
Math. Z. 234, 1–7 (2000)

c© Springer-Verlag 2000

Quotients of flag varieties by a maximal torus
Elisabetta Strickland!
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1. Introduction

Let G be a semisimple, simply connected algebraic group over an alge-
braically closed field k and let T ⊂ G be a maximal torus in G and B ⊂ G
a Borel subgroup containing T .
In two recent papers ([K1] and [K2] Senthamarai Kannan classified all

parabolic subgroups G ⊃ P ⊃ B with the property that there exists an
ample line bundle L on G/P such that, with respect to the T linearization
of L induced by the uniqueG linearization, the setG/P (T )ss of semistable
points coincides with the set G/P (T )s of stable points.
In this note, we give a general characterization of those ample line bun-

dlesL onG/P .We then show how to recover in a very simple wayKannan’s
result from ours.
To state our result, we need to introduce some notations and recall a

few facts. X∗(T ) will denote the character lattice of T and X∗(T ) its dual
lattice, i.e. the lattice of one parameter subgroups in T .We shall denote by

〈 , 〉 : X∗(T ) × X∗(T ) → Z

the duality pairing.
Let Φ ⊂ X∗(T ) denote the root system associated to T and let ∆ =

{α1, . . . , αl} denote the set of simple roots corresponding to the choice of
B. Similarly let Φ̌ ⊂ X∗(T ) denote the set of coroots and ∆̌ = {α̌1, . . . , α̌l}
denote the set of simple coroots corresponding to the choice of B. There
is a canonical bijection between ∆ and ∆̌ and we assume that the root
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αi corresponds to the coroot α̌i under this bijection. Also, given a subset
Γ ⊂ ∆, we shall denote the corresponding subset in ∆̌ by Γ̌ . Finally we
define the set of fundamental weightsΩ = {ω1, . . . , ωl} by 〈ωi, α̌j〉 = δi,j

and the set of fundamental coweights Ω̌ = {ω̌1, . . . , ω̌l} by 〈αi, ω̌j〉 = δi,j

(notice that Ω̌ ⊂ X∗(T ) ⊗ Q).
One knows that ∆̌ is a basis forX∗(T ) and that we can identify the Picard

group of G/B with X∗(T ). Also recall that there is a bijection between
parabolic subgroupsP ⊃ B and subsets of∆ (or equivalently ∆̌). Under this
correspondence, if P corresponds to Γ ⊂ ∆, Pic(G/P ) can be identified
with the character groupX∗(P )where, restricting characters to T , we think
of X∗(P ) as the subgroup of X∗(T ) consisting of those λ ∈ X∗(T ) such
that 〈λ, α̌〉 = 0 for all α̌ ∈ Γ̌ . Moreover one knows that λ ∈ X∗(P )
corresponds to an ample (and, using the results in [RR], automatically very
ample) line bundle Lλ if and only if 〈λ, α̌〉 > 0 for all α̌ ∈ ∆̌ − Γ̌ .
Finally set, as usual,W = N(T )/T , the Weyl group.W acts onX∗(T )

and it is generated by the simple reflections si (i = 1, . . . , l) with respect
to the hyperplanes orthogonal to the simple coroots α̌i.
We are now in the position to state our main result.

Theorem 1.1. Let P ⊂ G be a parabolic subgroup. Let λ ∈ X∗(P ) be such
that Lλ is ample. Then, if we denote by (G/P )ss

λ ( resp. (G/P )s
λ), the set of

semistable (resp. stable points) for the T action with respect to Lλ,

(G/P )ss
λ = (G/P )s

λ

if and only if for all w ∈ W , ω̌i ∈ Ω̌, one has 〈λ, wω̌i〉 *= 0.

After this is proved, it is not hard to deduce Kannan’s results, as we shall
show below.

