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Abstract

Following the pioneering papers of Fourni�e, Lasry, Lebouchoux, Lions and Touzi, an

important work concerning the applications of the Malliavin calculus in numerical

methods for mathematical �nance has come after. One is concerned with two prob-

lems: computation of a large number of conditional expectations on one hand and

computation of Greeks (sensitivities) on the other hand. A signi�cant test of the

power of this approach is given by its application to pricing and hedging American

options. The paper gives a global and simpli�ed presentation of this topic including

the reduction of variance techniques based on localization and control variables. A

special interest is given to practical implementation, number of numerical tests are

presented and their performances are carefully discussed.
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1 Introduction

The theory of Markov Processes and the Stochastic Calculus have provided a probabilistic inter-

pretation for the solutions of linear partial di�erential equations (shortly, linear PDE's) by means

of the Feynman-Kac formula. One of the most striking application is the emergence of the Monte

Carlo method as an alternative to deterministic numerical algorithms for solving PDE's. This

method is slower than the analytical ones, but as the dimension increases (more than 3), it is well

known that the analytical methods do no more work and so Monte Carlo methods remain the only

alternative.

But one has to notice that both the Feynman-Kac formula and Monte Carlo methods are speci�c to

linear problems and collapse when dealing in the nonlinear case. In the last decay much work has

been done in order to extend probabilistic methods in a nonlinear frame. On one hand, in a set of

papers Pardoux and Peng (see [22], [23]) introduced the backward stochastic di�erential equations

(BSDE's in short), which generalize the probabilistic representation given by the Feynman-Kac

formula to nonlinear problems. In [16] (see also [1]) this representation was obtained for obstacle

problems as well (by means of reected BSDE's). Applications to mathematical �nance have been

discussed in [17]. So the theoretical background has been prepared. The second step is to obtain

eÆcient probabilistic algorithms for solving such problems.

Recall that one speci�c point in the Monte Carlo method is that it does not employ grids. More

precisely, in order to compute the solution u(0; x0) of the linear PDE

(@t + L)u(t; x) = 0; (t; x) 2 [0; T ]� R
d

u(T; x) = f(x);

one represents u(0; x0) as an expectation and employs a sample of the underlying di�usion in order

to compute this expectation. On the contrary, an analytical method constructs a time-space grid

and uses a dynamical programing algorithm to compute the solution. This means that in order

to compute the solution in one point (0; x0), the analytical method is obliged to compute it on a

whole grid (tk ; x
i
k) while the Monte Carlo method provides directly the solution in (0; x0): This is

a big advantage because in large dimension grids become diÆcult to handle.

Think now that instead of the above linear problem, one has to solve a PDE of the type

(@t + L)u(t; x) + f(t; x; u(t; x)) = 0:

Even if a probabilistic representation of u is available (and this is the case), one is obliged to

compute the solution on a whole grid for the simple reason that one has to know the value of

u(t; x) which comes on in f(t; x; u(t; x)): Therefore, the dynamical programing algorithm becomes

essential. At this stage, a probabilistic approach is in the same position as an analytical one: one

has to construct a grid, then to solve at each time step a linear problem and �nally to add the

input f(t; x; u(t; x)): A terminology di�erence however: the probabilist would say that he computes

a conditional expectation instead of saying that he solves a linear PDE. But the problem remains

the same: computing a large number of conditional expectations, and this is not trivial.

The question is now if a probabilistic point of view provides a new approach to this kind of

problems. And the answer is aÆrmative. These last years, essentially motivated by problems in

mathematical �nance - and the most striking one is pricing American options in large dimension -

several new ideas appeared in this �eld. Roughly speaking they may be divided in three families.

In the �rst one, a tree is built up in order to obtain a discretization of the underlying di�usion on

a grid. This family includes the algorithm by Broadie and Glasserman [11], by Barraquand and

Martineau [6], the quantization algorithm in [3] and [4], as well as the Chevance one [13]. The

second idea is to use regression on a truncated basis of L2 in order to compute the conditional
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expectations, as done by Longsta� and Schwartz [20] and by Tsisiklis and Van Roy [24]. Finally

in [14], [15], [19], [8] and [9], the authors obtain representations for the conditional expectation

using Malliavin calculus and then employ them in order to perform a Monte Carlo method. The

peculiarity of this last approach is that it appears as a pure Monte Carlo method despite the

nonlinearity.

In addition to solving PDE's (which amounts to pricing an option in the �nancial frame), a second

problem of interest is to compute the sensitivity of the solution with respect to some parameter

(hedging and Greeks, in �nancial language). It seems that Malliavin calculus is an especially

promising tool for solving such a problem. It has been used by Lions and Reigner [19], who follow

the third method, as well as in [5] where the quantization algorithm is employed.

The present paper deals with the last method based on Malliavin calculus. Although this approach

works for a large class of nonlinear problems, we focus on the American option pricing/hedging,

which amounts to solve obstacle problems for PDE's. This seems to be a signi�cant test on the

eÆciency of the method and several papers related to this subject appeared in the last time. Our

aim is to give a general view on this topic (with simpli�ed proofs), to present concrete examples

and to discuss the numerical results. A special interest is given to reduction of variance techniques,

based on localization and control variables, and to the impact in concrete simulation.

It worth to mention that as long as one restricts himself to the Black Scholes model (which of

course is of interest in Mathematical Finance) the computations related to Malliavin calculus are

rather explicit and elementary. This allows us to give here an approach which is self contained and

accessible to readers who are not familiar with the rather heavy machinery of Mallavin calculus.

In the case of a general di�usion the same reasonings work as well, but of course one has to employ

the Malliavin calculus in all the generality. And consequently, the explicit formulas which are

available in the Balck Scholes model become heavier (in particular, they involve the inverse of the

Malliavin covariance matrix). The presentation that we give here is based on one more remark:

the results obtained in the one dimensional case extend easily (using an elementary geometrical

argument) to the multidimensional case. This signi�cantly simpli�es the proofs.

The paper is organized as follows. In Section 2 we present the problem, in Section 3 we give the

results (representation formulas for conditional expectations and for the strategy) and in Section 4

we discuss the optimal localization. Finally, Section 5 is devoted to the description of the algorithm

based on this approach and to numerical tests.

2 Pricing/hedging American options

An American option with maturity T , is an option whose holder can exercise his right of option

in any time up to T . Let X denote the process of the underlying asset prices, which is supposed

to be a di�usion process on R
d , and �(Xs) denote the cash-ow associated with the option. The

price as seen at time t of such an American option is given by

P (t; x) = sup
�2Tt;T

E t;x

�
e
�
R
�

t
rs ds�(X� )

�
(1)

where Tt;T stands for the set of all the stopping times taking values on [t; T ] and r is the (deter-

ministic) spot rate.

The solution of this optimal stopping problem has been provided by using the theory of the Snell

envelopes: the �rst optimal stopping time is given by

�
�
t = inffs 2 [t; T ] ; P (s;Xs) = �(Xs)g
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and the function P (t; x), giving the price of the option, solves the following (nonlinear) PDE:

(@t + L)P (t; x)� r P (t; x) = 0

whenever P (t; x) > �(x), with the �nal condition P (T; x) = �(x), where L is the in�nitesimal

generator of X .

It is worth to say that a rigorous statement is much more diÆcult because in general one has not

suÆcient regularity for P (that is, C1 in t and C2 in x) on one hand and on the other one, the

behavior of the solution P in a neighborhood of the free boundary f(t; x) ; P (t; x) = �(x)g is rather
delicate to describe (it gives a supplementary term in the PDE). This leads to a weak formulation

of the problem. The �rst one was given in terms of variational inequalities by Bensoussan and

Lions [7]; in El Karoui et al. [16], one can �nd a formulation in viscosity sense and in [1], Bally et

al. give a formulation in Sobolev sense.

In practice, the numerical evaluation of P (0; x), that is the price as seen at time 0, is done by

using a Bellman dynamic programming principle. Indeed, let 0 = t0 < t1 < : : : < tn = T be a dis-

cretization of the time interval [0; T ], with step size equal to �t = T=n, and let ( �Xk�t)k=0;1;:::;n an

approximation of (Xt)t2[0;T ], that is �Xk�t ' Xk�t. The price P (k�t; �Xk�t) can be approximated

by means of the quantity �Pk�t( �Xk�t), given by the following recurrence equality:

Theorem 2.1 Given �t = T=n 2 (0; 1), de�ne �Pn�t( �Xk�t) = �( �Xn�t) and for any k = n �
1; n� 2; : : : ; 1; 0,

�Pk�t( �Xk�t) = max
�
�( �Xk�t) ; e

�r�t
E

�
�P(k+1)�t( �X(k+1)�t)

��� �Xk�t

��
:

Then �Pk�t( �Xk�t) ' P (k�t;Xk�t).

The above statement is heuristic and a rigorous formulation supposes to precise the hypothesis on

the di�usion coeÆcients and on the regularity of the obstacle. This is done by Bally and Pag�es

[4] (roughly speaking, the error is of order
p
�t if one has few regularity and of order �t if more

regularity holds).

As a consequence, one can numerically evaluate the delta �(t; x) = @xP (t; x) of an American

option. This is important because �(t; x) gives the sensibility of the price with respect to the

initial underlying asset price and also it allows to hedge the option. By considering the case t = 0,

then the following approximation ��0(x) of �(0; x) can be stated.

Proposition 2.2 For any �t = T=n 2 (0; 1), set

��t = f� 2 R
d ; �P�t(�) < �(�)g;

where �P�t(�) = max(�(�) ; e�r�t E( �P2�t ( �X2�t) j �X�t = �)). Then, by setting

��(�) = @� �(�)1��t
+ e

�r�t
@� E

�
�P2�t( �X2�t)

��� �X�t = �

�
1�c

�t
and

�0(x) = Ex

�
��( �X�t)

�
where @� denotes the gradient, one has �(0; x) ' ��0(x)

Such an assertion is heuristic and a rigorous statement, including error bounds, turns out to be a

more diÆcult problem (one may �nd in Bally et al. [5] bounds given in a weak sense, that is in

L
2([0; T ]; dt)).
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Such results state that in order to numerically compute the price P (0; x) and its delta �(0; x), it is

suÆcient to approximate a family of conditional expectations and their derivatives, thus allowing

one to set up Monte Carlo simulations.

In Section 3, we study formulas allowing to represent conditional expectations like E(F (Xt) jXs =

�) and its derivative @�E(F (Xt ) jXs = �) written in terms of a suitable ratio of non-conditioned

expectations, that is

E

�
F (Xt)

���Xs = �

�
=

E(F (Xt)�
�
s )

E(��s )

@�E

�
F (Xt)

���Xs = �

�
=

E(F (Xt )�
1;�
s )E(��s )� E(F (Xt )�

�
s )E(�

1;�
s )

E(��s )
2

(2)

being ��s and �1;�s suitable weights, which could also depend on suitable localizing functions. In

Section 4 we discuss an optimality criterium for the choice of the localizing functions, which play

an important role for practical purposes, as already studied and observed by Kohatsu-Higa and

Petterson [18] and by Bouchard, Ekeland and Touzi [8].

