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Abstract

Modal analysis on huge finite element models requires a numerical simplification in terms of total number of degrees of freedom (d.o.f.’s).
The above aim is generally achieved by choosing some master d.o.f.’s and condensing the structure matrices on those d.o.f.’s. Static condensation
(i.e. stiffness matrix reduction) is theoretically an errorless operation; on the other hand, mass condensation can only be approximate in dynamic
applications. In order to accomplish matrix condensation, the technique mainly used is the so-called Guyan reduction. The present paper
outlines the limitations of the technique, introducing some significant improvements. These are related to the inertia conservation properties of
the reduced mass matrix and the condensed mass matrix assembly by means of fictitious and appropriate stiffness connections that are different
from those obtained by the stiffness model. The effectiveness of the modified approach is demonstrated with respect to the modal analysis
results obtained by Guyan approach, through three different test cases.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Finite element; Modal analysis; Mass matrix; Guyan reduction

1. Introduction

Eigenanalysis is often a starting point in evaluating the be-
haviour of structures subjected to dynamic loads. The result-
ing eigenvalues—connected to free vibration frequencies of
structures—and eigenvectors, providing mode shapes coupled
to each mode of free vibration, are used as primary information
to reduce the numerical complexity in the study of dynamic
systems.

In the modal analysis of structures damping is rarely consid-
ered as it causes a doubling of the degrees of freedom (d.o.f.’s);
nonetheless, finite element analysis often involves tens or hun-
dreds thousands of d.o.f.’s. Therefore, as the computational
effort required to perform a full modal analysis is generally
overwhelming, the reduction of the effective number of d.o.f.’s
is mandatory.

Some of the existing methods exploit the component mode
synthesis technique [1,2]; these approaches considerably
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simplify the analysis. However, they do not provide full re-
duced matrices for representing distributed inertia and stiffness
properties of the original system. Several algorithms have also
been developed to identify new reduced matrices (stiffness and
mass matrices) that embody the system characteristics in the
specified approximation [3,4].

The basic idea is to focus only on a subset of the total number
of d.o.f.’s, the so called “master d.o.f.’s”, and try to condense
on them all elastic and inertia loads acting on the structure. The
vanishing d.o.f.’s are called “slaves d.o.f.’s”, since the method
forces their values to depend only on master d.o.f.’s.

The most widespread procedure to condense stiffness and
mass matrices is the Guyan reduction [3]. It is generally known
as static condensation: although it is offered as default in al-
most all finite element commercial codes, its precision is guar-
anteed only when excitation frequency is close to zero (i.e.
static analysis). Stiffness matrix reduction is exact while mass
reduction requires neglecting all inertia loads with respect to
elastic loads.

It has been demonstrated that the static procedure allows
extending the evaluation of mode shapes within the limit of
0.3 fs, being fs the smallest natural frequency of the structure
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when all master d.o.f.’s are restrained [5]. Therefore, if masters
are properly chosen, the reliability of lower mode shapes is as-
sumed. On the contrary, higher modes are completely missing.

Commercial F.E. codes generally adopt very simple ap-
proaches in the selection of master d.o.f.’s even if better criteria
can be found in literature, (e.g. [6]).

Besides Guyan procedure, several dynamic condensations
have been also developed, originating from the work of Leung
[7]. All account for inertia effects that modify the dynamic stiff-
ness matrix resulting in a dependency on excitation frequency.
The above link is non trivial; therefore, many methods, e.g. the
improved reduced system (IRS) proposed by O’Challagan [8],
expand in Taylor series the frequency-dependent terms. Expan-
sion is generally truncated to quadratic terms in the effort of
extending the reduction to higher frequencies.

It should be noted that Guyan reduction is centred on zero
excitation frequency, but it can be easily shifted to higher fre-
quencies by computing the exact stiffness dynamic matrix case
by case. The result is a condensed system whose precision is
guaranteed only in the surroundings of the new shifted centred
frequency.

