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THE CRYSTAL DUALITY PRINCIPLE: FROM GENERAL

SYMMETRIES TO GEOMETRICAL SYMMETRIES

Fabio Gavarini

Università degli Studi di Roma “Tor Vergata” — Dipartimento di Matematica
Via della Ricerca Scientifica 1, I-00133 Roma — ITALY

Abstract. We give functorial recipes to get, out of any Hopf algebra over a field, two pairs of
Hopf algebras bearing some geometrical content. If the ground field has zero characteristic, the

first pair is made of a function algebra F [G+] over a connected Poisson group and a universal
enveloping algebra U(g−) over a Lie bialgebra g− : in addition, the Poisson group as a variety
is an affine space, and the Lie bialgebra as a Lie algebra is graded; apart for these last details,

the second pair is of the same type, namely
(
F [G−], U(g+)

)
for some Poisson group G−

and some Lie bialgebra g+ . When the Hopf algebra H we start from is already of geometric
type the result involves Poisson duality: the first Lie bialgebra associated to H = F [G] is
g∗ (with g := Lie (G) ), and the first Poisson group associated to H = U(g) is of type

G∗, i.e. it has g as cotangent Lie bialgebra. If the ground field has positive characteristic,
then the same recipes give similar results, but for the fact that the Poisson groups obtained
have dimension 0 and height 1, and restricted universal enveloping algebras are obtained. We
show how all these “geometrical” Hopf algebras are linked to the original one via 1-parameter

deformations, and explain how these results follow from quantum group theory.

“Yet these crystals are to Hopf algebras
but as is the body to the Children of Rees:

the house of its inner fire, that is within it
and yet in all parts of it, and is its life”

N. Barbecue, “Scholia”

Introduction

Among all Hopf algebras over a field k, there are two special families which are of rele-

vant interest for their geometrical meaning. The function algebras F [G] of algebraic groups

G and the universal enveloping algebras U(g) of Lie algebras g, if Char (k) = 0 , or the re-

stricted universal enveloping algebras u(g) of restricted Lie algebras g, if Char (k) > 0 ; to
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be short, we call both the latters “enveloping algebras” and denote them by U(g), and sim-

ilarly by “restricted Lie algebra” when Char (k) = 0 we shall simply mean “Lie algebra”.

Function algebras are exactly those Hopf algebras which are commutative, and enveloping

algebras those which are connected, cocommutative and generated by their primitives.

In this paper we give functorial recipes to get, out of any Hopf algebra, two pairs of

Hopf algebras of geometrical type, namely one pair
(
F [G+],U(g−)

)
and a second pair(

F [K+],U(k−)
)
. In addition, the algebraic groups thus obtained are Poisson groups, and

the (restricted) Lie algebras are (restricted) Lie bialgebras. Therefore, to each Hopf alge-

bra, encoding a general notion of “symmetry”, we can associate in a functorial way some

symmetries — “global” ones when taking an algebraic group, “infinitesimal” when consid-

ering a Lie algebra — of geometrical type, where the geometry involved is in fact Poisson

geometry. Moreover, the groups concerned are always connected, and if Char (k) > 0

they have dimension 0 and height 1, which makes them pretty interesting from the point

of view of arithmetic geometry (hence in number theory).

The construction of the pair (G+, g−) uses pretty classical (as opposite to “quantum”)

methods: in fact, it might part of be the content of any basic textbook on Hopf algebras

(and, surprisingly enough, it is not!). Instead, to make out the pair (K+, k−) one relies on

the construction of the first pair, and make use of the theory of quantum groups.

Let’s describe our results in some detail. Let J := Ker (ϵH) be the augmentation ideal of

H (where ϵH is the counit of H), and let J :=
{
Jn

}
n∈N be the associated J–adic filtration,

Ĥ := GJ(H) the associated graded vector space and H∨ := H
/∩

n∈N Jn . One proves

that J is a Hopf algebra filtration, hence Ĥ is a graded Hopf algebra: the latter happens

to be connected, cocommutative and generated by its primitives, so Ĥ ∼= U(g−) for some

(restricted) Lie algebra g− ; in addition, since Ĥ is graded also g− itself is graded (as a

restricted Lie algebra). The fact that Ĥ be cocommutative allows to define on it a Poisson

cobracket (from the natural Poisson cobracket ∇ := ∆−∆op on H) which makes Ĥ into a

graded co-Poisson Hopf algebra, and eventually this implies that g− is a Lie bialgebra. So

the right-hand side half of the first pair of “Poisson geometrical” Hopf algebras is just Ĥ.

On the other hand, one consider a second filtration — increasing, whereas J is decreas-

ing — namely D which is defined in a dual manner to J : for each n ∈ N , let δn the

composition of the n–fold iterated coproduct followed by the projection onto J⊗n (note

that H = k·1H ⊕ J ); then D :=
{
Dn := Ker (δn+1)

}
n∈N . Let now H̃ := GD(H) be the

associated graded vector space and H ′ :=
∪

n∈N Dn . Again, one shows that D is a Hopf

algebra filtration, hence H̃ is a graded Hopf algebra: moreover, the latter is commutative,

so H̃ = F [G+] for some algebraic group G+. One proves also that H̃ = F [G+] has no

non-trivial idempotents, thus G+ is connected; a deeper analysis shows that in the positive

characteristic case G+ has dimension 0 and height 1; in addition, since H̃ is graded, G+ as a

variety is just an affine space. The fact that H̃ be commutative allows to define on it a Pois-
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son bracket (from the natural Poisson bracket onH given by the commutator) which makes

H̃ into a graded Poisson Hopf algebra: this means G+ is an algebraic Poisson group. So

the left-hand side half of the first pair of “Poisson geometrical” Hopf algebras is just H̃.

The relationship among H and the “geometrical” Hopf algebras Ĥ and H̃ can be ex-

pressed in terms of “reduction steps” and regular 1-parameter deformations, namely

H̃
0← t→ 1←−−−−−−−→
Rt

D(H)
H ′ ↪−−→ H −−� H∨

1← t→ 0←−−−−−−−→
Rt

J (H
∨)

Ĥ (⋆)

where the “one-way” arrows are Hopf algebra morphisms and the “two-ways” arrows are 1-

parameter regular deformations of Hopf algebras, realized through the Rees Hopf algebras

Rt
D(H) and Rt

J(H
∨) associated to the filtration D of H and to the filtration J of H∨.

The construction of the pair (K+, k−) uses quantum group theory, the basic ingredients

being Rt
D(H) and Rt

J(H
∨). In the present context, by quantum group we mean, loosely

speaking, a Hopf k[t]–algebra (t an indeterminate) Ht such that either (a) Ht

/
tHt

∼=

F [G] for some connected Poisson group G— then we sayHt is a QFA— or (b) Ht

/
tHt
∼=

U(g) , for some restricted Lie bialgebra g — then we say Ht is a QrUEA. Formula (⋆)

says that H ′t := Rt
D(H) is a QFA, with H ′t

/
tH ′t

∼= H̃ = F [G+] , and also that

H∨t := Rt
J(H) is a QrUEA, with H∨t

/
tH∨t

∼= Ĥ ∼= U(g−) . Now, a general result —

the “Global Quantum Duality Principle”, in short GQDP — teaches us how to construct

from the QFA H ′t a QrUEA, call it
(
H ′t

)∨
, and how to build out of the QrUEA H∨t a

QFA, say
(
H∨t

)′
; then

(
H ′t

)∨/
t
(
H ′t

)∨ ∼= U(k−) for some (restricted) Lie bialgebra k− ,

and
(
H∨t

)′/
t
(
H∨t

)′ ∼= F [K+] for some connected Poisson group K+ . This provides the

pair (K+, k−). The very construction implies that
(
H ′t

)∨
and

(
H∨t

)′
yield another frame

of regular 1-parameter deformations for H ′ and H∨, namely

U(k−)
0← t→ 1←−−−−−−−→
(H′

t)
∨

H ′ ↪−→ H −−� H∨
1← t→ 0←−−−−−−−→
(H∨

t )′
F [K+] (z)

which is the analogue of (⋆). In addition, when Char (k) = 0 the GQDP also claims

that the two pairs (G+, g−) and (K+, k−) are related by Poisson duality: namely, k− is the

cotangent Lie bialgebra to G+ , and g− is the cotangent Lie bialgebra of K+ (in short, we

write k− = g× and K+ = G⋆
− ). Therefore the four “Poisson symmetries” G+, g−, K+

and k−, attached to H are actually encoded simply by the pair (G+,K+).

