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ABSTRACT. The definition of the Bartholdi zeta function is extended to the
case of infinite periodic graphs. By means of the analytic determinant for
semifinite von Neumann algebras studied by the authors in [7], a determinant
formula and functional equations are obtained for this zeta function.

0. Introduction

The zeta function associated to a finite graph by Ihara, Sunada, Hashimoto
and others, combines features of Riemann’s zeta function, Artin L-functions, and
Selberg’s zeta function, and may be viewed as an analogue of the Dedekind zeta
function of a number field [2, 8, 9, 10, 11, 17, 18]. It is defined by an Euler
product over proper primitive cycles of the graph. Extensions of this theory to
infinite graphs have also been considered [4, 5, 6, 7].

In [1], Bartholdi introduced a generalization of such a function with a further
parameter u, which coincides with the Thara zeta function for © = 0, and gives the
Euler product on all primitive cycles for u = 1. He also showed that some results
for the Thara zeta function extend to this new zeta function.

Further results and generalizations of the Bartholdi zeta function are contained,
for example, in [3, 12, 13, 14].

Our aim here is to extend the notion of Bartholdi zeta function to infinite
covering graphs, and then to prove a determinant formula in terms of the analytic
determinant studied in [7]. Some functional equations are also proved. Analogous
methods can be used to define and study Bartholdi zeta functions in the context
of reference [5], that is, of self-similar fractal graphs. The paper is organized as
follows: in the first section, we recall the basic notions concerning simple graphs and
their paths, together with the definitions of the classic operators on graphs, such
as the adjacency operator; we then define the von Neumann algebra of I'-periodic
operators and the canonical trace on it. Also, some combinatorial equalities are
proved. Section 2 is devoted to the definition and analyticity properties of the
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Bartholdi zeta function, while the determinant formula and the functional equations
are proved in Sections 3 and 4, respectively.

1. Preliminaries

The Bartholdi zeta function is defined by means of equivalence classes of prim-
itive cycles. Therefore, we need to introduce some terminology from graph theory,
following [17] with some modifications.

A simple graph X = (VX,EX) is a collection VX of objects, called vertices,
and a collection EX of unordered pairs of distinct vertices, called edges. The edge
e = {u, v} is said to join the vertices w, v, while u and v are said to be adjacent,
which is denoted u ~ v. A path (of length m) in X from vy € VX to v, € VX, is
(vo, ..., Um), where v;41 ~ v;, 1 =0,...,m — 1. A path is closed if v,,, = vy. Denote
by € the set of closed paths. A graph is connected if there is a path between any
pair of distinct vertices.

DEFINITION 1.1 (Types of closed paths).
(i) A path C = (vg,...,vn) in X has backtracking if v;—1 = v;41, for some i €
{1,...,m—1}. We also say that C has a bump at v;. Then, the bump count be(C)
of C is the number of bumps in C'. Moreover, if C' is a closed path of length m,
the cyclic bump count is cbc(C) := |{i € Zy, : vi—1 = vi+1} |, where the indices are
considered in Z,,, and Z,, is the cyclic group on m elements.
(i1) A closed path is primitive if it is not obtained by going r > 2 times around
some other closed path.
(i3i) A closed path C' = (vo, ..., vm = v9) has a tail if there is k € {1,...,[m/2]—1}
such that v; = vy,—;, for j =1,..., k. Denote by el the set of closed paths with
tail, and by C"°tl the set of tail-less closed paths. Observe that € = @tail  grotail
Gtail N enotail — @

Let I" be a countable discrete subgroup of automorphisms of X, which acts freely
on X (i.e. any v € I', v # id doesn’t have fixed points), and with finite quotient
B := X/T (observe that B needn’t be a simple graph). Denote by ¥ C VX a set
of representatives for VX/T', the vertices of the quotient graph B. Let us define
a unitary representation of I' on 2(VX) by (A(y)f)(z) := f(y tx), for v € T,
feP(VX),z € V(X). Then the von Neumann algebra N(X,T') := {A(y) : y €T}
of bounded operators on £2(V X) commuting with the action of T' inherits a trace
given by T'rp(T) = >, 5 T(x, ), for T € N(X,T).

