THE DYNAMICS NEAR QUASI-PARABOLIC FIXED POINTS OF HOLOMORPHIC DIFFEOMORPHISMS IN \mathbb{C}^{2}

By Filippo Bracci and Laura Molino

Abstract

Let F be a germ of holomorphic diffeomorphism of \mathbb{C}^{2} fixing O and such that $d F_{O}$ has eigenvalues 1 and $e^{i \theta}$ with $\left|e^{i \theta}\right|=1$ and $e^{i \theta} \neq 1$. Introducing suitable normal forms for F we define an invariant, $\nu(F) \geq 2$, and a generic condition, that of being dynamically separating. In the case F is dynamically separating, we prove that there exist $\nu(F)-1$ parabolic curves for F at O tangent to the eigenspace of 1 .

1. Introduction. Let $\operatorname{End}\left(\mathbb{C}^{2}, O\right)$ denote the group of germs of holomorphic diffeomorphisms at the origin O of \mathbb{C}^{2} fixing O. One of the main open problems is to understand the dynamics near O of an element $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ for which the spectrum of the differential $d F_{O}$ is contained in the unit circle (see Question 2.26 in [9]). The case where O is a parabolic point of F, that is $d F_{O}=$ id, and O is an isolated fixed point, has been studied by several authors ([7], [17], [10], [1]). To recall their main result we need first a definition:

Definition 1.1. A parabolic curve for $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ at O tangent to (the space spanned by) $v \in \mathbb{C}^{2} \backslash\{O\}$ is an injective holomorphic map $\varphi: \Delta \rightarrow \mathbb{C}^{2}$ satisfying the following properties:
(1) Δ is a simply connected domain in \mathbb{C} with $0 \in \partial \Delta$,
(2) φ is continuous on $\partial \Delta, \varphi(0)=O$ and $[\varphi(\zeta)] \rightarrow[v]$ as $\zeta \rightarrow 0$ (where [•] denote the projection of $\mathbb{C}^{2} \backslash\{O\}$ to $\left.\mathbb{P}^{1}\right)$,
(3) $\quad F(\varphi(\Delta)) \subset \varphi(\Delta)$, and $F^{n}(\varphi(\zeta)) \rightarrow O$ as $n \rightarrow \infty$ for any $\zeta \in \Delta$.

Then the main result is:
Theorem 1.2. (Écalle, Hakim, Abate) Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ be tangent to the identity and such that O is an isolated fixed point. Let $t(F) \geq 2$ denote the order of vanishing of $F-\mathrm{id}$ at O. Then there exist (at least) $t(F)-1$ parabolic curves for F at O.

Actually, Écalle [7] and Hakim [10] proved such a theorem for any dimension, but only for generic mappings, while Abate [1] using an ingenious index theorem

[^0]makes the result holds for any map, but just in \mathbb{C}^{2}. The case where there is a curve of fixed points passing through O has also been studied ([11], [5], [2]), and actually one can see Theorem 1.2 as a consequence of results on dynamics near curves of fixed points by means of blow-ups of O in \mathbb{C}^{2} (see [1], [4]). We also wish to mention that for the semi-attractive case in \mathbb{C}^{n} (that is one eigenvalue 1 with some multiplicity and the others of modulus strictly less than 1) the existence of parabolic curves is provided by Rivi [13].

Roughly speaking the underlying idea in all previous results is to find "good invariants" attached to F which read dynamical properties of F itself (for instance Hakim's nondegenerate characteristic directions or Abate's indices in [1], and residues in [4]).

In this paper we deal with the case of a map $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ with $\operatorname{Sp}\left(d F_{O}\right)=$ $\left\{1, e^{i \theta}\right\}$ for $\theta \in \mathbb{R}$ and $e^{i \theta} \neq 1$. We call O a quasi-parabolic fixed point for F.

If $e^{i \theta}$ satisfies some Brjuno condition then Pöschel proved that there exists a (germ of) complex curve Γ tangent to the eigenspace of $e^{i \theta}$ which is invariant for F and on which F is conjugated to the rotation $\zeta \mapsto e^{i \theta} \zeta$ (see [12]). However nothing is known about the dynamics in the direction tangent to the eigenspace of 1 .

Our starting point is the following trivial observation: the map $F:(z, w) \mapsto$ $\left(z+z^{3}, e^{i \theta} w\right)$ has $\{w=0\}$ as invariant curve and thus, by the one-dimensional Fatou theory (see, e.g., [6]) there exist two parabolic curves for F at O tangent to the eigenspace of 1 , no matter what $e^{i \theta}$ is. However, conjugating F with a map $G \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ tangent to id at O, it might be very difficult to check that the new map has an invariant curve tangent to the eigenspace of 1 and two parabolic curves in there.

Motivated by the previous results for germs tangent to the identity, we direct our study in searching invariants for F at a quasi-parabolic point which is related to dynamical properties of F along the direction tangent to the eigenspace of 1.

The main difference between the parabolic and quasi-parabolic case is that in the first, all terms of F are resonant in the sense of Poincaré-Dulac (see, e.g., [3]), while in the second case some are not, and this allows us to dispose of those terms with suitable transformations. More precisely, let $F=\left(F_{1}, F_{2}\right) \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ be given in some system of local coordinates by

$$
\left\{\begin{array}{l}
F_{1}(z, w)=z+\sum_{j+k \geq 2} p_{j, k} z^{j} w^{k} \tag{1.1}\\
F_{2}(z, w)=e^{i \theta} w+\sum_{j+k \geq 2} q_{j, k} z^{j} w^{k}
\end{array}\right.
$$

for $p_{j, k}, q_{j, k} \in \mathbb{C}, \theta \in \mathbb{R}$ and $e^{i \theta} \neq 1$. A monomial $z^{m} w^{n}$ in F_{1} is resonant if $1=1^{m} e^{i \theta n}$, while a monomial $z^{m} w^{n}$ in F_{2} is resonant if $e^{i \theta}=1^{m} e^{i \theta n}$, for $m, n \in \mathbb{N}$, $m+n \geq 2$. A germ F is said to be in Poincaré-Dulac normal form if it is given by (1.1) and $p_{j, k}=q_{j, k}=0$ for all nonresonant monomials $z^{j} w^{k}$. The Poincaré-Dulac Theorem states that it is always possible to formally conjugate F to a (formal) map G in normal form by means of a (formal) transformation tangent to the
identity, and actually the method of Poincare-Dulac is constructive in the sense that given $k \in \mathbb{N}$ it is possible to analytically conjugate F to a (convergent) map G which is in normal form up to order k (that is, nonresonant monomials of degree less than or equal to k are all zero) by means of a (convergent) transformation tangent to the identity.

