
THE DYNAMICS NEAR QUASI-PARABOLIC FIXED POINTS OF
HOLOMORPHIC DIFFEOMORPHISMS IN C2
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Abstract. Let F be a germ of holomorphic diffeomorphism of C2 fixing O and such that dFO has
eigenvalues 1 and eiθ with |eiθ| = 1 and eiθ �= 1. Introducing suitable normal forms for F we define
an invariant, ν(F) ≥ 2, and a generic condition, that of being dynamically separating. In the case
F is dynamically separating, we prove that there exist ν(F)− 1 parabolic curves for F at O tangent
to the eigenspace of 1.

1. Introduction. Let End(C2, O) denote the group of germs of holomorphic
diffeomorphisms at the origin O of C2 fixing O. One of the main open problems
is to understand the dynamics near O of an element F ∈ End(C2, O) for which the
spectrum of the differential dFO is contained in the unit circle (see Question 2.26
in [9]). The case where O is a parabolic point of F, that is dFO = id, and O is an
isolated fixed point, has been studied by several authors ([7], [17], [10], [1]). To
recall their main result we need first a definition:

Definition 1.1. A parabolic curve for F ∈ End(C2, O) at O tangent to (the
space spanned by) v ∈ C2 \ {O} is an injective holomorphic map ϕ : ∆ → C

2

satisfying the following properties:

(1) ∆ is a simply connected domain in C with 0 ∈ ∂∆,

(2) ϕ is continuous on ∂∆, ϕ(0) = O and [ϕ(ζ)]→ [v] as ζ → 0 (where [·]
denote the projection of C2 \ {O} to P1),

(3) F(ϕ(∆)) ⊂ ϕ(∆), and Fn(ϕ(ζ))→ O as n→∞ for any ζ ∈ ∆.

Then the main result is:

THEOREM 1.2. (Écalle, Hakim, Abate) Let F ∈ End(C2, O) be tangent to the
identity and such that O is an isolated fixed point. Let t(F) ≥ 2 denote the order of
vanishing of F − id at O. Then there exist (at least) t(F) − 1 parabolic curves for
F at O.

Actually, Écalle [7] and Hakim [10] proved such a theorem for any dimension,
but only for generic mappings, while Abate [1] using an ingenious index theorem
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prietà geometriche delle varietà reali e complesse.
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makes the result holds for any map, but just in C2. The case where there is a
curve of fixed points passing through O has also been studied ([11], [5], [2]), and
actually one can see Theorem 1.2 as a consequence of results on dynamics near
curves of fixed points by means of blow-ups of O in C2 (see [1], [4]). We also
wish to mention that for the semi-attractive case in Cn (that is one eigenvalue 1
with some multiplicity and the others of modulus strictly less than 1) the existence
of parabolic curves is provided by Rivi [13].

Roughly speaking the underlying idea in all previous results is to find “good
invariants” attached to F which read dynamical properties of F itself (for instance
Hakim’s nondegenerate characteristic directions or Abate’s indices in [1], and
residues in [4]).

In this paper we deal with the case of a map F ∈ End(C2, O) with Sp(dFO) =
{1, eiθ} for θ ∈ R and eiθ �= 1. We call O a quasi-parabolic fixed point for F.

If eiθ satisfies some Brjuno condition then Pöschel proved that there exists
a (germ of) complex curve Γ tangent to the eigenspace of eiθ which is invariant
for F and on which F is conjugated to the rotation ζ �→ eiθζ (see [12]). However
nothing is known about the dynamics in the direction tangent to the eigenspace
of 1.

Our starting point is the following trivial observation: the map F : (z, w) �→
(z + z3, eiθw) has {w = 0} as invariant curve and thus, by the one-dimensional
Fatou theory (see, e.g., [6]) there exist two parabolic curves for F at O tangent to
the eigenspace of 1, no matter what eiθ is. However, conjugating F with a map
G ∈ End(C2, O) tangent to id at O, it might be very difficult to check that the
new map has an invariant curve tangent to the eigenspace of 1 and two parabolic
curves in there.

Motivated by the previous results for germs tangent to the identity, we direct
our study in searching invariants for F at a quasi-parabolic point which is related
to dynamical properties of F along the direction tangent to the eigenspace of 1.

The main difference between the parabolic and quasi-parabolic case is that in
the first, all terms of F are resonant in the sense of Poincaré-Dulac (see, e.g., [3]),
while in the second case some are not, and this allows us to dispose of those terms
with suitable transformations. More precisely, let F = (F1, F2) ∈ End(C2, O) be
given in some system of local coordinates by

{
F1(z, w) = z +

∑
j+k≥2 pj,kzjwk,

F2(z, w) = eiθw +
∑

j+k≥2 qj,kzjwk,
(1.1)

for pj,k, qj,k ∈ C, θ ∈ R and eiθ �= 1. A monomial zmwn in F1 is resonant if
1 = 1meiθn, while a monomial zmwn in F2 is resonant if eiθ = 1meiθn, for m, n ∈ N,
m+n ≥ 2. A germ F is said to be in Poincaré-Dulac normal form if it is given by
(1.1) and pj,k = qj,k = 0 for all nonresonant monomials zjwk. The Poincaré-Dulac
Theorem states that it is always possible to formally conjugate F to a (formal)
map G in normal form by means of a (formal) transformation tangent to the
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identity, and actually the method of Poincaré-Dulac is constructive in the sense
that given k ∈ N it is possible to analytically conjugate F to a (convergent) map G
which is in normal form up to order k (that is, nonresonant monomials of degree
less than or equal to k are all zero) by means of a (convergent) transformation
tangent to the identity.

