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Abstract

In this paper we compute the rational G × G-equivariant cohomology ring of the so-called won-
derful compactification of G (see [C. de Concini, C. Procesi, Complete symmetric varieties, in:
Invariant Theory, Montecatini, 1982, in: Lecture Notes in Math., vol. 996, Springer-Verlag, Berlin,
1983, pp. 1–44]). This is obtained as an application of the results in [E. Bifet, C. de Concini, C. Pro-
cesi, Cohomology of regular embeddings, Adv. Math. 82 (1) (1990) 1–34; E. Strickland, Computing
the equivariant cohomology of group compactifications, Math. Ann. 291 (2) (1991) 275–280] by
a careful analysis of the relevant Stanley–Reisner systems.
 2006 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Let H be a connected affine algebraic group over the complex numbers C. In
[BDP] one introduces the notion of a regular embedding X of a H -homogeneous space
and gives a recipe to compute the (rational) H -equivariant cohomology of X in terms
of the (rational) H -equivariant cohomology of each of the H -orbits in X and of some
combinatorial data associated to the incidence structure of orbit closures. A special case of
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this situation is given by the so-called symmetric varieties, as explained in [BDP]. An even
more special case and the one which will be extensively treated here is the following.

Take a semisimple adjoint group G and let H = G × G. We consider G as a G × G-
space with respect to the left and right multiplication. We can then construct, following
[DP] or [St1], a canonical G × G-equivariant compactification X of G. Our purpose here
is to explicitly compute the rational G × G-equivariant cohomology ring of X. We shall
also determine the natural morphism

j :H ∗
G×G(pt,Q) → H ∗

G×G(X,Q)

induced by the map X → pt , so that we will also obtain H ∗(X,Q) as the quotient
H ∗

G×G(X,Q)/I , where I is the ideal generated by the image of the positive degree part
of H ∗

G×G(pt,Q) under j .
To state our results, let us first of all choose a maximal torus T in G with character

group X(T ) and a Borel subgroup T ⊂ B ⊂ G. Associated to these choices, we obtain a
root system Φ ⊂ X(T ), and a basis of simple roots ∆ = {α1, . . . ,α$} for X(T ) and hence
for the vector space hQ := X(T )∗ ⊗ Q (here X∗(T ) is the dual of X(T ), i.e., the lattice of
one parameter subgroups in T ).

Let us recall that the Weyl group W = N(T )/T of G acts on hQ as a group generated
by reflections and let us denote by {s1, . . . , s$} the set of simple reflections.

Given a subset Γ ⊂ {1, . . . ,$}, we shall denote by WΓ the subgroup of W generated by
the reflections si with i ∈ Γ . In particular W = W{1,...,$}.

Now consider the vector space V = hQ ⊕ hQ. Using the basis of simple roots, we
can then identify the ring of polynomial functions Q[V ] on V with the polynomial ring
Q[u1, . . . , u$, z1, . . . , z$]. Also, we can make the change of variables

xi = ui − zi

2
, yi = ui + zi

2
, i = 1, . . . ,$,

and identify Q[V ] with Q[x1, . . . , x$, y1, . . . , y$].
Given a monomial m = x

n1
1 · · ·xn$

$ , we set suppm = {i | ni )= 0} ⊂ {1, . . . ,$}.
We now take in Q[x1, . . . , x$, y1, . . . , y$], the span A of the elements of the form

x
n1
1 · · ·xn$

$ p(y1, . . . , y$)

such that, setting Γ = {1, . . . ,$} − suppm, p(y1, . . . , y$) ∈ Q[y1, . . . , y$]WΓ , the ring of
invariant polynomials with respect to the reflection group WΓ .

It is easy to see that A is a graded subring of Q[x1, . . . , x$, y1, . . . , y$], where we set
degxi = degyi = 2 for i = 1, . . . ,$.

We can now state our first main result:

Theorem 1.2. As a graded ring A is naturally isomorphic to H ∗
G×G(X,Q).

In order to compute the image of the natural morphism

j :H ∗
G×G(pt,Q) → H ∗

G×G(X,Q),
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we go back to the old set of variables

ui = xi + yi, zi = yi − xi, for i = 1, . . . ,$.

