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LINES IN QUANTUM GRASSMANNIANS

Elisabetta Strickland
Dipartimento di Matematica, Università di Roma, Tor Vergata, Roma, Italy

We study quantum lines in quantum grassmannians and prove that there are only
finitely many corresponding to lines in usual grassmannians fixed by a maximal torus.
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1. INTRODUCTION

Let V be a vector space over a field k. Consider the Grassmann variety
Gr!h"V# of subspaces in V of dimension h, 1 ≤ h ≤ dim V − 1. If we consider
the Plücker embedding Gr!h"V# → !!∧hV#, we have that the variety of lines in
Gr!h"V# i.e., the variety of lines in P!∧hV# which lie in Gr!h"V#, equals G!2"V#
if h = 1, G!n− 2"V# if h = n− 1, while, if 2 ≤ h ≤ n− 2, is the variety " !h− 1"
h+ 1"V# of flags U1 ⊂ U2 ⊂ V , where dimU1 = h− 1 and dimU2 = h+ 1. The line
corresponding to such a flag consists of those h-dimensional spaces U such that
U1 ⊂ U ⊂ U2. The purpose of this article is to show that in the quantum case the
situation is drastically different. Indeed in this case we shall see that the quantum
Gr!h"V# “contains” only a finite number of lines and these lines are in fact naturally
identified with the set of T -fixed points in the variety of lines of a non-quantum
Gr!h"V#, T being a maximal torus in Gl!V#.

In Cohen (1998), Landsberg and Manivel (2003), and Strickland (2002), one
studies in full generality the lines in a variety of type G/P, G a semisimple algebraic
group, P a parabolic subgroup. In particular it is shown that in most cases (and
always if G is simply laced), whenever one fixes a projective embedding G/P → !N ,
the G-variety of lines in !N lying in G/P and representing a given homology class
is, if not empty, again a variety G/Q for a suitable parabolic subgroup Q.
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1280 STRICKLAND

In view of the result we obtain here for quantum grassmannians, it is then
natural to conjecture, at least in the simply laced case, that an analogous statement
will hold in general, namely that lines in a quantum G/P will correspond to T -fixed
points of the variety of lines in the classical G/P. However, the method we use in the
present article to obtain our results relies on an explicit description of the defining
relations of the projective coordinate ring of the quantum grassmannian, and such
a description is not available in the general case.

2. DETERMINANTS

Let k be a field, k!q# the field of rational functions in the indeterminate q and
# a k!q#-algebra. Given a square n× n matrix, B = !bi"j# of elements in #, we can
define the row q-determinant

rdetq!B# $=
∑

w∈Sn
!−q#%!w#b1"w!1# · · · bn"w!n#

and its column q-determinant

cdetq!B# $=
∑

w∈Sn
!−q#%!w#bw!1#"1 · · · bw!n#"n"

where Sn denotes the symmetric group on n letters and % denotes as usual the
length function of Sn with respect to the standard generators si = !i" i+ 1#, i =
1" & & & " n. We shall say that a non-necessarily square matrix C = !ci"j#, i = 1" & & & "m,
j = 1" & & & " n is a q-matrix (Parshall and Wang, 1991), if the following relations
among the ci"j’s are satisfied:

ci"jci"k = qci"kci"j" for 1 ≤ i ≤ m" 1 ≤ j < k ≤ n

ci"jck"j = qck"jci"j" for 1 ≤ i < k ≤ m" 1 ≤ j ≤ n

ci"jch"k = ch"kci"j" for 1 ≤ i < h ≤ m" 1 ≤ k < j ≤ n

ci"jch"k = ch"kci"j + !q − q−1#ch"jci"k" for 1 ≤ i < h ≤ m" 1 ≤ j < k ≤ n&

In the case in which our square matrix B is also a q-matrix, it is not hard to see
(Parshall and Wang, 1991) that

rdetq!B# = cdetq!B# $= detq!B#

and this will be called the quantum determinant of B. Let us make a few remarks.
For any 1 ≤ h ≤ n− 1, let us denote by $h"n the set of permutations ' ∈ Sn such
that '!1# < '!2# · · · < '!h#; '!h+ 1# < '!h+ 2# · · · < '!n#.