Let us denote by A the adjacency matrix of X, that is,

1 {’Ui, ’Uj} e EX
;5 =
I 0 otherwise.

Then (by [16], [15]) ||A]| < d := sup,ey x deg(v) < oo, and it is easy to see that
A e N(X,T).

For any m € N, u € C, let us denote by A, (u)(z,y) := 3 pu"F)| where the
(finite) sum is over all paths P in X, of length m, with initial vertex x and terminal
vertex y, for z,y € VX. Then A; = A. Let Ap := I and @ := diag(deg(vy) —
1,deg(v2)—1,...). Finally, let U C C be a bounded set containing {0, 1}, and denote

by M(U) := sup,cq max{|ul,|1 —u|} > 1, and a(U) := d+\/d2+4M(g)(d_l+M(u)).
Then
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LEMMA 1.2.
(i) Ag(u) = A2 — (1 —u)(Q + I) € N(X,T),
(17) form >3, Ap(u) = A1 (W) A — (1 — u)Ap—2(Q + ul) € N(X,T),
(117) sup,ey |Am(w)|| < a(U)™, for m > 0.

PRrROOF. (i) If © = y, then As(u)(z,z) = deg(z)u = (Q + I)(x,x)u because
there are deg(x) closed paths of length 2 starting at x, whereas A?(z,r) = deg(z) =
(Q + I)(z,x), so that As(u)(z,z) = A%(z,2) — (1 —u)(Q + I)(x,z). If x # y, then
A?(z,y) is the number of paths of length 2 from z to y, so Az(u)(z,y) = A%(x,y) =
A2(zy) — (1 - u)(@Q + 1)z, )

(it) For z,y € VX, consider all the paths P = (vg,...,vn) of length m, with
v9 = x and v,, = y. They can also be considered as obtained from a path P’ of
length m—2 going from = = vy to vy, —2, followed by a path of length 2 from v,,,_2 to
Yy = Uy There are three types of such paths: (a) those P for which y = vy, # vpp—2,
so that be(P) = be(P'); (b) those P for which y = vy, = vy—2, but v,,,—1 # Upm—3, SO
that be(P) = be(P') + 1; (¢) those P for which y = vy, = vym—2 and vy—1 = Vp—3,
so that be(P) = be(P’) + 2.

Therefore, the terms corresponding to those three types in A,,(u)(z,y) are
ube(P) | be(PO+L and wbe(P)+2 | respectively.

On the other hand, the sum > .y v Ap—1(u)(z,2)A(2,y) assigns, to those
three types, respectively the values ubc(P/), ubc(P/), and ube(P)+1,

Therefore A (1) (@,4) = 3y x Am—1(0)(&, 2) Az, 5)+ A —2(u) (,y)(deg(y) ~
D)(u—1)+ Ap—2(u)(x,y)(u? — u), and the statement follows.

(191) We have HAl( = Al < d, [|[A2(u)]] < d? + M(UW)d < a(U)?, and
| Am (u)|| < d||Am—1(u)]| + M(U)(d -1+ M(U))||Apm—2(u)||, from which the claim
follows by induction. O

LEMMA 1.3. Denote by tm(u) := > g EC:(IW)er ub“(©). Then
(2) tm(u) is a polynomial in u,
(ii) t1(u) =0, ta(u) = Y cq deg(w)u = uTrp(Q + 1), t3(u) = 0,
(#i7) for m >4, t,,(u) = Trp((Q -(1- 2u)I)Am,2(u)) + (1 — )ty _o(u),
(

i) t(w) = Trr (@ — (1= 20)1) 03 (1 = w)» = Ay () ) + Geven (m)u(1 -
1 m s even

0 m is odd.
(v) if U C C is a bounded set containing {0,1}, then sup,cq |tm (u)| < 4ma(U)™|F|.

w)™2Trr(Q + 1), where Sepen (M) =

PROOF. (i) and (i7) are easy.