In particular, when H ′ = H = H∨ from (⋆) and (z) together we find

F [G+]
0← t→ 1←−−−−−−−−→

H′
t

H ′
1← t→ 0←−−−−−−−−→
(H′

t)
∨

U(k−)
(
= U

(
g×+

)
if Char (k) = 0

)
||
H
||

U(g−)
0← t→ 1←−−−−−−−−→

H∨
t

H∨
1← t→ 0←−−−−−−−−→
(H∨

t )′
F [K+]

(
= F

[
G⋆
−
]
if Char (k) = 0

)
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which gives four different regular 1-parameter deformations from H to Hopf algebras en-

coding geometrical objects of Poisson type (i.e. Lie bialgebras or Poisson algebraic groups).

When the Hopf algebra H we start from is already of geometric type, the result involves

Poisson duality. Namely, if Char (k) = 0 and H = F [G] then g− = g∗ (where g :=

Lie (G) ), and if H = U(g) = U(g) then Lie (G+) = g∗, i.e. G+ has g as cotangent Lie

bialgebra. If instead Char (k) > 0 we have only a slight variation on this result.

The construction of Ĥ and H̃ needs only “half the notion” of a Hopf bialgebra: in fact,

we construct Â for any “augmented algebra” A (i.e., roughly, an algebra with an augmenta-

tion, or counit, that is a character), and we construct C̃ for any “coaugmented coalgebra”

C (i.e. a coalgebra with a coaugmentation, or “unit”, that is a coalgebra morphism from

k to C). In particular this applies to bialgebras, for which both B̂ and B̃ are (graded)

Hopf algebras; we can also perform a second construction as above using
(
B′t

)∨
and

(
B∨t

)′
(thanks to a stronger version of the GQDP), and get from these by specialization at t = 0

a second pair of bialgebras
((

B′t
)∨∣∣∣

t=0
,
(
B∨t

)′∣∣∣
t=0

)
: then again

(
B′t

)∨∣∣∣
t=0

∼= U(k−) for

some restricted Lie bialgebra k− , but on the other hand
(
B∨t

)′∣∣∣
t=0

is commutative and

with no non-trivial idempotents, but it’s not, in general, a Hopf algebra! Thus the spec-

trum of
(
B∨t

)′∣∣∣
t=0

is an algebraic Poisson monoid, irreducible as an algebraic variety, but

it is not necessarily a Poisson group.

It is worth stressing that everything in fact follows from the GQDP, which — in the

stronger formulation — deals with augmented algebras and coaugmented coalgebras over

1-dimensional domain. All the content of this paper can in fact be obtained as a corollary

of the GQDP as follows: pick any augmented algebra or coaugmented coalgebra over k,
and take its scalar extension from k to k[t]; the latter ring is a 1-dimensional domain,

hence we can apply the GQDP, and every result in the present paper will follow.

This note is the written version of the author’s talk at the international workshop

“Contemporary Geometry and Related Topics”, held in Belgrade in May 15-21, 2002. We

dwell somewhat in detail upon the very constructions under study, but we skip proofs and

other technicalities, which are postponed to a forthcoming article (namely [Ga3]).

Finally, a few words about the organization of the paper. In §1 we collect a bunch of

definitions, and some standard, technical results. In §2 we introduce the “connecting func-

tors” A 7→ A∨ (on augmented algebras) and C 7→ C ′ (on coaugmented coalgebras), and

the (associated) “crystal functors” A 7→ Â and C 7→ C̃ ; we also explain the relationship

between these two pairs of functors with respect to Hopf duality. §3 cope with the effect of

connecting and crystal functors on bialgebras and Hopf algebras. §4 considers the defor-

mations provided by Rees modules, while §5 treats deformations arising from the previous

ones via quantum group theory, introducing the “Drinfeld-like functors”. In §6 we look at

function algebras and enveloping algebras, we collect all our results in the “Crystal Duality

Principle”, and explain how this result can be also proved via quantum group theory.
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§ 1 Notation and terminology

1.1 Algebras, coalgebras, and the whole zoo. Let k be a field, which will stand

fixed throughout. In this paper we deal with (unital associative) k–algebras and (counital

coassociative) k–coalgebras in the standard sense, cf. [Sw] or [Ab]; in particular we shall

use notations as in [loc. cit.]. For any given (counital coassociative) k–coalgebra C we

denote by coRad (C) its coradical, and by G(C) :=
{
c ∈ C

∣∣∆(c) = c ⊗ c
}

its set of

group-like elements; we say C is monic if
∣∣G(C)

∣∣ = 1 ; we say C is connected if coRad (C)

is one-dimensional: of course “connected” implies “monic”.

We call augmented algebra the datum of a unital associative k–algebra A together with a

distinguished unital algebra morphism ϵ : A −→ k (so the unit u : k −→ A is a section of

ϵ ): these form a category in the obvious way. We call indecomposable elements of an aug-

mented algebra A the elements of the set Q(A) := JA

/
JA

2 with JA := Ker
(
ϵ :A −→ k ) .

We denote A+ the category of all augmented k–algebras.
We call coaugmented coalgebra the datum of a counital coassociative k–coalgebra C

together with a distinguished counital coalgebra morphism u : k −→ C (so ϵ : C −→ k
is a section of u ), and let 1 := u(1) , a group-like element in C : these form a category

in the obvious way. For such a C we call primitive the elements of the set P (C) :=
{
c ∈

C | ∆(c) = c⊗ 1 + 1⊗ c
}
. We denote C+ the category of all coaugmented k–coalgebras.

We denote B the category of all k–bialgebras; clearly each bialgebra B can be seen

both as an augmented algebra, w.r.t. ϵ = ϵ ≡ ϵB (the counit of B ) and as a coaugmented

coalgebra, w.r.t. u = u ≡ uB (the unit map of B ), so that 1 = 1 = 1B : then Q(B) is

naturally a Lie coalgebra and P (B) a Lie algebra over R . In the following we’ll do such

an interpretation throughout, looking at objects of B as objects of A+ and of C+. We call

HA the category of all Hopf k–algebras; this naturally identifies with a subcategory of B.
We call Poisson algebra any (unital) commutative algebra A endowed with a Lie bracket

{ , } : A ⊗ A −→ A (i.e.,
(
A, { , }

)
is a Lie algebra) such that the Leibnitz identities

{a b, c} = {a, c} b+a {b, c} , {a, b c} = {a, b} c+b {a, c} , hold (for all a, b, c ∈ A ). We call

Poisson bialgebra, or Poisson Hopf algebra, any bialgebra, or Hopf algebra, say H, which

is also a Poisson algebra (w.r.t. the same product) enjoying ∆
(
{a, b}

)
=

{
∆(a),∆(b)

}
,

ϵ
(
{a, b}

)
= 0 , S

(
{a, b}

)
=

{
S(b), S(a)

}
for all a, b, c ∈ H , the condition on the antipode

S being required in the Hopf algebra case, where the (Poisson) bracket on H⊗H is defined
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by {a⊗ b, c⊗ d} := {a, b} ⊗ c d+ a b⊗ {c, d} (for all a, b, c, d ∈ H ).

We call co-Poisson coalgebra any (counital) cocommutative coalgebra C with a Lie

cobracket δ : C −→ C ⊗ C (i.e.,
(
C, δ

)
is a Lie coalgebra) such that the co-Leibnitz

identity
(
id⊗∆

)
◦
(
δ(a)

)
=

∑
(a)

(
δ
(
a(1)

)
⊗a(2)+σ1,2

(
a(1)⊗δ

(
a(2)

)))
holds for all a ∈ C ,

where σ1,2 :C⊗3 −→ C⊗3 is given by x1 ⊗ x2 ⊗ x3 7→ x2 ⊗ x1 ⊗ x3 . We call co-Poisson

bialgebra, or co-Poisson Hopf algebra, any bialgebra, or Hopf algebra, say H, which is also

a co-Poisson coalgebra (w.r.t. the same coproduct) enjoying δ(a b) = δ(a)∆(b)+∆(a) δ(b) ,

(ϵ⊗ϵ)
(
δ(a)

)
= 0 , δ

(
S(a)

)
=

(
S⊗S

)(
δ(a)

)
for all a, b ∈ H , the condition on the antipode

S being required in the Hopf algebra case. Finally, we call bi-Poisson bialgebra, or bi-

Poisson Hopf algebra, any bialgebra, or Hopf algebra, say H, which is simultaneously a

Poisson and co-Poisson bialgebra, or Hopf algebra, for some Poisson bracket and cobracket

enjoying δ
(
{a, b}

)
=

{
δ(a),∆(b)

}
+

{
∆(a), δ(b)

}
for all a, b ∈ H (see [CP], [KT] and

references therein for further details on the above notions).