Therefore if there exist invariants for F at a quasi-parabolic fixed point they have to be found in normal forms. Unfortunately normal forms are not unique and also they do reflect the character of $e^{i \theta}$, while our leading example does not make differences. Also, normal forms are not stable under blow-ups, which are one of the basic ingredients of parabolic theory. Indeed the only invariant terms are those we call ultra-resonant monomials, that is, for F given by (1.1), of type z^{m} in F_{1} and $z^{m} w$ in $F_{2}, m \in \mathbb{N}$. And we say that F is an asymptotic ultra-resonant normal form if $q_{j, 0}=0$ for any j. Note that Poincaré-Dulac normal forms are in fact examples of asymptotic ultra-resonant normal forms but the converse is not true in general, and indeed there are convergent asymptotic ultra-resonant normal forms which have no convergent Poincaré-Dulac normal forms. With a simplified PoincaréDulac method we prove that given $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ with O as quasi-parabolic fixed point, there always exist (possibly formal) asymptotic ultra-resonant normal forms conjugated to F by means of transformations tangent to the identity. Again asymptotic ultra-resonant normal forms are not unique, but we show that the first $j \in \mathbb{N}$ such that $p_{j, 0} \neq 0$ is an invariant for (even formal) conjugated ultra-resonant normal forms. Therefore we find the first invariant $\nu(F) \in \mathbb{N} \cap[2, \infty]$ associated to F. Of course this invariant could also have been defined from Poincaré-Dulac normal forms. However, the following result justifies the usage of ultra-resonant normal forms instead of Poincaré-Dulac normal forms:

Proposition 1.3. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ and assume O is a quasi-parabolic fixed point of F. Then there exists an invariant nonsingular complex curve Γ for F passing through O and tangent to the eigenspace of 1 if and only if F is analytically conjugated to a convergent asymptotic ultra-resonant normal form. Moreover in this case, if $\nu(F)=\infty$ then F pointwise fixes Γ, while if $\nu(F)<\infty$ there exist $\nu(F)-1$ parabolic curves for F at O contained in Γ.

For the practical purpose of calculating $\nu(F)$ one does not need to find an asymptotic ultra-resonant normal form. Indeed it is enough to find what we call a ultra-resonant normal form, that is, F given by (1.1) for which the first pure non-zero term in z of F_{2} has degree greater than or equal to the first non-zero pure term in z of F_{1} (see Section 2).

In the generic case $\nu(F)<\infty$, we can associate to F a second invariant, essentially the sign of $\Theta(F)$. The latter, for F in ultra-resonant normal form given by (1.1), is defined as $\Theta(F)=\nu(F)-j-1$ where j is the first integer for which $q_{j, 1} \neq 0$ and, roughly speaking, measures the "degree of mixing" of the dynamics along the eigenspace associated to 1 and $e^{i \theta}$. Therefore, given any $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ for which O is quasi-parabolic for F, we say that F is dynamically separating
if $\nu(F)<\infty$ and $\Theta(\check{F}) \leq 0$ for some ultra-resonant normal form \check{F} of F (see Definition 2.7). Our main result can now be stated as follows:

Theorem 1.4. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ and assume O is a quasi-parabolic point of F. If F is dynamically separating then there exist $\nu(F)-1$ parabolic curves for F at O tangent to the eigenspace of 1 .

One remarkable consequence of this theorem is that if F is given by (1.1) and $p_{2,0} \neq 0$ then there always exists a parabolic curve for F at O tangent to the eigenspace of 1 . This is similar to a result in the quasi-hyperbolic case-one eigenvalue 1 , the other of modulus <1-where, under similar hypothesis, the existence of a basin of attraction for F is proved (cf. [8], [14], [15]).

The plan of the paper is the following: In Section 2 we introduce ultraresonant normal forms, the invariant $\nu(F)$ and dynamically separating maps and give the proof of Proposition 1.3. In Section 3 we prove Theorem 1.4. Finally, in Section 4 we conclude with some remarks and discuss the case $e^{s i \theta}=1$ for some $s \geq 2$, especially relating parabolic curves provided by Theorem 1.4 with the ones given by Hakim's and Abate's theory for F^{s}.

Acknowledgments. We wish to thank the referee for many useful comments.

2. Ultra-resonant normal forms.

Definition 2.1. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ be given by (1.1). We call ultra-resonant the monomials of type z^{m} in F_{1} and of type $z^{m} w$ in $F_{2}, m \in \mathbb{N}$.

In case there exists $j \in \mathbb{N}$ such that $p_{j, 0} \neq 0$ we let

$$
\mu(F, z):=\min \left\{j \in \mathbb{N}: p_{j, 0} \neq 0\right\}
$$

and let $\mu(F, z)=+\infty$ if $p_{j, 0}=0$ for all j 's. Similarly if there exists $j \in \mathbb{N}$ such that $q_{j, 1} \neq 0$, we let

$$
\mu(F, w):=\min \left\{j \in \mathbb{N}: q_{j, 1} \neq 0\right\}
$$

setting $\mu(F, w)=+\infty$ if $q_{j, 1}=0$ for all j 's.
Finally, if $\mu(F, z)<+\infty$ we let $\Theta(F):=\mu(F, z)-\mu(F, w)-1$ (with the convention that $\Theta(F)=-\infty$ if $\mu(F, w)=+\infty)$.

In general $\mu(F, z)$ and $\mu(F, w)$ are not invariant under change of coordinates. However $\mu(F, z)$ and the sign of $\Theta(F)$ are invariant under a suitable normalization which we are going to describe.

Definition 2.2. We say that a (possibly formal) germ of diffeomorphism $F \in$ End $\left(\mathbb{C}^{2}, O\right)$ is in ultra-resonant normal form if F is given by (1.1) and $q_{j, 0}=0$ for $j=2, \ldots, \mu(F, z)-1$. If $q_{j, 0}=0$ for any j we call F an asymptotic ultra-resonant normal form.

The first result we prove is the existence of (possibly formal) asymptotic ultra-resonant normal form.

Proposition 2.3. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ and assume O is a quasi-parabolic fixed point for F. Then there exists a formal transformation $\check{K} \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ tangent to id such that $\check{K}^{-1} \circ F \circ \check{K}=\check{F}$, with \check{F} a formal asymptotic ultra-resonant normal form.

Proof. We may assume F in the form (1.1). Let $q_{s, 0} \neq 0$ be the first nonzero coefficient of a pure term in z in F_{2}. Consider the transformation

$$
K_{s}=\left\{\begin{array}{l}
z=Z \tag{2.1}\\
w=W+a Z^{s}
\end{array}\right.
$$

with $a=-q_{s, 0} /\left(e^{i \theta}-1\right)$. Then $K_{s}^{-1} \circ F \circ K_{s}$ has pure term in Z in the second component of degree $\geq s+1$. Proceeding this way we can get rid of all pure terms in z in the second component, and \check{K} is given by composition of the K_{s} 's.

Ultra-resonant normal forms are by no means unique as the following example shows.

Example 2.4. The germs $F(z, w)=\left(z+z^{2}, e^{i \theta} w\right)$ and $G(z, w)=\left(z+z^{2}, e^{i \theta} w-\right.$ $\left.e^{i \theta} w z^{2} /\left(1+z+z^{2}\right)\right)$ are both in normal forms and conjugated by the the transformation $(z, w) \mapsto(z, w+z w)$. Moreover $\mu(F, z)=\mu(G, z)=2, \Theta(F)=-\infty$ while $\Theta(G)=-1$.

Using ultra-resonant normal forms we can define some invariants associated to F. Before doing that, we need the following basic lemma.

Lemma 2.5. Let $F, G \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ be (possibly formal) germs of diffeomorphisms in ultra-resonant normal form. If F is conjugated to G then $\mu(F, z)=\mu(G, z)$. Moreover if $\mu(F, z)=\mu(G, z)<\infty$ then $\Theta(F) \leq 0$ if and only if $\Theta(G) \leq 0$, while if $\mu(F, z)=\mu(G, z)=\infty$ then $\mu(F, w)=\mu(G, w)$.

