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SUMMARY

We define a bivariate mixture model to test whether economic growth can be considered exogenous in
the Solovian sense. For this purpose, the multivariate mixture approach proposed by Alfo and Trovato is
applied to the Bernanke and Giirkaynak extension of the Solow model. We find that the explanatory power
of the Solow growth model is enhanced, since growth rates are not statistically significantly associated with
investment rates, when cross-country heterogeneity is considered. Moreover, no sign of convergence to a
single equilibrium is found. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many recent papers have pointed out that cross-country models based on the Mankiw, Romer
and Weil (MRW hereafter; Mankiw et al., 1992) specification of the Solow (1956) growth model
do not allow for heterogeneity among countries. Bianchi (1997), Bloom et al. (2003), Brock and
Durlauf (2000), Desdoigts (1999), Durlauf (2001), Durlauf et al. (2001), Durlauf and Johnson
(1995), Kalaitzidakis et al. (2001), Liu and Stengos (1999), Masanjala and Papageorgiou (2004),
Paap and Van Dijk (1998), Paap et al. (2005) and Quah (1996, 1997) all found strong parameter
heterogeneity in cross-country or panel type growth regressions. This evidence is in contrast to
the homogeneity assumptions of the standard Solow model. It is common practice to identify
three possible sources of heterogeneity: varying parameters across countries, omitted variables
and nonlinearities in the production function. Each of these sources has been studied applying
specific theoretical or statistical modifications to the MRW model under both parametric and
semi-parametric approaches. The present paper aims at testing the explanatory capability of the
MRW model while defining a parsimonious statistical approach to model different sources of
heterogeneity. To simplify model estimation, we assume that heterogeneity sources can be simply
modeled by introducing a latent effect to each country growth experience allowing for a posterior
classification of countries based on the latent variable values (see, for example, Paap et al., 2005;
Paap and van Dijk, 1998). Similar statistical approaches have also been discussed by Canova
(2004) and Bloom et al. (2003). Canova (2004) discusses a Bayesian approach to model regional
data; while the approach is explicitly based on a finite mixture representation, model parameters
are estimated using permutation-based tools for detecting structural break points in time series.
Thus, it could be computationally cumbersome when the sample size or the number of components
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in the finite mixture is high. The approach followed by Bloom et al. (2003) does not directly test
for the existence of more than two groups. Moreover, these proposals are based on extensions of
the standard growth equation.

According to the Solow model, in the long-run steady state the level of real output per worker
is a function of two variables: the saving rate and the labor force growth rate. Since saving and
growth rates vary across countries, each country has a specific steady state; if country steady state
correctly describes the distribution of output per worker, the Solow model assumes that the long-
run growth rate is independent of saving rates and capital accumulation. According to MRW and
Barro and Sala-i-Martin (1992), if economies are homogeneous in technologies and preferences
and we assume diminishing returns of capital, countries’ growth rates of per capita income should
converge to a single equilibrium. The evidence of cross-country (conditional) convergence is
considered as supporting the Solow model, while absence of convergence has been considered
evidence in favor of endogenous growth theories. However, Azariadis and Drazen (1990), Durlauf
and Johnson (1995), Bernard and Durlauf (1996) and Galor (1996) show that the Solow model may
also be consistent with the existence of convergence clubs. Thus, failure to allow for unobservable
heterogeneity in country steady states may lead to spurious rejection of the Solow model.

Our proposal concerns both modeling heterogeneity in country-specific steady states and
convergence issues. According to the intuition of Bernanke and Giirkaynak (2001), levels of
per capita income and growth rates are correlated and thus have to be studied in a bivariate
framework. If convergence occurs, poor countries grow faster than rich ones; therefore we should
find a negative (significant) correlation between residuals in the regression models for, respectively,
levels and growth rates. By adopting the proposed model, we assume that, given steady-state
characteristics, the latent effects impact the steady-state level of income in the univariate profile,
and both steady levels and growth rates in the bivariate process, accounting for dependence between
the two responses. This means that if poor countries catch up with the levels of per capita income of
rich countries, the corresponding latent structures should be negatively correlated. The sensitivity
of the Bernanke and Giirkaynak (2001) approach to parameter heterogeneity has not yet been
addressed. We find strong evidence that allowing for parameter heterogeneity leads us to cast
doubt on the conclusions of Bernanke and Giirkaynak (2001), since we find no evidence of global
convergence; as shown in the following, the latent effects in the levels and growth rates models
are positively correlated. Data on human capital are from the World Bank’s World Development
Report.

The paper is divided into four sections. Section 2 illustrates the univariate model for levels of per
capita income, discusses the extension to joint modeling of levels and growth rates and reviews
computational details of the corresponding EM algorithm. Section 3 introduces the empirical
section, presents the results obtained and shows how unobserved heterogeneity can help explain
differences among countries. Section 4 concludes.

2. THE ECONOMETRIC MODEL

Following MRW, we start by assuming that the output Y; for country i =1,...,n at time
t=1,...,T can be described by a Cobb—Douglas type function of the following inputs: raw
labor L;;, physical capital K;;, human capital H;; and state of technology A;,. This relationship
may be elicited as

FYilAir, Kirs Hir, Lip) = K2H Ay Lip) ' 4P (1)
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where o, B € (0, 1) represent the shares of physical and human capital, respectively. Technology
(broadly defined) and labor are assumed to grow at exogenous rates, respectively g and n;, i.e.

Ay = Ajpe® 2)
Ly = Lige™" 3)

According to the deterministic version of the Solow model, country-specific laws of motion
for capital inputs determine the corresponding accumulating process. Using lower-case letters to
denote per-worker quantities, i.e. y;, = Y;/Lit, k;, = K;/Lit and h;, = H;/Lit, we can rewrite the
production function and the capital accumulation equations in a standard way as follows:

S QirlAir, kig, hig) = Aﬁ_“_ﬂ)kﬁhg “
kit = s1iYir — 8Ky )
iy = si¥is — 8H s (6)

where § is the depreciation rate, common to both inputs, while s; and s;; represent the share of
output invested in physical and human capital, respectively.

We can now solve explicitly for the balanced growth path of output per worker. The output per
worker in the balanced growth path is therefore given by the following log-linear function:

a [ sk, ] B [ shi;
In + In
(IT-a—=8) [(ni+g+9) (IT-a-=8) [(ni+g+9)

where ¢;; represent independent mean-zero homoscedastic Gaussian errors, and parameter estimates
are usually obtained through ordinary least squares, under standard i.i.d. hypotheses. Several
authors (see, for example, Brock and Durlauf, 2000; Durlauf, 2001; Durlauf et al., 2001; Durlauf
and Johnson, 1995; Liu and Stengos, 1999; Kalaitzidakis et al., 2001; Masanjala and Papageorgiou,
2004) have found empirical evidence for heterogeneity in regression parameters. This may be for
various reasons. For example, the relationship between output and factors could be far from linear;
a homogeneous Cobb—Douglas function may not correctly describe the factor allocation process,
since countries may have different production functions. A further possibility is that residuals can
be correlated among units over time. While heteroscedasticity may be corrected through traditional
parametric applications, Zellner (1969) shows that standard OLS estimates are averages of group-
specific parameters only if no correlation exists between observations in the groups. However,
economic series are only rarely uncorrelated. Many other potential variables could be used to
explain the growth rates. The literature on growth is full of tests on the effects of not yet considered
new covariates; Levine and Renelt (1992) show that new variables are not robustly explicative
in growth equations, while Sala-i-Martin (1997) finds that new covariates can be used to model
economic growth. The problem is that potential regressors could number 100 or more. Inserting
them we could gain in explanation power but lose simplicity and model interpretation would not
be an easy matter. According to Aitkin (1999), we assume that some fundamental covariates were
not considered in the model specification and that their joint effect can be accounted for by adding
latent effects to the linear predictor, thus relaxing the assumption of i.i.d. residuals.