A graded algebra is an algebra A which is Z–graded as a vector space and whose struc-

ture maps m and u are morphisms of degree zero in the category of graded vector spaces,

where A ⊗ A has the standard grading inherited from A and k has the trivial grading.

Similarly we define the graded versions of coalgebras, bialgebras and Hopf algebras, and

also the graded versions of Poisson algebras, co-Poisson coalgebras, Poisson/co-Poisson/bi-

Poisson bialgebras, and Poisson/co-Poisson/bi-Poisson Hopf algebras, but for the fact that

the Poisson bracket, resp. cobracket, must be a morphism (of graded spaces) of degree −1,
resp. +1. We write V = ⊕z∈ZVz for the degree splitting of any graded vector space V .

1.2 Function algebras. According to standard theory, the category of commutative

Hopf algebras is antiequivalent to the category of algebraic groups (over k): then we call

Spec (H) (spectrum of H ) the image of a Hopf algebra H in this antiequivalence, and

conversely we call function algebra or algebra of regular functions the preimage F [G] of an

algebraic group G. Note that we do not require algebraic groups to be reduced (i.e. F [G]

to have trivial nilradical) and we do not make any restrictions on dimensions: in particular

we deal with pro-affine as well as affine algebraic groups. We say that G is connected if

F [G] is i.p.-free; this is equivalent to the classical topological notion when dim(G) is finite.

Given an algebraic group G, let JG := Ker (ϵF [G]) be the augmentation ideal of F [G];

the cotangent space of G (at its unity) is g× := JG

/
JG

2 = Q
(
F [G]

)
, endowed with its

weak topology; the tangent space of G (at its unity) is the topological dual g :=
(
g×

)⋆
of

g× : this is a Lie algebra, the tangent Lie algebra of G. If Char (k) = p > 0 , then g is a

restricted Lie algebra (also called “p–Lie algebra”).

We say that G is an algebraic Poisson group if F [G] is a Poisson Hopf algebra. Then

the tangent Lie algebra g of G is a Lie bialgebra, and the same holds for g×. If Char (k) =
p > 0 , then g and g× are restricted Lie bialgebras, the p–operation on g× being trivial.
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1.3 Enveloping algebras and symmetric algebras. Given a Lie algebra g, we

denote by U(g) its universal enveloping algebra. If Char (k) = p > 0 and g is a restricted

Lie algebra, we denote by u(g) = U(g)
/({

xp − x[p]
∣∣x ∈ g

})
its restricted universal

enveloping algebra. If Char (k) = 0 , then P
(
U(g)

)
= g . If instead Char (k) = p > 0 ,

then P
(
U(g)

)
= g∞ := Span

({
xpn ∣∣n ∈ N

})
, the latter carrying a natural structure of

restricted Lie algebra with X [p ] := Xp . Note then that U(g) = u(g∞) for any Lie algebra

g , so any universal enveloping algebra can be thought of as a restricted universal enveloping

algebra. Both U(g) and u(g) are cocommutative connected Hopf algebras, generated by

g itself. Conversely, if Char (k) = 0 then each cocommutative connected Hopf algebra is

the universal enveloping algebra of some Lie algebra, and if Char (k) = p > 0 then each

cocommutative connected Hopf algebra H which is generated by P (H) is the restricted

universal enveloping algebra of some restricted Lie algebra (cf. [Mo], Theorem 5.6.5, and

references therein). Therefore, in order to unify the terminology and notation we call both

universal enveloping algebras (when Char (k) = 0 ) and restricted universal enveloping

algebras “enveloping algebras”, and denote them by U(g); similarly, with a slight abuse

of terminology we shall talk of “restricted Lie algebra” even when Char (k) = 0 simply

meaning “Lie algebra”. Thus enveloping algebras are simply the objects of the category of

cocommutative connected Hopf algebras generated by their primitive elements, regardless

of the characteristic of the ground field.

If a cocommutative connected Hopf algebra generated by its primitive elements is also

co-Poisson, then the restricted Lie algebra g such that H = U(g) is indeed a (restricted)

Lie bialgebra. Conversely, if a (restricted) Lie algebra g is also a Lie bialgebra then U(g)
is a cocommutative connected co-Poisson Hopf algebra (cf. [CP]).

Let V be a vector space: then the symmetric algebra S(V ) has a natural structure of

Hopf algebra, given by ∆(x) = x ⊗ 1 + 1 ⊗ x , ϵ(x) = 0 and S(x) = −x for all x ∈ V .

If g is a Lie algebra, then S(g) is also a Poisson Hopf algebra w.r.t. the Poisson bracket

given by {x, y}S(g) = [x, y]g for all x, y ∈ g . If g is a Lie coalgebra, then S(g) is also a

co-Poisson Hopf algebra w.r.t. the Poisson cobracket determined by δS(g)(x) = δg(x) for

all x ∈ g . Finally, if g is a Lie bialgebra, then S(g) is a bi-Poisson Hopf algebra with

respect to the previous Poisson bracket and cobracket (cf. [KT] and references therein).

1.4 Filtrations. Let
{
Fz

}
z∈Z =: F :

(
{0} ⊆

)
· · · ⊆ F−1 ⊆ F0 ⊆ F1 ⊆ · · ·

(
⊆ V

)
be

a filtration of a vector space V . We denote by GF (V ) :=
⊕

z∈Z Fz

/
Fz−1 the associated

graded vector space. We say that F is exhaustive if V F :=
∪

z∈Z Fz = V ; we say it is

separating if V↓ :=
∩

z∈Z Fz = {0} . We say that a filtered vector space is exhausted if

the filtration is exhaustive; we say that it is separated if the filtration is separating.

A filtration F =
{
Fz

}
z∈Z in an algebra A is said to be an algebra filtration iff

m
(
Fℓ ⊗ Fm

)
⊆ Fℓ+m for all ℓ, m, n ∈ Z . Similarly, a filtration F =

{
Fz

}
z∈Z in a
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coalgebra C is said to be a coalgebra filtration iff ∆
(
Fz

)
⊆

∑
r+s=z Fr⊗Fs for all z ∈ Z .

Finally, a filtration F =
{
Fz

}
z∈Z in a bialgebra, or in a Hopf algebra, H is said to be a

bialgebra filtration, or a Hopf (algebra) filtration, iff it is both an algebra and a coalgebra

filtration and — in the Hopf case — in addition S
(
Fz

)
⊆ Fz for all z ∈ Z . The notions

of exhausted and separated for filtered algebras, coalgebras, bialgebras and Hopf algebras

are defined as for vector spaces with respect to the proper type of filtrations.

Lemma 1.5. Let F be an algebra filtration of an algebra A. Then GF (A) is a graded

algebra; if, in addition, it is commutative, then it is a commutative graded Poisson algebra.

If E is another algebra with algebra filtration Φ and ϕ : A −→ E is a morphism of algebras

such that ϕ(Fz) ⊆ Φz for all z ∈ Z , then the morphism G(ϕ) : GF (A) −→ GΦ (E)

associated to ϕ is a morphism of graded algebras. In addition, if GF (A) and GΦ (E) are

commutative, then G(ϕ) is a morphism of graded commutative Poisson algebras.

The analogous statement holds replacing “algebra” with “coalgebra”, “commutative”

with “cocommutative” and “Poisson” with “co-Poisson”. In addition, if we start from

bialgebras, or Hopf algebras, with bialgebra filtrations, or Hopf filtrations, then we end

up with graded commutative Poisson bialgebras, or Poisson Hopf algebras, and graded

cocommutative co-Poisson bialgebras, or co-Poisson Hopf algebras, respectively.

