Math. Z. 242, 227-240 (2002)

Digital Object Identifier (DOI) 10.1007/s002090100330 Mathe.matisphe
Zeitschrift

Lines in G/P

Elisabetta Strickland

Dipartimento di Matematica, Universita di Roma “Tor Vergata”
(e-mail: strickla@mat.uniroma2.it)

Received: 18 September 2000; in final form: 8 December 2000 /
Published online: 18 January 2002 — (©) Springer-Verlag 2002

1. Introduction

Let GG be a semisimple algebraic group over an algebraically closed field
k (chark # 2). Let P C G denote a parabolic subgroup. Consider the
projective homogeneous space GG/ P and a very ample line bundle L on
G/ P.In this paper we shall give an answer to the following two questions:

(1) For which L the image of G/ P inside the projective space P((H°(G//
P, L))*) contains a line.

(2) Supposing such a line exists, which is its class in Hy(G/ P, Z) and, for
a fixed class, describe the subvariety of the Grassmannian of lines in
P((H°(G/P, L))*) which lie in G/P and represent this class.

Our goal is reached as follows. Fix a maximal torus 7" in G and a Borel
subgroup B D T, so that we can consider the corresponding root lattice
Q, weight lattice II, set of simple roots A = {a;,...,a,} and set of
fundamental weights 2 = {w1,...,w,}. We then choose P D B so that
P corresponds to a subset S of A or equivalently {2 or also equivalently
of the Dynkin diagram of G. Recall that the Picard group of G/P can be
identified with a sublattice of 7. Taken an ample L € Pic(G/P), and
setting A = . n;w; equal to the corresponding element in I7, we show
that: 1) G/P C P((H°(G/P, L))*) contains a line if and only if n; = 1 for
at least one 4.

Suppose now this is the case, and recall that we can identify Hy (G /P, Z)
with a sublattice of the lattice ¥ (Q spanned by coroots. Then:
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2) The homology class of a line in G/P C P((H°(G/P, L))*) is exactly
equal to one of the ¥ c; for which n; = 1. The corresponding variety of lines
in G/ P, Zg,, then depends only on ¥ ;.

Once this has been shown, we describe the structure of our variety Zg,.
In Sect. 3 we achieve this under some additional assumptions (see Lemma
1, in particular this works in full generality in the simply laced case). In
this case once 7 has been fixed, we can define a new parabolic subgroup P’
and consider the parabolic Q = P N P’. We then show that Zg, is G/P’
and that the natural map G/Q — G/P’ is the family of such lines. In the
general case we show that Zg, has at most two orbits and we give a detailed
description of the exceptional cases in which Zg, is not homogeneous in
Sect. 4. In the case in which P is maximal, similar results to ours have been
obtained in [CC] (see also [LM]).

2. Some lemmas on root systems

As in the introduction, let G be a semisimple algebraic group over an alge-
braically closed field k. We choose a maximal torus 7" and a Borel subgroup
B and let W = N(T')/T be the Weyl group. We denote by () the corre-
sponding root lattice, IT the weight lattice, V' the lattice of coroots. We
also let @ C @ be the root system, A = {a1, ..., ay,} be the set of simple
roots and {2 = {w1,...,w,} be the set of fundamental weights.

We choose a W invariant scalar product (, ) on @ ® Q. Given a root «,
we define the corresponding coroot ¥« by

2(x, @)

(v, @)

(x,Ya) :=

We shall denote by D := Dg the Dynkin diagram of our root system.
The vertex of D corresponding to a simple root «; will be simply denoted
by j.

The height of a positive root o = El nio;, n; > 0 for all 7, is defined
by htae = ), n;.

Weset A(j) = {i| (o, ;) # 0}.Recall that to j we can associate a max-
imal parabolic subgroup P; D B and to any subset S C D a parabolic group
Ps = NjesP;j sothat Pp = B. Also we set & = {a € 7| Supp aN S #
(}. One has

ps = Lie Ps = b @ (9,401 9-a)-

Notice that dim G/Pg = |9¢].

