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1. Introduction

Let G be a semisimple, simply connected algebraic group over an alge-
braically closed field k and let 7' C G be a maximal torus in G and B C G
a Borel subgroup containing 7'

In two recent papers ([K1] and [K2] Senthamarai Kannan classified all
parabolic subgroups G O P DO B with the property that there exists an
ample line bundle L on G/ P such that, with respect to the 7" linearization
of L induced by the unique G linearization, the set G/ P(T')** of semistable
points coincides with the set G/P(T)* of stable points.

In this note, we give a general characterization of those ample line bun-
dles L on G/ P.We then show how to recover in a very simple way Kannan’s
result from ours.

To state our result, we need to introduce some notations and recall a
few facts. X*(7") will denote the character lattice of 7" and X, (7") its dual
lattice, i.e. the lattice of one parameter subgroups in 7".We shall denote by

(,): X" (T)x X(T) = Z

the duality pairing.

Let & C X*(T) denote the root system associated to 7" and let A =
{a1,...,q} denote the set of simple roots corresponding to the choice of
B.Similarlylet® C X, (T denote the set of corootsand A = {é,... ,d;}
denote the set of simple coroots corresponding to the choice of B. There
is a canonical bijection between A and A and we assume that the root
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«; corresponds to the coroot &; under this bijection. Also, given a subset
I' C A, we shall denote the corresponding subset in A by I. Finally we
define the set of fundamental weights 2 = {w1,... ,w;} by (w;, &;) = 0;
and the set of fundamental coweights 2 = {@1,... , @} by (a;, @;) = 6;
(notice that 2 C X,(T) ® Q).

One knows that A is a basis for X, (") and that we can identify the Picard
group of G/B with X*(T'). Also recall that there is a bijection between
parabolic subgroups P O B and subsets of A (or equivalently A). Under this
correspondence, if P corresponds to I" C A, Pic(G/P) can be identified
with the character group X *(P) where, restricting characters to 7", we think
of X*(P) as the subgroup of X*(T") consisting of those A € X*(T") such
that (\, &) = O for all & € I'. Moreover one knows that A € X*(P)

corresponds to an ample (and, using the results in [RR], automatlcally very
ample) line bundle L, if and only if (), &) > 0 forall & € A —

Finally set, as usual, W = N(T') /T, the Weyl group. W acts on X *(T)
and it is generated by the simple reflections s; (¢ = 1,... ,[) with respect
to the hyperplanes orthogonal to the simple coroots ¢;.

We are now in the position to state our main result.

Theorem 1.1. Let P C G be a parabolic subgroup. Let X € X*(P) be such
that Ly is ample. Then, if we denote by (G / P)3® ( resp. (G/P)3), the set of
semistable (resp. stable points) for the T action with respect to L,

(G/P)Y = (G/P)3

if and only if for all w € W, &; € {2, one has (\, wa;) # 0.

After this is proved, it is not hard to deduce Kannan’s results, as we shall
show below.

2. Quotients

Let us start by recalling a few facts about Geometric Invariant Theory (see
[MFK] [Se]). Given a projective algebraic variety X over k on which a
reductive group H acts and an H linearized very ample line bundle L, we
can consider the ring

R = ®n>0H (X, L")

as an H-module and consider the ring R of H invariant elements. Since
H acts on R in a degree preserving way, R is naturally graded and we can
consider Rf , its part of positive degree. At this point one can define the set
of semistable points as the set

= {z € X|3s € RY with s(z) #0}.
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We define the set of stable points X ® as the subset of X ** consisting of those
points having finite stabilizer and whose orbit is closed.

This is not the place where to discuss properties of X*° and X?, let us
just say that a good categorical quotient X ** // H exists and furthermore the
image of X* in X**//H coincides with the set theoretical quotient X*/H
and has only finite quotient singularities (it is indeed smooth, if each point
in X has trivial stabilizer).

Here we shall be only interested in the case H = T'. In this special case
we take a point z € X, we take a representative ¥ € H°(X, L) for z and

write
T = E U

AEX*(T)

where vy is a weight vector for t € T of weight A. We set M, = {\ €
X*(T)|vx # 0}.1tis clear that M, does not depend on the choice of . We
define now, following [Se] Section 2, for every x € X.(T),

Li,. : .
It is then not hard to see that = is semistable if and only if u”(z,%) > 0
for all Y € X.(T), while z is stable if and only if u’(x,%) > 0 for all
X € X.(T) —0.