Representations (2) can be used for the practical purpose of the pricing of American options

as follows. In fact, since the weights ��s and �
1;�
s can be written explicitly, expectations like

E(f(Xt )�
�
s ) or E(f(Xt )�

1;�
s ) can be approximated through the associated empirical means and

used to numerically compute the price P (0; x) and its delta �(0; x) by using Theorem (2.1) and

Proposition 2.2, thus avoiding the problem of the approximation of the transition density and

of the discretization of the path space. This plan gives also the considerable gain to provide a

Monte Carlo algorithm for the evaluation of P (0; x) and �(0; x) which makes use of only one set

of simulated trajectories. Let us remark that, using this approach, the valuation of the delta is

not made through �nite di�erence approximations but it is performed by means of representation

formulas written in terms of expectations. We postpone to Section 5 a comprehensive description

of the algorithm and its numerical behavior.

Finally, here we consider price and delta, then representation formulas for the conditional ex-

pectation and its gradient. It is worth to point out that one could also take into account other

sensibilities (Greeks). In fact, similar techniques can be applied in order to obtain representation

formulas for other derivatives of the conditional expectation: the second derivative (gamma), the

derivative w.r.t. the spot rate r (theta), as well as the derivative w.r.t. the volatility � (vega).

3 Representation formulas for the conditional expectation

and its gradient

Let X be the underlying asset price process, driven by the Black and Scholes model, that is

dX
i
t = (r � �

i)X i
tdt+

dX
j=1

�ijX
i
tdW

j
t ; with X

i
0 = x

i
; i = 1; : : : ; d

where: x = (x1; : : : ; xd) 2 R
d
+ denotes the vector of the initial asset values; r is the (constant)

spot rate and � 2 R
d being the vector of the dividends of the option; � denotes the d� d volatility

matrix which we suppose to be non-degenerate;W is a d-dimensional correlated Brownian motion.

Without loss of generality, one can suppose that � is a sub-triangular matrix, that is �ij = 0

whenever i < j, and that W is a standard d-dimensional Brownian motion. Thus, any component
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of Xt can be written as

X
i
t = x

i exp
�
h
i
t+

iX
j=1

�ijW
j
t

�
; i = 1; : : : ; d (3)

where from now on we set hi = r��i� 1
2

Pi

j=1 �
2
ij , i = 1; : : : ; d: The aim is to study the conditional

expectation and its gradient, that is

E(�(Xt ) jXs = �) and @�E(�(Xt ) jXs = �); � 2 Eb(Rd );

respectively, where 0 < s < t, � 2 R
d
+ and Eb(Rd ) denotes the class of the measurable functions

with polynomial growth, that is j�(y)j � C(1 + jyjm) for some m.

In few words, to this goal it suÆces to consider an auxiliary process eX with independent components

for which a formula for the conditional expectation immediately follows as a product. In a second

step, such a formula can be adapted to the original process X by means of an (inversible) function

giving X from the auxiliary process eX. We will study such kind of formulas in Section 3.1 and 3.2,

where also a discussion on the connections with the paper by Lions and Regnier [19] is presented.

It is worth remarking that the formulas are not new, since they have been studied for example also

in Fourni�e, Lasry, Lebouchoux and Lions [15] and in Bouchard, Ekeland and Touzi [8]. Anyway,

we give here a very simple approach and also propose elementary and immediate proofs, which are

postponed to the Appendix (see Section 6.1).

3.1 Diagonalization procedure and �rst formulas

To our purposes, let `t = (`1t ; : : : ; `
d
t ) be a �xed C

1 function and let us set

eX i
t = x

i exp
�
h
i
t+ `

i
t + �iiW

i
t

�
; i = 1; : : : ; d: (4)

As a �rst result, we study a transformation allowing to handle the new process eX in place of the

original process X :

Lemma 3.1 For any t � 0 there exists an invertible function Ft(�) : Rd+ ! R
d
+ such that Xt =

Ft( eXt) and eXt = F
�1
t (Xt). In details, Ft and its inverse Gt = F

�1
t are given by (set

Q0

j=1

def
= 1)

F
i
t (y) = e

�
P

i

j=1 e�ij`jt yi
i�1Y
j=1

�
y
j

xj
e
�hjt

�e�ij
and G

i
t(z) = e

`it z
i

i�1Y
j=1

�
z
j

xj
e
�hjt

�b�ij
; (5)

for i = 1; : : : ; d and y; z 2 R
d
+ , where

e�ij = �ij

�jj
; i; j = 1; : : : ; d; and b� = e��1 (6)

Proof. Let t; `; x be �xed. From (4) we haveW i
t = (ln( eX i

t=x
i)�hi t�`it)=�ii; i = 1; : : : ; d. Inserting

this in (3), one obtains

X
i
t = x

i exp
�
h
i
t�

iX
j=1

�ij

�jj
(hj t+ `

j
t)
� iY
j=1

� eXj
t

xj

��ij=�jj
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Thus, by setting e�ij = �ij=�jj , i; j = 1; : : : ; d and by using the notation ln � = (ln �1; : : : ; ln �d),

for � = (�1; : : : ; �d) 2 R
d , then Ft = (F 1

t ; : : : ; F
d
t ) satis�es

lnFt(y) = �e� `t + e� ln y + (I � e�)(lnx+ ht)

and, by setting b� = e��1, its inverse function is given by

lnF�1t (z) = `t + b� ln z + (I � b�)(lnx+ ht):

Notice that b� is easy to compute because e� is a triangular matrix. Moreover, b� is itself triangular

and b�ii = 1 for any i.

2

Remark 3.2 It is worth to stress that the introduction of eX is done in order to be able to handle

a process with independent components. Therefore, eX has no interesting practical meaning in the

one-dimensional case, where one simply has eXt = e
`t Xt and Xt = e

�`t eXt:

Theorem 3.3 (Representation formulas I: without localization) Let 0 < s < t, � 2 Eb(Rd )
and � 2 R

d
+ be �xed. Set: eXs = Gs(Xs) and e�s = Gs(�), Gs being de�ned in (5), H(�) = 1��0,

� 2 R, b� as in (6) and

�W i
s;t = (t� s)(W i

s + �iis)� s(W i
t �W

i
s); i = 1; : : : ; d: (7)

i) The following representation formula for the conditional expectation holds:

E

�
�(Xt) jXs = �

�
=

Ts;t[�](�)

Ts;t[1](�)

where

Ts;t[f ](�) = E

�
f(Xt)

dY
i=1

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

�
: (8)

ii) The following representation formula for the gradient of the conditional expectation holds:

for j = 1; : : : ; d,

@�jE

�
�(Xt) jXs = �

�
=

jX
k=1

b�kj e�ks
�j

� G s;t;k [�](�)Ts;t[1](�)� Ts;t[�](�)G s;t;k [1](�)

Ts;t[1](�)2
;

where, as k = 1; : : : ; d,

G s;t;k [f ](�) = �E
�
f(Xt)

H( eXk
s � e�ks )

�kks(t� s)( eXk
s )

2

h (�W k
s;t)

2

�kks(t� s)
+ �W k

s;t �
t

�kk

i
�

�
dY

i=1;i6=k

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

�
:

(9)

Let us now give some observations:
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Remark 3.4 � When d = 1, the choice ` = 0, which means simply to take eX = X, simpli�es

the above formulas for the operator Ts;t[f ](�) and G s;t [f ](�) as follows:

Ts;t[f ](�) = E

�
f(Xt)

H(Xs � �)

�s(t� s)Xs

�Ws;t

�
G s;t [f ](�) = �E

�
f(Xt)

H(Xs � �)

�s(t � s)X2
s

h (�Ws;t)
2

�s(t� s)
+ �Ws;t �

t

�

i�
:

� If no correlation is assumed among the assets, that is if the volatility matrix � is diagonal,

then b� = Idd�d. Thus, the sum appearing for the evaluation of @�jE(F (Xt ) jXs = �)

reduces to the single term with k = j, with coeÆcient e�js=�j = e
`js , which in turn is equal to

1 whenever ` = 0.

Let us give some commentary remarks about the signi�cance of the drift-function `t.

A way to choose the drift ` is in order in order to have Gs(�) = �, which is the implicit choice

made by Lions and Regnier in [19]. The corresponding ` is computed in the following

Proposition 3.5 � is a �xed point for the transformation Gs if and only if ` = `
�
, where `

�
is

any path having value at time s given by (set
P0
j=1

def
= 0)

`
�
s
i
=

i�1X
j=1

b�ij�hj s� ln
�
j

xj

�
; i = 1; : : : ; d;

b� being de�ned in (6). In particular, if `t = � t then Gs(�) = � if and only if � = �
�
s, where

�
�
s
i
=

i�1X
j=1

b�ij�hj � 1

s
ln
�
j

xj

�
; i = 1; : : : ; d:

Proof. The proof is immediate: by (5) one can shortly write lnGs(z) = `s+b� ln z+(I�b�)(ln x+hs),
thus � = Gs(�) if and only if (set ln(�=x) as the vector whose ith entry is ln(�i=xi))

`s = `
�
s =

�b� � I

��
h s� ln

�

x

�
:

2

Remark 3.6 It is worth noticing that if originally � is diagonal, then e� = I, so that � = Gs(�)

if and only if `
�
s = 0, as it must obviously follow. In any case, � = Gs(�) gives always `

�
s
1 = 0,

because of the fact that e�11 = 1. Moreover, the choice ` = `
�
gives a considerable simpli�cation of

the function Ft and its inverse Gt, which become

F
i
t (y) = yi

i�1Y
j=1

�
y
j

xj

�
x
j

�j

�t=s�e�ij
and G

i
t(z) = z

i

i�1Y
j=1

�
z
j

xj

�
x
j

�j

�t=s�b�ij
; i = 1; : : : ; d:

Now, the formulas given by Lions and Regnier [19] take into account the process bX whose compo-

nents are de�ned as

bX i
t = x

i exp
�
h
i
t+

i�1X
j=1

�ijw
j
t + �iiW

i
t

�
; i = 1; : : : ; d

9



where (as usual,
P0

j=1(�) := 0 and) wt solves the system

iX
k=1

�ikw
k
t = ln�i � lnxi � h

i
t; i = 1; : : : ; d: (10)

It is worth remarking that bX has independent components, as well as eX . The formula given in

[19] for the conditional expectation states the following:

E

�
�(Xt) jXs = �

�
=

Ls;t [�](�)

Ls;t [1](�)
; where Ls;t [f ](�) = E

�
f(Xt)

dY
i=1

H( bX i
s � �

i)

�iis(t� s) bX i
s

�W i
s;t

�
:

(11)

Thus, both formulas depend on an auxiliary process with independent components ( eX and bX
respectively), which in turn is determined by the introduction of a new drift (` and w respectively,

the latter being de�ned through (10)). Furthermore, the formulas giving the operators Ts;t and

Ls;t , allowing to write down the conditional expectation, can be summarized as follows: setting

A s;t [f ](�) = E

�
f(Xt)

dY
i=1

H(Y i � g
i(�))

�iis(t� s)Y i
�W i

s;t

�
;

then

� choose Y = eXs and g(�) = Gs(�) in order to obtain A s;t [f ](�) = Ts;t[f ](�);

� choose Y = bXs and g(�) = � in order to obtain A s;t [f ](�) = Ls;t [f ](�).