Proof. Let F be given by (1.1), and let

$$
G(z, w)=\left(z+\sum_{j+k \geq 2} \tilde{p}_{j, k} z^{j} w^{k}, e^{i \theta} w+\sum_{j+k \geq 2} \tilde{q}_{j, k} z^{j} w^{k}\right)
$$

If T is the transformation which conjugates F to G, then its differential at the origin must be a diagonal matrix, which we can assume to be the identity. Thus let $T:(z, w) \mapsto\left(z+\varphi_{1}(z, w), w+\varphi_{2}(z, w)\right)$ be the transformation conjugating F to G.

We introduce the following notation: we denote by H_{m} any term which has order greater than or equal to m. Also, for $m, n \in \mathbb{N}, m \leq n$, we write $B_{m, n}$ for
indicating terms of order greater than or equal to m but less than or equal to n; we also set $B_{m, n}=0$ for $m>n$. Moreover we let S_{k} denote any term of order strictly smaller than k. We also set $a:=\mu(F, z), b=\mu(F, w)$ and $\tilde{a}=\mu(G, z)$, $\tilde{b}=\mu(G, w)$. In case $a=\infty$ we agree that terms of type $p_{a, 0} z^{a}$ and symbols like $O\left(z^{a}\right)$ should be understood as zeros (similarly if $\left.\tilde{a}=\infty\right)$. With this convention we can deal with all cases at the same time. Since $F=\left(F_{1}, F_{2}\right)$ and $G=\left(G_{1}, G_{2}\right)$ are both in normal form, we can write

$$
F(z, w)=\left\{\begin{array}{l}
F_{1}(z, w)=z+p_{a, 0} z^{a}+w B_{1, a-1}+H_{a+1}, \tag{2.2}\\
F_{2}(z, w)=e^{i \theta} w+q_{b, 1} z^{b} w+w^{2} S_{b}+O\left(z^{a}, z^{b+1} w, w^{2} H_{b}\right),
\end{array}\right.
$$

and

$$
G(z, w)=\left\{\begin{array}{l}
G_{1}(z, w)=z+\tilde{p}_{\tilde{a}, 0} z^{\tilde{a}}+w B_{1, \tilde{a}-1}+H_{\tilde{a}+1}, \tag{2.3}\\
G_{2}(z, w)=e^{i \theta} w+\tilde{q}_{\tilde{b}, 1} z^{z^{b}} w+w^{2} S_{\tilde{b}}+O\left(z^{\tilde{a}}, z^{\tilde{b}+1} w, w^{2} H_{\tilde{b}}\right) .
\end{array}\right.
$$

Let $c_{h} \geq 2$ be the order of vanishing of $\varphi_{h}(z, 0)$ at $0, h=1,2$. Since $F \circ T=$ $T \circ G$, using (2) and (3) and equating components we obtain

$$
\begin{align*}
\varphi_{1}(z, w)+p_{a, 0} z^{a}+\varphi_{2}(z, w) B_{1, a-1}+ & H_{a+1}+O(w) \tag{2.4}\\
& =\varphi_{1}(G(z, w))+\tilde{p}_{\tilde{a}, 0} z^{\tilde{a}}+H_{\tilde{a}+1},
\end{align*}
$$

and

$$
\begin{align*}
& e^{i \theta} \varphi_{2}(z, w)+q_{b, 1}\left(z+\varphi_{1}(z, w)\right)^{b}\left(w+\varphi_{2}(z, w)\right)+\left[2 w \varphi_{2}(z, w)+\varphi_{2}(z, w)^{2}\right] S_{b} \tag{2.5}\\
& \quad+O\left(z^{a}, z^{b+1+c_{2}}, z^{b+1} w\right)+O\left(w^{2}\right)=\varphi_{2}(G(z, w))+\tilde{q}_{\tilde{b}, 1} z^{\tilde{b}} w+O\left(z^{\tilde{z}}, z^{\tilde{b}+1} w\right) .
\end{align*}
$$

Write $\varphi_{h}(z, w)=\sum_{j+k \geq 2} \varphi_{h}^{j, k} z^{j} w^{k}$, for $\varphi_{h}^{j, k} \in \mathbb{C}$ and $h=1,2$. Then

$$
\begin{gather*}
q_{b, 1}\left(z+\varphi_{1}(z, w)\right)^{b}\left(w+\varphi_{2}(z, w)\right)=q_{b, 1} z^{b} w+O\left(w^{2}, z^{b+1} w, z^{b+c_{2}}\right), \tag{2.6}\\
\varphi_{2}(G(z, w))-e^{i \theta} \varphi_{2}(z, w)=\left(1-e^{i \theta}\right) \varphi_{2}^{c_{2}, 0} z^{c_{2}}+O\left(z^{\tilde{a}}, z^{c_{2}+1}, w\right), \tag{2.7}
\end{gather*}
$$

and putting (6), (7) into (5) we get that

$$
\begin{equation*}
c_{2} \geq \min \{a, \tilde{a}\} \tag{2.8}
\end{equation*}
$$

where we understood $c_{2}=\infty$ (that is $\varphi_{2}^{j, 0}=0$ for any j) in case $a=\tilde{a}=\infty$. In particular equation (4) reads now as

$$
\begin{equation*}
\varphi_{1}(G(z, w))-\varphi_{1}(z, w)=p_{a, 0} z^{a}-\tilde{p}_{\tilde{a}, 0} z^{\tilde{a}}+O\left(w, z^{a+1}, z^{\tilde{a}+1}\right) . \tag{2.9}
\end{equation*}
$$

We examine the left-hand side of (9). Using (3) we have

$$
\begin{align*}
\varphi_{1}(G(z, w)) & =\sum_{j+k \geq 2} \varphi_{1}^{j, k}\left[z+O\left(z^{\tilde{a}}, w\right)\right]^{j}\left[e^{i \theta} w+O\left(z^{\tilde{a}}, w z, w^{2}\right)\right]^{k} \tag{2.10}\\
& =\varphi_{1}(z, w)+O\left(w, z^{\tilde{a}+1}\right) .
\end{align*}
$$

Therefore from (9) and (10) we get $a=\tilde{a}$, that is $\mu(F, z)=\mu(G, z)$.
Let $a<\infty$. We assume $\Theta(F) \leq 0$ and want to show that $\Theta(G) \leq 0$ (the other implication will follow reversing the role of F and G). We have already proved that $\tilde{a}=a$ and now we are assuming $b \geq a-1$. Seeking for a contradiction we suppose that $\tilde{b}<a-1$. Taking into account (6) and (8), equation (5) becomes

$$
\begin{equation*}
\varphi_{2}(G(z, w))-e^{i \theta} \varphi_{2}(z, w)=-\tilde{q}_{\tilde{q}, 1} z^{\tilde{z}} w+O\left(w z^{\tilde{b}+1}, z^{a}, w^{2}\right) . \tag{2.11}
\end{equation*}
$$

We examine the left-hand side of (11). Since $\varphi_{2}^{j, 0}=0$ for $j<c_{2}$ and $c_{2} \geq a$ by (8), using (3) we have

$$
\begin{align*}
\varphi_{2}(G(z, w))= & \sum_{j \geq 0} \varphi_{2}^{j+a, 0}\left[z+O\left(z^{a}, w\right)\right]^{j+a} \tag{2.12}\\
& +\sum_{j+k \geq 1} \varphi_{2}^{j, k+1}\left[z+O\left(z^{a}, w\right)\right]^{j}\left[e^{i \theta} w+O\left(w z^{\tilde{b}}, z^{a}, w^{2}\right)\right]^{k+1} \\
= & \varphi_{2}\left(z, e^{i \theta} w\right)+O\left(w^{2}, z^{a}, w z^{\tilde{b}+1}\right) .
\end{align*}
$$

Put (12) into (11) and noting that $e^{i \theta} \varphi_{2}(z, w)-\varphi_{2}\left(z, e^{i \theta} w\right)$ does not contain terms in $z^{m} w$ for any $m \in \mathbb{N}$, we reach a contradiction. Therefore $\tilde{b} \geq a-1$ and $\Theta(G) \leq 0$ as wanted.

