alpha_j) \neq 0\}$. Recall that to j we can associate a maximal parabolic subgroup $P_j \supset B$ and to any subset $S \subset D$ a parabolic group $P_S = \bigcap_{j \in S} P_j$ so that $P_D = B$. Also we set $\Phi_S^+ = \{\alpha \in \Phi^+ | \text{ Supp } \alpha \cap S \neq \emptyset\}$. One has

$$\mathfrak{p}_S := \operatorname{Lie} P_S = \mathfrak{b} \oplus (\oplus_{\alpha \notin \Phi_S^+} \mathfrak{g}_{-\alpha}).$$

Notice that dim $G/P_S = |\Phi_S^+|$.

We now want to prove two rather easy lemmas regarding root systems that will be useful in the sequel. Recall that, if the Dynkin diagram D is connected, there are only two root lengths. We shall say that a given simple

root is long if it is a long root with respect to the connected component of D where it belongs. By convention, if there is only one root length i.e. our component is simply laced, every root is long.

Lemma 1. Let S be a subset of the Dynkin diagram D. Let j be a vertex in S. Then the following conditions are equivalent for the pair (S, j): 1) Either α_j is long or the connected component of $(D-S) \cup \{j\}$ containing the vertex j is simply laced.

2) For each root α supported outside S,

$$|\langle \alpha, {}^{\vee} \alpha_j \rangle| \le 1,$$

Proof. Indeed if condition 1) holds, then 2) is clear.

On the other hand suppose 2) holds and α_j is short. Assume by contradiction that there is a vertex t in the connected component of $(D-S) \cup \{j\}$ containing j such that α_t is long. Then either the roots α_j, α_t span a root system of type G_2 and $\langle \alpha_t, {}^{\vee} \alpha_j \rangle = -3$, or there is a subdiagram with vertices (j, i_1, \ldots, i_r, t) of type $C_{r+2}, r \ge 0$. In this case a simple computation shows that the root $\beta = 2 \sum_{h=1}^r \alpha_{i_h} + \alpha_t$ is such that $\langle \beta, {}^{\vee} \alpha_j \rangle = -2$. In both cases we get a contradiction.

Let us now take a subset S of the Dynkin diagram D. Set W_S equal to the Weyl group of P_S i.e. the subgroup of W generated by the simple reflections $s_i, i \notin S$. Choose $j \in S$. We then have,

Lemma 2. 1) For any positive root β having the same length as α_j and of the form $\beta = \alpha_j + \gamma$, γ being a vector supported in D - S, there exists $w \in W_S$ with $w\alpha_j = \beta$.

2) If furthermore the conditions of lemma 1) are not satisfied, so that there is a root β supported in D - S with $|\langle \beta, {}^{\vee} \alpha_j \rangle| = p > 1$, then any pair of long roots of the form $p\alpha_j + \gamma$, γ being a vector supported in D - S, are conjugate under the action of W_S .

Proof. 1) We proceed by induction on the height of β . If $ht\beta = 1$, then $\beta = \alpha_j$ and there is nothing to prove. Let now $ht\beta > 1$. We claim that there is a vertex $i \notin S$ such that $(\beta, \alpha_i) > 0$. Assume the contrary. Then clearly $(\beta, \alpha_i) \leq 0$ for each $i \neq j$. We deduce that $(\beta, \alpha_j) > 0$, otherwise $(\beta, \beta) \leq 0$. Also since $s_j\beta = \beta - \langle \beta, {}^{\vee}\alpha_j \rangle \alpha_j$ is a positive root, we must have $\langle \beta, {}^{\vee}\alpha_j \rangle = 1$, so that $s_j\beta = \gamma$. By our assumptions, we have $(\beta, \gamma) \leq 0$. But now, γ, β and hence α_j have the same length, so that we deduce that $\langle \gamma, {}^{\vee}\alpha_j \rangle = \langle \alpha_j, {}^{\vee}\gamma \rangle = -1$, and then $\langle \beta, {}^{\vee}\gamma \rangle = 1$, getting a contradiction.

Take now $i \notin S$ such that $\langle \beta, \forall \alpha_i \rangle > 0$. We have that $hts_i\beta < ht\beta$ and $s_i\beta$ satisfies all the assumptions of our lemma. It follows that there exists $w' \in W_j$ with $w'\alpha_j = s_i\beta$. Thus $s_iw'\alpha_j = \beta$, proving our claim.