2. Quotients

Let us start by recalling a few facts about Geometric Invariant Theory (see
[MFK] [Se]). Given a projective algebraic variety X over k on which a
reductive group H acts and an H linearized very ample line bundle L, we
can consider the ring

R = ⊕n≥0H
0(X, Ln)

as an H-module and consider the ring RH of H invariant elements. Since
H acts onR in a degree preserving way,RH is naturally graded and we can
consider RH

+ , its part of positive degree. At this point one can define the set
of semistable points as the set

Xss = {x ∈ X|∃s ∈ RH
+ with s(x) *= 0} .
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We define the set of stable pointsXs as the subset ofXss consisting of those
points having finite stabilizer and whose orbit is closed.
This is not the place where to discuss properties of Xss and Xs, let us

just say that a good categorical quotientXss//H exists and furthermore the
image of Xs in Xss//H coincides with the set theoretical quotient Xs/H
and has only finite quotient singularities (it is indeed smooth, if each point
in Xs has trivial stabilizer).
Here we shall be only interested in the caseH = T . In this special case

we take a point x ∈ X , we take a representative x̃ ∈ H0(X, L) for x and
write

x̃ =
∑

λ∈X∗(T )

vλ

where vλ is a weight vector for t ∈ T of weight λ. We set Mx = {λ ∈
X∗(T )|vλ *= 0}. It is clear thatMx does not depend on the choice of x̃. We
define now, following [Se] Section 2, for every χ̌ ∈ X∗(T ),

µL(x, χ̌) = − min
λ∈Mx

〈λ, χ̌〉 .

It is then not hard to see that x is semistable if and only if µL(x, χ̌) ≥ 0
for all χ̌ ∈ X∗(T ), while x is stable if and only if µL(x, χ̌) > 0 for all
χ̌ ∈ X∗(T ) − 0.
If we furthermore suppose, as we shall do from now on, thatX = G/P

and that L = Lλ, we can say a little bit more.
Let P correspond to a subset Γ of ∆̌. Consider the subgroupWP ⊂ W

generated by the reflections si for α̌i ∈ Γ . One knows [Bou], that every coset
wWP contains a unique element of shortest length so that we can identify
W/WP with a subset ofW . Then Bruhat decomposition tells us that G/P
is the disjoint union of the Schubert cells BwP/P , where w runs through
W/Wp. If x ∈ BwP/P and χ̌ is such that 〈αi, χ̌〉 ≥ 0 for all αi ∈ ∆, then
one has ([Se] Lemma 5.1)

(2.1) µL(x, χ̌) = 〈wλ, χ̌〉 .

With these preliminaries in mind, we can now give the following:

Proof of Theorem 1.1. Let L = Lλ be ample on G/P . Assume that for all
w ∈ W , ω̌i ∈ Ω̌, one has 〈λ, wω̌i〉 *= 0.
Choose , once and for all for eachw ∈ W , a representative nw ∈ N(T ).

Take x ∈ (G/P )ss
λ . It is now clear from the definitions thatMnwx = wMx.

Also, since the pairing 〈 , 〉 is obviouslyW invariant, we deduce that for all
χ̌ ∈ X∗(T ), µL(nwx, wχ̌) = µL(x, χ̌). In particular we deduce that nwx
is also semistable.
Fix χ̌ ∈ X∗(T ). Then there existsw ∈ W such thatwχ̌ is dominant, i.e.

〈αi, wχ̌〉 ≥ 0 for all i = 1, . . . , l.
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Now assume that nwx lies in the Schubert variety BuP/P for a given
u ∈ W/Wp. Then by (2.1) we have

(2.2) µL(x, χ̌) = µL(nwx, wχ̌) = 〈uλ, χ̌〉 .

Write wχ̌ =
∑

i niω̌i with ni ≥ 0 for each i = 1, . . . , l. Since nwx ∈
(G/P )ss

λ , we deduce applying (1.2) to ω̌i that 〈uλ, ω̌i〉 ≥ 0 for all i =
1, . . . l. But 〈uλ, ω̌i〉 = 〈λ, u−1ω̌i〉 *= 0, so that 〈uλ, ω̌i〉 < 0 for all i =
1, . . . l. Substituting in (1.3), we deduce that if χ̌ *= 0 so that not all ni are
zero. It follows that

µL(x, χ̌) = 〈uλ, χ̌〉 =
∑

i

ni〈uλ, ω̌i〉 < 0

so that x ∈ (G/P )s
λ as desired.