Let us start assuming that, conditional on a set of individual latent effects u#; which represent
the effects of unobserved sources of heterogeneity, the observed log output per worker In(y;),

In(y;;) = yo + :| + &ir @)
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i=1,...,n,t=1,..., T, are realizations of independent variates, drawn from a normal density.
For the sake of simplicity, we will denote by
Sk,', Shit

* —, x1i[:1n|:—
(I —a—p) (ni+g+9) (ni+g+9)

LSRG g —)

s V2 =
the set of model parameters. The regression model for log-output per worker is defined as

Elln(yi)luil = vo + xiny1 + Xiny> + u; ®)

Latent effects appear additively in the linear predictor, but this assumption can be relaxed by

associating random parameters to some elements of the covariates set, generalizing to a random
coefficient model. Given the assumption of conditionally independence, we have

T T
fi= Filxiw) = U Qulxi )} = [ £a
=1 t=1

T
1 1 ,
= 1;[1 { N exp [_F(ln(yit) — Yoi — Y1Xir1 — Y2Xir2) ] } )

Treating the latent effects as nuisance parameters, and integrating them out, we obtain for the
likelihood function the following expression:

Lo =] { / f,-dG(u)} (10)
=1~

where u represents the support for G(u), the distribution function of ui. Model parameters
in (8) can be estimated through the marginal likelihood in (10), where the intercept term
yoi = [In(A)o + gt + u;] varies across countries in order to capture country-specific features. In
this context, the random component in yy; represents mean zero deviations from the fixed part
In(A)y + gt; strictly speaking, country-specific latent effects u; capture country variability in
the dynamic process of the ‘technological’ factor. In the standard formulation of equation (2),
technology differs between countries only to the extent that each country starts from a different
(nonrandom) initial condition, In(A);o. The focus of our paper is rather on the estimation of the
latent variables affecting countries’ growth experiences, namely u;. Various alternative parametric
specifications may be proposed for modeling random effect distribution. A standard approach is
to turn to numerical quadrature techniques, such as Gaussian or Adaptive quadrature (see, for
example, Liu and Pierce, 1994). Other alternatives are simulation methods such as Markov chain
Monte Carlo methods (McCulloch, 1994), or simulated maximum likelihood methods (Geyer and
Thompson, 1992; Munkin and Trivedi, 1999). Parametric specifications of the mixing distribution
can, however, be restrictive and are generally unverifiable; for this reason, we propose to avoid
specifying a parametric distribution for the random effects, and leave G(-) completely unspecified.
As proved by Lindsay (1983a, 1983b), the MLe of G(-) is concentrated on a support of cardinality
at most equal to the number of distinct points in the analyzed sample. For fixed ¥, the likelihood
is maximized with respect to G(-) by at least one discrete distribution G,(-) with at most n
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support points. Therefore, the integral in (10) may be approximated by a sum on a finite number
of locations, say K:

n K n K
MQ=H{XN@MMMW}=H{2}MW* (11)
i=1 k=1

i=1 (k=1

where f(y;|X;, ux) = fi denotes the response distribution in the kth component of the finite
mixture. Locations u; and corresponding masses m; (prior probabilities) represent unknown
parameters, as does K, which is treated as fixed and estimated via penalized likelihood criteria.
Denoting by § the complete parameter vector, we obtain

dloglL(3)] _ M@) " mfa M%fm K M%fm
e 2| & =y ®
== Zﬂkfik ! !
k=1

where w;; represents the posterior probability that the ith unit comes from the kth component of
the mixture. The corresponding likelihood equations are weighted sums of those for an ordinary
log-linear regression model with weights w;;. Solving these equations for a given set of weights,
and updating the weights from the current parameter estimates, defines an EM algorithm (see, for
example, McLachlan and Peel, 2000).

2.1. The Multivariate Case

Up to now, we have discussed only the univariate case. However, Bernanke and Giirkaynak (2001)
observe that testing the Solow model is equivalent to testing independence between the steady-
state national growth rates and both saving and human capital formation rates. They note that
levels and growth rates of output per worker are different dimensions of the same phenomena,
and reject the Solow hypothesis using seemingly unrelated regression equations (SURE) for levels
and growth rates of per capita output. As noted by Caselli (2001), one possible explanation of
their results is that the analyzed economies are not on a balanced growth path; should this be the
case, the Solow model would still be consistent with reality. A further reason is that statistical
models used to test Solow conclusions may lead to wrong conclusions if unobserved country-
specific heterogeneity is present. As outlined before, our aim is to test whether the assumption of
technological exogeneity is a helpful approximation of the driving process of per capita income
levels and growth rates when heterogeneity across countries is considered. We assume that the
analyzed sample is composed of n countries, with yj;; and yp;, denoting, respectively, per capita
national output and growth rate at time t =1, ..., T. Vectors of, possibly outcome-specific, p;
covariates have been recorded for each country and will be denoted by xy;; and xy;,. To simplify the
discussion, consider the case where covariates do not differ across outcome s and are, respectively,
equal to xy;; = In[sk;;/(n; + g + 8)] and xp;; = In[sh;;/(n; + g + 8)]. Following the usual notation
for multivariate data, let y; = (y;1, yi2) denote respectively the vector of observed per capita
and growth rate of output for the ith country, i =1,...,n in the analyzed time-window. The
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univariate approach above should be extended in order to take into account potential dependence
among outcomes (Davidson and Mackinnon, 1993).

For example, endogeneity of regressors in cross-country or longitudinal estimation is a well-
known problem which has not been given a final solution, as pointed out, among others, by Mankiw
(1995). Furthermore, omitted covariates may affect both per capita output levels and growth rates;
therefore, modeling the association among the two outcomes can be a fundamental aspect of
research. For complete generality, we assume that unobserved heterogeneity affects outcomes in
different ways, i.e., that the latent effects in the two regression equations are correlated. In the
MRW context, the t—period difference of equation (7) along the balance growth path leads to
the conclusion that only time-related changes in technology affect country-specific growth rates;
therefore, the growth rate is independent of capital or physical accumulation. Assuming that
technology may differ across countries reflecting ‘resource endowments, climate, institutions and
so on’(MRW, p. 411), we can write it in classical statistical notation as

Eln(A;) = a, + &; (13)

while balanced growth per worker output, In(y}), matches the actual one, In(y;), minus the
stochastic and stationary term, &;,, which represents the cyclical deviation from that path:

In(yir) = In(y;) — & (14)

Therefore, we have the following system:

}’1zt=lﬂ(y,t)=5z+ l—g—ﬂln [n,-ikéz+8:|
E(y) = B sh; . (15)
. =g [ ers) et

Yair = g¥ir = In(yir)* — In(yjp) = In(Ayr) — In(Ajo) = 18() + &ir — &io

Indeed, differentiating the output per worker in equation (7) along the BGP we obtain the second
expression of the system. Let us assume, according to Bernanke and Giirkaynak (2001), that sh, sk
and the population rate of growth are included as predictors in the estimated regression equations;
therefore, if none of these covariates is significant, the assumption of an exogenous ‘technology’
cannot be rejected. The authors reject the hypothesis, finding that some of the specified covariate
effects are statistically significant. However, even if the assumption is not rejected, the technology
cannot be considered really exogenous; rather, we can still use the Solow model to describe,
in a parsimonious way, the role of human and physical capital in countries’ growth rates. As
Romer (2001) points out, Bernanke and Giirkaynak (2001) do not really test for exogeneity of
technology; rather they evaluate whether asymmetries in growth among countries can be explained
by differences in capital accumulation. Azariadis and Drazen (1990) show that multiple steady-
state equilibria can be generated by capitals rates thresholds, producing a non-convex production
function. Durlauf and Johnson (1995) and Bernard and Durlauf (1996) show that multiple steady-
state regimes can be correctly estimated only if one uses subsets of countries; otherwise, formal
convergence tests based on common linear models may be biased. Starting from the model of
Bernanke and Giirkaynank (2001), we propose to admit multiple BGPs entailing heterogeneous
groups of countries. Specifically, since the error terms in system (15) are correlated, we use a
multivariate expansion of the univariate model (7), allowing for correlated latent effects.

Copyright © 2008 John Wiley & Sons, Ltd. J. Appl. Econ. 23: 487-514 (2008)
DOI: 10.1002/jae



TESTING FOR COUNTRY HETEROGENEITY IN GROWTH MODELS 493

Let ui = (u;1, u;») denote the corresponding set of country- and outcome-specific random effects.
The hypothesis is that (Y;, Y2;;) represents conditionally independent Gaussian variates given
the latent effects, which vary over outcomes and account for both cross-country variation and
dependence among outcomes. These models are sometimes referred to as multifactor models (see,
for example, Winkelmann, 2000). Given the modeling assumptions, the bivariate regression model
can be written as follows:

Yiji = Yo+ X1V +Xoivej +uij,  j=1,2 (16)

As mentioned before, u;; represent subject- and outcome-specific heterogeneity in the intercept
parameters. The corresponding likelihood function can be rewritten as follows:

n n T
L(-)=H{/f(y,-|x,»,ui>} =11 / TTTT f Gigelxics wij) | dGui) 17
i=1 u i=1

il o=l

This multiple integral cannot be solved in closed form, even if some simplifications are possible.
We provide a nonparametric ML estimation of the mixing distribution G(-) following the path
discussed for the univariate case (for a detailed discussion, see Alfé and Trovato, 2004). In this
case, the likelihood function becomes

n

n K K T
L(-)=H{Zf,m}=ﬂ S ATTIT 7 Gigelxies wjn) | (18)
i=1 k=1

i=1 k=1 | j t=1

where 7, = Pr(ug) = Pr(uy;, ux2), k =1, ..., K represents the joint probability of locations uy.

