
A

t
f
i
s
i
m
t
t
©

K

1

a
m
m
o
t
fi
a
t
S
l
t

s
a

s
v

0
d

Journal of Materials Processing Technology 183 (2007) 127–139

Identification of elasto-plastic characteristics by means of air-bending test
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bstract

A new identification method of material elasto-plastic characteristics by means of simple testing is proposed. The outcome of the procedure is
he true-stress versus true-strain curve. The result is proposed in analytical form, according to Swift’s law. The method requires acquisition of actual
orce-penetration values, carried out during a standard air-bending test. One of the main advantage of this method is that it allows an immediate
dentification of the material behaviour just in-process, that is to say that material characteristics can be accounted differently for each sheet
ubjected to bending; this is a fundamental preliminary step to achieve a bending adaptive control of sheets. Input requirements for identification

nclude the geometry of tools and sheet, and the friction coefficient between sheet and die which needs to be estimated previously. In the proposed

ethod, at a first stage the bending moment–curvature curve for the sheet is obtained by the numerical computation of force-penetration data
hrough a multi-joint model of sheet during air-bending. Then, a simplified bending model, characterized by linear strain distribution across the
hickness and plane-stress assumption, is employed to calculate the stress–strain curve.

2006 Elsevier B.V. All rights reserved.

back

L
t
p
e
o
F

a
m
c
m
d

eywords: In-process material identification; Bending adaptive control; Spring

. Introduction

Correct evaluation of material behaviour is, like modelling
ccuracy and reliable representation of operative conditions, the
ost important aspect to consider in order to obtain suitable
etal-forming analysis and simulations. Usually the evaluation

f stress–strain curve is carried out by means of uni-axial tensile
ests. By the knowledge of stress–strain curve or of the identi-
ed model parameters, it is possible to perform an elasto-plastic
nalysis simulating the process and providing useful informa-
ion able to optimise, just in time, the technological process.
everal air-bending models are already available in scientific

iterature, accounting of hardening behaviour in several forms,
heir complexity follows the approximation level required.
Some simplified models [1] use a bilinear hardening law con-
idering the plastic behaviour governed by two parameters; an
ppreciable simplicity results in the analytical developments.
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More accurately, other authors [2] consider the so called
udwik’s law (σ = σs + kεz); due to a three parameters descrip-

ion and its exponential nature, this law fits well the major
art of metals paying a more complex solution process. How-
ver, the most widely diffuse hardening model is the Swift’s
ne (σ = C̄(ε0 + εp)ē), employed in several semi-analytic or
E models [3–8].

Elasto-plastic material behaviour, as mentioned above, is usu-
lly carried out by uni-axial tensile test, but this kind of direct
easurement is not always adequate; as a matter of facts, in some

ases [9–12], it is better to turn on some kind of indirect test,
ainly to point out particular aspects like Baushinger effects,

ynamic influence and viscous properties.
The good agreement between experiments and simulations

nd, subsequently, the reliability of predictions are obviously,
orrelated to the correct and actual evaluation of material char-
cteristics, so that, whenever possible, just in time material
dentification is desirable.

Generally, the identification of material characteristics for
ach workpiece is too expensive for industrial demand, being
on-practical to perform uni-axial tensile tests of each one. In

his context, any indirect in-process techniques able to detect the
ffective material is advantageous.

Confirming this last sentence, many proposed techniques are
ndirect, requiring the support of both analytical hypotheses and
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Nomenclature

C M–χ hardening law coefficient
C̄ Swift’s σ–ε law coefficient
d punch penetration
e M–χ hardening law exponent
ē Swift’s σ–ε law exponent
E Young’s modulus
E% global error of the approximated deformation
F punch load
kL Ludwik’s σ–ε law coefficient
L sheet depth
l generic rigid element length between two joints
l̄ semi-lengths sum of two consecutive elements
M bending moment
n number of rigid elements in the modelling
r modelling length ratio (li/li−1)
Rd radius at sheet–die contact point
Rm sheet middle radius
Rn sheet neutral radius
t sheet thickness
W semi-die width
z Ludwik’s σ–ε law exponent

Greek symbols
χ curvature
ε strain
ε0 deformation parameter in Swift’s law
εp plastic strain
μ friction coefficient
θ element angle toward horizontal direction
σs material yield stress in Ludwik’s law

Subscripts
i element i
(i − 1) − i elements i − 1 and i
x,y,z cartesian axises
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and dimensionally defined by the n elements covering the dis-
tance between punch and die, and their respective length ratio r
alculations; however, they present the remarkable advantage to
e available employing the same process set-up used for work-
iece forming.