Finally suppose $a=\tilde{a}=\infty$. Then by hypothesis and by (8) the maps $G(z, w), F(z, w)$ and $\varphi_{2}(z, w)$ do not contain pure terms in z. Therefore, using (6), equation (5) becomes

$$
\varphi_{2}(G(z, w))-e^{i \theta} \varphi_{2}(z, w)=-\tilde{q}_{\tilde{b}, 1} z^{\tilde{b}} w+q_{b, 1} z^{b} w+O\left(w z^{b+1}, w z^{\tilde{b}+1}, w^{2}\right),
$$

where, as usual, we set all the terms containing z^{b} or $z^{\tilde{b}}$ equal to zero if $b=\infty$ or $\tilde{b}=\infty$. From this and from (12) it follows that $b=\tilde{b}$.

Remark 2.6. If F and G are conjugated and in ultra-resonant normal form (and $\mu(F, z)=\mu(G, z)<\infty), \mu(F, w)$ might be different from $\mu(G, w)$, as one can see in the Example 2.4.

Now we are in the position to define our invariants:
Definition 2.7. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ and assume O is a quasi-parabolic fixed point for F. Let \check{F} be a (possibly formal) asymptotic ultra-resonant normal form of
F. We let $\nu(F):=\mu(\check{F}, z)$. In case $\mu(\check{F}, z)<\infty$ we call F dynamically separating if $\Theta(\check{F}) \leq 0$.

Remark 2.8. By Lemma 2.5 the previous definition is well posed. Moreover, if $\nu(F)<\infty$ one can find a (convergent) ultra-resonant normal form conjugated to F after a finite number of transformations of type (1).

Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$. The Poincaré-Dulac normal form theorem states that it is always possible to find a resonant formal normal form for F. Namely there exists a formal transformation $T:(z, w) \mapsto(z+\ldots, w+\ldots)$ such that $T^{-1} \circ F \circ T(z, w)=$ $\left(z+R_{1}(z, w), e^{i \theta} w+R_{2}(z, w)\right)$, where R_{1}, R_{2} are series of resonant monomials, that is $R_{1}(z, w)$ is a combination of terms of type $z^{m}, z^{m} w^{s n}$, while $R_{2}(z, w)$ is a combination of terms of type $z^{m} w, z^{m} w^{n s+1}$ for $m, n \in \mathbb{N}$, where $s \in \mathbb{N}$ is such that $e^{i s \theta}=1$ (thus $s=0$ if $e^{i \theta}$ is not a root of unity).

Due to Lemma 2.5 our (formal) asymptotic ultra-resonant form is equivalent to the Poincaré-Dulac normal form for the purpose of calculating $\mu(F, z)$ and $\Theta(F)$. However, asymptotic ultra-resonant normal forms reflect better the dynamics of F, as claimed in Proposition 1.3. Here is its proof.

Proof of Proposition 1.3. If F has a convergent asymptotic ultra-resonant normal form then F is conjugated to a germ of biholomorphism $G=\left(G_{1}, G_{2}\right)$ such that $G_{2}(z, w)=w A(z, w)$ for some holomorphic function $A(z, w)$. In particular $w=0$ is invariant by G. For the converse, if there exists an invariant curve tangent to the eigenspace of 1 we can choose coordinates in such a way that $\Gamma=\{(z, w): w=0\}$ and $F(z, w)=\left(z+\ldots, e^{i \theta} w+w A(z, w)\right)$ for some holomorphic function $A(z, w)$. In particular F has a (convergent) asymptotic ultra-resonant form. By Lemma 2.5, if F has a convergent asymptotic ultra-resonant normal form G then $\mu(G, z)=\nu(F)$. Thus if $\nu(F)=\infty$ then $G_{1}(z, w)=z+w A_{1}(z, w)$ and $\{w=0\}$ is a curve of fixed points for G. If $\nu(F)<\infty$ then the classical one-dimensional Fatou theory gives the result.
3. Dynamics. In this section we give the proof of Theorem 1.4. The idea is that starting from an ultra-resonant normal form, if $\Theta(F) \leq 0$, it is possible to blow up O a certain number of times in order to find some simpler expression for F, where one can apply a modified Hakim's argument to produce parabolic curves.

We divide the proof into several steps, which might be of some interest on their own.

Recall that if $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ and $\pi: \widetilde{\mathbb{C}^{2}} \rightarrow \mathbb{C}^{2}$ is the blow-up (quadratic transformation) of \mathbb{C}^{2} at O, then there exists a holomorphic map \tilde{F} defined near the exceptional divisor $D:=\pi^{-1}(O)$ such that $\pi \circ \tilde{F}=F \circ \pi, \tilde{F}(D)=D$ and the action of \tilde{F} on D is given by $D \ni[v] \mapsto\left[d F_{O}(v)\right] \in D$ (see for instance [1], [17]). We call such a \tilde{F} the blow-up of F.

Lemma 3.1. Suppose F is given by (1.1). If
(1) $q_{j, 0}=0$ for $j<\mu(F, z)$ and
(2) $q_{j, 1}=0$ for $j<\mu(F, z)-1$,
then one can perform a finite number of blow-ups and changes of coordinates in such a way that the blow-up map $\tilde{F}=\left(\tilde{F}_{1}, \tilde{F}_{2}\right)$ is given by

$$
\left\{\begin{array}{l}
\tilde{F}_{1}(z, w)=z-z^{\nu(F)}+O\left(z^{\nu(F)+1}, z^{\nu(F)} w\right) \tag{3.1}\\
\tilde{F}_{2}(z, w)=e^{i \theta} w-\lambda w z^{\nu(F)-1}+O\left(w z^{\nu(F)}, z^{\nu(F)-1} w^{2}, z^{\nu(F)+2}\right)
\end{array}\right.
$$

with $\operatorname{Re}\left(\lambda e^{-i \theta}\right)<0$.
Proof. Note that by hypothesis F is an ultra-resonant normal form, thus $\nu(F)=$ $\mu(F, z)$. First of all, we can use transformations of type (1), for $s=\nu(F)$, as in the proof of Proposition 2.3, to dispose of $q_{\nu(F), 0}$. Note that K_{s} does not decrease the order of vanishing of $F_{1}(z, w)-z$ and $F_{2}(z, w)-e^{i \theta} w$, nor it effects the ultra-resonant monomials of order $\leq \nu(F)$. Now we blow-up the point O in \mathbb{C}^{2}. Recalling that $1 /(1+\xi)=\sum_{k>0}(-1)^{k} \xi^{k}$ for $|\xi|<1$, in coordinates $(z=u, w=u v)$ we have that the blow-up map $\tilde{F}=\left(\tilde{F}_{1}, \tilde{F}_{2}\right)$ is given by

$$
\begin{align*}
\tilde{F}_{1}(u, v)= & u+\sum_{j+k \geq 2} p_{j, k} u^{j+k} v^{k}=u+\sum_{j+k \geq 2} \tilde{p}_{j, k} u^{j} v^{k}, \tag{3.2}\\
\tilde{F}_{2}(u, v)= & {\left[e^{i \theta} v+\sum_{j+k \geq 2} q_{j, k} u^{j+k-1} v^{k}\right]\left[1-\sum_{j+k \geq 2} p_{j, k} u^{j+k-1} v^{k}\right.} \\
& \left.+\left(\sum_{j+k \geq 2} p_{j, k} u^{j+k-1} v^{k}\right)^{2}+\cdots\right]=e^{i \theta} v+\sum_{j+k \geq 2} \tilde{q}_{j, k} u^{j} v^{k} .
\end{align*}
$$