As before, locations u; and corresponding masses m; represent unknown parameters. The
elements u;; of u; can be estimated by introducing, in the linear predictor, the interaction between
a K-level factor and the indicator variables dj;, where dj; =1 VYi=1,..., n,j=1, 2 and
t=1,..., T iff the jth outcome is modeled, O otherwise. Deriving w.r.t. the vector of model
parameters, y, we have

d10g[L(y)] ae(y) " mfa alog(f,k) "L dlog(fa)
; (19)
3)/ 1:1; ink‘f’k Zl:kz:;Wk y
where - -
Fie = Filxiw) =TT/ Oijelxios wp) = TT T Fim (20)

j=11=1 j=11t=1

and wj; represents the posterior probability that the ith unit comes from the kth component of
the mixture. The corresponding likelihood equations are weighted sums of those for an ordinary
multivariate regression model with weights w;; the adopted EM algorithm can be sketched as
follows.
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2.2. Computational Details

As is well known (see, among others, Aitkin, 1999; Wang et al., 1996), the EM algorithm is
designed to maximize the complete data likelihood in expression (10). Let us start denoting by
z;, = (21, - - -, Zig) the unobservable vector of component indicators, where z;; = 1, if the country
has been sampled from the component of the mixture, and 0 otherwise. Since the component labels
in z are unobservable, they have to be treated as missing data. We therefore denote the complete
data by y. = {y, z}. The likelihood for the complete data is defined by the following expression:

n K
LC) = [ [Tt s yilxi, woy 1)

i=1 k=1

while the corresponding log-likelihood function is given by

n K
()= > 2 [log(m) + Y log{f (vilw)} (22)

i=1 k=1 i

where

2T 2T
fie = fOilxwe) =[] T[S Gielxio wep) = T[] fiie

j=11=1 j=11=1

Since the z;; are treated as missing data, in the rth iteration of the E-step, we take the expectation
of the log-likelihood for complete data over the unobservable component indicator vector z; given
the observed data y; and the current parameter estimates, say 8" = {y”, u”?, z("}. In other words,
we replace z;; with its conditional expectation:

) = wf) = (23)

K
> mfi
k=1

where Z; (87 = wE,:) is the posterior probability that the ith unit belongs to the kth component of
the mixture. The conditional expectation of the log likelihood for complete data is expressed by
the function

n K
0() = Esn{lc(lyi} = D> wi {log(me) + log(f u)} (24)
i=1 k=1

The M-step aims at maximizing the expected value of the complete data likelihood given the
observed data and the current parameter estimates. The estimated parameters are the solution of
the following M-step equations:

9 n (r) (r)
sz{w;k_vfm —0 (25)
oy — | K
0 I~ 9
o= 2.0 Wiy loe(fa) (26)
i Iy
i=1 j=1
Copyright © 2008 John Wiley & Sons, Ltd. J. Appl. Econ. 23: 487-514 (2008)

DOI: 10.1002/jae



TESTING FOR COUNTRY HETEROGENEITY IN GROWTH MODELS 495

To obtain updated estimates of the unconditional probability 7; we replace each zj; by 2 (877),

and, solving equation (25), we obtain
n (r)

A(r w;
Y 7" (27)
i=1

which represents a well-known result from ML in finite mixtures. Solutions of equation (26) can
be obtained through an iteratively weighted least squares (IWLS) algorithm.

If the adopted criterion is based on the sequence of likelihood values » > 1, r € N , the E and
M-steps are alternatively repeated until the relative difference

|g(r+1) _ g(r)l

G <e €>0 (28)

changes by an arbitrarily small amount. Since £U*D > ¢0) convergence is obtained with a
sequence of likelihood values which are upward bounded. Penalized likelihood criteria (such
as AIC, CAIC or BIC) have been used to estimate the number of mixture components.

The use of finite mixtures has some significant advantages over parametric mixture models.
First, it allows us to classify countries in clusters characterized by homogeneous values of the
latent effects, where this kind of classification is possible only if country heterogeneity does
exist. Second, since locations and corresponding probabilities are completely free to vary over the
corresponding supports, the proposed approach can readily accommodate extreme and/or strongly
asymmetric departures from the Gaussian assumption.

3. DATA DESCRIPTION AND RESULTS

To test whether heterogeneity bias affects conclusions drawn in the ‘growth empirics’ framework,
we propose a reanalysis of the dataset used by Bernanke and Giirkaynank (2001) (data can be found
at http://www.princeton.edu/~bernanke/data.htm). The data are drawn from the Summers—Heston
Penn World Tables (PWT) version 6.0, which extends the data through 1998 for most variables.
For reasons of space we avoid comparison with older versions, and use PWT version 6.0 for years
1960—1995 for non-oil countries.

Bernanke and Giirkaynank (2001) discuss both cross-section and pooled cross-section data;
for this reason, we start our reanalysis by fitting the univariate mixture model 7 to the cross-
section data. Table I shows the results obtained. As can be easily seen, the approach based on the
finite mixture parametrization finds four to five components (which can be interpreted as different
groups of countries), thus pointing out that substantial heterogeneity is present. However, looking
at countries (posterior) classification, we obtain non-sense clusters: for example, the USA and
Uganda are in the same group together with Rwanda and Switzerland, etc. (see Table II).

Thus the finite mixture approach applied to cross-section data does not produce satisfactory
results; in our perspective, this can be due to country-specific heterogeneity being masked by
long-term averages (from 1960 to 1995) of per capita GDP. That is, country-specific heterogeneity
cannot be captured if one does not look at between-countries variation which cannot be explained
by observed covariates but remains persistent over the analyzed time period. For this reason, we
turn to apply the proposed mixture model to the non-overlapping 5-year period from 1960 to
1995; the covariates have been averaged over the corresponding time period, while the dependent
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Table I. Cross-section estimates 1960—1995: OLS type and finite mixture models

Textbook Solow model: PWT 6 non oil sample

OLS FUME
Textbook Solow model
Iny195 Coef. SE Coef. SE
Insk6095 1.11 0.14 1.13 0.07
Ingd6095 —2.54 0.50 221 0.35
cons 4.58 1.44 5.45 1.02
Obs. 90 90
R? 0.66
0 —71.09
k 5
Augmented Solow model
Insh6095 0.65 0.09 0.52 0.04
Insk6095 0.54 0.11 0.67 0.05
Ingd6095 —2.35 0.39 —2.05 0.22
cons 5.81 1.12 6.53 0.64
Obs. 90 90 R2 0.79
l —52.72
k 4
Restricted Solow model
dskn6095 0.62 0.11 0.63 0.10
dshn6095 0.68 0.09 0.64 0.08
cons 8.84 0.10 8.81 0.10
a 0.27 0.04 0.28 0.04
B 0.30 0.04 0.28 0.03

Table II. Country clusters: FUME cross-section estimates—augmented model

Groups

—_

Congo, Jamaica, Tanzania, Zaire, Zambia

2 Bangladesh, Bolivia, Ecuador, Ethiopia, Finland, Ghana, Greece, India, Kenya, Malawi, Mali, Nepal,
Nigeria, Peru, Philippines, Sri Lanka, Togo, Zimbabwe

3 Algeria, Angola, Argentina, Austria, Belgium, Benin, Brazil, Burkina Faso, Burundi, Cameroon, Central
Afr. R., Chile, Colombia, Costa Rica, Denmark, Dominican Rep., Egypt, France, Honduras, Indonesia,
Ireland, Italy, Ivory Coast, Japan, Jordan, Korea Rep., Madagascar, Malaysia, Mauritania, Mexico,
Morocco, Netherlands, New Zealand, Nicaragua, Niger, Norway, Pakistan, Panama, Portugal, S Africa,
Senegal, Spain, Sweden, Syria, Thailand, Trinidad and Tobago, Tunisia, Turkey, UK, Uruguay,
Venezuela

4 Australia, Botswana, Canada, El Salvador, Guatemala, Hong Kong, Israel, Mauritius, Mozambique, Papua

N Guinea, Paraguay, Rwanda, Singapore, Switzerland, Uganda, USA

variables (level and growth rate of per capita GDP) are 5 years forward. The choice of 5-year
periods is usually adopted in the panel growth literature to hold sufficient degrees of freedom
while avoiding the negative effects of strong autocorrelation of dependent variables (Bond et al.,
2001). Moreover, leading dependent variables may reduce endogeneity bias.

