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ABSTRACT 
 

In this paper the authors present an application of Visual Basic Application 
Programming Interface (API) to develop numerical and procedural algorithm into CAD 
software. The paper focuses on Reverse Engineering embedded into Solidworks. In many RE 
applications there is the need to remodel the tessellated surface into an editable solid feature, 
to analyze it and to manipulate it. For this purpose they can be programmed numerical 
procedures which interact with native geometrical entities in order to improve the modelling 
capability using automation protocols.  

The presented example of API and Solidworks interaction is about the acquisition and 
processing of surfaces acquired by 3d laser scanner.  The problem is to acquire the tessellated 
geometry, build up a parametric editable feature, perform topological analysis and manipulate 
more fragments to reconstruct an unique entity. The proposed methodology is based on the 
integration between native geometrical entities in Solidworks and advanced mathematics 
algorithms about nonlinear optimization. Both of them can be accessed and manipulated by 
the user using simple graphic windows. In the paper the authors describe how to implement 
the interaction among these entities, discussing the role of API focusing on limits and 
capabilities and presenting the proposed algorithms underling the critical points. 

 
Keywords: API, Reverse Engineering, Solidworks 
 



1.  Introduction to Solidworks & API 
 
Solidworks is a widely used commercial software about engineering modelling and computer 

aided design. It is based on parametric definition of component and feature and it can be used in a very 
intuitive way. Although recent releases include many packages, Reverse Engineering applications [1-
4] are only limited to the module FeatureWorks about the automatic feature recognition of external 
parts. There is no way to process a point cloud o manipulate meshed file (such as stereolithography, 
.stl) which are treated only as graphical primitives. Other engineering modellers (such as Catia) have 
dedicated module to RE application, but the purchase of their license may be very expensive. Specific 
RE software (such as Rapidform) does not allow the building of parametric feature-based models. In 
many cases there is also the need to implement specific algorithm to perform dedicated an accurate 
computation which can not be found in any commercial software. These are the main motivations to 
use Application Programming Interface within a commercial software. This allows to use the 
predefined native geometrical entities and operations together with an home made computational 
algorithm. Recent Solidworks releases have improved the methods supported by native object and they 
have been interlaced with a very powerful Mathematical Utility. This feature allows to easily perform 
basic and advanced point, vector and matrix operations. Using API into Solidworks we can manipulate 
three kinds of objects: those coming from Solidworks (model native entities), those coming from math 
utility database (math entities) and user defined entities (Figure 1). The native geometrical objects 
concern the sketch entities (point, line, circle, spline, etc.) and their constraints, the features (extrusion, 
revolution, loft, etc.), the assembly management (mating, inserting, moving, etc.). The math native 
objects concern points, vectors and transformations for manipulate entities (projecting from model 
space to sketch space and vice versa, performing basic operation on vectors, etc.).   

 

 
Figure 1: Solidworks API entity scheme 

 
Using the software without API the user can only access to single model entity and the direct 

access to internal database is not permitted [8]. Using API the database of entity can be directly 
accessed saving time to execute command and model entities can be interlaced with math and user 
defined ones. Let us consider to import a list of points. If the number of these points is huge, importing 
by hand is impossible, so it can be generated a macro command to repeat the operation of importing 
one point for all the points to be processed. Although this operation is possible it is not the best way. 
The smartest way to import points is to access directly to internal Solidworks database, this can be 
only done with API programming techniques. In order to have an idea of time difference in importing 
points using macro command, we have tested the operation of reading 1000 points from an ASCII file 
and importing into model using a desktop pc. If we use standard access to database the entire process 
takes 1 min and 35 s, if we perform a direct database access it takes less than 1 s (more than 90 times 
faster!). Optimizing processing time is very important especially for RE application where the entity 
(points, mesh, etc.) to manage are so many. For direct database access the native method is 
SetAddToDB(True) which has to be applied to the current document (part or assembly).  The 
programmer can use also the method SetDisplayWhenAdded (True) to avoid to display entities 
details when they have been created. Both of them represent a smart way to import numerous entities. 



When a sketch point has been created its properties are read only, thus they cannot be modified. In 
order to perform point operations the programmer can create a point/vector alias in the math space 
using the methods CreatePoint(vector)/CreateVector(vector) which has to be applied to the current 
document MathUtility. The programmer can get also the transformation matrix to perform both point 
and vector operation. In Solidworks it have to be expressed as 4x4 matrix [TRANS]: 
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Where [ ]R  is the matrix describing rotation about x, y, and z axis, { }t  is the vector describing 

translation along x, y and z axes, { }s  is the scaling vector and { }n  is an unused vector.       

