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Abstract. Recent changes in European family dynamics are often linked to com-
mon latent trends of economic and ideational change. Using Bayesian factor anal-
ysis, we extract three latent variables from eight socio-demographic indicators
related to family formation, dissolution, and gender system and collected on 19
European countries within four periods (1970, 1980, 1990, 1998). The flexibility of
the Bayesian approach allows us to introduce an innovative temporal factor model,
adding the temporal dimension to the traditional factorial analysis. The underlying
structure of the Bayesian factor model proposed reflects our idea of an autoregres-
sive pattern in the latent variables relative to adjacent time periods. The results we
obtain are consistent with current interpretations in European demographic trends.
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1. Introduction

During the last decades, Europe has experienced tremendous changes in family dy-
namics. Fertility has fallen in some areas to unprecedented levels, marriage has lost
its centrality in most societies and relationships between genders and generations
have been shaped in a different way. The idea of Second Demographic Transi-
tion, coined during the mid 1980s by Lesthaeghe and van de Kaa (Van de Kaa,
1987; Lesthaege, 1995) emphasizes the importance of common trends in ideational
change pervading all European societies. During the same period, the process of
European integration pursued economic convergence and monetary integration as
a key objective. As a consequence, also from the economic point of view countries
belonging to the European Union have progressively experienced common trends.

In this paper, we present a temporal statistical model for the analysis of chang-
ing cross-national patterns in key socio-demographic variables: family formation,
dissolution and gender systems. As in other studies of cross-national demographic
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data, we use factor analysis, since it allows explaining the correlations between a
large set of variables in terms of a small number of underlying factors. We first look
for the underlying factors separately for each of the four years considered (1970,
1980, 1990, 1998).

In terms of knowledge on European family dynamics, this paper has two prin-
cipal aims. Firstly, the paper aims to identify countries with similar development
and as well as inter-country heterogeneity. In particular, we discuss whether a stan-
dard geographical aggregation in three broad European regions (North, South and
East) is the most appropriate one. Secondly, once the different and similar patterns
are identified, we seek an answer to the question of socio-demographic conver-
gence among European countries. We aim to verify whether these changes have
followed common trends towards convergence, as implied (at least in the long run)
by the idea of Second Demographic Transition. Current patterns of diversity could
in fact be accounted for by different rates at which various society are moving. The
assumption of convergence follows from at least two considerations: firstly that
socio-economics characteristics and ways of life have become similar across Eu-
ropean countries, secondly that demographic behavior depends upon such factors
(Coleman, 2002).

Common trends, according to the proponents of the Second Demographic Tran-
sition, cannot be singled out by looking at a single, specific indicator. Rather, they
have to be detected by looking at the latent dimension(s) of social and demographic
change. The literature on the topic has so far used techniques based on a frequen-
tist approach for the reduction of macro-level social and demographic indicators
(Pinelli, 2001).

Most proposals in the factor analysis literature assume that the data represent
random, independent samples from a multivariate distribution (Lawley, 1940). This
is not necessarily a good assumption for all types of multivariate data. For certain
types of data, observations appear in a specific order, and it is no longer permissible
to exchange the order of observations without a fundamental change in the outcome.
While Pinelli (2001) added a temporal dimension to the classical factorial analysis
through a frequentist approach, our idea is that a Bayesian approach allows more
flexibility to incorporate prior information about patterns in modernization process.

The innovation in this paper is that each country in each period represents an
observation: each country is repeated four times. The methods introduced has, thus,
to handle the dependence between the observations (Press and Shigemasu, 1997;
Rowe, 1998). The idea behind the method proposed is to extend Rowe (1998) to
multiple parallel time series and to estimate model parameters including factor
scores that account for a temporal dependence. The flexibility of the Bayesian
approach allows us to incorporate different temporal patterns for different European
regions. The variables examined are thus a linear combination of the latent factors,
and, therefore, have the same temporal pattern. A full description of the data set is
present in Sect. 2. A detailed description of method proposed by Rowe (1998) is
present in Sect. 3, and in Sect. 4 our proposal is shown, with a subsection aiming
at the assessment of hyperparameters. After an illustration of the computational
aspects in Sect. 5, results will be shown in Sect. 6. Sect. 7 contains final conclusions
and remarks.
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2. Data description and motivation