Moreover if we choose indices 1 ≤ i1 < · · · ih ≤ m, 1 ≤ j1 < · · · jh ≤ n, we
shall denote by (i1" & & & " ih ( j1" & & & " jh)rq (respectively (i1" & & & " ih ( j1" & & & " jh)cq) the row
(respectively column) q-determinants of the minor of our matrix C with the specified
row and column indices. We then have the following version of Laplace expansion,
whose proof, identical to the usual one, we leave to the reader.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ita

 S
tu

di
 la

 S
ap

ie
nz

a]
 a

t 1
1:

33
 1

5 
D

ec
em

be
r 2

01
1 



LINES IN QUANTUM GRASSMANNIANS 1281

Lemma 2.1. Let B = !bi"j# be a n× n matrix with coefficients in the algebra #. Then,
for every 1 ≤ h ≤ n− 1,

rdetq!B# =
∑

'∈$h"n

!−q#%!'#(1" & & & "h ( '!1#" & & & " '!h#)rq(h+ 1" & & & " n ( '!h+ 1#" & & & " '!n#)rq

cdetq!B# =
∑

'∈$h"n

!−q#%!'#('!1#" & & & " '!h# ( 1" & & & "h)cq('!h+ 1#" & & & " '!n# (h+ 1" & & & " n)cq&

Let us now use the above expansion to deduce a few facts about our
determinants. We shall state the results in the case of the column expansions, but the
reader can easily state and prove the completely analogous results in the row case.
Assume that each column of our square matrix B = !bi"j# is a column q-vector, i.e.,
that for each 1 ≤ j ≤ n the n× 1 matrix !bi"j#, 1 ≤ i ≤ n is a q-matrix or equivalently
that bi"jbi+t"j = qbi+t"jbi"j for all i" j, 0< t ≤ n− i. We have the following proposition.

Proposition 2.2. 1) If two consecutive columns of B are equal, then

cdetq!B# = 0&

2) If for some 1 ≤ i < n the n× 2 matrix formed by the ith and i+ 1th columns
is a q-matrix, then if B′ is the matrix obtained from B by exchanging these columns,

cdetq!B
′# = !−q#cdetq!B#&

Proof. Using Lemma 2.1, we can clearly assume that our two columns are the first.
Again using Lemma 2.1, we can expand with respect to the first two columns and
we are reduced to prove our claims for 2× 2 matrices. To show 1) we have just to
remark that if ab = qba, then

cdetq

((
a a
b b

))
= ab − qba = 0&

To prove 2) we have to see that if

(
a b
c d

)

is a q-matrix,

cdetq

((
b a
d c

))
= bc − qda = bc − q!ad − !q − q−1#bc#

= −q!ad − qbc# = !−q#cdetq

((
a b
c d

))
& !

Remark 2.3. Notice that in our proof we have only used the fact that the two
columns involved are q-columns.
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1282 STRICKLAND

Corollary 2.4. 1) Assume that the square matrix B = !bi"j# is a q-matrix. Let w ∈ Sn
and let Bw be the matrix obtained applying the permutation w to the columns of B. Then

cdetq!B
w# = !−q#%!w#cdetq!B#&

2) Assume that there is a permutation w ∈ Sn such that in Bw two distinct
consecutive (not necessarily adjacent) columns which are not equal, form an n× 2
q-matrix, but B has two columns which are equal. Then

cdetq!B# = 0&

3. QUANTUM GRASSMANNIANS AND PLÜCKER RELATIONS

We define the ring of functions on quantum m× n matrices as the k!q#-algebra
kq(xi"j), with generators the elements xi"j , i = 1" & & &m, j = 1" & & & " n subject to the
relations:

xi"jxi"k = qxi"kxi"j" for 1 ≤ i ≤ m" 1 ≤ j < k ≤ n

xi"jxk"j = qxk"jxi"j" for 1 ≤ i < k ≤ m" 1 ≤ j ≤ n

xi"jxh"k = xh"kxi"j" for 1 ≤ i < h ≤ m" 1 ≤ k < j ≤ n

xi"jxh"k = xh"kxi"j + !q − q−1#xh"jxi"k" for 1 ≤ i < h ≤ m" 1 ≤ j < k ≤ n&

We shall call the matrix X = !xi"j#, which is a q-matrix, the generic m× n q-matrix.
It is well known (Parshall and Wang, 1991) that kq(xi"j) is a domain and it is a
q-deformation of the commutative polynomial ring in mn variables. Now assume
m > n. Set, using the notations of the previous section,