2) The G_2 case i.e. the only case in which p = 3, is trivial. So let us assume p = 2. Consider, as in the proof of Lemma 1, the long simple root α_t and the subdiagram with vertices (j, i_1, \ldots, i_r, t) of type $C_{r+2}, r \ge 0$. Take the root $\beta = 2 \sum_{h=1}^{p} \alpha_{i_h} + \alpha_t$. We have to show that any long root $\delta = 2\alpha_j + \gamma, \gamma$ being a vector supported in D - S, is W_S - conjugate to $\alpha = 2\alpha_j + \beta$. Assume δ is such that $(\delta, \alpha_i) \le 0$ for each $i \ne j$. We deduce that $(\delta, \alpha_j) > 0$, otherwise $(\delta, \delta) \le 0$. Since α_j is short, we get $\langle \delta, {}^{\vee} \alpha_j \rangle = 2$, so $s_j \delta = \gamma$. Thus γ is a long root and

$$\langle \delta, {}^{\vee}\gamma \rangle = 2 \langle \alpha_j, {}^{\vee}\gamma \rangle + \langle \gamma, {}^{\vee}\gamma \rangle = -2 + 2 = 0$$

This implies that $\langle \delta, {}^{\vee} \alpha_i \rangle = 0$ for all $i \neq j$ in supp δ . Thus δ is the unique highest root whose support is contained in supp δ and from this we immediately get that supp $\delta=(j, i_1, \ldots, i_r, t)$ and $\delta = \alpha$. Thus, if $\delta \neq \alpha$, there is $i \neq j$, necessarily in D-S, such that $(\delta, \alpha_i) > 0$, so $s_i \delta = 2\alpha_j + (\gamma - \langle \delta, {}^{\vee} \alpha_i \rangle \alpha_i)$ is of height smaller than δ . At this point the proof proceed as in part 1) (notice that our argument implies that α is the unique root of minimum height among the roots of the form $2\alpha_i + \gamma$, γ being a vector supported in D - S).

3. Lines in G/P_S

Given a k-vector space V, we denote by $\mathbb{P}(V)$ the projective space of one dimensional subspaces in V. If $X \subset \mathbb{P}(V)$ is a projective variety, we can consider the set L(X) of lines in $\mathbb{P}(V)$ which lie in X. L(X) is a projective subvariety of the Grassmannian G(2, V) of lines in $\mathbb{P}(V)$. To see this consider the partial flag variety $F \subset \mathbb{P}(V) \times G(2, V)$ consisting of pairs (p, ℓ) with $p \in \ell$. We have two projections $p: F \to \mathbb{P}(V)$ and $q: F \to G(2, V)$, so we can take $q(p^{-1}(X))$. The fact that X is closed and hence projective. Also q restricts to a morphism $\overline{q}: p^{-1}(X) \to q(p^{-1}(X))$, and clearly L(X) is the subset of points for which the fibers of \overline{q} have positive dimension. The fact that L(X) is closed, then follows from [Ha, pag. 95, ex. 3.22]. We shall consider the variety L(X) with its reduced structure. Also we set $F(X) := q^{-1}(L(X)$ and call the \mathbb{P}^1 -fibration $q: F(X) \to L(X)$ the family of lines in X.

We start by recalling a few facts about the complete homogeneous spaces G/P_S .

For each $S \subset D$, the Picard group of G/P_S can be identified with the sublattice of the weight lattice generated by the fundamental weights ω_i , with $i \in S$. Also, given a weight $\lambda = \sum_{i \in S} n_i \omega_i$, the corresponding line bundle L_{λ} is defined as follows. First we extend the character $e^{-\lambda} : T \to k^*$ to a character of P_S , so that we get a one dimensional P_S -module k_{λ} , and then we set $L_{\lambda} = G \times_{P_S} k_{\lambda}$. One knows that $H^0(G/P_S, L_{\lambda}) \neq 0$ if and

only if $n_i \ge 0$, i.e. λ is dominant. Furthermore if $n_i > 0$ for each i, then L_{λ} is ample and automatically very ample [RR]. From now on we shall assume that λ is dominant. We have that $H^0(G/P_S, L_{\lambda})$ is the dual of the Weyl module V_{λ} [RR] with highest weight λ . So if $n_i > 0$ for each i, we get an embedding of G/P_S into $\mathbb{P}(V_{\lambda}) = \mathbb{P}(H^0(G/P_S, L_{\lambda})^*)$.

The Chow group $A^{m-1}(G/P_S)$, $m = \dim G/P_S$, of 1-dimensional cycles in G/P_S (if $k = \mathbb{C}$, the complex numbers, we can take $H_2(G/P_S, \mathbb{Z})$), can be identified with the lattice generated by the coroots $\forall \alpha_i, i \in S$, and given a class $\forall \beta = \sum_{i \in S} m_i^{\lor} \alpha_i$ and a line bundle $L(\lambda)$, we have

$$\int_{\forall\beta} c_1(L(\lambda)) = \sum_{i \in S} m_i \langle \lambda, {}^{\lor} \alpha_i \rangle.$$

In particular, if we consider the embedding of G/P_S into $\mathbb{P}(V_{\lambda})$, and the corresponding variety of lines Z_{λ} in G/P_S , we get a locally constant map $Z_{\lambda} \to A^{m-1}(G/P_S)$. We shall say that a class in $A^{m-1}(G/P_S)$ can be represented by a line in G/P_S with respect to the projective embedding into $\mathbb{P}(V_{\lambda})$, if it lies in the image of our map. Notice that the lines representing a given class are a union of connected components of Z_{λ} .