W acts on the spaces U and Z spanned by the ui ’s and zi ’s, respectively. We thus get
an action of W × W on our polynomial ring Q[x1, . . . , x$, y1, . . . , y$] and we can then
consider the subring B of invariant polynomials under this W × W -action. Our second
main result is then the following:

Theorem 1.3.

(1) B ⊂ A.
(2) The morphism j is injective and, under the identification of A with H ∗

G×G(X,Q) given
in Theorem 1.2, B is identified with j (H ∗

G×G(pt,Q)).

We finish this introduction by recalling that in [St2] an algorithm was given to compute
these cohomologies. In a sense, in this paper we complete that project.

In [DP1] (see also [LP]), a different approach is given to the computation of
H ∗

G×G(X,Q) as the ring of invariants of the T × T -equivariant cohomology of the closure
of the maximal torus T in X.

2. The (RS)-system associated to the wonderful embedding

Since we are going to apply the results of [BDP] only in the case in which the relevant
regular fan is the positive quadrant C = {(a1, . . . , a$) ∈ R$ | ai ! 0, ∀i = 1, . . . ,$}, we
shall directly assume that we are in this case and hence we shall not recall the definition of
a regular fan here.

Definition 2.1. A Stanley–Reisner (RS)-system A on C is the following set of data:

(1) For any subset Γ = {i1, . . . , ih} ⊂ {1, . . . ,$} or equivalently for the face CΓ de-
fined by CΓ = {(z1, . . . , z$) ∈ C | zi = 0, ∀i /∈ Γ }, a graded commutative Q-algebra
with identity, AΓ , together with a regular sequence of homogeneous elements xΓ =
xΓ
i1

, . . . , xΓ
ih

.
(2) For all j ∈ Γ , setting Γj := Γ − {j}, a homomorphism of graded algebras

φ
Γj

Γ :AΓj → AΓ /
(
xΓ
j

)

such that

φ
Γj

Γ

(
x

Γj

i

)
≡ xΓ

i mod
(
xΓ
j

)
, ∀i ∈ Γj .
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Given such a (RS)-system A, we associate to it an algebra A, called the (RS)-algebra
of A. This algebra is defined as the subalgebra A ⊂ ⊕

Γ AΓ consisting of the sequences
(aΓ ), aΓ ∈ AΓ such that

φ
Γj

Γ (aΓj ) ≡ aΓ mod
(
xΓ
j

)

for all Γ ⊂ {1, . . . ,$} and for all j ∈ Γ .
We now want to recall how one can associate such a (RS)-system to the wonderful

compactification X of a semisimple adjoint group G.
For this, let us briefly recall the combinatorial structure of the G × G-orbits in X. If

we consider the complement D = X − G, then D is a divisor with normal crossings and
smooth irreducible components D1, . . . ,D$.

For each subset Γ ⊂ {1, . . . ,$}, the intersection

DΓ =
⋂

j∈Γ

Dj

is irreducible and it is the closure of a unique G × G-orbit OΓ (of course X = D∅). Then
the correspondence associating to each subset Γ of {1, . . . ,$} the orbit OΓ is a bijection.
In particular the orbit corresponding to {1, . . . ,$} is the unique closed orbit in X, which is
isomorphic to G/B × G/B , and we have that Γ ⊂ Γ ′ if and only if OΓ ⊃ OΓ ′ .

Also recall that every line bundle on X admits a canonical G̃× G̃-linearization, G̃ being
the universal cover of G. This implies that if Pic(X) is the Picard group of X, then, taking
equivariant Chern classes, we get an isomorphism

Pic(X) ⊗ Q / H 2
G×G(X,Q). (1)

Finally, denoting by Λ the weight lattice, i.e., the character group of the maximal torus T̃

which is the preimage of T in G̃, we have a commutative diagram

Pic(X)
h∗

Pic(O{1,...,$})

Λ
a

Λ × Λ

(2)

where h∗ is induced by inclusion and a(λ) = (λ,0) − (0,λ), while the vertical arrows are
isomorphisms. Using this, one gets an identification of Pic(X) with the lattice Λ of weights
for our root system Φ and, under this identification, [O(Di)] = αi ∈ Pic(X).

