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ABSTRACT. Let G4f be the group of all formal power series starting with = with coefficients
in a field k of zero characteristic (with the composition product), and let F[gdif] be its func-
tion algebra. In [BF] a non-commutative, non-cocommutative graded Hopf algebra Hf was
introduced via a direct process of “disabelianisation” of F[Qdif] , taking the like presentation
of the latter as an algebra but dropping the commutativity constraint. In this paper we apply
a general method to provide four one-parameters deformations of H4¥, which are quantum
groups whose semiclassical limits are Poisson geometrical symmetries such as Poisson groups
or Lie bialgebras, namely two quantum function algebras and two quantum universal en-
veloping algebras. In particular the two Poisson groups are extensions of G4if, isomorphic as
proalgebraic Poisson varieties but not as proalgebraic groups.

“A series of outlaws joined and formed the Nottingham group,
whose renowned chieftain was the famous Robin Hopf”

N. Barbecue, “Robin Hopf”

Introduction

The most general notion of “symmetry” in mathematics is encoded in the notion of Hopf
algebra. Then, among all Hopf algebras (over a field k), there are two special families which
are of relevant interest for their geometrical meaning: assuming for simplicity that k have
zero characteristic, these are the function algebras F[G] of algebraic groups G' and the
universal enveloping algebras U(g) of Lie algebras g. Function algebras are exactly those
Hopf algebras which are commutative, and enveloping algebras those which are connected
(in the general sense of Hopf algebra theory) and cocommutative.
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2 FABIO GAVARINI

Given a Hopf algebra H, encoding some generalized symmetry, one can ask whether
there are any other Hopf algebras “close” to H, which are of either one of the above
mentioned geometrical types, hence encoding geometrical symmetries associated to H.
The answer is affirmative: namely (see [Gad]), it is possible to give functorial recipes
to get out of any Hopf algebra H two pairs of Hopf algebras of geometrical type, say
(F[G4],U(g-)) and (F[K4],U(t_)). Moreover, the algebraic groups thus obtained are
connected Poisson groups, and the Lie algebras are Lie bialgebras; therefore in both cases
Poisson geometry is involved. In addition, the two pairs above are related to each other
by Poisson duality (see below), thus only either one of them is truly relevant. Finally,
these four “geometrical” Hopf algebras are “close” to H in that they are 1-parameter
deformations (with pairwise isomorphic fibers) of a quotient or a subalgebra of H.

The method above to associate Poisson geometrical Hopf algebras to general Hopf al-
gebras, called “Crystal Duality Principle” (CDP in short), is explained in detail in [Gad4].
It is a special instance of a more general result, the “Global Quantum Duality Principle”
(GQDP in short), explained in [Ga2-3], which in turn is a generalization of the “Quantum
Duality Principle” due to Drinfeld (cf. [Dr], §7, and see [Gal] for a proof).

Drinfeld’s QDP deals with quantum universal enveloping algebras (QUEAs in short) and
quantum formal series Hopf algebras (QFSHASs in short) over the ring of formal power series
k[[7]]. A QUEA is any topologically free, topological Hopf k[[A]]-algebra whose quotient
modulo % is the universal enveloping algebra U(g) of some Lie algebra g; in this case we
denote the QUEA by Up(g). Instead, a QFSHA is any topological Hopf k[[A]]-algebra of
type k[[A]]° (as a k[[h]]-module, S being a set) whose quotient modulo A is the function
algebra F'[|G]] of some formal algebraic group G ; then we denote the QFSHA by Fj[[G]] .

The QDP claims that the category of all QUEAs and the category of all QFSHAs are
equivalent, and provides an equivalence in either direction. From QFSHAs to QUEAs it
goes as follows: given a QFSHA, say Fj[[G]], let J be its augmentation ideal (the kernel
of its counit map) and set F,[[G]]Y := 3. o i "J". Then Fy[[G]] — Fi[[G]]" defines
(on objects) a functor from QFSHAs to QUEAs. To go the other way round, i.e. from
QUEAs to QFSHAS, one uses a perfectly dual recipe. Namely, given a QUEA, say Up(g),
let again J be its augmentation ideal; for each n € N, let J,, be the composition of the
n—fold iterated coproduct followed by the projection onto J®™ (this makes sense since
Un(g) =k[[A]]- 1y, @ ® J): then set Un(g) =, >0 6n_1(h”Uh(g)®n) , or more explicitly
Un(9) := {n € Un(g) | n(n) € B"Up(g)®", ¥n € N}. Then Uy(g) — Ux(g)’ defines (on
objects) a functor from QUEAs to QFSHAs. The functors ()" and ()’ are inverse to each
other, hence they provide the claimed equivalence.

Note that the objects (QUEAs and QFSHAS) involved in the QDP are quantum groups;
their semiclassical limits then are endowed with Poisson structures: namely, every U(g) is

in fact a co-Poisson Hopf algebra and every F[[G]] is a (topological) Poisson Hopf algebra.
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The geometrical structures they describe are then Lie bialgebras and Poisson groups. The
QDP then brings further information: namely, the semiclassical limit of the image of a given
quantum group is Poisson dual to the Poisson geometrical object we start from. In short

BRG] /RRGIY = Ulg*),  ie (oughly)  FA[[G])" = Un(g®) (L)
where g* is the cotangent Lie bialgebra of the Poisson group G, and

Un(g)’ / hUn(g) = F[[G*]],  ie (roughly)  Ux(g) = Fu[[G*]]  (1.2)

where G* is a connected Poisson group with cotangent Lie bialgebra g. So the QDP invol-
ves both Hopf duality (switching enveloping and function algebras) and Poisson duality.
The generalization from QDP to GQDP stems from a simple observation: the construc-
tion of Drinfeld’s functors needs not to start from quantum groups! Indeed, in order to
define either HY or H’ one only needs that H be a torsion-free Hopf algebra over some
1-dimensional doamin R and h € R be any non-zero prime (actually, even less is truly
necessary, see [Ga2-3]). On the other hand, the outcome still is, in both cases, a “quantum
group”, now meant in a new sense. Namely, a QUEA now will be any torsion-free Hopf
algebra H over R such that H / hH = U(g), for some Lie (bi)algebra g. Also, instead of
QFSHASs we consider “quantum function algebras”, QFAs in short: here a QFA will be any
torsion-free Hopf algebra H over R such that H / hH = F|G] (plus one additional tech-
nical condition) for some connected (Poisson) group G . In this new framework Drinfeld’s
recipes give that HY is a QUEA and H' is a QFA, whatever is the torsion-free Hopf R—
algebra H one starts from. Moreover, when restricted to quantum groups Drinfeld’s func-
tors ( )v and ( )/ again provide equivalences of quantum group categories, respectively from
QFAs to QUEASs and viceversa; then Poisson duality is involved once more, like in (I1.1-2).
Therefore, the generalization process from the QDP to the GQDP spreads over several
concerns. Arithmetically, one can take as (%) any non-generic point of the spectrum of
R, and define Drinfeld’s functors and specializations accordingly; in particular, the cor-
responding quotient field k; := R / h R might have positive characteristic. Geometrically,
one considers algebraic groups rather than formal groups, i.e. global vs. local objects. Al-
gebraically, one drops any topological worry (hi—adic completeness, etc.), and deals with
general Hopf algebras rather than with quantum groups. This last point is the one of
most concern to us now, in that it means that we have (functorial) recipes to get several
quantum groups, hence — taking semiclassical limits — Poisson geometrical symmetries,
springing out of the “generalized symmetry” encoded by a torsion-free Hopf algebra H over
R: namely, for each non-trivial point of the spectrum of R, the quantum groups H" and
H’ given by the corresponding Drinfeld’s functors. Note, however, that a priori nothing
prevents any of these HY or H' or their semiclassical limits to be (essentially) trivial.
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The CDP comes out when looking at Hopf algebras over a field k, and then applying
the GQDP to their scalar extensions H[h] := k[h] ®x H with R := k[h] (and h := h
itself). A first application of Drinfeld’s functors to Hjy := H[h] followed by special-
ization at h = 0 provides the pair (F[G4],U(g—)) mentioned above: in a nutshell,
(FIG4],U(g-)) = (Hh,‘h:O 7Hhv’h:o> , where hereafter th:o = X/hX. Then ap-
plying once more Drinfeld’s functors to Hy” and to Hj and specializing at A = 0 yields
the pair (F[K+],U(E-)), namely (F[K,],U(e2) = ((Hx)'| ., (Hd)"| ). Finally,
the very last part of the GQDP explained before implies that K_+ =G~ and ¢ = g

While in the second step above one really needs the full strength of the GQDP, for the
first step instead it turns out that the construction of Drinfeld’s functors on H|[A], can be

fully “tracked through” and described at the “classical level”, i.e. in terms of H alone. In
addition, the exact relationship among H and the pair (F G4],U (g_)) can be made quite
clear, and more information is available about this pair. We now sketch it in some detail.

Let J be the augmentation ideal of H, let J := {J”}neN be the associated (de-
creasing) J-adic filtration, H := G 7(H) the associated graded vector space and HY :=
H / Mnen /™ - One can prove that J is a Hopf algebra filtration, hence Hisa graded Hopf

algebra. The latter happens to be connected and cocommutative, so H~U (g—) for some
Lie algebra g_ ; in addition, since His graded also g_ itself is graded as a Lie algebra. The
fact that H be cocommutative allows to define on it a Poisson cobracket which makes H
into a graded co-Poisson Hopf algebra; eventually, this implies that g_ is a Lie bialgebra.
The outcome is that our U(g_) is just H.

On the other hand, one considers a second (increasing) filtration defined in a dual
nen - Let now H = Gp(H) be the
D,,. Again, one shows that D is a Hopf

manner to J, namely D := {Dn = Ker(5n+1)}
associated graded vector space and H' := J, ¢y
algebra filtration, hence Hisa graded Hopf algebra. Moreover, the latter is commutative,
so H = F|G,] for some algebraic group G4 . One proves also that H = F[G4] has no
non-trivial idempotents, thus G is connected; in addition, since H is graded, G4 as a
variety is just an affine space. The fact that H be commutative allows to define on it a
Poisson bracket which makes H into a graded Poisson Hopf algebra: this means that G
is an algebraic Poisson group. Thus eventually F[G4] is just H.

The relationship among H and the “geometrical” Hopf algebras H and H can be ex-
pressed in terms of “reduction steps” and regular 1-parameter deformations, namely

y H —— H oY <
R, (H) RE(HY)

3 0+ h—1

H

1<~ h—0 5

i (L.3)

where one-way arrows are Hopf algebra morphisms and two-ways arrows are regular 1-para-
meter deformations of Hopf algebras, realized through the Rees Hopf algebras R? (H) and
R?(HV) associated to the filtration D of H and to the filtration J of HV. Hereafter “reg-
ular” for a deformation means that all its fibers are pairwise isomorphic as vector spaces.



POISSON SYMMETRIES ASSOCIATED TO NON-COMMUTATIVE DIFFEOMORPHISMS 5

In classical terms, (I.3) comes directly from the construction above; on the other hand, in
terms of the GQDP it comes from the fact that R (H) = Hy and RL(HY) = Hy' .

As we mentioned above, next step is the “applicgtion” of (suitable) Drinfeld’s functors
to the Rees algebras R (H) = H; and R (HY) = Hy’ occurring in (I.3). The outcome
is a second frame of regﬁlar 1-parameter deformations for H' and H V. namely

0+ h—1 1 h—0
Ulgy)=U(t) % H — H HY < <(_HV;> FIK,]=F[G*] (1.4)
h h

which is the analogue of (I.3). In particular, when HY = H = H’ from (1.3) and (1.4)
together we find H as the mid-point of four deformation families, whose “external points”
are Hopf algebras of “Poisson geometrical” type, namely

0+ h—1

U(g_) , N H 1<~ h—0 N F G*
Hy H (Hy) B 0%
0+—h—1 1+ h—0
F ¢ > H X
[G+] y () Ulas)

which gives four different regular 1-parameter deformations from H to Hopf algebras encod-
ing Poisson geometrical objects. Then each of these four Hopf algebras may be thought of
as a semiclassical geometrical counterpart of the “generalized symmetry” encoded by H.

The purpose of the present paper is to show the effectiveness of the CDP, applying it to
a key example, the Hopf algebra of non-commutative formal diffeomorphisms of the line.
Indeed, the interest of the latter, besides its own reasons, grows bigger as we can see it as
a toy model for a broad family of Hopf algebras of great concern in mathematical physics,
non-commutative geometry and beyond. Now I go and present the results of this paper.

Let G4 be the set of all formal power series starting with  with coefficients in a field k of
zero characteristic. Endowed with the composition product, this is an infinite dimensional
prounipotent proalgebraic group — known as the “(normalised) Nottingham group” among
group-theorists and the “(normalised) group of formal diffeomorphisms of the line” among
mathematical physicists — whose tangent Lie algebra is a special subalgebra of the one-
sided Witt algebra. The function algebra F [gdif} is a graded, commutative Hopf algebra
with countably many generators, which admits a neat combinatorial description.