Growth measures based on 5-year periods are adequate for studying the impact of traditional
cyclical variables, but may not help in understanding the impact of long-run factors. For this
purpose, we fit a similar finite-mixture model to 10-year intervals also. The parametric benchmark
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is represented by a feasible GLS (FGLS) approach. For the non-oil countries sample, Table III
reports parameter estimates and model diagnostics for both FGLS and univariate finite mixture
models 7, the latter applied to both 5- and 10-year periods. We present estimates for both textbook
and human capital augmented Solow models and, finally, for the restricted model.

The human capital augmented model clearly outperforms the textbook Solow model, as can
be evinced by looking at the log-likelihood of the augmented Solow model fitted via the
FGLS or the proposed finite mixture approach (FUME in the following). FUME estimates for
human and physical capital shares are lower than expected; however, parameter estimates for
this approach should be considered as conditional on the unobservable latent component, and
therefore have a different meaning from those obtained through the FGLS approach. FGLS
estimation of the Solow model gives more reasonable values for labor and capital shares, due to

Table III. 5 years FGLS and 5 years and 10 years finite mixture models

FGLS FUME: 5 years FUME: 10 years
Textbook Solow model: PWT 6 non-oil sample
Iny Coef. SE Coef. SE Coef. SE
Insk 0.592** 0.030 0.193** 0.023 0.193** 0.030
Ingd —1.005** 0.116 —0.188" 0.103 —1.126** 0.130
cons 7.487** 0.314 8.749** 0.295 6.279™* 0.357
L —37.58 —124.49 —139.65
o? 0.051 0.003 0.061
rr,fl_ 0.670 0.061
K 7 5
Obs. 538 538 353
Augmented version: PWT 6 non-oil sample
Insk 0.399** 0.031 0.174** 0.020 0.180** 0.027
Insh 0.350** 0.023 0.143** 0.014 0.086™* 0.021
Ingd —1.238** 0.092 —0.418** 0.097 —0.728** 0.132
cons 7.537** 0.250 8.547** 0.260 7.57** 0.357
L 22.580 —94.35 —115.1
o? 0.046 0.003 0.046
rr,fl_ 0.513 0.061
K 7 7
Obs. 530 530 351
Restricted model: PWT 6 non-oil sample
dsk 0.376** 0.031 0.170™* 0.023 0.201** 0.027
dsh 0.323** 0.024 0.142** 0.015 0.099** 0.020
cons 8.826** 0.033 8.811** 0.079 8.799** 0.086
14 59.64 —104.87 —120.3
a? 0.049 0.003 0.047
ol 0.524 0.061
K 6 7
a 0.221 0.129 0.017 0.155
B 0.190 0.108 0.013 0.076
Obs. 530 530 351

Significance levels: T10%; * 5%; ** 1%.

Note: Dependent variable: log of per capita GDP levels (PWT data); Insh, schooling of the working population (World
Bank Report data); sk, Summers—Heston corrected investment/GDP ratio (PWT data); Ingd, sum of the rates of change
in population and in technological progress plus depreciation (PWT data); K, number of mixture components selected by
BIC criteria; ¢, log-likelihood; o2, within-country (residual) variance; 03[, variance of the latent effects. Data are 5- or
10-year averages, dependent variable is forwarded.
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the marginal parametric interpretation given above. The assumption of conditional independence
(given the latent effects) which is at the basis of the FUME approach implies that the global
production function is obtained by weighting K different functions, each one corresponding to
a different component (subgroup) of the analyzed sample. This means that the estimates for
covariate effects can be shrunken with respect to a homogeneous model, since they come from
a weighted sum of different production functions. Since the PWT 6 sample collects data also
for poorest countries, measurement bias due to inefficiency of national statistical systems may be
present.

Figure 1 reports the empirical density of the log per capita GDP levels and the estimated
density obtained using, respectively, FGLS and FUME approaches. The empirical density clearly
suggests that population heterogeneity is present; moreover, if we compare the estimated and
empirical densities, the mixture model seems to better describe the data-generating process
(DGP).

As it is well known, due to non-standard conditions we cannot use standard parametric tools
to test the goodness of fit of a mixture model; as suggested by Aitkin (1997) and McLachlan and
Peel (2000), we can use, for diagnostic purposes, a plot comparing the fitted mixture distribution
with the empirical distribution function. Figure 2 shows the corresponding two (respectively
based on FGLS and FUME) fitted CDFs, together with 95% confidence bands for the observed
CDF based on the usual binominal interval. Note that the estimated CDF based on the finite
mixture approach provides a closer fit to the observed data, the departure in right side reflecting
the cluster composed by the USA and Switzerland. In contrast, the FGLS-based CDF shows
substantial and significant departures from the observed CDF for several values of the log of per
capita GDP.

Parametric univariate estimation correctly controls for heteroscedasticity, but it seems to be
inadequate to account for individual heterogeneity influencing the DGP. The potential presence
of heterogeneous subpopulations is adequately treated in the FUME approach; using penalized
likelihood criteria such as BIC, AIC and CAIC (Tables IV and V report such values for 5-year
and 10-year data) we choose seven components to estimate the unknown mixing distribution.

To provide a formal test for the null hypothesis that data are drawn from a seven-component
finite mixture, we employed the bootstrap-based procedure detailed in Romano (1988). The
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Figure 1. Observed and fitted kernel density distribution responses
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Figure 2. CDF limits, and FUME and FGLS CDFs. This figure is available in color online at
www.interscience.wiley.com/journal/jae

Table IV. Penalized likelihood criteria for 5-year finite mixture models

K 2 3 4 5 6 7 8
Textbook Solow model: PWT 6 non-oil sample

12 —339.38 —265.18 —211.32 —173.78 —135.65 —124.49 —124.39
BIC 701.2587 561.8599 463.143 397.0662 329.802 316.486 325.284
AIC 683.7597 537.3612 431.6447 358.5683 284.3045 263.989 265.787
CAIC 706.2587 568.8599 472.143 408.0662 342.802 331.486 342.284
Augmented Solow model: PWT 6 non-oil sample

12 —262.08 —187.59 —146.38 —-132 —126.47 —94.3491 —94.3487
BIC 546.6513 406.6872 333.263 313.4892 311.4471 256.1954 265.194
AIC 529.1523 382.1885 301.7647 274.9913 265.9496 203.6982 205.697
CAIC 551.6513 413.6872 342.263 324.4892 324.4471 271.1954 282.194
Restricted Solow model: PWT 6 non-oil sample

14 —277.25 —204.98 —160.15 —134.35 —104.87 —104.8

BIC 576.9991 441.456 360.7984 318.1924 268.2336 277.0916

AIC 559.5 416.9573 329.3001 279.6945 222.7361 224.5944

CAIC 581.9991 448.456 369.7984 329.1924 281.2336 292.0916

Notes: K: no. components; ¢, log-likelihood.

BIC = —2¢(-) + d log(n)

AIC = -2¢(-)+d

CAIC = —2¢(-) + 2d log(n)

where d is the number of parameters and n is the sample size.

observed value of the (scaled) D statistic is equal to 0: 0566 with the corresponding (approximate)
p-value = 0.304 (B = 1000 resamples). The same procedure has been adopted to test the null
hypothesis that data are drawn from the homogeneous GLS model, obtaining an approximate
p-value < 0.001 (B = 1000 resamples).

The proposed approach allows classification of countries on the basis of the posterior proba-
bilities estimates Wy, which represent a potentially useful by-product of the adopted approach.
According to a simple MAP rule, in fact, the ith country can be classified in the /th component if
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Table V. Penalized likelihood criteria for 10-year finite mixture models

K 2 3 4 5 6 7 8
Textbook Solow model: PWT 6 non-oil sample

14 —435.84 —194.8 —161.53 —139.66 —135.58 —124.83

BIC 894.1874 421.1066 363.5675 328.809 329.6481 317.1496

AIC 876.6883 396.6079 332.0692 290.3111 284.1506 264.6525

CAIC 899.1874 428.1066 372.5675 339.809 342.6481 332.1496

Augmented Solow model: PWT 6 non-oil sample

14 —198.62 —172.21 —148.84 —135.81 —127.46 —115.13 —114.71
BIC 424.2456 380.4198 342.6691 325.624 317.9204 302.2577 310.4087
AIC 403.2467 3524213 307.671 283.6263 268.9231 246.2608 2474121
CAIC 430.2456 388.4198 352.6691 337.624 331.9204 318.2577 328.4087
Restricted Solow model: PWT 6 non-oil sample

14 —211.04 —180.13 —157.42 —142.35 —141.99 —120.37 —120.37
BIC 444.5799 391.7541 355.3474 334.1907 342.4807 308.2419 317.2415
AIC 427.0809 367.2555 323.8491 295.6928 296.9831 255.7447 257.7447
CAIC 449.5799 398.7541 364.3474 345.1907 355.4807 323.2419 334.2415

Notes: K: no. components; ¢, log-likelihood;

BIC = —2¢(-) + dlog(n)

AIC = -2¢(-)+d

CAIC = —-2¢(-) + 2d log(n)

where d is the number of parameters and »n is the sample size.