In particular, limiting these considerations on air-bending
rocess, many methods [13–18] have been proposed in order to
dentify materials by means of simplified bending tests. Some
f these [13,15] have as main target the identification of mate-
ial characteristics, others [14,16–18] make use of the identified
esults to optimise process efficiency, in terms of springback
ompensation and general process control.

The method proposed in this paper is an identification tech-
ique which, by means of a standard air-bending test, and in
articular using force-penetration data measured during an air-
ending process of a sheet, calculates the numerical relationship

etween bending moment and curvature, and then, under plane-
tress conditions, identifies the material elasto-plastic behaviour.

(
o

essing Technology 183 (2007) 127–139

Future developments regard the connection between the iden-
ification phase and the prediction one, using the identification
esults to perform previsions on effective bending and spring-
ack compensation on a “sheet to sheet” basis. This goal is
lready reachable using the bending moment–curvature curve
18] but, more accurately, the purpose will be available using
he stress–strain curve and discrete air-bending models derived
y those proposed here.

This paper discusses modelling technique details, then the
dentification results carried out computing force-penetration
urves generated through air-bending FE simulations, and
nally, further identification results are examined taking input
rom an experimental air-bending test performed on a standard
ensile test machine adequately equipped. Different material
urves are employed for FE simulations and compared with the
dentified ones.

The method presents the advantage to be appropriate for the
ndustrial process of sheet air-bending, in terms of springback
ompensation that, adopting this technique, would take advan-
age by material identification on an each-sheet basis. This would
e particularly significant if bimetallic sheets were accounted,
r if sheets were subjected to significant surface coating or treat-
ents. In other words, the determination of the sheet behaviour

n terms of bending moment–curvature is always possible even
f non-homogeneity occurs. In these last cases, the resulting
tress–strain curve should be adequately considered; as a matter
f fact it is only a representative balanced average of the various
onstituent material.

Some FEM validation is presented in terms of comparison
etween identified and target entity, and finally an experimental
pplication is illustrated.

. Theoretical approach

.1. Multi-joint model

In order to reduce mathematical complexity, some assump-
ions are accounted in the model approach; they regard sheet–die
riction, sheet elongation and contact indentation.

Friction is accounted by means of a constant coefficient,
ccording to Coulomb hypothesis; the value is not tuned during
he identification process, so that a suitable method to determi-
ate this coefficient should be previously employed. However,
modelling extension which accounts the identification of fric-

ion coefficient is theoretically possible increasing the number of
n-process input data, but at the present stage of the research the
echnique appears too difficult to implement in real time. Mid-
le plane sheet elongation and contact indentation are neglected
ecause they weakly affect the results, as some refined finite
lement analysis suitably performed, showed clearly.

The envisaged model is characterized by localized deforma-
ility concentrated on elasto-plastic joints, connected each other
y rigid elements (Fig. 1). These rigid portions are quantitatively
Fig. 1a). The length ratio r defines the geometric progression
f element length from punch to die. This feature accords per-
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ig. 1. Multi-joint model of the sheet during the bending: (a) before loading
hase; (b) during loading phase; (c) loading phase zoom.

ectly with the necessity to increase discretization in the region
here the curvature changes more quickly, the punch nose zone,
here an higher element concentration provides a better accord
etween model and experimental displacement. Although the
nfinite number of degree of freedom of the sheet under bending
s not reachable, great number of elements (20–50) and adequate
alues for r (2–4), supply satisfactory results [18].

Elements thickness is taken from the real sheet, but in the
odel it has only a cinematic valence, since the deformation is

ccounted only in the elasto-plastic joints.
Since the identification procedure starts determining the

oints unknown elasto-plastic behaviour using data coming from
he working press-brake, it is important to formulate a generic

athematic law, with unknown parameters, able to adapt to the
aterial behaviour in terms of bending moment–curvature. The

hosen law is a simplification of most common hardening laws
Ludwik, Swift), usually providing stress–strain relations. The
aw is shown and elaborated to obtain the discretized form in
q. (1).