The method translated into an iterative variant by Friswell
et al. [9,10], also identifying its convergence rate, that depends
tightly on master d.o.f. selection. Other iterative procedures
have been proposed by Kim and Kang [11] and, more recently,
by Lin et al. [4] reaching an iterative solution that avoids inertia
term truncation.

2. Basic formulation

Free vibrations of undamped structures is referenced by the
classic equation

(K − �(i)M)u(i) = 0; i = 1, . . . , n (1)

where M and K are n × n symmetric mass and stiffness matri-
ces, respectively, �(i) is the generic eigenvalue and u(i) is the
corresponding eigenvector.

The first step reduces the system into a simpler one by split-
ting the d.o.f.’s into masters and slaves, so that m+ s =n. Ma-
trices can be partitioned accordingly; by omitting apex (i) on
eigenvalues for sake of clarity, it results:
([Kmm Kms

Ksm Kss

]
− �

[Mmm Mms

Msm Mss

]) {um

us

}
= 0. (2)

By placing slave and master d.o.f.’s in the left- and right-hand
side, respectively, the second set of Eq. (2) yields:

(Kss − �Mss)us = −(Ksm − �Msm)um. (3)

It is now possible to solve us by premultiplying Eq. (3) for an
inverse matrix:

us = −[(Kss − �Mss)
−1(Ksm − �Msm)]um = tsm(�)um. (4)

Therefore, tsm turns out to be a transformation matrix, depen-
dent on frequency by means of � . According to Eq. (4), trans-
formation of eigenvectors from the full set of d.o.f.’s to the

master set is

u =
{um

us

}
=

[ Imm

tsm(�)

]
um = Tnm(�)um. (5)

Eq. (5) can be used to substitute eigenvectors in Eq. (1), ob-
taining:

[KTnm(�) − �MTnm(�)]um = 0. (6)

Premultiplying by TT
nm, symmetric stiffness and mass reduced

matrices are obtained

[TT
nm(�)KTnm(�) − �TT

nm(�)MTnm(�)]um = 0; (7)

KR(�)=TT
nm(�)KTnm(�); MR(�)=TT

nm(�)MTnm(�). (8)

This reduction is exact only for a given eigenvalue. The appli-
cation on different eigenfrequencies thus implies variability of
stiffness and mass matrix elements.

An equivalent reduction holds if the system is harmonically
excited only on master d.o.f.’s:

{[Kmm Kms

Ksm Kss

]
−�2

[Mmm Mms

Msm Mss

]} {xm

xs

}
=

{ fm

0s

}
. (9)

Reduction is achieved with manipulations that are similar to
those previously applied, thus giving generality to the identified
mass and stiffness reduction matrices.

[TT
nm(�)KTnm(�) − �2TT

nm(�)MTnm(�)]xm

= TT
nm(�)fm(�); (10)

KR(�) = TT
nm(�)KTnm(�); MR(�) = TT

nm(�)MTnm(�).

(11)

The computational cost of above reductions is embedded into
Eq. (4): the inversion of the slave dynamic stiffness matrix is
required at any circular frequency.

Guyan approximation neglects both inertia terms of Eq. (4);
the same result is achieved when Eq. (4) is specialised for �=0.
As a consequence, the transformation matrix TG

nm, simplifies
into:

TG
nm =

[ Imm

tG
sm

]
=

[ Imm

−K−1
ss Ksm

]
. (12)

After expansion of either Eq. (8) or (11), two definitions result:
the first is lighter, taking advantage of several simplifications,
the other one turns out to be heavier

KR = (Kmm − KmsK−1
ss Ksm); (13)

MR = TT
nmMTnm

= (Mmm − MmsK−1
ss Ksm − KmsK−1

ss Msm

+ KmsK−1
ss MssK−1

ss Ksm). (14)
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It appears evident that transformation matrix (12) accounts only
for the stiffness characteristics of the slave d.o.f.’s and the con-
nections between master and slaves d.o.f.’s.