Thus, the connection between the two approaches is simple: if one sets `1t = 0 and for i = 2; : : : ; d,

`
i
t =

Pi�1

j=1 �ijw
j
t , then it is straightforward to see that condition (10) equals to the condition studied

in Proposition 3.5, that is e�s = Gs(�) = �. This means that if `s is chosen as in Proposition 3.5,

the two formulas are actually identical. Therefore, the approach studied here is some more general

than the one developed by Lions and Regnier.

Another way to choose ` might be done in order to minimize the variance (or the integrated one)

of the random variable whose expectation gives the operator Ts;t[f ](�) or G s;t;k [f ]. Unfortunately,

this procedure gives a dependence on ` in such a way that the percentage ratio between the mean

and the square root of the variance is independent of `. In terms of the Central Limit Theorem,

this means that this kind of optimization gives a nonsense. For details, see [2].

Let us resume the above observations in the following

Remark 3.7 In principle one could take ` arbitrarily, so that for practical purposes the simple

choice `(t) = � t seems to be good enough. Concerning the (now) constant �, up to now two main

choices for ` can be suggested:

- � = 0: this simpli�es the process eX;

- � = �
�
, with �

�
as in Proposition 3.5: as observed, this gives a formula for the conditional

expectation in point of fact identical to the one provided by Lions and Reigner in [19].

3.2 Localized formulas

Let us now discuss formulas involving localization functions. If we restrict our attention to product-

type localizing function, then we can �rst state a localized formula for the operators Ts;t[f ](�) and

G s;t;j [f ](�) and then for the conditional expectation and its gradient. In fact, one �rst has

10



Lemma 3.8 Let  (x) =
Qd

i=1  i(x
i), x = (x1; : : : ; xd) 2 R

d
, with  i � 0 and

R
R
 i(�)d� = 1.

Then the operators Ts;t and G s;t;j , de�ned in (8) and (9) respectively, can be localized as follows:

Ts;t[f ](�) = T
 
s;t[f ](�) and G s;t;k [f ](�) = G

 
s;t;j [f ](�); k = 1; : : : ; d;

where

T
 
s;t[f ](�) = E

�
f(Xt)

dY
i=1

h
 i(Xs � �)) +

(H �	i)( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

i�
(12)

and

G
 

s;t;k [f ](�) = �E
�
f(Xt)

h
 k( eXk

s � e�ks ) �W k
s;t

�kks(t� s) eXk
s

+

+
(H �	k)( eXk

s � e�ks )
�kks(t� s)( eXk

s )
2

� (�W k
s;t)

2

�kks(t� s)
+ �W k

s;t �
t

�kk

�i
�

�
dY

i=1;i 6=k

h
 i( eX i

s � e�is) + (H �	i)( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

i�
:

(13)

where 	i denotes the probability distribution function associated with  i: 	i(y) =
R y
�1

 i(�)d�.

By using the localized version for the operators, the localized representation formulas for the

conditional expectation and its gradient immediately follows:

Theorem 3.9 (Representation formulas II: with localization) For any 0 � s < t, � 2 Eb,
� 2 R

d
+ and for any  2 Ld, one has

E

�
�(Xt)

���Xs = �

�
=

T
 
s;t[�](�)

T
 
s;t[1](�)

and, as j = 1; : : : ; d;

@�jE

�
�(Xt)

���Xs = �

�
=

jX
k=1

b�kj e�ks
�j

�
G
 
s;t;k [�](�)T

 
s;t[1](�)� T

 
s;t[�](�)G

 
s;t;k [1](�)

T
 
s;t[1](�)

2
;

where the operators T
 
s;t[f ](�) and G

 
s;t;k [f ](�) are de�ned in (12) and (13) respectively.

Remark 3.10 In principle, one could take di�erent localizing functions for each operator, that is:

E

�
�(Xt)

���Xs = �

�
=

T
 1
s;t[�](�)

T
 2
s;t[1](�)

@�jE

�
�(Xt)

���Xs = �

�
=

jX
k=1

b�kj e�ks
�j

�
G
 3
s;t;k [�](�)T

 4
s;t[1](�) � T

 5
s;t[�](�)G

 6
s;t;k [1](�)

T
 7
s;t[1](�)

2
:

See next section for a discussion on localizing functions. Furthermore, what observed in Remark

3.4 holds here as well: if � is diagonal, the sum giving @�jE(�(Xt ) jXs = �) reduces to the single

term with k = j, with coeÆcient e�j=�j = e
`js

, which is equal to 1 if ` = 0.

11



4 Optimal localizing functions

Let us discuss here on the choice of the localizing functions.

By referring to Theorem 3.9, in order to compute E(�(Xt ) jXs = �) one has to evaluate

T
 
s;t[f ](�) = E

�
f(Xt)

dY
i=1

h
 i( eX i

s � e�is) + (H �	i)( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

i�
;

with f = � and f = 1. Such an expectation is practically evaluated by means of the empirical

mean obtained through many independent replications. The aim is now to choose the localizing

function  allowing to reduce the variance. To this purpose, we follow the optimization criterium

introduced in the one-dimensional case by Kohatsu-Higa and Petterson [18], which has been used

also by Bouchard, Ekeland and Touzi [8]. It consists in looking for the localizing function  which

minimizes the integrated variance, given by

I
f
d ( ) =

Z
Rd

E

�
f
2(Xt)

dY
i=1

h
 i( eX i

s � e�i) + (H �	i)( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

i2�
de�; (14)

up to the constant (with respect to the localizing function  ) term coming out from T
 
s;t[f ](�) =

Ts;t[f ](�). Then the following result holds:

Proposition 4.1 Set L1 = f : R ! [0;+1) ;  2 C1(R);  (+1) = 0 and
R
R
 (t) dt = 1g; and

Ld = f : Rd ! [0;+1) ;  (x) =
Qd

i=1  i(x
i); where  i 2 L1; for any ig. Then

inf
 2Ld

I
f
d
( ) = I

f
d
( �)

where  
�(x) =

Qd

j=1  
�
j (x

j), with  �j (�) = �
�
j e

���j j�j=2 is a Laplace probability density function on

R and �
�
j = �

�
j [f ] enjoys the following system of nonlinear equations:

�
�
j
2
=

E

�
f
2(Xt)�

2
s;t;j

Q
i : i6=j

h
�
�
i
2 +�2

s;t;i

i�
E

�
f2(Xt)

Y
i : i6=j

h
�
�
i
2
+�2

s;t;i

i� ; j = 1; : : : ; d; (15)

where �s;t;i = �W i
s;t=(�iis(t� s) eX i

s), i = 1; : : : ; d:

Proof. Notice �rst that we can write I
f
d ( ) = I

f
d ( 1; : : : ;  d), with  1; : : : ;  d 2 L1. In order

to compute the derivative in the direction ( b 1; 0; : : : ; 0), where b 1 = b 1(x1) is some arbitrary

function, we reduce the computation to the one-dimensional case. In fact, for a �xed f , let us puteft(y) � ef(y) = f Æ Ft(y), y 2 R
d
+ and Ft being de�ned in (5). Setting

ef21 (x1) = Z
Rd�1

de�2 : : : de�dE� ef2(x1; eX2
t ; : : : ;

eXd
t )

dY
i=2

h
 i( eX i

s � e�i) + (H �	i)( eX i
s � e�i)�s;t;ii2�

then

I
f
d ( ) =

Z
R

de�1 E� ef21 ( eX1
t )
h
 1( eX1

s � e�1) + (H �	1)( eX1
s � e�1)�s;t;1i2� = I

f1
1 ( 1):

12



By interchanging the order of integration and by considering the change of variable � = eX1
s � e�1,

one has

I
f1
1 ( 1) = E

Z
R

f
2
1 (
eX1
t )
�
 1(�) + (H �	1)(�)�s;t;1

�2
d�:

Now, set " 2 R and let  ̂1 2 L
1(R) be such that for any small " then  1 + " ̂1 2 L1. Setting

	̂1(x) =
R x
�1

 ̂1(�) d�, one has

@I
f
d ( )

@ 1
( ̂1) = (I

f1
1 )0( 1)( ̂1) = lim

"!0

1

"

�
I
f1
1 ( 1 + " ̂1)� I

f
1 ( 1)

�
= 2E

Z
R

f
2
1 (
eX1
t )
�
 ̂1(�)� 	̂1(�)�s;t;1

��
 1(�) + (H �	1)(�)�s;t;1

�
d�:

We look for a function  �1 in L1 such that (If11 )0( �1)( ̂1) = 0 for any  ̂1 satisfying the conditions

above. Consider the �rst term of the (last) r.h.s.: by using the standard integration by parts

formula (recall that 	̂01 =  ̂1), we can writeZ
R

 ̂1(�) f
2
1 (
eX1
t )
�
 1(�)+(H�	1)(�)�s;t;1

��
d� = 	̂1(�) ef21 ( eX1

t )
�
 1(�)+(H�	1)(�)�s;t;1

����+1
�1

�
Z
R

	̂1(�) ef21 (X1
t ) @�

�
 1(�) + (H �	1)(�)�s;t;1

�
d�

Now, since 	̂1(�) ! 0 as � ! �1 and  1 is a (quite smooth) probability density function, then

 1(�) + (H � 	1)(�) ! 0 as � ! +1 and the �rst term nulli�es. Moreover, @�( 1(�) + (H �
	1)(�)�s;t;1) =  

0
1(�) + (Æ0 �  1)(�)�s;t;1, being Æ0 the Dirac mass in 0. Thus, we obtain

(If11 )0( 1)( ̂1) = �2E
Z
R

	̂1(�) ef21 ( eX1
t )
�
 
0
1(�) + (H �	1)(�)�

2
s;t;1

�
d� � 2	̂1(0)E( ef21 ( eX1

t )�s;t;1)

= �2
Z
R

	̂1(�) E
� ef21 ( eX1

t )
�
 
0
1(�) + (H �	1)(�)�

2
s;t;1

��
d�;

where we have used E( ef21 ( eX1
t )�s;t;1) = 0, proved in a) of Corollary 6.2. Since 	̂1 is the primitive

function of an almost arbitrarily integrable function, we can say that (I
f1
1 )0( 1)( ̂1) = 0 for any

 ̂1 if and only if

E

� ef21 ( eX1
t )
�
(H �	1)(�)�

2
s;t;1 +  

0
1(�)

��
= 0

for (almost) any �. This gives rise to an ordinary di�erential equation: setting

�
�
1
2
=

E( ef21 ( eXt)�
2
s;t;1)

E( ef21 (Xt))

and v(�) = 	1(�), then it must be: v00(�) � �
�
1
2
v(�) + �

�
1
2
H(�) = 0: The solution is simply

v(�) = c1 e
��1� + c2 e

���1� + 1 if � > 0 and v(�) = c3 e
��1� + c4 e

���1� if � < 0, with c1; : : : ; c4 2 R

and ��1 =

q
��1

2. Now, by imposing that v(+1) = 1, v(�1) = 0 and v0(�) has to be a continuous

probability density function, we �nally get the solution v
�: v�(�) = 1 � 1

2
e
���1� if � > 0 and

v
�(�) = 1

2
e
��1� if � < 0.
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Since everything is symmetric, we obtain similar equations and solutions for the remaining coor-

dinates 2; : : : ; d, so that the following system hold: for j = 1; : : : ; d,

 
�
j (�) =

��j
2
e
���j j�j; � 2 R;

�
�
j
2 =

R
Rd�1 de��j E�f2(Xt)�

2
s;t;j

Q
i : i6=j

h
 
�
i (
eX i
s � e�i) + (H �	�i )(

eX i
s � e�i)�s;t;ii2�R

Rd�1 de��j E�f2(Xt)
Q
i : i6=j

h
 �i (

eX i
s � e�i) + (H �	�i )(

eX i
s � e�i)�s;t;ii2�

where \de��j" means that one has to integrate with respect to all the variables except for e�j .
Let us now show that  � is actually a minimum. Straightforward computations allow to write

dX
k;j=1

@
2
I
f
d

@ ̂k@ ̂j

( �)( ̂k;  ̂j) = 4E

Z
Rd

ef( eXt)
2
� dX
m=1

( ̂m(�m)� 	̂m(�m)�s;t;m)
�2
�

�
dY
i=1

�
 
�
i (�i) + (H �	�i )(�i)�s;t;i

�2
d�

which is positive, so that  � is a minimum.