Therefore if there exist invariants for F at a quasi-parabolic fixed point they
have to be found in normal forms. Unfortunately normal forms are not unique and
also they do reflect the character of eiθ, while our leading example does not make
differences. Also, normal forms are not stable under blow-ups, which are one of
the basic ingredients of parabolic theory. Indeed the only invariant terms are those
we call ultra-resonant monomials, that is, for F given by (1.1), of type zm in F1 and
zmw in F2, m ∈ N. And we say that F is an asymptotic ultra-resonant normal form
if qj,0 = 0 for any j. Note that Poincaré-Dulac normal forms are in fact examples
of asymptotic ultra-resonant normal forms but the converse is not true in general,
and indeed there are convergent asymptotic ultra-resonant normal forms which
have no convergent Poincaré-Dulac normal forms. With a simplified Poincaré-
Dulac method we prove that given F ∈ End(C2, O) with O as quasi-parabolic
fixed point, there always exist (possibly formal) asymptotic ultra-resonant normal
forms conjugated to F by means of transformations tangent to the identity. Again
asymptotic ultra-resonant normal forms are not unique, but we show that the first
j ∈ N such that pj,0 �= 0 is an invariant for (even formal) conjugated ultra-resonant
normal forms. Therefore we find the first invariant ν(F) ∈ N∩ [2,∞] associated
to F. Of course this invariant could also have been defined from Poincaré-Dulac
normal forms. However, the following result justifies the usage of ultra-resonant
normal forms instead of Poincaré-Dulac normal forms:

PROPOSITION 1.3. Let F ∈ End(C2, O) and assume O is a quasi-parabolic fixed
point of F. Then there exists an invariant nonsingular complex curve Γ for F
passing through O and tangent to the eigenspace of 1 if and only if F is analytically
conjugated to a convergent asymptotic ultra-resonant normal form. Moreover in
this case, if ν(F) = ∞ then F pointwise fixes Γ, while if ν(F) < ∞ there exist
ν(F)− 1 parabolic curves for F at O contained in Γ.

For the practical purpose of calculating ν(F) one does not need to find an
asymptotic ultra-resonant normal form. Indeed it is enough to find what we call
a ultra-resonant normal form, that is, F given by (1.1) for which the first pure
non-zero term in z of F2 has degree greater than or equal to the first non-zero
pure term in z of F1 (see Section 2).

In the generic case ν(F) < ∞, we can associate to F a second invariant,
essentially the sign of Θ(F). The latter, for F in ultra-resonant normal form given
by (1.1), is defined as Θ(F) = ν(F)− j− 1 where j is the first integer for which
qj,1 �= 0 and, roughly speaking, measures the “degree of mixing” of the dynamics
along the eigenspace associated to 1 and eiθ. Therefore, given any F ∈ End(C2, O)
for which O is quasi-parabolic for F, we say that F is dynamically separating
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if ν(F) < ∞ and Θ(F̌) ≤ 0 for some ultra-resonant normal form F̌ of F (see
Definition 2.7). Our main result can now be stated as follows:

THEOREM 1.4. Let F ∈ End(C2, O) and assume O is a quasi-parabolic point
of F. If F is dynamically separating then there exist ν(F)− 1 parabolic curves for
F at O tangent to the eigenspace of 1.

One remarkable consequence of this theorem is that if F is given by (1.1)
and p2,0 �= 0 then there always exists a parabolic curve for F at O tangent to
the eigenspace of 1. This is similar to a result in the quasi-hyperbolic case—one
eigenvalue 1, the other of modulus < 1—where, under similar hypothesis, the
existence of a basin of attraction for F is proved (cf. [8], [14], [15]).

The plan of the paper is the following: In Section 2 we introduce ultra-
resonant normal forms, the invariant ν(F) and dynamically separating maps and
give the proof of Proposition 1.3. In Section 3 we prove Theorem 1.4. Finally,
in Section 4 we conclude with some remarks and discuss the case esiθ = 1 for
some s ≥ 2, especially relating parabolic curves provided by Theorem 1.4 with
the ones given by Hakim’s and Abate’s theory for Fs.

Acknowledgments. We wish to thank the referee for many useful comments.

2. Ultra-resonant normal forms.

Definition 2.1. Let F ∈ End(C2, O) be given by (1.1). We call ultra-resonant
the monomials of type zm in F1 and of type zmw in F2, m ∈ N.

In case there exists j ∈ N such that pj,0 �= 0 we let

µ(F, z) := min{j ∈ N : pj,0 �= 0},

and let µ(F, z) = +∞ if pj,0 = 0 for all j’s. Similarly if there exists j ∈ N such
that qj,1 �= 0, we let

µ(F, w) := min{j ∈ N : qj,1 �= 0},

setting µ(F, w) = +∞ if qj,1 = 0 for all j’s.
Finally, if µ(F, z) < +∞ we let Θ(F) := µ(F, z) − µ(F, w) − 1 (with the

convention that Θ(F) = −∞ if µ(F, w) = +∞).