If we furthermore suppose, as we shall do from now on, that X = G/P
and that L = L), we can say a little bit more.

Let P correspond to a subset I” of A. Consider the subgroup Wp C W
generated by the reflections s; for &; € I'.One knows [Bou], that every coset
wWp contains a unique element of shortest length so that we can identify
W /W p with a subset of W. Then Bruhat decomposition tells us that G/ P
is the disjoint union of the Schubert cells BwP/P, where w runs through
W/W,.If x € BwP/P and x is such that (o, x) > 0 for all a; € A, then
one has ([Se] Lemma 5.1)

(2.1) ph (2, X) = (WA, X) -
With these preliminaries in mind, we can now give the following:

Proof of Theorem 1.1. Let L = L) be ample on G/ P. Assume that for all
w e W,w; € 2,0ne has (\, ww;) # 0.

Choose , once and for all for each w € W, a representative n,, € N(T).
Take z € (G/P)5’.Itis now clear from the definitions that M,, x = wM,.
Also, since the pairing ( , ) is obviously W invariant, we deduce that for all
X € X«(T), pF(nwz,wy) = pl(x,%). In particular we deduce that 1,
is also semistable.

Fix x € X.(T'). Then there exists w € W such that wy is dominant, i.e.
(avi,wx) > 0foralli =1,...,1.



4 E. Strickland

Now assume that n,,x lies in the Schubert variety BuP/P for a given
u € W/W,. Then by (2.1) we have

(2.2) ph(x, %) = pt (nwe, wx) = (uA, %)

Write wyx = Zz n;w; with n; > 0 foreach ¢ = 1,...,1[. Since nyx €
(G/P)5?, we deduce applying (1.2) to w; that (uX,w;) > 0 for all i =
1,...01. But (u), ;) = (\,u=t@;) # 0, so that (u\,@;) < 0 for all i =
1,...1. Substituting in (1.3), we deduce that if ¥ ## 0 so that not all n; are
zero. It follows that

ML(x,)z) = (u\,x) = Zm(u)\,cbl) <0

so that x € (G/P)3 as desired.

Let us now suppose that there is a fundamental coweight @; and an
element w € W such that (A, ww;) = 0. Multiply ww; by an integer m
so that mww; € X, (T') and it corresponds to a one parameter subgroup
¢ : Gy — T.Set H C G equal to the centralizer of ¢(Gps). Since w; is
a fundamental coweight, H has semisimple rank [ — 1. Indeed it is the the
Levi factor of the parabolic subgroup n.,'Qn.,! where @ is the parabolic
subgroup containing B corresponding to A — {«;}. From this we deduce
that BH is a Borel subgroup of H, hence Py = P N H is a parabolic
subgroup of H and H/Py C G/P is a closed subvariety.

If we take the restriction Ly of Ly to H/ Py, then the G linearization of
L induces an H linearization of L. It is clear that the one parameter group
&(Gar) fixes H/ Py pointwise. Also ¢(Gjs) acts on the fiber of Ly over
the point [ Py| by the character

(=N 0 (t) = ) = 1.

Hence ¢(G'yy) acts trivially on Ly and we getan H = H/¢(G ) on Ly.
Take now a highest weight vector s € H°(G/P, Ly). It is clear that the
restriction s € HY(H /Py, Ly).Set Wy = N(T) N H/T C W, the Weyl
group of H . Consider the section

z = H (nys) € HY (G/P,L‘)\WH‘) :

ueEWpgr

Then the restriction Z € H°(H /Py, L'I;/VH |) is non zero and it is a weight
vector whose weight is Wy invariant and is trivial on ¢(G,,). We deduce
immediately that Z and hence z is a T" invariant vector. The fact that Z # 0
clearly means that there exists a point z € (G/P)** N H /Py . Since ¢(G )
fixes H/ Py pointwise, we deduce that z € (G/P)** — (G/P)?*, as desired.

U
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We now want to analyze for which G and P C G there exists a A €
X*(P) such that Ly is ample and (G/P)** = (G/P)®. As we have seen
this means that, if P corresponds to the subset I" C A, we have to find a
character A € X*(7") such that

(1) (X, ;) =0forall&; € I.
(2) (A, &) >0forall &; ¢ I'. §
(3) (N, ww;) #O0forallw € W,w,; € (2.