The data set we use has been collected by Paola di Giulio (whom we warmly thank
for providing us with the data) and Antonella Pinnelli at the Department of Demo-
graphic Sciences of the University of Rome (Pinelli, 2001). The data set includes
socio-demographic indicators that are related to the gender system, modernization,
and family formation and dissolution. More specifically, the gender system is mea-
sured through: the percentage of seats in parliament occupied by women, as an
indicator of women’s participation in political decision making; women’s activity
rates as an indicator of participation in the labor market; the average age of women
at first marriage as an indicator of the centrality of marriage in women’s lives. Other
demographic indicators are related to the quality of life (life expectancy at birth)
or gender differentials in the quality of life (difference in life expectancy between
women and men). In terms of family and fertility behavior, the data set contains
the total fertility rate (average number of children per woman), the total divorce
rate (an indicator of the prevalence of marital dissolution), and the percentage of
births outside marriage, an indicator of disconnection between childbearing and
marriage that is typically taken as the main indicator of demographic change in
Europe following the Second Demographic Transition.

The information available concerns 19 European countries (of which most are
members of the European Union) : Austria, Belgium, Bulgaria, Denmark, Finland,
France, Greece, Hungary, Ireland, Italy, The Netherlands, Norway, Poland, Portu-
gal, Romania, Spain, Sweden, Switzerland and United Kingdom. We thus have 8
variables for each year (1970, 1980, 1990 and 1998), a total of 76 observations on
8 variables (chosen out of the eleven variables present in the original data set).

To motivate the introduction of an innovative method to explain the temporal
pattern of multidimensional data, we chose two out of eight variables to be briefly
described more in detail: total fertility rates and the percentage of extra-marital
births. The percentage of extra-marital births, besides being as we noticed one of
the main indicators related to the Second Demographic Transition, is the variable
with the highest coefficient of variation. The total fertility rate is, as known, a key
variable for long-term population dynamics.

In Fig. 1 we show total fertility rates for each period and each country. The
country is indicated with the initial (with minor exceptions: Pr stays for Portugal,
since Po stays for Poland, and S stays for Switzerland since Sw stays for Sweden),
and each color represents a different year. From 1970 to 1980 we observe a decline in
fertility rates in all countries besides Poland. Fertility started to decline, especially
in Western Europe, immediately after the baby boom, which took place in the
first half of the sixties and involved all European countries but not Central and
Eastern Europe. The decline was pronounced in all countries until 1975, reducing
differences between countries. From 1975 to 1980, in the countries of Northern
and Western Europe the total fertility rate has remained approximately constant. In
1970, the countries with highest fertility were Ireland with almost 4 children per
woman, and Portugal and Spain with 2.9. In 1980, differences are less evident.After
an increase in fertility rate from 1980 to 1990, in Denmark, Netherlands, Sweden
and in Switzerland, the highest levels of fertility are observed in Northern Europe
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Fig. 1. Fertility rate in Europe from 1970 to 1998

(Sweden 2.1) and the lowest in Southern country (1.4 in Italy and Spain). Italy and
Spain were subsequently the first countries to reach levels of lowest-low fertility–
that is, under 1.3 children per woman. In 1970, total fertility for most Central
and Eastern countries was higher than that in other countries. Levels were not
homogenous between countries. In general, the large differences among countries
of 1970 have decreased over time.

In Fig. 2, we show the percentage of extra-marital births for all countries through
the different periods considered. The levels increase over time for all countries
(Poland and Romania being exceptions regarding first and second period, where
a slight decrease is observed), as one would expect with the spread of the Second
Demographic Transition. The biggest increase in extra-marital births in the period
1970-1980 is observed for Sweden and Denmark, followed by Finland and Norway.
From 1980 to 1990, France and the UK (after Norway) have the biggest change,
reaching respectively 11.5% and 13.1%. From 1990 to 1998, central European
countries experience the largest change and Ireland reaches almost 15%. The coef-
ficient of variation reaches the lowest value in the last period, with some indication
of convergence between countries with respect to this indicator. Nevertheless, the
difference between countries at the two extremes (Sweden on one hand and Greece
on the other side) has increased over time. A part from Greece and Italy, which have
in 1998 respectively 3.9% and 9.2% of extra-marital births, other countries reach
more homogeneous levels.
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Fig. 2. Percentage of births outside marriage in Europe from 1970 to 1998

3. Correlated Bayesian factor model

We begin this section recalling classical and Bayesian factor analysis, in order to
introduce the model developed in Rowe (1998). This will simplify the illustration
of our approach in next section. We follow notation in Rowe (1998, 2003) and
summarize his description of the model.