Let us now suppose that there is a fundamental coweight ω̌i and an
element w ∈ W such that 〈λ, wω̌i〉 = 0. Multiply wω̌i by an integer m
so that mwω̌i ∈ X∗(T ) and it corresponds to a one parameter subgroup
φ : Gm → T . Set H ⊂ G equal to the centralizer of φ(GM ). Since ω̌i is
a fundamental coweight, H has semisimple rank l − 1. Indeed it is the the
Levi factor of the parabolic subgroup n−1

w Qn−1
w where Q is the parabolic

subgroup containing B corresponding to ∆ − {αi}. From this we deduce
that BH is a Borel subgroup of H , hence PH = P ∩ H is a parabolic
subgroup of H and H/PH ⊂ G/P is a closed subvariety.
If we take the restriction LH of Lλ toH/PH , then theG linearization of

L induces anH linearization of LH . It is clear that the one parameter group
φ(GM ) fixes H/PH pointwise. Also φ(GM ) acts on the fiber of LH over
the point [PH ] by the character

(−λ) ◦ φ(t) = t−m〈λ,wωi〉 = 1 .

Hence φ(GM ) acts trivially on LH and we get an H = H/φ(GM ) on LH .
Take now a highest weight vector s ∈ H0(G/P, Lλ). It is clear that the
restriction s ∈ H0(H/PH , LH). SetWH = N(T ) ∩ H/T ⊂ W , the Weyl
group of H . Consider the section

z =
∏

u∈WH

(nus) ∈ H0
(

G/P, L|WH |
λ

)

.

Then the restriction z ∈ H0(H/PH , L|WH |
H ) is non zero and it is a weight

vector whose weight is WH invariant and is trivial on φ(Gm). We deduce
immediately that z and hence z is a T invariant vector. The fact that z *= 0
clearly means that there exists a point x ∈ (G/P )ss ∩H/PH . Since φ(Gm)
fixesH/PH pointwise, we deduce that x ∈ (G/P )ss − (G/P )s, as desired.

!
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We now want to analyze for which G and P ⊂ G there exists a λ ∈
X∗(P ) such that Lλ is ample and (G/P )ss = (G/P )s. As we have seen
this means that, if P corresponds to the subset Γ ⊂ ∆, we have to find a
character λ ∈ X∗(T ) such that

(1) 〈λ, α̌i〉 = 0 for all α̌i ∈ Γ̌ .
(2) 〈λ, α̌i〉 > 0 for all α̌i /∈ Γ̌ .
(3) 〈λ, wω̌i〉 *= 0 for all w ∈ W , ω̌i ∈ Ω̌.

We first reduce to the case in which G is essentially simple. Recall that if
G = G1 × G2 then T = T1 × T2 with Ti = T ∩ Gi (i = 1, 2) and for
every parabolic subgroup P = P1 × P2 with Pi = P ∩ Gi (i = 1, 2). Also
Pic(G/P ) = Pic(G1/P2) × Pic(G2/P2). We then have

Proposition 2.1. Then there exist an ample line bundle Lλ on G/P such
that G/P ss

λ = G/P s
λ if and only if, writing λ = (λ1, λ2), G/P ss

λi
= G/P s

λi

for i = 1, 2.

Proof. The proof follows, since clearly the element λ ∈ X∗(T ) satisfies
properties (1), (2) and (3) above if and only if the elements λ ∈ X∗(Ti) also
satisfy the same properties for i = 1, 2. !

From now on we shall assume the our groupG is essentially simple. We
leave to the reader to formulate, using the above Proposition, results in the
general case.
We have

Theorem [K2] 2.2. AssumeG is not of typeA. Then ifP ⊂ G is a parabolic
subgroup such that there is an ample line bundleLλ onG/P withG/P ss

λ =
G/P s

λ . Then P = B, a Borel subgroup.

