Lines in G/P

Elisabetta Strickland

Dipartimento di Matematica, Università di Roma "Tor Vergata"
(e-mail: strickla@mat.uniroma2.it)

Received: 18 September 2000; in final form: 8 December 2000 /
Published online: 18 January 2002 - © Springer-Verlag 2002

1. Introduction

Let G be a semisimple algebraic group over an algebraically closed field k (chark $\neq 2$). Let $P \subset G$ denote a parabolic subgroup. Consider the projective homogeneous space G / P and a very ample line bundle L on G / P. In this paper we shall give an answer to the following two questions:
(1) For which L the image of G / P inside the projective space $\mathbb{P}\left(\left(H^{0}(G)\right.\right.$ $P, L))^{*}$) contains a line.
(2) Supposing such a line exists, which is its class in $H_{2}(G / P, \mathbb{Z})$ and, for a fixed class, describe the subvariety of the Grassmannian of lines in $\mathbb{P}\left(\left(H^{0}(G / P, L)\right)^{*}\right)$ which lie in G / P and represent this class.

Our goal is reached as follows. Fix a maximal torus T in G and a Borel subgroup $B \supset T$, so that we can consider the corresponding root lattice Q, weight lattice Π, set of simple roots $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and set of fundamental weights $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$. We then choose $P \supset B$ so that P corresponds to a subset S of Δ or equivalently Ω or also equivalently of the Dynkin diagram of G. Recall that the Picard group of G / P can be identified with a sublattice of Π. Taken an ample $L \in \operatorname{Pic}(G / P)$, and setting $\lambda=\sum_{i} n_{i} \omega_{i}$ equal to the corresponding element in Π, we show that: 1) $G / P \subset \mathbb{P}\left(\left(H^{0}(G / P, L)\right) *\right)$ contains a line if and only if $n_{i}=1$ for at least one i.

Suppose now this is the case, and recall that we can identify $H_{2}(G / P, \mathbb{Z})$ with a sublattice of the lattice ${ }^{\vee} Q$ spanned by coroots. Then:
2) The homology class of a line in $G / P \subset \mathbb{P}\left(\left(H^{0}(G / P, L)\right)^{*}\right)$ is exactly equal to one of the ${ }^{\vee} \alpha_{i}$ for which $n_{i}=1$. The corresponding variety of lines in $G / P, Z_{S_{i}}$, then depends only on ${ }^{\vee} \alpha_{i}$.

Once this has been shown, we describe the structure of our variety $Z_{S_{i}}$. In Sect. 3 we achieve this under some additional assumptions (see Lemma 1 , in particular this works in full generality in the simply laced case). In this case once i has been fixed, we can define a new parabolic subgroup P^{\prime} and consider the parabolic $Q=P \cap P^{\prime}$. We then show that $Z_{S_{i}}$ is G / P^{\prime} and that the natural map $G / Q \rightarrow G / P^{\prime}$ is the family of such lines. In the general case we show that $Z_{S_{i}}$ has at most two orbits and we give a detailed description of the exceptional cases in which $Z_{S_{i}}$ is not homogeneous in Sect. 4. In the case in which P is maximal, similar results to ours have been obtained in [CC] (see also [LM]).

2. Some lemmas on root systems

As in the introduction, let G be a semisimple algebraic group over an algebraically closed field k. We choose a maximal torus T and a Borel subgroup B and let $W=N(T) / T$ be the Weyl group. We denote by Q the corresponding root lattice, Π the weight lattice, ${ }^{\vee} Q$ the lattice of coroots. We also let $\Phi \subset Q$ be the root system, $\Delta=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the set of simple roots and $\Omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ be the set of fundamental weights.

We choose a W invariant scalar product $($,$) on Q \otimes \mathbb{Q}$. Given a root α, we define the corresponding coroot ${ }^{\vee} \alpha$ by

$$
\left\langle x,{ }^{\vee} \alpha\right\rangle:=\frac{2(x, \alpha)}{(\alpha, \alpha)}
$$

We shall denote by $D:=D_{\Phi}$ the Dynkin diagram of our root system. The vertex of D corresponding to a simple root α_{j} will be simply denoted by j.

The height of a positive root $\alpha=\sum_{i} n_{i} \alpha_{i}, n_{i} \geq 0$ for all i, is defined by $h t \alpha=\sum_{i} n_{i}$.

We set $A(j)=\left\{i \mid\left(\alpha_{i}, \alpha_{j}\right) \neq 0\right\}$. Recall that to j we can associate a maximal parabolic subgroup $P_{j} \supset B$ and to any subset $S \subset D$ a parabolic group $P_{S}=\cap_{j \in S} P_{j}$ so that $P_{D}=B$. Also we set $\Phi_{S}^{+}=\left\{\alpha \in \Phi^{+} \mid\right.$Supp $\alpha \cap S \neq$ $\emptyset\}$. One has

$$
\mathfrak{p}_{S}:=\operatorname{Lie} P_{S}=\mathfrak{b} \oplus\left(\oplus_{\alpha \notin \Phi_{S}^{+}} \mathfrak{g}_{-\alpha}\right)
$$

Notice that $\operatorname{dim} G / P_{S}=\left|\Phi_{S}^{+}\right|$.
We now want to prove two rather easy lemmas regarding root systems that will be useful in the sequel. Recall that, if the Dynkin diagram D is connected, there are only two root lengths. We shall say that a given simple
root is long if it is a long root with respect to the connected component of D where it belongs. By convention, if there is only one root length i.e. our component is simply laced, every root is long.

Lemma 1. Let S be a subset of the Dynkin diagram D. Let j be a vertex in S. Then the following conditions are equivalent for the pair (S, j) :

1) Either α_{j} is long or the connected component of $(D-S) \cup\{j\}$ containing the vertex j is simply laced.
2) For each root α supported outside S,

$$
\begin{equation*}
\left|\left\langle\alpha,{ }^{\vee} \alpha_{j}\right\rangle\right| \leq 1, \tag{*}
\end{equation*}
$$

Proof. Indeed if condition 1) holds, then 2) is clear.
On the other hand suppose 2) holds and α_{j} is short. Assume by contradiction that there is a vertex t in the connected component of $(D-S) \cup\{j\}$ containing j such that α_{t} is long. Then either the roots α_{j}, α_{t} span a root system of type G_{2} and $\left\langle\alpha_{t},{ }^{\vee} \alpha_{j}\right\rangle=-3$, or there is a subdiagram with vertices $\left(j, i_{1}, \ldots, i_{r}, t\right)$ of type $C_{r+2}, r \geq 0$. In this case a simple computation shows that the root $\beta=2 \sum_{h=1}^{r} \alpha_{i_{h}}+\alpha_{t}$ is such that $\left\langle\beta,{ }^{\vee} \alpha_{j}\right\rangle=-2$. In both cases we get a contradiction.