In general µ(F, z) and µ(F, w) are not invariant under change of coordinates.
However µ(F, z) and the sign of Θ(F) are invariant under a suitable normalization
which we are going to describe.

Definition 2.2. We say that a (possibly formal) germ of diffeomorphism F ∈
End(C2, O) is in ultra-resonant normal form if F is given by (1.1) and qj,0 = 0 for
j = 2, . . . ,µ(F, z)− 1. If qj,0 = 0 for any j we call F an asymptotic ultra-resonant
normal form.
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The first result we prove is the existence of (possibly formal) asymptotic
ultra-resonant normal form.

PROPOSITION 2.3. Let F ∈ End(C2, O) and assume O is a quasi-parabolic fixed
point for F. Then there exists a formal transformation Ǩ ∈ End(C2, O) tangent to
id such that Ǩ−1 ◦ F ◦ Ǩ = F̌, with F̌ a formal asymptotic ultra-resonant normal
form.

Proof. We may assume F in the form (1.1). Let qs,0 �= 0 be the first nonzero
coefficient of a pure term in z in F2. Consider the transformation

Ks =

{
z = Z
w = W + aZs(2.1)

with a = −qs,0/(eiθ − 1). Then K−1
s ◦ F ◦ Ks has pure term in Z in the second

component of degree ≥ s + 1. Proceeding this way we can get rid of all pure
terms in z in the second component, and Ǩ is given by composition of the Ks’s.

Ultra-resonant normal forms are by no means unique as the following example
shows.

Example 2.4. The germs F(z, w) = (z + z2, eiθw) and G(z, w) = (z + z2, eiθw−
eiθwz2/(1 + z + z2)) are both in normal forms and conjugated by the the transfor-
mation (z, w) �→ (z, w + zw). Moreover µ(F, z) = µ(G, z) = 2, Θ(F) = −∞ while
Θ(G) = −1.

Using ultra-resonant normal forms we can define some invariants associated
to F. Before doing that, we need the following basic lemma.

LEMMA 2.5. Let F, G ∈ End(C2, O) be (possibly formal) germs of diffeomor-
phisms in ultra-resonant normal form. If F is conjugated to G thenµ(F, z) = µ(G, z).
Moreover if µ(F, z) = µ(G, z) < ∞ then Θ(F) ≤ 0 if and only if Θ(G) ≤ 0, while
if µ(F, z) = µ(G, z) =∞ then µ(F, w) = µ(G, w).

Proof. Let F be given by (1.1), and let

G(z, w) = (z +
∑

j+k≥2

p̃j,kzjwk, eiθw +
∑

j+k≥2

q̃j,kzjwk).

If T is the transformation which conjugates F to G, then its differential at the
origin must be a diagonal matrix, which we can assume to be the identity. Thus
let T : (z, w) �→ (z +ϕ1(z, w), w +ϕ2(z, w)) be the transformation conjugating F to
G.

We introduce the following notation: we denote by Hm any term which has
order greater than or equal to m. Also, for m, n ∈ N, m ≤ n, we write Bm,n for
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indicating terms of order greater than or equal to m but less than or equal to n;
we also set Bm,n = 0 for m > n. Moreover we let Sk denote any term of order
strictly smaller than k. We also set a := µ(F, z), b = µ(F, w) and ã = µ(G, z),
b̃ = µ(G, w). In case a = ∞ we agree that terms of type pa,0za and symbols like
O(za) should be understood as zeros (similarly if ã = ∞). With this convention
we can deal with all cases at the same time. Since F = (F1, F2) and G = (G1, G2)
are both in normal form, we can write

F(z, w) =

{
F1(z, w) = z + pa,0za + wB1,a−1 + Ha+1,
F2(z, w) = eiθw + qb,1zbw + w2Sb + O(za, zb+1w, w2Hb),

(2.2)

and

G(z, w) =

{
G1(z, w) = z + p̃ã,0zã + wB1,ã−1 + Hã+1,
G2(z, w) = eiθw + q̃b̃,1zb̃w + w2Sb̃ + O(zã, zb̃+1w, w2Hb̃).

(2.3)

Let ch ≥ 2 be the order of vanishing of ϕh(z, 0) at 0, h = 1, 2. Since F ◦ T =
T ◦ G, using (2) and (3) and equating components we obtain

ϕ1(z, w) + pa,0za + ϕ2(z, w)B1,a−1 + Ha+1 + O(w)(2.4)

= ϕ1(G(z, w)) + p̃ã,0zã + Hã+1,

and

eiθϕ2(z, w) + qb,1(z + ϕ1(z, w))b(w + ϕ2(z, w)) + [2wϕ2(z, w) + ϕ2(z, w)2]Sb(2.5)

+ O(za, zb+1+c2 , zb+1w) + O(w2) = ϕ2(G(z, w)) + q̃b̃,1zb̃w + O(zã, zb̃+1w).