We are now going to recall the geometric structure of each orbit OΓ .
Take a subset Σ ⊂ {1, . . . ,$}. Corresponding to Σ , we have the subset ∆Σ ⊂ ∆ =

{α1, . . . ,α$} consisting of the αi ’s with i ∈ Σ . Consider the root system ΦΣ consisting of
those roots in Φ which are linear combinations of roots in ∆Σ .

For each root α denote by gα ⊂ g := Lie G the root subspace associated to α and by
Xα = expgα the corresponding root subgroup in G.
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We then can define the Levi factor L associated to Σ as the subgroup of G generated
by T and by the Xα’s with α ∈ ΦΣ .

We also consider the two parabolic subgroups P +
Σ ⊃ B and P −

Σ ⊃ B−, B− being the
opposite Borel subgroup to B relative to our chosen maximal torus T , with P +

Σ defined as
the subgroup generated by B and L, P −

Σ by B− and L.
Finally, we denote by L the adjoint quotient of L. Notice that we have quotient homo-

morphisms

π±
Σ :P ±

Σ → L.

We can then consider

π+ × π− :P +
Σ × P −

Σ → L × L

and take the subgroup QΣ ⊂ P +
Σ × P −

Σ , which is defined as the preimage under π+ × π−

of the diagonal subgroup in L × L.
We then have, [DP],

Proposition 2.2. For each Γ ⊂ {1, . . . ,$}, set Σ = {1, . . . ,$} − Γ . There is an isomor-
phism of G × G-varieties between the orbit OΓ and G × G/QΣ .

We can now, following [St2], give the definition of the (RS)-system RX , associated
to X. Take Γ = {i1, . . . , ih} ⊂ {1, . . . ,$}. We set

RΓ = H ∗
G×G(OΓ ) = H ∗

QΣ
(pt,Q).

To define the regular sequence xΓ , we consider the G×G-equivariant divisors D1, . . . ,Dl

and we set for any j ∈ Γ , xΓ
j equal to the first equivariant Chern class c1(O(Dj )|O(Γ ) ∈

H 2
G×G(OΓ ).
In order to use the above to make explicit computations, let us recall a few well-known

facts.
Given a connected linear algebraic group M , let U be its unipotent radical and set M ′ =

M/U . Then take a maximal torus T ⊂ M ′ and let W = N(T )/T be the corresponding
Weyl group. Set hQ = X∗(T ) ⊗ Q, X∗(T ) being the lattice of one parameter subgroups
of T . W acts on hQ and on its coordinate ring Q[hQ].

Proposition 2.3.

H ∗
M(pt,Q) / H ∗

M ′(pt,Q) / Q[hQ]W .

Since W acts on hQ as a group generated by reflections, we get that Q[hQ]W is a poly-
nomial ring.

Let us go back to our G. Take the maximal torus T ⊂ G and consider the maximal torus
T × T ⊂ G × G. Clearly X(T × T ) = X(T ) × X(T ), the corresponding root system is



E. Strickland / Journal of Algebra 306 (2006) 610–621 615

just Φ × {0} ∪ {0} × Φ , and ∆ × {0} ∪ {0} × ∆ is a set of simple roots and the Weyl group
is just W × W .

As before we define hQ = X∗(T ) ⊗ Q and we set for each i = 1, . . . ,$,

xi = (αi ,0) − (0,αi )

2
and yi = (αi ,0) + (0,αi )

2
.

We then clearly have that we can identify Q[hQ × hQ] with Q[x1, . . . , x$, y1, . . . , y$].
Notice that, if we restrict the natural action of W × W on Q[hQ × hQ] to the diagonal
subgroup, then clearly the subring Q[y1, . . . , y$] is stable under this action and can be
identified in a W -equivariant way with Q[hQ].