We now want to prove two rather easy lemmas regarding root systems
that will be useful in the sequel. Recall that, if the Dynkin diagram D is
connected, there are only two root lengths. We shall say that a given simple
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root is long if it is a long root with respect to the connected component of
D where it belongs. By convention, if there is only one root length i.e. our
component is simply laced, every root is long.

Lemma 1. Let S be a subset of the Dynkin diagram D. Let j be a vertex in
S. Then the following conditions are equivalent for the pair (S, j):

1) Either «j is long or the connected component of (D — S)U{j } containing
the vertex j is simply laced.

2) For each root « supported outside S,

(*) (o, )] <1,

Proof. Indeed if condition 1) holds, then 2) is clear.

On the other hand suppose 2) holds and «; is short. Assume by contra-
diction that there is a vertex t in the connected component of (D —S)U{j}
containing j such that oy is long. Then either the roots o, a; span a root
system of type G2 and (ay," ;) = —3, or there is a subdiagram with ver-
tices (7,41, ..., 4y, t) of type Cyy2,7 > 0.In this case a simple computation
shows that the root 5 = 23 _; a;, + o is such that (3,Ya;) = —2.In
both cases we get a contradiction.

Let us now take a subset .S of the Dynkin diagram D. Set Wg equal
to the Weyl group of Pg i.e. the subgroup of W generated by the simple
reflections s;, 7 ¢ S. Choose j € S. We then have,

Lemma 2. /) For any positive root (3 having the same length as o and of
the form 3 = «; + v, 7y being a vector supported in D — S, there exists
w € Wg with wo; = 3.

2) If furthermore the conditions of lemma 1) are not satisfied, so that there
is a root (3 supported in D — S with |(3,Y ;)| = p > 1, then any pair of
long roots of the form paj; + 7, 7y being a vector supported in D — S, are
conjugate under the action of Wg.

Proof. 1) We proceed by induction on the height of 8. If ht3 = 1, then
B = «; and there is nothing to prove. Let now ht3 > 1. We claim that
there is a vertex ¢ ¢ S such that (3, ;) > 0. Assume the contrary. Then
clearly (53, ;) < 0 for each i # j. We deduce that (3, o) > 0, otherwise
(8,8) < 0.Alsosince 5,8 = 3—(8," aj) v is a positive root, we must have
(B,Yaj) = 1, s0 that s;3 = ~. By our assumptions, we have (3,v) < 0.
But now, v, 3 and hence «; have the same length, so that we deduce that
(v,Ya;) = (aj,Yvy) = —1,and then (3,"~) = 1, getting a contradiction.

Take now i ¢ S such that (3, ;) > 0. We have that hts; 3 < ht/3 and
s; 3 satisfies all the assumptions of our lemma. It follows that there exists
w' € W; with w’'a; = ;6. Thus s;w’a; = 3, proving our claim.
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2) The G5 case i.e. the only case in which p = 3, is trivial. So let us
assume p = 2. Consider, as in the proof of Lemma 1, the long simple root
oy and the subdiagram with vertices (j,41,. .., i, t) of type Cryo,r > 0.
Take the root 3 = 27 _, «;, + a;. We have to show that any long root
0 = 2a; + vy, v being a vector supported in D — S, is Wg- conjugate to
a = 2a; + 3. Assume 0 is such that (9, o;;) < 0 for each i # j. We deduce
that (8, oj) > 0, otherwise (4, d) < 0. Since «; is short, we get (4," oj) = 2,
so s;0 = <. Thus - is a long root and

(6,7 7) = 2a;, ") + (y,") = -2+2=0

This implies that (6," ;) = 0 for all 7 # j in suppd. Thus J is the unique
highest root whose support is contained in suppd and from this we immedi-
ately get that suppd=(j, i1, ..., 4, t) and 6 = a. Thus,if 6 # «,thereisi #
J,necessarily in D— S, such that (8, ;) > 0,50 8;0 = 20+ (y—(9," ;) %)
is of height smaller than §. At this point the proof proceed as in part 1) (no-
tice that our argument implies that « is the unique root of minimum height
among the roots of the form 2c; + v, v being a vector supported in D — S).

