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Coherent sources separation based on sparsity:
an application to SSR signals
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Abstract – Systems based on Secondary Surveillance Radar
(SSR) downlink signals, both with directional and with omni-
directional antennae (such as in Multilateration) are operational
today and more and more installations are planned. In this frame,
high-density traffic leads to the reception of a mixture of sev-
eral overlapping SSR replies. By nature, SSR sources are sparse,
i.e. with amplitude equal to zero with significantly high probabil-
ity. While in the literature several algorithms performing sources
separation with a�-elements antenna have been proposed, none
has satisfactorily employed the full potential of sparsity for SSR
signals. Most sparsity algorithms can separate only real-valued
sources, while we present in this study two algorithms to sepa-
rate the complex-valued SSR sources. Recorded signals in a live
environment are used to demonstrate the effectiveness of the pro-
posed techniques.
Index Terms – Secondary Surveillance Radar, Array processing,
Blind Source Separation, Sparsity, Air Traffic Control.

I. Introduction
Originally denominated “Identification Friend or Foe”
(IFF) during the Second World War, the Secondary
Surveillance Radar (SSR) operates on an interrogation-
reply basis (while primary radars are based on echo-
location). The radar emits an interrogation, eliciting from
the airplanes in the illuminating beam a reply generated
by an on-board SSR transponder, and emitted by an omni-
directional antenna. The interrogation and the reply are
modulated, finite-length signals at carrier frequency of
���� and���� MHz [1]. Two operational protocols cur-
rently co-exist: previously un-addressed mode A/C and
newer mode S, in which the ground station selectively ad-
dresses the aircraft and permits short data communications
between the ground interrogating station and the aircraft
[2]. This new standard is intended to reduce the reply rate,
and will ultimately replace the mode A/C. Recently, a dis-
tributed network of receive-only stations may be added to
the conventional SSR system [3, 4], which permits multi-
lateration and enhanced message detection, see Fig. 1.
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Fig. 1. The distributed SSR system (From [5]).

However, with distributed systems there is a dramatic in-
crease of received replies per unit time, causing overlap-
ping between replies and / or unsolicited replies called

”squitters”. In such conditions, very often the message
transmitted by the aircraft is corrupted and cannot be re-
covered by conventional decoders, nor the aircraft can be
located and identified.
Source separation can be based on array response matrix
[6], High-Order Statistics [7, 8], deterministic properties
[9, 10] that involve joint diagonalization of a collection of
symmetrical third-order tensors [11], or the usage of the
sparsity of the sources [12, 13]. Sparsity refers to algo-
rithms that use the fact that a source may in fact be off
a substantial percentage of time observation; either in time
domain or after a transformation (Fourier, Wavelets,...)
[14-16]. In [13], due to different time of arrival for the
sources, sparsity arises at the beginning and the end of the
data batch under investigation. Figure 2 presents a typi-
cal case of mixed replies, where actually two mode S (in
boxes) and one mode A/C (not visible) are present.
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Fig. 2. A record of overlapped replies (case W5).

But sparsity arises also when the two sources are over-
lapping, indeed all SSR sources are off half the time by
design. Therefore, we propose two different algorithms
based on sparsity: a global one that behaves roughly as
a generalized Hough Transform [17], as it attempts to map
every sample over a parameter space. The second algo-
rithm estimates and stores the parameters of interest in an
inline fashion for a group of consecutive samples, then by
clustering identifies the right ones. We will demonstrate
its effectiveness on a set of real data acquired by an exper-
imental platform that we designed in TU Delft.

Section II reminds the SSR model, while Section III intro-
duces the sparsity concept and how it applies to SSR. In
Section IV, the global algorithm is presented, and in Sec-
tion V the inline one is shown. Section VI analyzes the
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results of the algorithms on experimental data, before con-
cluding in Section VII.