Once these notations have been fixed, we can state the following:

Proposition 2.4. For each Γ ⊂ {1, . . . ,$}, set Σ = {1, . . . ,$} − Γ . Consider the ring
Q[x1, . . . , x$]/IΣ ⊗ Q[y1, . . . , y$]WΣ , where IΣ is the ideal generated by the xi , i ∈ Σ

and WΣ ⊂ W is the subgroup generated by the simple reflections si , i ∈ Σ . Then:

(1) RΓ / Q[x1, . . . , x$]/IΣ ⊗ Q[y1, . . . , y$]WΣ .
(2) For each j ∈ Γ xΓ

j is the image of xj modulo IΣ .
(3) If j ∈ Γ and Γj = Γ − {j}, then

φ
Γj

Γ :RΓj → RΓ /
(
xΓ
j

)

is the homomorphism µj ⊗ ιj where µj is the identity of Q[x1, . . . , x$]/IΣ∪{j} and ιj
is the inclusion Q[y1, . . . , y$]WΣ∪{j } ⊂ Q[y1, . . . , y$]WΣ .

Proof. (1) follows from Propositions 2.2 and 2.3, once we remark the following two facts.
First of all, denote by SΣ the connected component of the identity of the subgroup

of QΣ which is the intersection of our maximal torus T × T with QΣ . SΣ is a maximal
torus in QΣ . Furthermore SΣ coincides with the connected component of the identity of
the intersection of the kernels of the characters (αi ,0) − (0,αi ) with i ∈ Σ .

Secondly, the Weyl group of QΣ modulo its unipotent radical coincides with the sub-
group of the diagonal subgroup of W × W generated by the reflection si , with i ∈ Σ .

(2) Using formulas (1) and (2) we get that, if we consider the unique closed orbit
O{1,...,$} / G/B × G/B , then we have a commutative diagram

H 2
G×G(X,Q)

h∗
H 2

G×G(O{1,...,$},Q)

h∗
Q

a
h∗

Q × h∗
Q

where h∗ is induced by inclusion and a(λ) = (λ,0) − (0,λ), while the vertical arrows are
isomorphisms. Also [O(Di)] = αi ∈ Pic(X). This and the definition of the xΓ

j ’s clearly
implies the claim.
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(3) follows from the description given in [BDP] of the homomorphism φ
Γj

Γ and from
the first two points.

Remark 2.5. Notice that the classes xi are nothing else that the G × G-equivariant classes
of the boundary divisors in X.

Once we have established this proposition, we have clearly reduced the proof of our
Theorem 1.2 to a purely algebraic statement. Indeed, by [BDP], we have that if R is the
Stanley–Reisner algebra of the (RS)-system RX , then we have an isomorphism of graded
algebras

R / HG×G(X,Q). (3)

So, let us give the following:

Proof of Theorem 1.2. Recall that the ring A has been defined as the span of the elements
of the form

x
n1
1 · · ·xn$

$ p(y1, . . . , y$)

such that setting Γ = {1, . . . ,$}−supp(x
n1
1 · · ·xn$

$ ), then p(y1, . . . , y$) ∈ Q[y1, . . . , y$]WΓ ,
the ring of invariant polynomials with respect to the reflection group WΓ .

On the other hand, the Stanley–Reisner ring R, which by formula (3) is isomorphic to
the G × G-equivariant cohomology of X, is the subring of the direct sum

⊕

Γ ⊂{1,...,$}
RΓ =

⊕

Γ ⊂{1,...,$}
Q[x1, . . . , x$]/I{1,...,$}−Γ ⊗ Q[y1, . . . , y$]W{1,...,$}−Γ

consisting of sequences (aΓ ), aΓ ∈ RΓ such that

φ
Γj

Γ (aΓj ) ≡ aΓ mod xΓ
j

for all Γ and j ∈ Γ . Notice that since φ
Γj

Γ is clearly injective, we get that if (aΓ ) ∈ R and
aΓj )= 0 for some j ∈ Γ , then automatically we have that aΓ )= 0.

In particular we get that the homomorphism µ :R → R{1,...,$} = Q[x1, . . . , x$,

y1, . . . , y$] defined by

µ((aΓ )) = a{1,...,$}

is injective.
We are now going to show that its image coincides with our ring A, thus proving our

claim. To see this, let us take (aΓ ) ∈ R and let us write

a{1,...,$} =
∑

Γ ⊂{1,...,$}
pΓ

∏

h/∈Γ

xh
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with pΓ ∈ Q[y1, . . . , y$][xh]h/∈Γ := SΓ . Now set ψΓ : Q[x1, . . . , x$, y1, . . . , y$] → SΓ

equal to the quotient homomorphism modulo (xi), i ∈ Γ . We clearly have that

ψΓ (a{1,...,$}) =
∑

Γ ′⊃Γ

pΓ ′
∏

h/∈Γ ′
xh.