These considerations have the following consequence.

Lemma 3. A class $\forall \beta = \sum_{i \in S} m_i^{\forall} \alpha_i$ can be represented by a line with respect to the projective embedding given by the line bundle $L(\lambda)$ with $\lambda = \sum_{i \in S} n_i \omega_i, n_i > 0$ only if there exists a vertex $j \in S$ such that

1. $\forall \beta =^{\lor} \alpha_j$ 2. $n_j = 1$.

Furthermore, if this is the case, the variety Z_S^j of lines of class $\forall \alpha_j$ is independent from the choice of the λ satisfying condition (2).

Proof. The first part is clear since for such a line we must have

$$1 = \int_{\vee_{\beta}} c_1(L(\lambda)) = \sum_{i \in S} m_i n_i.$$

As for the second, it is clear that it suffices to show our claim for $\lambda = \sum_{i \in S} n_i \omega_i$, $n_i > 0$ and $\lambda' = \lambda + \omega_i$, $i \neq j$. For the time being, let us denote by Z (resp. Z') the variety of lines representing the class ${}^{\vee}\alpha_j$ in the projective embedding in $\mathbb{P}(V_{\lambda})$ (resp. $\mathbb{P}(V_{\lambda'})$). Recall, [MR], that the multiplication map $H^0(G/P_S, L_{\lambda}) \otimes H^0(G/P_S, L_{\omega_i}) \to H^0(G/P_S, L_{\lambda'})$ is surjective, so that we get an embedding

$$\phi: \mathbb{P}(V_{\lambda'}) \to \mathbb{P}(V_{\lambda} \otimes V_{\omega_i}).$$

Take the Segre embedding

$$\psi: \mathbb{P}(V_{\lambda}) \times \mathbb{P}(V_{\omega_i}) \to \mathbb{P}(V_{\lambda} \otimes V_{\omega_i})$$

We have a commutative diagram

$$\mathbb{P}(V_{\lambda}) \times \mathbb{P}(V_{\omega_{i}}) \xrightarrow{\psi} \mathbb{P}(V_{\lambda} \otimes V_{\omega_{i}})$$

$$\uparrow^{h_{\lambda} \times h_{\omega_{i}}} \qquad \uparrow^{\phi}$$

$$G/P_{S} \xrightarrow{h_{\lambda'}} \mathbb{P}(V_{\lambda'})$$

where, for a dominant μ , h_{μ} is the morphism associated to the line bundle L_{μ} . Notice now that ϕ and ψ induce embeddings

$$G(2, V_{\lambda}) \times \mathbb{P}(V_{\omega_i}) \xrightarrow{\tilde{\psi}} G(2, V_{\lambda} \otimes V_{\omega_i})$$

$$\uparrow_{\tilde{\phi}}$$

$$G(2, V_{\lambda'})$$

Now remark that since

$$\int_{\mathcal{V}_{\alpha_j}} c_1(L(\omega_i)) = 0,$$

each line in G/P_S representing the class ${}^{\vee}\alpha_j$ is mapped to a point by h_{ω_i} . We thus get a morphism $Z \to \mathbb{P}(V_{\omega_i})$ defined by mapping each line in Z to its image under h_{ω_i} . We can thus identify Z with the graph of this morphism in $G(2, V_\lambda) \times \mathbb{P}(V_{\omega_i})$. It is now clear that $\tilde{\psi}(Z) = \tilde{\phi}(Z')$, proving our claim.

We shall now look at the action of the maximal torus T on Z_S^j . We have

Proposition 1. Every G orbit in Z_S^j contains a T fixpoint.

Proof. Let ℓ be a line in Z_S^j . Set p equal to the class of P_S in G/P_S . By homogeneity, there is an element $g \in G$ with $p \in g\ell$. Now take another point $q \in g\ell$. q lies in a unique Bruhat cell $S(w) = BwP_S/P_S$, for a $w \in W$. Thus there is an element $h \in B$ such that hq = wp. Since hp = p, we get that $\ell' = hg\ell$ contains the two T fixpoints p and wp. But now if we choose λ as in Lemma 3 and embed G/P_S in $\mathbb{P}(V_{\lambda})$, we get that ℓ' is a line in $\mathbb{P}(V_{\lambda})$ which joins two T fixpoints. It is hence stable under T.

Let us now as usual start with our subset S of the Dynkin diagram. Given a vertex j in S, we set S_j equal to the new subsets

$$\overline{S}_j = S \cup \{i | \langle \alpha_i, {}^{\vee} \alpha_j \rangle \neq 0\}$$

and

$$S_j = \overline{S}_j - \{j\}.$$

The following theorem gives a complete description of the varieties Z_S^j in the case in which the conditions of Lemma 1 are satisfied:

Theorem 1. Let S be a subset of the Dynkin diagram D. Let j be a vertex in S. Assume that either α_j is long or the connected component of $(D-S) \cup \{j\}$ containing the vertex j is simply laced. We have:

1) There is a natural isomorphism between Z_S^j and G/P_{S_i} .