3. A new approach to reduce mass matrix

As described in the previous section, Guyan approach com-
putes the reduced mass matrix taking into account the elastic
characteristics of the system that result from the stiffness ma-
trix.

At this stage a question arises: why should the inertia prop-
erties of a mechanical system, depending on mass distribu-
tion morphology, be affected only by stiffness characteristics
of slave nodes? From an other point of view, could two me-
chanical systems, having an identical mass distribution but dis-
similar elastic properties, reasonably present different reduced
mass matrices?

A consequence of the above queries is that, in principle, any
stiffness matrix can be used when applying Eq. (14). This con-
clusion involves a new reduced formulation based on a general
stiffness matrix K(G) (non necessarily coincident with the pre-
vious K corresponding to the actual mechanical system):

MR = Mmm − Mms(K(G)
ss )−1K(G)

sm − K(G)
ms (K(G)

ss )−1Msm

+ K(G)
ms (K(G)

ss )−1Mss(K(G)
ss )−1K(G)

sm . (15)

The open point is whether the stiffness matrix of the system K
is the finest choice to obtain a proper reduced inertia matrix. As
an example, the increase of system elastic connections (i.e. the
removal of some zero terms in the stiffness matrix K) can share
out the inertia effects more suitably; a better approximation at
higher frequencies is hence expected.

Nonetheless, stiffness and inertia properties are both consid-
ered in choosing master d.o.f.’s, when a particular ratio of re-
duction is requested. The simplest way is to order the d.o.f.’s
according to decreasing values of the ratio

√
kii/mii on diago-

nal terms. If the frontal solver approach is used, however, the fi-
nal selection of master d.o.f.’s is influenced by internal element
numbering [12]; therefore, outcomes may result as the conse-
quence of different element sorting. To overcome this ambigu-
ity source, in all examples hereinafter discussed, the solution
was carried out by managing all d.o.f.’s together, thus avoiding
the use of frontal solvers.

The most general choice of K(G) is a large band stiffness
matrix, generated by connecting all d.o.f.’s each other through
a given k value. The stiffness matrix results assembled by iden-
tical elements (−k) off of the principal diagonal and identical
elements (n − 1)k in the principal diagonal. It is interesting
to show that, if one alters the K(G) matrix, e.g. considering
random values for each k but keeping main diagonal terms as
the sum of the corresponding row, MR results only slightly
modified as the consequence of numerical approximation. The
interpretation of the above result is that MR is influenced by
K(G) structure (i.e. K(G)

ss and K(G)
ms = K(G)

sm ) rather than by its
numerical values. On the contrary, various reduced mass ma-
trices result when a different weight is given to each row (and
according column) of matrix K(G).

3.1. Preservation of global mass

A considerable improvement concerns the enforcement of
model mass conservation after condensation. As it is here
demonstrated, Guyan mass reduction does preserve model
mass only under some circumstances.

The total mass of a discretized system can be computed by
projecting mass matrix towards a generic rigid mode r:

mtot = rtMr. (16)

Calling rm the rigid mode that concerns only the master d.o.f.’s,
reduced model mass computation gives:

mR,tot = rt
mMRrm. (17)

Moreover, in unrestrained structures, the rigid modes satisfy

Kr = 0, (18)

which can be rewritten according to master/slave partitioning:
[Kmm Kms

Ksm Kss

] {rm

rs

}
= 0; (19)

hence, referring to the second line of above equation:

rs = −K−1
ss Ksmrm. (20)

Coming back to the mass computed by means of the mass
matrix reduced by Guyan (Eq. (14)):

mred,tot = rt
m[Imm − KmsK−1

ss ]M
[ Imm

−K−1
ss Ksm

]
rm. (21)

Eq. (20), valid for an unrestrained structure, can be used to
simplify previous equation:

mred,tot = {rt
m rt

s}M
(rt

m

rt
s

)
. (22)

Then, in case of unrestrained structures, being r ={rt
m rt

s}, one
obtains the expected result mred,tot = mtot.