We first reduce to the case in which G is essentially simple. Recall that if
G =G xGathenT =Ty x Ty with T; = TNG; (i = 1,2) and for
every parabolic subgroup P = P; x P, with P, = PN G; (i = 1, 2). Also
Pic(G/P) = Pic(G1/P) x Pic(Ga/Py). We then have

Proposition 2.1. Then there exist an ample line bundle Ly on G /P such
that G/ P{° = G/ Py if and only if, writing A = (M1, A2), G/ P3® = G/ Py
fori=1,2.

Proof. The proof follows, since clearly the element A € X*(T) satisfies
properties (1), (2) and (3) above if and only if the elements A € X*(7;) also
satisfy the same properties for ¢ = 1, 2. O

From now on we shall assume the our group G is essentially simple. We
leave to the reader to formulate, using the above Proposition, results in the
general case.

We have

Theorem [K2] 2.2. Assume G is not of type A. Then if P C G is a parabolic
subgroup such that there is an ample line bundle Ly on G/ P with G/ P{* =
G/P5.Then P = B, a Borel subgroup.

Proof. First of all it is clear that if P = B, there exists a line bundle L)
on G/B such that G/B5* = G/ B3, otherwise it would easily follow that
X*(T') would be contained in the union of the finitely many hyperplanes
orthogonal to the elements ww;, withw € W,t=1,... l.

Now remark that if G is not of type Ay, also the dual root system & is
not of type A,, and one knows, see for example [Bou], that each coroot is
W conjugate to a multiple of a fundamental coweight. Now let P D B. Let
A € X*(P). There exists a simple coroot ¢; with (), &;) = 0. Assume that
&; = mww;. Then

and our claim follows. O
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It remains to analyze the case G = SL(n) i.e. G is of type A,,—1.In this
case the Dynkin diagram is

o) o) R le)
1 2 3 n—1

and we index the set of fundamental weights and simple roots accordingly.
We have

Lemma 2.3. For eachi,j = 1,... ,n, there exists an element w € W with
(wj, ww;) = 0 if and only if n divides ij.

Proof. Recall that, if we consider R™, with basis e; . . . e,,, and usual scalar
product, then we can set ; = &; = ¢; — e;41 and w; = w; = ”T_i(el +
ot e;) — Lejq1+ - +ey)fori =1,...,n.Recall that W = S, acting
by permuting coordinates. Computing we get that

<wi, wd)j> =0

if and only if the system

23) {jx+ (n—j)y =0

ze+(i—2)y =0

admits a solution (x, y, z) with z # 0 and z an integer such that 0 < z < i.
Indeed the vector v = z(e; + --- + €;j) + y(ej4+1 + -+ + e,) is a non
zero multiple of w; if and only if it is orthogonal to e; + - - - + e, that is if
jx + (n — j)y = 0 with z (and y) not equal to zero. On the other hand let
w be a permutation and suppose that z = [{1,...7} Nw{l,...i}|. Then a
vector v, which as above is a multiple of w;, is orthogonal to w; if and only
if it is orthogonal to w(ey + - - - ;). That is. if and only if zx + (i — z)y = 0.
Finally the fact that x and y are both not equal to zero implies that 0 < z < 1,
proving our claim.

Now eliminate x from (2.3) getting nz = 4j. This proves that n divides
ij.

Suppose now that n divides ij. Then clearly the triple (x,y, z) with
z =2 2 =mn—j,y = —jis asolution of the system (2.3) and hence
taking as w any permutation such that z = [{1,...7} Nw{l,...i}| we get
that (w;, ww;) = 0 as desired. O

We have seen that a parabolic subgroup P D B if associated to a subset
I' € A.To I there corresponds the set I = {i|a; ¢ I'} and we shall denote
P by Pr. We have

Theorem 2.4 [K2](see also [K1]). Let G = SL(n). Let I = {i1,... ,i,}
with 1 < 41+ < 4y < n. Then there exists an ample line bundle L)y on
G/ Prsuchthat (G Pr)3? = (G/Pr)5 ifand only if GCD(n, i1, . .. ,i,) =1
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Proof. From Lemma 2.3, we have that an L with the above properties exists
if and only if there is no 7 < n with n dividing ¢sj foreach s =1,... ,r.

Assume that (n,41,...,7,) = 1, and that such a j exists. Let p be a
prime such that p’, ¢t > 0 is the highest power of p dividing n. Then there
must exist an index s such that p does not divide i,. This implies that p’
divides 7, hence n divides j, contrary to the fact that n > j.

Viceversa assume that p divides (n,i1,... ,ip). Then set j = %. We
have jis = n% as desired. O
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