Let us now take a subset S of the Dynkin diagram D. Set W_{S} equal to the Weyl group of P_{S} i.e. the subgroup of W generated by the simple reflections $s_{i}, i \notin S$. Choose $j \in S$. We then have,

Lemma 2. 1) For any positive root β having the same length as α_{j} and of the form $\beta=\alpha_{j}+\gamma$, γ being a vector supported in $D-S$, there exists $w \in W_{S}$ with $w \alpha_{j}=\beta$.
2) If furthermore the conditions of lemma 1) are not satisfied, so that there is a root β supported in $D-S$ with $\left|\left\langle\beta,{ }^{\vee} \alpha_{j}\right\rangle\right|=p>1$, then any pair of long roots of the form $p \alpha_{j}+\gamma, \gamma$ being a vector supported in $D-S$, are conjugate under the action of W_{S}.

Proof. 1) We proceed by induction on the height of β. If ht $\beta=1$, then $\beta=\alpha_{j}$ and there is nothing to prove. Let now ht $\beta>1$. We claim that there is a vertex $i \notin S$ such that $\left(\beta, \alpha_{i}\right)>0$. Assume the contrary. Then clearly $\left(\beta, \alpha_{i}\right) \leq 0$ for each $i \neq j$. We deduce that $\left(\beta, \alpha_{j}\right)>0$, otherwise $(\beta, \beta) \leq 0$. Also since $s_{j} \beta=\beta-\left\langle\beta,{ }^{\vee} \alpha_{j}\right\rangle \alpha_{j}$ is a positive root, we must have $\left\langle\beta,{ }^{\vee} \alpha_{j}\right\rangle=1$, so that $s_{j} \beta=\gamma$. By our assumptions, we have $(\beta, \gamma) \leq 0$. But now, γ, β and hence α_{j} have the same length, so that we deduce that $\left\langle\gamma,{ }^{\vee} \alpha_{j}\right\rangle=\left\langle\alpha_{j},{ }^{\vee} \gamma\right\rangle=-1$, and then $\left\langle\beta,{ }^{\vee} \gamma\right\rangle=1$, getting a contradiction.

Take now $i \notin S$ such that $\left\langle\beta,{ }^{\vee} \alpha_{i}\right\rangle>0$. We have that hts $s_{i} \beta<\mathrm{ht} \beta$ and $s_{i} \beta$ satisfies all the assumptions of our lemma. It follows that there exists $w^{\prime} \in W_{j}$ with $w^{\prime} \alpha_{j}=s_{i} \beta$. Thus $s_{i} w^{\prime} \alpha_{j}=\beta$, proving our claim.
2) The G_{2} case i.e. the only case in which $p=3$, is trivial. So let us assume $p=2$. Consider, as in the proof of Lemma 1, the long simple root α_{t} and the subdiagram with vertices $\left(j, i_{1}, \ldots, i_{r}, t\right)$ of type $C_{r+2}, r \geq 0$. Take the root $\beta=2 \sum_{h=1}^{p} \alpha_{i_{h}}+\alpha_{t}$. We have to show that any long root $\delta=2 \alpha_{j}+\gamma, \gamma$ being a vector supported in $D-S$, is $W_{S^{-}}$conjugate to $\alpha=2 \alpha_{j}+\beta$. Assume δ is such that $\left(\delta, \alpha_{i}\right) \leq 0$ for each $i \neq j$. We deduce that $\left(\delta, \alpha_{j}\right)>0$, otherwise $(\delta, \delta) \leq 0$. Since α_{j} is short, we get $\left\langle\delta,{ }^{\vee} \alpha_{j}\right\rangle=2$, so $s_{j} \delta=\gamma$. Thus γ is a long root and

$$
\left\langle\delta,{ }^{\vee} \gamma\right\rangle=2\left\langle\alpha_{j},{ }^{\vee} \gamma\right\rangle+\left\langle\gamma,{ }^{\vee} \gamma\right\rangle=-2+2=0
$$

This implies that $\left\langle\delta,{ }^{\vee} \alpha_{i}\right\rangle=0$ for all $i \neq j$ in supp δ. Thus δ is the unique highest root whose support is contained in supp δ and from this we immediately get that supp $\delta=\left(j, i_{1}, \ldots, i_{r}, t\right)$ and $\delta=\alpha$. Thus, if $\delta \neq \alpha$, there is $i \neq$ j, necessarily in $D-S$, such that $\left(\delta, \alpha_{i}\right)>0$, so $s_{i} \delta=2 \alpha_{j}+\left(\gamma-\left\langle\delta,{ }^{\vee} \alpha_{i}\right\rangle \alpha_{i}\right)$ is of height smaller than δ. At this point the proof proceed as in part 1) (notice that our argument implies that α is the unique root of minimum height among the roots of the form $2 \alpha_{j}+\gamma, \gamma$ being a vector supported in $D-S$).