3. Lines in G/ Pg

Given a k-vector space V', we denote by P(V') the projective space of one
dimensional subspaces in V. If X C P(V) is a projective variety, we can
consider the set L(.X) of lines in P(V') which lie in X. L(X) is a projective
subvariety of the Grassmannian G(2, V') of lines in P(V'). To see this con-
sider the partial flag variety F* C P(V') x G(2, V') consisting of pairs (p, {)
with p € £. We have two projections p : F' — P(V)and ¢ : F — G(2,V),
so we can take ¢(p~!(X)). The fact that X is closed and ¢ proper, clearly
implies that both p~!(X) and q(p~'(X)) are closed and hence projective.
Also q restricts to a morphism g : p~1(X) — q(p~'(X)), and clearly
L(X) is the subset of points for which the fibers of g have positive di-
mension. The fact that L(X) is closed, then follows from [Ha, pag. 95, ex.
3.22]. We shall consider the variety L(X) with its reduced structure. Also
we set FI(X) := ¢~ '(L(X) and call the P*-fibration ¢ : F(X) — L(X)
the family of lines in X.

We start by recalling a few facts about the complete homogeneous spaces
G/Ps.

For each S C D, the Picard group of G/Ps can be identified with the
sublattice of the weight lattice generated by the fundamental weights w;,
with i € S. Also, given a weight A =}, _¢ n;w;, the corresponding line
bundle L) is defined as follows. First we extend the character e : T — k*
to a character of Pg, so that we get a one dimensional Pg-module k), and
then we set Ly = G X pg k). One knows that H°(G/Ps, Ly) # 0 if and
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only if n; > 0, i.e. A is dominant. Furthermore if n; > 0 for each ¢, then
L) is ample and automatically very ample [RR] . From now on we shall
assume that ) is dominant. We have that H°(G//Ps, L) is the dual of the
Weyl module V), [RR] with highest weight A. So if n; > 0 for each ¢, we
get an embedding of G/ Ps into P(Vy) = P(H%(G/Ps, Ly)*).

The Chow group A™ Y(G/Ps), m = dim G/Ps, of 1-dimensional
cyclesin G/ Ps (if k = C,the complex numbers, we cantake Ho(G/ Ps, 7)),
can be identified with the lattice generated by the coroots Voy;, i € S, and
given a class V3 = 3, ¢ m/c; and a line bundle L()), we have

/v A = Yo mi o).

i€S

In particular, if we consider the embedding of G/Pgs into P(V)), and the
corresponding variety of lines Z) in G/Ps, we get a locally constant map
Zy — A™ Y(G/Ps). We shall say that a class in A" 1(G/Ps) can be
represented by a line in G/ Ps with respect to the projective embedding into
P(V)), if it lies in the image of our map. Notice that the lines representing
a given class are a union of connected components of 7).

These considerations have the following consequence.

Lemma 3. A class '3 = Y_,.gm;a; can be represented by a line with
respect to the projective embedding given by the line bundle L(\) with
A= icgniwi, ni > 0 only if there exists a vertex j € S such that

1. V,B :Vaj
2. nj =1.

Furthermore, if this is the case, the variety Zé of lines of class "o is inde-
pendent from the choice of the \ satisfying condition (2).

Proof. The first part is clear since for such a line we must have

1= /Vﬂ cl(LN) =Y min,.