(i4i) Indeed, we have
Z Z ubc(C)

2€F C=(z,...)€Ctall

DD IR

z€F Y~z C=(z,y,...)€CLail

Yy Y

yeF z~y C=(z,y,...)€CLail

where the last equality follows from the fact that bc(C) is I-invariant, and we can
choose v € T" for which the second vertex y of vC is in F. A path C in the last set



4 DANIELE GUIDO, TOMMASO ISOLA, AND MICHEL L. LAPIDUS

goes from z to y, then over a closed path D = (y,v1,...,Vm—3,y) of length m — 2,
and then back to . There are two kinds of closed paths D at y: those with tails
and those without.
Case 1: D does not have a tail.
Then C can be of two types: (a) Cy, where z # v1 and © # v, —3; (b) Ca, where
T =11 Or & = Up—3. Hence, bc(Ch) = be(D), and be(Ca) = be(D) + 1, and there
are deg(y) — 1 possibilities for = to be adjacent to y in C1, and 2 possibilities in Cs.
Case 2 : D has a tail.
Then C can be of two types: (¢) C5, where v; = vpy,—3 # z; (d) Cy4, where v; =
Um—3 = x. Hence, be(Cs) = be(D), and be(Cy) = be(D) + 2, and there are deg(y)
possibilities for « to be adjacent to y in Cs, and 1 possibility in Cjy.
Therefore,

Z Z (e

o~y C=(z,y,... €l

= (deg(y) — 1) Z uP) 9y, Z ube(P)

D=(y,.. eyl D=(y,...)€Cpotall
tdegly) Y. wP g DT k@
D=(y,...)eeil, D=(y,...)e€tail
= (deg(y) — 1 + 2u) > uP) 4 (1 = 2u +u?) 3 ube(D).
D:(yr“)ECmeQ D:(yv“)ee:silg

so that
tm(u) =D (Qy,y) — 1+ 2u) - A _(u)(y, y)

yeF
+ (1 _ u)2 Z Z ubc(D)
YEF D=(y,...)cCt!
=Trr((Q = (1 = 2u)I)Ap—2(u)) + (1 — )ty -2 (u).
(iv) Follows from (4i%).
(v) Let us first observe that M (U) < a(U), so that, from (iv) we obtain, with
a:=a(ll), M= MU),

m—1

[77]
()] < 1Q = (L= 2u)I|| - |F]- > 1= uf* 2| Apg;(w)]| + [ul|1 — u|™*d|F|
j=1

[Z51]

<|F|(d-2+2M) Y MY 2™ 4 |[F|M™
j=1
—1
< |F|(d -2 +2M) [mT]am* +|F|IMm

m—1

< |.‘T|([T}3amfl + am) < 4dma™|F.

To state the next result, we need some preliminary notions.
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DEFINITION 1.4 (Cycles). Given closed paths C' = (vg,...,vm = v9), D =
(wo, ..., wym = wpy), we say that C' and D are equivalent, and write C' ~, D, if
there is k£ such that w; = v;44, for all j, where the addition is taken mod m, that
is, the origin of D is shifted k steps w.r.t. the origin of C. The equivalence class of
C' is denoted [C],. An equivalence class is also called a cycle. Therefore, a closed
path is just a cycle with a specified origin.

Denote by X the set of cycles, and by P C K the subset of primitive cycles.

We need to introduce an equivalence relation between cycles.

DEFINITION 1.5 (Equivalence relation between cycles). Given C, D € X, we
say that C' and D are I'-equivalent, and write C' ~p D, if there is an isomorphism
v € I such that D = v(C). We denote by [K]r the set of I'-equivalence classes of
cycles, and analogously for the subset P.

For the purposes of the next result, for any closed path D = (vq, ..., vm = vp),
we also denote v; by v;(D).

Let us now assume that C' is a primitive cycle of length m. Then the stabilizer
of C'in T is the subgroup I'c = {y € ' : 4(C) = C} or, equivalently, v € T'¢ if there
exists p(7y) € Zy, such that, for any choice of the origin of C, v;(vC) = v;—,(C), for
any j. Let us observe that p(y) is a group homomorphism from I'¢ to Z,,, which
is injective because I" acts freely. As a consequence, |T'¢| divides m.