Table VI. Location and probabilities of 5-year FUME

K Textbook model Augmented model Restricted model

Loc. Prob. Loc. Prob. Loc. Prob.
1 —1.580 0.045 —1.292 0.055 —1.307 0.053
2 —1.003 0.199 —0.848 0.212 —0.857 0.214
3 0.641 0.134 0.965 0.172 1.036 0.199
4 —0.528 0.105 0.565 0.124 —0.286 0.199
5 0.174 0.189 0.160 0.211 0.150 0.208
6 —0.172 0.130 —0.279 0.199 0.571 0.128
7 1.154 0.199 1.327 0.027

Note: K, number of mixture components selected by penalized criteria; Loc, locations; Prob., prior probabilities to
belonging to that local area.

wii = max(W;, ..., wig). It is worth noting that each component is characterized by homogeneous
values of estimated latent effects; i.e., conditionally on the observed covariates, countries from
that group show a similar structure, at least in the steady state. The latent variables should capture
the effect of missing covariates such as those related to institutions; estimated locations are shown
in Table VI, while corresponding clusters are reported in Table VII.

For poor countries, we may note that the random terms negatively affect the level of the
log of per capita GDP, while the effect is higher and positive for the richest ones such as the
USA, Switzerland and other more industrialized countries. The conclusion is that the Solow model,
conditionally on heterogeneous groups, helps us understand the differences among countries, while
allowing for balanced growth paths; in other words, FUME is able to measure local variation in
the observed data.
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Table VII. Univariate posterior classification

Country y u; Oy,
Group 1

Total 7.284 —1.274 0.041
Ethiopia 7.102 —1.292 0.001
Malawi 7.258 —1.292 0.001
Nepal 7.570 —1.210 0.172
Tanzania 7.149 —1.292 0.000
Zaire 7.353 —1.290 0.029
Group 2

Total 7.765 —0.850 0.018
Bangladesh 7.767 —0.848 0.015
Benin 7.783 —0.847 0.001
Burkina Faso 7.473 —0.848 0.007
Burundi 7.457 —0.847 0.001
Congo 8.030 —0.848 0.007
Ghana 7.909 —0.847 0.000
India 7.804 —0.856 0.062
Indonesia 8.112 —0.847 0.005
Kenya 7.815 —0.847 0.000
Madagascar 7.718 —0.847 0.001
Mali 7.521 —0.865 0.086
Niger 7.713 —0.847 0.005
Nigeria 7.651 —-0.847 0.003
Pakistan 7.989 —0.847 0.001
Rwanda 7.605 —0.847 0.004
Sri Lanka 8.234 —0.844 0.042
Togo 7.818 —0.847 0.000
Uganda 7.196 —0.873 0.104
Zambia 7.934 —0.847 0.000
Group 3

Total 10.118 0.974 0.030
Australia 10.210 0.983 0.077
Austria 10.104 0.965 0.008
Belgium 10.165 0.965 0.004
Canada 10.251 1.114 0.178
Denmark 10.249 0.965 0.011
Finland 10.064 0.947 0.083
France 10.160 0.965 0.005
Hong Kong 9.902 0.965 0.014
Israel 9914 0.961 0.041
Italy 10.057 0.965 0.008
Japan 10.080 0.965 0.010
Netherlands 10.135 0.965 0.003
New Zealand 10.082 0.965 0.003
Norway 10.219 0.965 0.003
Sweden 10.224 0.966 0.021
UK 10.075 0.965 0.003
Group 4

Total 9.591 0.564 0.020
Argentina 9.622 0.565 0.007
Greece 9.676 0.564 0.009
Ireland 9.773 0.565 0.004
Mauritius 9.328 0.556 0.060
Mexico 9.486 0.565 0.005
Portugal 9.569 0.563 0.025
S Africa 9.486 0.573 0.059
Copyright © 2008 John Wiley & Sons, Ltd. J. Appl. Econ. 23: 487-514 (2008)

DOI: 10.1002/jae



502 M. ALFO, G. TROVATO AND R. J. WALDMANN

Table VII. (Continued)

Country y u; oy,
Singapore 9.757 0.567 0.031
Spain 9.768 0.565 0.017
Trinidad and Tobago 9.572 0.565 0.010
Venezuela 9.456 0.565 0.004
Group 5

Total 9.020 0.163 0.018
Algeria 9.167 0.168 0.057
Botswana 8.822 0.160 0.008
Brazil 9.188 0.162 0.026
Chile 9.128 0.160 0.003
Colombia 8.945 0.160 0.003
Costa Rica 9.095 0.161 0.022
El Salvador 8.956 0.160 0.016
Guatemala 8.872 0.160 0.014
Jordan 8.928 0.159 0.014
Korea, Rep. 9.127 0.160 0.011
Malaysia 9.073 0.160 0.002
Nicaragua 8.830 0.160 0.012
Panama 9.078 0.160 0.003
Papua N. Guinea 8.788 0.160 0.002
Paraguay 8.974 0.160 0.007
Peru 9.026 0.159 0.014
Tunisia 8.993 0.160 0.006
Turkey 9.011 0.160 0.005
Uruguay 9.344 0.201 0.122
Group 6

Total 8.454 —-0.279 0.020
Angola 8.252 -0.279 0.001
Bolivia 8.546 —-0.279 0.001
Cameroon 8.275 —-0.279 0.000
Central Afr. Rep. 8.072 -0.279 0.002
Dominican Rep. 8.622 —-0.276 0.038
Ecuador 8.819 —0.268 0.069
Egypt 8.583 —-0.279 0.006
Honduras 8.370 -0.279 0.001
Ivory Coast 8.469 —0.273 0.050
Jamaica 8.839 -0.279 0.002
Mauritania 8.092 -0.279 0.000
Morocco 8.669 —-0.271 0.060
Mozambique 7.938 -0.279 0.000
Philippines 8.590 —-0.279 0.000
Senegal 8.069 —0.300 0.108
Syria 8.719 —-0.279 0.008
Thailand 8.667 —-0.279 0.001
Zimbabwe 8.584 —0.279 0.003
Group 7

Total 10.472 1.327 0.008
Switzerland 10.463 1.327 0.010
USA 10.482 1.327 0.005

Note: y, log of per capita GDP levels (PWT data); u;, country random coefficient (mean values along time); o,, standard
deviation of country random coefficient (mean values along time).
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Table VIII. Bivariate GLM: augmented model

5-year BGLM 10-year BGLM

Coef. Bootstrap SE Coef. SE
Iny
Insh 0.437** 0.064 0.578** 0.087
Insk 0.443** 0.084 —2.253** 0.246
Ingd —1.986** 0.218 0.388** 0.067
cons 5.881** 0.626 5.251** 0.729
8y
sk 0.076™* 0.014 0.100** 0.015
sh —0.068" 0.036 —0.076* 0.034
glf —0.303** 0.100 —0.161 0.123
cons 0.011** 0.004 0.002 0.004
12 —428.356 —303.298
Obs. 1060 702

Significance levels: 10%; * 5%; ** 1%.

Note: Iny, log of per capita GDP levels (PWT data); gy, log difference of Iny; Insh, schooling of the working population
(World Bank Report data); Insk, Summers—Heston corrected investment/GDP ratio (PWT data); Ingd, sum of the rates of
change in population and in technological progress plus depreciation (PWT data); ¢, log-likelihood; data are 5- or 10-year
averages, dependent variable is forwarded. Method of estimation GLM with adjusted SE for clustered data, cluster on
country.

Following the path described by Bernanke and Giirkaynank (2001), we have estimated the
bivariate regression model in equation (15), adopting either a fully parametric SURE model or a
bivariate finite mixture approach. In the former case, we employed a maximum likelihood approach
with correlated error terms. Looking at the bivariate results, we may note that the fully parametric
model confirm the results obtained by Bernanke and Giirkaynank (2001) (see Table VIII), while
the bivariate finite mixture approach does not find any significant parameter estimates in the growth
equation (see Table IX).