(i1" & & & " in) $= (i1" & & & " in ( 1" & & & " n)"

1 < i1 < · · · < in ≤ m.
Let R be the subalgebra of kq(xi"j) generated by the collection of the elements

(i1" & & & " in). We grade R by giving each element (i1" & & & " in) degree 1. This algebra,
which obviously depends on m and n, will be called the projective coordinate ring of
the quantum grassmannian Grq!n"m# (Lenagan and Rigal, 2004). It is a quantum
deformation of the usual projective coordinate ring of the Grassmann variety of
n-dimensional linear subspaces in an m-dimensional space with the respect to the
Plücker embedding. We shall call the elements (i1" & & & " in) ∈ R Plücker coordinates.
We are now going to describe a set of relations satisfied by the generators which are
completely analogous to the usual Plücker relations. To state the result, let us define
for any subset *i1" & & & " in+ ⊂ *1" & & & " n+, (i1" & & & " in) = !−q#%!w#(iw!1#" & & & " iw!n#), where
w ∈ Sn is the unique permutation such that iw!1# < · · · < iw!n#. Moreover, if i1" & & & in
is a sequence with at least a repetition, we set (i1" & & & " in) = 0.

Proposition 3.1. Let 1 ≤ i1" & & & " in+1 ≤ m. Then for any two sequences 1 ≤ r1 <
· · · < rh−1 ≤ m, 1 ≤ p1 < · · · < pn−h ≤ m we have

∑

'∈$n−h+1"n+1

!−q#%!'#(r1" &" rh−1" i'!1#" &" i'!n−h+1#) · (i'!n−h+2#" &" i'!n+1#"p1" &"pn−h) = 0& (1)

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ita

 S
tu

di
 la

 S
ap

ie
nz

a]
 a

t 1
1:

33
 1

5 
D

ec
em

be
r 2

01
1 



LINES IN QUANTUM GRASSMANNIANS 1283

Proof. By our definitions and Corollary 2.4, we deduce that for every ' ∈
$n−h+1"n+1,

(r1" &" rh−1" i'!1#" &" i'!n−h+1#) = (r1" &" rh−1" i'!1#" &" i'!n−h+1# ( 1" & & & " n)rq"

and similarly for (i'!n−h+2#" &" i'!n+1#"p1" &"pn−h). Thus, using Lemma 2.1, we get

(r1" &" rh−1" i'!1#" &" i'!n−h+1#)

=
∑

,∈$h−1"n

!−q#%!,#(r1" &" rh−1 ( ,!1#" &" ,!h− 1#)(i'!1#" &" i'!n−h+1# ( ,!h#" &" ,!n#)

and

(i'!n−h+2#" &" i'!n+1#"p1" &"pn−h)

=
∑

-∈$h"n

!−q#%!-#(i'!n−h+2#" &" i'!n+1# (-!1#" &" -!h#)(p1" &"pn−h (-!h+ 1#" &" -!n#)&

Notice that we have implicitly used the fact that all q-determinants involved are
q-determinants of q-matrices. Substituting, we get

∑

'∈$n−h+1"n+1

!−q#%!'#(r1" &" rh−1" i'!1#" &" i'!n−h+1#)(i'!n−h+2#" &" i'!n+1#"p1" &"pn−h)

=
∑

'∈$n−h+1"n+1

!−q#%!'#
( ∑

,∈$h−1"n

!−q#%!,#(r1" &" rh−1 ( ,!1#" &" ,!h− 1#)

· (i'!1#" &" i'!n−h+1# ( ,!h#" &" ,!n#)
)

·
( ∑

-∈$h"n

!−q#%!-#(i'!n−h+2#" &" i'!n+1# (-!1#" &" -!h#) · (p1" &"pn−h (-!h+ 1#" &" -!n#)
)

=
∑

,∈$h−1"n"-∈$h"n

!−q#%!,#+%!-#(r1" &" rh−1 ( ,!1#" &" ,!h− 1#)