= C · χe = C ·
[

dθ

dl

]e

or, in the discretized form,

(i−1)−i = C · [χ(i−1)−i]
e = C ·

[
θ(i−1)−i

l̄i−1

]e

(1)

here
i−1 = li−1

2
+ li

2

he relation (1) is advantageous because it describes adequately
he sheet behaviour managing only two unknown variables: C
essing Technology 183 (2007) 127–139 129

nd e. This is a very important aspect in consideration of the
ard arithmetical manipulations and the non-linear numeric
olutions that the whole procedure presents.

As usual in physical problems, the governing equations con-
ider geometry conditions, equilibrium equations and constitu-
ive relationship.

First geometric condition is in vertical direction and regards
unch penetration (Fig. 1b and c):

l1 sin(θ1) + l2 sin(θ2) + · · · + ln sin(θn) + t

2

+ Rd −
(
Rd + t

2

)
cos(θn) = d (2)

Then on horizontal direction, considering semi-die width
Fig. 1b and c):

l1 cos(θ1) + l2 cos(θ2) + · · · + ln cos(θn)

+
(
Rd + t

2

)
sin(θn) = W (3)

Other geometric conditions link the element angular positions
o their proper rotations:

θ1 = 0

θ2 = θ1 + θ1−2

...

θn = θn−1 + θ(n−1)−n

(4)

It should be highlighted that the first equation in (4) (θ1 = 0)
llows to avoid edged points below the punch, like the real
vidence requires. This imposition does not affect the correct
odelling shape during the bending because the first element

as usually a very limited length.
At the intersection between the sheet horizontal axis and the

unch vertical one (point O in Fig. 1a) it is possible to write the
rst rotation equilibrium equation (5) with the hypothesis that all

he forces are not distributed but concentrated. This equation is
ritten considering the sheet–die contact forces, accounting the
rthogonal one and the friction one (tangent), and their vertical
quilibrium with the punch force F.

= 2M

(((tan(θn) − μ)/(1 + μ tan(θn)))(d − (t/2) − Rd

(1 − cos(θn))) + W − Rd sin(θn)

(5)

Other rotation equilibrium equations are available at the joints
onnecting the rigid elements. The notation M(i−1)−i is used to
ndicate in Eq. (6) the bending moment at the joint between two
lements:

M1−2 = M − F

2
· l1 cos(θ1)

M2−3 = M − F

2
· [l1 cos(θ1) + l2 cos(θ2)]

.. (6)
.

M(n−1)−n = M − F

2
· [l1 cos(θ1) + l2 cos(θ2) + · · ·+

ln−1 cos(θn−1)]
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Finally, giving to l̄i the same meaning given in Eq. (1), it is
ossible to write the constitutive relationship between angular
ariation and bending moment at all joints using the general
pplied hardening law (1).

θ1−2 = l̄1

(
1

C
M1−2

)1/e

θ2−3 = l̄2

(
1

C
M2−3

)1/e

...

θ(n−1)−n = l̄n−1

(
1

C
M(n−1)−n

)1/e

(7)

Input data coming from the actual air-bending process are
orce and corresponding penetration (F–d); calling m the number
f experienced F–d values it is possible to count the number of
vailable equations:

unch penetration (2) 1·m
emi-die width (3) 1·m
ngular positions (4) n·m
unch nose rotation eq. (5) 1·m
oints rotation equilibrium (6) (n − 1)·m
pplied hardening law (7) (n − 1)·m

With the same hypothesis this is the situation for unknown
ariables:

a) θi n·m
b) M 1·m
c) ln 1·m
d) M(i−1)−i (n − 1)·m
e) θ(i−1)−i (n − 1)·m
f) C, e 2
Concluding, the problem presents the following number of
quations and variables: o

a
s
s
a

⎧⎨
⎩

l2 sin θ2(1) + l3 sin θ3(1) + t

2
+ Rd −

(
Rd + t

2

)
cos θ4(1) +

[
W −

(
Rd + t

2

l2 sin θ2(2) + l3 sin θ3(2) + t

2
+ Rd −

(
Rd + t

2

)
cos θ4(2) +

[
W −

(
Rd + t

2

θ2(1) = l̄1

{
F (1)