Write ϕh(z, w) =
∑

j+k≥2 ϕ
j,k
h zjwk, for ϕj,k

h ∈ C and h = 1, 2. Then

qb,1(z + ϕ1(z, w))b(w + ϕ2(z, w)) = qb,1zbw + O(w2, zb+1w, zb+c2 ),(2.6)

ϕ2(G(z, w))− eiθϕ2(z, w) = (1− eiθ)ϕc2,0
2 zc2 + O(zã, zc2+1, w),(2.7)

and putting (6), (7) into (5) we get that

c2 ≥ min{a, ã},(2.8)

where we understood c2 = ∞ (that is ϕj,0
2 = 0 for any j) in case a = ã = ∞. In

particular equation (4) reads now as

ϕ1(G(z, w))− ϕ1(z, w) = pa,0za − p̃ã,0zã + O(w, za+1, zã+1).(2.9)
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We examine the left-hand side of (9). Using (3) we have

ϕ1(G(z, w)) =
∑

j+k≥2

ϕj,k
1 [z + O(zã, w)]j[eiθw + O(zã, wz, w2)]k(2.10)

= ϕ1(z, w) + O(w, zã+1).

Therefore from (9) and (10) we get a = ã, that is µ(F, z) = µ(G, z).
Let a <∞. We assume Θ(F) ≤ 0 and want to show that Θ(G) ≤ 0 (the other

implication will follow reversing the role of F and G). We have already proved
that ã = a and now we are assuming b ≥ a − 1. Seeking for a contradiction we
suppose that b̃ < a− 1. Taking into account (6) and (8), equation (5) becomes

ϕ2(G(z, w))− eiθϕ2(z, w) = −q̃b̃,1zb̃w + O(wzb̃+1, za, w2).(2.11)

We examine the left-hand side of (11). Since ϕj,0
2 = 0 for j < c2 and c2 ≥ a by

(8), using (3) we have

ϕ2(G(z, w)) =
∑
j≥0

ϕj+a,0
2 [z + O(za, w)]j+a(2.12)

+
∑

j+k≥1

ϕj,k+1
2 [z + O(za, w)]j[eiθw + O(wzb̃, za, w2)]k+1

= ϕ2(z, eiθw) + O(w2, za, wzb̃+1).

Put (12) into (11) and noting that eiθϕ2(z, w)−ϕ2(z, eiθw) does not contain terms
in zmw for any m ∈ N, we reach a contradiction. Therefore b̃ ≥ a − 1 and
Θ(G) ≤ 0 as wanted.

Finally suppose a = ã = ∞. Then by hypothesis and by (8) the maps
G(z, w), F(z, w) and ϕ2(z, w) do not contain pure terms in z. Therefore, using (6),
equation (5) becomes

ϕ2(G(z, w))− eiθϕ2(z, w) = −q̃b̃,1zb̃w + qb,1zbw + O(wzb+1, wzb̃+1, w2),

where, as usual, we set all the terms containing zb or zb̃ equal to zero if b = ∞
or b̃ =∞. From this and from (12) it follows that b = b̃.

Remark 2.6. If F and G are conjugated and in ultra-resonant normal form
(and µ(F, z) = µ(G, z) <∞), µ(F, w) might be different from µ(G, w), as one can
see in the Example 2.4.

Now we are in the position to define our invariants:

Definition 2.7. Let F ∈ End(C2, O) and assume O is a quasi-parabolic fixed
point for F. Let F̌ be a (possibly formal) asymptotic ultra-resonant normal form of
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F. We let ν(F) := µ(F̌, z). In case µ(F̌, z) <∞ we call F dynamically separating
if Θ(F̌) ≤ 0.

Remark 2.8. By Lemma 2.5 the previous definition is well posed. Moreover,
if ν(F) <∞ one can find a (convergent) ultra-resonant normal form conjugated
to F after a finite number of transformations of type (1) .

Let F ∈ End(C2, O). The Poincaré-Dulac normal form theorem states that it is
always possible to find a resonant formal normal form for F. Namely there exists
a formal transformation T : (z, w) �→ (z+ . . . , w+ . . .) such that T−1 ◦F ◦T(z, w) =
(z + R1(z, w), eiθw + R2(z, w)), where R1, R2 are series of resonant monomials,
that is R1(z, w) is a combination of terms of type zm, zmwsn, while R2(z, w) is a
combination of terms of type zmw, zmwns+1 for m, n ∈ N, where s ∈ N is such
that eisθ = 1 (thus s = 0 if eiθ is not a root of unity).

Due to Lemma 2.5 our (formal) asymptotic ultra-resonant form is equiva-
lent to the Poincaré-Dulac normal form for the purpose of calculating µ(F, z)
and Θ(F). However, asymptotic ultra-resonant normal forms reflect better the
dynamics of F, as claimed in Proposition 1.3. Here is its proof.

Proof of Proposition 1.3. If F has a convergent asymptotic ultra-resonant
normal form then F is conjugated to a germ of biholomorphism G = (G1, G2)
such that G2(z, w) = wA(z, w) for some holomorphic function A(z, w). In particular
w = 0 is invariant by G. For the converse, if there exists an invariant curve
tangent to the eigenspace of 1 we can choose coordinates in such a way that
Γ = {(z, w) : w = 0} and F(z, w) = (z + . . . , eiθw + wA(z, w)) for some holomorphic
function A(z, w). In particular F has a (convergent) asymptotic ultra-resonant
form. By Lemma 2.5, if F has a convergent asymptotic ultra-resonant normal
form G then µ(G, z) = ν(F). Thus if ν(F) = ∞ then G1(z, w) = z + wA1(z, w)
and {w = 0} is a curve of fixed points for G. If ν(F) < ∞ then the classical
one-dimensional Fatou theory gives the result.