 

 

 

Figure 2: Steps to rebuild a featured surface: 1. importing mesh, 2. computing revolution axis (only for 
axial-symmetric shape), 3. sectioning with splines, 4. surfacing with loft or fill. 

 
 
 

2.  Surface reconstruction algorithm details 
 

The first developed routine is about a common Reverse Engineering problem [5]: the 
reconstruction of a 3d fetured surface starting from a point cloud. We can split the problem into four 
activities. First, we have to import a stereolithografy mesh (.stl) coming from the automatic acquisition 
system (taster, scanner, etc.). In order to perform this task in a smart way we have used the direct 
database access as described in the introduction. Then we have to process the mesh. Two are the 
principal operations which have been implemented. The first is the search for hypothetic revolution 
axis. If the mesh coming from a shape which have a revolution axis the knowledge of this axis can be 
very useful for further manipulation (see section 3). In order to assess the axis of a discretized surface 



we can use the Halir method [6-7]. This methodology has been successfully applied by the authors in a 
previous work [8]. In this paper we present a modified algorithm which seems to be more stable and 
more accurate. This method is suggested especially for .stl mesh because this format includes 
information about the normal vector of each patch. 

The idea starts from the consideration that the normal vectors to a revolution surface pass 
through the axis of revolution. This axis can be found minimizing the sum of residuals of distance 
between surface points normal vectors and a parametric expression of the axis. Assuming the 
revolution axis a  to be: 

oa O t n= + ⋅          (2) 

and defining for generic point iX  with normal vector in  the normal axis N  as 

i i iN X s n= + ⋅          (3) 
we can compute the distance between normal vectors and revolution axis as:  
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The six unknown parameters of axis a  can be found by solving: 

( )2min ,i i
i

d N a∑           (5) 

According to the authors’ experience the implementation of the optimization routine for (5) 
leads to instability and inaccuracy due to the absence of an normalization of vector 0n . This behaviour 
can be explained notice that in order to solve the (5), even sophisticated numerical procedures find 
solutions near the null vector; this causes the inaccurate determination of the direction cosines of axis 
a .   The normalization condition can be added to the problem leading to a constrained optimization 
problem which requires an accurate nonlinear programming tool. Since the normal vector coming 
from .stl files are already normalized, and including the normalization condition for vector 0n  the 
distance in (4) can be simplified as:  
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And the optimization can be rewritten as 
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In order to improve the accuracy of solution for irregular meshes with patches of different area, 
we can weight the distance with the same area value. For detailed or regular meshes this remedy gives 
no benefit.  

The third implemented procedure is the slicing of the imported mesh. For sake of brevity we 
discuss only the outline of the proposed algorithm which is reported in Figure 3. The idea is to create a 
set of parallel planes and to intersect the meshes. If an imported point is sufficiently near to the cutting 
plane, it is projected onto it. For projecting the point we can use the math transformations as discussed 
in the introduction which allow to use native procedures. The method that seems suitable is 
GetClosestDistance, which returns the distance between two entities and the projected point 
coordinates at the same time. Then, for each cutting plane a spline is created interpolating all the 
projected points. Particular attention has been paid to the orienting of points for improve coherency of 
spline (Figure 4). Having a set of n points there are n!  splines which can interpolate them. Only one of 
these curves matches the actual profile. When you manage a lot of points some error may occur. These 
pitfalls may be avoided using an accurate ordering procedure.   

 



 
Figure 3. The proposed algorithm for point cloud cutting 

 
According to author experience a simple clockwise (or counter clockwise) ordering of points 

does not allow to avoid ordering defects. For this reason the authors propose the following algorithm. 
Starting from a first reference point the spline is created searching the nearest point to the previous 
one, paying attention that the orientation of the tangent vector of the spline does not has quick 
variation (more than 90° in two adjacent points). Ambiguous points are filtered out. This algorithm 
intrinsically filters out boundary spikes, outliers, etc.   

 

 
Figure 4: Ordering defects in creating cutting section splines: correct spline,  self reversing spline and 

a self intersecting spline. 
 
  The forth procedure which has been implemented is the remodelling of the featured surface 

starting from section splines. There are two methods to build the surface. The first is based on the 
lofting through the sections, the second is based on the filling surface among the contour surfaces 
respecting the section splines as constraint of interpolation. The authors experience some difference 
between the two methodologies. The first one requires lower computational effort and it is suitable for 
a huge number of cutting section. If one has to manage with a small number of section, it can be made 
a refinement creating some fictitious intermediate splines in order to increase accuracy. The second 
methods has the advantage to constraint the surface not only with the cutting sections but also at the 
boundaries. This is useful to create geometrical edges for further investigations (see next section). On 
the other hand, a large number of cutting section may generate instability of interpolation (Figure 5). 