2C

[
tan θ4(1) − μ

1 + μ tan θ4(1)

(
d(1) − t

2
− Rd (1 − cos θ4(1))

)
+ W − Rd

θ2(2) = l̄1

{
F (2)

2C

[
tan θ4(2) − μ

1 + μ tan θ4(2)

(
d(2) − t

2
− Rd (1 − cos θ4(2))

)
+ W − Rd

θ3(1) = θ2(1) + l̄2

{
F (1)

2C

[
tan θ4(1) − μ

1 + μ tan θ4(1)

(
d(1) − t

2
− Rd (1 − cos θ4(1))

)
+ W

θ3(2) = θ2(2) + l̄2

{
F (2)

2C

[
tan θ4(2) − μ

1 + μ tan θ4(2)

(
d(2) − t

2
− Rd (1 − cos θ4(2))

)
+ W

θ4(1) = θ3(1) + l̄3

{
F (1)

2C

[
tan θ4(1) − μ

1 + μ tan θ4(1)

(
d(1) − t

2
− Rd (1 − cos θ4(1))

)
+ W

θ4(2) = θ3(2) + l̄3

{
F (2)

2C

[
tan θ4(2) − μ

1 + μ tan θ4(2)

(
d(2) − t

2
− Rd (1 − cos θ4(2))

)
+ W
essing Technology 183 (2007) 127–139

equations: 3n·m + m
unknown variables: 3n·m + 2

The solution is theoretically possible if m = 2; in other words,
wo measurements are required to obtain as much as necessary
nformation to perform the identification; in general, the mini-

um measurements number should be equal to the number of
arameters describing the bending moment–curvature harden-
ng law (2 in this case, C and e). Practically, the problem is
verdetermined and the number of measurements m is bigger
han 2. The adopted strategy requires to solve the system of equa-
ion several times on couples of force-penetration data, then all
esults are composed to get an unique analytical hardening law.
t should be pointed out, however, that it is possible in principle
o get an approximated solution accounting for only two mea-
urements; this highly error-affected way of operating is much
uicker and could be useful for in-process identification.

Within the elastic behaviour region one should impose e = 1 in
he same law (1), this involves the requirement of only 1 couple
f data F–d, i.e. m = 1.

Eqs. (2)–(7) can be handled with the aim to reduce the num-
er of unknown variables. As a matter of fact, in the equations
roup (4) disappears the already discussed condition θ1 = 0 and
onsequently the variable θ1 is substituted by 0 in all equations.
aximum bending moment M appearing in Eqs. (6) can be cal-

ulated handing the Eqs. (5) and the resulting Eqs. (6) can be
ut in the hardening relations (7) in terms of bending moments
t joints M(i−1)−i. Analysing now Eqs. (4) it is possible to sub-
titute the angular increments θ(i−1)−i using those that relations
7) provide after the introduction of the M(i−1)−i expressions.
inally the length of the last element ln, which appearing in (2),
an be extracted by manipulations from Eq. (3), reducing again
he number of unknown variables and equations.

As a result of all these manipulations, taking, for the seek
f simplicity the number n of rigid portions equal to 4 (usu-
lly n = 20–50), considering m = 2, and taking into account that
ymbol (1/2) indicates the function evaluated at the first/second
tate (F(1/2)–d(1/2)), the full mathematical problem appears
s:

)
sin θ4(1) − l1 − l2 cos θ2(1) − l3 cos θ3(1)

]
tan θ4(1) = d(1))

sin θ4(2) − l1 − l2 cos θ2(2) − l3 cos θ3(2)
]

tan θ4(2) = d(2)
(8)

sin θ4(1) − l1

]}1/e

sin θ4(2) − l1

]}1/e

− Rd sin θ4(1) − (l1 + l2 cos θ2(1))
]}1/e

− Rd sin θ4(2) − (l1 + l2 cos θ2(2))
]}1/e

(9)
− Rd sin θ4(1) − (l1 + l2 cos θ2(1) + l3 cos θ3(1))
]}1/e

− Rd sin θ4(2) − (l1 + l2 cos θ2(2) + l3 cos θ3(2))
]}1/e
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out elaborating a couple of measured point on the experimental
(FEM in this case) force-penetration curve (Fig. 3a). Operating
in this way it is necessary to define the validity fields for each
Fig. 2. Method for numeric solution.