It remains now to give a better representation of the integrals giving the optimal values ��. Notice

that one has to handle something likeZ
Rd�1

de��j E�f2(Xt)�
2
s;t;j

Y
i : i6=j

h
 
�
i (
eX i
s � e�i) + (H �	�i )(

eX i
s � e�i)�s;t;ii2�

= E

�
f
2(Xt)�

2
s;t;j

Z
Rd�1

de��j Y
i : i6=j

h
 
�
i (
eX i
s � e�i) + (H �	�i )(

eX i
s � e�i)�s;t;ii2�;

with �s;t;j = �s;t;j or �s;t;j = 1. Let us consider the integral inside the expectation: by recalling

that  �i (�) = �
�
i e

���i j�j=2, then (H �	�i )(�) = sign(�) e��
�

i j�j=2, so thatZ
Rd�1

de��j h �i ( eX i
s � e�i) + (H �	�i )(

eX i
s � e�i)�s;t;ii2

=
Y
i : i6=j

Z
R

de�i 1
4
e
�2��i j

eXi
s�e�ij

h
�
�
i + sign( eX i

s � e�i)�s;t;ii2 = Y
i : i6=j

1

4��i
[��i

2
+�2

s;t;i]

By inserting everything, one obtainsZ
Rd�1

de��j E�f2(Xt)�
2
s;t;j

Y
i : i6=j

h
 
�
i (
eX i
s � e�i) + (H �	�i )(

eX i
s � e�i)�s;t;ii2�

=
1

4d��1 � � ���d
E

�
f
2(Xt)�

2
s;t;j

Y
i : i6=j

[��i
2
+�2

s;t;i]
�
;

and the statement follows straightforwardly.

2
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In the above optimization criterium, in principle one could consider a measure more general than

the Lebesgue one, namely to replace de� with �(de�) in (14). For example, since e� represents a

possible value for eXs, then it would be more signi�cant to consider �(de�) as a lognormal measure,
or at least a normal one (with suitable mean and covariance matrix). Then, it is worth to say

that everything runs in the same way. But unfortunately, one arrives to an ordinary di�erential

equation (as in the proof of Proposition 4.1) which has not an explicit solution, that is for a general

� it is not possible to write down explicitly the optimal localizing function.

Remark 4.2 The nonlinear system giving the optimal parameters �
�
j = �

�
j [f ] can be rewritten as

�
�
j [f ]

2 =

E

�
f
2(Xt)

t+ �
2
jjs(t� s)

�
2
jjs(t� s)( eXj

s )2

Y
i : i6=j

h
�
�
i [f ]

2
+

t+ �
2
iis(t� s)

�
2
iis(t� s)( eX i

s)
2

i�
E

�
f2(Xt)

Y
i : i6=j

h
�
�
i [f ]

2
+

t+ �
2
iis(t� s)

�2iis(t� s)( eX i
s)
2

i� ; j = 1; : : : ; d: (16)

Indeed, consider �rst the expectation in the numerator of (15). By conditioning with respect to

W
j
, one has to evaluate E( �f2j (

eXj
t )�

2
s;t;j), being

�f2j (x
j) = E

� ef2( eX1
t ; : : : ;

eXj�1
t ; x

j
; eXj+1

t ; : : : ; eXd
t )
Y
i : i6=j

[��i
2
+�2

s;t;i]
�
:

By using b) of Corollary 6.2, one has

E( �f2j (
eXj
t )�

2
s;t;j) = E

�
�f2j (
eXj
t )

t+ �
2
jjs(t� s)

�2jjs(t� s)( eXj
s )2

�
;

so that

E

�
f
2(Xt)�

2
s;t;j

Y
i : i6=j

[��i
2
+�2

s;t;i]
�
= E

�
f
2(Xt)

t+ �
2
jjs(t� s)

�2jjs(t� s)( eXj
s )2

Y
i : i6=j

[��i
2
+�2

s;t;i]
�
:

Now, by conditioning with respect to W
k
as k 6= j and by iterating this procedure, one obtains

E

�
f
2(Xt)�

2
s;t;j

Y
i : i6=j

[��i
2
+�2

s;t;i]
�
= E

�
f
2(Xt)

t+ �
2
jjs(t� s)

�2jjs(t� s)( eXj
s )2

Y
i : i6=j

h
�
�
i
2
+

t+ �
2
iis(t� s)

�2iis(t� s)( eX i
s)
2

i�
:

Similarly,

E

�
f
2(Xt)

Y
i : i6=j

[��i
2
+�2

s;t;i]
�
= E

�
f
2(Xt)

Y
i : i6=j

h
�
�
i
2
+

t+ �
2
iis(t� s)

�2iis(t� s)( eX i
s)
2
]
�
;

so that formula (16) holds.

Remark 4.3 For f = 1 the corresponding optimal values of the parameters �j can be exactly

computed and are given by (recall that x
1
; : : : ; x

d
are the initial underlying asset prices)

�
�
j [1] =

e
�(hjs+`js)+�

2
jjs

xj

s
t+ �2jjs(t� s)

�
2
jjs(t� s)

; j = 1; : : : ; d:
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Indeed, whenever f = 1, by Remark 4.2, one has (recall that the eX i
's are independent)

�
�
j [1]

2 = E

� t+ �
2
jjs(t� s)

�2jjs(t� s)( eXj
s )2

�
; j = 1; : : : ; d:

Now, since eXj
s = x

j exp(hjs+ `js+�jjW
j
s ), one has E((

eXj
s )
�2) = (xj)�2e�2(h

js+`js)E(e�2�jjW
j
s ) =

(xj)�2e�2(h
js+`js)e

2�2jjs, and the above formula immediately follows.

For practical purposes, numerical evidence shows that the choice �� = 1=
p
t� sworks good enough,

thus avoiding to weight the algorithm with the computation of further expectations. When f = 1,

this kind of behaviour is clear from Remark (4.3). In the general case, we can state the following

Proposition 4.4 For any j = 1; : : : ; d, one has �
�
j [f ] = O(1=

p
t� s) as t! s. Moreover, if f is

continuous, then

lim
�!0

lim
t!s

�
�
j [f ]

��j [1]
= 1:

Proof. Let us set:

�
�
j = �

�
j [f ]

2
�
2
jjs(t� s) and ��j = �

�
j [1]

2
�
2
jjs(t� s);

as j = 1; : : : ; d. By (16), �� = (��1 ; : : : ; �
�
d) is such that for any j = 1; : : : ; d,

�
�
j =

E

�
f
2(Xt)

t+ �
2
jjs(t� s)

( eXj
s )2

Y
i : i6=j

h
�
�
i +

t+ �
2
iis(t� s)

( eX i
s)
2

i
E

�
f2(Xt)

Y
i : i6=j

h
�
�
i +

t+ �
2
iis(t� s)

( eX i
s)
2

i�
and since the above quantity is bounded as (t� s)! 0, it then follows that ��j = O(1=(t� s)), or

equivalently ��j [f ] = O(1=
p
t� s).

Let us now discuss what happens whenever also � ! 0. One has ( eXj
s )
�2 = (xj)�2 exp(�2hjs

�2`js � 2�jjW
j
s ) = (xj)�2 exp(�2hjs � 2`js + 2�2jj) exp(�2�2jj � 2�jjW

j
s ). Setting exp(�2�2jj �

2�jjW
j
s ) = 1 + Y

j
s , we can write, as j = 1; : : : ; d, (see Remark 4.3)

t+ �
2
jjs(t� s)

( eXj
s )2

= ��j (1 + Y
j
s );

so that

�
�
j = ��j

E

�
f
2(Xt)(1 + Y

j
s )
Q
i : i6=j

h
�
�
i +

t+ �
2
iis(t� s)

( eX i
s)
2

i�
E

�
f2(Xt)

Y
i : i6=j

h
�
�
i +

t+ �
2
iis(t� s)

( eX i
s)
2

i�
and

�
�
j

��j
= 1 +

E

�
f
2(Xt)Y

j
s

Q
i : i6=j

h
�
�
i +

t+ �
2
iis(t� s)

( eX i
s)
2

i�
E

�
f2(Xt)

Y
i : i6=j

h
�
�
i +

t+ �
2
iis(t� s)

( eX i
s)
2

i� :
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Now, by applying twice the Lebesgue dominated convergence theorem, one has (recall that f is

continuous and Y js ! 0 a.s. as � ! 0)

lim
�!0

lim
t#s

E

�
f
2(Xt)Y

j
s

Q
i : i6=j

h
�
�
i +

t+ �
2
iis(t� s)

( eX i
s)
2

i�
E

�
f2(Xt)

Y
i : i6=j

h
�
�
i +

t+ �
2
iis(t� s)

( eX i
s)
2

i� = 0;

and the statement holds.

2

Similar arguments can be used in order to handle the problem of minimizing the variance coming

out from the expectation giving the operators G
 
s;t;k [f ](�) (see (12)). To this purpose, let us recall

that

G
 
s;t;k = �E

�
f(Xt)

h
 k( eXk

s � e�k)�s;t;k + (H �	k)( eXk
s � e�k)�s;t;ki�s;t;k(( eXs � e�)�k)�;

where

�s;t;k =
�W k

s;t

�kks(t� s) eXk
s

; �s;t;k =
1

�kks(t� s)( eXk
s )

2

� (�W k
s;t)

2

�kks(t� s)
+ �W k

s;t �
t

�kk

�
(17)

and

�s;t;k(( eXs � e�)�k) = dY
i=1;i 6=k

�
 i( eX i

s � e�i) + (H �	i)( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

�
where, for � 2 R

d , the notation ��k means the vector on R
d�1 having the same coordinates of �

except for the kth one. In the one dimensional case, one simply has to drop the subscript k, takee� = � and set �s;t;k(e��k) � 1. Thus, if we set

J
f ;k
d ( ) =

Z
Rd

E

�
f
2(Xt)

h
 k( eXk

s � e�k)�s;t;k + (H �	k)( eXk
s � e�k)�s;t;ki2�2s;t;k(( eXs � e�)�k)� de�

then the following result holds:

Proposition 4.5 Let �s;t;k and �s;t;k be as in (17). Setting Ld = f : Rd ! [0;+1) ;  (x) =Qd

i=1  i(x
i); where  i 2 L1; for any ig, then

inf
 2Ld

J
f ;k
d ( ) = J

f ;k
d ( �;k)

where  
�;k(x) =

Qd

j=1  
�
j;k(x

j), with  �j;k(�) =
��j;k
2
e
���j;k j�j is a Laplace probability density func-

tion and �
�
j;k = �

�
j;k [f ] are given by:

i) in the one dimensional case (k = j = 1), one has:

�
� = �

�[f ] =

0@E

�
f
2(Xt)�

2
s;t

�
E

�
f2(Xt)�

2
s;t

�
1A1=2

;
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ii) in the multidimensional case, for any �xed k = 1; : : : ; d, the ��j;k's solve the nonlinear system,

as j = 1; : : : ; d:

(��k;k)
2 =

E

�
f
2(Xt)�

2
s;t;k

Qd

i=1;i6=k

h
(��i;k)

2 +�2
s;t;j

i�
E

�
f2(Xt)�

2
s;t;i

Qd

i=1;i6=k

h
(��i;k)

2 +�2
s;t;i

i� and for j 6= k :

(��j;k)
2 =

E

�
f
2(Xt)

�
(��k;k)

2�2
s;t;k +�2

s;t;k

�
�2
s;t;j

Qd

i=1;i6=j;k

h
(��i;k)

2 +�2
s;t;i

i�
E

�
f2(Xt)

�
(��k;k)

2�2
s;t;k +�2

s;t;k

�Qd

i=1;i6=j;k

h
(��i;k)

2 +�2
s;t;i

i� :

The proof of Proposition 4.5 uses the same technique as in the proof Proposition 4.1 and is

postponed to Section 6.2 of the Appendix. Again, numerical evidences show that the choice

�
�
j;k = 1=

p
t� s works good enough.