Thus, setting $p_{j, k}=0$ for $j+k<2$, it follows that $\tilde{p}_{j, k}=p_{j-k, k}$. In particular $\mu(F, z)=\mu(\tilde{F}, u)$ and $p_{\mu(F, z), 0}=\tilde{p}_{\mu(\tilde{F}, u), 0}$. Moreover, if m_{1} was the order of vanishing of $F_{1}(z, w)-z$ (that is $p_{j, k}=0$ for $\left.j+k<m_{1}\right)$, then the order of vanishing of $\tilde{F}_{1}(u, v)-u$ is at least $m_{1}+1$ if $m_{1}<\nu(F)$ or it is equal to m_{1} if $m_{1}=\nu(F)$. Also, the lowest nonzero non ultra-resonant terms in \tilde{F}_{1}, i.e., the ones of type $w^{a} z^{b}, a \geq 1, b \geq 0$, has degree strictly greater than the lowest one in F_{1}.

The terms $\tilde{q}_{j, k}$ in the second component of \tilde{F} are more difficult to write explicitly. We use the notations H_{m} and $B_{m, n}$ introduced in the proof of Lemma 2.5. Denote by m_{2} the order of vanishing of $F_{2}(z, w)-e^{i \theta} w$. Note that, since we assumed that $q_{j, 0}=0$ for $j<\nu(F)+1$ and by hypothesis (2), then for every $q_{j, k} \neq 0$ with $j+k<\nu(F)$ it follows that $k \geq 2$. Thus, using hypothesis (1) and (2)
we have

$$
\begin{aligned}
& \tilde{F}_{2}(u, v)=\left[e^{i \theta} v+q_{\nu(F)-1,1} u^{\nu(F)-1} v+v^{2} B_{m_{2}-1, \nu(F)-2}+H_{\nu(F)+1}\right][1 \\
& +\sum_{k=1}^{\infty}(-1)^{k}\left(p_{\nu(F), 0} u^{\nu(F)-1}+p_{\nu(F)+1,0} u^{\nu(F)}+v \sum_{j=m_{1}-1}^{\nu(F)-1} p_{j, 1} u^{j}+v^{2} B_{m_{1}-1, \nu(F)-2}\right. \\
& \left.\left.+H_{\nu(F)+1}\right)^{k}\right]=\left[e^{i \theta} v+q_{\nu(F)-1,1} u^{\nu(F)-1} v+v^{2} B_{\left.m_{2}-1, \nu(F)-2\right]\left[1-p_{\nu(F), 0} u^{\nu(F)-1}\right.}\right. \\
& \left.+p_{\nu(F), 0}^{2} u^{2 \nu(F)-2}-v \sum_{j=m_{1}-1}^{\nu(F)-1} p_{j, 1} u^{j}-v^{2} B_{m_{1}-1, \nu(F)-2}-\sum_{k=2}^{\infty} v^{k} H_{2\left(m_{1}-1\right)}\right]+H_{\nu(F)+1} \\
& =e^{i \theta} v+\left(q_{\nu(F)-1,1}-e^{i \theta} p_{\nu(F), 0} u^{\nu(F)-1} v+v^{2} H_{m_{1}-1}+v^{2} H_{m_{2}-1}+H_{\nu(F)+1} .\right.
\end{aligned}
$$

In particular note that the ultra-resonant terms in \tilde{F}_{2} are vanishing up to order $\nu(F)-1$. Also $\tilde{q}_{\nu(F)-1,1}=\left(q_{\nu(F)-1,1}-e^{i \theta} p_{\nu(F), 0}\right)$ and then

$$
\operatorname{Re}\left(e^{-i \theta} \tilde{q}_{\nu(F)-1,1} / \tilde{p}_{\nu(F), 0}\right)=\operatorname{Re}\left(e^{-i \theta} q_{\nu(F)-1,1} / p_{\nu(F), 0}\right)-1
$$

Finally note that the order of vanishing of $\tilde{F}_{2}(u, v)-e^{i \theta} v$ is at least $\min \left\{\nu(F), m_{1}+\right.$ $\left.1, m_{2}+1\right\}$. This time the lowest nonzero non ultra-resonant term in \tilde{F}_{2} might be of degree strictly smaller than the one in F_{2}. However, its degree is at least $\min \left\{\nu(F)+1, m_{1}+1, m_{2}+1\right\}$. In particular the map \tilde{F} has properties (1), (2) in the hypothesis and its lowest nonzero non ultra-resonant term (in both components) has degree at least $\min \left\{\nu(F)+1, m_{1}+1, m_{2}+1\right\}$. Moreover $\operatorname{Re}\left(e^{-i \theta} \tilde{q}_{\nu(F)-1,1} / \tilde{p}_{\nu(F), 0}\right)$ is one less than $\operatorname{Re}\left(e^{-i \theta} q_{\nu(F)-1,1} / p_{\nu(F), 0}\right)$.

Repeating the previous arguments (conjugation with K_{s} followed by blow-up) we will eventually find a map in ultra-resonant normal form given by (1.1) with
(i) $q_{j, k}=0$ for $j+k<\nu(F)$,
(ii) $p_{j, k}=0$ for $j+k<\nu(F)$,
(iii) $\operatorname{Re}\left(e^{-i \theta} q_{\nu(F)-1,1} / p_{\nu(F), 0}\right)<1$.

Note that $\nu(F)$ is the same as for the starting map. Eventually performing some more transformations K_{s} as in (1), with $s=\nu(F), \nu(F)+1, \nu(F)+2$, we can assume $q_{j, 0}=0$ for $j<\nu(F)+3$.

Let $\alpha^{\nu(F)-1}=-p_{\nu(F), 0}$ and let T be the transformation given by $Z=\alpha z, W=$ w. The map $\hat{F}=T \circ F \circ T^{-1}$ satisfies (i), (ii) and $\nu(\hat{F})=\nu(F)$. Moreover, denoting with ${ }^{\wedge}$ the coefficients of \hat{F}, we have $\hat{p}_{\nu(F), 0}=-1, \hat{q}_{j, 0}=0$ for $j<$ $\nu(F)+3$ and $\hat{q}_{\nu(F)-1,1}=-q_{\nu(F)-1,1} / p_{\nu(F), 0}$. In particular property (iii) becomes $\operatorname{Re}\left(e^{-i \theta} \hat{q}_{\nu(F)-1,1}\right)>-1$.

Now we perform a final blow-up of O. Let $\pi: \widetilde{\mathbb{C}^{2}} \rightarrow \mathbb{C}^{2}$ be the blow-up and \tilde{F} the blow-up map. In the coordinates (z, w) such that the projection $\pi(z, w)=$ ($z, z w$), we have that $\tilde{F}=\left(\tilde{F}_{1}, \tilde{F}_{2}\right)$ is given by (1), with $\lambda=-\left(e^{i \theta}+\hat{q}_{\nu(F)-1,1}\right)$.