On the contrary, when some d.o.f.’s constraints are experi-
enced by the structure, Eq. (18) is no more valid, therefore it is
impossible to obtain Eq. (22) starting from Eq. (21) and using
Eq. (20); therefore mred,tot is no more equal to mtot.

With the aim to evaluate the mass that is eventually lost dur-
ing reduction, it is possible to consider the following approach.
The d.o.f.’s that are to be constrained are identified by subscript
b (blocked) and the free d.o.f.’s by subscript f; according to this
symbol definition, stiffness matrix partition yields:

K =
[Kbb Kbf

Kfb Kff

]
. (23)

Considering that in a constrained structure Kff matrix is the
effective matrix to be reduced, master/slave partitioning refers
only to it:

Kff =
[Kmm Kms

Ksm Kss

]
. (24)
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Modify K matrix using eqs

(40) and (41) or (42)

Condense stiffness matrix

using eq. (13) and mass matrix

using eq. (15)

Check for  αM, βM and γM factors using eq. (38b) and

correct the reduced mass matrix MR using eq. (39)

Condense stiffness matrix

using eq. (13) and mass matrix

using eq. (14)

Export from FEM code the global stiffness and

mass matrices K M and gdl ordering

Partition the global mass matrix and the condensed mass matrix as

defined in eq. (38a) form using gdl ordering information
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Fig. 1. Logical flow for the use of the mass correction and the application of the modified K(G).

It is interesting to partition Kbf , accounting of free d.o.f.’s
adjacent to the blocked ones, into two parts, according to master
and slave free d.o.f.’s:

Kbf = [Kbfm Kbfs ] = KT
fb. (25)

Then, the global unrestrained stiffness matrix results partitioned
in the following way:

K =
⎡
⎢⎣

Kbb Kbfm Kbfs

Kfmb Kmm Kms

Kfsb Ksm Kss

⎤
⎥⎦ . (26)

The same partition can be applied to virtual global rigid
mode r:

r =
{rb

rf

}
=

⎧⎪⎨
⎪⎩

rb

rm

rs

⎫⎪⎬
⎪⎭ . (27)

Now, the condition expressed by Eq. (18), can be rewritten:

Kr = 0 =
[Kbb Kbf

Kfb Kff

] {rb

rf

}
; (28)

looking at the second line of previous equation:

Kff rf = −Kfbrb. (29)

Considering Eqs. (24) and (25), and accounting of rf ={rt
m rt

s},
above equation is:

[Kmm Kms

Ksm Kss

] {rm

rs

}
= −

[Kfmb rb

Kfsb rb

]
. (30)

Focusing attention at the second line, one obtains:

Ksmrm + Kssrs = −Kfsbrb; (31)

rs = −K−1
ss Ksmrm − K−1

ss Kfsbrb. (32)

Remembering the total mass given after Guyan reduction
(Eq. (14)) and exploiting Eq. (32):

mred,tot = rT
m[Imm − KmsK−1

ss ]Mff

[ Imm

−K−1
ss Ksm

]
rm

= [rT
m − rT

mKmsK−1
ss ]Mff

[ rm

−K−1
ss Ksmrm

]

= [rT
m rT

s + rT
b Kbfs K

−1
ss ]Mff

[ rm

rs + K−1
ss Kfsbrb

]
,

(33)

and given that

mtot = rT
f Mff rf = [rT

m rT
s ]Mff

{rm

rs

}
, (34)

it is possible to deduce, by comparison of Eqs. (33) and (34),
that only if Kfsb = 0 it results that mtot = mred,tot.

The resulting outcome is that global mass is conserved only
if there are no slave d.o.f.’s connected to any constrained d.o.f.
Therefore, in a substructuring analysis, an attention should be
paid when master d.o.f.’s have stiffness connections with re-
strained d.o.f.’s. Of course, this restriction has an effect on Mass
computation, while the reduced stiffness matrix keeps exact in
any case.
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Fig. 2. Models used in condensation procedure: (a) Model 1 (396 d.o.f.’s); (b) Model 2 (594 d.o.f.’s); and (c) Model 3 (675 d.o.f.’s).