Finally, let us conclude the discussion on the optimal localizing function with a short consideration.

For simplicity, let us consider the one dimensional case. The main problem is a good estimate of

E(�(Xt ) jXs = �), which can be rewritten as

E(�(Xt ) jXs = �) = E

�
�(Xt)

�
 
s;t

E(�
 
s;t )

�
; �

 
s;t =  (Xs � �) +

(H �	)(Xs � �)

�s(t� s)Xs

�Ws;t

(one could also complicate things by considering two di�erent localizing functions in the above

ratio). So, another reasonable way to proceed might take into account the variance coming out

from the weight �
 
s;t=E(�

 
s;t ). But since it is written in terms of a ratio, at this stage it does not

seem feasible to obtain results giving the associated optimal localizing function  .

5 The algorithm for pricing/hedging American options

We give here a detailed presentation of the use of the representation formulas in the applied

context of the pricing and hedging of American options. Afterwards, we show some numerical

results coming out by applying the algorithm in practice.

5.1 How to use the formulas in practice

The algorithm is devoted to the numerical evaluation of the price P (0; x) and the delta �(0; x) of

an American option with payo� function � and maturity T , on underlying assets whose price X

evolves following the Black-Scholes model (3).

Let 0 = t0 < t1 < : : : < tn = T be a discretization of the time interval [0; T ], with step size equal to

" = T=n. By using Theorem 2.1 and Proposition 2.2, the price P (0; x) is approximated by means

of �P0(x), where �Pk"(Xk"), as k = 0; 1; : : : ; n, is iteratively de�ned as:

�Pn"(Xn") = �(Xn") � �(XT ) and as k = n� 1; : : : ; 1; 0

�Pk"(Xk") = max
n
�(Xk") ; e

�r"
E

�
�P(k+1)"(X(k+1)")| {z }

|

���Xk"

�o
(18)
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and the delta �(0; x) is approximated by using the following plan: setting

��(X") =

8>>><>>>:
@��(�)

���
�=X"

if �P"(X") < �(X")

e
�r"

@� E

�
�P2"(X2")

���X" = �

�
| {z }

�

���
�=X"

if �P"(X") > �(X")

then ��0(x) = Ex

�
��(X")

�
:

(19)

The conditional expectations (terms |) and their derivatives (terms �) will be computed through

the formulas previously given, by means of unconditioned expectations which in turn are numeri-

cally evaluated by averaging on N simulated paths.

Remark 5.1 In the context of the geometric Brownian motion, the process X can be exactly

simulated. So, we do not need any approximation �Xk" of Xk", and thus we write directly Xk".

Furthermore, it is worth remarking that the algorithm allows to use the same sample in order to

compute all the conditional expectations, as it will follows.

Since the algorithm is backward, for the simulation we consider the Brownian bridge law (recall

that for 0 < s < t, the law of Ws given Wt = y is a gaussian law with mean s=t y and variance

s(t� s)=t I). Therefore,

- at time T = n", we simulate Wn" as usual: Wn" =
p
n"Un, with Un = (U1

n; : : : ; U
d
n), U

i
n �

N(0; 1), i = 1; : : : ; d, all independent;

- as k = n� 2; : : : ; 1, we simulate by the Brownian bridge property: Wk" = k=(k + 1)W(k+1)" +p
k"=(k + 1) Uk, with Uk = (U1

k ; : : : ; U
d
k ), U

i
k � N(0; 1), i = 1; : : : ; d; independent.

Thus, the basic data in the algorithm are given by

U = fU i;qk ; k = 1; : : : ; n| {z }
time

; i = 1; : : : ; d| {z }
dimension

; q = 1; : : : ; N| {z }
sample

g (20)

and U gives all the samples we are interested in, that is:

� (W
i;q
k" )i=1;:::;d;k=1;:::;n, q = 1; : : : ; N : as i = 1; : : : ; d;

for k = n : W
i;q
n" =

p
n"U

i;q
n ; and

for k = n� 1; : : : ; 1 : W
i;q
k" =

k

k + 1
W

i;q

(k+1)"
+

r
k

k + 1
" U

i;q
k ;

(21)

� (X
i;q

k" )i=1;:::;d; k=0;:::;n, q = 1; : : : ; N : for k = n; n� 1; : : : ; 1,

X
i;q
k" = xi e

(r��i�
1
2

P
i

j=1 �
2
ij )k"+

P
i

j=1 �ijW
i;q

k" ; i = 1; : : : ; d (22)

and X
i;q
0 = xi, i = 1; : : : ; d (as an example, Figure 1 shows a set of simulated paths of X);

� f�W i;q
k gi=1;:::;d;k=1;:::;n�1, q = 1; : : : ; N (giving a sample for �Ws;t): for k = n; n� 1; : : : ; 1,

�W
i;q
k = "(W

i;q
k" + �iik")� k"(W

i;q

(k+1)"
�W

i;q
k" ); 1; : : : ; d; (23)
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time=1

time=0

X
q

1

Figure 1 An example of the tree turning out by simulating 10 paths of the process X on [0; 1].

� ( eX i;q
k" )i=1;:::;d; k=0;:::;n, q = 1; : : : ; N : for k = n; : : : ; 1,

eX i;q
k" = xi e

(r��i�
1
2

P
i

j=1 �
2
ij)k"+`

i;q

k
k"+�iiW

i;q

k" ; i = 1; : : : ; d; (24)

and eX i;q
0 = xi, i = 1; : : : ; d. Obviously, if d > 1 one needs to introduce the drift `, which

could vary according to the time interval of interest [k"; (k+1)"] and also on the position of

X at time k" (see Remark 3.7). So, eX i;q
k" can be simulated once the following set L is chosen:

L = f`i;qk ; k = 1; : : : ; n� 1| {z }
time

; i = 1; : : : ; d| {z }
dimension

; q = 1; : : : ; N| {z }
sample

g:

The pricing algorithm can be summarized step by step as follows.

- Step n: simulation of W q
n" and X

q
n" as in (21) and (22); then, computation of �Ptn(X

q
n"):

�Ptn(X
q
n") = �(Xq

n") q = 1; : : : ; N:

- Step n�1: simulation of W
q

(n�1)"
, X

q

(n�1)"
, �W

q
n�1 and

eXq

(n�1)"
as in (21), (22), (23) and (24);

then, computation of �P(n�1)"(X
q

(n�1)"
):

�P(n�1)"(X
q

(n�1)"
) = max

�
�(X

q

(n�1)"
) ; e�r "E( �Pn" (Xn") jX(n�1)" = X

q

(n�1)"
)
�

for q = 1; : : : ; N , where the expectation is evaluated by the formulas in the previous sections,

for example

E( �Pn" (Xn") jX(n�1)" = X
q

(n�1)"
) =

T
n�1[ �Pn"](X

q

(n�1)"
)

Tn�1[1](X
q

(n�1)"
)

where, for f = �Pn"; 1,

T
n�1[f ](X

q

(n�1)"
) = E

�
f(Xn")

dY
i=1

H( eX i
(n�1)" � e�i)eX i
(n�1)"

�W i
(n�1)";n"

����e�=Xq

(n�1)"

Notice that Tn�1[f ](Xq

(n�1)"
) is the mean of a random variable for which one has N trials,

so that it is numerically computed by the law of large numbers:

T
n�1[f ](X

q

(n�1)"
) =

1

N

NX
q0=1

f(Xq0

n")

dY
i=1

H( eX i;q0

(n�1)"
� eX i;q

(n�1)"
)eX i;q0

(n�1)"

�W
i;q0

n�1:
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- Step k, k = n� 2; : : : ; 1: as in step n� 1, with k in place of n� 1.

At step 1, from (19) one has to add the following computation for the delta:

��(Xq
" ) =

8><>:
@��(�)

���
�=X

q
"

if �P"(X
q
" ) < �(Xq

" )

e
�r"

@� E

�
�P2"(X2")

���X" = �

����
�=X

q
"

if �P"(X
q
" ) > �(Xq

" )

where @� E( �P2" (X2") jX" = �)j�=Xq
"
is computed by using the formulas in the previous

sections, for example:

@�jE

�
F (X2") =

���X" = �

����
�=X

q
"

=

jX
m=1

b�mj eXm;q
"

X
j;q
"

� G s;t;m [F ](X
q
" )Ts;t[1](X

q
" )� Ts;t[F ](X

q
" )G s;t;m [1](X

q
" )

Ts;t[1](X
q
" )2

;

(25)

with s = " and t = 2". Ts;t and G s;t;m , given by (8) and (9) respectively, are weighted

expectations of random variables for which we have N samples, so they are evaluated in

practice by means of the associated empirical mean.

At the end, the samples ( �P"(X
q
" );

��(Xq
" ))q=1;:::;N are available.

- Step 0: computation of the price and the delta:

�P0(x) = max
�
�(x); e�r�t

1

N

NX
q=1

�P"(X
q
" )
�

and ��0(x) =
1

N

NX
q=1

��(Xq
" ):

Let us point out that, for the sake of simplicity, the description takes into account the non localized

formulas. In practice, it is much better to use localizing functions, so one should use the formulas

coming from Theorem 3.9. Obviously, nothing changes and for the choice of the localizing functions,

we refer to the discussion in Section 4.

Furthermore, in order to reduce the variance, one could use a control variable. Unfortunately,

there is not a standard way to proceed in this direction but in the case of American option, it is

quite natural to think to the associated European one. The idea is the following.

For a �xed initial time t and underlying asset price x, let us set P am(t; x) and P eu(t; x) as the

price of an American and European option respectively, with the same payo� � and maturity T .

