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Abstract

We study the Strassen’s law of the iterated logarithm for di�usion processes for small values of
the parameter. For the Brownian Motion this result can be obtained by time reversal, a technique
which is not easy to reproduce for di�usion processes. A number of examples and applications
are discussed. ? 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

Let B be a k-dimensional Brownian Motion. The law of the iterated logarithm (LIL)
states that

lim sup
u→+∞

| Bu |√
u log log u

=
√
2:

This law has been extended by Strassen (1965) in a functional form: for t ∈ [0; 1] and
u¿e set

B̃u(t) =
But√

u log log u
;

so that for every u B̃u is a r.v. taking values in the space of paths C. Let K be the
set of the absolutely continuous paths f satisfying f(0) = 0 and

∫ 1
0 | f′(t) |2 dt62.

Then {B̃u}u¿e is relatively compact in the uniform topology and K is the set of its
limit points as u → +∞.
An extension of this law to di�usion processes was proved by Baldi (1986). Con-

sider a di�usion process Y starting from x and let {��}�¿0 be a suitable family of
contractions with �xed point x for every �¿0. For t ∈ [0; 1] and u¿e set

Z̃u(t) = �√
u log log u

(Yut):
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Under suitable assumptions on the di�usion coe�cients of the SDE driving Y; {Z̃u}u¿e

is relatively compact in the space of the continuous paths starting from x equipped
with the supnorm and the set of the limit points as u → +∞ is given by a compact
set that can be explicitly described as the level set of the rate function associated with
a suitable system of small random perturbations.
One might ask if these LILs hold also when u → 0+. It is well known for the

Brownian motion that

lim sup
u→0+

| Bu |√
u log log u−1

=
√
2: (1.1)

A functional version of this law has been studied by Mueller (1981) and recently
Gantert (1993) has given a new proof of this Strassen’s law for small time: for t ∈
[0; 1] and u¡e−1, setting

Bu(t) =
1√

u log log u−1
But ; (1.2)

then {Bu}0¡u¡ �u is relatively compact and the set of its limit points as u → 0+ is K
again. It should be remarked that whereas Eq. (1.1) can be easily derived from the
classical LIL by time reversal, Eq. (1.2) requires some work.
In this paper we study a functional LIL for di�usion processes (not necessarily

Gaussian): if we consider the family {Zu}0¡u¡ �u de�ned by

Zu(t) = �√
u log log u−1 (Yut)

for t ∈ [0; 1] and u¡ �u(6e−1), then we prove that it is relatively compact for u → 0+

and we determine its limit set C. Such a result holds in the space of the explosive
paths if the explosion time of Y is �nite with positive probability. As in the case
u → +∞, C is a level set of the rate function � associated to a system of small
random perturbation (b̃u; �̃u), where b̃u and �̃u are strictly connected with the di�usion
coe�cients of Zu (see Eq. (2.4)). This is the content of Section 3, where a general
theorem is proved making use of results of large deviations, which are summarized in
Section 2.
In the following sections we give examples. First, we treat a functional LIL for

iterated Ito integrals, from which a related result for the L�evy’s stochastic area pro-
cess follows, thus giving a small-time counterpart of the LIL obtained by Berthuet
(1986). Also, we show an LIL for small time for the principal invariant di�usion of
the Heisenberg group, as a consequence of a more general result concerning invariant
di�usions of simply connected nilpotent Lie groups.
It is worth to point out that in most of the examples above the limit sets turn out to

be the same both for large and small time, although, in general, such a property does
not hold. It should also be pointed out that, unlike the case u → +∞, in these results
the drift coe�cient plays no role.
Finally, it is worth mentioning that the technique used to prove the main theorem

is similar to the one which is developed in Baldi (1986). One could even say that our
proof consists on the remark that the techniques developed for u → +∞ also work
for u → 0+. However, this allows us to study some non-trivial examples which have
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attracted some interest in recent years. See Gantert (1993) in which the case of the
functional LIL for u → 0+ has been studied using time reversal, a completely di�erent
technique.

2. Some preliminary results

Let U be an open set of Rm;CU be the set of the continuous paths u : [0; 1]→ U
and CU

x the subset of CU of the paths starting from x, i.e. u(0) = x. We shall write
Cm

x and Cm when U = Rm. Endowed with the supnorm, CU
x is a Banach space.