3. Lines in G / P_{S}

Given a k-vector space V, we denote by $\mathbb{P}(V)$ the projective space of one dimensional subspaces in V. If $X \subset \mathbb{P}(V)$ is a projective variety, we can consider the set $L(X)$ of lines in $\mathbb{P}(V)$ which lie in $X . L(X)$ is a projective subvariety of the Grassmannian $G(2, V)$ of lines in $\mathbb{P}(V)$. To see this consider the partial flag variety $F \subset \mathbb{P}(V) \times G(2, V)$ consisting of pairs (p, ℓ) with $p \in \ell$. We have two projections $p: F \rightarrow \mathbb{P}(V)$ and $q: F \rightarrow G(2, V)$, so we can take $q\left(p^{-1}(X)\right)$. The fact that X is closed and q proper, clearly implies that both $p^{-1}(X)$ and $q\left(p^{-1}(X)\right)$ are closed and hence projective. Also q restricts to a morphism $\bar{q}: p^{-1}(X) \rightarrow q\left(p^{-1}(X)\right)$, and clearly $L(X)$ is the subset of points for which the fibers of \bar{q} have positive dimension. The fact that $L(X)$ is closed, then follows from [Ha, pag. 95, ex. 3.22]. We shall consider the variety $L(X)$ with its reduced structure. Also we set $F(X):=q^{-1}\left(L(X)\right.$ and call the \mathbb{P}^{1}-fibration $q: F(X) \rightarrow L(X)$ the family of lines in X.

We start by recalling a few facts about the complete homogeneous spaces G / P_{S}.

For each $S \subset D$, the Picard group of G / P_{S} can be identified with the sublattice of the weight lattice generated by the fundamental weights ω_{i}, with $i \in S$. Also, given a weight $\lambda=\sum_{i \in S} n_{i} \omega_{i}$, the corresponding line bundle L_{λ} is defined as follows. First we extend the character $e^{-\lambda}: T \rightarrow k^{*}$ to a character of P_{S}, so that we get a one dimensional P_{S}-module k_{λ}, and then we set $L_{\lambda}=G \times_{P_{S}} k_{\lambda}$. One knows that $H^{0}\left(G / P_{S}, L_{\lambda}\right) \neq 0$ if and
only if $n_{i} \geq 0$, i.e. λ is dominant. Furthermore if $n_{i}>0$ for each i, then L_{λ} is ample and automatically very ample [RR]. From now on we shall assume that λ is dominant. We have that $H^{0}\left(G / P_{S}, L_{\lambda}\right)$ is the dual of the Weyl module $V_{\lambda}[\mathrm{RR}]$ with highest weight λ. So if $n_{i}>0$ for each i, we get an embedding of G / P_{S} into $\mathbb{P}\left(V_{\lambda}\right)=\mathbb{P}\left(H^{0}\left(G / P_{S}, L_{\lambda}\right)^{*}\right)$.

The Chow group $A^{m-1}\left(G / P_{S}\right), m=\operatorname{dim} G / P_{S}$, of 1-dimensional cycles in G / P_{S} (if $k=\mathbb{C}$, the complex numbers, we can take $H_{2}\left(G / P_{S}, \mathbb{Z}\right)$), can be identified with the lattice generated by the coroots ${ }^{\vee} \alpha_{i}, i \in S$, and given a class ${ }^{\vee} \beta=\sum_{i \in S} m_{i}^{\vee} \alpha_{i}$ and a line bundle $L(\lambda)$, we have

$$
\int_{\vee_{\beta}} c_{1}(L(\lambda))=\sum_{i \in S} m_{i}\left\langle\lambda,{ }^{\vee} \alpha_{i}\right\rangle .
$$

In particular, if we consider the embedding of G / P_{S} into $\mathbb{P}\left(V_{\lambda}\right)$, and the corresponding variety of lines Z_{λ} in G / P_{S}, we get a locally constant map $Z_{\lambda} \rightarrow A^{m-1}\left(G / P_{S}\right)$. We shall say that a class in $A^{m-1}\left(G / P_{S}\right)$ can be represented by a line in G / P_{S} with respect to the projective embedding into $\mathbb{P}\left(V_{\lambda}\right)$, if it lies in the image of our map. Notice that the lines representing a given class are a union of connected components of Z_{λ}.

These considerations have the following consequence.
Lemma 3. A class $\vee^{\vee} \beta=\sum_{i \in S} m_{i}^{\vee} \alpha_{i}$ can be represented by a line with respect to the projective embedding given by the line bundle $L(\lambda)$ with $\lambda=\sum_{i \in S} n_{i} \omega_{i}, n_{i}>0$ only if there exists a vertex $j \in S$ such that

1. $\vee^{\vee}{ }^{\circ}={ }^{\vee} \alpha_{j}$
2. $n_{j}=1$.

Furthermore, if this is the case, the variety Z_{S}^{j} of lines of class ${ }^{\vee} \alpha_{j}$ is independent from the choice of the λ satisfying condition (2).

Proof. The first part is clear since for such a line we must have

$$
1=\int_{\vee_{\beta}} c_{1}(L(\lambda))=\sum_{i \in S} m_{i} n_{i} .
$$

As for the second, it is clear that it suffices to show our claim for $\lambda=$ $\sum_{i \in S} n_{i} \omega_{i}, n_{i}>0$ and $\lambda^{\prime}=\lambda+\omega_{i}, i \neq j$. For the time being, let us denote by Z (resp. Z^{\prime}) the variety of lines representing the class ${ }^{\vee} \alpha_{j}$ in the projective embedding in $\mathbb{P}\left(V_{\lambda}\right)$ (resp. $\mathbb{P}\left(V_{\lambda^{\prime}}\right)$). Recall, [MR], that the multiplication map $H^{0}\left(G / P_{S}, L_{\lambda}\right) \otimes H^{0}\left(G / P_{S}, L_{\omega_{i}}\right) \rightarrow H^{0}\left(G / P_{S}, L_{\lambda^{\prime}}\right)$ is surjective, so that we get an embedding

$$
\phi: \mathbb{P}\left(V_{\lambda^{\prime}}\right) \rightarrow \mathbb{P}\left(V_{\lambda} \otimes V_{\omega_{i}}\right) .
$$

Take the Segre embedding

$$
\psi: \mathbb{P}\left(V_{\lambda}\right) \times \mathbb{P}\left(V_{\omega_{i}}\right) \rightarrow \mathbb{P}\left(V_{\lambda} \otimes V_{\omega_{i}}\right)
$$