Calling now r∗
s = rs + K−1

ss Kfsbrb, the mass of the reduced
structure is

mred,tot = [rT
m r∗T

s ]Mff

[rm

r∗
s

]
=[rT

m r∗T
s ]

[Mmm Mms

Msm Mss

][rm

r∗
s

]

= rT
mMmmrm + rT

mMmsr∗
s

+ r∗T
s Msmrm + rT

mMmsr∗
s . (35)

Considering that the mass of the whole structure is

mtot = rT
mMmmrm + rT

mMmsrs + rT
s Msmrm + rT

s Mssrs, (36)

subtracting Eqs. (36) to (35), after some simple manipulations
it is possible to obtain the expression giving the mass lost us-
ing Guyan reduction when constraints are introduced in the

structure:

mred,less = mtot − mred,tot

= − rT
b Kbfs K

−1
ss Msmrm − rT

b Kbfs K
−1
ss Mssrs

− [rT
mMms + rT

s Mss

+ rT
b Kbfs K

−1
ss Mss]K−1

ss Kfsbrb. (37)

This occurrence affects the accuracy of computed eigenvalues,
as the following numerical examples show.

Even if previous Eq. (37) gives an exact value of the mass that
can be missed during a Guyan reduction, from a computational
point of view, a more suitable approach can be adopted.

The computation of global mass in each direction (x, y, z)

is straightforward in the modelling of mechanical structures;
it can be performed by summing up all mass matrix elements
that refer to any direction (x, y, z).



936 P. Salvini, F. Vivio / Finite Elements in Analysis and Design 43 (2007) 931–940

Guyan corrected New method

nmx = 3 αM = 2.20 αM = 72.47

nmy = 3 β
γ

M = 7.39 β
γ

M = 72.47

nmz = 4 M =  4.71 M =  51.53

Freq.

[SI].

No

condensed

Classic

Guyan

Guyan

corrected

New 

method

1
st

581.3 767.8 52 0.3 551.9 

2nd 602.7 905.0 60 9.6 791.8 

3rd 925.6 2042.0 903.7 959.5 

4
th

 1168.1 2504.3 1079.8 1119.0

5
 th

 1230.4 2834.8 1107.0 1157.8

10 th 1834.2 6141.6 2787.8 1775.9

M
o
d

e
l 1

1st 1323.1 1567.5 987.2 1126.3

2
nd

 2002.9 2613.1 1390.2 1523.0

3
rd
 2724.3 5530.1 2218.7 3227.7

4th 3703.1 6097.7 2918.4 4257.1

5 th 4222.9 10060.8 4676.1 5024.5

10
 th

 9213.1 47257.2 35418.7 10559.8

M
o

d
e

l 2

1
st

169.1 184.0 13 6.0 129.3 

2nd 336.3 472.1 23 3.4 234.8 

3rd 483.4 4185.1 2564.1 536.6 

4
th

 927.7 4309.6 3136.5 538.7 

5
 th

 1104.3 7990.1 4868.2 788.5 

10 th 2564.2 15982.3 11908.0 1330.6

M
o
d

e
l 3

Guyan corrected New method

nmx = 2 αM = 9.46 αM = 434.37

nmy = 0 β
γ

M =  ----- β
γ

M = -----

nmz = 8 M = 1.75 M = 81.58 

Guyan corrected New method

nmx = 5 αM = 1.80 αM = 121.34

nmy = 5 β
γ

M = 2.73 β
γ

M = 121.34

nmz = 0 M = ----- M = ----- 
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Fig. 3. Comparison of eigenfrequency predictions among original Guyan method ( ), mass corrected Guyan method ( ) and the new
developed method ( ), using 10 master d.o.f.’s, for the three models considered: (a) Model 1; (b) Model 2; and (c) Model 3.