We shall denote by d the induced metric.
Let Hm be the Cameron–Martin space, i.e. the subset of Cm

0 of the absolutely
continuous paths whose derivative is square integrable on [0; 1]. It is a Hilbert space
with scalar product (h; g)Hm = (h′; g′)L2([0;1]), where h′ and g′ denote the derivatives
of h and g, respectively. We shall denote by | · |1 the norm on Hm induced by the
scalar product: |h|1 = ‖h′‖L2([0;1]). We set Km = {f ∈ Hm; 1

2 | f |21 61}.
Let (
;F; P) be a probability space on which a k-dimensional Brownian Motion B

is de�ned and consider the following di�usion process Y on U :

dYt = b̃(Yt) dt + �̃(Yt) dBt;

Y0 = x; (2.1)

where x ∈ U , �̃ is a m×k matrix �eld on U , b̃ is a vector �eld on U . Its in�nitesimal
generator is

L̃ =
1
2

∑
i; j

ãij(y)
@2

@yi@yj
+
∑

i

b̃(y)
@
@yi

; (2.2)

where ã = �̃�̃t . We �rst suppose that

Assumption (G). The explosion time

� = inf{t ¿ 0; Yt =∈ U}

is a.s. in�nite.

Such hypothesis will be relaxed afterwards.
Now, we want to de�ne a family of di�usion processes {Zu}u∈(0;1), whose elements

are suitable transformations of Y which allow to deduce a law of the iterated logarithm
for Y . To this purpose we need the following de�nition, which has been preliminarly
introduced in Baldi (1986):

De�nition 2.1. For � ¿ 0, let �� : U → U be a C2 bijective transformation having
continuous derivatives up to order 2. The family {��}�¿0 is said to be a system of
contractions centered at x if

(a) ��(x) = x for every � ¿ 0;
(b) if �¿� then | ��(y)− ��(z) |6 | ��(y)− ��(z) | for every y; z ∈ U ;
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(c) �1 = Id and ��−1 = �−1
� . Moreover, for every compact subset K of U and

� ¿ 0 there exists � ¿ 0 such that if | �� − 1 |¡ � then

|��◦��(y)− y |¡ �

for every y ∈ K .
Let �u = e−1 ∧ �t. For u ∈ (0; �u), set

G(u) = log log u−1;  (u) =
√

uG(u)

and for t ∈ [0; 1]
Zu(t) = � (u)(Yut); (2.3)

where Y is de�ned by Eq. (2.1) and � is a system of contraction centered at x, the
starting point of Y . By Ito’s formula and time change, Zu is the solution of the SDE

dZu(t) = b̃u(Zu(t)) dt +
1√
G(u)

�̃u(Zu(t)) dB
(u)
t ;

Zu(0) = x; (2.4)

where B(u)t = 1=
√
uBut is a k-dimensional Brownian Motion and

b̃u(y) = uL̃� (u)(z)
∣∣∣z=�−1

 (u)(y)
; (2.5)

�̃u(y) =  (u)grad� (u)(z)
∣∣∣z=�−1

 (u)(y)
· �̃(�−1

 (u)(y)) ; (2.6)

where L̃ is de�ned by Eq. (2.2).
From now on we set the following hypothesis:

Assumption (A). (i) There exist a matrix �eld � and a vector �eld b on U such that

lim
u→0+

b̃u(y) = b(y);

lim
u→0+

�̃u(y) = �(y)

uniformly on compact subsets of U .
(ii) b̃u; �̃u; b; � are Lipschitz continuous on compact subsets of U .
(iii) For f ∈ Hk and x ∈ U the solution g = Sx(f) of the Cauchy problem

g′t = b(gt) + �(gt)f′
t ;

g0 = x (2.7)

is de�ned on the whole interval [0; 1].

Assumption (A) not only ensures the uniqueness of the solution Zu of Eq. (2.4),
but also allows us to apply some well-known results of large deviation theory to the
system of small random perturbation (b̃u; �̃u), which are only an improvement of the
classical results due to Azencott and Priouret (see e.g. Azencott, 1980; Priouret, 1982)
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and whose proofs can be found in Baldi and Chaleyat-Maurel (1986) (see, in particular,
Theorems 1.1 and 2.1). They can be summarized in the following way.

We recall the Cram�er functional � and the Cram�er transform � :
� : CU

x → [0;+∞]

�(g) = inf{ 12 |f |21; g = Sx(f)} (2.8)

and +∞ if the above set is empty;

� : B(CU
x )→ [0;+∞]

�(A) = inf
g∈A

�(g); (2.9)

where B(CU
x ) denotes the Borel �-�eld.