3. Dynamics. In this section we give the proof of Theorem 1.4. The idea
is that starting from an ultra-resonant normal form, if Θ(F) ≤ 0, it is possible to
blow up O a certain number of times in order to find some simpler expression
for F, where one can apply a modified Hakim’s argument to produce parabolic
curves.

We divide the proof into several steps, which might be of some interest on
their own.

Recall that if F ∈ End(C2, O) and π : C̃2 → C
2 is the blow-up (quadratic

transformation) of C2 at O, then there exists a holomorphic map F̃ defined near
the exceptional divisor D := π−1(O) such that π ◦ F̃ = F ◦ π, F̃(D) = D and the
action of F̃ on D is given by D � [v] �→ [dFO(v)] ∈ D (see for instance [1],
[17]). We call such a F̃ the blow-up of F.
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LEMMA 3.1. Suppose F is given by (1.1). If

(1) qj,0 = 0 for j < µ(F, z) and

(2) qj,1 = 0 for j < µ(F, z)− 1,

then one can perform a finite number of blow-ups and changes of coordinates in
such a way that the blow-up map F̃ = (F̃1, F̃2) is given by

{
F̃1(z, w) = z− zν(F) + O(zν(F)+1, zν(F)w),

F̃2(z, w) = eiθw− λwzν(F)−1 + O(wzν(F), zν(F)−1w2, zν(F)+2),
(3.1)

with Re(λe−iθ) < 0.

Proof. Note that by hypothesis F is an ultra-resonant normal form, thus ν(F) =
µ(F, z). First of all, we can use transformations of type (1), for s = ν(F), as in
the proof of Proposition 2.3, to dispose of qν(F),0. Note that Ks does not decrease
the order of vanishing of F1(z, w) − z and F2(z, w) − eiθw, nor it effects the
ultra-resonant monomials of order ≤ ν(F). Now we blow-up the point O in C2.
Recalling that 1/(1+ξ) =

∑
k≥0 (−1)kξk for |ξ| < 1, in coordinates (z = u, w = uv)

we have that the blow-up map F̃ = (F̃1, F̃2) is given by

F̃1(u, v) = u +
∑

j+k≥2

pj,kuj+kvk = u +
∑

j+k≥2

p̃j,kujvk,(3.2)

F̃2(u, v) =

eiθv +
∑

j+k≥2

qj,kuj+k−1vk

[1−
∑

j+k≥2

pj,kuj+k−1vk

+

∑
j+k≥2

pj,kuj+k−1vk

2

+ · · ·
]

= eiθv +
∑

j+k≥2

q̃j,kujvk.

Thus, setting pj,k = 0 for j + k < 2, it follows that p̃j,k = pj−k,k. In particu-
lar µ(F, z) = µ(F̃, u) and pµ(F,z),0 = p̃µ(F̃,u),0. Moreover, if m1 was the order of
vanishing of F1(z, w) − z (that is pj,k = 0 for j + k < m1), then the order of
vanishing of F̃1(u, v) − u is at least m1 + 1 if m1 < ν(F) or it is equal to m1

if m1 = ν(F). Also, the lowest nonzero non ultra-resonant terms in F̃1, i.e., the
ones of type wazb, a ≥ 1, b ≥ 0, has degree strictly greater than the lowest one
in F1.

The terms q̃j,k in the second component of F̃ are more difficult to write ex-
plicitly. We use the notations Hm and Bm,n introduced in the proof of Lemma 2.5.
Denote by m2 the order of vanishing of F2(z, w)− eiθw. Note that, since we as-
sumed that qj,0 = 0 for j < ν(F) + 1 and by hypothesis (2), then for every qj,k �= 0
with j + k < ν(F) it follows that k ≥ 2. Thus, using hypothesis (1) and (2)
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we have

F̃2(u, v) = [eiθv + qν(F)−1,1uν(F)−1v + v2Bm2−1,ν(F)−2 + Hν(F)+1][1

+
∞∑
k=1

(− 1)k(pν(F),0uν(F)−1 + pν(F)+1,0uν(F) + v
ν(F)−1∑
j=m1−1

pj,1uj + v2Bm1−1,ν(F)−2

+ Hν(F)+1)k] = [eiθv + qν(F)−1,1uν(F)−1v + v2Bm2−1,ν(F)−2][1− pν(F),0uν(F)−1

+ p2
ν(F),0u2ν(F)−2 − v

ν(F)−1∑
j=m1−1

pj,1uj − v2Bm1−1,ν(F)−2 −
∞∑
k=2

vkH2(m1−1)] + Hν(F)+1

= eiθv + (qν(F)−1,1 − eiθpν(F),0)uν(F)−1v + v2Hm1−1 + v2Hm2−1 + Hν(F)+1.

In particular note that the ultra-resonant terms in F̃2 are vanishing up to order
ν(F)− 1. Also q̃ν(F)−1,1 = (qν(F)−1,1 − eiθpν(F),0) and then

Re(e−iθq̃ν(F)−1,1/p̃ν(F),0) = Re(e−iθqν(F)−1,1/pν(F),0)− 1.