In [BF] a non-commutative version of F’ [Qdif] is introduced: this is a non-commutative
non-cocommutative Hopf algebra H4f which is presented exactly like F' [Qdif] but drop-
ping commutativity, i.e. taking the presentation as one of a unital associative — and not
commutative — algebra; in other words, H% is the outcome of applying to F [gdif} a raw
“disabelianization” process. In particular, H = HYf is graded and verifies HY = H = H',
hence the scheme (X) makes sense and yields four Poisson symmetries associated to H%E.

Note that in each line in ("X) there is essentially only one Poisson geometry involved,

since Poisson duality relates mutually opposite sides; thus any classical symmetry on the



6 FABIO GAVARINI

same line carries as much information as the other one (but for global-to-local differences).
Nevertheless, in the case of H = HI! we shall prove that the pieces of information
from either line in (") are complementary, because G4 and G* happen to be isomorphic
as proalgebraic Poisson varieties but not as groups. In particular, we find that the Lie
bialgebras g_ and g;* are both isomorphic as Lie algebras to the free Lie algebra £(N)
over a countable set, but they have different, non-isomorphic Lie coalgebra structures.
Moreover, G* = G%f x N =2 G, as Poisson varieties, where A is a proaffine Poisson
variety whose coordinate functions are in bijection with a basis of the derived subalgebra
L(N4); indeed, the latter are obtained by iterated Poisson brackets of coordinate functions
on G4 in short because both F [Gﬁ] and F [G+] are freely generated as Poisson algebras
by a copy of F [gdif] . For G* we have a more precise result, namely G* = G4t x A/ (a
semidirect product) as proalgebraic groups: thus in a sense G* is the free Poisson group
over G4 which geometrically speaking is obtained by “pasting” to G4 all 1-parameter
subgroups freely obtained via iterated Poisson brackets of those of G3f: in particular,
these Poisson brackets iteratively yield 1-parameter subgroups which generate N.

We perform the same analysis simultaneously for G3f, for its subgroup of odd formal
diffeomorphisms and for all the groups G, of truncated (at order v € N ) formal diffeomor-
phisms, whose projective limit is G4 itself; mutatis mutandis, the results are the like.

The case of H%f is just one of many samples of the same type: indeed, several cases of
Hopf algebras built out of combinatorial data — graphs, trees, Feynman diagrams, etc. —
have been introduced in (co)homological theories (see e.g. [LR] and [Fol-2], and references
therein) and in renormalization studies (see [CK1-3]); in most cases these algebras —
or their (graded) duals — are commutative polynomial, like F[gdif], and admit non-
commutative analogues (thanks to [Fol-2]), so our discussion apply almost verbatim to
them too, with like results. Thus the given analysis of the “toy model” Hopf algebra #dif
can be taken as a general pattern for all those cases.
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§ 1 Notation and terminology

1.1 The classical data. Let k be a fixed field of zero characteristic.

Consider the set Gdif .= {x + Zn>1 a, z" 1 ’ a, € kVneN, } of all formal series
starting with = : endowed with the composition product, this is a group, which can be seen
as the group of all “formal diffeomorphisms” f:k — k such that f(0) =0 and f/(0) =1
(i.e. tangent to the identity), also known as the Nottingham group (see, e.g., [Ca] and
references therein). In fact, G4 is an infinite dimensional (pro)affine algebraic group, whose
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function algebra F [gdif} is generated by the coordinate functions a,, (n € N;). Giving to
each a,, the weight! 9(a,) := n, we have that F [Qdif} is an N—graded Hopf algebra, with
polynomial structure F [(]dif] =klay,az,...,a,,...] and Hopf algebra structure given by

A(an)—an®1+1®an+zm1am®Q m (@) s e(a,) =0
S(an) = —an — S0 Y am S(QT_ 1 (a) = —an — S Slam) QT (a)

k k
where Qf(a.) := 22:1 (T)Pf )(a*) and Pt( )(a*) = 231, Lies0dan
Jitt+ie=t

metric monic polynomial of weight m and degree k in the indeterminates a;’s) for all m,

-~ aj, (the sym-

k, £ € N, and the formula for S(a,) gives the antipode by recursion. From now on,
to simplify notation we shall write G := G4t and Go, := G = G¥f. Note also that the
tangent Lie algebra of G4 is just the Lie subalgebra W;=! = Span ({dn|n €Ny }) of the
one-sided Witt algebra W; := Der(k[t]) = Span ({ d = ¢t ‘n eNU{-1}}).

In addition, for all ¥ € N, the subset G” := f € g| an =0, Vn< V} is a
normal subgroup of G ; the corresponding quotient group G, := ¢ / G¥ is unipotent, with
dimension v and function algebra F[Q,,} (isomorphic to) the Hopf subalgebra of F[Q}
generated by ai, ..., a,. In fact, the G”’s form exactly the lower central series of G
(cf. [Je]). Moreover, G is (isomorphic to) the inverse (or projective) limit of these quotient
groups G, (v € N, ), hence G is pro-unipotent; conversely, F'[G] is the direct (or inductive)
limit of the direct system of its graded Hopf subalgebras F'[G,] (v € N,). Finally, the
set Godd .= {f € Qdif} aon—1(f) =0V n € N+} is another normal subgroup of G4if
(the group of odd formal diffeomorphisms? after [CK3]), whose function algebra F [godd}
is (isomorphic to) the quotient Hopf algebra F [gdif} / <{a2n_1 }n EN+> . The latter has the
following description: denoting again the cosets of the as,’s with the like symbol, we have
F [Q"dd] = klag, ay,...,as,,...] with Hopf algebra structure

A(agn) = Q9n & 1 + 1 & aon, + Zm 1 a2m & Qn m(CLQ*) y G(CLQn) =0
S(azn) = —aan — Yoy azm S(Qp(a4)) = —azn — 3oy S(azm) Q1 (az.)

where Qf(az.) :== >4, (M:l)Pt(k)(ag*) and Pt(k)(ag*) =y agj, - - - ag;, for all
Jiteir=t
m, k, ¢ € N, . For each v € N, we can consider also the normal subgroup ¢” N Gedd and

the corresponding quotient ggdd = godd/(g'/ N QOdd) : then F[gfjdd} is (isomorphic to)
the quotient Hopf algebra F[QOdd}/<{CL2n_1 }(2n—1)€N
algebra of I [Q"dd} generated by az,...,az[, /). Allthe F [Q;’dd] ’s are graded Hopf (sub)al-

gebras forming a direct system with direct limit F [godd]; conversely, the G949’s form an
ggdd )

) , in particular it is the Hopf sub-

inverse system with inverse limit G°44. In the sequel we write Gt := G°44 and G} :=

1We say weight instead of degree because we save the latter term for the degree of polynomials.
2The fixed-point set of the group homomorphism ® : G — G, f +— ®(f) (z — (2(f))(z) := —f(—=x))



8 FABIO GAVARINI

For each v € N, | set N, :={1,...,v}; set also Ny, := N, . For each v € N} U {o0},
let £, = L(N,) be the free Lie algebra over k generated by {xn}neN,, and let U, =U(L,)
be its universal enveloping algebra; let also V,, = V(N,) be the k—vector space with basis
{Zn}nen, » and let T, =T(V,) be its associated tensor algebra. Then there are canonical
identifications U(L,) =T(V,) = k{{®, |n € N, }), the latter being the unital k-algebra
nen, » and £, is just the

. Moreover, £, has a basis B, made of

of non-commutative polynomials in the set of indeterminates {x,, }
Lie subalgebra of U, = T, generated by {z},cn
Lie monomials in the z,,’s (n € N,), like [Zn,, Tnyls [[Tnys Tns)s Tns|y [Tnys Tngls Tnsls Tnyls
etc.: details can be found e.g. in [Re], Ch. 4-5. In the sequel I shall use these identifications
with no further mention. We consider on U(L,) the standard Hopf algebra structure
given by A(z) =2z®1+1®x, e(x) =0, S(z) = —x for all x € £, , which is also
determined by the same formulas for x € {xn}neNy alone. By construction v < p implies
L, C L, , whence the £,’s form a direct system (of Lie algebras) whose direct limit is
exactly Lo ; similarly, U(Ly) is the direct limit of all the U(L,)’s. Finally, with B, we
shall mean the obvious PBW-like basis of U(L,) w.r.t. some fixed total order < of B,,
namely B, := {IQ ’l_):bl"-bk; bi,...,bp, € B,; by = --- =< bk}. The same construction
applies to make out “odd” objects, based on {z,},, \+, with Njf := N,N2N (veNU{oo}),
instead of {xn}, ey, £ = LINS), UF =U(LE), V,;F =V(N}), T,F =T(V,}), with
the obvious canonical identifications U (L) = T(V,") = k({2 |n € N} }); moreover,
L} has a basis B} made of Lie monomials in the z,,’s (n € N, etc. The £}’s form a
direct system whose direct limit is £1, and U(LZL) is the direct limit of all the U(L;})’s.

Warning : in the sequel, we shall often deal with subsets {y;},cp (of some algebra) in
bijection with B, , the fixed basis of £, . Then we shall write things like y, with A € £, :
this means we extend the bijection {y,},cp = B, to Span ({¥s}oen,) = L, by linearity,
sothat yy =), cp b iff A=3, 5 b (e € k). The same kind of convention will
be applied with B}l instead of B, and L] instead of L, .

1.2 The noncommutative Hopf algebra of formal diffeomorphisms. For all
v € Ny U{oo}, let H, be the Hopf k—algebra given as follows: as a k—algebra it is simply
H, := k({a,|n € N, }) (the k-algebra of non-commutative polynomials in the set of
indeterminates {a,}, oy ), and its Hopf algebra structure is given by (for all n € N, )

A(an) = an®1+1®an+zfn_:11 am®Q;n_m(a*)7 e(an) =0

1.1
S(a,) = —a, — an_:11 Am S(Qnm—m(a*)) = —an — Zz_zll S(am) Qn- . (ax) (-0

(notation like in §1.1) where the latter formula yields the antipode by recursion. Moreover,
‘H, is in fact an N—graded Hopf algebra, once generators have been given degree — in the
sequel called weight — by the rule d(a,) := n (for all n € N, ). By construction the
various H,’s (for all v € Ny ) form a direct system, whose direct limit is H, : the latter
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was originally introduced® in [BF], §5.1 (with k = C), under the name H%f.
Similarly, for all v € Ny U {oc} we set K, := k({a,|n € NJ}) (where NJ :=
N, N (2N)): this bears a Hopf algebra structure given by (for all 2n € N)

A(aZn) = ag, ® 1+1® ag, + Zm 1 A2m X Qn m(aZ*) ; €(a2n) =0
S(aZn) = —agn — Zm_:ll agm, S( :Ln—m(aQ*)) = —agp — Zm_zll S(aZm) Q:Ln—m(aZ*>

(notation of §1.1). Indeed, this is an N—graded Hopf algebra where generators have degree

— called weight — given by d(a,) := n (for all n € NI ). All the K,’s form a direct

system with direct limit Ko, . Finally, for each v € NI there is a graded Hopf algebra

epimorphism H, — K, given by ag, +— as,, as,+1 — 0 for all 2n,2m +1 € N, .
Definitions and §1.1 imply that

( —H/ 'HV,'H F[gy], via a,—a, VvneN,

as N—graded Hopf algebras: in other words, the abelianization of H, is nothing but F [Qy} .
Thus in a sense one can think at #, as a non-commutative version (indeed, the “coarsest”
one) of F [Qy}, hence as a “quantization” of G, itself: however, this is not a quantization in
the usual sense, because F[gy} is attained through abelianization, not via specialization

of some deformation parameter. Similarly we have also
(K)o = Ko /([0 ]) = FIGE], via  agrras, V2nEN

as N—graded Hopf algebras: in other words, the abelianization of K, is just F [Qj }
In the following I make the analysis explicit for H, , the case K, being the like (details
are left to the reader); I drop the subscript v, which stands fixed, and write H := H,, .

1.3 Deformations. Let i be an indeterminate. In this paper we shall consider several
Hopf algebras over k[A], which can also be seen as 1-parameter depending families of Hopf
algebras over k, the parameter being k; each k-algebra in such a family can then be
thought of as a 1-parameter deformation of any other object in the same family. As a
matter of notation, if H is such a Hopf k[A]-algebra I call fibre of H (though of as a

deformation) any Hopf k-algebra of type H / p(h) H for some irreducible p(h) € k[A]; in

particular H‘h_ = H/(h —c)H, for any c € k, is called specialization of H at h = c.
We start from Hp = H[h] = k[h] ®xH : this is indeed a Hopf k[h]-algebra, namely

Hy = k[A]({a,|n € N, }) with Hopf structure given by (1.1) again. Set also H(h) :=

k(h) @upnHn = k(h) @xH =k(h){({a, |n € N, }), a Hopf k(h)-algebra ruled by (1.1) too.