We de�ne

P (t; x) = P
am(t; x)� P

eu(t; x):

Then it is easy to see that

P (t;Xt) = sup
�2Tt;T

E

�
e
�r(��t)b�(�;X� )

���Ft�
where Tt;T stands for the set of all the stopping times taking values on [t; T ] and b� is de�ned by

b�(t; x) = �(x)� P
eu(t; x)

(notice the obstacle b�(t; x) is now dependent on the time variable also, and is such that b�(T; x) =
0). Thus, for the numerical valuation of P (0; x), one can set up a dynamic programming principle

in point of fact identical to the one previously described, provided that � is replaced by b�(t; x).
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Once the estimated \price" �P0(x) and \delta" ��0(x) are computed, the approximation of the price

and delta of the American option is then given by

�P am
0 (x) = �P0(x) + P

eu(0; x) and ��am
0 (x) = ��0(x) + �eu(0; x)

respectively. Notice that the new obstacle has to be evaluated at each time step: in order to set

up this program, one has to compute the price/delta of an European option on �. This can be

done exactly for some call or put options, for which prices and deltas are known in closed form,

otherwise one can proceed by simulation for their computation.

5.2 Numerical experiments

Here, we numerically study the behavior of the pricing/hedging algorithm described in Section 5.1.

In order to have comparable results, a symmetric case is considered, where the deltas are all equal.

Thus, the initial values are assumed to be all equal, and the same for the volatilities; we also set

equal to zero both the dividend rates and the correlations among the assets. The parameters are:

initial values x1 = : : : = xd = 100; volatilities �11 = : : : = �dd = 0:2; exercise price K = 100;

maturity T = 1 year; risk-free interest rate r = ln(1:1).

We consider the following examples.

- Standard one dimensional American put, payo� �(x) = (K � x)+, see Table 1.

The \true" reference price and delta are issued by the binomal Black-Scholes Richardson

extrapolation tree-method [10] (BBSR-P and BBSR-� in the table), with 1000 steps.

- Put on the minimum of 2 assets, payo� �(x) = (K �min(x1; x2))+, see Table 2.

The \true" reference price and deltas are obtained by the Villeneuve-Zanette �nite di�erence

algorithm [25] (VZ-P and VZ-� in the table), with 500 time-space steps.

- Put on the geometric mean of 5 assets: payo� �(x) = (K � (
Q5

i=1 xi)
1=5)+, see Table 3.

The peculiarity of the payo� allows one to benchmark the results with the one-dimensional

American BBSR tree-method [10] (BBSR-P and BBSR-� in the table), with 1000 steps.

We have considered Nmc = 500; 1000; 5000; 10000; 20000 number of Monte Carlo iterations and

varying time periods n (n = 10; 20; 50 in dimension d = 1; 2 and n = 5; 10; 20 for d = 5). In the

tables, �P and �� denote the approximating price and delta respectively, and the \true" reference

price and delta are reported. For the sake of comparison with other existing Monte Carlo methods,

in the case of the standard American put (Table 1) also the price and delta provided by the

Barraquand-Martineau [6] and the Longsta�-Schwartz [20] algorithm1 are reported (prices and

deltas are denoted as BM-P , BM-� and LS-P , LS-�, respectively).

In any experiment, the price of the associated Europen option has been used as a control variable.

Moreover, also the localization has been taken into account, as a Laplace-type probability density

function (see Section 4). In order to relax the computational executing time, we have always used

the parameter of the localizing function equal to 1=
p
", being " = T=n, where T stands for the

maturity and n is the number of time periods. Concerning the auxiliary drift `, we have chosen

both ` = 0 and ` as in Proposition 3.5 (see Remark 3.7 for details). Actually, the results are not

inuenced by the two possibilities: the outcomes are quite identical.

1The Barraquand and Martineau algorithm takes into account a space-grid, while the Longsta� and

Schwartz algorithm uses least-squares approximation techniques: we have considered the ones implemented

in the software Premia, see http://cermics.enpc.fr/~premia
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Nmc
�P BBSR-P BM-P LS-P �� BBSR-� BM-� LS-�

500 4.807 5.611 4.914 -0.378 -0.316 -0.284

10 time 1000 4.795 5.147 4.714 -0.387 -0.325 -0.232

periods 5000 4.804 4.918 5.038 4.710 -0.384 -0.387 -0.287 -0.258

10000 4.818 4.973 4.747 -0.387 -0.279 -0.254

20000 4.823 4.928 4.816 -0.388 -0.270 0.265

500 4.896 5.469 5.025 -0.398 -0.284 -0.237

20 time 1000 4.896 5.198 4.903 -0.385 -0.261 -0.251

periods 5000 4.864 4.918 5.086 4.765 -0.385 -0.387 -0.281 -0.256

10000 4.873 5.076 4.843 -0.392 -0.272 -0.262

20000 4.875 5.057 4.868 -0.387 -0.278 -0.269

500 4.936 5.347 5.165 -0.384 -0.261 -0.258

50 time 1000 4.951 5.904 5.118 -0.384 -0.270 -0.3018

periods 5000 4.897 4.918 5.184 4.880 -0.386 -0.387 -0.283 -0.263

10000 4.904 5.181 4.859 -0.392 -0.273 -0.263

20000 4.910 5.149 4.907 -0.389 -0.281 -0.278

Table 1: Standard American put

Nmc
�P VZ-P ��1

��2 VZ-�

500 10.298 -0.288 -0.296

10 time 1000 10.283 -0.295 -0.294

periods 5000 10.271 10.306 -0.295 -0.297 -0.295

10000 10.277 -0.297 -0.297

20000 10.263 -0.296 -0.295

500 10.388 -0.302 -0.294

20 time 1000 10.371 -0.293 -0.292

periods 5000 10.350 10.306 -0.295 -0.296 -0.295

10000 10.349 -0.296 -0.297

20000 10.327 -0.296 -0.297

500 10.511 -0.306 -0.287

50 time 1000 10.443 -0.288 -0.289

periods 5000 10.416 10.306 -0.300 -0.299 -0.295

10000 10.424 -0.297 -0.299

20000 10.403 -0.298 -0.297

Table 2: American put on the minimum of 2 assets

5.3 Final comments

The numerical values for the price and delta in Table 1, 2 and 3, show good accordance with the

\true" values. Notice that this holds for a not high number of both time periods (n = 10) and

Monte Carlo iterations (Nmc = 500; 1000). Moreover, the tables suggest that, as the dimension

increases, the convergence in terms of Nmc is slower when the number of time periods is high. This

could be explained if one knew the theoretical error, for which at the moment there are no results.

However, Bouchard and Touzi in [9] (Theorem 6.3) have proved that, in a very similar simulation

scheme (in particular, using localizing functions giving formulas rather di�erent from the ones as

in Lemma 3.8), the maximum of all the Lp distances between the true conditional expectations

and the associated regression estimators is of order "�d=(4p)N�1=(2p) as "! 0 (recall that " is the

discretization time-step, N is the number of simulations and d stands for the dimension - notice

that there is a dependence on the dimension as well). In particular, the maximum of the variances

is of order "�d=4N�1=2 as "! 0. This would suggest that as the dimension increases, one should

increase also the number of Monte Carlo iterations in order to achieve good results.
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Nmc
�P BBSR-P ��1

��2
��3

��4
��5 BBSR-�

500 1.525 -0.0752 -0.0741 -0.0824 -0.0767 -0.0708

5 time 1000 1.535 -0.0743 -0.0739 -0.0744 -0.0687 -0.0784

periods 5000 1.528 1.583 -0.0738 -0.0794 -0.0750 -0.0727 0.0761 -0.0755

10000 1.537 -0.0775 -0.0765 -0.0786 -0.0759 -0.0780

20000 1.541 -0.0777 -0.0777 -0.0797 0.0779 -0.0783

500 1.716 -0.0781 -0.0766 -0.0868 -0.0934 -0.0708

10 time 1000 1.684 -0.0763 -0.0756 -0.0839 -0.0786 -0.0823

periods 5000 1.740 1.583 -0.0878 -0.0864 -0.0870 -0.0825 -0.0863 -0.0755

10000 1.737 -0.0864 -0.0842 -0.0872 -0.0865 -0.0878

20000 1.727 -0.0838 0.0871 -0.0867 -0.084 -0.0842

500 1.800 -0.0777 -0.0754 -0.0681 -0.0827 -0.0643

20 time 1000 1.846 -0.0851 -0.0872 -0.0753 -0.0720 -0.0768

periods 5000 1.907 1.583 -0.0864 -0.0833 0.0919 -0.0933 -0.0983 -0.0755

10000 1.880 0.0918 -0.0882 -0.0890 -0.0829 0.0849

20000 1.879 -0.0847 -0.0913 -0.0911 -0.0907 -0.0872

Table 3: American put on the geometric mean of 5 assets

Table 4, referring to the simplest case of the one dimensional American put, concerns what happens

if one does not consider the localization function and/or the control variable.

Nmc
�P :

yes localization

no control variable

no localization

yes control variable

no localization

no control variable

500 5.056 4.615 4.024

1000 4.873 4.725 4.272

5000 4.717 10.417 124.148

10000 4.773 14.330 10437.562

20000 4.829 10.224 219.259

Table 4: Standard American Put, 10 time periods (\true" price: 4.918)

First of all, Table 4 points out that the algorithm numerically does not work if the localization

is not taken into account. On the contrary, the use of the localization, even without any control

variables, gives unstable but rather reasonable prices. Thus, Table 1, 2, 3 and 4 allow to deduce

that the introduction of the control variable together with the localization then brings to more

stable results, with quite satisfactory precision both for prices and deltas also with a small number

of Monte Carlo iterations (Nmc = 500; 1000).

Let us discuss about the CPU time arising from the running of the algorithm. The computations

have been performed in double precision on a PC Pentium IV 1:8 GHz with 256 Mb of RAM.

Figure 2 shows the computational time spent for the one dimensional American put option. As

expected, this Monte Carlo procedure has a rather high CPU time cost, which empirically comes

out to be quadratic with respect to the number of simulations.

We can conclude that this method is interesting but uncompetitive with respect to other Monte

Carlo methods, such as the Barraquand-Martineau [6] and the Longsta�-Schwartz [20] ones, in

terms of computing time. Nevertheless, di�erently from these procedures (which do not provide

an ad hoc way for the Greeks: they are computed simply by �nite di�erences), this method allows

to eÆciently obtain the delta. In [12], a suitable combination of this procedure with other Monte

Carlo ones is developed, giving interesting numerical results also in terms of computing time costs.
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Figure 2 Required CPU time (in seconds) in terms of Monte Carlo iterations.

6 Appendix

6.1 Proofs of the result in Section 3

Let us �rst consider the following result, concerning the one-dimensional case:

Lemma 6.1 Let Xt = x e
�t+�Wt ; being � a deterministic drift. Suppose f; g : R ! R, where f

has a polynomial growth and g has a continuous derivative, and ' : R3 ! R with continuous �rst

derivatives. Then for any 0 < s < t one has:

E(f(Xt ) g
0(Xs)'(Xs;Ws;Wt))

= E

�
f(Xt)g(Xs)

h
'(Xs;Ws;Wt)

�Ws;t

�s(t� s)Xs

� 'x(Xs;Ws;Wt)�
'y(Xs;Ws;Wt)

�Xs

i�
;

where �Ws;t = (t� s)(Ws + � s)� s(Wt �Ws).