Now we prove that form (1) is actually useful.

Lemma 3.2. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ be given by (1), with $\nu(F) \geq 2$ and $\lambda \in \mathbb{C}$ such that $\operatorname{Re}\left(\lambda e^{-i \theta}\right)<0$. Then there exist $\nu(F)-1$ parabolic curves for F at O tangent to [1:0].

Proof. The proof is a modification of that of Theorem 3.1 of [1]. Let $r=$ $\nu(F)-1$. Let $D_{\delta, r}:=\left\{\zeta \in \mathbb{C}:\left|\zeta^{r}-\delta\right|<\delta\right\}$ and let $\mathcal{E}(\delta):=\left\{\sqcap \in \operatorname{Hol}\left(\mathcal{D}_{\delta, \nabla}, \mathbb{C}\right):\right.$ $\left.\sqcap(\zeta)=\zeta^{2} \sqcap^{0}(\zeta),\left\|\Pi^{0}\right\|_{\infty}<\infty\right\}$. The set $\mathcal{E}(\delta)$ is a Banach space with norm $\|u\|_{\mathcal{E}(\delta)}=\left\|u^{0}\right\|_{\infty}$. For $u \in \mathcal{E}(\delta)$ we let $F^{u}(\zeta)=F_{1}(\zeta, u(\zeta))$. The classical Fatou theory for mappings of the form $\zeta-\zeta^{r+1}+O\left(\zeta^{r+2}\right)$ implies that there exists $\delta_{0}=\delta_{0}\left(\left\|u^{0}\right\|_{\infty}\right)$ such that if $0<\delta<\delta_{0}$ then F^{u} maps each component of $D_{\delta, r}$ into itself and moreover

$$
\begin{equation*}
\left|\left(F^{u}\right)^{n}\right|=O\left(\frac{1}{n^{1 / r}}\right) . \tag{3.3}
\end{equation*}
$$

Suppose we find $u \in \mathcal{E}(\delta)$ such that $u\left(F_{1}(\zeta, u(\zeta))=F_{2}(\zeta, u(\zeta))\right.$ for any $\zeta \in D_{\delta, r}$. Thus the map $\varphi^{u}(\zeta):=(\zeta, u(\zeta))$ restricted to each connected component of $D_{\delta, r}$ is a parabolic curve for F.

For $(z, w) \in \mathbb{C}^{2}$ let $z_{1}:=F_{1}(z, w)$ and $w_{1}:=F_{2}(z, w)$. Suppose z, z_{1} belong to the same connected component of $D_{\delta, r}$. Let $\mu:=\lambda e^{-i \theta}$ and define

$$
H(z, w):=w-e^{-i \theta} \frac{z^{\mu}}{z_{1}^{\mu}} w_{1} .
$$

Thus a direct computation shows that

$$
\begin{aligned}
H(z, w) & =w-z^{\mu} \frac{w-\mu z^{r} w+O\left(w z^{r+1}, w^{2} z^{r}, z^{r+3}\right)}{z^{\mu}\left(1-z^{r}+O\left(z^{r+1}, z^{r} w\right)\right)^{\mu}} \\
& =w-\left[w-\mu z^{r} w+O\left(w z^{r+1}, w^{2} z^{r}, z^{r+3}\right)\right]\left[1+\mu z^{r}+O\left(z^{r+1}, z^{r} w\right)\right] \\
& =O\left(z^{r+1} w, z^{r} w^{2}, z^{r+3}\right) .
\end{aligned}
$$

Now $F_{2}(z, w)=w_{1}=e^{i \theta} \frac{z_{1}^{\mu}}{z^{\mu}}(w-H(z, w))$ and therefore we are left to solve the following functional equation:

$$
\begin{equation*}
u\left(z_{1}(\zeta, u(\zeta))=e^{i \theta} \frac{z_{1}^{\mu}}{\zeta^{\mu}}(u(\zeta)-H(\zeta, u(\zeta))\right. \tag{3.4}
\end{equation*}
$$

For $\zeta_{0} \in D_{\delta, r}$ let $\zeta_{n}:=\left(F^{u}\right)^{n}\left(\zeta_{0}\right)$. For $u \in \mathcal{E}(\delta)$ let

$$
T u\left(\zeta_{0}\right):=\zeta_{0}^{\mu} \sum_{n=0}^{\infty} e^{-i n \theta} \zeta_{n}^{-\mu} H\left(\zeta_{n}, u\left(\zeta_{n}\right)\right)
$$

If u is such that $\left\|u^{0}\right\|<c_{0}$ and $\delta \leq \delta_{0}\left(c_{0}\right)$, then $H\left(\zeta_{n}, u\left(\zeta_{n}\right)\right)$ is defined for any $\zeta_{0} \in D_{\delta, r}$. Moreover one can show exactly as in [1] and [10] that the series
converges normally and $T u \in \mathcal{E}(\delta)$ (essentially because $\left|e^{i n \theta}\right|=1$ and thus all the estimates for the parabolic case in [1] go through in this case as well).

Now suppose u is a fixed point for T. Then φ^{u} is a parabolic curve for F. indeed if

$$
u\left(\zeta_{0}\right)=T u\left(\zeta_{0}\right)=\zeta_{0}^{\mu} \sum_{n=0}^{\infty} e^{-i n \theta} \zeta_{n}^{-\mu} H\left(\zeta_{n}, u\left(\zeta_{n}\right)\right),
$$

then

$$
\begin{aligned}
u\left(\zeta_{1}\right) & =\zeta_{1}^{\mu} \sum_{n=0}^{\infty} e^{-i n \theta} \zeta_{n+1}^{-\mu} H\left(\zeta_{n+1}, u\left(\zeta_{n+1}\right)\right)=e^{i \theta} \zeta_{1}^{\mu} \sum_{n=1}^{\infty} e^{-i n \theta} \zeta_{n}^{-\mu} H\left(\zeta_{n}, u\left(\zeta_{n}\right)\right) \\
& =\frac{\zeta_{1}^{\mu}}{\zeta_{0}^{\mu}} e^{i \theta}\left(\zeta_{0}^{\mu} \sum_{n=0}^{\infty} e^{-i n \theta} \zeta_{n}^{-\mu} H\left(\zeta_{n}, u\left(\zeta_{n}\right)\right)-H\left(\zeta_{0}, u\left(\zeta_{0}\right)\right)\right) \\
& =\frac{\zeta_{1}^{\mu}}{\zeta_{0}^{\mu}} e^{i \theta}\left(u\left(\zeta_{0}\right)-H\left(\zeta_{0}, u\left(\zeta_{0}\right)\right)\right),
\end{aligned}
$$

solving thus (4).
It remains to show that T does have a fixed point. For doing this we only need to show that T is a contraction on a suitable closed convex subset of $\mathcal{E}(\delta)$. This can be done arguing exactly as in Theorem 3.1 of [1], for all the estimates holding in there actually hold in this case, and we are done.

Now we are in a good shape to prove our main theorem.
Proof of Theorem 1.4 Since having parabolic curves is obviously a property invariant under changes of coordinates and by Remark 2.8, we can assume F to be in ultra-resonant normal form. By definition of dynamically separating map, $\Theta(F) \leq 0$ and we can thus apply Lemma 3.1 to F and Lemma 3.2 to its blowup \tilde{F} in order to produce $\nu(F)-1$ parabolic curves for \tilde{F} at some point of the exceptional divisor. These parabolic curves blow down to $\nu(F)-1$ parabolic curves for F tangent to the eigenspace of 1 and we are done.