Finally note that the order of vanishing of F̃2(u, v)−eiθv is at least min{ν(F), m1+
1, m2 + 1}. This time the lowest nonzero non ultra-resonant term in F̃2 might be
of degree strictly smaller than the one in F2. However, its degree is at least
min{ν(F)+1, m1 +1, m2 +1}. In particular the map F̃ has properties (1), (2) in the
hypothesis and its lowest nonzero non ultra-resonant term (in both components)
has degree at least min{ν(F)+1, m1+1, m2+1}. Moreover Re(e−iθq̃ν(F)−1,1/p̃ν(F),0)
is one less than Re(e−iθqν(F)−1,1/pν(F),0).

Repeating the previous arguments (conjugation with Ks followed by blow-up)
we will eventually find a map in ultra-resonant normal form given by (1.1) with

(i) qj,k = 0 for j + k < ν(F),

(ii) pj,k = 0 for j + k < ν(F),

(iii) Re(e−iθqν(F)−1,1/pν(F),0) < 1.

Note that ν(F) is the same as for the starting map. Eventually performing some
more transformations Ks as in (1), with s = ν(F), ν(F)+1, ν(F)+2, we can assume
qj,0 = 0 for j < ν(F) + 3.

Let αν(F)−1 = −pν(F),0 and let T be the transformation given by Z = αz, W =
w. The map F̂ = T ◦ F ◦ T−1 satisfies (i), (ii) and ν(F̂) = ν(F). Moreover,
denoting with ˆ the coefficients of F̂, we have p̂ν(F),0 = −1, q̂j,0 = 0 for j <
ν(F) + 3 and q̂ν(F)−1,1 = −qν(F)−1,1/pν(F),0. In particular property (iii) becomes
Re(e−iθq̂ν(F)−1,1) > −1.

Now we perform a final blow-up of O. Let π : C̃2 → C
2 be the blow-up and

F̃ the blow-up map. In the coordinates (z, w) such that the projection π(z, w) =
(z, zw), we have that F̃ = (F̃1, F̃2) is given by (1), with λ = −(eiθ + q̂ν(F)−1,1).

Now we prove that form (1) is actually useful.
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LEMMA 3.2. Let F ∈ End(C2, O) be given by (1), with ν(F) ≥ 2 and λ ∈ C
such that Re(λe−iθ) < 0. Then there exist ν(F) − 1 parabolic curves for F at O
tangent to [1 : 0].

Proof. The proof is a modification of that of Theorem 3.1 of [1]. Let r =
ν(F)− 1. Let Dδ,r := {ζ ∈ C : |ζr − δ| < δ} and let E(δ) := {� ∈ Hol(Dδ,∇,C) :
�(ζ) = ζ2�0(ζ), ‖�0‖∞ < ∞}. The set E(δ) is a Banach space with norm
‖u‖E(δ) = ‖u0‖∞. For u ∈ E(δ) we let Fu(ζ) = F1(ζ, u(ζ)). The classical Fa-
tou theory for mappings of the form ζ − ζr+1 + O(ζr+2) implies that there exists
δ0 = δ0(‖u0‖∞) such that if 0 < δ < δ0 then Fu maps each component of Dδ,r

into itself and moreover

|(Fu)n| = O(
1

n1/r
).(3.3)

Suppose we find u ∈ E(δ) such that u(F1(ζ, u(ζ)) = F2(ζ, u(ζ)) for any ζ ∈ Dδ,r.
Thus the map ϕu(ζ) := (ζ, u(ζ)) restricted to each connected component of Dδ,r

is a parabolic curve for F.
For (z, w) ∈ C2 let z1 := F1(z, w) and w1 := F2(z, w). Suppose z, z1 belong to

the same connected component of Dδ,r. Let µ := λe−iθ and define

H(z, w) := w− e−iθ zµ

zµ1
w1.

Thus a direct computation shows that

H(z, w) = w− zµ
w− µzrw + O(wzr+1, w2zr, zr+3)

zµ(1− zr + O(zr+1, zrw))µ

= w− [w− µzrw + O(wzr+1, w2zr, zr+3)][1 + µzr + O(zr+1, zrw)]

= O(zr+1w, zrw2, zr+3).

Now F2(z, w) = w1 = eiθ zµ1
zµ (w − H(z, w)) and therefore we are left to solve the

following functional equation:

u(z1(ζ, u(ζ)) = eiθ zµ1
ζµ

(u(ζ)− H(ζ, u(ζ)).(3.4)

For ζ0 ∈ Dδ,r let ζn := (Fu)n(ζ0). For u ∈ E(δ) let

Tu(ζ0) := ζµ0

∞∑
n=0

e−inθζ−µn H(ζn, u(ζn)).

If u is such that ‖u0‖ < c0 and δ ≤ δ0(c0), then H(ζn, u(ζn)) is defined for any
ζ0 ∈ Dδ,r. Moreover one can show exactly as in [1] and [10] that the series
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converges normally and Tu ∈ E(δ) (essentially because |einθ| = 1 and thus all the
estimates for the parabolic case in [1] go through in this case as well).