As a consequence, for any �xed � 2 R, the following formulas hold:

i) E(f(Xt ) g
0(Xs � �)) = E

�
f(Xt)

g(Xs � �)

�s(t � s)Xs

�Ws;t

�
;

ii) E

�
f(Xt)

g
0(Xs � �)

�s(t� s)Xs

�Ws;t

�
= E

�
f(Xt)

g(Xs � �)

�s(t� s)X2
s

h (�Ws;t)
2

�s(t� s)
+ �Ws;t �

t

�

i�
:

Proof.

i) The proof consists in applying twice the Malliavin Integration by Parts (MIbP) formula, �rst

on the time interval [0; s] and secondly over [s; t].

1) Use of the MIbP formula over [0; s].

If Dr denotes the Malliavin derivative (recall that Drg(Xs) = \ @�Wr
"g(Xs) = g

0(Xs)DrXs), one

has Drg(Xs) = g
0(Xs)�Xs for any r < s. Therefore, g0(Xs) =

R s
0
Drg(Xs)=(�sXs) dr and

E(f(Xt )g
0(Xs)'(Xs;Ws;Wt)) = E

� Z s

0

Drg(Xs) �
f(Xt)

�sXs

'(Xs;Ws;Wt) dr
�

= E

�
g(Xs)

Z s

0

f(Xt)

�sXs

'(Xs;Ws;Wt) dWr

�
;

where the latter equality comes from the application of the MIbP formula over [0; s] (notice that

the stochastic integral above is a Skorohod one). Now, recalling the property
R s
0
GdWr = GWs �R s

0
DrGdr, one obtainsZ s

0

f(Xt)

�sXs

'(Xs;Ws;Wt) dWr =
f(Xt)

�sXs

'(Xs;Ws;Wt)Ws �
Z s

0

Dr

�
f(Xt)

�sXs

'(Xs;Ws;Wt)
�
dr
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= f(Xt)
h
'(Xs;Ws;Wt)

Ws + �s

�sXs

� 1

�Xs

�
'x(Xs;Ws;Wt)�Xs+'y(Xs;Ws;Wt)+'z(Xs;Ws;Wt)

�i
�f 0(Xt)'(Xs;Ws;Wt)

Xt

Xs

;

so that

E(f(Xt)g
0(Xs)) = E

�
f(Xt)g(Xs)

h
'(Xs;Ws;Wt)

Ws + �s

�sXs

� 1

�Xs

('x(Xs;Ws;Wt)�Xs

+'y(Xs;Ws;Wt) + 'z(Xs;Ws;Wt))
i�
� E

�
f
0(Xt)g(Xs)'(Xs;Ws;Wt)

Xt

Xs

�
:

We have obtained a term which is \bad" because of the presence of the derivative of f : we are

now going to drop it.

2) Use of MIbP formula over [s; t]

By using arguments similar to the ones developed above, we can write

E

�
f
0(Xt)g(Xs)'(Xs;Ws;Wt)

Xt

Xs

�
= E

� Z t

s

g(Xs)'(Xs;Ws;Wt)

�(t� s)Xs

Drf(Xt) dr
�

= E

�
f(Xt)

Z t

s

g(Xs)'(Xs;Ws;Wt)

�(t� s)Xs

dWr

�
= E

�
f(Xt)

g(Xs)

�(t� s)Xs

Z t

s

'(Xs;Ws;Wt) dWr

�
(the term g(Xs)=(�(t�s)Xs) has been put outside the integral because it is Fs-measurable). Again
using the property

R s
0
GdWr = GWs �

R s
0
DrGdr, one obtains

E

�
f
0(Xt)g(Xs)'(Xs;Ws;Wt)

Xt

Xs

�
= E

�
f(Xt)g(Xs)

h
'(Xs;Ws;Wt)

Wt �Ws

�(t� s)Xs

� 'z(Xs;Ws;Wt)

�Xs

i�
:

By inserting this term, in conclusion we obtain

E(g0 (Xs) f(Xt)'(Xs;Ws;Wt))

= E

�
f(Xt)g(Xs)

h
'(Xs;Ws;Wt)

�Ws;t

�s(t� s)Xs

� 'x(Xs;Ws;Wt)�
'y(Xs;Ws;Wt)

�Xs

i�
;

Let us observe that to achieve this representation one has implicitly assumed that f is regular

(C1), which is not true in general. But this is not really a problem: one can regularize f with

some suitable molli�er and by using density arguments, the statement follows.

Finally, equality in i) holds by taking ' � 1 and ii) follows by considering '(Xs;Ws;Wt) = �Ws;t.

2

As a consequence, we can state the following result, which comes out to be useful in the proof of

the results in Section 4:

Corollary 6.2 Let Xt = x e
�t+�Wt be as in Lemma 6.1. Then for any f : R ! R with polynomial

growth and 0 < s < t, one has

a) E

�
f(Xt)

�Ws;t

�s(t� s)Xs

�
= 0;
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b) E

�
f(Xt)

h �Ws;t

�s(t � s)Xs

i2�
= E

�
f(Xt)

t+ �
2
s(t� s)

�2s(t� s)(Xs)2

�
:

Proof. Statement a) immediately follows by taking g = 1 and ' = 1 in Lemma 6.1.

Concerning b), �rst taking g = 1 and ' = 1 in Lemma 6.1, one has

E

�
f(Xt)

h �Ws;t

�s(t� s)Xs

i2�
= �E

�
f(Xt)

h �Ws;t

�s(t� s)(Xs)2
� t

�2s(t� s)(Xs)2

i�
:

Now, by taking ' = 1 and g(x) = 1=x in Lemma 6.1, one has

E

�
f(Xt)

1

X2
s

�
= �E

�
f(Xt)

�Ws;t

�s(t� s)(Xs)2

�
:

By inserting this term in the equality above, statement b) immediately follows.

2

We are now ready to prove the results in Section 3.

Proof of Theorem 3.3. i) Let us set e�t(y) � e�(y) = � Æ Ft(y), y 2 R
d
+ , being Ft de�ned in (5).

Since Xt = Ft( eXt) for any t, one obviously has

E

�
�(Xt)

���Xs = �

�
= E

�e�( eXt)
��� eXs = Gs(�)

�
;

(recall that Gs = F
�1
s ). Thus, setting e�s = Gs(�), it is suÆcient to prove that

E

�e�( eXt)
��� eXs = e�s� = eTs;t[e�](e�)eTs;t[1](e�) (26)

where eTs;t[f ](e�) = E

�
f( eXt)

dY
i=1

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

�
Now, let us �rstly suppose that e�(y) = e�1(y1) � � � e�d(yd), that is e� can be separated in the product

of d functions each one depending only on a single variable and belonging to Eb(R). In such a case,

one obviously has

E

�e�( eXt)
��� eXs = e�s� = dY

i=1

E

�e�i( eX i
t)
��� eX i

s = e�is�:
Now, let us consider E

�e�i( eX i
t)
��� eX i

s = e�is�, for any �xed i = 1; : : : ; d. Let hÆ be a C1 density

function on R which weakly converges to the Dirac mass in 0 as Æ ! 0. Then one can write

E

�e�i( eX i
t)
��� eX i

s = e�is� = lim
Æ!0

E(e�i ( eX i
t )hÆ(

eX i
s � e�is))

E(hÆ ( eX i
s � e�is)):

Setting HÆ the probability distribution function associated with hÆ , we have to handle something

like E(f( eX i
t )H

0
Æ(
eX i
s � e�is)). Since the process eX i is of the same type studied in Lemma 6.1, we

can apply its part i):

E(f( eX i
t )H

0
Æ(
eX i
s � e�is)) = E

�
f( eX i

t)
HÆ( eX i

s � e�is)
�iis(t� s) eX i

s

�W i
s;t

�
;
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where �W i
s;t = (t�s)(W i

s+�iis)�(t�s)(W i
t�W i

s). By using the Lebesgue dominated convergence

theorem, one has

E

�e�i( eX i
t)
��� eX i

s = e�is� = lim
Æ!0

E

�e�i( eX i
t )
HÆ( eX i

s � e�is)
�iis(t� s) eX i

s

�W i
s;t

�
E

�
HÆ( eX i

s � e�is)
�iis(t� s) eX i

s

�W i
s;t

�
;

=

E

�e�i( eX i
t)

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

�
E

�
H( eX i

s � e�is)
�iis(t� s) eX i

s

�W i
s;t

�
;

where H(�) = limÆ!0HÆ(�) = 1��0: Therefore,

E

�e�( eX i
t)
��� eXs = e�s� = dY

i=1

E

�e�i( eX i
t)
��� eX i

s = e�is�

=

dY
i=1

E

�e�i( eX i
t)

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

�
E

�
H( eX i

s � e�is)
�iis(t� s) eX i

s

�W i
s;t

� =
eTs;t[e�](e�)eTs;t[1](e�) ;

so that (26) holds when e�(y) = e�1(y1) � � � e�d(yd). In the general case, the statement holds by

using a density argument: for any e� 2 Eb(Rd) there exists a sequence of functions fe�ngn � Eb(Rd )
such that e�n( eXt)! e�( eXt) in L

2 and such that each e�n is a linear combination of functions which

separate the variables as above. Since representation (26) holds for any e�n, it �nally holds for e�
as well, as it immediately follows by passing to the limit.

ii) First, notice that, by (5), b�kj e�ks=�j = @�jG
k
s (�) = @�j e�k. Thus, by considering Ts;t[f ](�) as a

function of e�s (as it is!), that is Ts;t[f ](�) = eTs;t[f ](e�)je�=e�s , then we only have to show that

G s;t;k [f ](�) = @e�k eTs;t[f ](e�) = @e�kE
� ef( eXt)

dY
i=1

H( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

�
;

where we have set ef( eXt) = f Æ Ft( eXt). By conditioning w.r.t. all the coordinates of eXt except for

the kth one, and by recalling that eX has independent components, one has

eTs;t[f ](e�) = E

�
E

� ef�k( eXk
t )

H( eXk
s � e�k)

�kks(t� s) eXk
s

�W k
s;t

����
exj= eXj

t ;j 6=k
�

dY
i=1;i6=k

H( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

�
;

being ef�k( eXk
t ) =

ef(ex1; : : : ; exk�1; eXk
t ; exk+1; : : : exd). Thus,

@e�k eTs;t[f ](e�) = E

�
@e�kE

� ef�k( eXk
t )

H( eXk
s � e�k)

�kks(t� s) eXk
s

�W k
s;t

����
exj= eXj

t ;j 6=k
�

�
dY

i=1;i6=k

H( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

�
:

It remains to give a representation for the derivative inside the expectation.

Let us take hÆ as a C
1 probability density function weakly convergent, as Æ ! 0, to the Dirac

mass in 0. This means that the associated distribution function HÆ weakly converges, as Æ ! 0,

to H . Let us set eTk;Æs;t [f ](e�) = �E
� ef�k( eXk

t )
H( eXk

s � e�k)
�kks(t� s) eXk

s

�W k
s;t

�
:
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Obviously, eTk;Æs;t [f ](e�) ! eTks;t[f ](e�) as Æ ! 0, but also, by using (almost) standard density argu-

ments, one can easily show that

lim
Æ!0

@e�k eTk;Æs;t [f ](e�) = @e�kTks;t[f ](�):

So, let us work with @e�kT
k;Æ
s;t [f ](e�): by using the one dimensional results given by ii) of Lemma

6.1, one has

@e�kT
k;Æ
s;t [f ](e�) = E

� ef�k( eXk
t )

HÆ( eXk
s � e�k)

�kks(t� s)( eXk
s )

2

h (�W k
s;t)

2

�kks(t� s)
+ �W k

s;t �
t

�

i�
By passing to the limit and rearranging everything, the formula holds.