We have a commutative diagram

$$
\begin{array}{ccc}
\mathbb{P}\left(V_{\lambda}\right) \times \mathbb{P}\left(V_{\omega_{i}}\right) & \xrightarrow{\psi} \mathbb{P}\left(V_{\lambda} \otimes V_{\omega_{i}}\right) \\
\uparrow h_{\lambda} \times h_{\omega_{i}} & & \uparrow \phi \\
G / P_{S} & \xrightarrow{h_{\lambda^{\prime}}} & \mathbb{P}\left(V_{\lambda^{\prime}}\right)
\end{array}
$$

where, for a dominant μ, h_{μ} is the morphism associated to the line bundle L_{μ}. Notice now that ϕ and ψ induce embeddings

$$
\begin{array}{r}
G\left(2, V_{\lambda}\right) \times \mathbb{P}\left(V_{\omega_{i}}\right) \xrightarrow{\tilde{\psi}} G\left(2, V_{\lambda} \otimes V_{\omega_{i}}\right) \\
\uparrow_{\tilde{\phi}} \\
G\left(2, V_{\lambda^{\prime}}\right)
\end{array}
$$

Now remark that since

$$
\int_{\vee_{\alpha_{j}}} c_{1}\left(L\left(\omega_{i}\right)\right)=0
$$

each line in G / P_{S} representing the class ${ }^{\vee} \alpha_{j}$ is mapped to a point by $h_{\omega_{i}}$. We thus get a morphism $Z \rightarrow \mathbb{P}\left(V_{\omega_{i}}\right)$ defined by mapping each line in Z to its image under $h_{\omega_{i}}$. We can thus identify $Z \underset{\sim}{Z}$ with the graph of this morphism in $G\left(2, V_{\lambda}\right) \times \mathbb{P}\left(V_{\omega_{i}}\right)$. It is now clear that $\tilde{\psi}(Z)=\tilde{\phi}\left(Z^{\prime}\right)$, proving our claim.

We shall now look at the action of the maximal torus T on Z_{S}^{j}. We have Proposition 1. Every G orbit in Z_{S}^{j} contains a T fixpoint.

Proof. Let ℓ be a line in Z_{S}^{j}. Set p equal to the class of P_{S} in G / P_{S}. By homogeneity, there is an element $g \in G$ with $p \in g \ell$. Now take another point $q \in g \ell . q$ lies in a unique Bruhat cell $S(w)=B w P_{S} / P_{S}$, for a $w \in W$. Thus there is an element $h \in B$ such that $h q=w p$. Since $h p=p$, we get that $\ell^{\prime}=h g \ell$ contains the two T fixpoints p and $w p$. But now if we choose λ as in Lemma 3 and embed G / P_{S} in $\mathbb{P}\left(V_{\lambda}\right)$, we get that ℓ^{\prime} is a line in $\mathbb{P}\left(V_{\lambda}\right)$ which joins two T fixpoints. It is hence stable under T.

Let us now as usual start with our subset S of the Dynkin diagram. Given a vertex j in S, we set S_{j} equal to the new subsets

$$
\bar{S}_{j}=S \cup\left\{i \mid\left\langle\alpha_{i},{ }^{\vee} \alpha_{j}\right\rangle \neq 0\right\}
$$

and

$$
S_{j}=\bar{S}_{j}-\{j\}
$$

The following theorem gives a complete description of the varieties Z_{S}^{j} in the case in which the conditions of Lemma 1 are satisfied:

Theorem 1. Let S be a subset of the Dynkin diagram D. Let j be a vertex in S.Assume that either α_{j} is long or the connected component of $(D-S) \cup\{j\}$ containing the vertex j is simply laced. We have:

1) There is a natural isomorphism between Z_{S}^{j} and $G / P_{S_{j}}$.
2) The incidence variety $\bar{Z}_{S}^{j}=\left\{(\ell, q) \in Z_{S}^{j} \times G / P_{S} \mid q \in \ell\right\}$ has a natural identification with $G / P_{\bar{S}_{j}}$.
3) Under the identification in 2), the projection $\pi_{1}(\ell, q)=\ell$ can be identified with the projection $G / P_{\bar{S}_{j}} \rightarrow G / P_{S_{j}}$ and the projection $\pi_{2}(\ell, q)=q$ with the projection $G / P_{\bar{S}_{j}} \rightarrow G / P_{S}$.

If the conditions of lemma 1) are not satisfied, so that there is a root β supported in $D-S$ with $\left|\left\langle\beta,{ }^{\vee} \alpha_{j}\right\rangle\right|=p>1$, then setting $\alpha=p \alpha_{j}+\beta$, the line ℓ_{α} in $\mathbb{P}\left(V_{\lambda}\right)$ joining the points p and $s_{\alpha} p$ lies in Z_{S}^{j}, Z_{S}^{j} is the closure of the orbit $G \ell_{\alpha}$ and $Z_{S}^{j}-G \ell_{\alpha}=G / P_{S_{j}}$.

Proof. We shall assume that $\lambda=2 \sum_{i \in S} \omega_{i}-\omega_{j}$, so that Z_{S}^{j} coincides with the variety of all lines in $\mathbb{P}\left(V_{\lambda}\right)$ lying in G / P_{S}.

By the definition of \bar{S}_{j} and S_{j}, we immediately get that the natural projection $\pi: G / P_{\bar{S}_{j}} \rightarrow G / P_{S_{j}}$ is a \mathbb{P}^{1}-fibration.

Consider now the projection $\xi: G / P_{\bar{S}_{j}} \rightarrow G / P_{S}$.
Each fiber of π is a mapped by ξ to a \mathbb{P}^{1} which is embedded as a line in $\mathbb{P}\left(V_{\lambda}\right)$. We thus get a map

$$
\gamma: G / P_{S_{j}} \rightarrow Z_{S}^{j}
$$

Composing with the embedding of Z_{S}^{j} into $G\left(2, V_{\lambda}\right)$ and the Plücker embedding of $G\left(2, V_{\lambda}\right)$ into $\mathbb{P}\left({ }_{\bigwedge}^{(} V_{\lambda}\right)$, we get a map

$$
\tilde{\gamma}: G / P_{S_{j}} \rightarrow \mathbb{P}\left(\bigwedge^{2} V_{\lambda}\right)
$$

Notice now that, if we take an highest weight vector $v \in V_{\lambda}$, the vector $v \wedge s_{\alpha_{j}} v \in \Lambda^{2} V_{\lambda}$ is a highest weight vector of weight $2 \lambda-\alpha_{j}$, and $\tilde{\gamma}$ is given by taking the G orbit of the class of $v \wedge s_{\alpha_{j}} v$ in $\mathbb{P}\left(\bigwedge^{2} V_{\lambda}\right)$. A simple computation shows that $\left\langle 2 \lambda-\alpha_{j},{ }^{\vee} \alpha_{i}\right\rangle \neq 0$ if and only if $i \in S_{j}$. This clearly implies that $\tilde{\gamma}$ and hence γ are embeddings. We thus get a natural inclusion $G / P_{S_{j}} \subset Z_{S}^{j}$.