Therefore, an improvement of the reduced mass matrix is
gained through the introduction of suitable factors that modify
the term of the mass matrix, independently in each direction
(x, y, z). The above factors update the reduced matrix in or-
der to keep the mass to the value of the original unrestrained
structure. This improvement is easily applicable to finite el-

ements structures that are modelled through the translational
d.o.f.’s elements only: significant and extensive examples are
all structures modelled with brick elements. When rotational
d.o.f.’s are present, each finite element type present in the model
should be examined individually, depending on shape function
definition.
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   αα β γM M M

Guyan / / /

Corrected Guyan 9.46 ---- 1.75

(G)

(G)

(G)

(G)

 with 1; max ijkη =

η = −10

η = 0

δ =

δ =

K 434.37 ---- 81.58 

−1
 with ; max ijkK 432.61 ---- 80.37 

  withK 433.42 ---- 80.87 

TEST
K 434.28 ---- 81.47 

1 7 10
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Fig. 4. Results obtained using different reduction strategies for model no. 2;
10 master d.o.f.’s (nm = 10) , nmx = 2, nmy = 0, nmz = 8.

The following expressions supply a posteriori mass correc-
tion, giving factors �M, �M and �M (according to x, y, z) that are
applied to the reduced mass matrix MR. Taking advantage from
information embedded in the original mass matrix M (calling
nx , ny and nz its translational d.o.f.’s and calling mnx , mny

and mnz translational master d.o.f.’s), Mcorr
R is determined:

M =
⎡
⎢⎣

Mxx Myx Mzx

Mxy Myy Mzy

Mxz Myz Mzz

⎤
⎥⎦ ;

MR =
⎡
⎢⎣

MRxx MRyx MRzx

MRxy MRyy MRzy

MRxz MRyz MRzz

⎤
⎥⎦ ; (38a)

�M =
∑nx

i=1

∑nx

j=1Mxxi,j∑mnx

i=1

∑mnx

j=1MRxxi,j

; �M =
∑ny

i=1

∑ny

j=1Myyi,j∑mny

i=1

∑mny

j=1MRyyi,j

;

�M =
∑nz

i=1

∑nz

j=1Mzzi,j∑mnz

i=1

∑mnz

j=1MRzzi,j

; (38b)

⎧⎪⎨
⎪⎩

Mcorr
Rxx = �M · MRxx,

Mcorr
Ryy = �M · MRyy,

Mcorr
Rzz = �M · MRzz.

(39)

The cross terms (e.g. Mxy) are all null if the mass property
is isotropic; this is a generally obvious condition unless non
isotropic masses are considered.

3.2. Use of distributed stiffness matrices to condense mass
matrix

The stiffness matrix K of a general structure is represented as
a semi-positive definite symmetric matrix containing diagonal
(kll) and off-diagonal terms (kij —that can be equal or different
to zero).

In Eq. (40) the sum is performed on both diagonal and off-
diagonal terms of the matrix:

SKoff-diag =
n∑

i=1

n∑
j=1
j �=i

kij ,

SKdiag =
n∑

l=1
kll .

(40)

Examining previous Eq. (15) it clearly results that, whenever
most of the off-diagonal terms vanish, i.e. K(G)

ms = K(G)
sm � 0,

the resulting condensed mass matrix MR approaches Mmm.
Among many possible ways to introduce more connected

stiffness matrices (less zeros terms), an efficient approach is
here proposed. The aim is to balance diagonal and off-diagonal
subsets. Taking advantage of the normalisation that makes use
of variables introduced in Eq. (40), two additional scalars � and
� are introduced in order to parameterize the elements in the
off-diagonal matrix subset.

k∗
ij=� · SKdiag

S∗
Koff-diag

· (kij+�),

S∗
Koff-diag = ∑

i �=j

∑
j �=i

(kij+�).