Factor analysis is used mainly in two situations. Sometimes it can be useful
to explain the observed relationship among a set of observed variables in terms
of a smaller number of unobserved variables or latent factors which underlie the
observations. This smaller number of variables can be used to find a reasonable
structure in the observed variables. This structure will aid in the interpretation and
explanation of the process that has generated the observations. The second reason
one would carry out a factor analysis is for data reduction. Since the observed
variables are represented in terms of a smaller number of unobserved or latent
variables, the number of variables in the analysis is reduced and so is the storage
requirements.

Let xi denote the p-vector of observation on subject i of p random variables. A
factor analysis is generally based on the following model:

(xi|µ,Λ, fi,m) = µ + Λ fi + εi

(p× 1) (p× 1) (p×m) (m× 1) (p× 1) (1)

µ is a p-dimensional unobserved population mean vector,
Λ the p×m matrix of unobserved constants called the factor loadings matrix,
fi a m-dimensional vector of unobservable "common" factor scores for the i-th
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subject, and
εi a p-dimensional vector of "specific" factors or disturbance terms of i-th subject
on p variables.

In the traditional factor analysis model, the errors are assumed to be normally
distributed with mean 0 and (in the non-Bayesian model) diagonal covariance matrix
Ψ .

The parameters (µ,Λ, f, Ψ) in the model are unknown and thus require estima-
tion. The number of factors m can be determined based on underlying theory and
previous studies. Different rules exist for the choice of number of factors in the non-
Bayesian literature (such as a scree test or percent variation), while a probabilistic
approach is used in Bayesian context. In Sect. 6 we will discuss the selection of the
number of factors again. The estimate of the population mean µ is easily found by
maximum likelihood and coincides with sample mean, see Lawley (1940). From
now on, to simplify calculations but without loosing information, we will assume
that x vector has zero mean, moreover if x is centered and scaled, then Λ is a
correlation matrix between the x and f .

We can describe two kinds of models. In the first we can consider the factor
scores as random vectors and in the second consider them as nonrandom vectors,
which vary from one sample to another. Anderson and Rubin (1956) further show
that the estimates of Λ and Ψ for random factor scores can be used for nonrandom
factor scores in large samples due to asymptotic convergence. For these reasons, the
model includes the factor scores as random quantities. As the model is overparam-
eterized, the likelihood does not have a maximum, and we cannot reach maximum
likelihood estimates through differentiating the log likelihood function.

To overcome this unidentifiability problem, we first assume that the factor
scores are not fixed, but random normally distributed variables with mean 0, stan-
dard deviation 1 and correlation R, independent from error random variables
εi. The variance and covariance matrix of observed vectors can be written as
V ar(xi|Λ, Ψ,m) = ΛRΛ′ +Ψ and estimated by sample variance Σ̂. After adding
constraints on the parameters (as for example R being the identity and Λ being
columnwise orthogonal), we can get unique solutions.

The Bayesian approach bears directly on the problem of parameter identifica-
tion, by incorporating proper prior information. The Bayesian factor analysis model
incorporates available knowledge regarding the model parameters in the form of
prior distributions obtained either subjectively from substantive experts or from
previous experiments. Moreover, the Bayesian approach to factor analysis removes
the ambiguity in the choice of rotation procedures.

We follow the approach by Press and Shigemasu (1997), since it can so far be
considered the best and complete reference on this issue (Rowe, 1998). We start
from the model in (1), to obtain the likelihood we assume:

εi ∼ N(0, Ψ), i = 1, . . . , N

assuming E(Ψ) is diagonal to represent traditional beliefs of the model contain-
ing "common" and "specific" factors. While Lawley (1940) hypothesizes that the
matrix is strictly diagonal, here we hypothesize that it is a full positive definite
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diagonal matrix on average. The likelihood for the observations can be written as
the following matrix normal distribution

p(X|F,Λ, Ψ,m) ∝ |Ψ |−N/2 exp
(

−1
2
trace

(
(X − FΛ′)Ψ−1(X − FΛ′)′))

(2)
where the i-th row of X and F are, respectively, x′

i and f ′
i , cited in (1).