We want now to study the orbit structure in Z_{S}^{j}. Since by the above Proposition 1, each G orbit contains a T fixpoint, we start understanding the T fixpoints. Let ℓ be a T stable line. We clearly have that ℓ must be the line joining two T fixpoints $p_{1}=w_{1} p$ and $p_{2}=w_{2} p, w_{1}, w_{2} \in W$. Applying w_{1}^{-1}, we can assume that ℓ is the line joining p and $w p$ for some $w \in W$. We identify the tangent space to p in G / P_{S} with the Lie algebra

$$
\mathfrak{n}_{S}^{-}=\sum_{\alpha \in \Phi_{S}^{+}} \mathfrak{g}_{-\alpha}
$$

where as usual, for a given root $\beta, \mathfrak{g}_{\beta} \subset \mathfrak{g}$ denotes the root subspace of weight β.

The tangent direction to ℓ in p must be by T stability a T stable line in \mathfrak{n}_{S}^{-}. This means that it must be given by $\mathfrak{g}_{-\alpha}$ for some $\alpha \in \Phi_{S}^{+}$. Let Γ_{α} denote the $S l(2)$ corresponding to such α. Clearly $\ell:=\ell_{\alpha}=\Gamma_{\alpha} p$ and $p_{2}=s_{\alpha} p$. It follows that $\left\langle\lambda,{ }^{\vee} \alpha\right\rangle=1$. Write $\alpha=m \alpha_{j}+\gamma$, where γ is supported in $D-\{j\}$, then

$$
1=\left\langle\lambda,{ }^{\vee} \alpha\right\rangle=m \frac{\left(\alpha_{j}, \alpha_{j}\right)}{(\alpha, \alpha)}+2 \sum_{i \in S-\{j\}}\left\langle\omega_{i},{ }^{\vee} \gamma\right\rangle
$$

We deduce that $\left\langle\omega_{i},{ }^{\vee} \alpha\right\rangle=0$ for all $i \in S-\{j\}$. Under our conditions, we then have that, if α_{j} is long, then necessarily also α is long and $m=1$, while, if α_{j} is short, $\left(\alpha_{j}, \alpha_{j}\right)=(\alpha, \alpha)$ and again $m=1$. Using the first part of Lemma 2, we then get that there is a $w \in W_{S}$ with $w \alpha_{j}=\alpha$. This clearly implies that $\ell_{\alpha}=w \ell_{\alpha_{j}} \in G / P_{S_{j}}$. From this we get that all the T fixpoints lie in a single G orbit. By the above Proposition 1, we know that each G orbit contains at least one T fixpoint, so that we deduce that Z_{S}^{j} is homogeneous. But $G / P_{S_{j}} \subset Z_{S}^{j}$, so $G / P_{S_{j}}=Z_{S}^{j}$ proving (1). Both (2) and (3) follow immediately from our previous considerations.

Suppose now that the conditions of Lemma 1 are not satisfied. Then one has two possibilities. Using the notations of Theorem 1, we have that either $m=1$ and α is short or $m=2$ (or $m=3$ in the G_{2} case) and α is long. Accordingly, using both parts of Lemma 2, we get two G orbits in Z_{S}^{j}. The orbit of $G \ell_{\alpha_{j}}=G / P_{S_{j}}$ is closed, so to finish our proof we need only to see that the orbit $G \ell_{\alpha}$ with α long is not closed and hence, since Z_{S}^{j} is a closed subvariety, necessarily contains $G / P_{S_{j}}$ in its closure.

The G_{2} case is trivial and we leave it to the reader.
Let us now suppose $m=2$ and, using the notation of Lemma 2, take $\alpha=2 \alpha_{j}+\beta$ with $\beta=2 \sum_{h=1}^{r} \alpha_{i_{h}}+\alpha_{t}$. Consider the set $\Gamma \subset \Phi$ defined as $\Gamma=\left(\Phi_{S}^{+}-\{\alpha\}\right) \cup s_{\alpha}\left(\Phi_{S}^{+}-\{\alpha\}\right)$. Now remark that, as a T-module, the tangent space to $G \ell_{\alpha}$ in ℓ_{α} equals the direct sum of the root spaces $\mathfrak{g}_{-\delta}$
with $\delta \in \Gamma$. Indeed, since under the embedding $G\left(2, V_{\lambda}\right) \rightarrow \mathbb{P}\left(\stackrel{2}{\bigwedge} V_{\lambda}\right)$, the line ℓ_{α} is represented by the class of the vector $v \wedge n_{\alpha} v$, where $v \in V_{\lambda}$ is a highest weight vector and n_{α} a representative in $N(T)$ of the reflection s_{α}, it is clear that $\mathfrak{g}_{-\delta}$ contributes to the tangent space to $G \ell_{\alpha}$ in ℓ_{α} if and only if, given $x \in \mathfrak{g}_{-\delta}-\{0\}$,

$$
x v \wedge n_{\alpha} v+v \wedge x n_{\alpha} v \neq 0
$$

If this is the case, then either $x v$ or $x n_{\alpha} v$ is not zero, and $\delta \neq \pm \alpha$, i.e. $\delta \in \Gamma$. Now if $\delta \in\left(\Phi_{S}^{+}-\{\alpha\}\right)-\left(\left(\Phi_{S}^{+}-\{\alpha\}\right) \cap s_{\alpha}\left(\Phi_{S}^{+}-\{\alpha\}\right)\right)$ (resp. $\delta \in\left(s_{\alpha}\left(\Phi_{S}^{+}-\{\alpha\}\right)-\left(\left(\Phi_{S}^{+}-\{\alpha\}\right) \cap s_{\alpha}\left(\Phi_{S}^{+}-\{\alpha\}\right)\right)\right)$, then $x v \wedge n_{\alpha} v \neq 0$, while $v \wedge x n_{\alpha} v=0$ (resp. $v \wedge x n_{\alpha} v \neq 0$, while $x v \wedge n_{\alpha} v=0$), so certainly $x v \wedge n_{\alpha} v+v \wedge x n_{\alpha} v \neq 0$. If $\delta \in\left(\Phi_{S}^{+}-\{\alpha\}\right) \cap s_{\alpha}\left(\Phi_{S}^{+}-\{\alpha\}\right)$, then both $x v \wedge n_{\alpha} v$ and $v \wedge x n_{\alpha} v$ are non zero, but the 2-dimensional space spanned by $x v$ and $n_{\alpha} v$ clearly does not contain v, so it is different from the space spanned by v and $x n_{\alpha} v$, thus proving our claim also in this case.