On the other hand, considering RΓ as a subring of SΓ , we clearly get that ψΓ (a{1,...,$}) =
aΓ . This and Proposition 2.4 clearly imply that a{1,...,$} ∈ A so that A ⊃ µ(R).

At this point, take b ∈ A and write it as

b =
∑

Γ ⊂{1,...,$}
qΓ

∏

h/∈Γ

xh

with qΓ ∈ Q[y1, . . . , y$][xh]h/∈Γ = SΓ . Set for each Γ ∈ {1, . . . ,$},

aΓ :=
∑

Γ ′⊃Γ

qΓ ′
∏

h/∈Γ ′
xh.

It is immediate to verify that the sequence (aΓ ) ∈ R and that ψ((aΓ )) = b, so that A ⊂
µ(R) proving our claim. !

It remains now to prove Theorem 1.3.

Proof of Theorem 1.3. Let us recall, see [DP], that X has a cellular decomposition by
affine cells. In particular, this easily implies that the G × G-equivariant cohomology of X

is a free module over H ∗
G×G(pt,Q). So, the homomorphism

j :H ∗
G×G(pt,Q) → H ∗

G×G(X,Q),

is injective and

H ∗(X,Q) = H ∗
G×G(X,Q)/J,

where J is the ideal in H ∗
G×G(X,Q) generated by the elements of positive degree in the

image of H ∗
G×G(pt,Q). Thus it only remains to determine the image of H ∗

G×G(pt,Q) in
H ∗

G×G(X,Q).
Now notice that the inclusion of A into Q[x1, . . . , x$, y1, . . . , y$] clearly coincides,

under the identification of A with H ∗
G×G(X,Q) and of Q[x1, . . . , x$, y1, . . . , y$] with

H ∗
G×G(O{1,...,$},Q), with the homomorphism in equivariant cohomology induced by the

inclusion of the closed orbit O{1,...,$} / G/B × G/B into X. Consider the maps

O{1,...,$} → X → pt.

They are both equivariant, so we get that the image of H ∗
G×G(pt,Q) into H ∗

G×G(O{1,...,$},
Q) coincides with the image of H ∗

G×G(pt,Q) in H ∗
G×G(X,Q).



618 E. Strickland / Journal of Algebra 306 (2006) 610–621

To finish, recall that we have set

xi = (αi ,0) − (0,αi )

2
and yi = (αi ,0) + (0,αi )

2
,

so by passing to the variables ui = (αi ,0) and vi = (0,αi ), we have an identifica-
tion of Q[x1, . . . , x$, y1, . . . , y$] with Q[u1, . . . , u$] ⊗ Q[v1, . . . , v$] and of the image
of H ∗

G×G(pt,Q) with Q[u1, . . . , u$]W ⊗ Q[v1, . . . , v$]W . This proves Theorem 1.3. !

We finish giving in detail the example G = SL(2). In this case, we have that $ = 1 and
R{1} = Q[x, y]. Also W = Z/2Z = {e, ε} acts on Q[y] by ε(y) = −y. It follows that A is
the ring of polynomials in x and y of the form f (y2) + xg(x, y).

It is easy to see that A is generated by the three elements z1 = y2, z2 = x, z3 = xy

subject to the relation z2
3 = z1z

2
2.

Also, setting u = x + y, v = y − x, we get that the ideal J is generated by the elements
xy and x2 + y2, so in terms of z1, z2, z3, by z3 and z1 + z2

2. In particular we get that
H ∗(X,Q) = Q[z2]/z4

2, in accord with the fact that in this case X is the three-dimensional
projective space.

3. Further properties

Let us now consider in Q[x1, . . . , x$, y1, . . . , y$] the subring

C := Q[x1, . . . , x$] ⊗ Q[y1, . . . , y$]W .