In Press and Shigemasu (1997), natural conjugate families of prior distributions
for parameters are used (Rowe, 2000a,b). The factor loadings are assumed to de-
pend on the disturbance covariance matrix [using generalized conjugate priors, the
previous dependence is removed (Rowe, 2001)]. The disturbance covariance matrix
is assumed to be independent of the factor scores. The factor scores are assumed to
be independent of the factor loadings and the disturbance covariance matrix. More
specifically, the joint prior distribution has the following form:

p(F,Λ, Ψ |m) = p(Λ|Ψ,m)p(Ψ)p(F |m),

moreover, we have the following set of prior distributions:

p(Λ|Ψ,m) ∝ |Ψ |−m/2 exp
(

−1
2
trace

(
Ψ−1(Λ− Λ0)H(Λ− Λ0)′)) , (3)

p(Ψ) ∝ |Ψ |−ν/2 exp
(

−1
2
traceΨ−1B

)
ν > 2p, (4)

p(F |m) ∝ exp
(

−1
2
traceF ′F

)
. (5)

with Ψ > 0, H > 0, and B > 0 and a diagonal matrix, such that E(Ψ |B) is
diagonal to represent traditional assumption of "common" and "specific" factors.

Straightforward posterior distributions are reached. More specifically, the factor
scores given the factor loadings, the disturbance covariance matrix and the data are
normally distributed as:

p(F |Λ, Ψ,X,m) ∝ exp
(

−1
2
tr

(
(F − F̃ )(Im + Λ′Ψ−1Λ)(F − F̃ )′

))
, (6)

where F̃ = XΨ−1Λ(Im + Λ′Ψ−1Λ)−1. The conditional posterior of the factor
loadings given the factor scores, the disturbance covariance matrix, and the data is
normally distributed:

p(Λ|F, Ψ,X,m) ∝ exp
(

−1
2
tr

(
Ψ−1(Λ− Λ̃)(H + F ′F )(Λ− Λ̃)′

))
(7)

where Λ̃ = (X ′F + Λ0H)(H + F ′F )−1.
The conditional posterior density of the disturbance covariance matrix given

the factor scores, the factor loadings, and the data is an inverted Wishart density:

p(Ψ |F,Λ,X,m) ∝ |Ψ |− N+m+ν
2 exp

(
−1

2
tr

(
Ψ−1U

))
(8)
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where U = (X − FΛ′)′(X − FΛ′) + (Λ− Λ0)H(Λ− Λ0)′ +B.
As in Bayesian inference, the expected values of the conditional posterior dis-

tributions (6), (7) and (8) are a weighted mean between prior expected values and
maximum likelihood estimates. A Gibbs sampling is easily implemented in the
three previous conditional posterior distributions (Rowe and Press, 1998).

In maximum likelihood factor analysis, the covariance matrix for the errors of
the observations is supposed to be diagonal while in the Bayesian factor analysis
it is assumed to be positive definite, but diagonal on average. In both models, the
error vectors are assumed to be independent (or conditionally independent). We try
to remove the previous assumption by first rewriting (1), as:

(x|µ,Λ, f,m) = IN ⊗ Λ f + ε
(Np× 1) (N ×N ⊗ p×m) (Nm× 1) (Np× 1) (9)

assuming the error has the following distribution:

ε ∼ N(0, Ω),

the innovative idea proposed by Rowe (Rowe 1998, 2003) is to assume separable
covariance matrix, that isΩ = Φ⊗Ψ (⊗ indicate Kronecker product). If we letΦ be
the identity matrix, we have the model in (1). In this way, var(xi|Φ, Ψ,m.f, Λ) =
φiiΨ and the covariance between rows i and j of X is φijΨ , while the covariance
between columns i and j of X is ψijΦ. This model will be explained more in details
in next section where we will introduce our proposed model.

4. Model proposed

Starting from model in (9), the likelihood for the observations can be written as the
following matrix normal distribution

p(X|F,Λ, Ψ, Φ,m) ∝|Φ|−p/2|Ψ |−N/2

× exp
(

−1
2
trace

(
Ψ−1(X − FΛ′)′Φ−1(X − FΛ′)

))
,

(10)

where again the i-th row of X and F are, respectively, x′
i and f ′

i .
We will use natural conjugate families of prior distributions for the parameters.