Under Assumption (A), � is lower semicontinuous and for a ∈ R the set {g; �(g)6a}
is a compact subset of U . Moreover, Assumption (A) ensures that the family of prob-
abilities on B(CU

x ) induced by {Zu}0¡u¡ �u satis�es a large deviation principle with the
good rate function �, i.e. for every A ∈ B(CU

x ), if A is open then

lim inf
u→0+

1
G(u)

logP(Zu ∈ A)¿− �(A) (2.10)

and if A is closed then

lim sup
u→0+

1
G(u)

logP(Zu ∈ A)6− �(A): (2.11)

Finally, under Assumption (A) also the following result holds:

Theorem 2.2. Let a ¿ 0 be �xed. For every � ¿ 0; R¿0, there exists u0 ¿ 0; �0¿0
such that for every f with �(f)6a if g = Sx(f) then

P

(
d

(
1√
G(u)

B(u); f

)
¡ �; d(Zu; g)¿ �

)
6exp

{
− R

G(u)

}

for every u¡u0; �¡�0.

3. The main theorem

In this section we shall prove the following:

Theorem 3.1. Under Assumption (A) the family {Zu}0¡u¡ �u is relatively compact and
the set

C = {g; �(g)61}

is the limit set of {Zu}0¡u¡ �u when u → 0+ a.s.

In order to prove Theorem 3.1 we need the next results.
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Proposition 3.2. Under Assumption (A),

lim
u→0+

d(Zu; C) = 0 a:s:

Proof. If C′
� = {g; d(g; C)¿�}, then there exists �¿0 such that �(C′

�)¿1 + �.
Indeed, if by contradiction �(C′

�) = 1, by Eq. (2.9) one could build a sequence
{gn}n ⊂C′

� such that limn→∞ �(gn) = �(C′
�) = 1. Obviously, for every n large gn ∈

{f; �(f)62} which is compact: there exists a subsequence {gnk}k converging to g ∈
C′

� . By the lower semicontinuity of �

1 = lim inf
k→∞

�(gnk )¿�(g)

so that g∈C. Therefore, �(C′
�)¿1 + � for some �¿0. By Eq. (2.11)

lim sup
u→0+

1
G(u)

logP(Zu ∈ C′
�)6− (1 + �):

Thus, for j large and for every c ¡ 1

P(Zc j ∈ C′
�)6exp{−(1 + �)G(c j)} = const

j1+�

so that by Borel–Cantelli lemma P(lim supj{d(Zc j ; C)¿�}) = 0, i.e. limj→∞ d(Zc j ; C)
= 0 a.s.
Using a procedure similar to that developed in Deuschel and Stroock (1986) (Lemma

1.4.3) or Baldi (1986) (Section 2), it is not hard to prove now that limu→0+ d(Zu; C)
= 0 a.s. and we give here a sketch of this proof.
Set c∈ (0; 1) and j su�ciently large in order that d(Zc j ; C)¡�; � being arbitrarily

small. Thus, for u ∈ [c j+1; c j],

d(Zu; C) 6‖Zu − Zc j‖+ d(Zc j ; C)

¡ �+ ‖� (u)◦�
−1
 (c j)(Zc j)− Zc j‖+ sup

t∈[0;1]
| � (u)(Yut)− � (u)(Yc jt) | :

By the �rst part of this proof {Zc j}j is a.s. norm bounded: for every j su�ciently
large, Zc j ∈ K ≡ {z; | z |6M} and notice that M may be choosen such that K ⊂U .
Moreover, for every u ∈ [c j+1; c j],

1¿
 (u)
 (c j)

¿
√
c;

so that if c is su�ciently close to 1, using (b) of De�nition 2.1, we obtain

‖� (u)◦�
−1
 (c j)(Zc j)− Zc j‖6�:

Furthermore, recalling that  (u) is increasing for any small value of u, by (b) of
De�nition 2.1

|� (u)(Yut)− � (u)(Yc jt)|6|� (c j+1)(Yut)− � (c j+1)(Yc jt)|:
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We can then write

d(Zu; C)¡ 2�+ sup
t∈[0;1]

|� (c j+1)(Yut)− � (c j+1)(Yc jt)|

62�+ sup
06s61
cs6t6s

|� (c j+1)(Yut)− � (c j+1)(Yc js)|:

Adding and substracting the terms Zc j+1(t) and Zc j+1(s) and using (c) of De�nition 2.1,
we have

d(Zu; C)64�+ sup
06s61
cs6t6s

|Zc j+1(t)− Zc j+1(s)|:

Let now g ∈ C such that ‖Zc j+1−g‖ ¡ d(Zc j+1 ; C)+�. Then, in particular, ‖Zc j+1−g‖ ¡
2� and the above estimate may be written as

d(Zu; C)68�+ sup
g∈C

sup
06s61
cs6t6s

|g(t)− g(s)|:

Recalling that C is compact, Ascoli–Arzel�a’s theorem ensures the existence of a c such
that the second term of the r.h.s. does not exceed �, and this concludes the proof.