·
( ∑

'∈$n−h+1"n+1

!−q#%!'#(i'!1#" &" i'!n−h+1# ( ,!h#" &" ,!n#)

·(i'!n−h+2#" &" i'!n+1# (-!1#" &" -!h#)
)
· (p1" &"pn−h (-!h+ 1#" &" -!n#)&

But now notice that for every choice of ,!h#" &" ,!n#" -!1#" &" -!h# ,

∑

'∈$n−h+1"n+1

!−q#%!'#(i'!1#" &" i'!n−h+1# ( ,!h#" &" ,!n#) · (i'!n−h+2#" &" i'!n+1# (-!1#" &" -!h#)

clearly equals cdetq!S#, where S is the matrix having as rows the rows of X of indices
i1" & & & in+1 and as columns the columns of X of indices ,!h#" &" ,!n#" -!1#" &" -!h#.
Since X has only n columns and we have n+ 1 indices, we get that S has two equal
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1284 STRICKLAND

columns. On the other hand, the requirements of Corollary 2.4 are clearly satisfied,
so that we deduce that cdetq!S# = 0 and hence our claim. !

From now on, in order to simplify our notations, we shall set for any sequence
T = !t1" & & & " tn#, with 1 ≤ t1" & & & " tn ≤ n, pT $= (t1" & & & " tn). Given two such sequences
T = !t1" & & & " tn# and S = !s1" & & & " sn#, we shall say that T ≤ S if, for each 1 ≤ h ≤ n,
th ≤ sh. Having given this definition, we have, as in the classical case the following
corollary.

Corollary 3.2. Let T = !t1 < · · · < tn# and S = !s1 < · · · < sn# be two sequences.
Assume that ti ≤ si for i < h, while th > sh. Then the product pTpS can be expressed as
a linear combination of products pT ′pS′ with T ′ < T , S′ > S.

Proof. Apply Proposition 3.1 with !i1 & & & " in+1# = !s1" & & & " sh" th" & & & " tn#, !r1" & & & ,
rh−1# = !t1" &" th−1# and !p1" & & & "pn−h# = !sh+1" & & & " sn#.

Now remark that, except for the unique ' ∈ $n−h+1"n+1 with '!1# = h+ 1" & & & "
'!n− h+ 1# = n+ 1, for which !r1" &" rh−1" '!1#" & & & " '!n− h+ 1## = T and !'!n−
h+ 2#" & & & " '!n+ 1#"p1" & & &pn−h# = S, for all other ' ∈ $n−h+1"n+1 one has that !r1" &,
rh−1" '!1#" & & & " '!n− h+ 1## < T and !'!n− h+ 2#" & & & " '!n+ 1#"p1" & & &pn−h# > S.

!

Corollary 3.3. Let T = !t1 < · · · < tn# and S = !s1 < · · · < sn# be two sequences.
Assume that ti = si for i < h (respectively i > h), while sh < th. Then the product pTpS

can be expressed as a linear combination of products pT ′pS′ with S′ = !s1" & & & " sh−1" tp,
sh+1" & & & sn# for some p ≥ h (respectively T ′ = !t1" & & & " th−1" sp" th+1" & & & tn# for some
p ≤ h).

Proof. We shall give the proof in the case in which ti = si for i < h, the proof in
the other case being completely analogous. In our case, let us apply Proposition 3.1
with !i1 & & & " in+1# = !s1" & & & " sh" th" & & & " tn#, !r1" & & & " rh−1# = !t1" &" th−1# and !p1" & & & ,
pn−h# = !sh+1" & & & " sn#. Notice that if ' ∈ $n−h+1"n+1 is such that for at least one
2 ≤ % ≤ n− h+ 1, we have '!%# < h. So (r1" &" rh−1" i'!1#" &" i'!n−h+1#) = 0, having two
equal indices. Using this, the claim follows immediately. !

As in the classical case, the above relations allow us to get a basis for the
ring R. We only sketch the proof, which is identical to the one given classically (see
Hodge, 1943 and also Lenagan and Rigal, 2004). Of course this is just a special
case of the standard monomial theory of Littelmann (1998), but one should remark
that as for the usual coordinate ring of a grassmannian, the above relations furnish
a straightening algorithm. To state this let us define a monomial pT1

& & &pTr
to be

standard, if T1 ≤ T2 ≤ · · · ≤ Tr .