DEFINITION 1.6. Let C' € P and define v(C) := % If C = D*¥ € K, where
c

D e P, define v(C) = v(D). Observe that v(C) only depends on [Cr € [K]r.

LeEMMA 1.7. Let us set Ny (u) := 3 101e5,01r v(C)uC) . Then
(1) u € C— Ny (u) € C is a holomorphic function,
(17) Np(u) = Trr(Am (v)) — (1 — w)tm (u),
(4ii) if W C C is a bounded set containing {0, 1}, then sup,cq( |Nm (w)] < 5ma (W)™ |F).

PROOF. (ii) Let us assume that [C]r is an equivalence class of primitive cycles
in [P,,]r, and consider the set V of all primitive closed paths with the origin in F
and representing [C]p. If C is such a representative, any other representative can
be obtained in this way: choose k € Z,,, let y(k) be the (unique) element in I" for
which v(k)v,(C) € F, and define Cj, as

0;(Cx) = v(k)vj1(C), j € L.

If we want to count the elements of V, we should know how many of the elements
C}, above coincide with C. For this to happen, v should clearly be in the stabi-
lizer of the cycle [C],. Conversely, for any v € T'¢, there exists p = p(y) € Z,
such that yv;(C) = v;_,(C), therefore v = y(p). As a consequence, v;(Cp()) =
Y(P)vj4p(C) = v;(C), so that Cpy) = C. We have proved that the cardinality of V
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is equal to v(C). The proof for a non-primitive cycle is analogous. Therefore,

[C]E[XM]F
= Y uPIY | {De e, : D)o ~r C, v(D) € F}|
[Cle[Km]r zeF

_ Z Z ucbc(D)

z€F D=(z,...)ECH,

— Z Z ube@) 4 Z Z ybe(D)+1

2€F D=(z,...)€Cnotail z€F D=(z,...)€Ctail
_ E E ubc(D) u _ 1 E E bc(D)
z€F D=(z,...)ECH, x€F D= ) ECtail

=Trr(Am(u)) — (1 — w)tm(u).

(¢) and (i4i) follow from (i¢) and Lemmas 1.2 and 1.3. O

2. The Zeta function

In this section, we define the Bartholdi zeta function for a periodic graph, and
prove that it is a holomorphic function in a suitable open set. In the rest of this
work, U C C will denote a bounded open set containing {0, 1}.

DEFINITION 2.1 (Zeta function).

Zxr(z,u):= H (1 — 2IClyebel@)=TmeT | z,u € C.
[CIre[PIr

PROPOSITION 2.2. )
i) Z(z,u) = [ig1emp(1 — 2|Clyte(CN)TTTCT defines a holomorphic function in

(
(z,u) € C?: |2] < a(u),uEU}

(i7) ZBZZZ(ZU; =3 _ Np(u)z™, where N,,(u) is defined in Lemma 1.7,
(

m=1

1) Z(z,u) = exp (ano:l N””T(u)zm>
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PROOF. Let us observe that, for any v € U, and z € C such that |z| < a(u),

i Np(u)z™ = Z y(C)uch(C) SIC

m=1 Ol
_ Z Z cbc c™) |Cm|
m=1 [Clrel#Ir
1 00
_ |C|m,, cbe(C)m
= > Tc| > C1 My
[Clre[®Ir m=1

1 o 0 Z|C|mucbc(C)m
=2 |rc|%mzzl m

[CIre[?P]r

=— Z L 8 log( — 2|Clyebel©))
el ®
[Clre[PIr

0
= zalogZ(z,u),

where, in the last equality we used uniform convergence on compact subsets of
{(z,u) eC*:uell,z < ﬁ} The proof of the remaining statements is now
clear. O

3. The determinant formula

In this section, we prove the main result in the theory of Bartholdi zeta func-
tions, which says that Z is the reciprocal of a holomorphic function, which, up
to a factor, is the determinant of a deformed Laplacian on the graph. We first
need some technical results. Let us recall that d := sup,cy x deg(v), U C C
is a bounded open set containing {0,1}, M(U) := sup, ¢y max {|ul, |1 —u|}, and

o= a(ll) = d+\/d2+4M(L2()(dfl+M(u)).