Proposition 3.3. Let g∈C be such that �(g)¡1. Then for any �¿0 there exists c�¡1
such that for every c¡c�

P(d(Zc j ; g)¡ � i:o:) = 1:

Proof. The statement is well known when k = m; b̃ = 0; �̃ = Id, i.e. as

Zu(t) ≡ Bu(t) =
But√
uG(u)

and the compact C coincides with the set Kk ≡ {f∈Hk ; 1
2 |f|2161} (see Gantert,

1993 or Mueller, 1981): for any f∈Kk ,

P

(∥∥∥∥∥ 1√
G(c j)

B(c
j) − f

∥∥∥∥∥¡ � i:o:

)
= 1:

For the general case we shall make use of the last equation and of Theorem 2.1. Let
g∈C be such that �(g)¡1: there exists f ∈ Kk such that g = Sx(f). For � ¿ 0 and
� ¿ 0, setting

Fj =

{∥∥∥∥∥ 1√
G(c j)

B(c
j) − f

∥∥∥∥∥¡ �

}
; Hj = {‖Zc j − g‖ ¡ �}:

we obtain by Theorem 2.2

P(Fj ∩ Hc
j )6exp

{
− 2

G(c j)

}
=
const
j2
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being R¿2; c¡1; j large and � su�ciently small. Then by Borel–Cantelli lemma
P(Fj ∩ Hc

j i:o:) = 0 so that

1 = P(Fj i:o:)6P(Fj ∩ Hj i:o:) + P(Fj ∩ Hc
j i:o:)6P(Hj i:o:):

Proof of Theorem 3.1. By Proposition 3.2 for any �¿0 there exists a.s. u0 such that
d(Zu; C)¡�=2 for every u¡u0. By compactness of C one can �nd a �nite number of
balls of radius � whose union contains {Zu}0¡u¡u0 . Now, let

� : [u0; �u]→ CU
x ;

u 7→ Zu:

By De�nition 2.1 and Eq. (2.3), � is continuous a.s. so that {Zu}u06u6 �u is compact
a.s.
The second part of the proof of Theorem 3.1 now follows from Proposition 3.3

which ensures that all points in C are actually limit points.

Corollary 3.4. Let E be a topological space and let F :CU
x → E be a continuous

mapping. Then {F(Zu)}0¡u¡ �u is relatively compact and its limit set is F(C).

We analyze now the asymptotic behavior of the family {Zu}u when the explosion
time of Y is �nite with positive probability. In such a case, the di�usion Y takes its
values in the set EU

x of the explosive paths (see [Azencott, 1980, Ch. III] for details):
if U ∪ � denotes the Alexandro�’s compacti�cation of the open set U , then EU

x is
given by the continuous trajectories g : [0; 1]→ U ∪� such that g0 = x and such that if
gt0 = �, 06t061, then gt = � for any t ∈ [t0; 1]. The explosion time �(g) of g ∈ EU

x

is de�ned as

�(g) = inf{t¿0 : gt = �}
and �(g)= + ∞ if gt ∈U for every t ∈ [0; 1]. The topology on EU

x is induced by
the following convergence: {gn}n ⊂EU

x converges to g∈EU
x if {gn}n converges to

g uniformly on the compact subsets of [0; �(g)[. Notice that the space CU
x of the

continuous paths from [0; 1] to U , starting from x easily becomes the open subset
{g∈Ex [0; 1]; U ); �(g) = +∞} of EU

x .
Let now {�a}�¿0 be a family of contraction on U , centered at x (as in De�nition

2.1). In the case we are going to study, also the process

Zu
t ≡ � (u)(Yut)

as u ∈ (0; �u), �u ¡ e−1, takes its values in EU
x . Under an additional assumption on

the family {��}�, one can generalize Theorem 3.1 to the space EU
x . We �rst prove an

easy result which analyzes the compactness properties in the space EU
x . The symbols

�A
CU

x and �A
EU

x denote the closure of the set A in CU
x and EU

x , respectively.