3However, the formulas in [BF] give the opposite coproduct, hence change the antipode accordingly;
we made the present choice to make these formulas “fit well” with those for F[gdif] (see below).
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¢ 2 The Rees deformation #;" .

2.1 The goal. The crystal duality principle (cf. [Ga2], §5, or [Gad]) yields a recipe to
produce a l-parameter deformation Hp’ of H which is a quantized universal enveloping

algebra (QUEA in the sequel): namely, Hp"’ is a Hopf k[A]-algebra such that Hj" ‘h = H

and Hj” = U(g_), the universal enveloping algebra of a graded Lie bialgebra g_ . Thus
0

Hy' is a quantization of U(g_), and the quantum symmetry # is a deformation of the
classical Poisson symmetry U(g_). By definition Hp’ is the Rees algebra associated to a
distinguished decreasing Hopf algebra filtration of H, so that U(g_) is just the graded Hopf
algebra associated to this filtration. The purpose of this section is to describe explicitly
Hy’ and its semiclassical limit U(g_), hence also g_ itself. This will also provide a direct,
independent proof of all the above mentioned results about Hz” and U(g_) themselves.

2.2 The Rees algebra ;' . Let J := Ker (eH H — ]k) be the augmentation
ideal of H, and let J := {J”}neN be the J-adic filtration in H. It is easy to show
(see [Gad]) that J is a Hopf algebra filtration of H ; since H is graded connected we have
J = Hy := OnenHn) (where H(,) is the n-th homogeneous component of H), whence

NpenJ” = {0} and HY := ’H/ﬂneN J" = H . We let the Rees algebra associated to J be

Hy = k[h] - 3 A I = S k[ AT = S kA (B T)" (CH(AB)) . (21)

n>0 n>0 n>0

Letting Jj, := Ker (€, : Hn— k[h] ) = k[] - J (the augmentation ideal of Hj ) one has

Hal = S B = S (700" (S HB)).

For all n € N, , set x,, := h'a, ; clearly Hy’ is the k[h]-subalgebra of H(h) gener-
ated by JY :=h~1J, hence by {x,} so Hp' = k[h]{{x, |n €N, }). Moreover,

neN, ’

Alxn) = X0 @1+ 1@% + 300 5 300 1 (") xnom @ PO (x4), e(xn) = 0

S(xn) = =xn = X2 SR KO X S (P (x4)) = (2.2)
= = = 3000 I AR () S(xamm) B (%)

for all n € N, , due to (1.1). From this one sees by hands that the following holds:

Proposition 2.1. Formulas (2.2) make Hp' =Kk[h]({xn, |n € N, }) into a graded Hopf
k[h]-algebra, embedded into H(h) = k(h) @k H as a graded Hopf subalgebra. Moreover,
My is a deformation of H, for its specialization at h =1 is isomorphic to H, i.e.

Hp'

= ’Hhv/(h—l)?-[hv ~H wvia X, mod (h—1)Hy' — a, (VneEN,)

as graded Hopf algebras over k. [
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Remark: the previous result shows that Hp, is a deformation of H, which is recovered as
specialization (of Hy) at h = 1. Next result instead shows that Hy, is also a deformation of
U(L,), recovered as specialization at h = 0. Altogether, this gives the top-left horizontal
arrow in the frame ("K) in the Introduction for H = H :=H, , with g_ =L, .

Theorem 2.1. Hp' is a QUEA at h = 0. Namely, the specialization limit of Hp' at
h=0 is Hhv‘h_o = Hp' [hH = U(L,) vie x, mod hHR' =z, forall neN,,
thus inducing on U(L,) the structure of co-Poisson Hopf algebra uniquely provided by the
Lie bialgebra structure on L, given by 6(x,) = ?:_11 (+1)xe Azp_p (for all n € N, )™
In particular in the diagram (X) for H =H (= H,) we have g_ = L,, .

Finally, the grading d given by d(x,) :=1 (n € Ny) makes Hﬁv‘h—og U(L,) into a
graded co-Poisson Hopf algebra; similarly, the grading O given by O(z,) :==n (n € Ny)

Y

makes ”Hhv‘ >~ U(L,) into a graded Hopf algebra and L, into a graded Lie bialgebra.

Proof. First observe that since Hp' = k[i] ({x,|n € N, }) and U(L,) = T(V,) =
]k<{xn|n e N, }> mapping x, mod hHp' + z, (V¥ n € N,) does really define an
isomorphism of algebras ®: Hp’ / hHn' = U(L,). Second, formulas (2.2) give

Alxy) =%, @1+ 1®x, mod h(Hp' @ Hp')
€(x,) =0 mod hk[h], S(x,) = —x, mod hHp'

for all n € N, ; comparing with the standard Hopf structure of U(L,) this shows that &

is an isomorphism of Hopf algebras too. Finally, as ’Hh\/’ is cocommutative, a Poisson

co-bracket is defined on it by the standard recipe used in quantum group theory, namely

8(zn) == (B (A(xn) — A% (x,))) mod fi (Hp' @ Hp') =
= S (T N e AP () = S0 (C+ Dag Az Y meEN, . O

§ 3 The Drinfeld’s deformation (Hﬁv)/ .

3.1 The goal. The second step in the crystal duality principle is to build a second
deformation basing upon the Rees deformation Hp’. This will be a new Hopf k[A]-algebra
(Hﬁv)/, contained in Hp”, which for A = 1 specializes to H and for & = 0 specializes
to F[K4], the function algebra of some connected Poisson group K, ; in other words,
(Hﬁv), s H and (Hhv)/ o F[K,], the latter meaning that (Hhv)/ is a quantized

4Hereafter, I use notation a Ab:=a®b—>bQa.
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function algebra (QFA in the sequel). Therefore (’Hhv)/ is a quantization of F[K,], and
the quantum symmetry # is a deformation of the classical Poisson symmetry F[K.].

In addition, the general theory also describes the relationship between K and the Lie
bialgebra g_ = £, in §2.1, which is £, = coLie(K, ), so that we can write K, = G .
Comparing with §2.1, one eventually concludes that the quantum symmetry encoded by
H is intermediate between the two classical, Poisson symmetries ruled by G- and L, .

In this section I describe explicitly (Hhv)/ and its semiclassical limit F[G_], hence G_
itself too. This yields a direct proof of all above mentioned results about (’Hhv)/ and G_ .

3.2 Drinfeld’s jo—maps. Let H be any Hopf algebra (over a ring R). For every
n € N, define the iterated coproduct A™:H — H®" by A° := ¢, Al :=id,, and
finally A™ := (A®idé®(n_2)) o A" if n > 2. For any ordered subset ® = {iy,..., i} C
{1,...,n} with 4; < --- < i3, define the linear map j, : H®* — H®" by js(a; ®
e ®ag) =b®---®b, with b;:=11if i ¢ & and b;, = a, for 1 < m < k; then
set Ag = jp 0 A¥ Ay := A% and Jp := Y wca (—1)n_‘\P|Aq,, 0y := €. The inverse
formula Ag = > ;e 0w also holds. We shall also use the shorthand notation dg := dyp ,
Op 1= 0f1,2,... 0y for ne N, . The following properties of the maps dp will be used:

(a) 0, = (idc —uoe)®n o A" for all n € Ny, where u: R — H is the unit map;

(b) the maps ¢, are coassociative, that is <idc®S R0 id(??(”‘l‘s)) 00, = Opir_1
for all n,/,s e N, 0 <s<mn-—1, and similarly in general for the maps dg ;

(c) da(ab) = D> Ay—oOr(a)dy(b) for all finite subset ® C N and all a,b € H;

(d) dg(ab —ba) = ZAUY:¢ (6a(a) 0y (b) — 8y (b) 6a(a)) for all ® #0 and a,be H.

ANY #0

3.3 Drinfeld’s algebra (Hhv)/. Using Drinfeld’s §o—maps of §3.2, we define

(M) = { e’ | s e (m)"vnenN}  (CHY). (31

Now I describe (7—[5\/)/ and its specializations at A =1 and A =0, in several steps.

Step I: A direct check shows that x, := hx, = a, € (Hﬁv),, for all n € N, . Indeed,
we have of course §y(X,) = €(X,) € B°Hp' and §1(X,) = X, — €(X,) € Bt Hp' . More-
over, 0(%n) = Yoy Knom ® Q™ (%:) = XLy S I (T )30 © P (x4) €

h? (Hhv ® ’Hhv> . Since in general d; = (55_1 ® id) 09 for all £ € N, we have

6ﬁ(in) - (56—1 X 1d) (52<)~(n)) - Z:Ln_:ll ;fn:l hk (n—r]g—l—l) 56—1(Xn—m) & Péf) (X*>

whence induction gives d,(%X,) € h* (Hhv)w for all £ € N, thus x,, € (Hhv)/, q.e.d.

Step II: Using property (c) in §3.2 one easily checks that (’Hhv)/ is a k[h]-subalgebra
of Hp' (see [Ga2-3], Proposition 3.5 for details). In particular, by Step I and the very
definitions this implies that (Hhv), contains Hyp, .
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Step III: Using property (d) in §3.2 one easily sees that (Hhv)/‘ is commutative

(cf. [Ga2-3], Theorem 3.8 for details): this means [a,b] =0 mod A (Hhv)/, that is [a,b] €
h(?—[hv)/ hence also h™'[a,b] € (Hhv)/, for all a, b € (Hhv)/. In particular, we get

[Xp, Xm] 1= B [Xn, Xm] = B X0, %] € (’Hhv)/ for all n, m € N, , whence iterating

(and recalling £, is generated by the x,,’s) we get X := hx € (’Hhv)/ for every x € L,,.
Hereafter we identify the free Lie algebra £, with its image via the natural embedding
L, — ULy =k{zn},en, ) — kA({xXn}pen,) = Hy' given by x, — x, (n €N,) .
Step IV: The previous step showed that, if we embed £, «— U(L,) — Hp’' via
Tn — %X, (n € N,) we find £, := hL, C (Hhv)/. Let <Z;> be the k[h]-subalgebra
of (’Hhv)/ generated by Z, : then <Zv,,> - (Hhv)/, because (Hhv), is a subalgebra. In
particular, if b, € H” is the image of any b € B, (cf. §1.1) we have Eb = hby € (”HEV)/.
Step V: Conversely to Step IV, we have <Z;> D (Hhv)/. In fact, let n € (Hﬁv)l;
then there are unique d € N, 1, € Hp' \ AHx  such that n = h9n, ; set also § := y
mod fi Hy' € Hhv/hHhV for all y € Hy'. As Hy' = k[B]({xn|n € N, }) there is
a unique h-adic expansion of 4, namely 7y = no + hni + -+ h¥ns = Y7 _ ¥,
with all 7, € k({x,|n € N, }) and no # 0. Then 7y = 7o := 5o mod h'Hy ', with
Ny = 7o € Hﬁ\/’ = U(L,) by Theorem 2.1. On the other hand, n € (Hhv)/ implies
®(d+1)

Sar1(n) € hitl (Hhv)®(d+1), whence dq.1(ny) = A= %q.1(n) € A (Hhv) so that
Od+1 (770) = 0; the latter implies that the degree 0(7) of 7 for the standard filtration of
U(L,) is at most d (cf. [Ga2-3], Lemma 4.2(d) for a proof). By the PBW theorem, (7))
is also the degree of 7y as a polynomial in the X;’s, hence also of 7y as a polynomial in the
xp’s (b € B,): then hingy € <Z;> C (’Hhv)/ (using Step II1), hence we find

nay = b (g by -+ BT ) == hing € (M)

Thus we can apply our argument again, with 7, instead of . Iterating we find 9(7x) < d+
k. whence Ry € (£,) (€ (Ha’)") forall k, thus n = S3_, h* i € (£,), qed,

An entirely similar analysis clearly works with K taking the role of Hj, with similar
results (mutatis mutandis). On the upshot, we get the following description:

Theorem 3.1. (a) With notation of Step III in §3.3 (and [a,c] :=ac— ca ), we have

) = (2 ) = ) (B}, / ({ B 5] 1 [0 ] [t} )

(b) (’Hhv)/ is a graded Hopf k[h]-subalgebra of Hy' , and H is naturally embedded into
(’H,;-LV), as a graded Hopf subalgebra via H —— (Hhv)/ , ap, — Xy, (forall n €N, ).
(c) (%hv)/ fo T (’Hhv)//h (Hhv)/ = F[Ggﬂ , where G¢» is an infinite dimensional
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connected Poisson algebraic group with cotangent Lie bialgebra isomorphic to L, (with
the graded Lie bialgebra structure of Theorem 2.1). Indeed, (’Hhv)/’ is the free Pois-

son (commutative) algebra over N, , generated by all the fcn|h:0 (n € N, ) with Hopf
structure given by (1.1) with X, instead of a.. Thus (’Hhv)/‘h_o is the polynomial al-
gebra k[{ By }beBJ generated by a set of indeterminates { By },cp in bijection with the
basis B, of L,, so Gp& = AkB” (a (pro)affine k—space) as algebraic varieties. Finally,
Floe) - ()]
mial algebras and th_e Hopf algebra grading inherited from (Hhv)/, respectively given by
d(gb) =1 and 8(&,) = Z,’;Zl n; for all b= [ [[Tn,, Tny)s Tnsls -], Tn,) € By .