he eight equations (8) and (9) present eight unknown variables:
hree angular positions at the state 1 (θ1(1), θ2(1), θ3(1)), three
ngular positions at the state 2 (θ1(2), θ2(2), θ3(2)), and param-
ters C and e, which are invariable for the two states considered.
he analytical solution of this non-linear system is very hard, but

t is possible to get a converged solution using various numeric
terations organized on three levels, considering sequentially
he two couples of measurements F(1)–d(1), F(2)–d(2). The
ethod is shown in Fig. 2 by means of a flow diagram. The

iagram shows the sequential use of the two couples of mea-
urements F(1)–d(1), F(2)–d(2); first the initial values of C and
are imposed, then two similar phases are used to obtain the con-
ergence on C first and on e consequently. In these phases the
onvergence is obtained when first (second) Eq. (8) is verified,
nd the iteration values of C (e) are calculated by interpolation.
he value of C (e) is calculated considering as input variables at
ach step the values e (C) calculated by the previous phase; this
nvolves that the initial error deriving from the choice of Cinitial
nd einitial requires some iterations to vanish. As a matter of fact,

he procedure does not stop until two consecutive calculations
f C and e present approximately the same results.

It should be highlighted that the two described phases need
he calculation of all the angles θi (i = 1.4), and this is possi-
ig. 3. Moment–curvature law composition: (d) force-penetration input curve;
e) composition of moment–curvature curve portions.

le only by means of an other iterative calculation based on the
hoice of an initial value of θ4 and the consequent computa-
ion of all angles (θ4 included). The iteration continues until the
onvergence on θ4 is reached. The method does not change con-
eptually when 20–50 elements are used instead the 4 introduced
n this example; obviously, the identification becomes harder and

ore time is consumed.
Relations (8) and (9) are written for two couples of measure-

ents and give the problem solution in term of parameters C and
describing the bending moment–curvature law correspond-

ng analytically to the two measurements taken. Obviously, it is
ecessary to consider more than two measurements, and the best
xperimented method to obtain a good agreement between iden-
ified results and FEM data is to repeat the determination of C
nd e using different zones of the force-penetration curve coming
rom the process. Operating in this way, a family of curves can
e obtained, and consequently it is possible to joint the relative
urve portions extracted from the found M–χ curves (Fig. 3b).
n other words the resulting bending moment–curvature curve
s the composition of different curve portions, each one carried
Fig. 4. Analytical bending model.
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Fig. 5. Comparison with FEM analysis.

t max

c
b
r
s
b

t

Fig. 6. FEM simulation a

urve of the obtained family curve. These fields are determined

y means of a reference curvature (Fig. 3b). The mentioned
eference curvatures are those experienced by point O (corre-
ponding to the maximum value) when the punch position lies
etween points 2i and 2i + 1 (i = 1. . .(m/2) − 1) (Fig. 3a). This

e
s
l
t

Fig. 7. Deformation across the thick
imum punch penetration.

echnique allows to overcome the relative simplicity of the hard-

ning law (1) since the identification, although obtained by a
implified law, is repeated several times for different bending
evels, and the consequent results composition can fit greatly
he FEM bending moment–curvature curve.

ness for increasing curvatures.
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.2. Bending model

When bending moment–curvature identification is performed
nd the various M–χ laws are locally calculated by the method
iscussed above, it is necessary to formulate a bending model
hich allows stress–strain identification.
Main assumptions are: linear deformation across the thick-

ess, plane-stress mode. The first hypothesis involves that neu-
ral radius Rn (Fig. 4) coincides with the middle one Rm and
his, as will be shown later, is compatible only with simplified

aterial laws (10), similar to law (1):

= C̄ · εē (10)

Further consequence of the first assumption is the limitation
f the identification results within relatively small deformation,
n particular, calculating the error E% by respect to logarithmic
eformation εlog obtained using the approximation Rn ≈ Rm:

( ) ( )

εlog = ln 1 + y

Rn

≈ ln 1 + y

Rm

= ln(1 + ε)

E% = ε − εlog

εlog
× 100 ≈ ε − ln(1 + ε)

ln(1 + ε)
× 100

(11)

Fig. 8. MATERIAL 1, Sw
essing Technology 183 (2007) 127–139 133

he identification results are taken within values of E% = 12%,
.e. ε = 0.25.