LEMMA 3.1.

(1) (Zmzo Am(w)z™) (1= Az+ (1) (Q+ul)z?) = (1= (1=w)?*2) [, u € U, |2] <
1

o’

(i) (S0 (DI =0 Anaaw)) o) (1= Az + (1 = w)(@+uD)2?) = 1,

uel, |z| <L
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PROOF. (i) From Lemma 1.2, we obtain that

(Z Am(u)zm) (I—Az+ (1 —u)(Q+ul)z?)

m>0
=3 Am(w)z™ = > Ap(w) AT 4> (1= w) A (u)(Q + ul) 2™
m>0 m>0 m>0
= Ao(u) + Ar(w)z + Az (u)2® + Y An(u
m>3

— Ag(u)Az — A (u)Az* — Z Ap—1(u)Az™

m>3

+ (1= w)Ao(u)(Q +ul)z® + Y (1= u)Apm_2(Q + ul)2"

m>3
=14+ A2+ (A2 —(1-u)(Q+1))2" — Az — A?2* + (1 — u)(Q + ul)z?
=(1—(1—u)?2)I.

I=(1—(1—u)? (ZA )I Az 4+ (1 —u)(Q +ul)z?)

m>0

= (Z Am(u)zm> <JZO(1 - u)2j22j) (I —Az+ (1 —u)(Q+ul)z?)

m>0
(I;OJZO Apg(u QJz’““J) (I—Az+ (1 —u)(Q+wul)z?)
(7;<W§]Am 25 (u l—u)2]>z >(1—Az+(1—u)(Q+uI)z2).

LEMMA 3.2. For m >0, let
[m/2]
B (u) 1= A (u) = (Q — (1 —2u)1) > (1 —u)** ' Ap_op(u) € N(X,T).
k=1
Then
(i) Bo(u) =1, Bi(u) = A,
E?é})B (1) = A (u)+(1—u) " (Q—(1=2u)T) Ay (u) — (Q—(1—2u) ) 007 Ao (u),
) Np(u) = (1 =uw)"Trr(Q — I) m even
Tre(Bm(u)) = {Nm(u) m odd,

(iv)
Z By (u)z™ = (Au—2(Q +ul)2®) (I — Az + (1 —u)(Q+uI)z2)71, uel, |z < é.

m>1
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PROOF. (i) and (i7) follow from computations involving bounded operators.
(31) It follows from Lemma 1.3 (i) that, if m is odd,

Trr(Bm(uw)) = Trr(Am(u)) — (1 — w)tm(u) = Ny (u),
whereas, if m is even,
Trr(Bp(w)) = Trr(Am(u)) — (1 —w)™ ' Trp(Q — (1 — 2u)I)

— (1 = wtp(u) + (1 —w)™ uTrr(Q + 1)
= Np(u) = (1 —uw)"Trp(Q — I).

(iv)
(ZB >1 Az + (1 —u)(Q+ul)z?)

m>0

_<(I—|—(1—u)1(Q (1—2u)D)) Y Ap(u
m>0

[m/2]

—(1—w) Q-1 =-20)D) > Y Ap )(I—Az+(1—U)(Q+uI)z2)

m>0 j=0

(by Lemma 3.1)

= (I+(1-u) Q-1 —20N)(1 = (1—u)**) = (1—u) '(Q— (1 - 2u)])
=(1—(1—u)?2)I - (1 —u)(Q— (1—2u))z>

Since By(z) = I, we get

(ZB )I Az 4+ (1 —u)(Q +ul)z?)

=1 —(1—=u)?2)I - (1 —-u)(Q— 1 —2u))z*> - By(2)(I — Az + (1 — u)(Q + ul)z?)
= Az —2(Q +ul)z>.