(41)

A series of numerical tests demonstrated that the resulting
condensed mass matrix is affected by K(G) active connec-
tions (non zero values) more than by individual magnitudes.
As a matter of fact, a simple K(G)

TEST can be used obtaining a
condensed mass matrix resulting very close to that obtained
using previous K(G):

. (42)
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Guyan corrected New method

nmx = 16 α

γ

M = 1.45 M =  9.36

nmy = 17 β
α

γ
βM = 1.23 M =  8.55

nmz = 17 M =  1.23 M =  8.55 

Freq.

[SI]

No

condensed

Classic

Guyan

Guyan

corrected

New

method

1st 581.3 6 41.2 5 52.6 670.5

2
nd

602.7 6 65.0 5 69.6 917.6

3rd 925.6 1185.8 1034.5 1497.5

4th 1168.1 1463.2 1265.1 1638.7

5
 th

1230.4 1551.7 1368.4 1823.3

10
 th

 7042.4 15241.6 13428.3 6424.9

M
o
d

e
l 1

1
st

1323.1 1353.4 1131.6 2007.4

2nd 2002.9 2105.7 1756.2 2234.9

3
rd

2724.3 3141.3 2493.6 3790.9

4
th

3703.1 3889.5 2647.6 3958.5

5 th 4222.9 4695.4 3516.1 6177.1

10 th 38766.4 85786.7 65378.8 33675.3 

M
o

d
e
l 2

1
st

169.1 1 70.4 1 35.4 155.7

2
nd

336.3 3 44.3 3 12.5 348.7

3rd 483.4 4 96.7 4 43.8 435.7

4th 927.7 1154.1 680.3 667.3

5
 th

 1104.3 1335.1 841.7 724.0

10
 th

 5721.1 10446.9 9337.5 4633.5
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Guyan corrected New method

nmx = 13 M = 1.73 M = 23.89

nmy = 24
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γ
M = 1.39 M = 18.60

nmz = 38 M = 1.69 M =  5.33

β
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γ
β
α

γ

Guyan corrected New method

nmx = 38 M = 1.11 M = 4.89

nmy = 37 M = 1.11 M = 4.99

nmz = 10 M = 4.39 M = 60.69

Fig. 5. Comparison of eigenfrequency predictions among original Guyan method ( ), mass corrected Guyan method ( ) and new developed
method ( ), using as many master d.o.f.’s as 1

8 of total number d.o.f.’s, for the three models considered: (a) Model 1; (b) Model 2; and (c) Model 3.

The procedures just described are schematically synthesized in
Fig. 1 that shows both the use of the mass correction and the
application of the modified K(G).

4. Applications and method efficiency

The following examples are referred to three models dis-
cretized by means of brick eight-nodes finite elements, Fig. 2.
Model 1 represents a quarter of a spherical dome, that is a

symmetric structure with few inter-element connections; the
model presents many repeated eigenfrequencies. Model 2 has
similar inter-element connections, but no symmetry is encoun-
tered. Model 3 differs from all others because it is very massive,
with several connections among elements.

In the first case examined the condensation is very intensive,
presenting only ten master nodes. Fig. 3 shows the effect of
mass compensation applied to Guyan reduction—computed
with Eqs. (38) and (39)—on eigenfrequency evaluation errors.
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Guyan corrected New method

nmx = 38 α

γ

M = 1.16 M =  4.12 

nmy = 31 β
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γ
βM = 1.16 M =  4.76 

nmz = 31 M =  1.16 M =  4.76

Freq.

[SI].

No

condensed

Classic

Guyan

Guyan

corrected

New

method
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581.3 6 06.5 5 68.8 64 2.5 

2nd 602.7 6 08.8 5 82.3 96 3.7 

3rd 925.6 9 55.3 8 99.0 1063.2 

4
th

1168.1 1198.0 1096.0 1260.4

5 th 1230.4 1281.8 1178.0 1362.0

50 th 7042.4 8683.2 7902.9 6452.8
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e
l 1

1st 1323.1 1332.9 1142.5 1641.3
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4
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50 th 5721.1 7713.4 7147.1 5051.2
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Fig. 6. Comparison of eigenfrequency predictions among original Guyan method ( ), mass corrected Guyan method ( ) and new developed
method ( ), using as many master d.o.f.’s as 1

4 of total number d.o.f.’s, for the three models considered: (a) Model 1; (b) Model 2; and (c) Model 3.