Sketch of proof. The only non-trivial part is about the Poisson structure on GF (A) and

the co-Poisson structure on GF (C) (for a coalgebra C ). Indeed, let F :=
{
Fz

}
z∈Z be

an algebra filtration of A. For any x ∈ Fz

/
Fz−1 , y ∈ Fζ

/
Fζ−1 ( z, ζ ∈ Z ), let x ∈ Fz ,

resp. y ∈ Fζ , be a lift of x, resp. of y : then [x, y] := (xy−yx) ∈ Fz+ζ−1 because GF (A)

is commutative; therefore we define{
x, y

}
:= [x, y] ≡ [x, y] mod Fz+ζ−2 ∈ Fz+ζ−1

/
Fz+ζ−2 .

This gives a Poisson bracket on GF (A) making it into a graded commutative Poisson

algebra. Similarly, if F :=
{
Fz

}
z∈Z is a coalgebra filtration of C, for any x ∈ Fz

/
Fz−1

( z ∈ Z ), let x ∈ Fz be a lift of x : then ∇(x) :=
(
∆(x)−∆op(x)

)
∈
∑

r+s=z−1 Fr ⊗ Fs ,

for GF (C) is cocommutative, so the formula

δ(x ) := ∇(x) ≡ ∇(x) mod
∑

r+s=z−1
Fr ⊗ Fs ∈

∑
r+s=z

(
Fr

/
Fr−1

)
⊗
(
Fs

/
Fs−1

)
defines a structure of graded cocommutative co-Poisson coalgebra onto GF (C) . �

Lemma 1.6. Let C be a coalgebra. If F :=
{
Fz

}
z∈Z is a coalgebra filtration, then

CF :=
∪
z∈Z

Fz is a coalgebra, which injects into C, and CF := C
/∩
z∈Z

Fz is a coalgebra,

which C surjects onto. The same holds for algebras, bialgebras, Hopf algebras, with algebra,

bialgebra, Hopf algebra filtrations respectively. �



THE CRYSTAL DUALITY PRINCIPLE 9

§ 2 Connecting functors on (co)augmented (co)algebras

2.1 The ϵ– filtration J on augmented algebras. Let A be an augmented algebra

(cf. §1.1). Let J := Ker (ϵ ) : then J :=
{
J−n := Jn

}
n∈N is clearly an algebra filtration of

A, called the ϵ–filtration of A ; hereafter we shall consider it as a Z–indexed filtration, by

trivially completing it (Jz := A ∀ z ∈ −N+ ). We say that A is ϵ–separated if J is separa-

ting, i.e. J∞ :=
∩

n∈N Jn = {0} . Next (trivial) lemma points out some properties of J :

Lemma 2.2.

(a) J is an algebra filtration of A, which contains the radical filtration of A, that is

Jn ⊇ Rad (A)
n

for all n ∈ N where Rad (A) is the (Jacobson) radical of A .

(b) If A is ϵ–separated, then it is i.p.-free.

(c) A∨ := A
/∩

n∈N Jn is a quotient augmented algebra of A, which is ϵ–separated. �

Now we come to the first, somewhat relevant result:

Proposition 2.3. Mapping A 7→ A∨ := A
/∩

n∈N Jn gives a well-defined functor from

the category of augmented algebras to the subcategory of ϵ–separated augmented algebras.

Also, the augmented algebras A of the latter subcategory are characterized by A∨ = A . �

Remark 2.4: It is worth mentioning a special example of ϵ–separated augmented

algebras, namely the graded ones: these are those augmented algebras with an algebra

grading such that the augmentation is a morphism of graded algebras w.r.t. the trivial

grading on the ground field. Then one easily proves that

Every graded augmented algebra A is ϵ–separated, or equivalently A = A∨ .

2.5 Drinfeld’s δ•–maps. Let C be a coaugmented coalgebra (cf. §1.1). For every

n ∈ N , define ∆n:H −→ H⊗n by ∆0 := ϵ , ∆1 := idC , and ∆n :=
(
∆⊗id⊗(n−2)C

)
◦∆n−1

if n ≥ 2 . For any ordered subset Φ = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik , define

the linear map jΦ : H⊗k −→ H⊗n by jΦ(a1 ⊗ · · · ⊗ ak) := b1 ⊗ · · · ⊗ bn with bi := 1

if i /∈ Φ and bim := am for 1 ≤ m ≤ k ; then set ∆Φ := jΦ ◦ ∆k , ∆∅ := ∆0 , and

δΦ :=
∑

Ψ⊂Φ (−1)n−|Ψ|∆Ψ , δ∅ := ϵ . By the inclusion-exclusion principle, this definition

admits the inverse formula ∆Φ =
∑

Ψ⊆Φ δΨ . We shall also make use of the shorthand

notation δ0 := δ∅ , δn := δ{1,2,...,n} . Next lemma is a trivial, technical one:

Lemma 2.6. Let a, b ∈ C . Then

(a) δn =
(
idC − u ◦ ϵ

)⊗n ◦∆n for all n ∈ N+ ;

(b) The maps δn (and similarly the δΦ’s, for all finite Φ ⊆ N ) are coassociative, i.e.(
id⊗sC ⊗ δℓ ⊗ id⊗(n−1−s)C

)
◦ δn = δn+ℓ−1 for all n, ℓ, s ∈ N , 0 ≤ s ≤ n− 1 . �
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2.7 The δ•– filtration D on coaugmented coalgebras. Let C be as above, and

take notations of §2.5. For all n ∈ N , let Dn := Ker (δn+1) : then D :=
{
Dn

}
n∈N is

clearly an ascending filtration of C, the δ•–filtration of C ; hereafter we shall consider it

as a Z–indexed filtration, by trivially completing it (Dz := {0} ∀ z ∈ −N+ ). We say that

C is δ•–exhausted if D is exhaustive, i.e.
∪

n∈N Dn = C . Next lemma highlights some

properties of D , in particular it shows that it is a refinement of the coradical filtration.

We use the notion of “wedge” product, namely X
∧
Y := ∆−1

(
C ⊗ Y + X ⊗ C

)
for all

subspaces X, Y of C, with
∧1

X := X and
∧n+1

X :=
(∧n

X
)∧

X for all n ∈ N+ .

Lemma 2.8.

(a) D0 = k · 1 , and Dn = ∆−1
(
C ⊗Dn−1 +D0 ⊗ C

)
=

∧n+1
D0 for all n ∈ N .

(b) D is a coalgebra filtration of C, which is contained in the coradical filtration of C,

that is Dn ⊆ Cn if C :=
{
Cn

}
n∈N is the coradical filtration of C .

(c) C is δ•–exhausted ⇐⇒ C is connected ⇐⇒ D = C .

(d) C ′ :=
∪

n∈N Dn is a subcoalgebra of C : more precisely, it is the irreducible (hence

connected) component of C containing 1 . �

Here is the second relevant result, the (dual) analogue of Proposition 2.3:

Proposition 2.9. Mapping C 7→ C ′ :=
∪

n∈N Dn gives a well-defined functor from

the category of coaugmented coalgebras to the subcategory of δ•–exhausted (=connected)

coaugmented coalgebras. Moreover, the coaugmented coalgebras C of the latter subcategory

are characterized by C ′ = C . �

Remark 2.10: the characterization of connected coalgebras in terms of the δ•–filtra-

tion given in Lemma 2.8(c) yields easy, alternative proofs of two well-known facts.

(a) Every graded coaugmented coalgebra C is connected;

(b) Every connected coaugmented coalgebra is monic.

2.11 Connecting functors and Hopf duality. Let’s start from A ∈ A+, with

J := Ker (ϵ ) : the n–th piece of its ϵ–filtration is Jn := Im
(
J⊗n ↪−−−→H⊗n

µn

−−−�H
)

where the left hand side arrow is the natural embedding induced by J ↪−→H and µn

is the n–fold iterated multiplication of H. Similarly, let C ∈ C+ : the s–th piece of its

δ•–filtration is Ds := Ker
(
H

∆s+1

↪−−−−−→H⊗(s+1)−−−�J⊗(s+1)
)

where the right hand

side arrow is the natural projection induced by
(
idC − u ◦ ϵ

)
: H −−� J and ∆s+1 is the

(s + 1)–fold iterated comultiplication of C. In categorial terms, Ker is dual to Im, the

iterated comultiplication is dual to the iterated multiplication, and the above embedding

J⊗r ↪−−→H⊗n is dual to the projection H⊗r −−�J⊗r (for r ∈ N ). Therefore

(a) The notions of ϵ–filtration and of δ•–filtration are dual to each other;

(b) The notions of A∨ := A
/∩

n∈N Jn and of C ′ :=
∪

n∈N Dn are dual to each other;
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(c) The notions of ϵ–separated (for an augmented algebra) and δ•–exhausted (for a

coaugmented coalgebra) are dual to each other.