2) The incidence variety $\overline{Z}_{S}^{j} = \{(\ell, q) \in Z_{S}^{j} \times G/P_{S} | q \in \ell\}$ has a natural identification with $G/P_{\overline{S}_{i}}$.

3) Under the identification in 2), the projection $\pi_1(\ell, q) = \ell$ can be identified with the projection $G/P_{\overline{S}_j} \to G/P_{S_j}$ and the projection $\pi_2(\ell, q) = q$ with the projection $G/P_{\overline{S}_i} \to G/P_S$.

If the conditions of lemma 1) are not satisfied, so that there is a root β supported in D - S with $|\langle \beta, \forall \alpha_j \rangle| = p > 1$, then setting $\alpha = p\alpha_j + \beta$, the line ℓ_{α} in $\mathbb{P}(V_{\lambda})$ joining the points p and $s_{\alpha}p$ lies in Z_S^j , Z_S^j is the closure of the orbit $G\ell_{\alpha}$ and $Z_S^j - G\ell_{\alpha} = G/P_{S_j}$.

Proof. We shall assume that $\lambda = 2 \sum_{i \in S} \omega_i - \omega_j$, so that Z_S^j coincides with the variety of all lines in $\mathbb{P}(V_{\lambda})$ lying in G/P_S .

By the definition of \overline{S}_j and S_j , we immediately get that the natural projection $\pi: G/P_{\overline{S}_j} \to G/P_{S_j}$ is a \mathbb{P}^1 -fibration.

Consider now the projection $\xi: G/P_{\overline{S}_i} \to G/P_S$.

Each fiber of π is a mapped by ξ to a \mathbb{P}^1 which is embedded as a line in $\mathbb{P}(V_{\lambda})$. We thus get a map

$$\gamma: G/P_{S_j} \to Z_S^j$$

Composing with the embedding of Z_S^j into $G(2, V_\lambda)$ and the Plücker embedding of $G(2, V_\lambda)$ into $\mathbb{P}(\bigwedge^2 V_\lambda)$, we get a map

$$\tilde{\gamma}: G/P_{S_j} \to \mathbb{P}(\bigwedge^2 V_{\lambda}).$$

Notice now that, if we take an highest weight vector $v \in V_{\lambda}$, the vector $v \wedge s_{\alpha_j} v \in \bigwedge^2 V_{\lambda}$ is a highest weight vector of weight $2\lambda - \alpha_j$, and $\tilde{\gamma}$ is given by taking the *G* orbit of the class of $v \wedge s_{\alpha_j} v$ in $\mathbb{P}(\bigwedge^2 V_{\lambda})$. A simple computation shows that $\langle 2\lambda - \alpha_j, \forall \alpha_i \rangle \neq 0$ if and only if $i \in S_j$. This clearly implies that $\tilde{\gamma}$ and hence γ are embeddings. We thus get a natural inclusion $G/P_{S_j} \subset Z_S^j$.

We want now to study the orbit structure in Z_S^j . Since by the above Proposition 1, each G orbit contains a T fixpoint, we start understanding the T fixpoints. Let ℓ be a T stable line. We clearly have that ℓ must be the line joining two T fixpoints $p_1 = w_1 p$ and $p_2 = w_2 p$, $w_1, w_2 \in W$. Applying w_1^{-1} , we can assume that ℓ is the line joining p and wp for some $w \in W$. We identify the tangent space to p in G/P_S with the Lie algebra

$$\mathfrak{n}_S^- = \sum_{\alpha \in \Phi_S^+} \mathfrak{g}_{-\alpha},$$

where as usual, for a given root β , $\mathfrak{g}_{\beta} \subset \mathfrak{g}$ denotes the root subspace of weight β .

The tangent direction to ℓ in p must be by T stability a T stable line in \mathfrak{n}_S^- . This means that it must be given by $\mathfrak{g}_{-\alpha}$ for some $\alpha \in \Phi_S^+$. Let Γ_α denote the Sl(2) corresponding to such α . Clearly $\ell := \ell_\alpha = \Gamma_\alpha p$ and $p_2 = s_\alpha p$. It follows that $\langle \lambda, \forall \alpha \rangle = 1$. Write $\alpha = m\alpha_j + \gamma$, where γ is supported in $D - \{j\}$, then

$$1 = \langle \lambda, {}^{\vee} \alpha \rangle = m \frac{(\alpha_j, \alpha_j)}{(\alpha, \alpha)} + 2 \sum_{i \in S - \{j\}} \langle \omega_i, {}^{\vee} \gamma \rangle.$$