 



 
Figure 5: Difference in interpolating surface: lofting on the left and filling on the right. Notice the 

difference in accuracy and the presence of unwanted ripples on the filled surface. 
     
 

3. Manipulating entities 
 

If the purpose of the acquired geometries is to reconstruct a single shape starting from its 
fragments, some methodologies for manipulating and matching them have to be embodied as well. In 
this case the API can be useful to automate the computational algorithm for collecting geometrical 
data and matching the right entities. All these tasks can be performed into an assembly document 
where two or more fragments have been imported. The target is to compute the right movement to 
bring one fragment very close to another in a consistent position to perform a stitching of surfaces. A 
numerical procedure, integrated into CAD, can solve an optimization problem (minimizing the gap 
between two lateral edges) avoiding manual attempt for positioning the components and measuring 
reconstruction errors.  An example concerning shapes with a common revolute axis (i.e. pots, 
amphorae, etc.) is herein discussed.   

If the fragments have been processed using algorithm presented in the previous section, for each 
of them we know the bounding edges and the revolution axis. The complete matching procedure can 
be split into six main steps (Figure 6): 1.  Importing the fragments and matching the axes; 2. 
Collecting edges data; 3. Searching for consistent starting point; 4. Finding drag parameters; 5. 
Checking correspondent points distance; 6. Final matching. 

The first fragment which is imported into the assembly document can be considered as a 
reference fragment and it is assumed to be fixed. Then, the second fragment can be imported and its 
revolution axis has to be constrained to be coincident to the revolution axis of the first one (step 1). At 
this step, the unknown 2nd component positioning variables for matching lateral edges are the 
displacement along the common axis and the rotation angle about it (2 d.o.f.). In order to solve the 
problem, we have to analyse and compare the lateral boundary edges. For this purpose the geometrical 
data of these entities have to be acquired (step 2). This task can be performed using the method 
GetBCurveParams which, acting on a spline, returns a unique vector listing the number of knots, the 
number of control points, the knots values and the control points coordinates (x, y, z). In order to get 
spline points it can be used the method GetSplinePts, which computes the interpolation points 
starting from the control ones and the knots values. It is important to underline that the described 
method returns coordinate values in each component local reference frame. In order to transform these 
coordinates in the global (assembly) reference frame, we have to build an appropriate transformation 
matrix. Using API with Solidworks this matrix can be computed with the method Transform2 which 
acts on a Component2 object and returns a matrix like that in (1). Coordinate vectors can be 
transformed defining mathematical points dual entities as described in the first section (with 
MathUtility::CreatePoint) and then applying the transformation (with MultiplyTransform acting on 
mathematical point).  Once the boundary edges are described in terms of global reference frame, the 
matching algorithm can be applied (step 4).  



Let us now focus on this numerical procedure details (Figure 7). Since the boundary edges have 
been generated with the algorithm discussed in the previous section, using small distance between 
sectioning planes, they have been defined with a lot of interpolating points which are uniformly 
spaced. Assuming that the first edge has 1N  points and the second edge has 2N  points (with 

2 1N N≤ ), we can define the number of possible placing configurations as 1 2 1Nt N N= − + . Each 
configuration represents the mating between edges starting from a different height (different point). In 
the first one, the point 1

1P  on the first edge contacts the point 2
1P  on the second edge; in the second 

one, the point 1
2P  on the first edge contacts the point 2

1P  on the second edge; in the i-th configuration, 

the point 1
iP  on the first edge contacts the point 2

1P  on the second edge.  
 

 
Step 1: Importing the fragments 

and matching the axes 

 
Step 2: Collecting edges data 

(N1=5, N2=3) 

 
Step 3: Searching for consistent 

starting point 

 
Step 4: Finding drag parameters 

 
Step 5: Checking correspondent 

points distance 
 

Step 6: Final matching 
Figure 6: Steps for fragments registering 

 
For each configuration we can compute the distance between the starting points and the common 

axis. If the difference (Diff, in Figure 7) of the two distances is less than a tolerance value, then the 
configuration can be considered as admissible. In this case we can move the second frame in order to 
bring the two starting points at the same position (step 4). This movement can be performed using the 
method DragOperator::Drag which acts on the second fragment two times. The fist time is for 
rotating the components and it requires the definition of a transformation matrix which can be done 
using MathUtility::CreateTransformRotateAxis. The second time the method translates the 
component along the axis and it requires the definition of a transformation (translation) matrix using 
MathUtility::CreateTransform.   