In order to show that $G \ell_{\alpha}$ is not closed, it suffices to see that the Lie algebra of the stabilizer of ℓ_{α} does not contain a Borel subalgebra. From what we have seen above, this follows once we show that there is a root $\delta \in \Gamma$ such that also $-\delta$ lies in Γ. For this take $\delta=\alpha_{j}+\sum_{h=1}^{r} \alpha_{i_{h}}$. Then one easily sees that $s_{\alpha}\left(\delta+\alpha_{t}\right)=-\delta$ and our claim follows.

Remark 1. Notice that our theorem applies in particular in the case of G / B, i.e. when S is the entire Dynkin diagram. In this case we deduce as a special case our result [S] stating that a class in $H_{2}\left(G / P_{S}, \mathbb{Z}\right)$ can be represented by a line with respect to the projective embedding given by the line bundle $L(\rho)$ with $\rho=\sum_{i} \omega_{i}$, if and only if it equals ${ }^{\vee} \alpha_{j}$ for some j. Furthermore the variety of these lines equals $G / P_{j}, P_{j}$ being the minimal parabolic associated to the node j.

4. The exceptional cases

We shall now discuss the various cases in which the conditions of lemma 1 are not satisfied. This will be done case by case.

We start with G_{2}. In this case we have to take the maximal parabolic P corresponding to the short simple root. We let ω be the corresponding fundamental weight. Then it is well known and easy to see that $H^{0}\left(G / P, L_{\omega}\right)$ has dimension 7 and G / P is embedded as a non degenerate quadric in the 6 dimensional projective space $\mathbb{P}\left(H^{0}\left(G / P, L_{\omega}\right)^{*}\right)$. A quadric in \mathbb{P}^{6} is a complete homogeneous space for the corresponding special orthogonal group $S O(7)$ which is of type B_{3}. If we consider our quadric as a homogeneous space for $S O(7)$, the conditions of lemma 1 are satisfied, so we get that the variety of lines in our quadric G / P is the variety of isotropic lines with
respect to the symmetric bilinear form defining it i.e. the unique closed orbit for $S O(7)$ acting on the projectification of its adjoint representation.

We now pass to the B_{n} case. We consider a vector space V of dimension $2 \mathrm{n}+1$ with a non degenerate symmetric bilinear form and we can take as G the corresponding special orthogonal group.

As a preliminary step, let us embed our orthogonal space V in a $2 n+2$ dimensional orthogonal space W and choose once and for all, one of the two $S O(W)$ orbits \mathcal{O} in the variety of maximal isotropic subspaces of W. Notice that we can identify \mathcal{O} with the variety \mathcal{T} of maximal isotropic subspaces in V as follows. Given $U \in \mathcal{O}$, then clearly $U \cap V \in \mathcal{T}$, so that we get a map

$$
c: \mathcal{O} \rightarrow \mathcal{T}
$$

On the other hand, if we fix $U^{\prime} \in \mathcal{T}$, and we take a subspace $U \in \mathcal{O}$ containing it, we have that U / U^{\prime} is an isotropic line in the plane $U^{\prime \perp} / U^{\prime}$, $U^{\prime \perp}$ being the orthogonal space to U^{\prime} in W. But there are exactly two such lines and, of the corresponding two maximal isotropic subspaces in W, only one lies in \mathcal{O}. We deduce that the map c is an isomorphism.

Let us now go back to our problem. If we index the vertices of the Dynkin diagram as follows

we get that for a subset $S=\left\{r_{1}<\cdots<r_{t}\right\}$ of the Dynkin diagram, the variety G / P_{S} is the variety consisting of flags $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t}\right)$ with V_{j} isotropic and $\operatorname{dim} V_{j}=r_{j}$. Furthermore the conditions of lemma 1 are not satisfied for parabolic subgroups G / P_{S} with $r_{t}=n$, and $r_{t-1}<n-1$, and for the homology class represented by the simple coroot ${ }^{\vee} \alpha_{n}$.

Let $S=\left\{r_{1}<\cdots<r_{t}\right\}$ be a subset of the Dynkin diagram with $r_{t}=n$, and $r_{t-1}<n-1$. We have

Proposition 2. 1. The variety Z_{S}^{n} can be described as the variety of all flags $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H\right), H$ being an $n-1$ dimensional isotropic subspace in W and $\operatorname{dim} V_{i}=r_{i}, 1 \leq i \leq t-1$.
2. The incidence variety $\bar{Z}_{S}^{n}=\left\{(\ell, q) \in Z_{S}^{n} \times G / P_{S} \mid q \in \ell\right\}$ has a natural identification with the variety of all flags $\left(\left(V_{1} \subset V_{2} \cdots \subset V_{t-1} \subset H \subset\right.\right.$ $\left.U),\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H\right)\right) \in Z_{S}^{n}, U \in \mathcal{O}$ via the map

$$
T: \bar{Z}_{S}^{n} \rightarrow Z_{S}^{n} \times G / P_{S}
$$

$T\left(\left(V_{1} \subset V_{2} \cdots \subset V_{t-1} \subset H \subset U\right)\right)=\left(\left(V_{1} \subset V_{2} \cdots \subset V_{t-1} \subset\right.\right.$ $H),\left(V_{1} \subset V_{2} \cdots \subset V_{t-1} \subset c(U)\right)$.