The joint prior distribution is given by

p(Φ, Ψ, F, Λ|m) = p(Ψ)p(Φ)p(F |Φ,m)p(Λ|Ψ,m).

where

p(Λ|Ψ,m) ∝ |Ψ |−m/2 exp
(

−1
2
trace

(
Ψ−1(Λ− Λ0)H(Λ− Λ0)′)) , (11)

p(Ψ) ∝ |Ψ |−ν/2 exp
(

−1
2
traceΨ−1B

)
ν > 2p, (12)

p(F |Φ,m) ∝ |Φ|−m/2 exp
(

−1
2
traceΦ−1FF ′

)
. (13)
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Again, Ψ > 0, H > 0, and B > 0 and a diagonal matrix, such that E(Ψ |B) is
diagonal.

Basically, prior distributions for Ψ and Λ remain the same as in (4) and (3),
indicating that dependence between observations does not affect prior opinions
about factor loadings and between observation covariance matrix. Prior distribution
on F changed from (5), since dependence between observation is reflecting on F .
Let f be a vector Nm × 1, containing columns in F , its covariance matrix is the
Kronecker product of an identity matrix (expressing independence between factors)
and Φ.

The likelihood in (10) requires the effort to define an appropriate prior distri-
bution for the matrix Φ, that, hopefully, leaves the posterior analytically tractable.
We propose three different prior distributions for the matrix Φ, starting from Rowe
(1998). Letting p(Φ) as unspecified for the moment, conditional posterior distri-
butions are reached in a straightforward way. More specifically, the joint posterior
distribution for the unknown parameters of interest is given by:

p(F,Λ, Ψ, Φ|X,m) ∝ p(Φ)|Φ|− p+m
2 |Ψ |− N+m+ν

2 |H| p
2 (14)

exp
(

−1
2
trace

(
Ψ−1U

))
exp

(
−1

2
trace

(
Φ−1FF ′))

where:

U = (X − FΛ′)′Φ−1(X − FΛ′) + (Λ− Λ0)H(Λ− Λ0)′ +B.

The conditional posterior density of the factor loadings given the factor scores, the
disturbance covariance matrix, and the data is again normally distributed:

p(Λ|F, Ψ, Φ,X,m) ∝ exp
(

−1
2
tr

(
Ψ−1(Λ− Λ̃)(H + F ′Φ−1F )(Λ− Λ̃)′

))

(15)
where Λ̃ = (X ′Φ−1F + Λ0H)(H + F ′Φ−1F )−1. Comparing (15) with (7), we
notice that the introduction of dependence between observations does affect the
posterior distribution of factor loadings only for the incorporation of matrix Φ
in covariance matrix of F . The conditional posterior density of the disturbance
covariance matrix given the factor scores, the factor loadings, and the data is an
inverted Wishart density:

p(Ψ |F,Λ, Φ,X,m) ∝ |Ψ |− N+m+ν
2 exp

(
−1

2
tr

(
Ψ−1U

))
(16)

where U = (X − FΛ′)′Φ−1(X − FΛ′) + (Λ− Λ0)H(Λ− Λ0)′ +B.
Finally, the conditional posterior distribution for the factor scores given the

correlation matrix, the disturbance covariance matrix, the number of factors, the
factor loadings and the data is normally distributed, with the following modification
respect to (6):

p(F |Λ, Ψ, Φ,X,m) ∝ exp
(

−1
2
tr

(
Φ−1(F − F̃ )(Im + Λ′Ψ−1Λ)(F − F̃ )′

))
,

(17)
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where F̃ = XΨ−1Λ(Im + Λ′Ψ−1Λ)−1.
The previous conditional posterior distributions basically does not depend on

the prior we specify for Φ, as long as the prior distribution for Φ does not depend
on other parameters. We propose three different prior distributions for Φ:

First prior We assume Φ as known, more specifically we assume a first order au-
toregressive structure within each country. Different countries are uncorrelated.
Let indicate each observation with xij , where i indicates countries and j time
(i.e. i ∈ {Austria, Belgium, . . . , Italy,. . . , UK }, and j ∈ {1970, 1980, 1990,
1998}),

cov(xij , xi′j′) =




0 i �= i′

1 i = i′ and j = j′

ρ|j−j′| if i = i′

Second prior Φ has a prior inverted Wishart distribution with parameter G:

p(Φ) ∝ |Φ|−γ/2 exp
(

−1
2
traceΦ−1G

)
(18)

We remove the assumption of independence between observations, but we do
not specify any form of dependence and let the data determine that. For example,
we can let G be a diagonal matrix, proportional to the identity matrix.