Lemma 3.5. Let A be a relatively compact subset of CU
x . Then

�A
CU

x = �A
EU

x

and so A is relatively compact in EU
x too.
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Proof. Let g ∈ �A
EU

x : there exists a sequence {gn}n⊂A such that gn
n→∞−→ g in Ex([0; 1]; U ).

Since �A
CU

x is a compact subset of CU
x , one can determine a subsequence {gnk}k con-

verging in CU
x to g̃ ∈ CU

x . If �(g)¡∞ then for every t¡�(g) one obviously has
gt = g̃t and thus �= limt↑�(g) gt = limt↑�(g) g̃t ∈U which gives a contradiction. Thus,
�A
CU

x = �A
EU

x .

Theorem 3.6. Suppose that

lim
�→∞ ��(y) = x;

uniformly on the compact subsets of U . Then, under Assumption (A), the family
{Zu}0¡u¡ �u is a.s. relatively compact in EU

x and the set

C = {g ∈ CU
x ; �(g)61}

determines its limit points as u → 0+.

Proof. We shall make use here of standard localization arguments which allow to
apply Theorem 3.1.
Let G be an open subset of U containing x such that, for a suitable � ¿ 0, the

closure of its �-neighborhood G� is strictly contained in U . Let us denote ’ a C∞

function such that ’ ≡ 1 on G and ’ ≡ 0 out of G�. Set b̂ = b̃ ·’ and �̂ = �̃ ·’. Let
now Ŷ denote the (strong) solution of Eq. (2.1) with di�usion coe�cients b̂ and �̂.
Since both drift and di�usion coe�cient are equal to zero out of G� and recalling that
�G
� ⊂U , the explosion time of the di�usion Ŷ is equal to in�nity, a.s. Set b̂u and �̂u

the �elds de�ned in Eqs. (2.5) and (2.6), respectively, built using b̂ and �̂. It follows
that

b̂u(z) = ’(�−1
 (u)(z)) bu(z) and �̂u(z) = ’(�−1

 (u)(z))�u(z)

and thus, recalling that ’ ≡ 1 near x, part (i) of Assumption (A) ensures that

b̂u(z)→ b(z) �̂u(z)→ �(z) u → 0+ a:s:

uniformly on the compact subsets of U . This allows to prove that Assumption (A) is
veri�ed by the di�usion coe�cients driving Ŷ . Therefore, setting Ẑ

u
t = � (u)(Ŷ ut) and

using Theorem 3.1, the family {Ẑu}0¡u¡ �u is a.s. relatively compact in CU
x and the set

C is the set of its limit points as u tends to 0.
Now, if �̂G denotes the exit time of Ŷ from G, we can write

{Zu}u¡ �u ≡ {Ẑu}0¡u6�̂G∧ �u ∪ {Zu}�̂G∧ �u6u6 �u:

For any �xed u0¿0, the map � : [u0;+∞)→ EU
x ; �(u)(t) = Zu

t ≡ � (u)(Yut) is contin-
uous and thus {Zu}�̂G∧ �u6u6 �u = �([�̂G ∧ �u; �u]) is a.s. compact in EU

x . Moreover,

{Zu}0¡u¡�̂G∧ �u ≡ {Ẑu}0¡u¡�̂G∧ �u ⊂{Ẑu}u6 �u: (3.1)
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Since this last set is relatively compact in CU
x (as previously proved), by Lemma 3.5

it is actually relatively compact in EU
x . Thus, the �rst statement is proved. Concerning

the second one, it is su�cient to recall Eq. (3.1): the limit set has to coincide with
the limit set of {Ẑu}0¡u¡ �u and therefore it is just C.

4. Applications

The results contained in Section 3 can be applied to the simplest case.

Proposition 4.1. Suppose that b̃ and �̃ are Lipschitz continuous on the compact sub-
sets of Rm and set Y the solution of Eq. (2.1). Then the family

Zu(t) = x +
Yut − x√

u log log u−1

is a.s. relatively compact in EU
x and the set of its limit points when u → 0+ is

C = {g; gt = x + �̃(x)ft; f ∈ Kk}:

Proof. Let us suppose x = 0 (otherwise, take Ỹ t = Yt − x). To apply Theorem 3.6 we
only need to check Assumption (A) with

��y =
y
�
:

Indeed, in such a case by Eqs. (2.4) and (2.5)

�̃u(y) = �̃( (u)y); b̃u(y) =
u

 (u)
b̃( (u)y):

By Lipschitz conditions one easily has

lim
u→0+

�̃u(y) = �̃(0); lim
u→0+

b̃u(y) = 0

uniformly on compact sets. Thus (i) and (ii) hold. Moreover, the solution of the Cauchy
problem (2.6) is

gt = �̃(0)ft

which is actually de�ned on [0; 1].