Remark 2.12: (a) ( )∨ and ( )′ as “connecting” functors. We now explain in what

sense both A∨ and C ′ are “connected” objects. Indeed, C ′ is truly connected, in the sense

of coalgebra theory (cf. Lemma 2.8(d)). On the other hand, we might expect that A∨ be

(or correspond to) a “connected” object by duality. In fact, when A is commutative then

it is the algebra of regular functions F [V] of an algebraic variety V ; the augmentation on

A is a character, hence corresponds to the choice of a point P0 ∈ V : thus the augmented

algebra A does correspond to the pointed variety (V, P0) . Then A∨ = F [V0] where V0 is

the connected component of V containing P0 ! This follows at once because A∨ is i.p.-free

(cf. Lemma 2.2). More in general, for any augmented algebra A, if A∨ is commutative then

its spectrum is a connected algebraic variety. For these reasons, we shall use the name

“connecting functors” for both functors A 7→ A∨ and C 7→ C ′ .

(b) Asymmetry of connecting functors on bialgebras. Let B be a bialgebra. As the

notion of B∨ is dual to that of B′, and since B = B′ implies that B is a Hopf algebra

(cf. Corollary 3.4(b)), one might dually conjecture that B = B∨ implies that B is a

Hopf algebra. Actually, this is false, the bialgebra B := F
[
Mat (n, k)

]
yielding a counter-

example: F
[
Mat (n,k)

]
= F

[
Mat (n, k)

]∨
, and yet F

[
Mat (n, k)

]
is not a Hopf algebra.

(c) Hopf duality and augmented pairings. The most precise description of the relation-

ship between connecting functors of the two types uses the notion of “augmented pairing”:

Definition 2.13. Let A ∈ A+ , C ∈ C+ . We call augmented pairing between A and C

any bilinear mapping ⟨ , ⟩ : A× C −−→ k such that, for all x, x1, x2 ∈ A and y ∈ C,⟨
x1 ·x2, y

⟩
=

⟨
x1⊗x2,∆(y)

⟩
:=

∑
(y)

⟨
x1, y(1)

⟩
·
⟨
x2, y(2)

⟩
, ⟨1, y⟩ = ϵ(y) , ⟨x , 1 ⟩ = ϵ(x) .

For any B,P ∈ B we call bialgebra pairing between B and P any augmented pair-

ing between the latters (thought of as augmented algebra and coaugmented coalgebras as

explained in §1.1) such that, for all x ∈ B, y1, y2 ∈ P , we have also, symmetrically,⟨
x, y1 · y2

⟩
=

⟨
∆(x), y1 ⊗ y2

⟩
:=

∑
(x)

⟨
x(1), y1

⟩
·
⟨
x(2), y2

⟩
.

For any H,K ∈ HA we call Hopf algebra pairing (or Hopf pairing) between H and K

any bialgebra pairing such that, in addition,
⟨
S(x), y

⟩
=

⟨
x, S(y)

⟩
for all x ∈H, y ∈K.

We say that a pairing as above is perfect on the left (right) if its left (right) kernel is

trivial; we say it is perfect if it is both left and right perfect.

Theorem 2.14. Let A ∈ A+, C ∈ C+ and let π: A×C −−→ k be an augmented pairing.

Then π induce a filtered augmented pairing πf :A
∨ ×C ′ −−→ k and a graded augmented

pairing π
G
: GJ(A) × GD(C) −−→ k (notation of §1.4), both perfect on the right. If in

addition π is perfect then πf and πG are perfect as well. �



12 FABIO GAVARINI

§ 3 Connecting and crystal functors on bialgebras and Hopf algebras

3.1 The program. Our purpose in this section is to see the effect of connecting

functors on the categories of bialgebras and of Hopf algebras. Then we shall move one step

further, and look at the graded objects associated to the filtrations J and D in a bialgebra:

these will eventually lead to the “crystal functors”, the main achievement of this section.

From now on, every bialgebra B will be considered as a coaugmented coalgebra w.r.t. its

unit map, hence w.r.t the group-like element 1 (the unit of B ), and the corresponding maps

δn (n ∈ N ) and δ•–filtration D will be taken into account. Similarly, B will be considered

as an augmented algebra w.r.t. the distinguished algebra morphism ϵ = ϵ (the counit of

B ), and the corresponding ϵ–filtration (also called ϵ–filtration) J will be considered.

We begin with a technical result about the “multiplicative” properties of the maps δn .

Lemma 3.2. ([KT], Lemma 3.2) Let B ∈ B, a, b ∈ B, and Φ⊆N, with Φ finite. Then

(a) δΦ(ab) =
∑

Λ∪Y=ΦδΛ(a) δY (b) ;

(b) if Φ ̸= ∅ , then δΦ(ab− ba) =
∑

Λ∪Y=Φ
Λ∩Y ̸=∅

(
δΛ(a) δY (b)− δY (b) δΛ(a)

)
. �

Lemma 3.3. Let B be a bialgebra. Then J and D are bialgebra filtrations. If B is also

a Hopf algebra, then J and D are Hopf algebra filtrations. �

Corollary 3.4. Let B be a bialgebra. Then

(a) B∨ := B
/∩

n∈NJ
n is an ϵ–separated (i.p.-free) bialgebra, which B surjects onto.

(b) B′ :=
∪

n∈N Dn is a δ•–exhausted (connected) Hopf algebra, which injects into B :

more precisely, it is the irreducible (actually, connected) component of B containing 1.

(c) If in addition B = H is a Hopf algebra, then H∨ is a Hopf algebra quotient of H

and H ′ is a Hopf subalgebra of H. �

Theorem 3.5. Let B be a bialgebra, J , D its ϵ–filtration and δ•–filtration respectively.

(a) B̂ := GJ (B) is a graded cocommutative co-Poisson Hopf algebra generated by

P
(
GJ (B)

)
, the set of its primitive elements. Therefore B̂ ∼= U(g) as graded co-Poisson

Hopf algebras, for some restricted Lie bialgebra g which is graded as a Lie algebra. In

particular, if Char (k)=0 and dim(B)∈ N then B̂ = k·1 and g = {0} .
(b) B̃ := GD (B) is a graded commutative Poisson Hopf algebra. Therefore, B̃ ∼= F [G]

for some connected algebraic Poisson group G which, as a variety, is a (pro)affine space. If

Char (k) = 0 then B̃ ∼= F [G] is a polynomial algebra, i.e. F [G] = k
[
{xi}i∈I

]
(for some

set I); in particular, if Char (k) = 0 and dim(B) ∈ N then B̃ = k · 1 and G = {1} . If

Char (k) = p > 0 then G has dimension 0 and height 1, and if k is perfect then B̃ ∼= F [G]

is a truncated polynomial algebra, i.e. F [G] = k
[
{xi}i∈I

]/(
{x p

i }i∈I
)
(for some set I). �
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3.6 The crystal functors. It is clear from the very construction that mapping A 7→
Â := GJ(A) (for all A ∈ A+ ) defines a functor from A+ to the category of graded,

augmented k–algebras; similarly, mapping C 7→ C̃ := GD(C) (for all C ∈ C+ ) defines a

functor from C+ to the category of graded, coaugmented k–coalgebras. The first functor

factors through the functor A 7→ A∨, and the second through the functor C 7→ C ′ .

The analysis in the present section shows that when restricted to k–bialgebras the output
of the previous functors are objects of Poisson-geometric type (Lie bialgebras and Poisson

groups): therefore, the functors B 7→ B̂ and B 7→ B̃ (for B ∈ B ) on k–bialgebras are

“geometrification functors”, in that they sort out of the generalized symmetry encoded

by B some geometrical symmetries; we’ll show in §4 that each of them can be seen as a

“crystallization process” (in the sense, loosely speaking, of Kashiwara’s motivation for the

term “crystal basis” in quantum group theory: we move from one fiber to another, very

peculiar one, within a 1-parameter family of algebraic objects), so we call them “crystal

functors”. It is worth stressing that, by their very construction, applying either crystal

functor one looses some information about the starting object, while at the same time still

keeping something. So B̂ tells nothing about the coalgebra structure of B∨ (for all en-

veloping algebras — like B̂ — roughly look the same from the coalgebra point of view), yet

it grasps some information on its algebra structure; on the other hand, conversely, B̃ gives

no information about the algebra structure of B′ (in that the latter is simply a polynomial

algebra), but instead it tells something non-trivial about its coalgebra structure.