Third prior We assume the same prior as the previous one, with the difference
that ρ, correlation between the same countries at different period is a random
variable, with a prior distribution itself. Let us indicate xij , the generic row of
matrix X , where i indicates country and j indicates period, let us suppose the
index i varies firstly, the matrix Φ has the following form:

Φ =




1 0 . . . ρ 0 . . . ρ2 0 . . . ρ3 0 . . .
0 1 0 . . . ρ 0 . . . ρ2 0 . . . ρ3 0
0 . . . 1 0 . . . ρ 0 . . . ρ2 0 . . . ρ3

ρ 0 . . . 1 0 . . . ρ 0 . . . ρ2 0 . . .
0 ρ 0 . . . 1 0 . . . ρ 0 . . . ρ2 0
0 . . . ρ 0 . . . 1 0 . . . ρ 0 . . . ρ2

ρ2 0 . . . ρ 0 . . . 1 0 . . . ρ 0 . . .
0 ρ2 0 . . . ρ 0 . . . 1 0 . . . ρ 0
. . . 0 ρ2 0 . . . ρ 0 . . . 1 0 . . . ρ
ρ3 . . . 0 ρ2 0 . . . ρ 0 . . . 1 0 . . .
0 ρ3 . . . 0 ρ2 0 . . . ρ 0 . . . 1 0
0 . . . ρ3 . . . 0 ρ2 0 . . . ρ 0 . . . 1




(19)

Let ΦT be the matrix for the AR(1) model with four time points

ΦT =




1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1


 (20)
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Φ can be written as

Φ = ΦT ⊗ I19. (21)

The observations for the same country but for different time points are correlated
according to a first order Markov scheme. Different structure for previous matrix
can be given, for example ρ can vary for the different countries. Our proposal
is a Beta prior distribution for ρ

4.1. Hyperparameters assessment

Finally, when the Bayesian model is described, the assessment of the hyperparam-
eters has to be considered. The process of hyperparameter assessment is described
in Rowe (2003), while more sophisticated methods are proposed in Hayashi and
Sen (2001).

We need to define the hyperparameters in Eqs. (3)–(5). Lee and Press (1998)
concluded that the estimation of Λ is not robust against change of values for hyper-
parameters Λ0. Following Rowe (2003), our proposal is using as a prior maximum
likelihood estimation from covariance method obtained with traditional factor anal-
ysis, leaving the prior precision quite small.

By definition,H is any positive definite matrix, it is assumed thatH is a diagonal
matrix or of the formH = nHIm, as a constant nH we choose the sample size. The
same form is proposed for B, as B = b0Ip. The expected value of any diagonal
element is

E(ψii) =
b0

ν − 2p− 2
, i = 1, . . . . , p.

Substituting the training sample covariance matrix Σ̂ and the a priori mean for the
factor loadings in the above equations we have

Ψ0 = Σ̂ − Λ0Λ
′
0,

then taking the average of the diagonal elements

1
p
trace(Ψ0) =

1
p
trace(Σ̂ − Λ0Λ

′
0),

so

b0 =
n

p
trace(Σ̂ − Λ0Λ

′
0).

Regarding the choice for the value of the hyperparameter ν we follow Rowe
(2003), and define ν = n+ 2 ×m+ 2.
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5. Computations

In the previous section posterior distributions are found analytically, and Gibbs
Sampling algorithm is implemented to generate samples. For Gibbs estimation of
the posterior, we start with initial values for F and Ψ , for example F̃(0) and Ψ̃(0).
Remembering (15)-(17), leaving apart from now Φ, then the cycle goes through:

Λ̃i+1 = a random sample from P (Λ|F̃i, Ψ̃(i), X)

Ψ̃i+1 = a random sample fromP (Ψ |F̃i, Λ̃(i+1), X)

F̃i+1 = a random sample from P (F |Λ̃i+1, Ψ̃(i+1), X)

Finally, the means of the random sampling are the sampling based posterior
marginal mean estimates of the parameters.