Obviously, if Y is de�ned as the solution of Eq. (2.1) up to time 1, the above
compactness property hold in CU

x .
The counterpart of the Strassen’s law of the iterated logarithm for small time becomes

now an immediate consequence of the above proposition: if B denote an m-dimensional
Brownian Motion, setting for t ∈ [0; 1] and u ∈ (0; e−1)

Bu(t) =
But√

u log log u−1

then the family {Bu} is relatively compact and its limit set as u → 0+ is Km ≡
{f∈Hm : 12 |f|2161}. Such property has been proved by Gantert and Mueller (see
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Gantert, 1993; Mueller, 1981). It is worth to mention that although we made use of
a particular case of their results (see Proposition 3.3) Theorem 3.1 may be proved
independently from them so that the Strassen’s counterpart of the LIL is actually a
consequence of Theorem 3.1. Indeed, in Proposition 3.3 we referred to Gantert (1993)
and Mueller (1981) only to deduce that for any f∈Kk ,

P

(∥∥∥∥∥ 1√
G(c j)

B(c
j) − f

∥∥∥∥∥¡ � i:o:

)
=1

and this equality can be proved, for example, using large deviation estimates and the
second Borel–Cantelli theorem.
We observe, moreover, that if Ax = �̃t(x)�̃(x) is a non-degenerate matrix then setting

Qx =A−1
x �̃t(x) one has

C =
{
x + g; g ∈ Hm; 12 |Qxg|2161

}
:

In particular, if �̃(x) is a unit matrix then

C = x +Km:

We can also give a non-functional LIL (possibly well known) applying Corollary 3.4
to the function F : Cm

x → Rm, F(g) = g(1):{
Yu − x√

u log log u−1

}
0¡u¡ �u

is relatively compact on Rm and the set of the limit points as u → 0+ is

C′ = {y ∈ Rm; 1
2 |Qxy|261}:

Remark. The result contained in Proposition 4.1 is actually very simple and of intuitive
meaning. However, it is worth to be remarked that it shows that the LIL may not hold
simultaneously for large and small time and if this should hold then the limit sets
would not necessarily coincide. Indeed, for s¿e set

Vs(t) =
Yst − x√
s log log s

+ x

and consider the family {Vs}s. Then, for every �xed s, Vs is a di�usion process
(see Baldi, 1986) with drift b̃s and di�usion coe�cient (’(s))−1=2�̃s, being ’(s) =√

s log log s and

b̃s(y)=
s

’(s)
b̃(’(s)y + x);

�̃s(y)= �̃(’(s)y + x):

Now, in order to apply Theorem 2.1 in Baldi (1986), it is necessary that both b̃s and
�̃s do converge as s→ +∞, uniformly on compact sets. For example, if b̃ is constant
and di�erent from 0, then the drift explodes and therefore no convergence result can be
deduced for {Vs}s (in contrast to the LIL for small time, which always holds, subject
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to the Lipschitz property of the di�usion coe�cients). If on the contrary b̃ = 0 and
there exists lim|y|→∞ �̃(y) = �, uniformly on the compact subsets of Rm, one can
then apply Theorem 2.1 in Baldi (1986): the family {Vs}s¿e is relatively compact and
its limit set as s→ +∞ is

C∞ = {g; gt = x + �ft; f ∈ Kk}
which, compared with the set C given by Proposition 4.1, is not (in general) the set
of the limit points of the LIL for small time.
In the following, we study situations which have been treated in Baldi (1986) for

u → +∞. Our aim is to compare them with the limits as u → 0+.
Let Bt = (B1(t); : : : ; Bm(t)) a m-dimensional Brownian Motion and for l6m consider

the following iterated Ito integral

X (t) =
∑

i1 ::: il∈A

ai1 ::: il

∫ t

0
dBil(tl)

∫ tl

0
· · ·
∫ t2

0
dBi1 (t1): (4.1)

A being a subset of {1; : : : ; m}. We set for 0¡ u ¡ e−1 and t ∈ (0; 1)

Zu(t)=
1

 (u)l
X (ut):

Proposition 4.2. {Zu}0¡u¡e−1 is relatively compact and the limit points as u → 0+

are the paths of the form

g(t)=
∑

i1 ::: il∈A

ai1 :::il

∫ t

0
f′

il(tl) dtl

∫ tl

0
· · ·
∫ t2

0
f′

i1 (t1) dt1;

where f∈Km.