We finish this section with the obvious improvement of Theorem 2.14:

Theorem 3.7. Let B,P ∈ B and let π :B × P −−→ k be a bialgebra pairing. Then π

induces filtered bialgebra pairings πf :B
∨ × P ′ −−→ k , πf :B′ × P∨ −−→ k , and graded

bialgebra pairings π
G
: B̂ × P̃ −−→ k , πG : B̃ × P̂ −−→ k ; πf and π

G
are perfect on the

right, πf and πG on the left. If in addition π is perfect then all these induced pairings

are perfect as well. If in particular B,P ∈ HA are Hopf algebras and π is a Hopf algebra

pairing, then all the induced pairings are (filtered or graded) Hopf algebra pairings. �

§ 4 Deformations I — Rees algebras, Rees coalgebras, etc.

4.1 Filtrations and “Rees objects”. Let V be a vector space over k, and let

{Fz}z∈Z := F :
(
{0} ⊆

)
· · · ⊆ F−m ⊆ · · · ⊆ F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · ·

(
⊆ V

)
be

a filtration of V by vector subspaces Fz (z ∈ Z). First we define the associated blowing

space to be the k–subspace BF (V ) of V
[
t, t−1

]
(where t is any indeterminate) given by

BF (V ) :=
∑

z∈Z t
zFz ; this is isomorphic to the first graded module1 associated to

(
V, F

)
,

1I pick the terminology about (associated) graded modules from Serge Lang’s textbook “Algebra”.
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i.e.
⊕

z∈Z Fz . Second, we let the associated Rees module be the k[t]–submodule Rt
F (V )

of V
[
t, t−1

]
generated by BF (V ) ; easy computations give k–vector space isomorphisms

Rt
F (V )

/
(t− 1)Rt

F (V ) ∼=
∪
z∈Z

Fz =: V F , Rt
F (V )

/
tRt

F (V ) ∼= GF (V )

where GF (V ) :=
⊕

z∈Z Fz

/
Fz−1 is the second graded module associated to

(
V, F

)
. In

other words,Rt
F (V ) is a k[t]–module which specializes to

∪
z∈Z Fz for t = 1 and specializes

to GF (V ) for t = 0 ; therefore the k–vector spaces
∪

z∈Z Fz and GF (V ) can be seen as 1-

parameter (polynomial) deformations of each other via the 1-parameter family of k–vector
spaces given by Rt

F (V ), in short V F :=
∪

z∈Z Fz
1← t→ 0←−−−−−−−→
Rt

F (V )
GF (V ) .

We can repeat this construction within the category of algebras, coalgebras, bialgebras

or Hopf algebras over k with a filtration in the proper sense (by subalgebras, subcoalgebras,

etc.): then we’ll end up with corresponding objects BF (V ), Rt
F (V ), etc. of the like type

(algebras, coalgebras, etc.). In particular we’ll cope with Rees bialgebras.

4.2 Connecting functors and Rees modules. Let A ∈ A+ be an augmented

algebra. By Lemma 2.2 the ϵ–filtration J of A is an algebra filtration: therefore we can

build out of it the associated Rees algebra Rt
J(A) . By the previous analysis, this yields

a 1-parameter deformation A ∼= Rt
J(A)

∣∣∣
t=1

1← t→ 0←−−−−−−−→
Rt

J (A)
Rt

J(A)
∣∣∣
t=0

∼= GJ(A) =: Â ,

where hereafter we use notation M
∣∣∣
t=c

:= M
/
(t−c)M for any k[t]–module M and any

c ∈ k . Note that all fibers in this deformation are isomorphic as vector spaces but perhaps

for the special fiber at t = 0 , i.e. exactly Â, for at that fiber the subspace J∞ is “shrunk

to zero”. This is settled passing from A to A∨, for which we do have a regular 1-parameter

deformation, i.e. one in which all fibers are pairwise isomorphic (as vector spaces), namely

A∨ := A
/
J∞ ∼= Rt

J(A
∨)
∣∣∣
t=1

1← t→ 0←−−−−−−−−−→
Rt

J (A
∨)

Rt
J(A)

∣∣∣
t=0

∼= GJ(A) =: Â (4.1)

where we implicitly used the identities Â∨ = Rt
J(A

∨)
∣∣∣
t=0

= Rt
J(A)

∣∣∣
t=0

= Â .

The situation is (dually!) similar for the connecting functor on coaugmented coalgebras.

Indeed, let C ∈ C+ be a coaugmented coalgebra. Then by Lemma 2.8 the δ•–filtration

D of C is a coalgebra filtration, thus we can build out of it the associated Rees coalgebra

Rt
D(C) . By the previous analysis, the latter provides a 1-parameter deformation

C ′ :=
∪
n∈N

Dn
∼= Rt

D(C)
∣∣∣
t=1

1← t→ 0←−−−−−−−→
Rt

D(C)
Rt

D(C)
∣∣∣
t=0

∼= GD(C) =: C̃ . (4.2)

Note that all fibers in this deformation are pairwise isomorphic vector spaces, so this is a

regular 1-parameter deformation.
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4.3 The bialgebra and Hopf algebra case. We now consider a bialgebra B ∈ B .
In this case, the results of §4 ensure that B∨ is a bialgebra, B̂ is a (graded, etc.) Hopf

algebra, and also that Rt
J(B

∨) is a k[t]–bialgebra (because J is a bialgebra filtration).

Therefore, using Theorem 3.5, formula (4.1) becomes

B∨
1← t→ 0←−−−−−−−−−→
Rt

J (B
∨)

B̂ ∼= U(g−) (4.3)

for some restricted Lie bialgebra g− as was g in Theorem 3.5(a) (for later purposes we

need to change symbol). Similarly, by Corollary 3.4 we know that B′ is a Hopf algebra, B̃

is a (graded, etc.) Hopf algebra and that Rt
D(B′) is a Hopf k[t]–algebra (because D(B′)

is a Hopf algebra filtration of B′ ): thus, again by Theorem 3.5, formula (4.2) becomes

B′
1← t→ 0←−−−−−−−→
Rt

D(B)
B̃ ∼= F [G+] (4.4)

(noting that Rt
D(B′) = Rt

D(B) because D(B′) = D(B) ) for some Poisson algebraic

group G+ as was G in Theorem 3.5(b). “Splicing together” these two pictures one gets

the following scheme:

F [G+] ∼= B̃
0← t→ 1←−−−−−−−→
Rt

D(B)
B′ ↪−→B −� B∨

1← t→ 0←−−−−−−−→
Rt

J (B
∨)

B̂ ∼= U(g−) (4.5)

This drawing shows how the bialgebra B gives rise to two Hopf algebras of Poisson ge-

ometrical type, namely F [G+] on the left-hand side and U(g−) on the right-hand side,

through bialgebra morphisms and regular bialgebra deformations. Namely, in both cases

one has first a “reduction step”, i.e. B 7→ B′ or B 7→ B∨, (yielding “connected” objects,

cf. Remark 2.12(a)), then a regular 1-parameter deformation via Rees bialgebras.

Finally, if H ∈ HA is a Hopf algebra then all objects in (4.5) are Hopf algebras too,

i.e. also H∨ — over k — and Rt
J(B

∨) — over k[t] . Therefore (4.5) reads

F [G+] ∼= H̃
0← t→ 1←−−−−−−−→
Rt

D(H)
H ′ ↪−→H −� H∨

1← t→ 0←−−−−−−−→
Rt

J (H
∨)

Ĥ ∼= U(g−) (4.6)

with the one-way arrows being morphisms of Hopf algebras and the two-ways arrows

being 1-parameter regular deformations of Hopf algebras. In the special case when H is

connected, i.e. H = H ′ , and “coconnected”, that is H = H∨, formula (4.6) looks simply

F [G+] ∼= H̃
0← t→ 1←−−−−−−−−→
Rt

D(H)
H

1← t→ 0←−−−−−−−−→
Rt

J (H)
Ĥ ∼= U(g−) (4.7)

which means we can (regularly) deform H itself to “Poisson geometrical” Hopf algebras.