Concerning the sampling from posterior distribution of Φ, we will show how
to behave in the three situations mentioned before.

First prior The first prior is the easiest form a computational point of view, but it
requires to be very confident about temporal structure of data.

Second prior The second prior corresponds to the conjugate prior, so Φ has a pos-
terior inverted Wishart distribution with updated parameters, more precisely:

E(Φ|F,Λ, Ψ,X) proportional to

(X − FΛ′)Ψ−1(X − FΛ′)′ + FR−1F ′ +D,
(22)

and degrees of freedom (γ + p+m).
Third prior From Eq. (21), we can derive the determinant and inverse of Φ as a

function of ρ;
|Φ| = (1 − ρ2)(nT −1)×nC ,

where nt is the number of time knots and nC is the number of countries.

Φ−1 = Φ−1
T ⊗ InC

,

where

Φ−1
T =

1
1 − ρ2




1 −ρ 0 0
−ρ 1 + ρ2 −ρ 0
0 −ρ 1 + ρ2 −ρ
0 0 −ρ 1


 (23)

Letting ρ to be a random variable, a Beta distribution seems a natural choice as a
prior distribution for ρ. Different choices of hyperparameters were investigated,
in particular starting from sample covariance matrix Φ̂, reasonable value for
prior expected value and prior precision are proposed. We obtain the following
posterior distribution, starting from results in Rowe (2003):

p(ρ|F,Λ, Ψ,m,X) ∼ p(ρ)(1 − ρ2)− (N−1)(p+m)
2 exp

(
−k1 − k2ρ+ k3ρ

2

2(1 − ρ2)

)

(24)
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Let C = (X − FΛ′)Ψ−1(X − FΛ′)′ + FR−1F ′ and k1 = trace(C), k2 =
trace(M2C) and k3 = trace(M3C), M2 and M3 are matrices of zeros and
ones appropriately defined: M2 = M02 ⊗ I19,

M02 =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 .

M3 = M03 ⊗ I19,

M03 =




0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0


 .

An adaptive rejection sampling algorithm is written to sample from (24).

6. Results

In Fig. 3, the sample matrix Φ is shown. The cell occupying the position h, k is
the cor(x′

h, x
′
k), the correlation between h and k countries. Since the elements

represent countries in different time periods, the generic h element is the relative
to in jth period, where j is the nearest integer less or equal to h divided by number
of countries plus one, and ith country, where i = h− j × nC , where nC stays for
number of countries.

Aus70 Aus80 Aus90 Aus98

Aus70

Aus80

Aus90

Aus98

Fig. 3. Sample Φ
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Lighter colors represent lower covariance, and darker colors represent higher
covariance. As expected, the principal diagonal is black (being the elements equal
to 1). Observing the figure, we notice that the diagonal starting from element {nC +
1, 1} (and symmetrically the one starting in {1, nC + 1}) is quite dark, indicating
the presence of correlation between observations related to the same country in
adjacent time periods. Less marked, but still visible, is the diagonal starting in
{2×nC +1, 1}, indicating the presence of correlation between observations related
to the same country at a time distance of two periods.

We can notice some darker areas even outside the previous described diagonals,
indicating the high correlation between data of different countries. In particular, in
the first period high correlation is observed among countries in Western Europe
marked by a prevalence of the Catholic religion (Italy, Ireland, Spain and Por-
tugal). In contrast, in the last period (last block around principal diagonal), high
correlation is present among Nordic countries (Sweden and Norway on one side
and Denmark and Finland on the other side). Three latent variables (factor scores)
were estimated by Bayesian factor analysis. Factor loadings are represented in
Fig. 4. The first factor is mostly determined by percentage of extra-marital births,
total divorce rates, percentage of parliamentary seats held by women and women’s
activity rates. The first factor explains 70% of the entire variance. Extreme values
for first factor are observed in Scandinavian countries on one hand, and southern
countries together with Ireland on the other side (Fig. 5). This factor is clearly re-
lated with modernization and ideational change, as depicted in the idea of Second

age_mar % birth divorce exp_lif dif_lif % pol fem_act fertil
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 4. Factor loadings. age-mar stays for age at first marriage, % birth stays for percentage births
outside marriage, divorce indicates divorce rate , exp-lif stays for life expectation, dif-life difference in
life expectation between males and females, % pol percentage of sets in parliament occupied by women,
fem-act percentage of women active and, finally, fertil is fertility rate
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Fig. 5. Factor scores