It is highlighted by graphics, and corresponding tables, that
mass correction provides a very important improvement in
Guyan method efficiency. In other words, the new mass matrix
reduction is now in accordance with the global translational
inertia properties of the original model. Furthermore, it is
interesting to highlight the amount of mass correction; on

purpose, parameters �M, �M, �M of Eqs. (38b) are displayed
in Figs. 3–6. Considering also the new method that makes
use of the K(G) matrix given in Eq. (41), results turns out to
be astonishingly accurate in terms of eigenfrequency identi-
fications. The new mass matrix reduction not only reduces
the eigenfrequency estimate error, but also eliminates the
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trend in rising the error while increasing the mode order.
This latter tendency is typical in Guyan reduction and can-
not be eliminated introducing only mass compensation on
Guyan method.

The application of K(G), defined in Eq. (41), may produce
different reduction methods simply by varying parameters �
and �. In particular, Fig. 4 shows the results concerning model
2, for various solution strategies, all including mass correction.
The third sequence of data regards a K(G) built only with its
diagonal values. Fourth and fifth sequences are obtained filling
up the off-diagonal parts and balancing its weight with respect
to matrix diagonal. The sixth sequence is performed using the
stiffness matrix given in Eq. (42).

Whatever is the strategy (among the new ones) the results
are fine and similar each other. The only constraint is that the
K(G) stiffness has to be semi positive defined. This confirms
that it is not essential to use a physical stiffness matrix to build
a reduced mass matrix. On the contrary, defining K(G) stiffness
properties by means of a homogeneous criterion improves the
results.

Reconsidering Eq. (15), it is clear that the use of K(G) with
�=0 (Eq. (41)) implies only the omission of all terms after the
first in the r.h.s. of Eq. (15); therefore, mass reduction can be
obtained using Mmm with mass correction.

In Figs. 5 and 6 the Guyan reduction with and without mass
correction is faced with the new method obtained by Eq. (41)
with � = 1; in the figures the number of master d.o.f.’s is
amplified to an eighth and a quarter of the total number of
d.o.f.’s, respectively. The method shows to be particularly re-
liable at the higher modes, i.e. after almost the tenth mode
the accuracy turns into much better results if compared with
Guyan approach. This is particularly emphasized for the first
two models. For the third one the results given by applica-
tion of Eq. (41) present a less marked oscillation on the first
modes considered. However, the error trend given by Guyan
approach (mass corrected or none), that is almost increasing
linearly, is avoided by the new method. Above remarks sug-
gest an optimal strategy for the dynamic mass reduction of
structures.

Mass correction, given by Eqs. (39), always provides impor-
tant benefits to precision. In addition, if condensation is very
intensive, the new method is commonly the most reliable. If
condensation is low (number of master d.o.f.’s almost equal to
total d.o.f.’s) the results suggest a possible mixed use of Guyan
compensated approach for lower modes and the new proposed
method for the others.

Considering mode shapes, differences are less evident among
the considered approaches, so that the matching of mode shapes
keeps the same well known difficulties: as everybody knows,
the matching results unpredictable at the higher frequencies.

5. Conclusions

The mass matrix reduction based on Guyan theory has been
shown not to maintain the mass properties of the structure at
their known values when restrained structures are faced. En-
forcing mass conservation increases the reliability of identified
eigenfrequencies. It was also highlighted that there is no need
to build the mass reduced matrix by exploiting the effective
stiffness matrix of the model. On the contrary, the use of more
homogeneous stiffness matrices provides much better results:
new opportunities arise to solve large dynamic problems with
compact numerical matrices, while maintaining a high accu-
racy in dynamic analyses.
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