Now suppose u is a fixed point for T . Then ϕu is a parabolic curve for F.
indeed if

u(ζ0) = Tu(ζ0) = ζµ0

∞∑
n=0

e−inθζ−µn H(ζn, u(ζn)),

then

u(ζ1) = ζµ1

∞∑
n=0

e−inθζ−µn+1H(ζn+1, u(ζn+1)) = eiθζµ1

∞∑
n=1

e−inθζ−µn H(ζn, u(ζn))

=
ζµ1
ζµ0

eiθ

(
ζµ0

∞∑
n=0

e−inθζ−µn H(ζn, u(ζn))− H(ζ0, u(ζ0))

)

=
ζµ1
ζµ0

eiθ(u(ζ0)− H(ζ0, u(ζ0))),

solving thus (4).
It remains to show that T does have a fixed point. For doing this we only

need to show that T is a contraction on a suitable closed convex subset of E(δ).
This can be done arguing exactly as in Theorem 3.1 of [1], for all the estimates
holding in there actually hold in this case, and we are done.

Now we are in a good shape to prove our main theorem.

Proof of Theorem 1.4 Since having parabolic curves is obviously a property
invariant under changes of coordinates and by Remark 2.8, we can assume F to
be in ultra-resonant normal form. By definition of dynamically separating map,
Θ(F) ≤ 0 and we can thus apply Lemma 3.1 to F and Lemma 3.2 to its blow-
up F̃ in order to produce ν(F) − 1 parabolic curves for F̃ at some point of the
exceptional divisor. These parabolic curves blow down to ν(F) − 1 parabolic
curves for F tangent to the eigenspace of 1 and we are done.

4. Final remarks.

1. Let F ∈ End(C2, O) and suppose O is a quasi-parabolic fixed point for
F. In case eiθs = 1 for some s ≥ 2 one can try to apply Hakim and Abate’s theory
to produce parabolic curves for Fs. If F is dynamically separating one always
obtains ν(F)− 1 parabolic curves for F by Theorem 1.4 and these are obviously
parabolic curves for Fs as well. The question is whether these parabolic curves
are the ones predicted by Hakim’s and Abate’s theory for Fs (if such a theory
applies). To give an appropriate answer we need some tools from [10] and [1].
For the reader’s convenience we quickly recall them here.
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Let G ∈ End(C2, O) be such that dGO = id. Let G = id +
∑

m≥2 Gm be the
homogeneous expansion of G. Then the order of G, which we denote by t(G), is
the first m such that Gm �= 0. A vector v ∈ C2 \ {O} is called a characteristic
direction for G if Gt(G)(v) = λv for some λ ∈ C. Moreover if λ �= 0 the vector
v is called a nondegenerate characteristic direction while it is called degenerate
in case λ = 0. Hakim’s theory [10] predicts the existence of at least t(G) − 1
parabolic curves tangent to each nondegenerate characteristic direction.

We have the following relations:

PROPOSITION 4.1. Let F ∈ End(C2, O) and assume O is a quasi-parabolic fixed
point for F. Suppose F is given by (1.1) and eiθs = 1 for some s ≥ 2. Let G := Fs

and assume F is dynamically separating. Then:

(1) G �= id and t(G) ≤ ν(F).

(2) [1 : 0] is a characteristic direction for G. Moreover [1 : 0] is a nondegen-
erate characteristic direction for G if and only if ν(F) = t(G).

(3) The ν(F)−1 parabolic curves tangent to [1 : 0] at O given by Theorem 1.4
for G can be found applying Hakim’s and Abate’s theory to G after a finite number
of blow-ups.

Proof. Since F is dynamically separating then there exist parabolic curves
for F by Theorem 1.4 which are obviously parabolic curves for G. Thus G �= id.
It is then clear that ν(F) ≥ t(G). To prove the other statements we notice that
everything involved is invariant under conjugation and thus, using transformations
as (1) we can assume that qj,0 = 0 for j ≤ ν(F). Therefore for F = (F1, F2) we
can write

F(z, w) =

{
F1(z, w) = z + pν(F),0zν(F) + O(zν(F)+1, zw, w2)
F2(z, w) = eiθw + O(zν(F)−1w, w2, zν(F)+1).

Iterating we find that Fs = G = (G1, G2) is given by

G(z, w) =

{
G1(z, w) = z + spν(F),0zν(F) + O(zν(F)+1, zw, w2)
G2(z, w) = w + O(zν(F)−1w, w2, zν(F)+1).

(4.1)

From this it follows that [1 : 0] is a characteristic direction for G. Moreover it is
nondegenerate if and only if t(G) = ν(F) for in that case Gt(G) = (pν(F),0zν(F) +
wQ′(z, w), wQ′′(z, w)) with Q′, Q′′ suitable homogeneous polynomials of degree
t(G)− 1.

To prove part (3), we make some preliminary observations. If π : C̃2 → C
2

is a blow-up at O and F̃ is the blow-up of F, since π ◦ F̃s = Fs ◦ π and π is a
biholomorphism outside the exceptional divisor then G̃ = F̃s. Notice that while
ν(F) = ν(F̃), in general t(G) ≤ t(G̃) (see Lemma 2.1(ii) and (2.1) in [1]). We
may assume that after finitely many blow-ups and changes of coordinates F is
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given by (1) with Re(λe−iθ) < 0. A simple computation shows that G has order
ν(F) and Gν(F)(z, w) = (−szν(F),−sλeiθzν(F)−1w). Thus [1 : 0] is a nondegenerate
characteristic direction for G, and Hakim’s theory produces (at least) ν(F) − 1
parabolic curves for G tangent to [1 : 0]. Now we have to show that such curves
are the same as the ones given by Lemma 3.2. To see this, notice that G is of the
form (3.5) at p. 201 of [1]. The ν(F)− 1 parabolic curves for G are then unique
in the class of curves of the form ζ �→ (ζ, u(ζ)) with u ∈ E(δ) as in Lemma 3.2
(see p. 201–203 in [1]). Since the parabolic curves produced in Lemma 3.2 are
in such a class then they must be the ones given by Hakim’s and Abate’s theory,
and we are done.