Proof. First of all it is clear that if P = B, there exists a line bundle Lλ

on G/B such that G/Bss
λ = G/Bs

λ, otherwise it would easily follow that
X∗(T ) would be contained in the union of the finitely many hyperplanes
orthogonal to the elements wω̌i, with w ∈ W , i = 1, . . . , l.
Now remark that if G is not of type An, also the dual root system Φ̌ is

not of type An and one knows, see for example [Bou], that each coroot is
W conjugate to a multiple of a fundamental coweight. Now let P ! B. Let
λ ∈ X∗(P ). There exists a simple coroot α̌i with 〈λ, α̌i〉 = 0. Assume that
α̌i = mwω̌j . Then

0 =
1
m

〈λ, α̌i〉 = 〈λ, ω̌j〉

and our claim follows. !
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It remains to analyze the caseG = SL(n) i.e.G is of typeAn−1. In this
case the Dynkin diagram is

◦
1

◦
2

◦
3
· · · · · · · · · · · · ◦

n−1

and we index the set of fundamental weights and simple roots accordingly.
We have
Lemma 2.3. For each i, j = 1, . . . , n, there exists an element w ∈ W with
〈ωj , wω̌i〉 = 0 if and only if n divides ij.

Proof. Recall that, if we consider Rn, with basis e1 . . . en, and usual scalar
product, then we can set αi = α̌i = ei − ei+1 and ωi = ω̌i = n−i

n (e1 +
· · · + ei) − i

n(ei+1 + · · · + en)for i = 1, . . . , n. Recall thatW = Sn acting
by permuting coordinates. Computing we get that

〈ωi, wω̌j〉 = 0

if and only if the system

(2.3)

{

jx + (n − j)y = 0
zx + (i − z)y = 0

admits a solution (x, y, z) with x *= 0 and z an integer such that 0 < z < i.
Indeed the vector v = x(e1 + · · · + ej) + y(ej+1 + · · · + en) is a non
zero multiple of ωj if and only if it is orthogonal to e1 + · · · + en, that is if
jx + (n − j)y = 0 with x (and y) not equal to zero. On the other hand let
w be a permutation and suppose that z = |{1, . . . i} ∩ w{1, . . . i}|. Then a
vector v, which as above is a multiple of ωj , is orthogonal to ω̌i if and only
if it is orthogonal tow(e1 + · · · ei). That is. if and only if zx+(i−z)y = 0.
Finally the fact that x and y are both not equal to zero implies that 0 < z < i,
proving our claim.
Now eliminate x from (2.3) getting nz = ij. This proves that n divides

ij.
Suppose now that n divides ij. Then clearly the triple (x, y, z) with

z = ij
n , x = n − j, y = −j is a solution of the system (2.3) and hence

taking as w any permutation such that z = |{1, . . . i} ∩ w{1, . . . i}| we get
that 〈ωi, wω̌j〉 = 0 as desired. !

We have seen that a parabolic subgroup P ⊃ B if associated to a subset
Γ ⊂ ∆. To Γ there corresponds the set I = {i|αi /∈ Γ} and we shall denote
P by PI . We have
Theorem 2.4 [K2](see also [K1]). Let G = SL(n). Let I = {i1, . . . , ir}
with 1 ≤ i1 · · · ≤ it < n. Then there exists an ample line bundle Lλ on
G/PI such that (G/PI)ss

λ = (G/PI)s
λ if and only ifGCD(n, i1, . . . , ir) = 1
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Proof. From Lemma 2.3, we have that anLλ with the above properties exists
if and only if there is no j < n with n dividing isj for each s = 1, . . . , r.
Assume that (n, i1, . . . , ih) = 1, and that such a j exists. Let p be a

prime such that pt, t > 0 is the highest power of p dividing n. Then there
must exist an index s such that p does not divide is. This implies that pt

divides j, hence n divides j, contrary to the fact that n > j.
Viceversa assume that p divides (n, i1, . . . , ih). Then set j = n

p . We
have jis = n is

p as desired. !
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