We deduce that $\langle \omega_i, {}^{\vee} \alpha \rangle = 0$ for all $i \in S - \{j\}$. Under our conditions, we then have that, if α_j is long, then necessarily also α is long and m = 1, while, if α_j is short, $(\alpha_j, \alpha_j) = (\alpha, \alpha)$ and again m = 1. Using the first part of Lemma 2, we then get that there is a $w \in W_S$ with $w\alpha_j = \alpha$. This clearly implies that $\ell_{\alpha} = w\ell_{\alpha_j} \in G/P_{S_j}$. From this we get that all the Tfixpoints lie in a single G orbit. By the above Proposition 1, we know that each G orbit contains at least one T fixpoint, so that we deduce that Z_S^j is homogeneous. But $G/P_{S_j} \subset Z_S^j$, so $G/P_{S_j} = Z_S^j$ proving (1). Both (2) and (3) follow immediately from our previous considerations.

Suppose now that the conditions of Lemma 1 are not satisfied. Then one has two possibilities. Using the notations of Theorem 1, we have that either m = 1 and α is short or m = 2 (or m = 3 in the G_2 case) and α is long. Accordingly, using both parts of Lemma 2, we get two G orbits in Z_S^j . The orbit of $G\ell_{\alpha_j} = G/P_{S_j}$ is closed, so to finish our proof we need only to see that the orbit $G\ell_{\alpha}$ with α long is not closed and hence, since Z_S^j is a closed subvariety, necessarily contains G/P_{S_j} in its closure.

The G_2 case is trivial and we leave it to the reader.

Let us now suppose m = 2 and, using the notation of Lemma 2, take $\alpha = 2\alpha_j + \beta$ with $\beta = 2\sum_{h=1}^r \alpha_{i_h} + \alpha_t$. Consider the set $\Gamma \subset \Phi$ defined as $\Gamma = (\Phi_S^+ - \{\alpha\}) \cup s_\alpha(\Phi_S^+ - \{\alpha\})$. Now remark that, as a *T*-module, the tangent space to $G\ell_\alpha$ in ℓ_α equals the direct sum of the root spaces $\mathfrak{g}_{-\delta}$

with $\delta \in \Gamma$. Indeed, since under the embedding $G(2, V_{\lambda}) \to \mathbb{P}(\tilde{\Lambda} V_{\lambda})$, the line ℓ_{α} is represented by the class of the vector $v \wedge n_{\alpha}v$, where $v \in V_{\lambda}$ is a highest weight vector and n_{α} a representative in N(T) of the reflection s_{α} , it is clear that $\mathfrak{g}_{-\delta}$ contributes to the tangent space to $G\ell_{\alpha}$ in ℓ_{α} if and only if, given $x \in \mathfrak{g}_{-\delta} - \{0\}$,

$$xv \wedge n_{\alpha}v + v \wedge xn_{\alpha}v \neq 0.$$

If this is the case, then either xv or $xn_{\alpha}v$ is not zero, and $\delta \neq \pm \alpha$, i.e. $\delta \in \Gamma$. Now if $\delta \in (\Phi_S^+ - \{\alpha\}) - ((\Phi_S^+ - \{\alpha\}) \cap s_{\alpha}(\Phi_S^+ - \{\alpha\}))$ (resp. $\delta \in (s_{\alpha}(\Phi_S^+ - \{\alpha\}) - ((\Phi_S^+ - \{\alpha\}) \cap s_{\alpha}(\Phi_S^+ - \{\alpha\})))$, then $xv \wedge n_{\alpha}v \neq 0$, while $v \wedge xn_{\alpha}v = 0$ (resp. $v \wedge xn_{\alpha}v \neq 0$, while $xv \wedge n_{\alpha}v = 0$), so certainly $xv \wedge n_{\alpha}v + v \wedge xn_{\alpha}v \neq 0$. If $\delta \in (\Phi_S^+ - \{\alpha\}) \cap s_{\alpha}(\Phi_S^+ - \{\alpha\})$, then both $xv \wedge n_{\alpha}v$ and $v \wedge xn_{\alpha}v$ are non zero, but the 2-dimensional space spanned by xv and $n_{\alpha}v$ clearly does not contain v, so it is different from the space spanned by v and $xn_{\alpha}v$, thus proving our claim also in this case.

In order to show that $G\ell_{\alpha}$ is not closed, it suffices to see that the Lie algebra of the stabilizer of ℓ_{α} does not contain a Borel subalgebra. From what we have seen above, this follows once we show that there is a root $\delta \in \Gamma$ such that also $-\delta$ lies in Γ . For this take $\delta = \alpha_j + \sum_{h=1}^r \alpha_{i_h}$. Then one easily sees that $s_{\alpha}(\delta + \alpha_t) = -\delta$ and our claim follows.