Second assumption limits the test to the sheets where the
imension L (Fig. 4), is not too much larger than the thickness
, so that σz stress can be neglected.

If this second condition is not respected, the identified
tress–strain behaviour is simply the one checked along x direc-
ion (Fig. 4) under plane strain condition. In other word, the
ethod is however applicable, but the results cannot be consid-

red valid for material stress–strain identification.
With this assumptions it is possible to calculate the bending

oment versus curvature (for unit length) on the sheet and to
ink the σ − ε parameters in Eq. (10), with the M–χ ones in (1):

= 2
∫ t/2

0
σ · y · dy = 2

∫ t/2

0
C̄ · εē · y · dy

= 2 · C̄ ·
∫ t/2 (

y
)ē

· y · dy = 2 · C̄

ē
·
∫ t/2

yē+1 · dy

0 Rn Rn 0

= 2 · C̄ · χē ·
∫ t/2

0
yē+1 · dy = 2 · C̄

ē + 2
·
( t

2

)ē+2
· χē

(12)

ift representation.
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Thanks to the hypothesis of linear deformation across the
heet and the choice of the hardening law (10) which does
ot include additional constant terms, it is possible to compare
irectly (12) and (1), and to extract consequently the material
ardening parameters.

C = 2 · C̄

ē + 2
·
( t

2

)ē+2
⇒ C̄ = C · (ē + 2)

2 · (t/2)ē+2

e = ē

(13)

n conclusion, for each identified bending moment–curvature
aw constituting a portion of the complete one the parameters
f the simplified hardening law (10) are available by relations
13). Then, by means of a method similar to the one described in
ig. 3 for bending moment–curvature identification, it is possible

o identify the stress–strain hardening behaviour as a concatena-
ion of curve portions. In other words, using relations (13) for all
he identified bending moment–curvature curves (one for each
ouple of F–d acquisitions) the same number of stress–strain
urves are available. Since the said curves are linked each one

o different bending levels, it is necessary to determinate the
alidity field for each curve. This task is resolved similarly to
he bending moment–curvature case (Fig. 3) using reference
eformations instead than reference curvatures. The reference

σ

b
e

Fig. 9. MATERIAL
essing Technology 183 (2007) 127–139

eformations are generated directly from the reference curva-
ures employing the usual linear deformation hypothesis:

r,i = χr,i · t

2
· f = εmax,i · f ; 1/3 ≤ f ≤ 2/3 (14)

Since for each reference curvature are available all the defor-
ation values included between 0 and the maximum value εmax,i,

hould be supplied a rule to tune the more appropriate refer-
nce deformation. The preferred way is reducing the maximum
eformation to values near the middle deformation (1/2)·εmax,i,
nd this is achieved by means of the coefficient f defined in
14). Experience showed that all the values for f provided in
14) furnish satisfactory results for the discussed curve portions
omposition.

Particularizing the Eq. (13) for the elastic range (e = ē = 1,
¯ ⇒ E), the Young’s modulus E, is immediately available.

The last step to perform for the identification of stress–strain
s a smoothing procedure applied on all partial curves obtained,
nd the consequent calculation of the unique Swift’s relation:

¯ ē
= C(ε0 + εp) (15)

In principle, the three free parameters C̄, ε0, ē in (15) could
e determined by means of a non-linear equations system; the
quations of this system impose to the relation (15) to include

2, tensile test.
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hree spaced points of the composed σ–ε curve. Practically the
oint are more than three, in particular if there are h groups of
hree points, the parameters are calculated as mean of the relative
values.
Obviously, this operation is gainful if the identified material

ehaviour matches well the three-parametric law (15), but, like
entioned before, this is generally verified for the most part of
etal materials.