€S

As for the second, it is clear that it suffices to show our claim for A =
Zies nw;, n; > 0and N = X\ + w;, i # j. For the time being, let us
denote by Z (resp. Z') the variety of lines representing the class Yoy in
the projective embedding in P(V)) (resp. P(V))). Recall, [MR], that the
multiplication map H°(G/Ps, L)) ® H°(G/Ps, L,,,) — H°(G/Ps, L)
is surjective, so that we get an embedding

¢ : IP(VX) — P(V)\ ® Vw,-)-
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Take the Segre embedding
P P(Vy) xP(V,,) = P(Vh® W,)

We have a commutative diagram

P(Vy) x B(V,,,) ——s P(Vy® Vi)

ThAthi Tqﬁ

G/ Ps SLEN P(Vy)

where, for a dominant i, h, is the morphism associated to the line bundle
L,,. Notice now that ¢ and ) induce embeddings

G2, V) x P(V,,) —Y G(2,VA® V)

[
G(2,Vy)

Now remark that since
/ c1(L(wi)) =0,
\/aj

each line in G/ Pg representing the class Yov; is mapped to a point by Ay, .
We thus get a morphism Z — P(V,,) defined by mapping each line in Z to
its image under h,,. We can thus identify Z with the graph of this morphism
in G(2,Vy) x P(V,,.). It is now clear that 1)(Z) = ¢(Z'), proving our claim.

‘We shall now look at the action of the maximal torus 7" on Zé. ‘We have

Proposition 1. Every G orbit in ng contains a T fixpoint.

Proof. Let £ be a line in Z%. Set p equal to the class of Ps in G/Ps. By
homogeneity, there is an element g € G withp € g¢. Now take another point
q € g/. q lies in a unique Bruhat cell S(w) = BwPs/Pg,foraw € W.
Thus there is an element h € B such that hqg = wp. Since hp = p, we get
that ¢ = hg/ contains the two T fixpoints p and wp. But now if we choose
A as in Lemma 3 and embed G/ Ps in P(V) ), we get that ¢’ is a line in P(V))
which joins two T fixpoints. It is hence stable under 7.

Let us now as usual start with our subset S of the Dynkin diagram. Given a
vertex j in S, we set S; equal to the new subsets

Sj =8 U{il(as," aj) # 0}
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and B

Sj =55 -1}
The following theorem gives a complete description of the varieties Zé in
the case in which the conditions of Lemma 1 are satisfied:

Theorem 1. Let S be a subset of the Dynkin diagram D. Let j be a vertex in
S. Assume that either oj is long or the connected component of (D—S)U{j}
containing the vertex j is simply laced. We have:

1) There is a natural isomorphism between Zé and G/ ng.

2) The incidence variety Zg = {(£, q) € Zg x G/Ps| q € ¢} has a natural
identification with G/ Pg. .

3) Under the identification in 2), the projection w1 (£, q) = £ can be identified
with the projection G/ Pg — G/ Ps; and the projection m2({, q) = q with
the projection G/ Py =G /Ps.

If the conditions of lemma 1) are not satisfied, so that there is a root 3
supported in D — S with |(3,Y aj)| = p > 1, then setting o = paj + 3, the
line L., in P(V)\) joining the points p and s,p lies in z, Z;é is the closure
of the orbit G{,, and Zé —Gly = G/Ps,.

Proof. We shall assume that A = 2 )", ¢ w; —wj, so that Z% coincides with
the variety of all lines in P(V}) lying in G/ Ps.

By the definition of S; and S;, we immediately get that the natural
projection 7 : G/ Py — G/ Ps, is a P!-fibration.

Consider now the projection £ : G/ Pg, — G/Ps.