Theorem 3.4. The standard monomials are a k!q#-basis of R.
Furthermore the ideal of relations among the generators pT ’s is generated by the

Plücker relations of Proposition 3.1.

Proof. The fact that every monomial in the pT ’s can be written as a linear
combination of standard monomials, using only the Plücker relations, is an
immediate consequence of Corollary 3.2 and a simple induction.
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LINES IN QUANTUM GRASSMANNIANS 1285

So what remains to show is the linear independence. To see this, let
∑

aiMi = 0,
with ai ∈ k!q#, Mi standard monomials in the pT ’s, be a linear relation. Multiplying
by a suitable power of !q − 1# and using the fact that q − 1 is not a zero
divisor, we can assume that none of the ai’s has a pole at q = 1 and at least
one is nonzero modulo q − 1. So, we can specialize at q = 1 and, using the
linear independence in the classical case, deduce that ai ≡ 0 modulo q − 1 for
each i—a contradiction. !

Remark 3.5. Notice that the Plücker relations have coefficients in %(q" q−1), so
that we can easily define a %(q" q−1) form & of our ring R. We leave to the reader
the immediate verification that the above theorem holds verbatim for the %(q" q−1)-
algebra &.

4. LINES IN QUANTUM GRASSMANNIANS

In accord to our definition of a quantum grassmannian, the quantum
projective line is the graded k!q#-algebra kq(x" y) generated by the two degree 1
elements x" y subject to the relation

xy = qyx&

Usually (Manin, 1988) this algebra is called the quantum plane, but here we want
to stress the fact that, with its grading, it is a q-analogue of the homogeneous
coordinate ring of !1.

Definition 1. Let R be, as in the previous section, the coordinate ring of the
quantum grassmannian Grq!n"m#. A line in Grq!n"m# is a graded ideal I ⊂ R such
R/I is isomorphic to kq(x" y) as a graded ring.

Before analyzing the lines in Grq!n"m#, let us make a few simple remarks.

Lemma 4.1. Let - $ kq(x" y) → kq(x" y) be a (graded) automorphism. Then there
exist nonzero constants ." / ∈ k!q# such that

-!x# = .x" -!y# = /y&

Proof. We have -!x# = .x + 0y and -!y# = 1x + /y, with ." 0" 1" / ∈ k!q# and
./ − 01 ,= 0. So

!.x + 0y#!1x + /y# = .1x2 + !./ + q−101#xy + 0/y2

= q!1x + /y#!.x + 0y# = q.1x2 + !./ + q01#xy + q0/y2&

In particular !1− q#.1 = !1− q#/0 = !q − q−1#01 = 0. This clearly implies that
0 = 1 = 0, as desired. !

Let us now determine the lines in a m− 1-dimensional quantum projective
space. In this case, R is the ring kq(x1" & & & " xm), with xixi = qxjxi if i < j.
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1286 STRICKLAND

Proposition 4.2. Let I ⊂ R be a line in the m− 1-dimensional quantum projective
space. Then there exists two indices 1 ≤ i < j ≤ m such that I is the ideal generated by
the elements xh, h ,= i" j. Furthermore, one can fix the isomorphism - $ R/I → kq(x" y)
in such a way that -̄!xi# = x, -̄!xj# = y where -̄ is the composition of - with the
projection R → R/I .

Proof. Let us fix an isomorphism - $ R/I → kq(x" y) and let -̄ $ R → kq(x" y)
denote the composition of the natural projection with -. Since -̄ is surjective
and graded, there must be two distinct indices i < j such that -̄!xi# and -̄!xj#
span the degree one component of kq(x" y). Now we have that xixj = qxjxi, so by
Lemma 4.1 we deduce that -̄!xi# = .x, -̄!xj# = /y for two nonzero constants . and
/. Composing with an automorphism of kq(x" y), we then deduce that we can assume
that -̄ carries xi into x and xj into y. Let us now take h ,= i" j and assume -̄!xh# ,= 0.
If h < i, then necessarily -̄!xh# = .x and -̄!xi# = /y, a contradiction. Similarly, if
h > j one deduces that -̄!xj# = /x. Finally, if i < h < j, one deduces on the one
hand that -̄!xh# = .x, on the other that -̄!xh# = /y, again a contradiction. This
proves our claim. !