4. Final remarks.

1. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ and suppose O is a quasi-parabolic fixed point for F. In case $e^{i \theta s}=1$ for some $s \geq 2$ one can try to apply Hakim and Abate's theory to produce parabolic curves for F^{s}. If F is dynamically separating one always obtains $\nu(F)-1$ parabolic curves for F by Theorem 1.4 and these are obviously parabolic curves for F^{s} as well. The question is whether these parabolic curves are the ones predicted by Hakim's and Abate's theory for F^{s} (if such a theory applies). To give an appropriate answer we need some tools from [10] and [1]. For the reader's convenience we quickly recall them here.

Let $G \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ be such that $d G_{O}=$ id. Let $G=\mathrm{id}+\sum_{m \geq 2} G_{m}$ be the homogeneous expansion of G. Then the order of G, which we denote by $t(G)$, is the first m such that $G_{m} \neq 0$. A vector $v \in \mathbb{C}^{2} \backslash\{O\}$ is called a characteristic direction for G if $G_{t(G)}(v)=\lambda v$ for some $\lambda \in \mathbb{C}$. Moreover if $\lambda \neq 0$ the vector v is called a nondegenerate characteristic direction while it is called degenerate in case $\lambda=0$. Hakim's theory [10] predicts the existence of at least $t(G)-1$ parabolic curves tangent to each nondegenerate characteristic direction.

We have the following relations:
Proposition 4.1. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ and assume O is a quasi-parabolic fixed point for F. Suppose F is given by (1.1) and $e^{i \theta s}=1$ for some $s \geq 2$. Let $G:=F^{s}$ and assume F is dynamically separating. Then:
(1) $\quad G \neq$ id and $t(G) \leq \nu(F)$.
(2) $[1: 0]$ is a characteristic direction for G. Moreover $[1: 0]$ is a nondegenerate characteristic direction for G if and only if $\nu(F)=t(G)$.
(3) The $\nu(F)-1$ parabolic curves tangent to $[1: 0]$ at O given by Theorem 1.4 for G can be found applying Hakim's and Abate's theory to G after a finite number of blow-ups.

Proof. Since F is dynamically separating then there exist parabolic curves for F by Theorem 1.4 which are obviously parabolic curves for G. Thus $G \neq$ id. It is then clear that $\nu(F) \geq t(G)$. To prove the other statements we notice that everything involved is invariant under conjugation and thus, using transformations as (1) we can assume that $q_{j, 0}=0$ for $j \leq \nu(F)$. Therefore for $F=\left(F_{1}, F_{2}\right)$ we can write

$$
F(z, w)=\left\{\begin{array}{l}
F_{1}(z, w)=z+p_{\nu(F), 0} z^{\nu(F)}+O\left(z^{\nu(F)+1}, z w, w^{2}\right) \\
F_{2}(z, w)=e^{i \theta} w+O\left(z^{\nu(F)-1} w, w^{2}, z^{\nu(F)+1}\right) .
\end{array}\right.
$$

Iterating we find that $F^{s}=G=\left(G_{1}, G_{2}\right)$ is given by

$$
G(z, w)=\left\{\begin{array}{l}
G_{1}(z, w)=z+s p_{\nu(F), 0} z^{\nu(F)}+O\left(z^{\nu(F)+1}, z w, w^{2}\right) \tag{4.1}\\
G_{2}(z, w)=w+O\left(z^{\nu(F)-1} w, w^{2}, z^{\nu(F)+1}\right) .
\end{array}\right.
$$

From this it follows that $[1: 0]$ is a characteristic direction for G. Moreover it is nondegenerate if and only if $t(G)=\nu(F)$ for in that case $G_{t(G)}=\left(p_{\nu(F), 0} z^{\nu(F)}+\right.$ $\left.w Q^{\prime}(z, w), w Q^{\prime \prime}(z, w)\right)$ with $Q^{\prime}, Q^{\prime \prime}$ suitable homogeneous polynomials of degree $t(G)-1$.

To prove part (3), we make some preliminary observations. If $\pi: \widetilde{\mathbb{C}^{2}} \rightarrow \mathbb{C}^{2}$ is a blow-up at O and \tilde{F} is the blow-up of F, since $\pi \circ \tilde{F}^{s}=F^{s} \circ \pi$ and π is a biholomorphism outside the exceptional divisor then $\tilde{G}=\tilde{F}^{s}$. Notice that while $\nu(F)=\nu(\tilde{F})$, in general $t(G) \leq t(\tilde{G})$ (see Lemma 2.1(ii) and (2.1) in [1]). We may assume that after finitely many blow-ups and changes of coordinates F is
given by (1) with $\operatorname{Re}\left(\lambda e^{-i \theta}\right)<0$. A simple computation shows that G has order $\nu(F)$ and $G_{\nu(F)}(z, w)=\left(-s z^{\nu(F)},-s \lambda e^{i \theta} z^{\nu(F)-1} w\right)$. Thus [1:0] is a nondegenerate characteristic direction for G, and Hakim's theory produces (at least) $\nu(F)-1$ parabolic curves for G tangent to [1:0]. Now we have to show that such curves are the same as the ones given by Lemma 3.2. To see this, notice that G is of the form (3.5) at p. 201 of [1]. The $\nu(F)-1$ parabolic curves for G are then unique in the class of curves of the form $\zeta \mapsto(\zeta, u(\zeta))$ with $u \in \mathcal{E}(\delta)$ as in Lemma 3.2 (see p. 201-203 in [1]). Since the parabolic curves produced in Lemma 3.2 are in such a class then they must be the ones given by Hakim's and Abate's theory, and we are done.

Example 4.2. The map $F(z, w)=\left(z+z^{5},-w+w^{3}+z^{5}\right)$ is dynamically separating, $\nu(F)=5$ and thus it has 4 parabolic curves tangent to $[1: 0]$ at O by Theorem 1.4. The map $G(z, w)=F^{2}(z, w)=\left(z+2 z^{5}+O\left(z^{6}\right), w-2 w^{3}+O\left(w^{4}, z^{7}, w^{2} z^{5}\right)\right)$ has therefore 4 parabolic curves tangent to [1:0] at O. Moreover $t(G)=3$ and the vector $[1: 0]$ is a degenerate characteristic direction for G. However \tilde{G} has order 5 at $[1: 0]$ and has $[1: 0]$ as a nondegenerate characteristic direction as a simple computation shows. Notice that $[0: 1]$ is a nondegenerate characteristic direction for G and Hakim's results give 2 parabolic curves for G tangent to $[0: 1]$ at O. These are contained into $\{z=0\}$ and are exchanged into each other by F.