Moreover, estimated locations for the latent component in the growth rate equation are close to
zero; that is, we do find negligible differences in the rate of GDP growth for countries belonging to
different groups. Instead, heterogeneity plays a relevant role in the levels equation. Results show
that the latent component in the growth equation can be omitted; therefore, there is no empirical
evidence of a global convergence process towards a single equilibrium path. To test whether the
apparent homogeneity of growth rates across countries may be due to measurement error bias,
we re-estimated a bivariate Solow model using as response in the first equation the residuals of
the univariate FGLS model for GDP levels, and inserting in the corresponding linear predictor
only a random component. The second equation for growth rates is the same as in (16): j = 2.
Using this strategy, we implicitly impose that the parameter vector in the growth equation is equal
to the one estimated by FGLS. Comparing parameter estimates obtained with this approach with
those obtained from the unconstrained bivariate model, we found no empirical evidence of any
significant difference; thus, we may guess that measurement error does not affect results obtained
in the growth rate model, and that heterogeneity captured by the bivariate finite mixture model is
due, rather, to unobservable covariables.

The values of penalized likelihood criteria as well as the estimated mass points (5-year data
only) corresponding to the chosen number of components, K, are reported in Tables X and XI.
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Table IX. Bivariate finite mixture models: augmented model

5-year BFM 10-year BFM

Coef. SE Coef. SE
Iny
Insk 0.143** 0.013 0.174** 0.017
Insh 0.149** 0.010 0.083** 0.015
Ingd —0.388** 0.074 —0.695** 0.082
cons 8.576** 0.210 7.64** 0.246
8y
sk 0.075 0.102 0.085 0.132
sh —0.100 0.220 —0.138 0.271
ngd —0.428 0.800 —0.180 1.08
cons 0.016 0.025 0.009 0.033
L 302.49 178.26
o? 0.025** 0.0011 0.0215** 0.0011
iy 0.528 0.614

gy 0.00003 0.00004

cov(upy, Ugy) 0.0012 0.004
K 6 8
Obs. 1060 702

Significance levels: T 10%; * 5%:; ** 1%.

Note: Iny, log of per capita GDP levels (PWT data); gy, log difference of Iny; Insh, schooling of the working population
(World Bank Report data); Insk, Summers—Heston corrected investment/GDP ratio (PWT data); Ingd, sum of the rates
of change in population and in technological progress plus depreciation (PWT data); K, number of mixture components;
£, log-likelihood; o2, within-country (residual) variance; Ty variance of the random intercept for y;; U,%gy, variance of

the random intercept for y2; cov(uiny, Ugy), covariance between random terms; data are 5- or 10-year averages; dependent
variable is forwarded.

Using these estimates, we may classify countries on the basis of the posterior probability estimates
Wi, which represent an important by-product of the adopted semiparametric approach. It is worth
noting that each group is characterized by homogeneous values of the estimated random effects; i.e.,
conditionally on observed covariates, countries assigned to the same group have a similar structure
(see Table XII for the bivariate classification). This data-driven clustering can be considered as an
empirical, modeling, counterpart to multiple equilibria models discussed by Azariadis and Drazen
(1990), Durlauf and Johnson (1995), Bernard and Durlauf (1996) and Galor (1996), among others.
Should a multi-population density exist, we would find significant components for the random
effects. Should this not be the case, we would face a spurious clustering problem and a single
normal component distribution would be sufficient to correctly describe the DGP (see McLachlan
and Peel, 2000).

The existence of a single equilibrium path in the long run is well supported if the correlation
between the random effects in the two equations is significant and negative, thus indicating a
progressive decrease in observed differences among countries. The bivariate results (see Table IX),
however, show that the variance of the latent effect in the growth rate equation is near zero;
also, the covariance between the latent effects for levels and growth rates is near zero, but
still positive (Table IX). This result does not change with varying K (see Table X). In other
words, the neoclassical relationship between levels and growth rates of per capita output does not
statistically match the analyzed data. Looking at univariate and bivariate results we may suggest
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Table X. Penalized likelihood criteria and latent effect correlations for bivariate finite mixture models

K 2 3 4 5 6 7 8
5-year finite mixture models: PWT 6 non-oil sample

P(uiny, tgy) 0.999** 0.692** 0.438** 0.287** 0.308** 0.302**

14 —107.749 77.76735 189.5688 233.198 302.5 306.494

BIC 285.1579 —58.0104 —253.749 —313.143 —423.883 —404.007

AIC 235.4976 —127.535 —343.138 —422.395 —553 —552.988

CAIC 295.1579 —44.0104 —235.749 —291.143 —397.883 —374.007

10-year finite mixture models: PWT 6 non-oil sample

P(Uiny, tgy) 0.999** 0.994** 0.834** 0.866™* 0.868** 0.810** 0.804**
14 —104.471 —15.7194 60.60506 100.069 133.098 171.611 178.257
BIC 260.8722 104.1401 —27.7369 —85.8934 —131.179 —187.433 —179.953
AIC 228.9427 59.43874 —85.2101 —156.138 —214.196 —283.221 —288.514
CAIC 270.8722 118.1401 —9.73689 —63.8934 —105.179 —157.433 —145.953

Significance levels: T 10%:; * 5%; ** 1%

Notes: K, no. components; £, log-likelihood; p(uny, ugy), correlation among the two latent effects;
BIC = —2¢(-) + d log(n)

AIC = =24(-)+d

CAIC = —2¢(-) + 2d log(n)

where d is the number of parameters and n is the sample size.

Table XI. Location and probabilities of 5-year BFME

k Level (Iny) Growth rate (gy)

Loc. SE Loc. SE Prob.
1 —1.253 0.088 —0.007 0.028 0.070
2 —0.845 0.079 —0.004 0.016 0.197
3 0.579 0.079 0.004 0.020 0.122
4 0.161 0.078 0.010 0.014 0.211
5 —0.288 0.078 —0.003 0.015 0.200
6 1.034 —0.004 0.200

Note: k, number of mixture components selected by penalized criteria; Loc, locations; SE, locations’ standard errors;
Prob., prior probability of belonging to that local area. The probabilities are for both equations in the bivariate model.

that countries do not converge towards a single path but that, rather, countries converge to cluster-
specific paths, with clusters staying divergent. Convergence clubs may also emerge endogenously
if there are multiple possible steady-state equilibria given fundamentals (see Galor, 1996). This
means that the cluster structure cannot be exhaustively explained by the neoclassical model; the
unobserved characteristics influencing per capita income levels (rather than growth rates) do not
represent technological differences, since it is widely believed that technology in different countries
converges. Rather, unobserved heterogeneity seems to be related to long-lasting differences in
culture and institutions.

To test whether clusters converge, we employed the following strategy: a univariate finite
mixture model has been fitted to data from 1960 to 1975, under the constraint that the number of
locations is K = 7 and using as starting parameter vector the model parameter estimates reported,
respectively, in Tables VI and III. Using the cluster structure obtained at the end of this path, we
have estimated the corresponding cluster-specific mean of GDP levels for the out-of-sample (years
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Table XII. Bivariate posterior classification

2

Country y Ulny itiny gy Ugy ugy

Group 1

Total 7.269 —1.252 0.009 0.003 —0.007 0.000
Ethiopia 7.102 —1.252 0.000 0.001 —0.007 0.000
Malawi 7.258 —1.252 0.000 0.010 —0.007 0.000
Nepal 7.570 —1.252 0.013 0.008 —0.007 0.000
Tanzania 7.149 —1.252 0.000 0.007 —0.007 0.000
Uganda 7.196 —1.248 0.040 —0.002 —0.007 0.000
Zaire 7.353 —1.252 0.000 —0.008 —0.007 0.000
Group 2

Total 7.797 —0.852 0.016 0.005 —0.004 0.000
Bangladesh 7.768 —0.845 0.009 0.003 —0.004 0.000
Benin 7.783 —0.845 0.000 0.003 —0.004 0.000
Burkina Faso 7.473 —0.845 0.003 0.011 —0.004 0.000
Burundi 7.457 —0.845 0.000 0.005 —0.004 0.000
Congo 8.030 —0.845 0.001 0.009 —0.004 0.000
Ghana 7.909 —0.845 0.000 0.001 —0.004 0.000
India 7.804 —0.869 0.097 0.011 —0.004 0.001
Indonesia 8.112 —0.845 0.000 0.034 —0.004 0.000
Kenya 7.815 —0.845 0.000 0.012 —0.004 0.000
Madagascar 7.718 —0.845 0.000 —0.010 —0.004 0.000
Mali 7.521 —0.954 0.181 0.009 —0.005 0.001
Niger 7.713 —0.845 0.000 —0.013 —0.004 0.000
Nigeria 7.651 —0.845 0.001 —0.001 —0.004 0.000
Pakistan 7.989 —0.845 0.000 0.011 —0.004 0.000
Rwanda 7.605 —0.845 0.000 0.008 —0.004 0.000
Sri Lanka 8.234 —0.845 0.002 0.015 —0.004 0.000
Togo 7.818 —0.845 0.000 —0.006 —0.004 0.000
Zambia 7.934 —0.845 0.000 —0.017 —0.004 0.000
Group 3