Proof. Set \tilde{Z}_{S}^{n} equal to the variety of all flags $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H\right)$, H being an $\mathrm{n}-1$ dimensional isotropic subspace in W and $\operatorname{dim} V_{i}=r_{i}$, $1 \leq i \leq t-1$.

If we take the projection $p_{1}: \tilde{Z}_{S}^{n} \times G / P_{S} \rightarrow \tilde{Z}_{S}^{n}$ on the first factor and set $\pi=p_{1} T$, we clearly get that π is a P^{1} fibration.

Also each fiber of this fibration is mapped to a line in G / P_{S} and the obvious injectivity of T implies that two such lines are distinct.

To determine the homology class of these lines, let us set $\bar{S}=\left\{r_{1}<\right.$ $\left.\cdots<r_{t-1}\right\}$. Take the projection $p: G / P_{S} \rightarrow G / P_{\bar{S}}$. We have, since,

$$
\left\langle\sum_{j=1}^{t-1} \omega_{i_{j}},{ }^{\vee} \alpha_{n}\right\rangle=0
$$

that a line ℓ lies in Z_{S}^{n} if and only if $p(\ell)$ is a point. But it is clear by the definition that this property is satisfied for the fibers of π. We deduce that \tilde{Z}_{S}^{n} embeds in Z_{S}^{n}. On the other hand, we have seen that Z_{S}^{n} consists of two G orbits, thus to show our claim, it suffices to see that \tilde{Z}_{S}^{n} is not homogeneous. This is clear since \tilde{Z}_{S}^{n} contains the closed orbit consisting of those flags $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H\right)$ with $H \subset V$.

Thus $\tilde{Z}_{S}^{n}=Z_{S}^{n}$ and all our claims follow at once.
We now pass to the C_{n} case. We consider a vector space V of dimension 2 n with a non degenerate symplectic bilinear form and we can take as G the corresponding symplectic group.

If we index the vertices of the Dynkin diagram as follows

we get that for a subset $S=\left\{r_{1}<\cdots<r_{t}\right\}$ of the Dynkin diagram, the variety G / P_{S} is the variety consisting of flags ($V_{1} \subset V_{2} \subset \cdots \subset V_{t}$) with V_{j} isotropic and $\operatorname{dim} V_{j}=r_{j}$. Furthermore the conditions of lemma 1 are not satisfied for parabolic subgroups G / P_{S} with $r_{t}<n$, and for the homology class represented by the simple coroot ${ }^{\vee} \alpha_{r_{t}}$.

Let $S=\left\{r_{1}<\cdots<r_{t}\right\}$ be a subset of the Dynkin diagram with $r_{t}<n$. We have:

Proposition 3. 1) The variety $Z_{S}^{r_{t}}$ can be described as the variety of all flags $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H \subset K\right)$, with H being an $r_{t}-1$ dimensional isotropic subspace in $V, \operatorname{dim} V_{i}=r_{i}, 1 \leq i \leq t-1$ (notice that if $r_{t}-1=r_{t-1}, H=V_{t-1}$), and $\operatorname{dim} K=r_{t}+1$.
2) The incidence variety $\bar{Z}_{S}^{n}=\left\{(\ell, q) \in Z_{S}^{n} \times G / P_{n} \mid q \in \ell\right\}$ has a natural identification with the variety of all flags $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H \subset\right.$
$U \subset K)$, with $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H \subset K\right) \in Z_{S}^{n}$ and $\operatorname{dim} U=r_{t}$, via the map

$$
T: \bar{Z}_{S}^{n} \rightarrow Z_{S}^{n} \times G / P_{S}
$$

$T\left(\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H \subset U\right)\right)=\left(\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset\right.\right.$ $H \subset K),\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset U \subset K\right)$). (Notice that U is automatically isotropic, since the symplectic form has rank at most one, and hence zero, on this space).

Proof. Set $\tilde{Z}_{S}^{r_{t}}$ equal to the variety of all flags $\left(V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset\right.$ $H \subset K)$, with H being an $r_{t}-1$ dimensional isotropic subspace in V, dim $V_{i}=r_{i}, 1 \leq i \leq t-1$.

If we take the projection $p_{1}: \tilde{Z}_{S}^{r_{t}} \times G / P_{S} \rightarrow \tilde{Z}_{S}^{r_{t}}$ on the first factor and set $\pi=p_{1} T$, we clearly get that π is a P^{1} fibration.

Also each fiber of this fibration is mapped to a line in G / P_{S} and the obvious injectivity of T implies that two such lines are distinct.

To determine the homology class of these lines, let us set $\bar{S}=\left\{r_{1}<\right.$ $\left.\cdots<r_{t-1}\right\}$. Take the projection $p: G / P_{S} \rightarrow G / P_{\bar{S}}$. We have since,

$$
\left\langle\sum_{j=1}^{t-1} \omega_{i_{j}},{ }^{\vee} \alpha_{r_{t}}\right\rangle=0
$$

that a line ℓ lies in $Z_{S}^{r_{t}}$ if and only if $p(\ell)$ is a point. But is clear by the definition that this property is satisfied for the fibers of π. We deduce that $\tilde{Z}_{S}^{r_{t}}$ embeds in $Z_{S}^{r_{t}}$. But we have seen that $Z_{S}^{r_{t}}$ consists of two G orbits, thus to show our claim, it suffices to see that $\tilde{Z}_{S}^{r_{t}}$ is not homogeneous. This is clear since $\tilde{Z}_{S}^{r_{t}}$ contains the closed orbit consisting of those flags ($V_{1} \subset V_{2} \subset \cdots \subset V_{t-1} \subset H \subset K$) with K isotropic.

Thus $\tilde{Z}_{S}^{r_{t}}=Z_{S}^{r_{t}}$ and all our claims follow at once.
We finally pass to the case F_{4}. If we index the vertices of the Dynkin diagram as follows

we have that the conditions of lemma 1 are not satisfied for parabolic subgroups G / P_{S} with $S=\{3\},\{4\},\{13\},\{14\},\{34\},\{134\}$. Also if $3 \in S$, then we need to consider the homology class represented by the simple coroot ${ }^{\vee} \alpha_{3}$. Otherwise we need to consider the homology class represented by the simple coroot ${ }^{\vee} \alpha_{4}$.