Each fiber of 7 is a mapped by ¢ to a P! which is embedded as a line in
P(V). We thus get a map

v:G/Ps, — Z}

Composing with the embedding of Zg into G(2,V)) and the Pliicker em-
2

bedding of G(2, V) into P(/A\ V)), we get a map

2
7 :G/Ps; = IP’(/\ Vh).
Notice now that, if we take an highest weight vector v € V), the vector
2
v A sqv €\ Vyis ahighest weight vector of weight 2\ — a;, and 7 is

2
given by taking the G orbit of the class of v A 5o, v in P(A V). A simple
computation shows that (2\ — «;," ;) # 0 if and only if ¢ € S;. This
clearly implies that 7 and hence v are embeddings. We thus get a natural
inclusion G/ Ps, C Z%.
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We want now to study the orbit structure in ng. Since by the above
Proposition 1, each G orbit contains a T fixpoint, we start understanding the
T fixpoints. Let £ be a T stable line. We clearly have that £ must be the line
joining two T fixpoints p; = wip and pa = wap, wy, w2 € W. Applying
wy !, we can assume that £ is the line joining p and wp for some w € W.
We identify the tangent space to p in G/ Ps with the Lie algebra

ng= Y ga

+
aedy

where as usual, for a given root 3, gg C g denotes the root subspace of
weight 3.

The tangent direction to £ in p must be by 7" stability a 7" stable lineinng .
This means that it must be given by g_,, for some o € @g. Let I, denote
the SI(2) corresponding to such a. Clearly ¢ := ¢, = [',p and pa = s,p.
It follows that (\,Y«) = 1. Write & = ma; + ~y, where 7 is supported in
D — {j}, then

1= 4 — M 9 VAN
ieS—{j}

We deduce that (w;,Y«) = 0 for all i € S — {j}. Under our conditions,
we then have that, if «; is long, then necessarily also « is long and m = 1,
while, if o is short, (o, ;) = (o, @) and again m = 1. Using the first
part of Lemma 2, we then get that there is a w € Wy with wa; = «. This
clearly implies that £, = wl,,; € G/Ps,. From this we get that all the T
fixpoints lie in a single G orbit. By the above Proposition 1, we know that
each G orbit contains at least one 7' fixpoint, so that we deduce that ng is
homogeneous. But G/ Ps, C Z%, so G/Ps; = Z{ proving (1). Both (2)
and (3) follow immediately from our previous considerations.

Suppose now that the conditions of Lemma 1 are not satisfied. Then one
has two possibilities. Using the notations of Theorem 1, we have that either
m = 1 and « is short or m = 2 (or m = 3 in the G5 case) and « is long.
Accordingly, using both parts of Lemma 2, we get two G orbits in ng. The
orbit of Gl = G/ Ps; is closed, so to finish our proof we need only to see

that the orbit G/,, with « long is not closed and hence, since qu is a closed
subvariety, necessarily contains GG/ Pg; in its closure.

The G5 case is trivial and we leave it to the reader.

Let us now suppose m = 2 and, using the notation of Lemma 2, take
a =20 + B with § = 2 22:1 o, + ;. Consider the set I C @ defined
as I' = (&% — {a}) U sa(®PE — {a}). Now remark that, as a T-module,
the tangent space to G/, in £, equals the direct sum of the root spaces g_
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2
with 0 € I'. Indeed, since under the embedding G(2,V)) — P(A V), the
line ¢, is represented by the class of the vector v A n,v, where v € V) is a
highest weight vector and n,, a representative in N (T") of the reflection s,
it is clear that g_; contributes to the tangent space to G/, in ¢, if and only
if, given z € g_s — {0},

TV A Ngv 4+ v A xngv # 0.

If this is the case, then either zv or zn,v is not zero, and § # +a, i.e.
§ € I'.Now if § € (&% — {a}) — (D% — {a}) N sa (DL — {a})) (resp.
§ € (sa(P5 —{a}) = (25 — {a}) Nsa(@L — {a}))), then zv Angv # 0,
while v A zn,v = 0 (resp. v Axngv # 0, while zv An,v = 0), so certainly
20 Anav + v Azngv # 0.1f 6 € (D5 — {a}) N sa (P — {a}), then both
v A nqv and v A xn,v are non zero, but the 2-dimensional space spanned
by zv and n,v clearly does not contain v, so it is different from the space
spanned by v and xn,v, thus proving our claim also in this case.