Remark 4.3. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$, and assume O is a quasi-parabolic fixed point for F and $e^{i \theta s}=1$ for some $s \geq 2$. Suppose F is not dynamically separating. A calculation similar to the one performed in the proof of Proposition 4.1 shows that $[1: 0]$ is always a degenerate characteristic direction for F^{s}, providing $F^{s} \neq$ id.
2. Let $F \in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ and assume O is a quasi-parabolic fixed point. In case F is not dynamically separating, there might be no parabolic curves tangent to the eigenspace of 1 . A first simple example is when $F^{s}=$ id. However note that in such a case, if $p_{j}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ is the projection on the j th component, setting

$$
\sigma(z, w)=\left(\sum_{m=0}^{s-1} p_{1} \circ F^{m}(z, w), \sum_{m=0}^{s-1} e^{-i \theta m} p_{2} \circ F^{m}(z, w)\right)
$$

then $\sigma \circ F \circ \sigma^{-1}(z, w)=\left(z, e^{i \theta} w\right)$, thus $F_{1}(z, w)=z$, and in particular $\nu(F)=\infty$.
Less trivial examples of nondynamically separating map without parabolic curves are provided by the following construction. Let $f(u, v)=\left(f_{1}(u, v), f_{2}(u, v)\right)$ $\in \operatorname{End}\left(\mathbb{C}^{2}, O\right)$ be given by

$$
\left\{\begin{array}{l}
f_{1}(u, v)=e^{i \theta} u+\left(a_{20} u^{2}+a_{11} u v+a_{02} v^{2}\right)+\cdots \tag{4.2}\\
f_{2}(u, v)=e^{i \theta} v+\left(b_{20} u^{2}+b_{11} u v+b_{02} v^{2}\right)+\cdots
\end{array}\right.
$$

with $e^{i \theta}$ satisfying the Bryuno condition

$$
\left|e^{i \theta m}-1\right| \geq \mathrm{cm}^{-N}, \quad m \in \mathbb{N}
$$

for some $c>0$ and some large N. Note that the set of points on the circle satisfying such a condition has full measure. It is a classical result (see, e.g., [3] and [12]) that such a germ f is linearizable, and in particular there cannot exist parabolic curves for f. Now suppose that $a_{02}=0$ in (2). Blow up the point O in \mathbb{C}^{2} and consider the blow up map F of f at the point $[0: 1]$ of the exceptional divisor. If the projection $\pi: \widetilde{\mathbb{C}^{2}} \rightarrow \mathbb{C}^{2}$ is given by $(u, v)=\pi(z, w)=(z w, w)$ then $F=\left(F_{1}, F_{2}\right)$ is given by

$$
\left\{\begin{array}{l}
F_{1}(z, w)=z+e^{-i \theta} w \frac{\left(a_{11}-b_{02}\right) z+a_{03} w+\cdots}{1+e-i \theta w\left[b_{02}+\cdots\right]}, \tag{4.3}\\
F_{2}(z, w)=e^{i \theta} w+w\left[b_{02} w+\left(b_{11} z w+b_{03} w^{2}+\cdots\right] .\right.
\end{array}\right.
$$

Then [0:1] is a quasi-parabolic point for F but there cannot exist parabolic curves tangent to the eigenspace of 1 for otherwise these would be parabolic curves for f at O. Note that even in this case $\nu(F)=\infty$.

We have to say that at the present we do not have any example of a nondynamically separating mapping F with $\nu(F)<\infty$ and without parabolic curves, even if we believe such a map should exist.

We conclude this work by mentioning a simple family of nondynamically separating maps for which nothing is known, but the understanding of which might unlock the general theory. Let $F_{a}=\left(F_{1, a}, F_{2, a}\right)$ be given by

$$
F_{a}(z, w)=\left\{\begin{array}{l}
F_{1, a}(z, w)=z+z^{3}+a w^{2} \tag{4.4}\\
F_{2, a}(z, w)=e^{i \theta} w+z w+z^{3}
\end{array}\right.
$$

with $a \in \mathbb{C}$. If $a=0$, then $\{z=0\}$ is invariant by F_{0}. Moreover, once fixed $w \in \mathbb{C}$, by the classical Leau-Fatou theory there exist two petals $P_{1}, P_{2} \subset \mathbb{C}$ for $z \mapsto F_{1,0}(z, w)$ at $z=0$. Then the two open sets $D_{j}=P_{j} \times \mathbb{C}, j=1,2$ are invariant by F_{0}. However we do not know whether there exist parabolic curves contained in D_{1} or D_{2}.

If $a \neq 0$ and $e^{i \theta}$ is not a root of unity we do not even know whether there exists $P \in \mathbb{C}^{2}$ such that $F_{a}^{n}(P) \neq O$ for any n but $F_{a}^{n}(P) \rightarrow O$ as $n \rightarrow \infty$.

Notice that in case $e^{i \theta s}=1$ for some $s \geq 2$ then Theorem 1.2 provides some parabolic curves for F^{s}. A direct computation shows that these curves are not tangent to [1:0]. In fact the known techniques for the parabolic case are not applicable to F^{s} along the direction $[1: 0]$, not even after blow-ups.

Dipartimento di Matematica, Università di Roma "Tor Vergata",
Via della Ricerca Scientifica 1, 00133 Roma, Italy
E-mail: \{fbracci,molino\} @mat.uniroma2.it

REFERENCES

[1] M. Abate, The residual index and the dynamics of holomorphic maps tangent to the identity, Duke Math. J. 107 (2001), 173-207.
[2] M. Abate, F. Bracci, and F. Tovena, Index theorems for holomorphic self-maps, Ann. of Math. (to appear).
[3] V. I. Arnold, Geometrical Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, NY, 1983.
[4] F. Bracci, The dynamics of holomorphic maps near curves of fixed points, preprint, Roma 2001.
[5] F. Bracci and F. Tovena, Residual indices of holomorphic maps relative to singular curves of fixed points on surfaces, Math. Z. 242 (2002), 481-490.
[6] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer-Verlag, NY, 1993.
[7] J. Écalle, Les fonctions résurgentes, Tome III: L'équation du pont et la classification analytiques des objects locaux, Publ. Math. Orsay, 85-5, Université de Paris-Sud, Orsay, 1985.
[8] P. Fatou, Substitutions analytiques et equations fonctionelles de deux variables, Ann. Sci. Ecole. Norm. Sup. (1924), 67-142.
[9] J. E. Fornæss and N. Sibony, Some open problems in higher dimensional complex analysis and complex dynamics, Publ. Math. 45 (2001), 529-547.
[10] M. Hakim, Analytic transformations of $\left(\mathbb{C}^{p}, 0\right)$ tangent to the identity, Duke Math. J. 92 (1998), 403-428.
[11] Y. Nishimura, Automorphisms analytiques admettant des sous-variétés de points fixés attractives dans la direction transversale, J. Math. Kyoto Univ. 23-2 (1983), 289-299.
[12] J. Pöschel, On invariant manifolds of complex analytic mappings near fixed points, Exp. Math. 4 (1986), 97-109.
[13] M. Rivi, Parabolic manifolds for semi-attractive holomorphic germs, Michigan Math. J. 49 (2001), 211241.
[14] T. Ueda, Local structure of analytic transformations of two complex variables, I, J. Math. Kyoto Univ. 26-2 (1986), 233-261.
[15] Local structure of analytic transformations of two complex variables, II, J. Math. Kyoto Univ. 31-3 (1991), 695-711.
[16] \longrightarrow Analytic transformations of two complex variables with parabolic fixed points, preprint, 1997.
[17] B. J. Weickert, Attracting basins for automorphisms of \mathbb{C}^{2}, Invent. Math. 132 (1998), 581-605.

[^0]: Manuscript received August 1, 2002; revised April 4, 2003.
 Research of both authors supported in part by Progetto MURST di Rilevante Interesse Nazionale Proprietà geometriche delle varietà reali e complesse.

 American Journal of Mathematics 126 (2004), 0-00.