Remark 1. Notice that our theorem applies in particular in the case of G/B, i.e. when S is the entire Dynkin diagram. In this case we deduce as a special case our result [S] stating that a class in $H_2(G/P_S, \mathbb{Z})$ can be represented by a line with respect to the projective embedding given by the line bundle $L(\rho)$ with $\rho = \sum_i \omega_i$, if and only if it equals $\forall \alpha_j$ for some j. Furthermore the variety of these lines equals G/P_j , P_j being the minimal parabolic associated to the node j.

4. The exceptional cases

We shall now discuss the various cases in which the conditions of lemma 1 are not satisfied. This will be done case by case.

We start with G₂. In this case we have to take the maximal parabolic P corresponding to the short simple root. We let ω be the corresponding fundamental weight. Then it is well known and easy to see that $H^0(G/P, L_{\omega})$ has dimension 7 and G/P is embedded as a non degenerate quadric in the 6 dimensional projective space $\mathbb{P}(H^0(G/P, L_{\omega})^*)$. A quadric in \mathbb{P}^6 is a complete homogeneous space for the corresponding special orthogonal group SO(7) which is of type B₃. If we consider our quadric as a homogeneous space for SO(7), the conditions of lemma 1 are satisfied, so we get that the variety of lines in our quadric G/P is the variety of isotropic lines with

respect to the symmetric bilinear form defining it i.e. the unique closed orbit for SO(7) acting on the projectification of its adjoint representation.

We now pass to the B_n case. We consider a vector space V of dimension 2n+1 with a non degenerate symmetric bilinear form and we can take as G the corresponding special orthogonal group.

As a preliminary step, let us embed our orthogonal space V in a 2n + 2dimensional orthogonal space W and choose once and for all, one of the two SO(W) orbits \mathcal{O} in the variety of maximal isotropic subspaces of W. Notice that we can identify \mathcal{O} with the variety \mathcal{T} of maximal isotropic subspaces in V as follows. Given $U \in \mathcal{O}$, then clearly $U \cap V \in \mathcal{T}$, so that we get a map

$$c: \mathcal{O} \to \mathcal{T}.$$

On the other hand, if we fix $U' \in \mathcal{T}$, and we take a subspace $U \in \mathcal{O}$ containing it, we have that U/U' is an isotropic line in the plane U'^{\perp}/U' , U'^{\perp} being the orthogonal space to U' in W. But there are exactly two such lines and, of the corresponding two maximal isotropic subspaces in W, only one lies in \mathcal{O} . We deduce that the map c is an isomorphism.

Let us now go back to our problem. If we index the vertices of the Dynkin diagram as follows

we get that for a subset $S = \{r_1 < \cdots < r_t\}$ of the Dynkin diagram, the variety G/P_S is the variety consisting of flags $(V_1 \subset V_2 \subset \cdots \subset V_t)$ with V_j isotropic and dim $V_j = r_j$. Furthermore the conditions of lemma 1 are not satisfied for parabolic subgroups G/P_S with $r_t = n$, and $r_{t-1} < n-1$, and for the homology class represented by the simple coroot $\forall \alpha_n$.

Let $S = \{r_1 < \cdots < r_t\}$ be a subset of the Dynkin diagram with $r_t = n$, and $r_{t-1} < n - 1$. We have

Proposition 2. 1. The variety Z_S^n can be described as the variety of all flags $(V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset H)$, H being an n-1 dimensional isotropic subspace in W and dim $V_i = r_i$, $1 \le i \le t - 1$.

2. The incidence variety $\overline{Z}_{S}^{n} = \{(\ell, q) \in Z_{S}^{n} \times G/P_{S} | q \in \ell\}$ has a natural identification with the variety of all flags $((V_{1} \subset V_{2} \cdots \subset V_{t-1} \subset H \subset U), (V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H)) \in Z_{S}^{n}, U \in \mathcal{O}$ via the map

$$T:\overline{Z}^n_S\to Z^n_S\times G/P_S$$

 $T((V_1 \subset V_2 \cdots \subset V_{t-1} \subset H \subset U)) = ((V_1 \subset V_2 \cdots \subset V_{t-1} \subset H), (V_1 \subset V_2 \cdots \subset V_{t-1} \subset c(U)).$

Proof. Set \tilde{Z}_{S}^{n} equal to the variety of all flags $(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H)$, H being an n-1 dimensional isotropic subspace in W and dim $V_{i} = r_{i}$, $1 \leq i \leq t-1$.

If we take the projection $p_1 : \tilde{Z}_S^n \times G/P_S \to \tilde{Z}_S^n$ on the first factor and set $\pi = p_1 T$, we clearly get that π is a P^1 fibration.

Also each fiber of this fibration is mapped to a line in G/P_S and the obvious injectivity of T implies that two such lines are distinct.