The check on only starting points is not sufficient for a global matching. It only means that 
locally the distance from the common axis is the same. This condition has to be verified globally on 
the edge. Actually, the fragments can have only a part of the edge in contact, and so the global 
matching condition can be replaced with a sufficient length ( z∆ ) matching condition (depending on 



fragments leading dimension) among zN∆  points.  For this purpose we can define the gap function PF 
of the i-th possible configuration as: 
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where  1
k iP +  is the vector of the (k+i)-th point on the first fragment edge and 2

kP  is the vector of the k-
th point on the second fragment edge. 

If the value of this function is less than a tolerance, the congruence between the two edge for the 
i-th configuration can be considered acceptable, and the iteration can be stopped. On the contrary, the 
movement is a fake and iteration has to continue. 

 

 
Figure 7: Matching algorithm 

 
The proposed algorithm has been tested on several fragments and some numerical remarks can 

be underlined. The first comment is about the tolerance to be chosen for matching. Point clouds 
coming from acquisition may have some imperfections on the extremities due to measuring errors or 
physical defects on surface. Moreover the computation of revolution axis may be quite imprecise. For 
both these reasons, the spline defining boundary edges may be affected by errors. Thus, the tolerance 
value has to be not so small. Authors experienced that best value for 10 cm x 10 cm fragments are 
within the range 1÷2 mm. 

In case of small fragments or fragments with small curvature variation, congruent configurations 
may be more than one. In this case it can be useful to perform the iteration for all of them instead of 
stopping to the first congruent position. 

The DragOperator is able to check collisions avoiding interference in component positioning. 
This property can be useful to avoid configuration which seems congruent but leads to unphysical 
results (self intersecting surfaces)             

 
  

4. Conclusions 
 

     Tests on the proposed methodology integrating API and Solidworks for Reverse Engineering 
applications, confirmed the power of integrating numerical algorithm into CAD. The direct access to 



geometrical entities and the possibility to create alias mathematical entities or user defined objects 
revealed to be a valid instrument to improve the reliability of manual procedures and to reduce the 
time for computation.   

Two interlaced problems have been faced. The first is about the building of a 3d featured model 
from an acquired point cloud. In this case the use of direct access to database has given great 
advantages. Moreover the procedures for revolution axis determination and automatic sectioning 
discussed in detail has been tested an revealed to be robust. The second faced problem is about the 
manipulation of the modelled fragments in order to search for a possible matching to reconstruct a 
unique shape. In this case an other algorithm, based on the minimization of spline points, has been 
presented.  

Although this research activity is quite recent, the presented examples give an idea of the great 
capabilities of programming into a CAD environment. This synergy can link the advantage of a 
globally used software about reliability, graphical capabilities and pre-implemented procedures, with 
own made numerical procedure to solve specific problems, without the difficulties to build up a 
specific graphical engine.  

 
 
 

References 
 
[1] Wills, L.M., Newcomb, P., Reverse Engineering, Springer, 1996 
[2] Hoschek, J., Dankwort, W., ed., Reverse engineering, Stuttgart Teubner, 1996 
[3] Várady, T., Martin, R.R., Cox, J., Reverse engineering of geometric models – an introduction, Computer-
Aided Design, vol. 29(4), pp. 225-268, 1997 
[4] Werner, A., Skalski, K., Piszczatowski, S., Święszkowski, W., Lechniak, Z., Reverse Engineering of free-
form surfaces, Journal of Material Processing Technology, vol. 76, pp. 128-132, 1998 
[5] Chivate, P.N., Jablokow, A.G., Solid-model generation from measured point data, Computer-Aided Design, 
vol. 27(12), pp. 905-914, 1995 
[6] Halir R., An Automatic Estimation of the Axis of Rotation of Fragments of archaeological pottery: a 
multistep approach, Proceedings of the 7-th WSCG International Conferences in Central Europe, 1999 
[7] Cao Y., Mumford D, Geometric Structure Estimation of Axially Symmetric Pots from Small Fragments, 
Proceedings of the SHAPE Lab. @ SPPRA'02 Signal Processing, Pattern Recognition and Applications IASTED 
International Conference, 2002 
[8] Pezzuti, E.,  Piscopo, G.,  Ubertini, A.,  Valentini, P.P., Milana, M., Di Leginio, R., Una metodologia per 
l’analisi e l’archiviazione di reperti archeologici basata sul rilievo mediante scanner laser tridimensionali a non 
contatto, Archiviazione e Restauro di Reperti Archeologici Mediante Tecniche CAD-RP (in italian), Napoli, 2004 
[9] Bidalach, I., Portal, R., Dias, J.P., Integration of CAD and Multibody Systems, Proceedings of ECCOMAS 
Multibody Dynamics 2005, Madrid, 21-24 June 2005.  

 