Example 4.2. The map F(z, w) = (z+ z5,−w+w3 + z5) is dynamically separat-
ing, ν(F) = 5 and thus it has 4 parabolic curves tangent to [1 : 0] at O by Theo-
rem 1.4. The map G(z, w) = F2(z, w) = (z + 2z5 + O(z6), w− 2w3 + O(w4, z7, w2z5))
has therefore 4 parabolic curves tangent to [1 : 0] at O. Moreover t(G) = 3 and
the vector [1 : 0] is a degenerate characteristic direction for G. However G̃ has
order 5 at [1 : 0] and has [1 : 0] as a nondegenerate characteristic direction as a
simple computation shows. Notice that [0 : 1] is a nondegenerate characteristic
direction for G and Hakim’s results give 2 parabolic curves for G tangent to
[0 : 1] at O. These are contained into {z = 0} and are exchanged into each other
by F.

Remark 4.3. Let F ∈ End(C2, O), and assume O is a quasi-parabolic fixed
point for F and eiθs = 1 for some s ≥ 2. Suppose F is not dynamically separating.
A calculation similar to the one performed in the proof of Proposition 4.1 shows
that [1 : 0] is always a degenerate characteristic direction for Fs, providing
Fs �= id.

2. Let F ∈ End(C2, O) and assume O is a quasi-parabolic fixed point. In
case F is not dynamically separating, there might be no parabolic curves tangent
to the eigenspace of 1. A first simple example is when Fs = id. However note
that in such a case, if pj : C2 → C is the projection on the jth component, setting

σ(z, w) =

(
s−1∑
m=0

p1 ◦ Fm(z, w),
s−1∑
m=0

e−iθmp2 ◦ Fm(z, w)

)

then σ ◦ F ◦ σ−1(z, w) = (z, eiθw), thus F1(z, w) = z, and in particular ν(F) =∞.
Less trivial examples of nondynamically separating map without parabolic

curves are provided by the following construction. Let f (u, v) = ( f1(u, v), f2(u, v))
∈ End(C2, O) be given by{

f1(u, v) = eiθu + (a20u2 + a11uv + a02v2) + · · ·
f2(u, v) = eiθv + (b20u2 + b11uv + b02v2) + · · ·(4.2)
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with eiθ satisfying the Bryuno condition

|eiθm − 1| ≥ cm−N , m ∈ N

for some c > 0 and some large N. Note that the set of points on the circle
satisfying such a condition has full measure. It is a classical result (see, e.g., [3]
and [12]) that such a germ f is linearizable, and in particular there cannot exist
parabolic curves for f . Now suppose that a02 = 0 in (2). Blow up the point O in
C

2 and consider the blow up map F of f at the point [0 : 1] of the exceptional

divisor. If the projection π : C̃2 → C
2 is given by (u, v) = π(z, w) = (zw, w) then

F = (F1, F2) is given by{
F1(z, w) = z + e−iθw (a11−b02)z+a03w+···

1+e−iθw[b02+···] ,

F2(z, w) = eiθw + w[b02w + (b11zw + b03w2 + · · ·].
(4.3)

Then [0 : 1] is a quasi-parabolic point for F but there cannot exist parabolic
curves tangent to the eigenspace of 1 for otherwise these would be parabolic
curves for f at O. Note that even in this case ν(F) =∞.

We have to say that at the present we do not have any example of a nondy-
namically separating mapping F with ν(F) < ∞ and without parabolic curves,
even if we believe such a map should exist.

We conclude this work by mentioning a simple family of nondynamically
separating maps for which nothing is known, but the understanding of which
might unlock the general theory. Let Fa = (F1,a, F2,a) be given by

Fa(z, w) =

{
F1,a(z, w) = z + z3 + aw2

F2,a(z, w) = eiθw + zw + z3,
(4.4)

with a ∈ C. If a = 0, then {z = 0} is invariant by F0. Moreover, once fixed
w ∈ C, by the classical Leau-Fatou theory there exist two petals P1, P2 ⊂ C for
z �→ F1,0(z, w) at z = 0. Then the two open sets Dj = Pj×C, j = 1, 2 are invariant
by F0. However we do not know whether there exist parabolic curves contained
in D1 or D2.

If a �= 0 and eiθ is not a root of unity we do not even know whether there
exists P ∈ C2 such that Fn

a(P) �= O for any n but Fn
a(P)→ O as n→∞.

Notice that in case eiθs = 1 for some s ≥ 2 then Theorem 1.2 provides some
parabolic curves for Fs. A direct computation shows that these curves are not
tangent to [1 : 0]. In fact the known techniques for the parabolic case are not
applicable to Fs along the direction [1 : 0], not even after blow-ups.
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