Proof. We now de�ne a suitable di�usion process whose last component is Xt : let Yt

be the solution of the following SDE:

dY1(t) = dB1(t);
...
dYm(t) = dBm(t);
dYi1i2 (t) = Yi1dBi2 (t);
...
dYi1i2 :::ik (t) = Yi1 :::ik−1dBik (t);
...
dX (t) =

∑
i1 :::il

ai1 :::ilYi1 :::il−1dBil(t):

(4.2)

Yt =(Y1(t); : : : ; Ym(t); Yi1i2 (t); : : : ; Yi1i2 ::: ik (t); : : : ; X (t)) can be rewritten in the shortest
form

Yt =
∫ t

0
�̃(Ys) dBs;
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where �̃ is an N ×m matrix de�ned by Eq. (4.2). Consider now the following family
of contractions:

��y =
(y1

�
; : : : ;

ym

�
;
yi1i2

�2
; : : : ;

yi1i2 :::ik

�k ; : : : ;
x
�l

)
:

Note that gradz ��z = �� and �̃(�−1
� z) = �−1

� �̃(z), so that Eqs. (2.5) and (2.6) become

b̃u = 0; �̃u(y) = �̃(y) (4.3)

and Assumption (A) is veri�ed. Therefore, we can apply Theorem 3.1 to the process

Vu(t)=� (u)Yut

and its limit set is given by the trajectories which solve

g′(t)= �̃(g(t))f′(t);

g(0)= 0;

where f=(f1; : : : ; fm)∈Km. Note that the above Cauchy problem is easy to solve
recursively. Consider now the projection � : RN →R

(y1; : : : ; ym; : : : ; yi1i2 :::ik ; : : : ; x) 7→ x:

Obviously, Zu= �(Vu) and the statement holds by Corollary 3.4.

Let F :C10→R be de�ned by

g 7→F(g)= g(1):

By Proposition 4.2 and Corollary 3.4 {F(Zu)}0¡u¡e−1 is relatively compact. By setting
for f ∈ Hm

J (f) =
∑

i1 ::: il∈A

ai1 ::: il

∫ 1

0
f′

il(tl) dtl

∫ tl

0
: : :
∫ t2

0
f′

i1 (t1) dt1;

we can write the limit set C as u → 0+ for {F(Zu)}0¡u¡e−1 as

C = {J (f); f∈Km}:
Let

M1 = max
f∈Km

J (f);

M2 = min
f∈Km

J (f):

Then, by Corollary 3.4, it immediately follows that

(4:1) lim sup
u→0+

Xu

(
√

u log log u−1)l
= M1;

(4:2) lim inf
u→0+

Xu

(
√

u log log u−1)l
= M2:



14 L. Caramellino / Stochastic Processes and their Applications 74 (1998) 1–19

Example. Let Pm denote the set of all the permutations of {1; : : : ; m} and �(i1 ;:::; im) the
signature of the generic permutation (i1; : : : ; im). Suppose l = m and

ai1 ::: im = �(i1 ;:::; im):

Thus, Eq. (4.1) becomes

Lm(t) =
∑

(i1 ;:::; im)∈Pm

�(i1 ;:::; im)

∫ t

0
dBim(tm)

∫ tm

0
· · ·
∫ t2

0
dBi1 (t1)

which is called the m-dimensional L�evy’s Stochastic Area. By Proposition 4.2{
Lm(ut)

(
√

u log log u−1)m

}
0¡u¡e−1

is relatively compact and the set of the limit points as u → 0+ is given by the paths
of the form

S(f)t =
∑

(i1 ;:::; im)∈Pm

�(i1 ;:::; im)

∫ t

0
f′

im(tm) dtm

∫ tm

0
· · ·
∫ t2

0
f′

i1 (t1) dt1

as f varies in Km. By Corollary 3.4 we can also deduce a non-functional LIL as
u → 0+ for the L�evy’s stochastic area process:

lim sup
u→0+

Lm(u)

(
√

u log log u−1)m
= lm = − lim inf

u→0+

Lm(u)

(
√

u log log u−1)m
;

where

lm = max
f∈K

S(f)1 = max
f∈K

∑
�

�(�)
∫ 1

0
f′

�(m)(tm) dtm

∫ tm

0
· · ·
∫ t2

0
f′

�(1)(t1) dt1 (4.4)

(indeed, by symmetry, −M2 =M1≡ lm).