Demographic Transition. In Fig. 6, the first factor relative to 1990 is projected over
map of Europe, to clarify the contrast between countries with high value on the
first factor score and countries with low value on the first factor score. The second
factor is mostly determined by the age at first marriage and life expectancy; it is
inversely related with total fertility rates and women’s activity rates. The second
factor thus seems to be affected by economic conditions, contrasting on one side
richer countries (with better health condition) with on the other side poorer coun-
tries (with women’s activity rates being traditionally high in Central and Eastern
Europe). Higher values on this factor are reached in Northern Europe and lower
values in eastern Europe. In Fig. 7, the second factor relative to 1998 is projected
over map of Europe. The third factor selected is mostly determined with negative
sign by the difference in life expectancy between genders, and it is also positively
associated with total fertility rates. As shown in Fig. 5, lower values are reached
for Southern European countries, while higher values for Eastern countries at the
beginning of the study and Northern countries in the last periods. The interpretation
of this factor is much less clear than it is for the first two factors. In Fig. 8, third
factor relative to 1998 is projected over map of Europe.

An important issue to be faced is the determination of number of factors. We
select the number of factors by empirical methods as percent variation: the resulting
chosen number of factors is the minimum number that accounts for at least that
amount of total variation in the observed covariance matrix. We compare our results
with the ones obtained through a Bayesian approach. Defining p(m), a prior onm,
easily by Bayes’Rule it is possible to compute the probability of each of the number
of factors given the parameters

p(m|µ,Λ, F, Ψ,X) ∼ p(m)p(µ)p(Λ|Ψ,m)p(F |m)p(Ψ)p(X|, Λ, F, Ψ,m)
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Fig. 6. Projection of first factor over 1990. Yellows indicated countries were information were not
available. Colors vary between weak gray (corresponding to Ireland, with a value equal -0.60), light
blue (corresponding to Eastern Europe, reaching -0.30), finishing to black corresponding to Sweden
with 2.05

and determine the number of factors as the most probable. In this case, the results of
the two approaches coincide, so we did not investigate further the latter mentioned
method, although a probabilistic approach to determination of number of factors
deserves to be better developed.

7. Conclusions

Formal Bayesian statistical methods not only incorporate available prior informa-
tion either from experts or previous data, but they allow the knowledge in these
and subsequent data to accumulate in the determination of the parameter values.
In the non-Bayesian Factor Analysis model, the factor loading matrix is determi-
nate up to an orthogonal rotation. Typically after a non-Bayesian Factor Analysis,
an orthogonal rotation is performed on the factor loading matrix according to one
of many subjective criteria. This is not the case in Bayesian Factor Analysis. The
rotation is automatically found. There is an entire probability distribution for the
factor loading matrix and we determine its value statistically.
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Fig. 7. Projection of second factor over 1998. Yellows indicated countries were information were not
available. Colors vary between weak gray (corresponding to Hungary, with a value equal -1.11), light
blue (corresponding to Eastern Europe, reaching -0.91), finishing to black corresponding to Ireland with
1.77

In this paper, we have shown that the flexibility of the Bayesian approach allows
us to introduce an innovative temporal factor model, extending the temporal dimen-
sion in factor analysis to multiple parallel observations. The underlying structure
of the temporal factor model proposed reflects our idea of an autoregressive pattern
in the latent variables addressed relative to adjacent time periods. The results we
obtained, with the first latent variable explaining a large share of variance and con-
nected to modernization, are consistent with current interpretations in European
demographic trends.

The methods proposed can be easily generalized to more complex models, as
for example, introduction of a spatial structure together with the temporal one. The
flexibility of the Bayesian approach allows us to define different structure for Φ,
an expression to be investigated is the definition of Φ = ΦT ⊗ ΦS , where ΦS is
an adequate matrix defined in order to express the correlation between adjacent
countries.
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Fig. 8. Projection of third factor over 1998. Yellows indicated countries were information were not
available. Colors vary between weak gray (corresponding to Italy and Spain, with a value equal -1.24),
light blue (corresponding to Eastern Europe, reaching -0.90), finishing to black corresponding to Sweden
with 1.61
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