II. Data model
We consider the reception of� independent source signals
on an�-element antenna array (of arbitrary response).
The baseband antenna signals are sampled at frequency
���� greater than the signal bandwidth and stacked in vec-
tors���� (size�). After collecting� samples, the obser-
vation model is

� �� � ���(1)

where� � ������ � � � ���� �� is the��� received signal
matrix.� � ������ � � � � ��� �� is the� � � source matrix,
where���� � ������ � � � � � ������

� is a stacking of the
� source signals (superscript� denotes transpose).� is
the� � � noise matrix, whose elements are temporally
and spatially white.� is the� � � mixing matrix that
contains the array signatures and the complex gains of the
sources. We assume that the replies are independent, hence
�����

�
�� � � for � �� 	. Independently of their protocol,

mode A/C or S, the sources,�������� � ��� 

� ��, consist
of a binary sequence,����� with alphabet��� ��, modu-
lated by a complex exponential due to a residual carrier
frequency,��:

����� � ����� 	
�
���������(2)

Moreover, the two reply modes, i.e. mode A/C or S,
are packet-wise of different lengths, resp.��


s and
������
s. Therefore it is always possible to isolate a data
batch that contains the sources (see Fig. 2).

III. The Sparsity Concept and our proposed
methodology
A source is sparse if either in the time domain, or after a
transformation, it has a significant probability to be equal
to zero. Such sources can produce a mixture needing to be
separated, as in for instance: music, speech, seismic data
[14-16].

a) Time domain b) X−Y view

Fig. 3. Mixture of three sparse sources onto two sensors��� � �.
a) time domain, b) X-Y domain.

A typical problem such as the one presented in Figure 3, is
the case of several sources with possibly less sensors (so an
un-determined problem). Indeed, here we have only two
sensors for three sources. Because the sources are sparse,

in the X-Y domain, we can actually visually separate them.
Several algorithms can then cluster and assign each source
(see [18] for a survey).
Because mode S replies have a Manchester modulation,
we are assured that within any time interval we take, at
least half of the time the source is off. For the Mode
A/C, this ratio is even bigger by construction. So the SSR
sources are naturally sparse.
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Fig. 4. One SSR Mode S reply in cartesian coordinates.

Figure 4 represents in 3 dimensions the I and the Q channel
of the first antenna as� and� (real and imaginary parts),
and the I channel of the second antenna as� of a mode S
reply.
We observe that, up to the noise, the points are in-
cluded in a two-dimensional subspace,i.e. a plane in a
3-dimensional space.For a �-elements array antenna,
the data from a single reply is always included in a
two-dimensional subspace, over a real ��-dimensional
space. Indeed let be:�

� ����
����
����

�
� �

�
� ���������

���������
���������

�
�

Replacing����� in the noiseless case using Equations (1-
2), and simplifying:�
� ����

����
����

�
� �

�
� ���� �� ����������� � � ������������

���� �� ����������� � Æ ������������
���� �� ����������� � � ������������

�
�

Choosing a pair��� ��, such as:�
�
�

�
�

�
� �
� Æ

��� �
�
�

�

yields:� � ��� ��, which is a plane equation containing
the origin.
Second,The measured data is consistent with the spar-
sity assumption: we have two clouds of data, the outer
ring when the source is emitting a pulse, and the central
cloud which is noise only. Note that the distribution of the
absolute value of the reply is almost bi-modal, except for
the the leading and the trailing edge of the pulses.
Figure 5 presents the synthetic mixture of two mode S
replies, q10 and s21. Given that the two sources impinge
from different directions of arrival, consequently their
samples, when alone, lie on two different planes (the
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Fig. 5. Two sources mixed, q10 and s21, in cartesian coordinates.
The circles represent the positions of their outer rings alone.

proof is trivial, and skipped for lack of space).

Concept of the algorithms: We want to detect the direc-
tion of each plane on which lie the replies, in order to be
able to separate them.
Unlike the algorithms described in [14-16,18], which are
designed for real-valued sources and detection of lines in a
�-dimensional space, the most important improvement of
our proposition is the ability to work with complex sources
that lie on a two-dimensional plane in a�� dimensional
space.
In this paper, we restrict ourselves to the three-dimensions
case,i.e. 3 real dimensions over��, for several reasons:
1) sake of space and simplicity, 2) the global algorithm is
computationally intensive to work with� dimensions in
which we have to calculate a� dimensional cost function,
3) ��� �� �� is graphically simple to visualize, so it helps
to better understand the algorithm and the problem, and 4)
we can take advantage of the well-known parameterization
of the subspace.
But it is not a limitation, indeed the second algorithm can
be extended over more dimensions at a relatively low cost.