Total 9.591 0.579 0.002 0.019 0.004 0.000
Argentina 9.622 0.579 0.000 0.021 0.004 0.000
Greece 9.676 0.579 0.000 0.025 0.004 0.000
Ireland 9.773 0.579 0.000 0.024 0.004 0.000
Mauritius 9.328 0.578 0.016 0.010 0.004 0.000
Mexico 9.486 0.579 0.000 0.014 0.004 0.000
Portugal 9.569 0.579 0.001 0.028 0.004 0.000
S Africa 9.486 0.579 0.002 0.011 0.004 0.000
Singapore 9.757 0.579 0.001 0.040 0.004 0.000
Spain 9.768 0.579 0.000 0.020 0.004 0.000
Trinidad and Tobago 9.572 0.579 0.000 0.016 0.004 0.000
Venezuela 9.456 0.579 0.000 0.002 0.004 0.000
Group 4

Total 9.020 0.161 0.004 0.018 0.010 0.000
Algeria 9.167 0.161 0.013 0.014 0.010 0.000
Botswana 8.822 0.161 0.000 0.038 0.010 0.000
Brazil 9.188 0.161 0.004 0.026 0.010 0.000
Chile 9.129 0.161 0.000 0.018 0.010 0.000
Colombia 8.945 0.161 0.000 0.016 0.010 0.000
Costa Rica 9.095 0.161 0.001 0.008 0.010 0.000
El Salvador 8.956 0.161 0.000 0.006 0.010 0.000
Guatemala 8.872 0.161 0.000 0.016 0.010 0.000
Jordan 8.928 0.161 0.002 0.016 0.010 0.000
Korea, Rep. 9.127 0.161 0.000 0.037 0.010 0.000
Malaysia 9.073 0.161 0.000 0.030 0.010 0.000
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Table XII. (Continued)

Country y Ulny oilny gy Ugy Oggy
Nicaragua 8.831 0.161 0.001 —0.009 0.010 0.000
Panama 9.079 0.161 0.000 0.020 0.010 0.000
Papua N. Guinea 8.789 0.161 0.000 0.009 0.010 0.000
Paraguay 8.974 0.161 0.000 0.021 0.010 0.000
Peru 9.026 0.161 0.000 0.012 0.010 0.000
Tunisia 8.993 0.161 0.000 0.021 0.010 0.000
Turkey 9.011 0.161 0.000 0.017 0.010 0.000
Uruguay 9.344 0.167 0.050 0.020 0.010 0.001
Group 5

Total 8.454 —0.289 0.007 0.006 —0.003 0.000
Angola 8.252 —0.288 0.000 —0.022 —0.003 0.000
Bolivia 8.547 —0.288 0.000 0.004 —0.003 0.000
Cameroon 8.275 —0.288 0.000 0.002 —0.003 0.000
Central Afr. Rep. 8.072 —0.288 0.000 —0.012 —0.003 0.000
Dominican Rep. 8.623 —0.288 0.003 0.022 —0.003 0.000
Ecuador 8.819 —0.286 0.029 0.021 —0.003 0.001
Egypt 8.583 —0.288 0.000 0.014 —0.003 0.000
Honduras 8.370 —0.288 0.000 0.011 —0.003 0.000
Ivory Coast 8.469 —0.288 0.004 0.009 —0.003 0.000
Jamaica 8.839 —0.288 0.000 —0.002 —0.003 0.000
Mauritania 8.092 —0.288 0.000 0.008 —0.003 0.000
Morocco 8.669 —0.288 0.013 0.013 —0.003 0.000
Mozambique 7.938 —0.288 0.000 —0.016 —0.003 0.000
Philippines 8.590 —0.288 0.000 0.012 —0.003 0.000
Senegal 8.070 —0.298 0.071 —0.007 —0.003 0.000
Syria 8.719 —0.288 0.000 0.015 —0.003 0.000
Thailand 8.668 —0.288 0.000 0.029 —0.003 0.000
Zimbabwe 8.584 —0.288 0.000 0.008 —0.003 0.000
Group 6

Total 10.155 1.034 0.003 0.016 —0.003 0.000
Australia 10.210 1.034 0.000 0.015 —0.004 0.000
Austria 10.105 1.034 0.000 0.021 —0.004 0.000
Belgium 10.165 1.034 0.000 0.018 —0.004 0.000
Canada 10.251 1.034 0.000 0.010 —0.004 0.000
Denmark 10.249 1.034 0.000 0.014 —0.004 0.000
Finland 10.064 1.032 0.032 0.016 —0.003 0.001
France 10.160 1.034 0.000 0.017 —0.004 0.000
Hong Kong 9.902 1.034 0.002 0.032 —0.004 0.000
Israel 9.914 1.034 0.015 0.020 —0.003 0.000
Italy 10.058 1.034 0.000 0.022 —0.004 0.000
Japan 10.080 1.034 0.000 0.030 —0.004 0.000
Netherlands 10.135 1.034 0.000 0.015 —0.004 0.000
New Zealand 10.082 1.034 0.000 0.002 —0.004 0.000
Norway 10.219 1.034 0.000 0.024 —0.004 0.000
Sweden 10.224 1.034 0.000 0.013 —0.004 0.000
Switzerland 10.463 1.034 0.000 0.006 —0.004 0.000
UK 10.075 1.034 0.000 0.012 —0.004 0.000
USA 10.482 1.034 0.000 0.009 —0.004 0.000

Note: Iny, log of per capita GDP levels (World Bank Report data); gy, rate of growth of Iny; uiny, country random
coefficient for Iny (mean values along time); ugy country random coefficient for gy (mean values along time); (rslny,
variance of the random intercept for Iny; Jﬁgy, variance of the random intercept for gy.
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Figure 3. Overall and within-groups log per capita GDP mean. Country clusters conditioned to 1960-1975

e Group 1: Ghana, Indonesia, Kenya, Mali, Pakistan, Sri
Lanka, Uganda, Zaire

e Group 2: Benin, Burkina Faso, Burundi, Egypt, Honduras,
Jamaica, Korea Rep., Madagascar, Nigeria, Philippines,
Rwanda, Senegal, Syria, Thailand, Togo, Zambia

e Group 3: Canada, Switzerland, USA

e Group 4: Argentina, Australia, Austria, Belgium, Denmark,
Finland, France, Hong Kong, Israel, Italy, Japan, Mexico,
Netherlands, New Zealand, Norway, S Africa, Sweden,
Trinidad and Tobago, UK, Venezuela

e Group 5: Algeria, Brazil, Costa Rica, El Salvador, Greece,
Guatemala, Ireland, Ivory Coast, Mauritania, Mauritius,
Mozambique, Nicaragua, Papua N. Guinea, Paraguay, Peru,
Portugal, Singapore, Spain, Uruguay

e Group 6: Angola, Bolivia, Botswana, Cameroon, Central Afr.
Rep., Chile, Colombia, Dominican Rep., Ecuador, Jordan,
Malaysia, Morocco, Niger, Panama, Tunisia, Turkey,
Zimbabwe

e Group 7: Bangladesh, Congo, Ethiopia, India, Malawi,
Nepal, Tanzania

1975-1995) period. In Figure 3 we present cluster-specific means plotted versus the overall mean,
with corresponding 99% bootstrap-based confidence intervals. Convergence of cluster-specific
means is not evident at all, except for clusters 5 and 6 with corresponding cluster-specific means
laying inside the confidence interval. However, the dynamics of component specific mean for
cluster 6 (see Figure 4) is divergent with respect to other components. Thus, our findings are in
line with those discussed by Lee et al. (1997) using a stochastic Solow model.
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Figure 4. Overall and within-groups log per capita GDP mean. Country clusters conditioned to 1960—-1975.
Group 6

Our results are surprising given that several variables have been found in the growth empirics
literature to have a significant effect on per capita real GDP growth (see, for example, Levine
and Renelt, 1992; Sala-i-Martin, 1997). The corresponding models typically include in the linear
predictor the initial level of per capita real GDP; given within-cluster convergence, this variable
has a robustly negative coefficient in growth regressions. However, level variables and initial level
of log GDP per capita are strongly correlated; therefore, the variance of the log difference of GDP
per capita is almost entirely explained by the initial conditions (see, among others, Temple, 1998,
1999).