It is clear by our description of B = H ∗
G×G(X,Q) that C ⊂ B so we can consider B as a

C-module. Let us denote by S ⊂ X(T ) the semigroup of positive linear combinations of
the simple roots ∆. We define a S×N-multigrading on Q[x1, . . . , x$, y1, . . . , y$] by setting

d(xi) = αi , d(yi) = 1, i = 1, . . . ,$.

Notice that with this multigrading, both B and C are multigraded subrings.
Consider now Q[y1, . . . , y$] as a module over Q[y1, . . . , y$]W . We need to re-

call some results from [BGG,De]. One defines, for each simple root αi , the operator
∆i : Q[y1, . . . , y$] → Q[y1, . . . , y$] by

∆i (f ) = f − sif

yi
,

si ∈ W being the simple reflection with respect to the hyperplane orthogonal to αi . Given
w ∈ W , w = si1 · · · sik and k = l(w), then the operator ∆w = ∆i1 · · ·∆ik depends only on
w ∈ W and one defines the polynomials

uw := ∆ww0(uw0),
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where w0 ∈ W is the longest element and uw0 is the Weyl denominator polynomial, i.e.,
the product of the elements

∑
i niyi , for

∑
i niαi a positive root, divided by |W |.

The following facts hold:

(1) uw is a polynomial of degree $(w).
(2) For any subset Γ ⊂ {1, . . . ,$}, uw ∈ Q[y1, . . . , y$]WΓ if and only if $(siw) > $(w) for

each i ∈ Γ .
(3) Given w ∈ W set Lw = {i | $(siw) > $(w)}. The polynomials uw with LW ⊃ Γ are a

basis of Q[y1, . . . , y$]WΓ as a module over Q[y1, . . . , y$]W .

Let us now go back to our ring B . In B we have the polinomial Uw0 = x1 · · ·x$uw0 of
multidegree (α1 + · · · + α$,$(w0)). For any w ∈ W , we define the polynomial

Uw := ∆ww0∏
i∈Lw

xi
(Uw0).

We clearly have that Uw ∈ B and has multidegree (
∑

i /∈Lw
αi ,$(w)). We have:

Theorem 3.1.

(1) The polynomials Uw , w ∈ W , are a basis of B as a C-module. In particular B is a free
C-module.

(2) If for any (γ ,m) ∈ S × N we denote by B(γ ,m) the component of B of multidegree
(γ ,m), we have

∑

(γ ,m)∈S×N
dimB(γ ,m)e

(γ+m) =
∑

w∈W e(
∑

i /∈Lw
αi+$(w))

∏$
i=1(1 − eαi )

∏$
i=1(1 − edi )

(4)

where d1, . . . , d$ are the degrees of W and we write e(γ+m) for e(γ ,m).

Proof. (2) is an immediate consequence of (1), so let us prove (1). We have already re-
marked that the Uw lie in B and we also have that since the uw are linearly independent on
Q[y1, . . . , y$]W , they are also linearly independent over C. This immediately implies that
the Uw’s are linearly independent over C.

It remains to see that the Uw’s span B over C. Take any element f ∈ B . Consider it as a
polynomial in Q[x1, . . . , x$, y1, . . . , y$]. Set Lf = {i | f /∈ (xi)Q[x1, . . . , x$, y1, . . . , y$]}.
Then we have that

f =
∏

i /∈Lf

xiF,
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where F ∈ Q[x1, . . . , x$] ⊗ Q[y1, . . . , y$]WLf . By what we have recalled above we deduce
that we can write

F =
∑

w|Lw⊃Lf

dwuw

with dw ∈ C for each w. Now notice that if Lw ⊃ Lf ,

∏

i /∈Lf

xiuw =
∏

i /∈Lf , i∈Lw

xiUw.

It follows that f is a linear combination of the Uw’s with coefficients in C proving our
claim. !

Remark 3.2. Notice that, if we specialize all the αi ’s to 1 in formula (4), and we use the
well-known formula

(1 − e)$ =
( ∑

w∈W

e$(w)

) $∏

i=1

(
1 − edi

)
,

we get that the right-hand side of formula (4) specializes to

(
∑

w∈W e$(w))(
∑

w∈W e$−|Lw |+$(w))
∏$

i=1(1 − edi )2
.

In view of Theorem 1.3, by taking the numerator, we get back the expression for the
Poincaré polynomial of X given in [DP].
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