To determine the homology class of these lines, let us set $\overline{S} = \{r_1 < \cdots < r_{t-1}\}$. Take the projection $p: G/P_S \to G/P_{\overline{S}}$. We have, since,

$$\left\langle \sum_{j=1}^{t-1} \omega_{i_j}, {}^{\vee} \alpha_n \right\rangle = 0,$$

that a line ℓ lies in Z_S^n if and only if $p(\ell)$ is a point. But it is clear by the definition that this property is satisfied for the fibers of π . We deduce that \tilde{Z}_S^n embeds in Z_S^n . On the other hand, we have seen that Z_S^n consists of two G orbits, thus to show our claim, it suffices to see that \tilde{Z}_S^n is not homogeneous. This is clear since \tilde{Z}_S^n contains the closed orbit consisting of those flags $(V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset H)$ with $H \subset V$.

Thus $\tilde{Z}_{S}^{n} = Z_{S}^{n}$ and all our claims follow at once.

We now pass to the C_n case. We consider a vector space V of dimension 2n with a non degenerate symplectic bilinear form and we can take as G the corresponding symplectic group.

If we index the vertices of the Dynkin diagram as follows

we get that for a subset $S = \{r_1 < \cdots < r_t\}$ of the Dynkin diagram, the variety G/P_S is the variety consisting of flags $(V_1 \subset V_2 \subset \cdots \subset V_t)$ with V_j isotropic and dim $V_j = r_j$. Furthermore the conditions of lemma 1 are not satisfied for parabolic subgroups G/P_S with $r_t < n$, and for the homology class represented by the simple coroot $\lor \alpha_{r_t}$.

Let $S = \{r_1 < \cdots < r_t\}$ be a subset of the Dynkin diagram with $r_t < n$. We have:

Proposition 3. 1) The variety $Z_S^{r_t}$ can be described as the variety of all flags $(V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset H \subset K)$, with H being an $r_t - 1$ dimensional isotropic subspace in V, dim $V_i = r_i$, $1 \le i \le t - 1$ (notice that if $r_t - 1 = r_{t-1}$, $H = V_{t-1}$), and dim $K = r_t + 1$.

2) The incidence variety $\overline{Z}_{S}^{n} = \{(\ell, q) \in Z_{S}^{n} \times G/P_{n} | q \in \ell\}$ has a natural identification with the variety of all flags $(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H \subset V_{t-1})$

 $U \subset K$), with $(V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset H \subset K) \in Z_S^n$ and dim $U = r_t$, via the map

$$T: \overline{Z}_S^n \to Z_S^n \times G/P_S$$

 $T((V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset H \subset U)) = ((V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset H \subset K), (V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset U \subset K)).$ (Notice that U is automatically isotropic, since the symplectic form has rank at most one, and hence zero, on this space).

Proof. Set $\tilde{Z}_S^{r_t}$ equal to the variety of all flags $(V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset H \subset K)$, with H being an $r_t - 1$ dimensional isotropic subspace in V, dim $V_i = r_i, 1 \leq i \leq t - 1$.

If we take the projection $p_1: \tilde{Z}_S^{r_t} \times G/P_S \to \tilde{Z}_S^{r_t}$ on the first factor and set $\pi = p_1 T$, we clearly get that π is a P^1 fibration.

Also each fiber of this fibration is mapped to a line in G/P_S and the obvious injectivity of T implies that two such lines are distinct.

To determine the homology class of these lines, let us set $\overline{S} = \{r_1 < \cdots < r_{t-1}\}$. Take the projection $p: G/P_S \to G/P_{\overline{S}}$. We have since,

$$\left\langle \sum_{j=1}^{t-1} \omega_{i_j}, {}^{\vee} \alpha_{r_t} \right\rangle = 0,$$

that a line ℓ lies in $Z_S^{r_t}$ if and only if $p(\ell)$ is a point. But is clear by the definition that this property is satisfied for the fibers of π . We deduce that $\tilde{Z}_S^{r_t}$ embeds in $Z_S^{r_t}$. But we have seen that $Z_S^{r_t}$ consists of two G orbits, thus to show our claim, it suffices to see that $\tilde{Z}_S^{r_t}$ is not homogeneous. This is clear since $\tilde{Z}_S^{r_t}$ contains the closed orbit consisting of those flags $(V_1 \subset V_2 \subset \cdots \subset V_{t-1} \subset H \subset K)$ with K isotropic.

Thus $\tilde{Z}_{S}^{r_{t}} = Z_{S}^{r_{t}}$ and all our claims follow at once.

We finally pass to the case F_4 . If we index the vertices of the Dynkin diagram as follows

we have that the conditions of lemma 1 are not satisfied for parabolic subgroups G/P_S with $S = \{3\}, \{4\}, \{13\}, \{14\}, \{34\}, \{134\}$. Also if $3 \in S$, then we need to consider the homology class represented by the simple coroot ${}^{\vee}\alpha_3$. Otherwise we need to consider the homology class represented by the simple coroot ${}^{\vee}\alpha_4$.

We start with the case $S = \{4\}$.

Let G' be a simply connected group of type E_6 . Recall that once we have chosen a maximal torus in G' and a Borel subgroup containing it, we can uniquely associate an involution σ of G' to the non trivial automorphism of its Dynkin diagram

so that G is the subgroup of elements fixed by σ (see [He] page 518,table V, type EIV).