(d) F[Qy] is naturally embedded into (’Hhv)/ o = F[G/;ﬂ as a graded Hopf subal-

.= F[Gﬁﬂ, Ap — <5<n mod h(?—[h\/)/) (for all

n € N, ); moreover, F[QU} freely generates F[Gﬁﬂ as a Poisson algebra. Thus there is an

>~ k[{ By }yep | bears the natural algebra grading d of polyno-
0 v

gebra via p: F[G,] —— (Hﬁv)/ e

algebraic group epimorphism . : Ggr — G, , that is G¢' is an extension of G, .

(e) Mapping (in mod h(?—[hv)/> — apn,  (for all n € N,,) gives a well-defined graded
Hopf algebra epimorphism m: F [Gﬁﬂ —» F [gy} . Thus there is an algebraic group mono-
morphism T, : G, — Gﬁj, that is G, is an algebraic subgroup of ng .

(f) The map p is a section of 7, hence . is a section of u. . Thus G¢. is a semidirect
product of algebraic groups, namely Gz. = G, x N, where N, := Ker (i) < G .

(9) The analogues of statements (a)—(f) hold with K instead of H , with X instead of
X foral X =L,,B,,N,,u, 7, N, , and with Glli*’ instead of Gr.

Proof. (a) This part follows directly from Step IV and Step V in §3.3.

(b) To show that (’Hhv)/ is a graded Hopf subalgebra we use its presentation in (a). But
first recall that, by Step II, ‘H embeds into (Hhv)/ via an embedding which is compatible
with the Hopf operations (it is a restriction of the identity on H(A)): then this will be a
Hopf algebra monomorphism, up to proving that (%hv)/ is a Hopf subalgebra (of Hp"' ).

Now, €3,v obviously restricts to give a counit for (’Hhv)/. Second, we show that
A((’Hhv)/> - (Hhv)/ ® (Hﬁv)/, so A restricts to a coproduct for (Hﬁv)/. Indeed, each

b € B, is a Lie monomial, say b = [[[...[Tn,s Tn,], Tngls- -], Tn,] for some k, ny, ...,
ni € N, , where k is its Lie degree: by induction on k we’ll prove A(bb) € (Hﬁv)/@) (Hhv)/
(with by :=hby = h[[[- .. [Xny s Xno)s Xng s - - - s Xny ] )-

If k=1 then b=z, for some n € N, . Then Bb:hxn:an and

~ n—1 . .
A(bb> =Aa,) =a,014+1@a,+ 3 a,_,n, Q™ ™ (a,) € HiloH C ("Hhv)/@) (’Hhv)/.

m=1

If k> 1 then b= [b",z,] for some n € N, and some b~ € B, expressed by a Lie
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monomial of degree k — 1. Then Bb =h[b™,x,] = [B_,xn} and

() = () = [36) ] = 1 35 ) 0] -

= 17 [ X(5P) @b s an @1+ 1@a, + Y0 anm © Q) | =
+ (5 :gl (h—l b3 | @b Q" (a) + By anm @by Q;};m(a*)])
where we used the standard >-notation for A(E‘) => (5-) B(_1) ® B(}) . By inductive

hypothesis we have B(_l), B(_z) € (Hhv)/; then since also a; € (Hhv)/ for all ¢ and since

(Hﬁv)/ is commutative modulo A we have

B By an | b [bgysan | AT B A | BT by Qi @0 | € (1Y)

for all n and (n—m) above: so the previous formula gives A(Bb) € (”Hhv)/@) (’Hhv)/ , q.e.d.
Finally, the antipode. Take the Lie monomial b = [[[... [Tn,, Tn,]s Tnsl,- -] Tn,] € By,

so by = hby = A[[[... [Xn1, Xns)s Xng)s - - |, Xn, ). We prove that S(by) € (H') by
induction on the degree k. If k =1 then b = z,, for some n, so b, = hx, = a, and

S(Eb) = S(a,) = —a, — Efn;ll an—m S(Qn ™(a)) € HEE C (Hﬁv)/, q.e.d.

If k> 1 then b=[b",z,] for some n € N, and some b~ € B, which is a Lie monomial
of degree k — 1. Then b, = h[b™,x,] = [g_,xn] =p! [g_,an} and so

S(by) = S([bxa]) = n71[S(@n), S(b7)| € n (1), ()] < ()

using the fact S(a,) = S(X,) = S(an) € (Hhv)/ (by the case k=1) along with the
inductive assumption S ( B—) € (Hhv)/ and the commutativity of (Hhv)/ modulo f.

(c) As a consequence of (a), the k—algebra (Hhv)/‘ __is a polynomial algebra, namely
(Hn')' T k[{ B tven] with B, :=by, mod h(H,') forall be B,. So (Hp')' o

is the algebra of regular functions F[I'] of some (affine) algebraic variety I"; as (’Hhv)/ is

a Hopf algebra the same is true for (’H,hv)/ . F[I'], so I' is an algebraic group; and
0

bracket {a|n=0,b|n=0 }_1: (a0 [,y
We compute the cotangent Lie bialgebra of I'. First, m, := Ker (€x(r]) = <{ﬁb}b63u)

since F[I'] = (’Hhv)/‘ is a specialization limit of (Hﬁv)/, it is endowed with the Poisson

which makes I" into a Poisson group too.

(the ideal generated by the 3;,’s) by construction, so mZ = ({ Bb, Loy } by . Therefore

bZGBu)
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the cotangent Lie bialgebra Q(F r ]) =m, / m2 as a k—vector space has basis {Bb} beB
where 3, := 8, mod m?2 for all b € B, . For its Lie bracket we have (cf. Remark 1.5)

[Bbl’gbg] = {Bblaﬁbz} mod me2 - (h_l[gb17gb2:| mod h(Hﬁv)/> mod m62 =
= (7R [by,, by,] modh (Hy')') mod mZ = (Aiby, 4, mod (Hy)') mod m? =

— (B[bl,bZ] mod h(?—[hv),) mod m? = B, b,] mod m2 = B[bl,bg] ,

thus the k-linear map ¥: £, — m, / mZ defined by b — Eb for all b € B, is a Lie
algebra isomorphism. As for the Lie cobracket, using the general identity § = A — A°P
mod (mZ ® F[I'] + F[I'l® m&) (written mod mZ for short) we get, for all n € N,,,
6(Ba,) = (A=A%)(8,,) modm2 = ((A—A) (%,) mod A((Hn')'@ (Hy")')) modm? =
= ((an/\l +1Aa, + Zm 1 @n—m Q%_m(a*)> mod h(?—[h ®Hﬁ)) odn/1;2 =
=S Be - AQE (B) mod m2 = 520 ST (") B AP (B)
= (Z:z_:i (n_T—H) B N Pv%”(ﬁm*)) mod me = 8:1 (6 + ) B /\an,g

—~

mod m2 =

because — among other things — one has pi¥ )(Bw*) € m?2 for all k> 1: therefore
8(B,,) = X0 +1) B, AB,, , V¥V meN,. (3.2)

Since L, is generated (as a Lie algebra) by the x,,’s, the last formula shows that the map
U: L, — m, / m2 given above is also an isomorphism of Lie bialgebras, q.e.d.

Finally, the statements about gradings of (Hhv)/‘ should be trivially clear.

(d) The part about Hopf algebras is a direct consequence of (a) and (b), noting that the
X, s commute modulo A (’Hhv)/ , since (’Hhv)/‘h . is commutative. Taking spectra (i.e. sets
of characters of each Hopf algebras) we get an aléebraic group morphism j, : G, —— G, ,
which in fact is onto because, as these algebras are polynomial, each character of F' [g,,}
does extend to a character of F [Ggﬂ , so the former arises from restriction of the latter.

(e) Due to the explicit description of F[Gz;| coming from (a) and (b), mapping
<)~<n mod h (Hhv)/> — a, (for all n € N,) clearly yields a Hopf algebra epimor-
phism 7: F [Ggﬂ — F [(]U} . Taking spectra gives an algebraic group monomorphism
Ty: G, —— ng as required.

(f) The map p is a section of 7 by construction. Then clearly 7, is a section of pu. ,
which implies G¢* = G, x N,, (with N, := Ker (u.) < G¢*) by general theory.

(9) This ought to be clear from the whole discussion, for all arguments apply again —
mutatis mutandis — when starting with IC instead of H ; details are left to the reader. [
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Remark: Roughly speaking, we can say that the extension F [Q,,] — F [Ggﬂ is
performed simply by adding to F’ [Qy} a free Poisson structure, which happens to be com-
patible with the Hopf structure. Then the Poisson bracket starting from the “elementary”
coordinates a,, (for n € N,) freely generates new coordinates {an,, an, }, {{an,, an,}, an, },
etc., thus enlarging F[Qy} and generating F' [Ggﬂ. At the group level, this means that
G, freely Poisson-generates the Poisson group G¢: new l-parameter subgroups, build
up in a Poisson-free manner from those attached to the a,’s, are freely “pasted” to G, ,
expanding it and building up G . Then the epimorphism G/ Eaid G, is just a forget-
ful map: it kills the new 1-parameter subgroups and is injective (hence an isomorphism)
on the subgroup generated by the old ones. On the other hand, definitions imply that
FlGe] [ ({F[Ge], FGE:)}) = F[G,) , and with this identification F[Gel] —— F[G,]
is just the canonical map, which mods out all Poisson brakets { f1, fo}, for fi, fo € F [Ggﬂ .

3.4 Specialization limits. So far, we have already pointed out (by Proposition 2.1,
Theorem 2.1, Theorem 3.1(c)) the following specialization limits of H;" and (’Hhv)/:

H,Y 2y Hy =% U, , (an)/ =0, F[G.)]
as graded Hopf k—algebras, with some (co-)Poisson structures in the last two cases. As for

the specialization limit of (Hhv)/ at h =1, Theorem 3.1 implies that it is H . Indeed, by
Theorem 3.1(b) H embeds into (’Hhv)/ via a, — X, (for all n € N,): then

[an, ap] = [Xn,Xm] = h[xz,\)—c/m] = [x:,\;n] mod (h—1) (Hhv)/ (Vn,meN,)
whence, due to the presentation of (Hhv)/ by generators and relations in Theorem 3.1(a),

)| = ) [ (M) = k(R Ras Rar) = KL )

(where € := ¢ mod (h—1) (Hhv)/) as k—algebras, and the Hopf structure is exactly the
one of ‘H because it is given by the like formulas on generators. In a nutshell, we have
(Hﬁv)/ D29 as Hopf k—algebras. This completes the top part of the diagram (%K) in
the Introduction, for H = H (:=H,), because H" := 7-[/ Npen J™ = H by §2.2: namely,
F|Gg)]

0+h—1 1+—h—0

U(L,) > H <
thv ('an)’

§ 4 The Rees deformation Hj .

4.1 The goal. The crystal duality principle (cf. [Ga2], [Ga4]) yields also a recipe
to produce a l-parameter deformation #j, of H which is a quantized function algebra

(QFA in the sequel): namely, H; is a Hopf k[h]-algebra such that Hj s H and

Hi o F[G4], the function algebra of a connected algebraic Poisson group G, . Thus
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Hy is a quantization of F[G,], and the quantum symmetry H is a deformation of the
classical Poisson symmetry F[G]. By definition H} is the Rees algebra associated to a
distinguished increasing Hopf algebra filtration of H, and F'[G] is simply the graded Hopf
algebra associated to this filtration. The purpose of this section is to describe explicitly
Hy and its semiclassical limit F[G 1], hence also G itself. This will also provide a direct,
independent proof of all the above mentioned results about H; and F[G ] themselves.

4.2 The Rees algebra Hj . Let’s consider Drinfeld’s d,—maps, as in §3.2, for the
Hopf algebra H. Using them, we define the do—filtration D := {D”}n N of H by
D,, = Ker(dp41), for all n € N. It is easy to show (cf. [Gad]) that D is a Hopf algebra
filtration of H; moreover, since H is graded connected, we have H = (J,,cy Dn =: H .
We define the Rees algebra associated to D as

My = k[B]- S W'D, = S kBT -D, (€ Hp:=H[A]) . (4.1)

A trivial check shows that the following intrinsic characterization (inside Hjy) also holds:
Hi = {n€Hn| du(n) €"H", YneN}  (CHi).