We start with the case $S=\{4\}$.
Let G^{\prime} be a simply connected group of type E_{6}. Recall that once we have chosen a maximal torus in G^{\prime} and a Borel subgroup containing it, we can
uniquely associate an involution σ of G^{\prime} to the non trivial automorphism of its Dynkin diagram

so that G is the subgroup of elements fixed by σ (see [He] page 518 ,table V, type EIV).

Notice that $\operatorname{dim} G^{\prime} / G=26$. Denote by V^{\prime} the 27 dimensional representation of G^{\prime} whose highest weight is ω_{1}^{\prime}. Denote by $P^{\prime} \subset G^{\prime}$ the corresponding maximal parabolic subgroup. The restriction of V^{\prime} to G decomposes into the sum

$$
V^{\prime}=V_{4} \oplus k
$$

where V_{4} is the irreducible representation of G whose highest weight is ω_{4} and k is a trivial one dimensional module. One has that, if we consider the hyperplane $H=\mathbb{P}\left(V_{4}\right)$ of $\mathbb{P}\left(V^{\prime}\right)$ as a point in $\mathbb{P}\left(V^{\prime *}\right)$, then its orbit under G^{\prime} is isogenous to G^{\prime} / G and it is hence dense in $\mathbb{P}\left(V^{\prime *}\right)$. It follows from Bertini theorem ([Ha], II 8.18]) that, if we identify the orbit of the highest weight line in V^{\prime} with G^{\prime} / P^{\prime}, the intersection $G^{\prime} / P^{\prime} \cap H$ is smooth and irreducible. Since it contains G / P_{4} and has dimension $15=\operatorname{dim} G / P_{4}$, we deduce that $G^{\prime} / P^{\prime} \cap H=G / P_{4}$. We then get from Theorem 1, that the variety Z_{4}^{4} coincides with the intersection in the Grassmannian $G\left(2, V^{\prime}\right)$ of lines in $\mathbb{P}\left(V^{\prime}\right)$ of the varieties $G^{\prime} / P_{2}^{\prime}$ and $G(2, H)$. Since we have seen that the G^{\prime} orbit of H is dense, we can then use a result of Kleiman ([Ha], II 10.8) to deduce that Z_{4}^{4} is smooth, irreducible and of codimension 2 in $G^{\prime} / P_{2}^{\prime}$.

We now pass to G / P_{3}. We have seen that $G / P_{3} \subset Z_{4}^{4} \subset G\left(2, V^{\prime}\right)$. Thus, using Theorem 1 in the case of $G\left(2, V^{\prime}\right)$, we deduce that a line in G / P_{3} consists of a pencil of lines in $\mathbb{P}\left(V^{\prime}\right)$ contained in a plane and having a point p in common. Clearly $p \in G / P_{4}$, so that we get a G equivariant fibration

$$
f: Z_{3}^{3} \rightarrow G / P_{4} .
$$

On the other hand, if we consider the incidence variety $Y=\{(\ell, p) \mid \ell \in$ $\left.G / P_{3}, p \in \ell\right\}$, we can identify Y with $G / P_{3,4}$ and the projection onto the second factor with the canonical G-equivariant fibration

$$
p: G / P_{3,4} \rightarrow G / P_{4} .
$$

We deduce that $f^{-1}\left(\left[P_{1}\right]\right)$ is the variety of lines in the variety $P_{4} / P_{3,4}$. Setting L equal to the adjoint Levi factor of P_{4} i.e. the quotient of P_{4} modulo its solvable radical, we can identify $P_{4} / P_{3,4}$ with $L / \bar{P}(\bar{P}$ being the image of $P_{3,4}$ in L). L is of type B_{3} and P is the maximal parabolic subgroup associated to its simple short root. Thus the set \bar{Z} of lines in L / \bar{P} has been completely described in Proposition 2. Furthermore the quotient map $P_{4} \rightarrow$ L induces an action of P_{4} on \bar{Z} and we clearly have that $Z_{3}^{3}=G \times_{P_{4}} \bar{Z}$.

We now briefly discuss the remaining cases, in which we take G / P_{S} with $|S| \geq 2$.If $3 \in S$, we consider the homology class represented by the simple coroot ${ }^{\vee} \alpha_{3}$, while if $3 \notin S$, we consider the homology class represented by the simple coroot ${ }^{\vee} \alpha_{4}$. We set $i=3$ in the first case and $i=4$ in the second and $S^{\prime}=S-\{i\}$.

Denote by $p: G / P_{S} \rightarrow G / P_{S^{\prime}}$ the canonical G-equivariant projection. Since

$$
\left\langle\sum_{j \in S^{\prime}} \omega_{j},{ }^{\vee} \alpha_{i}\right\rangle=0
$$

we have that a line ℓ lies in Z_{S}^{i} if and only if $p(\ell)$ is a point. Thus $Z_{S}^{i}=$ $G \times_{P_{S}} \bar{Z}$, where \bar{Z} is the variety of lines in $P_{S^{\prime}} / P_{S}$. This is a complete homogeneous space for a group of type B or C (the adjoint Levi factor of $P_{S^{\prime}}$) and so \bar{Z} has already been described above.

This completes our analysis of the cases in which the variety of lines in a complete homogeneous space G / P is not itself homogeneous.

References

[CC] Cohen A. M., Cooperstein B. N. Lie incidence systems from projective varieties. Proc. Amer. Math. Soc. 126(7) (1998), 2095-2102
[Ha] Hartshorne R. Algebraic geometry. Springer Verlag 1977
[He] Helgason S. Differential geometry, Lie groups, and symmetric spaces. Academic Press 1978
[LM] Landsberg J. M., Manivel L. On the projective geometry of homogeneous varieties. preprint
[MR] Mehta V.B.,Ramanathan A. Frobenius splitting and cohomology vanishing for Schubert varieties. Ann. Math. II, Ser. 122 (1985), 27-40
[RR] Ramanan S., Ramanathan A. Projective normality of flag varieties and Schubert varieties. Invent. Math. 79(2) (1985), 217-224
[S] Strickland E. Projective spaces in flag varieties. Comm. in Algebra 26(5) (1998), 1651-1655