Remarks: (a) There is no simple relationship, a priori, between the Poisson group

G+ and the Lie bialgebra g− in (4.5) or (4.6), or even (4.7): examples do show that; in

particular, either G+ or g− may be trivial while the other is not.

(b) The Hopf duality relationship between connecting functors of the two types ex-

plained in §§2.11–14 extend to the deformations built upon them by means of Rees modules.
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Indeed, by the very constructions one sees that there is a neat category-theoretical duality

between the definition of Rt
J(A) and of Rt

D(C) (for A ∈ A+ and C ∈ C+ ). Even more,

Theorem 2.14 “extends” (in a sense) to the following result:

Theorem 4.4. Let A ∈ A+, C ∈ C+ and let π: A×C −−→ k be an augmented pairing.

Then π induces an augmented pairing πR :Rt
J(A)×Rt

D(C) −→ k[t] which is perfect on the

right. If in addition π is perfect then Rt
J(A) =

{
η ∈ A(t)

∣∣∣πt

(
η, κ

)
∈ k[t] , ∀κ ∈ Rt

D(C)
}

and Rt
D(C) =

{
κ ∈ C(t)

∣∣∣πt

(
η, κ

)
∈ k[t] , ∀ η ∈ Rt

J(A)
}
, where S(t) := k(t) ⊗k S for

S ∈ {A,C} and πt : A(t)×C(t) −→ k(t) is the obvious k(t)–linear pairing induced by π ,

and πR is perfect as well. If A and C are bialgebras, resp. Hopf algebras, then everything

holds with bialgebra, resp. Hopf algebra, pairings instead of augmented pairings. �

§ 5 Deformations II — from Rees bialgebras to quantum groups

5.1 From Rees bialgebras to quantum groups via the GQDP. In this section

we show how, for any k–bialgebra B, we can get another deformation scheme like (4.5). In

fact, this will be built upon the latter, applying (part of) the “Global Quantum Duality

Principle” explained in [Ga1–2], in its stronger version about bialgebras.

Indeed, the deformations in (4.5) were realized through Rees bialgebras, namely Rt
J(B)

and Rt
D(B): these are torsion-free (actually, free) as k[t]–modules, hence one can apply

the construction made in [loc. cit.] via the so-called Drinfeld’s functors to get some new

torsion-free k[t]–bialgebras. The latters (just like the Rees bialgebras we start from) again

specialize to special bialgebras at t = 0 ; in particular, if B is a Hopf algebra the new

bialgebras are Hopf algebras too, and precisely “quantum groups” in the sense of [loc. cit.].

The construction goes as follows. To begin with, set B∨t := Rt
J(B) : this is a free,

hence torsion-free, k[t]–bialgebra. We define(
B∨t

)′
:=

{
b ∈ B∨t

∣∣∣ δn(b) ∈ tn
(
B∨t

)⊗n
, ∀ n ∈ N

}
.

On the other hand, let B′t := Rt
D(B) : this is again a free, hence torsion-free, k[t]–

bialgebra. Using notation J ′ := Ker
(
ϵ : B′t −→ k[t]

)
and also B′(t) := k(t) ⊗k[t] B

′
t =

k(t)⊗k B
′ , we define(

B′t
)∨

:=
∑

n≥0 t
−n(J ′ )n =

∑
n≥0

(
t−1J ′

)n (
⊆ B′(t)

)
.

The first important point is the following:

Proposition 5.2. Both
(
B∨t

)′
and

(
B′t

)∨
are free (hence torsion-free) k[t]–bialgebras;

moreover, the mappings B 7→
(
B∨t

)′
and B 7→

(
B′t

)∨
are functorial. The analogous results

hold for Hopf k–algebras, replacing “bialgebra(s)” with “Hopf algebra(s)” throughout. �
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Proposition 5.3.

(a)
(
B∨t

)′∣∣∣
t=1

:=
(
B∨t

)′/
(t− 1)

(
B∨t

)′ ∼= B∨ as k–bialgebras.

(b)
(
B′t

)∨∣∣∣
t=1

:=
(
B′t

)∨/
(t− 1)

(
B′t

)∨ ∼= B′ as k–bialgebras. �

Theorem 5.4.

(a)
(
B∨t

)′∣∣∣
t=0

:=
(
B∨t

)′/
t
(
B∨t

)′
is a commutative k–bialgebra with no non-trivial

idempotent elements. Furthermore, if p := Char (k) > 0 then each non-zero element of

Ker
(
ϵ :

(
B∨t

)′∣∣∣
t=0
−−→ k

)
has nilpotency order p . Therefore

(
B∨t

)′∣∣∣
t=0

is the function

algebra F [M ] of some connected Poisson algebraic monoid M , and if Char (k) > 0 then

M has dimension 0 and height 1. If in addition B = H ∈ HA then
(
H∨t

)′∣∣∣
t=0

is a Hopf

k–algebra, and K+ := Spec
((

H∨t
)′∣∣∣

t=0

)
= M is a (connected) algebraic Poisson group.

(b)
(
B′t

)∨∣∣∣
t=0

:=
(
B′t

)∨/
t
(
B′t

)∨
is a connected cocommutative Hopf k–algebra gener-

ated by P
((
B′t

)∨∣∣∣
t=0

)
. Therefore

(
B′t

)∨∣∣∣
t=0

= U(k−) for some Lie bialgebra k− .

(c) If Char (k) = 0 and B = H ∈ HA is a Hopf k–algebra, let Ĥ = U(g−) and

H̃ = F [G+] as in Theorem 3.5: then (notation of (a) and (b)) K+ = G⋆
− and k− = g×+ ,

that is coLie (K+) = g− and k− = coLie (G+) as Lie bialgebras. �

5.5 Deformations through Drinfeld’s fuctors. The outcome of the previous anal-

ysis is that for each k–bialgebra B ∈ B a second scheme — besides (4.5) — is available,

yielding regular 1-parameter deformations, namely (letting p := Char (k) )

U(k−)
0← t→ 1←−−−−−−−→
(B′

t)
∨

B′ ↪−→ B −−� B∨
1← t→ 0←−−−−−−−→
(B∨

t )′
F [M ] (5.1)

This provides another recipe, besides (4.5), to make two other bialgebras of Poisson

geometrical type, namely F [M ] and U(k−), out of the bialgebra B, through bialgebra

morphisms and regular bialgebra deformations. Like for (4.5), in both cases there is first the

“reduction step” B 7→ B′ or B 7→ B∨ and then a regular 1-parameter deformation via k[t]–
bialgebras. However, this time on the right-hand side we have in general only a bialgebra,

not a Hopf algebra. When B = H ∈ HA is a Hopf k–algebra, then (5.1) improves, in

that all objects therein are Hopf algebras too, and morphisms and deformations are ones

of Hopf algebras. In particular M = K+ is a (connected Poisson algebraic) group, not

only a monoid: at a glance, letting p := Char (k) ≥ 0 , we have

if p = 0 , U(g×+) = U(k−)
if p > 0 , U(k−)

}
0← t→ 1←−−−−→
(H′

t)
∨

H ′ ↪−→H−�H∨
1← t→ 0←−−−−→
(H∨

t )′

{
F [K+] = F [G⋆

+]

F [K+]
(5.2)

This yields another recipe, besides (4.7), to make two new Hopf algebras of Poisson geo-

metrical type, i.e. F [K+] and U(k−), out of the Hopf algebra H, through Hopf algebra mor-

phisms and regular Hopf algebra deformations. Again we have first the “reduction step”

H 7→ H ′ or H 7→ H∨, then a regular 1-parameter deformation via Hopf k[t]–algebras.
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In the special case when H is connected, that is H = H ′ , and “coconnected”, that is

H = H∨, formula (5.2) takes the simpler form, the analogue of (4.7),

if p = 0 , U(g×+) = U(k−)
if p > 0 , U(k−)

}
0← t→ 1←−−−−−−−→
(H′

t)
∨

H
1← t→ 0←−−−−−−−→
(H∨

t )′

{
F [K+] = F [G⋆

+]

F [K+]
(5.3)

which means we can (regularly) deform H itself to Poisson geometrical Hopf algebras.