We shall describe Hy, explicitly, and we’ll compute its specialization at A = 0 and at
h = 1: in particular we’ll show that it is really a QFA and a deformation of H , as claimed.

By (4.1), all we need is to compute the filtration D = {D”}neN ; the idea is to describe
it in combinatorial terms, based on the non-commutative polynomial nature of H .

4.3 Gradings and filtrations: Let 0_ be the unique Lie algebra grading of L,
given by 0_(x,) :=n—140d,1 (for all n € N, ). Let also d be the standard Lie
algebra grading associated with the central lower series of £, , i.e. the one defined by
d([- - [[#s1s Tsy), - - - T5,]) = k — 1 on any Lie monomial of £, . As both d_ and d are Lie
algebra gradings, (0_ —d) is a Lie algebra grading too. Let {Fn}n N be the Lie algebra fil-
tration associated with (0_ —d); then the down-shifted filtration T := { T, = F,_1 }nGN
is again a Lie algebra filtration of £, . There is a unique algebra filtration on U(L,)
extending T': we denote it © = {@n}n oy and set also ©_; := {0}. Finally, for each
y € U(Ly) \ {0} there is a unique 7(y) € N with y € O, \ Or()—1; in particular
7(b) = 0_(b) — d(b), T(bb') =7(b) + 7(V') and 7([b,b'])=7(b) +7(b') — 1 for bV’ €B,.

We can explicitly describe ©. Indeed, let us fix any total order < on the basis B, of §1.1:
then X := {l_)::bl---bk‘ kEN, by, .. ,by € By, b1 < --- jbk} is a k- basis of U(L,),
by the PBW theorem. It follows that @ induces a set-theoretic filtration X = {Xn}n N
of X with A, :=XnN6O,, = {l_)::b1~~bk‘ keN, by,...,bp €B,, by 2+ b, 7(b) =

T(b1) + -+ 7(bk) <n } , and also that ©,, = Span (Xn) for all n € N.
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Let us define ap := a; and «, := a,, —a;” for all n € N, \ {1}. This “change of
variables” — which switch from the a,,’s to their differentials, in a sense — is the key to
achieve a complete description of D, via a close comparison between H and U(L, ).

By definition ‘H = H, is the free associative algebra over {a, } nen, , hence (by definition
of the a’s) also over {ay,}nen,; so we have an algebra isomorphism @: He U(Ly)
given by a, — z, (Vn €N, ). Via ® we pull back all data and results about gradings,
filtrations, PBW bases and so on mentioned above for U(L,); in particular we set ay, :=
Q(xp) = ap, - -y, (b1,...,0r € By), Ap = @(X,) (n €N), A:=Q(X) =,cyAn-
For gradings on ‘H we stick to the like notation, i.e. 0_, d and 7, and similarly for & .

Finally, for all a € H\ {0} we set x(a):=k iff a € Dy \ Dx_1 (with D_; :={0}).

Our goal is to prove an identity of filtrations, namely D = @, or equivalently x = 7. In
fact, this would give to the Hopf filtration D, which is defined intrinsically in Hopf algebraic
terms, an explicit combinatorial description, namely the one of © explained above.

Lemma 4.1. Q¢(a,) € 6;\ 60;_1, Z! () == (Qf(a*) - (ﬁj{t) af) €61 (LteNt>1).

Proof. When t =1 definitions give Q{(a,) = ({+1)a; € ©1 andso Z{(a.) = ({+1)a; —
(“1'1) a; =0€ O, forall £ € N. Similarly, when ¢ =0 we have Q%(a.) = a; € ©; and
so Z0(a) = a; — G) a)' = a; € ©;_1 (by definition), for all ¢t € N .
When ¢ >0 and t > 1, we can prove the claim using two independent methods.
First method: The very definitions imply that the following recurrence formula holds:

Q(a,) = ffl(a*)—kz ~la,) a, +ay V (>1,t>2.
From this formula and from the identities a; = a1, a5 = a5 + a1® (s € Ny), we argue
Zien) = Qian) — (‘Pard = Q7 a) + DI e ar + an — (T ar =
_ Zg_l(a*) n (e 1+t)a i Z (th i(a*) i (6—11—2—3) alt—s> a, +a, — (@J:t) al =
— 7' (a,) + Zt 1Ze 1(a ) (o +ar®) + Z (e 1+t Voo, + i+
+ Z (f 1+t S) alt sa1 + al + (Z—i-{-t) alt o (ﬁ—i—t) alt —
_ Zé L(a,) + Zt lZé 1a,) (Oés+0418) 4 Z (e l—l—t s) al o, + (Zizo(ezir)_

_(é-;t))al Yoy = Zﬁ a )+Zt 1Z£ 1( )(a8+a1)+z (é 1+t S)Oéltisas‘f’at

because of the classical identity (pgt) = Zf«:o (%:LT) . Then induction upon ¢ and the
very definitions allow to argue that all summands in the final sum belong to ©;_1, hence
Z{ () € Oy as well. Finally, this implies Q%(a.) = Z{ () + (eJtrt) al €6\ 6.

Second method:  Qf(a.) := S0, (“1") PV (an) = S0, (TN X

by definition; then expanding the a;’s (for j > 1) as above we find that Qf(a.) =
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Q! (a* + al*) is a linear combination of monomials a;) -,y with ji,...,js > 0,
i+ +Js =t, ag, € {ajr,aljf} for all ». Let (Q_ be the linear combination of
those monomials such that (), a(j,), - - =O‘(js)) # (alj av?, ... ,al'S) ; the remaining
monomials enjoy o, - @, -+ o, = a7 = | so their hnear combination giving
Q. = Q%a,) — Q_ is a multiple of i, say Q, = N a1*. Now we compute this N .

By construction, N is nothing but N = Q¢(1.) = Q%(1,1,...,1,...) where the latter
is the value of Q¢ when all indeterminates are set equal to 1; thus we compute Q¢(1.,).

Recall that the Q{’s enter in the definition of the coproduct of F[G4]: the latter is
dual to the (composition) product of series in G4, thus if {a, }nen, and {b,}nen, are two
countable sets of commutative indeterminates then

<a:+ anw ”H) (x—f— T bma m+1> =

n+1
= ((x + :;:1 b :Cm+l> + :Lro? <x + = bm, xm+1> ) =z —I—Z;r:{) cp 2P

with ¢, = Q% (bs) + Z’;Zl ar - Qp_,.(bs) (cf. §1.1). Specializing a, =1 and a, =0 for all
r# 0 we get ¢ = QY (by) + Qf (b)) = bigr + Qf(by) . In particular setting b, = 1, we
have that 1+ Q%(1,) is the coefficient c,y; of ! in the series

(2 +2") o ($+ 1xm+1> = (z+aNo(z-(1—2)7") =
_ x-(l—x)_1+(w-(1—93)_1>£+1 Zm Oxm—l—l I xe+1(zm o >£+1 —

S DI RS () e = R S (14 () e

therefore 1+ Qf(1,) = cpyy = 1+ (”t), whence Qf(1,) = (zf). As an alternative
approach, one can prove that Qt( ¥) = (‘q;ft) by induction using the recurrence formula
Ql(x,) = Q1 (x,) + ZS L Qi (%) x4 +x; and the identity (gf) =3, (6711) .
The outcome is N = Q%(1,) = (Ht) (for all t,£), thus Q%(a,)— (Ht) = Q_-+Q+—
(é}ft) a;, = Q_+Na;— (ngt) a; = Q_ . Now, by definition 7(¢e;,) = j»—1 and T(al ’“) =
Jr - Therefore if ay; ) € {ajr,aljr} (for all 7 =1,...,s) and (ej,), Q(jp)s-- -5 Q) 7
(aljl,a1j2,...,a1j5), then T(a(jl)"-a(js)) <n+--+js—1=1t—1. Then by
construction 7(Q_) < t—1, whence, since Zf () := Q(a.)— (Ht) a; = QQ_, we get also
¢

i
T(Z{ () <t—1, ie. Zf(a.) € Or_1, s0 Qi(ay) = Z; (o) + (eJtrt) a' €0,\0,_,. O

Proposition 4.1. © is a Hopf algebra filtration of H .

Proof. By construction (cf. §4.3) @ is an algebra filtration; so to check it is Hopf too
we are left only to show that (x)A(6,) C > ., 60, ®6, (forall n € N), for then
S(©,) C 6, (forall n) will follow from that by recurrence (and Hopf algebra axioms).
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By definition ©g = k- 1,,; then A(1l,) = 1,, ® 1,, proves () for n =0. For n =1,
by definition ©; is the direct sum of @y with the (free) Lie (sub)algebra (of H ) generated
by {041, ag}. Since A(al) = ® 1 + 1 ® o and A(ag) = ® 1 + 1 X and

A([%y]) = [A(m),A(y)} = Z(x),(y)([ﬂﬁ(l)yy(l)] @ xT()Y2) T T(1)Ya) @ [95(2)7y(2)])
(for all z,y € H) we argue (x) for n = 1 too. Moreover, for every n > 1 (setting
Qb(a,) =1=ay for short) we have A(a,) = A(a,) — A( M) =Y car®Qk_ (a.) —
S (Darf@am™F =37 o @ QF_(ay) + 310, "ok @ ZF (), and therefore
Alan) € )2, s—p_1 Or ® Oy thanks to Lemma 4.1 (and to oy, € O,y for m >1).

Finally, as A([z,y]) = [A(2), A®)] =2 ). ([20): ¥0) @7 @) y2) T2 1) ¥(1) @2 (2), Y(2)])
and similarly A(zy) = A(z)A(y) = Z(m),(y) Ty ® T(2)Y2) (for z,y € H), we have
that A does not increase (0— —d): as O is exactly the (algebra) filtration induced by
(0— —d), it is a Hopf algebra filtration as well. [

Lemma 4.2. (notation of §4.3)
(a) k(a)<0(a) for every a € H\ {0} which is O(a)-homogeneous.
(b) k(ad)<k(a)+r(d) and k([a,d']) < k(a)+r(a’) forall a,a’ € H\{0}.
(c) k(o) =0-(a )—T(an) for all ne N, .
(d) k ([ar,as ) =0_(a,) +0_(as) — 1 =7([ar,a]) forall r, s €N, with r#s.
(e) k(o) =0_(ap) —d(ay)+1=71(ctp) for every be B, .
(f) k(ap,ap, - o,) =T(p, 0, -+ - p,) for all by,ba,... by € B, .
(9) w([ow,,an,]) =k (o) + K (ay,) — 1 =7(lap,,ou,]), forall by,bs € B, .

Proof. (a) Let a € H\ {0} be d(a)-homogeneous. Since H is graded, we have 9(d;(a)) =
O(a) for all £; moreover, §y(a) € J®¢ (with J := Ker(ey)) by definition, and 9(y) > 0
for each 0—homogeneous y € J\ {0} . Then d;(a) =0 for all £ > d(a), whence the claim.
(b) Let a € Dy,, b € D,,: then ab € D,,y, by property (¢) in §3.2. Similarly, we
have [a,b] € Dyyyn—1 < m+n —1 because of property (d) in §3.2. The claim follows.
(c) By part (a) we have k(a,) < d(a,) = n. Moreover by definition 52(an) =
>y ak®Qn p(as), thus 0, (a,) = (5n_1®(51)((52(an)) =3 LS 1(ak)®(51( v k(a*))
by coassociativity. Since d¢(a,,) = 0 for £ > m, Q?_l(a*) =na; and d;1(a;) = a;, we
have d,(a,) = 6n—1(a,—1) ® (nay), thus by induction d,(a,) =n!a;®" (#0), whence
k(a,) =n. But also d,(a;”) = n!a;®". Thus i, (a,) = d.(a,) — on(a™) =0 for n > 1.
Clearly k(a) =1. For the general case, for all ¢ > 2 we have

Si—1(ar) = (6p-2®61)(02(ar)) = S} de—a(an) @ 01 (QF_,_p(as))

which by the previous analysis gives dy_1(ay) = dr—2(ar—2) ® ((E —1)as + (451) a12) +
do—o(ap_1)®@fla; = (£L—1)!- a®-2) (8.2 + % . a12) + 0-dp_2(ap—1) ® ay . Iterating
we get, for all £> 2 (with (;1) := 0, and changing indices)

Or-1(ae) = Zfril mg_jlul Y @ (a2 + 25+ - a®) ® a,®¢-1-m)
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On the other hand, we have also dy_1 (alg) = 24_1 %! ca 1) g a2 @a,@¢-1-m)

m=1
Therefore, for 6,—1(a,) = dp—1(an) — dn—1(a;™) (for all n € N,, n > 2) the outcome is

On—1(a,) = an_:11 mﬁl a2 g (a2 — a?) ® a,O(n—1-m) _

_ n—1 n! ®(m—1 ®(n—1—m
_Zmzl m+1'0‘1( )®a2®a1( )

(4.2)

Y

in particular d,,_1(aw,) # 0, whence a,, € D,,_2 and so k(a,) =n—1, q.e.d.
(d) Let r#1#s. From (b)—(c) we get (o, o)) < k(o) + k(as) =r+s—2. In
addition, we prove that 5T+S_3([ar, as]) # 0, yielding (d). Property (d) in §3.2 gives

5r+s—3([ar7as]) - Z [5A(ar)75Y(as)] - Z [] (5r—1(ar))7jY(5s—1(as>)] .