In order to show that G/, is not closed, it suffices to see that the Lie
algebra of the stabilizer of ¢, does not contain a Borel subalgebra. From
what we have seen above, this follows once we show that there is a root
§ € I' such that also —§ lies in I". For this take 6 = a; + > _; a;,, . Then
one easily sees that s, (0 + ;) = —d and our claim follows.

Remark 1. Notice that our theorem applies in particular in the case of G/ B,
i.e. when S is the entire Dynkin diagram. In this case we deduce as a special
case our result [S] stating that a class in H2(G/Pg,Z) can be represented
by a line with respect to the projective embedding given by the line bundle
L(p) with p = Y, w;.if and only if it equals ¥ «; for some j. Furthermore
the variety of these lines equals G/P;, P; being the minimal parabolic
associated to the node j.

4. The exceptional cases

We shall now discuss the various cases in which the conditions of lemma 1
are not satisfied. This will be done case by case.

We start with Go. In this case we have to take the maximal parabolic P
corresponding to the short simple root. We let w be the corresponding fun-
damental weight. Then it is well known and easy to see that H°(G/P, L,,)
has dimension 7 and G/ P is embedded as a non degenerate quadric in the 6
dimensional projective space P(H°(G /P, L,,)*). A quadric in P is a com-
plete homogeneous space for the corresponding special orthogonal group
SO(7) which is of type Bs. If we consider our quadric as a homogeneous
space for SO(7), the conditions of lemma 1 are satisfied, so we get that
the variety of lines in our quadric G/ P is the variety of isotropic lines with
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respect to the symmetric bilinear form defining it i.e. the unique closed orbit
for SO(7) acting on the projectification of its adjoint representation.

We now pass to the B,, case. We consider a vector space V' of dimension
2n+1 with a non degenerate symmetric bilinear form and we can take as G
the corresponding special orthogonal group.

As a preliminary step, let us embed our orthogonal space V' in a 2n + 2
dimensional orthogonal space W and choose once and for all, one of the two
SO (W) orbits O in the variety of maximal isotropic subspaces of 1V Notice
that we can identify O with the variety 7 of maximal isotropic subspaces in
V as follows. Given U € O, then clearly U NV € T, so that we get a map

c:0—=T.

On the other hand, if we fix U’ € T, and we take a subspace U € O
containing it, we have that U/U’ is an isotropic line in the plane U'* /U,
Ut being the orthogonal space to U’ in . But there are exactly two such
lines and, of the corresponding two maximal isotropic subspaces in W, only
one lies in O. We deduce that the map c is an isomorphism.

Let us now go back to our problem. If we index the vertices of the Dynkin
diagram as follows

o O R T——=—0
1

we get that for a subset S = {r; < --- < r;} of the Dynkin diagram, the
variety G/ Py is the variety consisting of flags (V; C Vo C --- C V) with
V; isotropic and dimV); = r;. Furthermore the conditions of lemma 1 are
not satisfied for parabolic subgroups G/Pg with , = n,and ;1 < n — 1,
and for the homology class represented by the simple coroot ¥ cv,, .

LetS = {r < --- < r¢} beasubset of the Dynkin diagram with r;, = n,
and ;1 < n — 1. We have

Proposition 2. 1. The variety Zg can be described as the variety of all
flags (Vi € Vo C -+ C Vi1 C H), H being an n-1 dimensional
isotropic subspace in W and dimV; = r;, 1 <¢ <t —1.

2. The incidence variety Zg = {(£,q) € Z% x G/Ps| q € £} has a natural
identification with the variety of all flags (V1 C Vo--- C V41 C H C
U),VicVaC---CVi1 CH)) e Z% U € O via the map

T:Z¢— Z%x G/Ps

T(W Cc Ve CViep CcHCU) = (V€ Voo C Vg C
H),(Vi CVa--- C Vi Ce(U)).
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Proof. Set Zg equal to the variety of all flags (V) C Vo C --- C V;—1 C H),
H being an n-1 dimensional isotropic subspace in W and dim V; = r;,
1<i<t—1.