Notice that Proposition 4.2 shows our main claim in the case of projective
spaces. Indeed consider kn with basis e1" & & & em, and take the maximal torus T in
Gl!n# consisting of diagonal matrices. The set of T -fixed lines in !!Kn#, consists
exactly of the lines Li"j , 1 ≤ i < j ≤ m where Li"j is the line joining the points (ei)
and (ej). Hence, Proposition 4.2 tells us that the only lines which can be quantized
are exactly the T -fixed lines.

We pass now to the general case of the quantum Gq!m" n#. We can assume
that 1 < n < m− 1, since otherwise we are in the case of projective spaces, which
we have already discussed in Proposition 4.2. First let us make some considerations
on the usual Grassmann variety. In this case a line in G!m" n#, consists (Strickland,
2002) of the set of n-dimensional subspaces in km, which contain a given n− 1-dim-
ensional subspace H and are contained in a given n+ 1-dimensional subspace K.
Thus, as a variety, the lines in G!m" n# are just the variety of flags *H ⊂ K ⊂
km ( dimH = n− 1" dim K = n+ 1+. A fix point in this variety, under the maximal
torus of diagonal matrices, is nothing else that the set of lines containing a
given n− 1-dimensional coordinate subspace, say the one generated by the basis
vectors ei1" & & & " ein−1

, 1 ≤ i1 < · · · < in−1 ≤ m and contained in the n+ 1-dimensional
subspace K spanned by H and two more basis vectors, say eh" ek. The next
Proposition shows that these points survive in the quantum case.

Proposition 4.3. Let R be the the projective coordinate ring of the quantum grass-
mannian Grq!n"m#. Let 1≤ i1 < · · · < it−1 < h < it < · · · is−1 < k < is < · · · in−1 ≤ m.
Set ' = *i1" & & & " in−1+ and H = *h" k+. Then there is a homomorphism

2'"H $ R → kq(x" y)

such that

2'"H!(i1" & & & " it−1"h" it" & & & " in−1)# = x"

2'"H!(i1" & & & " is−1" k" is" & & & " in−1)# = y"
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LINES IN QUANTUM GRASSMANNIANS 1287

while for any other Plücker coordinate (j1" & & & " jn),

2'"H!(j1" & & & " jn)# = 0&

Proof. Consider the free algebra T with generators xJ , with J any subset with
n elements in *1" & & & "m+. We have an obvious surjective morphism 3 $ T → R
defined by 3!xJ # = (j1" & & & " jn), for each J = *j1 < · · · < jn+, whose kernel is the ideal
generated by the Plücker relations

∑

'∈$h"n+1

!−q#%!'#x*r1"&"rh−1"i'!1#"&"i'!n−h+1#+
x*i'!n−h+2#"&"i'!n+1#"p1"&"pn−h+

&

Also, we clearly have a surjective morphism 2′
'"H $ T → kq(x" y) defined by setting

2′
'"H!xJ # = x if J = *i1" & & & " it−1"h" it" & & & " in−1+, 2′

'"H!xJ # = y if J = *i1" & & & " is−1,
k" is" & & & " in−1+, 2′

'"H!xJ # = 0 for all other Js. Thus in order to show the existence
of our 2'"H , what we have to show is that each of the Plücker relations lies in
the kernel of 2′

'"H . It is clear from the nature of these relations, that the only case
we need to consider is the case in which the subsets *i1" & & & " it−1"h" it" & & & " in−1+ and
*i1" & & & " is−1" k" is" & & & " in−1+ are involved in the relation. In this case we get exactly
one relation, namely

x*i1"&"it−1"h"it"&"in−1+
x*i1"&"is−1"k"is"&"in−1+

− qx*i1"&"is−1"k"is"&"in−1+
x*i1"&"it−1"h"it"&"in−1+

&

Applying 2′
'"H we get

xy − qyx = 0

so everything follows. !