In particular, when H ′ = H = H∨ patching together (4.7) and (5.3) we find

F [G+]
0← t→ 1←−−−−−−−−→

H′
t

H ′
1← t→ 0←−−−−−−−−→
(H′

t)
∨

U(k−)
(
= U

(
g×+

)
if Char (k) = 0

)
||
H
||

U(g−)
0← t→ 1←−−−−−−−−→

H∨
t

H∨
1← t→ 0←−−−−−−−−→
(H∨

t )′
F [K+]

(
= F

[
G⋆
−
]
if Char (k) = 0

)
which gives four different regular 1-parameter deformations from H to Hopf algebras en-

coding geometrical objects of Poisson type (i.e. Lie bialgebras or Poisson algebraic groups).

5.6 Drinfeld-like functors. The constructions in the present section show that map-

ping B 7→
(
B′t

)∨∣∣
t=0

and mapping B 7→
(
B∨t

)′∣∣
t=0

(for all B ∈ B ) define two endo-

functors of B . The output of these endofunctors describe objects of Poisson-geometric

type, namely Lie bialgebras and connected Poisson algebraic monoids: therefore, both

B 7→
(
B′t

)∨∣∣
t=0

and B 7→
(
B∨t

)′∣∣
t=0

(for B ∈ B ) are geometrification functors on k–
bialgebras, just like the ones in §3.6, which we call “Drinfeld-like functors”, because they

are defined through the use of Drinfeld functors (cf. [Ga1–2]) for quantum groups. Thus

we have four functorial recipes — our four geometrification functors — to sort out of the

generalized symmetry B some geometrical symmetries. Hereafter we explain the duality

relationship between Drinfeld-like functors and the associated deformations:

Theorem 5.7. Let B,P ∈ B , and let π : B × P −−→ k be a k–bialgebra pairing. Then

π induces a k[t]–bialgebra pairing π′∨ :
(
B∨t

)′ × (
P ′t

)∨ −−→ k[t] and a k–bialgebra pairing

π′∨
∣∣
t=0

:
(
B∨t

)′∣∣
t=0
×

(
P ′t

)∨∣∣
t=0
−−→ k . If π is perfect and Char (k) = 0 , then

(
B∨t

)′
={

η ∈ B(t)
∣∣∣πt

(
η, κ

)
∈ k[t] , ∀κ ∈

(
P ′t

)∨}
and

(
P ′t

)∨
=

{
κ ∈ P (t)

∣∣∣πt

(
η, κ

)
∈ k[t] , ∀ η ∈(

B∨t
)′}

, where S(t) := k(t) ⊗k S for S ∈ {B,P} and πt : B(t) × P (t) −−→ k(t) is the

obvious k(t)–linear pairing induced by π , and the induced pairings are perfect as well. If

B,P ∈ HA are Hopf k–algebras then everything changes accordingly. �

§ 6 Poisson duality and the Crystal Duality Principle

6.1 Crystal functors and Poisson duality. In this section we show that when con-

necting functors are applied to Hopf algebras encoding a classical symmetry — an alge-
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braic (maybe Poisson) group, or a universal enveloping algebra of a Lie (bi)algebra (maybe

restricted, if Char (k) > 0 ) — we know in advance the result of applying some connecting

or crystal functors. Namely, in case of function algebras of algebraic Poisson groups or (re-

stricted) universal enveloping algebras of Lie bialgebras the outcome is explicitly expressed

in terms of the dual Lie bialgebra or Poisson group. These cases are general, as we can

always give an algebraic group the trivial Poisson group structure, and any (restricted) Lie

algebra the trivial Lie cobracket to make it into a Lie bialgebra.

Theorem 6.2. Let H = F [G] be the function algebra of an algebraic Poisson group.

Then F̂ [G] is isomorphic to a bi-Poisson Hopf algebra, namely (with p := Char (k))

F̂ [G] ∼= S(g×) if p = 0 , F̂ [G] ∼= S(g×)

/({
x pn(x)

∣∣∣x ∈ N (
F [G]

)})
if p > 0

(notation of §1) where N
(
F [G]

)
is the nilradical of F [G], pn(x) is the order of nilpotency

of x ∈ N
(
F [G]

)
and the bi-Poisson Hopf structure of S(g×)

/({
x pn(x)

∣∣∣x ∈ N (
F [G]

)})
is the quotient one from S(g×) . In particular, if G is reduced then F̂ [G] ∼= S(g×) .

Sketch of proof. This follows essentially from definitions of F̂ [G] and of g× (cf. §1). �

Theorem 6.3.

(a) Let Char (k) = 0 . Let g be a Lie bialgebra. Then Ũ(g) is a bi-Poisson Hopf

algebra, namely Ũ(g) ∼= S(g) = F [g×] (notation of §1), where the bi-Poisson Hopf

structure on S(g) is the canonical one.

(b) Let Char (k) = p > 0 . Let g be a restricted Lie bialgebra. Then ũ(g) is a bi-

Poisson Hopf algebra, namely ũ(g) ∼= S(g)
/({

xp
∣∣x ∈ g

})
= F [G⋆] (notation of §1)

where the bi-Poisson Hopf structure on S(g)
/({

xp
∣∣x ∈ g

})
is induced by the canonical

one on S(g) and G⋆ denotes a connected algebraic Poisson group of dimension 0 and height

1 whose cotangent Lie bialgebra is g .

Sketch of proof. By its very definition, the filtration D of U(g) or u(g) is just the natural

filtration given by the order of differential operators. From this the claim follows. �

6.4 The Crystal Duality Principle. To sum up, we can finally tide up — once

more — all results presented above in a single formulation, the “Crystal Duality Prin-

ciple”. In short, we provided functorial recipes to get, out of any Hopf algebra H, four

Hopf algebras of Poisson-geometrical type (arranged in two couples), hence four associated

Poisson-geometrical symmetries: this is the “Principle”, say. The word “Crystal” reminds

the fact that the first couple — out of which the second one is sorted too — of special Hopf

algebras, namely
(
Ĥ, H̃

)
, is obtained via a crystallization process (cf. §3.6). Finally, the

word “Duality” witnesses that if Char (k) = 0 then Poisson duality is the link between the
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two couples of special Hopf algebras (thus only two are the relevant Poisson geometries as-

sociated toH ) and that ifH is of Poisson-geometrical type then the crystal functor yielding

a Hopf algebra of Hopf-dual type is ruled by Poisson duality (in any characteristic).

6.5 The CDP as corollary of the GQDP. The construction of Drinfeld-like functors

passes through the application of the Global Quantum Duality Principle (=GQDP in

the sequel): thus part of the Crystal Duality Principle (=CDP in the sequel) is a direct

consequence of the GQDP. In this section we briefly outline how the whole CDP can be

obtained as a corollary of the GQDP (but for some minor details); see also [Ga1–2], §5.
For any H ∈ HA , let Ht := H[t] ≡ k[t] ⊗k H . Then Ht is a torsionless Hopf algebra

over k[t], hence one of those to which the constructions in [Ga1–2] can be applied: in

particular, we can act on it with Drinfeld’s functors considered therein, which provide

quantum groups, namely a quantized (restricted) universal enveloping algebra (=QrUEA)

and a quantized function algebra (=QFA). Now, straightforward computation shows that

the QrUEA is nothing but H∨t := Rt
J(H) , and the QFA is just H ′t := Rt

D(H) , with

Ĥ ∼= H∨t

∣∣∣
t=0

and H̃ ∼= H ′t

∣∣∣
t=0

. It follows that all properties of Ĥ and H̃ spring out as

special cases of the results proved in [Ga1–2] for Drinfeld’s functors, but for their being

graded. Similarly, the fact that H ′ be a Hopf subalgebra of H follows from the fact that

H ′t itself is a Hopf algebra (over k[t]) and H ′ = H ′t

∣∣∣
t=1

; instead, H∨ is a quotient Hopf

algebra of H because H∨t is a Hopf algebra (over k[t]), hence H∨t := H∨t

/∩
n∈N tnH∨t is a

Hopf algebra, and finally H∨ = H∨t

∣∣∣
t=1

. The fact that H ′t and H∨t be regular 1-parameter

deformations respectively of H ′ and H∨ is then clear by construction. Finally, the parts of

the CDP dealing with Poisson duality also are direct consequences of the like items in the

GQDP applied to H ′t and to H∨t (but for Theorem 6.3(b)). The cases of (co)augmented

(co)algebras or bialgebras can be easily treated the same, up to minor changes.
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