If we take the projection py : Zg x G/Pg — Zg on the first factor and
set 1 = p1 T, we clearly get that 7 is a P! fibration.

Also each fiber of this fibration is mapped to a line in G/Ps and the
obvious injectivity of 7" implies that two such lines are distinct.

To determine the homology class of these lines, let us set S = {r <
--» < 1¢_1}. Take the projection p : G/ Ps — G/ Pg. We have, since,

t—1

\Y,
Zwija (6773 — 07
i=1

that a line / lies in Z¢ if and only if p(¢) is a point. But it is clear by the
definition that this property is satisfied for the fibers of 7. We deduce that Z g
embeds in Zg. On the other hand, we have seen that Zg consists of two G
orbits, thus to show our claim, it suffices to see that Zg is not homogeneous.
This is clear since Zg contains the closed orbit consisting of those flags
WhcWwc---cV,yCH)withH CV.

Thus Z§ = Z¢ and all our claims follow at once.

We now pass to the C,, case. We consider a vector space V' of dimension 2n
with a non degenerate symplectic bilinear form and we can take as G the
corresponding symplectic group.

If we index the vertices of the Dynkin diagram as follows

o . Lo R C————=—=0
1

we get that for a subset S = {r; < --- < r;} of the Dynkin diagram, the
variety G/ Py is the variety consisting of flags (V; C Vo C --- C V) with
V; isotropic and dimV); = r;. Furthermore the conditions of lemma 1 are not
satisfied for parabolic subgroups G/ Ps with r; < n, and for the homology
class represented by the simple coroot Vv, .

LetS = {r < --- < r¢} beasubsetof the Dynkin diagram with r; < n.
We have:

Proposition 3. 1) The variety Zg can be described as the variety of all
flags (Vi ¢ Vo C --- C Vo1 € H C K), with H being an ry — 1
dimensional isotropic subspace in V, dim V; = r;, 1 < i <t — 1 (notice
thatifri — 1 =ry 1, H=V;_1),and dim K = r; + 1.

2) The incidence variety Zg = {(¢,q) € Z% x G/P,| q € £} has a natural
identification with the variety of all flags (Vi C Vo C --- C V;1 C H C
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UCK),with(VicVoC---CViei CHCK) € ZganddimU = ry,
via the map o
T:Z§— Z% x G/Ps

T(WWcWVc---CcViimCcHCU)=(WWcVoaC---CVig C
HcCcK),(WWcVcC--C V. CcU C K)). (Notice that U is
automatically isotropic, since the symplectic form has rank at most one,
and hence zero, on this space).

Proof. Set ng equal to the variety of all flags (V;, C Vo C -+ C V41 C
H C K),with H being an ; — 1 dimensional isotropic subspace in V', dim
Vi=r,1<i<t-—1.

If we take the projection p; : th x G/Ps — th on the first factor and
set m = p; T, we clearly get that 7 is a P! fibration.

Also each fiber of this fibration is mapped to a line in G/Ps and the
obvious injectivity of 7" implies that two such lines are distinct.

To determine the homology class of these lines, let us set S = {r; <
-+ < 1¢_1}. Take the projection p : G/Ps — G/ P5. We have since,

t—1

\Y%
E wija Oy :Oa
j=1

that a line ¢ lies in Z¢ if and only if p(¢) is a point. But is clear by the
definition that this property is satisfied for the fibers of 7. We deduce that
77 embeds in Z¢'. But we have seen that Z' consists of two G orbits,
thus to show our claim, it suffices to see that th is not homogeneous.
This is clear since th contains the closed orbit consisting of those flags
(WicVeC---CVu1 C HCK) with K isotropic.

Thus th = Z¢ and all our claims follow at once.