Notice that dim G'/G = 26. Denote by V' the 27 dimensional representation of G' whose highest weight is ω'_1 . Denote by $P' \subset G'$ the corresponding maximal parabolic subgroup. The restriction of V' to G decomposes into the sum

$$V' = V_4 \oplus k$$

where V_4 is the irreducible representation of G whose highest weight is ω_4 and k is a trivial one dimensional module. One has that, if we consider the hyperplane $H = \mathbb{P}(V_4)$ of $\mathbb{P}(V')$ as a point in $\mathbb{P}(V'^*)$, then its orbit under G' is isogenous to G'/G and it is hence dense in $\mathbb{P}(V'^*)$. It follows from Bertini theorem ([Ha], II 8.18]) that, if we identify the orbit of the highest weight line in V' with G'/P', the intersection $G'/P' \cap H$ is smooth and irreducible. Since it contains G/P_4 and has dimension 15=dim G/P_4 , we deduce that $G'/P' \cap H = G/P_4$. We then get from Theorem 1, that the variety Z_4^4 coincides with the intersection in the Grassmannian G(2, V') of lines in $\mathbb{P}(V')$ of the varieties G'/P'_2 and G(2, H). Since we have seen that the G' orbit of H is dense, we can then use a result of Kleiman ([Ha], II 10.8) to deduce that Z_4^4 is smooth, irreducible and of codimension 2 in G'/P'_2 .

We now pass to G/P_3 . We have seen that $G/P_3 \subset Z_4^4 \subset G(2, V')$. Thus, using Theorem 1 in the case of G(2, V'), we deduce that a line in G/P_3 consists of a pencil of lines in $\mathbb{P}(V')$ contained in a plane and having a point p in common. Clearly $p \in G/P_4$, so that we get a G equivariant fibration

$$f: Z_3^3 \to G/P_4$$

On the other hand, if we consider the incidence variety $Y = \{(\ell, p) | \ell \in G/P_3, p \in \ell\}$, we can identify Y with $G/P_{3,4}$ and the projection onto the second factor with the canonical G-equivariant fibration

$$p: G/P_{3,4} \to G/P_4.$$

We deduce that $f^{-1}([P_1])$ is the variety of lines in the variety $P_4/P_{3,4}$. Setting *L* equal to the adjoint Levi factor of P_4 i.e. the quotient of P_4 modulo its solvable radical, we can identify $P_4/P_{3,4}$ with L/\overline{P} (\overline{P} being the image of $P_{3,4}$ in *L*). *L* is of type B₃ and *P* is the maximal parabolic subgroup associated to its simple short root. Thus the set \overline{Z} of lines in L/\overline{P} has been completely described in Proposition 2. Furthermore the quotient map $P_4 \rightarrow$ *L* induces an action of P_4 on \overline{Z} and we clearly have that $Z_3^3 = G \times_{P_4} \overline{Z}$.

We now briefly discuss the remaining cases, in which we take G/P_S with $|S| \ge 2$. If $3 \in S$, we consider the homology class represented by the simple coroot ${}^{\vee}\alpha_3$, while if $3 \notin S$, we consider the homology class represented by the simple coroot ${}^{\vee}\alpha_4$. We set i = 3 in the first case and i = 4 in the second and $S' = S - \{i\}$.

Denote by $p: G/P_S \to G/P_{S'}$ the canonical G-equivariant projection. Since

$$\left\langle \sum_{j \in S'} \omega_j, {}^{\vee} \alpha_i \right\rangle = 0,$$

we have that a line ℓ lies in Z_S^i if and only if $p(\ell)$ is a point. Thus $Z_S^i = G \times_{P_S} \overline{Z}$, where \overline{Z} is the variety of lines in $P_{S'}/P_S$. This is a complete homogeneous space for a group of type B or C (the adjoint Levi factor of $P_{S'}$) and so \overline{Z} has already been described above.

This completes our analysis of the cases in which the variety of lines in a complete homogeneous space G/P is not itself homogeneous.

References

- [CC] Cohen A. M., Cooperstein B. N. Lie incidence systems from projective varieties. Proc. Amer. Math. Soc. 126(7) (1998), 2095–2102
- [Ha] Hartshorne R. Algebraic geometry. Springer Verlag 1977
- [He] Helgason S. Differential geometry, Lie groups, and symmetric spaces. Academic Press 1978
- [LM] Landsberg J. M., Manivel L. On the projective geometry of homogeneous varieties. preprint
- [MR] Mehta V.B., Ramanathan A. Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. II, Ser. 122 (1985), 27–40
- [RR] Ramanan S., Ramanathan A. Projective normality of flag varieties and Schubert varieties. Invent. Math. 79(2) (1985), 217–224
- [S] Strickland E. Projective spaces in flag varieties. Comm. in Algebra 26(5) (1998), 1651–1655