O

LEMMA 3.3. Let f:u€ B. ={u€ C: |ul <e}— f(u) € N(X,T), be a C-
function such that f(0) =0 and || f(uw)]| < 1, for all u € Bs. Then

T (= g 08t = £(0) ) = Tre( (T = 7)),

PROOF. To begin with, —log(I — f(u)) = 3_,~; = f(u)" converges in operator
norm, uniformly on compact subsets of B.. Moreover,

n—1

) = 3 ) () )

Jj=0
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Therefore, — L log(I — f(u)) = ¥,,5; 2 32070 f(u) f/(u) f(u)" =91, so that

Tre(~ e 108(1 = 50 ) = X2 % 3 Tre (£ 7))

n>1 " j=0
= Tre(f(w)" ' (w))

n>1

= 1re (X )

n>0
= Tre(f/(u)(I = f()™"),

where we have used the fact that T'rr is norm continuous. [l

COROLLARY 3.4.

0 1
Trr E B (u)z™ | = Trr (—zalog(I—Az—i— (1 —u)(Q+uI)z2)) ,uel, |zl < o
m>1

PrROOF. It follows from Lemma 3.2 (iv) that

Trr ( Z Bm(u)zm> =Trp((Az —2(Q +ul)2*)(I — Az + (1 — u)(Q + ul)2*) ™)

m>1

using the previous lemma with f(2) := Az — (1 — u)(Q + ul)z?

= Trp(—z% log(I — Az + (1 —u)(Q + uI)zQ)).
O

We now recall the definition and main properties of the analytic determinant
on semifinite von Neuman algebras studied in [6]

THEOREM 3.5 ([6]). Let (N(X,T),Trr(T)) be the von Neumann algebra and
finite trace described above, and let Ng = {A € N(X,T") : 0 € convo(A)}. For any
A e Ny we set

detr(A) =exp o To <L / log A\(A — A)_ld)\> )
21 e

where € is the boundary of a connected, simply connected region £ C C containing
convo(A), and log is a branch of the logarithm whose domain contains Q). Then
the determinant function detr is well defined and analytic on Ny. Moreover,

(i) detr(zA) = zdetr(A), for any z € C\ {0},

(ii) if A is normal, and A = UH is its polar decomposition, then

detr (A) = det, (U)detr(H),
(731) if A is positive, then delr coincides with the Fuglede-Kadison determinant.
THEOREM 3.6 (Determinant formula).

1

1
= —(1=u>)xB — — 2 -
TG (1—u®) detp (I — Az 4+ (1 —u)(Q +ul)z®), uelU, |z| < =
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PROOF.

TTF<Z Bm(u)zm) = > Tre(Bm(u)z"

m>1 m>1

(by Lemma 3.2 (4i7))

=Y Np(w)z™=> (1 —u)*Trp(Q — 1)z

m>1 k>1
B m (1 —u)?2?
= Z Ny (u)z Trr(Q I)l R
m>1
Therefore,
9 m
25 log Zx r(z,u) = mz>1 Ny (u)z
9 2
=Trp e log(I — Az + (1 —u)(Q +ul)z?)
z
z 0 9 9
=53, log(1 — (1 —w)*2*)Trr(Q — 1)

so that, dividing by z and integrating from z = 0 to z, we get
1
log Zx,r(z,u) = =Trr (log(I—Az+(1—u)(Q+ul)z?)) —ET’I’F(Q—I) log(1—(1—u)?z?),

which implies that
1
m =(1-(1- U)ZZQ)%TTF(QfI) cexpTrrlog(I — Az + (1 — u)(Q + uI)zQ).

O

4. Functional equations

In this final section, we obtain several functional equations for the Bartholdi
zeta functions of (¢ + 1)-regular graphs, i.e. graphs with deg(v) = ¢+ 1, for any v €
V X. The various functional equations correspond to different ways of completing
the zeta functions.

LEMMA 4.1. Let d be a positive number, and consider the set

1 2
Oy, ={z€C: +wz

€ [-d,d]}, weC.

Then ., disconnects the complex plane iff w is real and 0 < w < dff.

PROOF. If w = 0, €2, consists of the two disjoint half lines (—oo, —1], [3, 00).
If w # 0, the set €, is closed and bounded. Moreover, setting z = x + iy and

w = a + b, the equation Im # = 0 becomes

(4.1) (2% +y*)(ay + bx) —y = 0.