We finally pass to the case F4. If we index the vertices of the Dynkin diagram
as follows

O——————0

=0

we have that the conditions of lemma 1 are not satisfied for parabolic sub-
groups G/ Pg with S = {3}, {4}, {13}, {14}, {34}, {134}. Also if 3 € §,
then we need to consider the homology class represented by the simple co-
root ¥ a3. Otherwise we need to consider the homology class represented
by the simple coroot V.

We start with the case S = {4}.

Let G’ be a simply connected group of type Eg. Recall that once we have
chosen a maximal torus in G’ and a Borel subgroup containing it, we can
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uniquely associate an involution o of G’ to the non trivial automorphism of
its Dynkin diagram

oo

O. 0. e}
1 2 3 4 5

so that G is the subgroup of elements fixed by o (see [He] page 518 table
V, type EIV).

Notice that dim G’ /G = 26. Denote by V’ the 27 dimensional represen-
tation of G’ whose highest weight is w} . Denote by P’ C G’ the correspond-
ing maximal parabolic subgroup. The restriction of V' to G' decomposes into
the sum

Vi=V,®k

where V/} is the irreducible representation of G whose highest weight is wy
and k is a trivial one dimensional module. One has that, if we consider the
hyperplane H = P(V}) of P(V') as a point in P(V'"), then its orbit under
G’ is isogenous to G’/G and it is hence dense in P(V'*). It follows from
Bertini theorem ([Ha], I 8.18]) that, if we identify the orbit of the highest
weight line in V'’ with G'/P’, the intersection G’ /P’ N H is smooth and
irreducible. Since it contains G/ P, and has dimension 15=dim G/ P, we
deduce that G'/P' N H = G/P;. We then get from Theorem 1, that the
variety Z§ coincides with the intersection in the Grassmannian G(2, V') of
lines in P(V") of the varieties G’/ Py and G(2, H). Since we have seen that
the G’ orbit of H is dense, we can then use a result of Kleiman ([Ha], II 10.8)
to deduce that Z§ is smooth, irreducible and of codimension 2 in G’/ Pj.

We now pass to G/ P;. We have seen that G/P; C Z} C G(2,V').
Thus, using Theorem 1 in the case of G(2,V’), we deduce that a line in
G/ Ps consists of a pencil of lines in P(V") contained in a plane and having
a point p in common. Clearly p € G/Py, so that we get a G equivariant
fibration

f:7Z3 - G/Py.

On the other hand, if we consider the incidence variety Y = {({,p)| £ €
G/Ps, p € {}, we can identify Y with G/P3 4 and the projection onto the
second factor with the canonical G-equivariant fibration

p: G/P374 — G/P4
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We deduce that f~1([Py]) is the variety of lines in the variety P;/Ps 4.
Setting L equal to the adjoint Levi factor of Py i.e. the quotient of Py modulo
its solvable radical, we can identify P,/ Ps 4 with L/P (P being the image
of P34 in L). L is of type B3 and P is the maximal parabolic subgroup
associated to its simple short root. Thus the set Z of lines in L/P has been
completely described in Proposition 2. Furthermore the quotient map Py —
L induces an action of Py on Z and we clearly have that Zg’ =G xp, Z.

We now briefly discuss the remaining cases, in which we take G/ Pg with
|S| > 2.If 3 € S, we consider the homology class represented by the simple
coroot Varg, while if 3 ¢ S, we consider the homology class represented by
the simple coroot ¥ cy. We set @ = 3 in the first case and 7 = 4 in the second
and S’ = S — {i}.

Denote by p : G/Ps — G/ Pg the canonical G-equivariant projection.

Since
2 : v _
Wy, 04 —0,
jes’

we have that a line ¢ lies in Z if and only if p(¢) is a point. Thus Z§ =
G X py Z, where Z is the variety of lines in Pg//Pgs. This is a complete
homogeneous space for a group of type B or C (the adjoint Levi factor of
Pg/) and so Z has already been described above.

This completes our analysis of the cases in which the variety of lines in
a complete homogeneous space G/ P is not itself homogeneous.
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