AUY={1,...,r+s-3} AUY={1,...,r+5—3}
ANY #0 ANY #0, |Al=r—1,|Y|=s—1

Using (4.2) in the form d,_1(a;) = an_zll % cay@a®??) Loy ®n, (for some ny € H),
and counting how many A’s and Y’s exist with 1 € A and {1,2} C Y, and — conversely
— how many of them exist with {1,2} C A and 1 €Y, we argue

6r+573([ar7 as]) = Cr,s'[a27 a1]®a2®a1®(r+575) + o1 ®p1 + a®pa + [ag, a1]®a1 ®¢

for some @1,y € HET 5= o) € HO+5-5) " and with

o= B O 55 (1) = 2 A6+ 0.

In particular 5r+5_3([ar,as]) = Crs o2, 00] ® @ ® 2578 4 Lit., where “Li.t.”
stands for some further terms which are linearly independent of [aa, 1] ® aro @ @7 +5—5)
and ¢, s # 0. Then 5r+5,3([ar,as]) #0, qg.e.d.

Finally, if » > 1 = s (and similarly if » =1 < s) things are simpler. Indeed, again (b)
and (c) together give k([ a1]) < K(e) + k(a1) = (r —1) +1=r, and we prove that
6r—1([a,, a1]) # 0. Like before, property (d) in §3.2 gives (since &;(o1) = ay)

6r—1(lor, a]) = Z [6a(cx,), 0y (an)] = Til [5T_1(ar),1®(k:—1)®a1®1®(r—1—k) _

k=1
AUY ={1,2,....,r—1}
ANY #£0, [A|l=r—1, |Y|=1

r—1 rl _ 1
= > m+ 1 ca® ™Y @ [, @] ® a®TT™ £
m=1

(e) We perform induction upon d(b): the case d(b) < 2 is dealt with in parts (¢) and
(d), thus we assume d(b) > 2, so b= [b/,ﬂjg] for some ¢ € N, and some b € B, with
d(t') = d(b)—1; then 7(ap) = 7([ow, ag]) = () +7(ag) — 1, directly from definitions.
Moreover 7(ay) = k (o) by part (¢), and 7(ay ) = k() by inductive assumption.
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From (b) we have k(aw) = k([aw, o)) < k(o) + k(ag) — 1 = 7(ay) + T(ay) — 1 =
(o), 1. e. k(ap) < 7(aw); we must prove the converse, for which it is enough to show

Or(ap) () = o[- [[ar, ), s],..., 0] @ as ® a®(e0)=2) 4 1t (4.3)

-~

d(b)+1

for some ¢, € k\ {0}, where “Li.t.” means the same as before.
Since 7T(ap) = T([ab/, ag]) = 1(ap ) + ¢ — 2, using property (d) in §3.2 we get

5T(ab)(ab) = 6T(ab)([ab’7af]) = z 5A(ab’)75Y(a€)} =

ANY #0)

— Z j (6T(ab,)(ab/)),jy(56—1(‘1@))] =

AUY={1,...,7(ap)} , ANY #D [
[A|=T(or ), |Y|=£—1
= Z []A (Cb’ [« [511, asl,. .. ,a%]®a2®a1®(7(ab’)_2)), Jy (% 062®061®(€_2))} + Li.t. =

AUY={1,...,7(axp)}, ANY #D d(b‘—i—l
Al=r(eu), Y]=t-1
= Cp - %' . (T(?i)2_2) . [[ . [[(12, al], 042], c. ,ag], (8 %)) } e HRSY (11®(T(ab)72) + Li.t.

d(b)+1+1=d(b)+1

(using induction about cuy); this proves (4.3) with ¢, = ¢y - 5 - <T(‘Zj)2*2> # 0.

Thus (4.3) holds, yielding 0, (q,)(cs) # 0, hence k(ay) > 7(aw), q.e.d.

(f) The case ¢ =1 is proved by part (e), so we can assume ¢ > 1. By part (b) and the
case £ =1 we have k (o, ap, -+ - p,) < Zle k(o) = Zle T(a,) = T(ap, 0y - - O, ;
so we must only prove the converse inequality. We begin with ¢ =2 and d(b) = d(b2) =0,
so oy, = o, o, = g, for some r, s €N, .

If r=s=1 then k(a,) = k(as) = k(o) =1, by part (¢). Then

(52(a1a1) :(52(&1&1) = (id—€)®2A(a]_2) = 2.a1®a1 = 2.a1®a1 §£ 0

so that k(g o) > 2 = k(o) + k(a1), hence k(g o) = k() + k(1) , q.ed.

If »>1=s (and similarly if r =1 < s) then s(a,) =7—1, k(as) = k(1) =1, by
part (c). Then property (d) in §3.2 gives
or(ayar) = -

r r!
AUY ={1,...,r} oa(er) dy(en) = Zm:l Zk<m T <
|Al=r—1, |Y|=1
% (a1®(k—1) R1® a1®(m—1—k) R ® a1®(r—1—m)) % (1®(k—1) ® ay ® 1®(r—k)) n

m=1k>m

(a1®(m—1)®a2®a1®(k—1—m)®1®a1®(r—1—k)) > <1®(k—1)®a1®1®(r—k)) _

T e D G aym e £
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so that k(a,ay) >r = k(a,)+ k(ay), hence k(o ay) = k(a,) + k(ay), qed.
Finally let r,s > 1 (and r # s). Then k(o) =7 —1, K(as) = s—1, by part (¢);
then property (d) in §3.2 gives

57”4’872 (ar as) - Z 5A(ar) ' 6Y(as> - Z jA (57“71(057")) ' jY (5571(0&9)) .
AUY={1,...,r+s—2} AUY={1,...,r+s—2}
[A|l=r—1, |Y|=s—1 [A|l=r—1,|Y|=s—1

Using (4.2) in the form 0;_1(a;) = an_:ll %’ cay @ a®t2) Lo @, (for some 1 € H

and ¢ € {r,s}) and counting how many A’s and Y’s exist with 1 € A and 2 € Y and
viceversa — actually, it is a matter of counting (r — 2, s — 2)-shuffles — we argue

6T+S—2 (ar as) = €rs Q2 X oy @ a1®(7“—|—s—4) + o @

forsome ¢ € HEH D with e, = 54 (755 + (1759) = - (759 £0.

In particular &, 4s—2(q, as) = €75 A2 QA @ a0 ts=4) 4 it where “Li.t.” stands
again for some further terms which are linearly independent of a @ ap ® a1®(" =% and
ers #0. Then 6,45 2(, as) #0, so k(ay0) >71+s—2=r(a,)+rlar), qed.

Now let again ¢ = 2 but d(b1),d(b2) > 0. Set k; := k(ap,) for i = 1,2. Applying
(4.3) to b="0; and b= by (and reminding 7 = k) gives

5H1+H2(abl ab2) = E 5A(ab1)5y(ab2) = Z jA((Sfﬁ(abl)) jY(5l€2<ab2)) =

AUY ={1,...;k1+K2} AUY ={1,..., Ki1+kK2}
[Al=k1, |Y|=kKa

= > jA(Cbl : ['”H\Cxlaa2]aa2]7'-'aa2/] ® g ® a® "1 4 1-1'-75-) X

ff (e )1
X gy (coy [+ ] [91,042], agl,... 0] ® ay @ a,®" 272 4 Lit) =
d(bg)+1
=2 cblcbZ(”1:1“f2_4)-[- e 2 1o 2] FN's TN (3] [ER [ S s 25 IR o 2 ]®a2®2®a1®(“1+“2_4)+ Li.t.
d(b1)+1 d(b2)+1
which proves the claim for ¢ = 2. In addition, we can take this last result as the basis of
induction (on ¢) to prove the following: for all b:= (by,...,bs) € B,’, one has
Ol (HleabJ = Cp G&il [ '[[?41,(112],0-’2],--~,a%])®a2®€® a®UE=20 4 it (4.4)
d(by)+1

for some ¢, € k\{0}, with |k| := Zle ki and k; == k(ay,) (i=1,...,¢). The induction
step, from £ to (¢ + 1), amounts to compute (with r¢41 := k(aw,,,))

5|ﬁ|+m+1 (abl T Oy abz+1) = > on(ap, -+ au,) 5Y(abe+1) -
AUY:{17.‘.,|E|+K)K+1}

= > JA (5|£| (o, - ‘abe)) Jy (5W+1 <ab£+1)) =

AUY ={1,...,|5|+ret1}
[Al=|g], |Y|=Ket1
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B 2 JA CQ'<®Z€=1 ["'[[\011,042],042],...,a2]>®a2®5®a1®(|ﬁ|—”) +1.1’.t.>><
AUY ={1,....|5|+resr1} ~
|Al=|x], IYT:njﬁl d(b;)+1

X Jy (Cbe+1 [ [?41,02]702]7 - ,a%] ® oy ® oy®re = 4 1~i-t~> -
d(berl)-i'l
= CyCopy - ((+1) ('ﬁ'“fgf__fg(””) : <®f:1 [+ [la, o], s, 7042]>®
d(bi) 11

@[ [[on, g, ], . .., 00| @ @D @ q@UElFren=2000)) 4 5 ¢

d(bey1)+1

which proves (4.4) for (b,ber1) with ¢ p,,,) = b oy - (€ + 1)<‘ﬁ|+'€|’31_j|1__22£(£+1)> # 0.
Finally, (4.4) yields d| (s, - -aw,) # 0, so k(ew, -+~ ow,) > k(ay, ) + - ot k(ow,), q.e.d.

(g9) Part (d) proves the claim for d(b;) = d(b2) = 0, that is by,bs € {zp}, - More-
over, when by = z, € {Tm},,cy, We can replicate the proof of part (d) to show that
k([aw,, an,]) = &([aw,, a,]) = 0-([aw,, o)) — d([ow,, a,]) 1 but the latter is exactly
7([aw,, ap,]) , q.e.d. Everything is similar if by =z, € {@m},,cn, -

Now let b1,b2 € B, \{zn},cy, - Then (b) gives k([ow,, ow,]) < K (ap,) + k(o) —1 =
7([aw,, ow,]). Applying (4.3) to b=b; and b= by we get, for k; := r(aw,) (i=1,2)

5I€1+H2—1([ab17abz]) = Z [6A(ab1)’5y(ab2)} -

AUY:{I,...,KLl-ﬁ-I{Q—l}
ANY #)
= > [jA(Cbl'["'Hflzval];az],--.,a%]®a2®a1®(”1_2) + l.j.t.)x

AUY:{].,...,I{l-f—Hg} ~
|Al=k1, |Y|=k2 d(bi)+1

X jY(Cb2 : ["'[[92,041]702],---,042] ®ay @ a®r272 4 1.1'.15.)] =

d(ba)+1

= 2¢cp, 0, (L2 [ [, ] [ [, as [[@an® P @a? T L,

d(b5+1 d(b2)+1

(note that d(b;) > 1 because b; & {z, |n € N, } for i =1,2). In particular this means
Orrtra—1 ([, an,]) # 0, thus &([ap,,on,]) > k(o) + K (ap,) — 1 = 7([aw,, a,]) . O

Lemma 4.3. Let V be a k—vector space, and 1 € Homk(V,V AV). Let L(V) be the
free Lie algebra over V', and 4, € Hom]k([,(V), L(V) /\L’(V)) the unique extension of
from'V to L(V) by derivations, i.e. such that ¢d£‘v =1 and @bdg([x,y]) = [:Jc®1+1®a:,
Varc ()] + [Yac(2), y@14+10y | = 244c(y) —y-bac(z) in the L(V)-module LV)ANL(V),
Va,y € L(V). Let K :=Ker(¢): then Ker (varz) = L(K), the free Lie algebra over K .

Proof. Standard, by universal arguments (for a direct proof see [Ga2], Lemma 10.15). O
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Lemma 4.4. The Lie cobracket § of U(L,) preserves 7. That is, for each ¥ € U(L,) in
the expansion 63(0) =32 4, cpCo, b, O, @, (w.r.t. the basis BOB , where B is a PBW
basis as in §1.1 w.r.t. some total order of B, ) we have (B )—I—T(i) ) = ’7’( ) for some b,
b, with Ch b, #0, so 7(6(9)) :=max {7(by) + 7(by) | v, b, 0} =7(9) if 6(9) #0.