IV. The global algorithm
Idea: For every possible plane in the��� �� �� space, we
compute the number of samples that might belong to it,
above the noise. Later, we keep as potential source-plane,
the ones with the highest count.
We can parameterize the planes with two angles: the polar
angle and the azimuth angle, which define a vector��� . As
we use a space of dimension�, the orthogonal subspace
to this vector is a plane, therefore we can define any plane
by its orthogonal vector��� . So counting for each possible
plane, means to discretize the parameter pair��� �� defin-
ing��� , and calculating the count of the samples on all the
pairs of this grid.
The noise may displace some samples out of their correct
plane of interest, and the discretization may be too crude;

Therefore, we rather do a “Soft-counting” via a cost func-
tion:

���� �� �
	���
���

	
�

�
�
�� ������ �
����

�

����

�

where�
��� is the projection of the sample���� on the
plane with normal vector in the direction��� ��, �� is the
accepted error on angle� �
� between the projection and
the initial sample. One example of the cost function is pre-
sented in figure 6, where we can observe the cost function
associated to each source and their mixture. One can ob-
serve already the main problem, which is the creation of
spurious peaks.
The algorithm follows the steps:

1) Perform a Singular Value Decomposition (SVD) on
the raw data.

2) Select the real and imaginary part of the first compo-
nent, and the real part of the second component of the
data.

3) Evaluate���� �� for each���� ���.
4) Search for the�� � maximum values of���� ��.
5) Collect the samples belonging to each plane, and use

it to derive an array signature vector.
6) By some statistical decision method, decide the� di-

rections to be preserved.
7) Project the data onto the directions of each plane.

Step 1) reduces the complexity of the data (we had�
sensors), and whiten the data.
Step 2) is arbitrary in the choice of the components.
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Fig. 7. Two sources mixed, q10 and s30, in cartesian coordinates:
the dots are the full set of samples, while the squares and the
circles represents the set of samples lying on the two main planes.

Step 5): first, for each estimated maximum of���� ��, we
collect the samples that exactly lie on this plane in��,
the sub-matrix of� that contains these samples. Figure
7 draws the full set of samples, and��, �� as circles or
squares for both sources.
Next, the main eigenvector of the SVD of� � is the source
array signature vector:�� (see for instance [12, 13].
Step 6): several tests exist to decide if the detected planes
are artifact or real:
	 Probability distribution.
	 Kurtosis equal to zero [8].

Proceedings of the European MicrowaveAssociation 3



COHERENT SOURCES SEPARATION BASED ON SPARSITY: AN APPLICATION TO SSR SIGNALS

−500 50

0
100

0

500

1000

AzimuthPolar
−500 50

0
100

0

500

1000

AzimuthPolar
−500 50

0
100

100

200

300

400

500

600

AzimuthPolar

Fig. 6. Cost function for the cases21, q10, and their mixture.

	 Bimodal distribution of the absolute value.
	 Test on the eigenvalues of the previous SVD.
In this paper, we choose to keep the two directions which
produce the smallest condition number for the matrix
� � ����� �.
Step 7) is done by a Moore-Penrose pseudo-inversion:

�� ���
�

V. Inline Algorithm

The inline algorithm aims at reducing the computational
cost by assuming that if a sample contains only source,
the consecutive samples may also contain only the same
source, let their number be�; therefore the parameters of
the plane containing these samples can be derived (see Fig.
8), and later compared.
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Fig. 8. Plane detection for the s24 case alone with L=4.

The algorithm follows the steps:
1) Perform a SVD on the raw data.
2) For all� � ��� 

� � � ��, gather the sub-matrix:

�� �

�
� ���� 
 
 
 ���� �� ��

���� 
 
 
 ���� �� ��
���� 
 
 
 ���� �� ��

�
�

and evaluate the pair���� ��� of this plane.
3) Perform a cluster analysis to get the most significant

directions.

4) Statistically, decide the� directions to preserve.
5) Project the data onto the directions of each plane.

Step 1,4,5): same as global algorithm.
Step 2) is done by a SVD, indeed the orthogonal vector to
the plane is the last eigenvector of the SVD (only true in
��� �� �� space). The���� ��� of the vector are the ones of
the plane.
Step 3) is the source of the computational improvement
over the global solution. Indeed, the step 3) of the global
solution needs to discretize the parameter space of a possi-
ble plane: as the dimension increases, so the needed num-
ber of point to discretize the parameter space (in fact the
number of samples is directly proportional to twice the
number of samples in one dimension to the power of the
number of dimensions). Conversely, adding dimensions to
the clustering step is just changing the definition of the
distance (between two pairs), which is just linear with the
number of dimensions.
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Fig. 9. Plane detection for the (s24,s21) case with L=4, and the
detected clusters.