If we consider a standard cross-country growth model augmented by political rights variables
and geographical dummies, we find that none of these variables is significant in the growth equation
if initial per capita real GDP (see Table XIII) is not included.

We performed a factor analysis to check for multicollinearity between variables in the MRW
Solovian growth model. Should the four regressors be orthogonal, we would find factors explaining
not more than 20—25% of the total variance. In the present context, however, we find that the first
factor accounts for approximately 64% of the total variance. The collinearity between regressors
is confirmed also if we average capital inputs for the period 1965—-1995 (see Figure 5). These
results imply that cross-section tests on convergence are inflated by collinearity and, since initial
per capita GDP is a good predictor for capital saving rates, additional covariate effects may be ill
estimated. It is worth noting that a ‘minimal cross-section growth regression’, including only the
initial level of per capita income, would not be a good choice owing to corresponding minimal
economic insight.

We identify seven different clusters for the univariate model and six for the bivariate one. The
number of clusters is apparently not consistent with those found in other proposals, where the
number of groups is usually restricted to two, three or four groups (see, for example, Liu and
Stengos, 1999; Kalaitzidakis et al., 2001; Canova, 2004; Masanjala and Papageorgiou, (2004);
Paap et al., 2005). These differences are, however, reasonable if one considers that the estimation
method, the analyzed time period and the number of countries do not coincide. Paap et al. (2005)
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Table XIII. Cross-section growth regression

No initial level Standard convergence model

Coef. SE Coef. SE
1y60 —0.015** 0.003
Insh6095 0.0008 0.003 0.006* 0.002
Insk6095 0.0093* 0.003 0.009** 0.002
Ingd6095 0.0001 0.016 —0.0257 0.014
Political right (1 = very free, 7 = no freedom) 0.0001 0.001 —0.002* 0.001
East Asia and Pacific 0.049 0.046 0.135** 0.037
Europe and Central Asia 0.0403 0.05 0.129** 0.04
Latina America and Caribbean 0.0306 0.045 0.122%* 0.037
Middle East; North Africa 0.0408 0.045 0.132%** 0.037
North America 0.0322 0.048 0.136** 0.04
South Asia 0.0447 0.046 0.118** 0.037
Sub-Saharan Africa 0.0295 0.046 0.118** 0.038
N 88
BIC —344.7445 —340.2705
Deviance 0.0105 0.0071

Significance levels: T10%:; * 5%; ** 1%.
GLM model (MQL Fisher scoring) without intercept to avoid aliasing.

identify three groups but the analysis is limited only to Africa, Asia and Latin-America. Becchetti
et al. (2006) analyze the same dataset, associating a random parameter to the human capital
variable; the estimated number of components is equal to five, perhaps due to a greater flexibility
of their approach to unobserved heterogeneity. We believe that the unobserved characteristics
which affect per capita income levels are not true technological differences, but rather represent
the effects of long-lasting differences in culture and institutions. To better understand differences
among groups, we report in Table XIV the values of the correlation coefficients between social and
cultural indicators and the estimated set of latent effects. As can be seen, indicators of institutional
quality and economic freedom are strictly and significantly correlated with the estimated locations
uy, representing the cluster-specific deviation from the sample average. Our results are also in line
with those obtained by Canova (2004) and Jerzmanowski (2006), who find that the role of culture
and institutions is making growth episodes persistent rather than ruling out growth take-offs.

The unobserved differences between countries are, however, innumerable and clearly multidi-
mensional. For each component, the proposed estimator summarizes these differences using just
two dimensions: estimated latent terms in the level of per capita GDP (pcgdp) and in the growth
rate of pcgdp. The variance of the latent effects in the level equation is high when compared to
both the variance in the growth equation and the covariance between the two latent effects. Thus,
when we divide the countries into groups, the estimated differences between groups are roughly
one-dimensional; still, we are sure that these estimated differences in pcgdp levels are functions
of unobserved, multidimensional differences.

The almost complete absence of any sign of convergence across clusters gives us some reason
to believe that three plausible unobserved differences are not, in themselves, major factors in
explaining difference in pcgdp across countries. First, it seems unlikely that measurement error in
estimated physical capital stocks is as important a factor as we would have guessed. If countries
with the same observed characteristics (including measured physical capital per capita) differ only
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Figure 5. Factor analysis: plot of eigenvalues

e Method: principal-component factors

e Model for Panel A: 1y60, Insh6095,
Insk6095, Ingd6095. Total variance explained
first factor 0: 6482. Cumulate variance two
factors 0.8507

e Model for Panel B: ly60, Insh6595, Insk6595,
Ingd6595. Total variance explained first
factor 0: 6432. Cumulate variance two
factors 0.8495

Table XIV. Spearman and pairwise correlation coefficients between selected country-specific indicators and
the random terms in univariate (5-year) and bivariate mixtures

Ui Ulny Ugy
Spearman correlation
Political right (1 = very free, 7 = not free) —0.7200*** —0.7191*** —0.1452**
Civil liberties (1 = very civil, 7 = uncivil) —0.7465%** —0.7434***
Freedom status (2 = free, 1 = partial, 0 = not free) 0.6814*** 0.6782*** 0.1923%***
Pairwise correlation
Perc. of sec. school attained, tot. pop. 0.4631%* 0.4669*** —0.1474%*
Average schooling years, tot. 0.4647** 0.4656*** —0.1290***
Fertility rate —0.4714*** —0.4741%**
Openness in curr. prices ((exp +imp)/GDP) 0.0894** 0.0966**

Significance levels: T 10%; * 5%; ** 1%.
Note: u; is the random component in yp;, and uj,y and ugy are those for y; and y; in the bivariate model.
Source of data: Freedom House. 2003. Available at http://www.freedomhouse.org/template.cfm?page=15.
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in the true level of physical capital per capita, a Solow model would imply that they converge to
the same pcgdp. Second, the same argument applies to human capital for an augmented Solow
model provided that the sum of the elasticities of GDP with respect to physical and human capital
is less than one. Third, according to the consensus opinion of growth theorists, if the unobserved
differences are differences in disembodied technology in use, pcgdp should converge.

In contrast, differences in institutions, laws, norms, customs, attitudes and aspirations may be
persistent. For example, the Protestant ethic, which may be the spirit of capitalism may cause
Protestant countries to be persistently richer than other countries (see Weber, 1930; Bagella erf al.,
2002; Dobbin, 2004; Dudley and Blum, 2001). We believe that the estimated components may
group together countries whose culture and institutions imply a similar level of pcgdp for a
given population, capital, human capital and technology. Since these groupings collapse many
dimensions into one, countries in the same group have very different levels of every single
identifiable institutional and cultural factor.'

4. CONCLUSIONS

In this paper we discuss an empirical model with the aim of testing whether economic growth
can be considered exogenous in the Solovian sense. Following Alfo and Trovato (2004), we
define a bivariate mixture model for the Bernanke and Giirkaynak (2001) extension of the Solow
model. Like Durlauf et al. (2001), we find that the explanatory power of the Solow growth model is
enhanced when cross-country heterogeneity is considered. In this case, we find that growth rates are
not significantly associated with investment rates. In particular, Bernanke and Giirkaynak (2001)
reject the Solow growth model analyzing cross-country data on GDP, growth and investment. The
evidence against the Solow model becomes statistically insignificant when a pooled cross-section
model is applied to Bernanke and Giirkaynak’s data allowing for unobserved heterogeneity across
countries. We suggest that their rejection of the Solow model is caused by omitted variables
bias; however, care is needed, since our tests may fail to reject the Solow model because of
their reduced power. A more robust result of our analysis is an extremely strong evidence of
unexplained heterogeneity in levels of per capita real GDP and an extremely weak evidence of
heterogeneity in the rate of growth of per capita real GDP. This means that the data show no
sign of convergence across classes of countries. The procedure could, in principle, have detected
clusters of high-growth countries and of low-growth countries. It did not do so. The results suggest
convergence clubs, that is, groups of countries with different levels of per capita real GDP within
which countries converge to a group-specific growth path.

We find almost no evidence that different groups converge towards each other. This suggests
that the unobserved factors which we model with a discrete mixture correspond to long-lasting
characteristics not accounted for by the augmented Solow model.
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