Proof. 1t follows from Proposition 4.1 that 7(6(0)) < 7(9); so §: U(L,) — U(L,)®? is
a morphism of filtered algebras, hence it naturally induces a morphism of graded algebras
0: Go(U(L))) —— GQ(U(EV))®2. Thus proving the claim is equivalent to showing that
Ker (3) = Gonker®s) (Ker (5)) —: Ker(0), the latter being embedded into GQ(U(ﬁy)) .
By construction, 7(zy—yz) = 7([z,y]) < 7(x)+7(y) for z,y € U(L,), so Ge(U(L))
is commutative: indeed, it is clearly isomorphic — as an algebra — to S(V,,), the symmetric
algebra over V,, . Moreover, § acts as a derivation, that is d(zy) = d(z) A(y) + A(x) §(y)
(forall ,y € U(L,) ), thus the same holds for § too. Like in Lemma 4.3, since G (U(L,))
is generated by Geng,(L£,) =: £, it follows that Ker (5) is the free (associative

sub)algebra over Ker (3 ‘Z) , in short Ker (5) = <Ker (5 ‘E>> . Now, by definition
§(zn) = ?:_11 (+1)xgAzp—p (cf. Theorem 2.1) is 7—homogeneous, of 7—degree equal to
7(x,) =n—1. As § also enjoys §([z,y]) = [z@1+1®z,(y)] + [6(z),y@1+1@y] (for z,
y € L, ) we have that (5|£V is even 7—homogeneous, i.e. such that T(é(z)) =7(2), for any
7-homogeneous z € £, such that d(z) # 0; this i
enjoys o |E(5) =0 <= 6(09) =0 for any ¥ € L,, whence Ker (5 |£—V> = Ker(

On the upshot we get Ker (3) = <Ker (3 ‘E)> = <Ker (5|£u) > = m , qed. O

b

Proposition 4.2. D=0, that is D, =6,, forall n € N, or kK = 7. Therefore, given
any total order < in B, , the set A<, = AN6,, = AND, of ordered monomials

-,kaBV7 bljjbk’7 T(Z—))Sn}

A<y = {abzabl---a
is a k—basis of D,,, and A, := (.Agn mod Dn_l) is a k-basis of Dn/Dn_l (YVneN).
Proof. Both claims about the A<,,’s and A,,’s are equivalent to D = @ . Also, A,, := (Agn
mod Dn—l) = (.Agn \ Agn_1 mod Dn—l) y with .Agn \ Agn_1 = {ab eA | T(l_)) =N } .
By Lemma 4.2(f) we have A<, = A6, CAND, C D, ; since A is a basis, A<, is
linearly independent and is a k—basis of ©,, (by definition): so @,, C D,, for all n € N.
n =0: By definition Dy := Ker(d1) =k - 1,, =: Oy, spanned by A<y = {1, }, q.e.d.
n=1: Let ¥ € D; := Ker(62). Let B be a PBW-basis of Hp' = U(L,) as in
Lemma 4.4; expanding n" w.r.t. A we have n' = > ooy = > cpcpap. Then
=0 =2 b)<1 % =2 4)>1 0w € D1, since ay € A; €61 € Dy for 7(b) <1.
Now, a1 :=a; and agz:=a,—a®*="h (Xs + hs’lxls) for all s € N, \ {1} yield

n = Zbelﬂ% CpQp = ZbeB hg(b)CQ(XQ-l-hXQ) S Hﬁv
7(b)>1 7(b)>1
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for some Y, € Hp' @ hereafter we set g(b) := k for each b="b;---by € B (i.e. g(b) is the
degree of b as a monomial in the b;’s). If n # 0, let gg := min { g(b) ‘ T(b)>1,¢, #0 } ;
then go >0, ny :=h 9% ncHy' \ hHy' and

04 70 = Y a5 = Y oz € Hhv/h’HhV = U(L,).

g(b)=go g(b)=go

Now d2(n) = 0 yields 82(7+) = 0, thus D g(b)=go CbTb = T+ € P(U(L,)) = Ly;
therefore all PBW monomials occurring in the last sum do belong to B, (and go = 1).
In addition, d(n) = 0 also implies d2(n4) = 0 which yields also 6(74) = 0 for the
Lie cobracket 0 of £, arising as semiclassical limit of Ay;,v (see Theorem 2.1); therefore
M+ = D pen, CbTp is an element of £, killed by the Lie cobracket 4, i.e. 73 € Ker(d).
Now we apply Lemma 4.3 to V =V, , L(V) = L(V,) =: L, and ¢ = 5‘% , so that

Yae = 0. By the formulas for ¢ in Theorem 2.1 we get K := Ker () = Ker (5“/ ) =

Span ({z1,z2}), hence L(K) = L(Span ({z1,22})) = Span ({ zy|b € By;7(b) =1 }> )
thus eventually (via Theorem 2.1) Ker (§) = £L(K) = Span ({zy|b€ B,; 7(b) =1}).

As T+ € Ker(6) = Span ({ zy |b € By, ; 7(b) = 1}), we have 73 = b By r(b)=1Cb Tb;
but ¢, = 0 whenever 7(b) < 1, by construction of n: thus 77y = 0, a contradiction. The
outcome is n = 0, whence finally ' € ©1, q.e.d.

n > 1: We must show that D,, = @,,, while assuming by induction that D,, = ©@,,, for
all m<n. Let n =3, cgcpap € Dy; then 7(n) =max {7(b)|c, #0}. If 62(n) =0
then n € D; = @1 by the previous analysis, and we’re done. Otherwise, d2(n) # 0 and
7(d2(n)) = 7(n) by Lemma 4.4. On the other hand, since D is a Hopf algebra filtration
we have d5(n) € ZHS:H D, ® D, = ZHs:n O, ® O, thanks to the induction; but then

T,S>0 r73>0

7(2(n)) < n, by definition of 7. Thus 7(n) = 7(d2(n)) < n, which means n € 0,. O

Theorem 4.1. For any b € B, set oy :=h*®) oy, =h™®) oy, .
(a) The set of ordered monomials

Acn = {agzzabl---abk keN,bl,...,bkeB,blj---jbk,n(ag)zT(l_a)gn}

is a k[h]-basis of D), = D,(Hy) =h"D, . So A= U .Zl\gn is a k[h]-basis of Hy .

Y by, by eB,,}).

neN

(b) Hh/ = k[h] <{ ab }bGBy>/<{ [ablﬂab2:| - ha[bl,bﬂ

(c) Hi is a graded Hopf k[h]-subalgebra of Hy .

(d) Hh"h = Hﬁ//h Hy =H = F[Fﬁﬂ , where I is a connected Poisson algebraic
group with cotangent Lie bialgebra isomorphic to L, (as a Lie algebra) with the graded Lie

bialgebra structure given by §(x,) = (n —2)xn_1 Ax1 (for all n € N, ). Indeed, Hﬁ"h
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is the free Poisson (commutative) algebra over N, , generated by all the &, = ay,
(n € N, ) with Hopf structure given (for all n € N, ) by

h=0

Alan) = an@l+1@an + Y, (Hareal™ + Y02 (k+ 1) af @y
S(an) = —a, — s (M) S(ar) @l * =it (k+1)S(a1) @ s,  e(an) = 0.

Thus Hh"h is the polynomial algebra ]k[{ M }beBJ generated by a set of indeterminates

{m Yo, in bijection with B, , so I, = APv as algebraic varieties.

Finally, Hh/‘h = F[ng] = k[{ M Ype B ] is a graded Poisson Hopf algebra w.r.t. the
_0 v

grading O(a,) = n (inherited from Hy ) and w.r.t. the grading induced from k =1 (on
H), and a graded algebra w.r.t. the (polynomial) grading d(a,) =1 (for all n € Ny ).

(e) The analogues of statements (a)—(d) hold with K instead of H , with X instead of
X forall X =L,,B,,N,, and with FEVI instead of I} .

Proof. (a) This follows from Proposition 4.2 and the definition of H; in §4.2.

(b) This is a direct consequence of claim (a) and Lemma 4.2(g).

(¢) Thanks to claims (a) and (), we can look at Hj, as a Poisson algebra, whose Poisson
bracket is given by {z,y} := Az, y] = h Y (zy—yx) (for all z, y € Hy ); then Hj itself
is the free associative Poisson algebra generated by { a., ‘ neN } Clearly A is a Poisson
map, therefore it is enough to prove that A(&n) € Hil @Hy for all n € N, . This is clear
for a; and ay which are primitive; as for n > 2, we have, like in Proposition 4.1,

A(an) = > h=2 ey, @ BVFQN i (an) + ZZ;S o @ W FNZE L (an) =

e L (4.5)
= Y k2 Ok RETRQE_(an) + Zk:é af @A FZE_(ow) € My @ Hy

thanks to Lemma 4.1 (with notations used therein). In addition, S(H) C My also
follows by induction from (4.5) because Hopf algebra axioms along with (4.5) give

S(@n) = —Gn — Y0, S(@n) QR _(an) — S S(@f) iR ZE L (an) € HY

for all n € N, (using induction). The claim follows.

(d) Thanks to (a) and (b), Hy is a polynomial k-algebra as claimed, over the set

h=0
of indeterminates {db = ab‘h_o ( € Hﬁ/‘h—o)} . Furthermore, in the proof of (c¢)
- - beB,

we noticed that Hj is also the free Poisson algebra generated by {&n ‘ n €N }; therefore

Hy . is the free commutative Poisson algebra generated by {dn =0y, ’ h—0 }n eN Then
=0 -
formula (4.5) — for all n € N,, — describes uniquely the Hopf structure of Hj, hence the

formula it yields at i = 0 will describe the Hopf structure of Hj
Expanding A" *QF

n

‘5:0'
_p(ay) in (4.5) w.r.t. the basis A in (a) we find a sum of terms of

T7—degree less or equal than (n — k), and the sole one achieving equality is aln—’“ , which
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occurs with coefficient (}): similarly, when expanding h" " *~1Z*_ (o) in (4.5) w.r.t. A
all summands have 7—degree less or equal than (n — k — 1), and equality holds only for

Q,_1 , whose coefficient is (k + 1). Therefore for some 1 € Hj we have

|5=0
A(an) :ZZ:Qak@)(Z) a)'” +Ek o(k‘i‘ )a1k®an—k+h'r];

this yields the formula for A, from which the formula for S follows too as usual.

Finally, let I' := Spec 7-[5 be the algebraic Poisson group such that F [F ] =

’hO

and let ~, := coLie (I") be its cotangent Lie bialgebra. Since Hj is Poisson

=0
as a Lie algebra -, is free over {dn = &, mod m? }n N (where

il

free over {é‘"}neNV ,

m = Jy,,_ ), 50 Y = Ly, via dy, — z,(n € Ny) as a Lie algebra. The Lie cobracket is

Oy, (dn) = (A = A°®)(@,) mod mg = k_2( Jap Aai” ki
+5 0 (k+1)af Ady,, mod mg = (") @n-1 Aoy + 2060 Aa,—1 mod mg =

= n—-2)a,_1ANag modmg = (n—2)d,—1Ndy € YR

where mg = (m2®7-[h'|h:0+m®m+7—l;{|h:o®m2> , whence I' = I;" as claimed in (d).

Finally, the statements about gradings of ’H,{‘ =F [F Lﬂ hold by construction.
h=0

(e) This should be clear from the whole discussion, since all arguments apply again —
mutatis mutandis — when starting with IC instead of H ; we leave details to the reader. [

§ 5 Drinfeld’s deformation (’H;{)V

5.1 The goal. Like in §3.1, there is a second step in the crystal duality principle which
builds another deformation basing upon the Rees deformation Hj . This will be again a
Hopf k[A]-algebra, namely ("Hh/)v, which specializes to H for A =1 and for A = 0 instead

specializes to U(t_), for some Lie bialgebra ¢_ . In other words, (’H;{)v = H and

(’H,h’)v)h = U(t_), the latter meaning that (7—[;{)\/ is a quantized universal enveloping
=0
algebra (QUEA in the sequel). Thus (Hh')v is a quantization of U(¢_), and the quantum

symmetry H is a deformation of the classical Poisson symmetry U(¢_).

The general theory describes explicitly the relationship between €_ and I" in §4, which
is €= =, := coLie (I;}) = L, (with the structure in Theorem 4.1(d)), the cotangent Lie
bialgebra of I};> . Thus, from this and §4 we see that the quantum symmetry encoded by H
is (also) intermediate between the two classical, Poisson symmetries ruled by I and ~, .

In this section I describe explicitly (’Hh’)v and its semiclassical limit U(¢_), hence £_

itself too. This provides a direct proof of the above mentioned results on (’H;{)v and €_ .
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5.2 Drinfeld’s algebra (’H;{)v. Let J':= Jy, , and define

\ —-n n _ n
(Hi)" = ,enh ™" = 3, on (BRI (S H(R)). (5.1)
Now I describe (7—[;{)\/ and its specializations at h =1 and h = 0. The main step is

Theorem 5.1. For any b€ B, set &y = =prla)-lg, =70 -1q, =K 1a,.