An example of the output of the step 3 can be seen in Fig-
ure 9, where the pairs calculated by the step 2) are shown.
Moreover, the result of the clustering is symbolized by two
circles.

VI. Experimental results

A) Setup and conditioning of the data

In this seminal study, we only investigated the mixture
of two Mode S replies. Preliminary studies performed at
TU Delft on the earlier prototypes have shown that the
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receivers are linear for the used dynamic range. Conse-
quently, it is acceptable to consider the addition of two dif-
ferent time slots containing different Mode S replies as an
almost real case. The use of these semi-synthesized cases
of overlapping mode S replies allows us to perform a gen-
eral performance analysis of any algorithm (without being
just simulations). In this experiment, we used pairs with
the best initial Signal to Noise Ratio (SNR), we mixed
them so that the sources are equipowered and with a ra-
tio to the noise of�� dB (SNR), thus they have an input
Signal to Interference plus Noise Ratio (SINR) slightly
below � dB (note that for one source, the other is an in-
terference, hence the ratio below� dB). We varied the
time delay between the leading and the trailing reply on
the range��� ���
s. We left the remaining frequency shift
unchanged.
Given the different time of execution, we only used
�
pairs for the global algorithm. We first had to remove out
of these
� pairs� pairs that had a mixing matrix� ill-
conditioned,i.e. with a bad condition number. Physically,
it means that the two sources were coming from directions
of arrival too near to be separated. Figure 10 presents the
average replies output SINR for the global algorithm as
a function of their condition number for the case of�� 
s
delay; note the presence of� outliers. As this delay is large
enough to ensure that there will be enough non-overlapped
samples for each source, it is a measure of how well the al-
gorithm can perform in the best condition. To compare, the
PA [13] works also very well in such conditions.
For the Inline algorithm, we could use�� of our recorded
signals. Therefore, we had�
�� potential pairs, of which
we kept the���� that had the best condition number.
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Fig. 10. Global Algorithm: the output SINR (dB) of the sources
as a function of their condition number for�� �s delay.

Note that if the condition number is below�, all sources
have an output SINR well above�� dB, which is the limit
usually accepted to decode a reply, and for which the de-
coding will be most likely achieved.

B) Experiment with a time delay

Figure 11 presents the success rate,i.e. the fraction of
cases when a reply is detected and decoded , of the algo-
rithm as a function of the delay between the replies. Note

that due to the log-scale, it was not possible to show that
the success rate is
�� for no delay. With increasing de-
lay, the probability success improves, which is explained
by the fact that there are more samples that are only with
one source, therefore with an improved estimation of the
array signature vectors. At� 
s the rate becomes accept-
able for aircraft surveillance for the global one, but then
the algorithm is directly in competition with the PA. Note
that the MDA [10] is still better for no delays. The inline
version with only��� cannot be accepted yet, but as we
think it has some potential, let us note that at least the suc-
cess is delay-independent.
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Fig. 11. The success rate of the algorithm as a function of the
delay between the replies.

Figure 12 presents the output SINR as a function of the de-
lay. The SINR is estimated as the ratio between the norm
of projection of the un-mixed signal on the source sub-
space over the norm of orthogonal remaining. The average
value is high enough to provide an error-free decoding. We
may observe that between the trailing and leading replies,
there is up to� dB difference; we note as well that the in-
line version has a� dB advantage over the Global version.
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VII. Conclusion and Perspectives
We proposed in this article a novel concept to separate SSR
replies. The method is novel to the area of SSR digital ar-
ray, and it is also novel to the area of Sparsity-based al-
gorithms due to its ability to process complex-valued data.
We have investigated the case of a mixture of two mode S
replies, in which the result is very encouraging. Neverthe-
less, in future research, we will implement the inline algo-
rithm over the full�� dimensions. As well, we will study
the behavior of the algorithm with both protocol, mode
A/C and mode S, mixed. As other sparsity-based algo-
rithms, this method yields the potential to separate under-
determined problem,i.e. more sources than sensors.
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