. Numerical comparison

In order to validate the method, some FEM simulations are
xecuted while respecting the actual operative conditions. At this
tage of the work a FEM validation is considered appropriate, as
matter of fact it offers the possibility to test the method limits
mploying a wide variety of material models, in the absence of
ny measurement errors; this allows to focus attention only on
athematical modelling validation.
Fig. 5 synthetically shows how FEM simulations are per-

ormed to achieve comparisons.
.1. FE model

Taking advantage of geometric symmetric and of inefficacy
f z direction (Fig. 4), FEM simulations are executed by means of

F
i
v
(

Fig. 10. MATERIAL 3, pu
essing Technology 183 (2007) 127–139 135

2-D model (Fig. 6) which, adequately loaded and constrained,
odels the right side of air-bending process. The elements used

PLANE42 in the ANSYS® code) present four nodes with 2
.o.f.’s (displacements on element lying plane), and Coulomb
riction is used for the sheet–die contact analysis. The model is
oaded by means of increasing penetration (d in Fig. 1b), effec-
ive load applied results in an increasing-decreasing path. During
he whole process the force-penetration data are stored and the
btained curve is consequently elaborated as would occur for
xperimental reference data.

It is interesting to investigate on the reliability of linear defor-
ation hypothesis across the sheet thickness. To this goal a FEM

imulation is executed in order to analyse the deformation vari-
tion across the thickness just below the punch when increasing
he curvature χ: results are shown in Fig. 7.

Fig. 7 reveals that deformation increases towards curvature,
nd linearity assumption becomes more and more inappropri-
te, but it also shows that, in spite of the small thickness of
heets, the hypothesis carried on is almost always realistic. In
onsideration of these results, the linearity assumption is con-
idered appropriate within the deformation limits provided by

ig. 7c, where maximum deformation experienced is approx-

mately 0.22. It is therefore substantially the same limit pre-
iously imposed to stress–strain identification by relation (11)
ε = 0.25 → εlog ≈ 0.22).

re exponential law.
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be expected, assumes a value very close to 0.

Material model 4 (Fig. 11) follows a bilinear law, and
although employed in simplified models [1], it represents ade-
quately the material behaviour only in few cases, it is however
Fig. 11. MAT

.2. Results and discussion

FEM simulations are executed using different material types
ith the aim to test algorithm flexibility in material identifi-

ation, and its aptitude to identify bending moment–curvature
ehaviour by means of a composition of purely exponential
urve portions.

All the comparisons hereinafter are presented by pictures
ontaining input and identified values, punch load versus pen-
tration, bending moment towards curvature, true stress–true
train curve.

The material 1 (Fig. 8) taken from [8], is a typical metal-
orming steels. It presents an hardening behaviour which fol-
ows the Swift’s law, and since the final stress–strain result is
xpressed by the same law (15), for this steel a numeric com-
arison of the Swift’s parameters is also possible.

Instead, steel 2 (Fig. 9) is presented in numeric form directly
rom an experimental uni-axial tensile test. This hardening
ehaviour appears lightly different from the previous ones,
ainly for a smoother shape.

The material 3 (Fig. 10) is governed by a purely exponential

aw, like in Eq. (10), and the same operating method is used here;
rst the bending moment–curvature behaviour is determined by
oncatenation of purely exponential curve portions (1) and then,
L 4, bilinear.

s usual, the same treatment is reserved for the stress–strain
urve which is at the end fitted by Swift’s law (15). It is shown
s in this case the parameter ε0 of the mentioned law, as it would
Fig. 12. Experimental apparatus.
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Fig. 13. Material behavi

sed because it involves several analytic simplifications. In this
articular case here discussed, it is considered to highlight iden-

ification method limits, since it is not easy to adapt exponential
urves to straight lines.

As explained above, force-penetration are the main input data
or the algorithm proposed which, taking input from some val-

c
t
o
z

Fig. 14. Material identification by an experimenta
plane strain condition.

es in the elastic zone and some values in the hardening one, and
sing the air-bending geometry and the predetermined friction

oefficient, executes the computation. It is interesting to note
hat force-penetration behaviour is similar to the stress–strain
ne, and this involves the possibility to choose appropriately the
one where it is favourable to increase measurements acquisi-

l test (material 2 in plane strain condition).