(a) (HA) = k[h]<{o&b}beBy>/<{ [éep,, 60,] — Gy | ¥ b1, b eB,,}).

(b) (H ,)v is a graded Hopf k[h ] subalgebm of Hp, .

(c) ( ) ’Hh /h (E,,) as co-Poisson Hopf algebra, where L,
bears the Lie bzglgebm structure given by 5(wn) (n—=2)xp_1Axy (forall ne€N,).

Finally, the grading d given by d(x,) :=1 (n € N4) makes (Hh/)v‘h—(): U(Ly,) into a
graded co-Poisson Hopf algebra, and the grading O given by O(z,) :=n (n € N1) makes
(M)’

(d) The analogues of statements (a)-(c) hold with K, L}, B} and N} respectively
instead of H, L}, B, and N .

Proof. (a) This follows from Theorem 4.1(b) and the very definition of (’H;{)v in §5.2.
(b) This is a direct consequence of claim (a) and Theorem 4.1(c).
(c) Tt follows from claim (@) that mapping ¢ heo F b (Vb € B,) yields a well-

=U(L,) into a graded Hopf algebra and L, into a graded Lie bialgebra.

defined algebra isomorphism &: (Hﬁ)

AnkQF | (a,) in (4.5) w.r.t. the basis A (see Proposition 4.2) we find a sum of terms of
T—degree less or equal than (n — k), and equality is achieved only for aln_k , which occurs

;»U(/j ). In addition, when expanding
=0

with coefficient (}): similarly, the expansion of A""*~1Z¥_ (a,) in (4.5) yields a sum
of terms whose T7—degree is less or equal than (n — k — 1), with equality only for au,_,
whose coefficient is (k + 1). Thus using the relation a; = hés (s € N1 ) we get

A(dy) = @@l + 1@y, + Y p, @ @h" ’“Qn @) + 02 af @t ZE (o) =
=@, @l +1@an + S i e (M ar ™ + Srs i (k) af @, + W2y =

=0, ®14+1®da&, + A(nd,_1®6 + 261 @ c,_1) + I X
for some n, x € (’Hh')v®(7{h’)v . It follows that A(d”‘hzo) = d”lh:0®1 + 1®d”’h:0 for
all n € N, . Similarly we have S(dnlh:o) = _dn‘h:o and e(dn}hzo) =0 forall n e N, ,
thus ® is an isomorphism of Hopf algebras too. In addition, the Poisson cobracket of
(Hﬁ')\/’h:o inherited from (’H;{)V is given by

(el o) = (70 =A%) ()) mod n (1) & () =

. . . . v v . .
= (n X1 Ny + 20 A an_l) mod & (’H;{) ® (7—[;{) = (n—2) a”_1|h:0 Neal,_,
hence @ is also an isomorphism of co-Poisson Hopf algebras, as claimed.

The statements on gradings of (7—[;{)\/ ’h = U(L,) should be clear by construction.
=0



POISSON SYMMETRIES ASSOCIATED TO NON-COMMUTATIVE DIFFEOMORPHISMS 31

(d) This should be clear from the whole discussion, as all arguments apply again —
mutatis mutandis — when starting with K instead of H ; details are left to the reader. [

5.3 Specialization limits. So far, Theorem 4.1(d) and Theorem 5.1(c) prove the
following specialization results for #; and (”H;{)V respectively:

h—0

1y 2% Pl (H) =5 UL,

as graded Poisson or co-Poisson Hopf k—algebras. In addition, Theorem 4.1(b) implies that

Hi D2 =N as graded Hopf k—algebras. Indeed, by Theorem 4.1(b) H (or even
Hy) embeds as an algebra into Hy/, via o, — @, (for all n € N, ): then

[atn, ] — [&n,&m] = ha, ., = O, 2, mod (h—1) Hy (V n,m € N,,)

thus, thanks to the presentation of H; in Theorem 4.1(b), H is isomorphic to H;{)h =
=1

’H;{/(h—l) Hy = k<6¢1|h:1, 642|h:1, e &n|h:1, e > , as a k—algebra, via a, — &n|h:1 .

Moreover, the Hopf structure of Hjy

is given by

A8, _,) = Shp u®h" 7 QE_ (a )+ 0Ty af@h" 1 ZE_ (ce.) mod (h—1)HA @M, .

Now, QF ,(a.) = QF ,(c. + a1*) = QF , (a.) for some polynomial OF ,(a.) in
the a;’s; let Qn plo) = >, ﬁ_kk(a*) be the splitting of Qﬁ_k into 7-homogeneous

summands (ie., each T k(a*) is a homogeneous polynomial of 7—degree s): then
RRQE_p(an) = BTRQN y(ew) = RURE T () = ST (@)

with n—k—s > 0 for all s (by construction). Since clearly A" ~F=5T*" & L(00) = ( «)
mod (h— 1) My, we find A" % QF_ (a,) = " *QF _, (a) = S, A" STS’“( L) =
Zsﬁ_k( .) mod (h—1)H; = OQF ,(a.), for all k and n. Similarly we argue that
n1ZzF (o) = ZF (@) mod (h—1)Hy , for all k and n. The outcome is that

A(Gin|,_ ) =2y k@R QN () +Y g AF @R Z) () mod (h—1) Hy @Hy =
= S au® Ok (au) + X r Ty af @ ZF_ (&) mod (h—1)Hy @ Hyl .

On the other hand, we have A(a,) = Y 1_, ap ® Qn plo) + Zk cafezk | (au)
in H. Thus the graded algebra isomorphism W: H — H;/ ’ given by o, — an|h 1

preserves the coproduct too. Similarly, ¥ respects the antlpode_ and the counit, hence it is
a graded Hopf algebra isomorphism. In a nutshell, we have (as graded Hopf k—algebras)

Hy Il =y Similarly, Theorem 5.1 implies that (’Hh )V "2l as graded
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Hopf k-algebras. Indeed, Theorem 5.1(a) shows that (”H;{)v = kh] @k U(L,) as graded
associative algebras, via &, +— x, (n € N, ), in particular (H;{)v is the free associative

k[%]-algebra over {dn} then specialization yields a graded algebra isomorphism

GN’

o)

(1) = ) S =) () o, Gl e

As for the Hopf structure, in (H;i/)v)h it is given by
=1

A(d"’hzl) = h=2 dk’h:l ® hnikgﬁ—k(a*)’hﬂ + Zz;é dlk‘h:l ®h"2Z, k(a*)’h 1

As before, split Q% _, (a,) as QF _, (a.) = 32, T>" (ev.), and split each T>" (&) in
homogeneous components w.r.t. the total degree in the a;’s, say ’7;;9_2( ) =Yk a, )
then hn—h=sT*™ k(a*) = pnmkesy Vekay) = Y, h”_k_swyf’;’f(a*), because @, =
Ré, . As hn=h=strysk(a,) = Yok (a,) mod (h— )(Hﬁ) , we eventually get

v k

WEQL k(o) = 30, BT YN (Gn) = 3, Vi (6w) mod (h=1) (Hi) = Qn_x(as)

for all k and n. Similarly A"~'Z* , (a,) = ZF_, (ev.) mod (h—1) (Hﬁ) (VEk, n). Thus

A yey) = Sy Gy @ BN ()],oy + 0Ty af |, © A2 (e, =
= Yho G, ® On ()], + > ko af |,y © Zy (e, -
On the other hand, one has A(a,) = > 1_, o, ® Qn plon) + Zk vaf®Zk  (a))
in ‘H, thus the algebra isomorphism €: (’Hh)

- ;»H given by an|h:1 — o, also
preserves the coproduct; similarly, it also respects the antipode and the counit, hence it is
a graded Hopf algebra isomorphism. In a nutshell, we have (as graded Hopf k-algebras)
(Hy )V =1, 9( . Therefore we have filled in the bottom part of the diagram (M) in the

Introduction, for H = H (:= H,), because H' := UpenD,, = H by §4.2: namely,

* 0+h—1 1+h—0
F\I/7]| < > H >»U(L,
|: ‘C’Vi| Hh/ (th)\/ ( )

where now in right-hand side £, is given the Lie bialgebra structure of Theorems 4.1 and
5.1, and I is the corresponding dual Poisson group mentioned in Theorem 4.1.

§ 6 Summary and generalizations.

6.1 Summary. The analysis in §§2-5 yields a complete description of the non-trivial
deformations of H — namely the Rees deformations H5’ and Hj and the Drinfeld’s de-
formations (Hhv)l and (7—[;{)\/ — built out of the trivial deformation Hpy . In particular

—(L,,8.), G =G, G =TIz, gf=(L,6) (61)
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(with notation of (")) where d, and J, denote the Lie cobracket on £, defined respec-
tively in Theorem 2.1 and in Theorems 4.1 and 5.1. Next result shows that the four objects
in (6.1) are really different, though they share some common features:

Theorem 6.1.
(a) (Hhv)/ =~ Hy as Poisson k[h]-algebras, but (’Hhv)/ % Hy as Hopf k[h]-algebras.
(b) (ﬁy,é.) = (E,,,(S*) as Lie algebras, but (ﬁy,é.) e (E,,,é*) as Lie bialgebras.
(c) Gor = I as (algebraic) Poisson varieties, but G, % Iz as (algebraic) groups.
(d) The analogues of statements (a)-(c) hold with K and L} instead of H and L, .

Proof. 1t follows from Theorem 3.1(a) that (Hhv)/ can be seen as a Poisson Hopf algebra,
with Poisson bracket given by {z,y} := A l[z,y] = A Y (xy—yz) (forall z,y € ("Hhv)/ );
then (Hhv)/ is the free Poisson algebra generated by {lN)mn =X, = a, ’ n €N } ; since
a, = o, + (1 -4, a" and o, = a, — (1 —d1,)a" (n € Ny ) it is also (freely)
Poisson-generated by {an ‘ n €N } We also saw that Hj is the free Poisson algebra over
{ o, ‘ n e N} ; thus mapping a,, — a, (Vn € N) does define a unique Poisson algebra
isomorphism @ (Hhv)l i%}{, given by ay := A4y — @, for all b € B, . This
proves the first half of (a), and then also (taking semiclassical limits and spectra) of (¢).

The group structure of either G.* or I:* yields a Lie cobracket onto the cotangent space
at the unit point of the above, isomorphic Poisson varieties: this cotangent space identifies
with £,, and the two cobrackets are given respectively by de(z,) = Z:_ll (L+1)xe ANxp_y
for G¢* (by Theorem 3.1) and by 6.(x,) = (n —2)z,—1 Az for I} (by Theorem 4.1),
for all n € N,. It follows that Ker(d,) = {0} # Ker(d.), which implies that the two
Lie coalgebra structures on £, are not isomorphic. This proves (b), and also means that
Ggl # Iz, as (algebraic) groups, hence F[G)] # F[I7)] as Hopf k-algebras, and so
(Hhv)/ % Hy as Hopf k[h]-algebras, which ends the proof of (¢) and (a) too.

Finally, claim (d) should be clear: one applies the like arguments mutatis mutandis,
and everything follows as before. [

6.2 Generalizations. Plenty of features of H = HY are shared by a whole bunch
of graded Hopf algebras, which usually arose in connection with some physical problem or
some (co)homological topic and all bear a nice combinatorial content; essentially, most of
them can be described as “formal series” over indexing sets — replacing N — of various
(combinatorial) nature: planar trees (with or without labels), forests, graphs, Feynman
diagrams, etc. Besides the ice-breaking examples in physics provided by Connes and
Kreimer (cf. [CK1-3]), which are all commutative or cocommutative Hopf algebras, other
non-commutative non-cocommutative examples (like the one of HYf) are introduced in
[BF], roughly through a “disabelianization process” applied to the commutative Hopf al-
gebras of Connes and Kreimer. A very general analysis and wealth of examples in this

context is due to Foissy (see [Fol-3]), who also makes an interesting study of J—maps and
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of the functor H — H’ (H a Hopf k—algebra). Other examples, issued out of topological
motivations, can be found in the works of Loday et al.: see e.g. [LR], and references therein.

When performing the like analysis, as we did for H, for a graded Hopf algebra H of the
afore mentioned type, the arguments used for H apply essentially the same, up to minor
changes, and give much the same results. To give an example, the Hopf algebras considered
by Foissy are non-commutative polynomial, say H = k<{xi}iez> for some index set Z:
then one finds Hj" ‘h:o =U(g-) = U(Lz) where L7 is the free Lie algebra over T.

This opens the way to apply the methods presented in this paper to all these graded Hopf
algebras, of great interest for their applications in mathematical physics or in topology (or
whatever); the simplest case of Hf plays the role of a toy model which realizes a clear
and faithful pattern for many common features of all Hopf algebras of this kind.
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