Let us first consider the case b = 0. If a < 0, (4.1) implies y = 0, therefore Q,,
is bounded and contained in a line, thus does not disconnect the plane.
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If a > 0, Q, is determined by
(4.2) (a(2® +y%) = 1)y =0,
(4.3) |z + azx(2? + )| < d(z® + y?).

Ifa> dff, condition (4.3) is incompatible with y = 0, while condition (4.3) and
a(z? +y?) — 1 =0 give 2|z| < %, namely only an upper and a lower portion of the

circle 22 + y? = 1 remain, thus the plane is not disconnected.

A simple calculation shows that 2, as a shape similar to Figure 1 when 0 <
w < d—z.
=g

FIGURE 1. The set €, for 0 < w < dff

Let now b # 0. We want to show that the cubic in (4.1) is a simple curve,
namely is non-degenerate and has no singular points, see Figure 2.

FIGURE 2. The cubic containing €2, for Im w # 0

Up to a rotation, the cubic can be rewritten as
(a® +b*)(z® + y*)y — ay + bz = 0.
The condition for critical points gives the system
(a® +0%)(2* +y*)y = ay — bx
(a®> +b%) (2?2 +3y%) =a
2(a® + b*)zy = —b.
The first two equations give 2(a? + b?)y* = by, which is incompatible with the

third equation. Since only a finite portion of the cubic has to be considered, because
Q,, is bounded, again the plane is not disconnected by €. ]
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Let X be a (g + 1)-regular graph. Then x(B) = |V(B)|(¢ — 1)/2, so that the
determinant formula gives

(4.4) Zxr(z,u)=(1—22)VBIA-0)/2 (detr((1 4 (1 — u)(q +u)z*)I — zA))

Theorem 3.5 implies that, Yu € C, the right hand side gives a holomorphic
function for z & ,, U {—1,1}, with w = (1 — u)(¢ + u). We therefore extend Zx p
accordingly.

Let us remark that, by Lemma 4.1, such extension is indeed the unique holo-
morphic extension to (Q, U{—1,1})¢ except when 0 < (1 — u)(q + u) < d?/4.

—1

PROPOSITION 4.2 (Functional equations). Let X be (q + 1)-reqular. Then
(i) Axr(z,u) = (1 = 22)VBN@=D/241/2(1 _ (1 — u)?(q + u)?22)V? Zx r(z,u) =
1
—Axor Tt
(i1) Exr(z,u) = (1=22) VDNV (A —2) (1- (1-u) (g+u)2) Zx,r(u) = §X,F(m=“);

(118) Exr () o= (1=22) VIO (14 (1) (g+0)2) Zoer () = S by

PROOF. (i)

Ax(z,u) = (1= 23)Y2(1 = (1= u)*(q + u)?2%)2detr (1 + (1 — u)(q +u)z?)I — Az) "'

_. (1_u)2(q ) 3 1/2 u ) 1 B 1/2.
B ((1—u) 2(q + u)?22 1) (1—u)g+u) ((1—u)2(q+u)222 1)
, 1 . (1-wlg+uw) ., -1
Toero e (O T r o) ~ AT soasos)
1
=~ (o)
(i1)
Ex(z,u) = (1= 2)(1 = (1 — u)(g + u)z)detr (1 + (1 — u)(q +u)2*)] — Az) "
(A= wlty) NG e ).
B ((1—u)(q+u)z 1)(1 Ja+u) ((1—u)(q+u)z 1)
' 1 . (1—u)(qg+u) B 1 -1
(1 —u)(q+u)z2d tr((l + (1 —u)2(q+u)222>1 A(l —u)(q+u)z)
1
:5X((1_u)(q+u)z’“)'

Ex(z,u) = (14 (1 —u)(g+u)z*)detr ((1 + (1 — u)(q + u)2*)] — Az)71

9 1—u U
— (1-u)(g+u)z ((1(_ u)ng@:u)gZQ +1).

R
(1 —u)(g+u)z?

- 1
- :X((l —u)(q—i—u)z’u)'

(L-u)(g+u) . 1 -1
1—u)2(q+u)2z2) A(l—u)(q—i—u)z)

detp((l +1
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