1 Proc

t
c
d
t
f
z
p
b

m
t
b
t
t
l

4

s
b
e

u
p

(
t
i
c
i
b
m

p
t

(
c
c

5

a
M
e
f
a
b
n
a
s
l
A
r
u
p
c
e

t
T
i
t
p

b
w
a
t

v
f

a
a
c
o

o
p
f
p

R

[

[

[

38 L. Antonelli et al. / Journal of Materials

ion. In facts, where force-penetration curve presents a strong
hange of slope it is appropriate to increase the measurement
ata since this will advantage the identification smoothing on
he corresponding stress–strain region. Usually 2 measurements
or the elastic zone, and 12–14 measurements for the hardening
one are enough to obtain accurate material identification. These
oints, as Figs. 8–11 show, are taken within the limits imposed
y the linearity deformation hypothesis discussed above.

The numerical results, the graphic comparisons of bending
oment–curvature and stress–strain and the related zooms on

he elastic zone limit, demonstrate a general suitable algorithm
ehaviour, especially for materials 1–3 (Figs. 8–10). Instead
he model finds some limits for materials 4 (Fig. 11), where
he chosen bilinear behaviour is very hard to fit by exponential
aws.

. Experimental test

In order to show the method application in a real case, in this section are
ynthetically illustrated the identification results carried out on a actual air-
ending test. The test is executed by means of a standard tensile test machine,
quipped with typical sheet bending tools, as shown in Fig. 12.

The sheet material behaviour is known, since it is the material 2 tested by the
ni-axial tensile test and used in the FEM models showed in Fig. 9. This makes
ossible, after some modelling, to compare the resulting stress–strain curves.

Since the model is able to identify the material behaviour along x direction
Fig. 4) independently from the plane-stress/strain condition, and given that
he geometric dimensions of the specimen suggest that experimental bending
s executed under plane strain condition (L = 80 mm, t = 1 mm) it is possible to
onclude that the identified material in this case is the stress–strain behaviour
n plane strain condition. Consecutively, the final curves comparison should
e made between the identified one and the stress–strain behaviour of tested
aterial in plane strain condition.

Using FEM it is possible to re-perform an uni-axial tensile test now under
lane strain condition. The resulting true stress–true strain curve (Fig. 13), effec-
ively constitutes the curve to compare to the one identified during the process.

It is important to highlight that, since the number of measurements processed
m = 4) is limited and the consequent computation is quick, the identification
an be conducted in a real time execution, supplying however very satisfactory
omparison results (Fig. 14).

. Conclusions

A new identification method of material elasto-plastic char-
cteristics, based on sheet air-bending, is proposed and tested.
ethod input data are the actual force-penetration values experi-

nced during the bending, geometric features, and the sheet–die
riction coefficient. By means of a multi-joint bending modelling
nd a simplified exponential law describing the joints hardening
ehaviour, the bending moment–curvature law is identified in
umerical form. Then, in a first step through numerical form
nd then using Swift’s analytical law, the true-stress versus true-
train relation is calculated benefiting from the hypothesises of
inear deformation across the sheet and plane-stress condition.
lthough in principle only 2 force-penetration measurements are

equired for the hardening identification, the problem is solved

sing more measurements (12–14) sampled inside the whole
enetration phase, and the consequential hardening law is the
omposition of six to seven curve portions resulting from the
laboration of couples of force-penetration points. The valida-

[

[

essing Technology 183 (2007) 127–139

ion tests performed regards FEM simulation and experiments.
he FEM ones are performed to test the limits of the mathemat-

cal method. The experimental test is carried out to demonstrate
he procedure feasibility, and the possibility to manage both
lane strain and plane-stress conditions.

Generally the method demonstrates a suitable behaviour for
oth test typologies, as results show. The composition technique
hich considers portions of purely exponential curve is able to

dapt to real and unpredictable hardening behaviour, both in
erms of bending moment–curvature and stress–strain.

Eventual smoothing on data to get an unique Swift’s law pro-
ides a more manageable stress–strain curve making it possible
urther predictable simulations of air-bending processes.

If only springback should be controlled, the multi-joint model
llows to manage also bimetallic sheets or materials presenting
n influential surface covering, the worthiness of the identifi-
ation is then limited to bending moment–curvature data but
n-line bending control can be performed.

Finally, as experimental tests show, the method is also usable
n a very real time basis, taking account of few measurement
oints and thus profiting of the reduced computation time; there-
ore, springback compensation of the sheet under bending is
ossible using the material identified from time to time.
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