2

We can now prove the localized version of the operators giving the conditional expectation and its

gradient.

Proof of Lemma 3.8. Set ef( eXt) = f Æ Ft( eXt). By conditioning w.r.t. all the coordinates of eXt

except for the �rst one, and by recalling that eX has independent components, one has

Ts;t[f ](�) = E

�
E

� ef�1( eX1
t )

H( eX1
s � e�1s)

�11s(t� s) eX1
s

�W 1
s;t

����
exj= eXj

t ;j 6=1
�

dY
i=1;i6=1

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

�
;

where we have set ef�1( eXk
t ) =

ef( eX1
t ; ex2; : : : exd). Now, we can write

E

� ef�1( eX1
t )

H( eX1
s � e�1s)

�11s(t� s) eX1
s

�W 1
s;t

�
= E

� ef�1( eX1
t )

	1( eX1
s � e�1s)

�11s(t� s) eX1
s

�W 1
s;t

�
+E
� ef�1( eX1

t )
(H �	1)( eX1

s � e�1s)
�11s(t� s) eX1

s

�W 1
s;t

�
:

By i) of Lemma 6.1,

E

� ef�1( eX1
t )

	1( eX1
s � e�1s)

�11s(t� s) eX1
s

�W 1
s;t

�
= E( ef�1 ( eX1

t ) 1(
eX1
s � e�1s));

so that

E

� ef�1( eX1
t )

H( eX1
s � e�1s)

�11s(t� s) eX1
s

�W 1
s;t

�
= E

� ef�1( eX1
t )
h
 1(X

1
s � e�1s) + (H �	)( eX1

s � e�1s)
�11s(t� s) eX1

s

�W 1
s;t

i�
and thus

Ts;t[f ](�) = E

�
f(Xt)

h
 1(X

1
s � e�1s) + (H �	1)( eX1

s � e�1s)
�11s(t� s) eX1

s

�W 1
s;t

i dY
i=1;i6=1

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

�
:

Now, by considering the conditioning w.r.t. eX1
t ;
eX3
t ; : : : ;

eXd
t and by using similar arguments, one

obtains

Ts;t[f ](�) = E

�
f(Xt)

2Y
j=1

h
 j(X

j
s�e�js)+ (H �	j)( eXj

s � e�js)
�jjs(t� s) eXj

s

�W
j
s;t

i dY
i=1;i6=1;2

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

�
:
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By iterating the procedure on the remaining components, one arrives to the end.

Concerning G s;t;k , the statement can be proved in the same way, by using the statement ii) of

Lemma 6.1. Indeed, by conditioning w.r.t. all the coordinates except for the kth one, one �rst

arrives to

G s;t;k [f ](�) = �E
�
f(Xt)

h
 k( eXk

s � e�ks ) �W k
s;t

�kks(t� s) eXk
s

+

+
H( eXk

s � e�ks )�	k( eXk
s � e�ks )

�kks(t� s)( eXk
s )

2

� (�W k
s;t)

2

�kks(t� s)
+ �W k

s;t �
t

�kk

�i
�

�
dY

i=1;i 6=k

H( eX i
s � e�is)

�iis(t� s) eX i
s

�W i
s;t

i�
:

Now, by conditioning w.r.t. all the coordinates except for the jth one, with j 6= k, and by using

now part i) of Lemma 6.1, the �nal formula can be achieved.

2

6.2 Proof of Proposition 4.5

Proof of Proposition 4.5. We give here only a sketch of the proof, since it is quite similar to the

proof of Proposition 4.1.

First, suppose d = 1. Take  ̂ 2 L
1(R) such that for any small " then  + " ̂ 2 L1. Setting

	̂(x) =
R x
�1

 ̂(t) dt, one has (as in the proof of Proposition 4.1)

(J
f
1 )
0( )( ̂) = 2E

Z
R

f
2(Xt)

�
 ̂(�)�s;t � 	̂(�)�s;t

��
 (�)�s;t + (H �	)(�)�s;t

�
d�:

= �2
Z
R

	̂(�) E
�
f
2(Xt)

�
 
0(�)�2

s;t + (H �	)(�)�2
s;t

��
d�:

By setting

�
�2 =

E(f2 (Xt)�
2
s;t)

E(f2 (Xt)�
2
s;t)

and v(�) = 	(�), one has to solve the ordinary di�erential equation v00(�)���2 v(�)+��2H(�) =

0. This gives  �(�) = @�v(�) = �
�
e
���j�j

=2: Now, it is immediate to see that  � gives the

minimum, so the statement follows in dimension 1.

Consider now the case d > 1. For simplicity, let us assume k = 1: by symmetry arguments, the

general case will be clear. Also, let us set eft(y) � ef(y) = f Æ Ft(y), y 2 R
d
+ and Ft as in (5).

First, we compute the derivative of Jf ;1
d ( ) in the direction ( ̂1; 0; : : : ; 0). Setting

ef21 (x1) = Z
Rd�1

de��1E� ef2(x1; eX2
t ; : : : ;

eXd
t )

dY
i=2

h
 i( eX i

s � e�i) + (H �	i)( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

i2�
then

J
f ;1
d ( ) =

Z
R

de�1 E� ef21 ( eX1
t )
h
 1( eX1

s � e�1)�s;t;1 + (H �	1)( eX1
s � e�1)�s;t;1i2� = J

ef1
1 ( 1):
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Now, since we are here interested in the behavior in the direction ( ̂1; 0; : : : ; 0), we can employ the

one dimensional result, getting immediately the solution:  �1(�) = �
�
1 e

���1 j�j=2, � 2 R, with

�
�
1
2
=

E

� ef21 ( eX1
t )�

2
s;t;1

�
E

� ef21 ( eX1
t )�

2
s;t;1

�

=

R
Rd�1 de��1E�f2(Xt)�

2
s;t;1

Qd

i=2

h
 i( eX i

s � e�i) + (H �	i)( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

i2�
R
Rd�1 de��1E�f2(Xt)�

2
s;t;1

Qd

i=2

h
 i( eX i

s � e�i) + (H �	i)( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

i2�
We consider now the behavior in the direction (0;  ̂2; 0; : : : ; 0). Setting

ef22 (x2) = Z
Rd�1

de��2E� ef2( eX1
t ; x

2
; : : : ; eXd

t )
h
 1( eX1

s � e�1)�s;t;1 + (H �	1)( eX1
s � e�1)�s;t;1i2�

�
dY
i=3

h
 i( eX i

s � e�i) + (H �	i)( eX i
s � e�i)

�iis(t� s) eX i
s

�W i
s;t

i2�
then

J
f ;1
d ( ) =

Z
R

de�2 E� ef22 ( eX2
t )
h
 2( eX2

s � e�2) + (H �	2)( eX2
s � e�2) �W 2

s;t

�22s(t� s) eX2
s

i2�
= I

ef2
1 ( 2);

where I
ef
1 (�) is the one handled in Proposition 4.1. By using similar arguments, one obtains  �2(�) =

�
�
2 e

���2 j�j=2, � 2 R, with

�
�
2
2
=

E

� ef22 ( eX2
t )
h

�W 2
s;t

�22s(t�s) eX2
s

i2�
E

� ef22 ( eX2
t )
�

=

R
Rd�1 de��2E�f2(Xt) �( eX1

s � e�1)2h �W 2
s;t

�22s(t�s) eX2
s

i2Qd

i=3

h
 i( eX i

s � e�i) + (H�	i)( eXi
s�e�i)

�iis(t�s) eXi
s

�W i
s;t

i2�
R
Rd�1 de��2E�f2(Xt)�( eX1

s � e�1)2Qd

i=3

h
 i( eX i

s � e�i) + (H�	i)( eXi
s
�e�i)

�iis(t�s) eXi
s

�W i
s;t

i2�
where

�( eX1
s � e�1) � � 1( eX1

s � e�1) =  1( eX1
s � e�1)�s;t;1 + (H �	1)( eX1

s � e�1)�s;t;1
Now, for the remaining coordinates one can apply similar arguments. Thus, by summarizing, one

has that  �(�) =
Qd

j=1  
�
j (�j), � = (�1; : : : ; �d) 2 R

d , with  
�
j (�j) = �

�
j e

���j j�j j=2, �j 2 R and

�
�
j = �

�
j [f ], are given by:

�
�
1
2 =

R
Rd�1 d��1E

�
f
2(Xt)�

2
s;t;1

Qd

i=2

h
 
�
i (�

i) +
(H�	�

i
)(�i)

�iis(t�s) eXi
s

�W i
s;t

i2�
R
Rd�1 d��1E

�
f2(Xt)�

2
s;t;1

Qd

i=2

h
 �i (�

i) +
(H�	�

i
)(�i)

�iis(t�s) eXi
s

�W i
s;t

i2� and for j = 2; : : : ; d :

�
�
j
2 =

R
Rd�1 d��jE

�
f
2(Xt) �

�(�1)2
h

�W
j

s;t

�jjs(t�s) eXj
s

i2Qd

i=2;i6=j

h
 
�
i (�

i) +
(H�	�

i )(�
i)

�iis(t�s) eXi
s

�W i
s;t

i2�
R
Rd�1 d��jE

�
f2(Xt)��(�1)2

Qd

i=2;i6=j

h
 �i (�

i) +
(H�	�

i
)(�i)

�iis(t�s) eXi
s

�W i
s;t

i2�
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where ��(�1) � � 
�

1 (�1) =  
�
1(�

1)�s;t;1 + (H � 	�1)(�
1)�s;t;1. Now, in order to give a more

interesting representation for the ��'s, it is easy to show that (see also the proof of Proposition

4.1) Z
R

�
 
�
i (�

i) +
(H �	�i )(�

i)

�iis(t� s) eX i
s

�W i
s;t

�2
d�

i =
1

4��i

�
�
�
i
2
+
h �W i

s;t

�iis(t� s) eX i
s

i2�
;Z

R

��(�1)2 d�1 =
1

4��1

�
�
�
1
2
�2
s;t;1 +�2

s;t;1

�
;

so that the ��'s have to solve the nonlinear system

�
�
1
2 =

E

�
f
2(Xt)�

2
s;t;1

Qd

i=2

h
�
�
i
2 +

h
�W i

s;t

�iis(t�s) eXi
s

i2i�
E

�
f2(Xt)�

2
s;t;1

Qd

i=2

h
��i

2 +
h

�W i
s;t

�iis(t�s) eXi
s

i2i� and for j = 2; : : : ; d :

�
�
j
2 =

E

�
f
2(Xt)

�
�
�
1
2�2

s;t;1 +�2
s;t;1

�h
�W

j

s;t

�jjs(t�s) eXj
s

i2Qd

i=2;i6=j

h
�
�
i
2 +

h
�W i

s;t

�iis(t�s) eXi
s

i2i�
E

�
f2(Xt)

�
��1

2�2
s;t;1 +�2

s;t;1

�Qd

i=2;i6=j

h
��i

2 +
h

�W i
s;t

�iis(t�s) eXi
s

i2i� :

Finally, it is straightforward to see that  � actually gives the minimum.

2
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