Finally, we are going to see that the set of quantum lines in the quantum
grassmannian Grq!n"m# consists only of the points we have already constructed.
Namely, we have the following theorem.

Theorem 4.4. Let 2 $ R → kq(x" y) be a graded surjective homomorphism. Let I
denote its kernel. Then there exist two subsets in *1" & & & "m+, ' = *i1" & & & " in−1+ and
H = *h" k+ with H ∩ ' = ∅, such that I = ker2'"H .

Furthermore, if i1 < · · · < it−1 < h < it < · · · < is−1 < k < is < · · · in−1, there
exist two nonzero constants ." / ∈ k!q# such that

2!(i1" & & & " it−1"h" it" & & & " in−1)# = .x"

2!(i1" & & & " is−1" k" is" & & & " in−1)# = /y"

Proof. Since 2 is not zero, it is clear that there exist a sequence T = !t1" & & & " tn#
such that pT does not lie in I . Suppose that if a sequence T ′ = !t′1" & & & " t

′
n# differs

from T only by one index, then pT ′ ∈ I . On the other hand 2 is surjective, so
that there must be another element pS , S = !s1" & & & " sn#, different from T and
not lying in I . By our assumption the two elements differ at least by 2 indices.
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1288 STRICKLAND

Assume that h is the largest index such that th ,= sh. Up to exchanging T with
S, we can also assume th > sh. Then applying Corollary 3.3, we deduce that the
product pTpS can be written as a linear combination of products pT ′pS′ with T ′ =
!t1" & & & " th−1" sp" th+1" & & & tn# for some p ≤ h. Then, applying our assumptions, we
deduce that 2!pTpS# = 0. Since kq(x" y) is a domain, this contradicts the fact that
both pT and pS do not lie in I . !

At this point we have found that there must exist 1 ≤ i1 < · · · < it−1 < h <
it < · · · is−1 < k < is < · · · in−1 ≤ m such that, setting T = !i1" & & & " it−1"h" it & & & " in−1#
and S = !i1" & & & " is−1" k" is & & & " in−1#,

2!pT # ,= 0 and 2!pS# ,= 0&

Since we have that

pTpS = qpSpT "

we also obtain, by Lemma 4.1, that there exist two nonzero constants ." / ∈ k!q#
such that

2!pT # = .x and 2!pS# = /y&

So the only thing we still have to show is that, for any ordered sequence V =
!v1 < · · · < vn# not equal either to T or to S, we have that 2!pV # = 0.

To see this, let us start by remarking that if V differs from T only by one
index, and if furthermore the product pVpT is standard, then, since

pVpT = qpTpV "

we deduce using Lemma 4.1 that 2!pV # = 0. In a completely analogous way we see
that if V differs from S only by one index, and if furthermore the product pSpV is
standard, 2!pV # = 0.

Now assume that pVpT is standard. Let j ≤ n be the largest integer such that
vj is different from the jth index in T . Again, applying Corollary 3.3, we deduce that
pTpV can we written as a linear combination of elements pT ′pV ′ with T ′ obtained
from T by substituting the jth index with an index vr , r ≤ j. Thus applying 2 and
using the above remarks, we deduce that 2!pTpV # = 0. Since kq(x" y) is a domain,
we then get that pV ∈ I . In a completely analogous fashion, we can show that if
pSpV is standard, then 2!pV # = 0.

Assume now that both pTpV and pVpT are not standard. Applying
Corollary 3.2, we can write pTpV as a linear combination of products pT ′pV ′ with
pT ′pT standard. We deduce in this case too that 2!pTpV # = 0, and hence 2!pV # = 0.
Similarly we see that, if neither pSpV and pVpS are standard, then 2!pV # = 0.

Thus it remains only to deal with the case in which pTpVpS is standard. In this
case, we can repeat all our previous reasoning and deduce that if 2!pV # ,= 0, either

2!pV # = 0x or 2!pV # = 0y"
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LINES IN QUANTUM GRASSMANNIANS 1289

with 0 a nonzero constant in k!q#. In the first case, our previous argument gives,
since pTpV is standard, that 2!pT #= 0, a contradiction. In the second, that 2!pS#= 0,
again a contradiction. So 2!pV # = 0, and everything follows. !
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