Remark. For iterated Ito integrals, it is important to observe that the limit set C is just
equal to that in the LIL for large time obtained in Baldi (1986) (see Proposition 3.1).
Obviously, also the limit values M1 and M2 in the non-functional LIL turn out to be
the same as u → +∞ (see again Baldi, 1986, Corollary 3.2). This shows that for the
L�evy’s stochastic area the limit value lm in Eq. (4.4) is the same appearing in the
non-functional iterated logarithm for large time which has been proved by Berthuet
(1986, Section 3, Theorem 3), who also computed the exact value of lm for any m:
setting
• !̃m ≡ (!1; : : : ; ![m=2]) ∈ R[m=2];
• r2m(t), t ∈ R, the vector of R2m whose components are ((sin!jt; cos!jt), 16j6m)

r2m+1(t) = (r2m(t); 1) ∈ R2m+1;
• �m(t) = det(rm(t1); : : : ; rm(tm)), t ≡ (t1; : : : ; tm);
• Dm = {t ≡ (t1; : : : ; tm); t16 · · ·6tm61};
• Mm = max!̃m

∫
Dm

�m(t) dt
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then

lm =



4m=2

m
Mm; m even;

4m=2

m
Mm√
2
; m odd:

It therefore seems that the same situation of the classical LIL turns out, in which the
behavior of the Brownian Motion for small time can be easily deduced by time reversal
from that as u→ +∞, an analogy which allows to suggest that some time-reversal
principles might hold also for the L�evy’s stochastic area process.

5. Invariant di�usions on nilpotent Lie groups

In this section we shall prove a functional LIL for u → 0+ for particular invariant
di�usions of nilpotent Lie groups. Moreover, we shall apply this result to the principal
invariant di�usion of the Heisenberg group. Again we shall compare our result to the
one treated in Baldi (1986). Let us begin by recalling some useful notions.
Let g = (R ; [·; ·]) be a nilpotent real Lie algebra whose underlying vector space

is RN and G = (R ; ◦) be the nilpotent simply connected Lie group whose product is
de�ned by the Campbell–Hausdor� formula

g ◦ h = g+ h+ 1
2 [g; h] +

1
12 [g; [g; h]] +

1
12 [h; [h; g]] + · · · :

We set g1 = g, g2 = [g; g1]; : : : ; gk+1 = [g; gk ]; : : : ; gl+1 = {0} the central lower series
of g. Let

e1; e2; : : : ; ei1 ; ei1+1; : : : ; ei2 ; : : : ; el = eN

be a basis of g adapted to the central lower series, i.e. for every j = 1; 2; : : : ; N ej ∈ gk \
gk+1 if ik¡j6ik+1 (i0 = 1). For g∈ g we denote by gk the kth coordinate on such a
basis.
Let Vk , k =1; 2; : : : ; l, be spanned by {eik ; : : : ; eik+1−1}: for every g∈ g we can write

g =
l∑

k=1

gk ;

where gk ∈Vk . For �¿0 consider the transformation

D�g =
l∑

k=1

�kgk ;

which is an endomorphism of the Lie algebra g such that D−1
� =D�−1 . By setting

�� ≡ D�−1 , i.e.

��g =
l∑

k=1

1
�k gk (5.1)

then {��}�¿0 is a system of contraction centered at 0.



16 L. Caramellino / Stochastic Processes and their Applications 74 (1998) 1–19

Let x0; x1; : : : ; xr be in g and X0; X1; : : : ; Xr be the corresponding left invariant vector
�elds (i.e. Xif(y) = d=dt f(y ◦ txi)|t=0, y ∈ R , f ∈ C∞(R )). We write

Xi(y)=
N∑

j=1

X j
i (y)

@
@yj

;

where X j
i (y), j=1; : : : N , are the coordinates of Xi(y) with respect to {e1; : : : ; eN}.

Consider now the di�erential operator on G

L=X0 +
1
2

r∑
i=1

X 2
i : (5.2)

A di�usion process Y on G whose generator is of the form given by Eq. (5.2) is said
to be left invariant. If B is a k-dimensional Brownian Motion then Y is the solution
of the SDE

dY (t) = b̃(Y (t)) dt + �̃(Y (t)) dBt;

Y (0) = 0;

where

b̃(y) = X0(y) +
1
2

r∑
i=1

grad Xi(y) · Xi(y)

and �̃(y) is an N × k matrix such that

�̃ji(y) = X j
i (y):

For t ∈ [0; 1] and u ∈ (0; e−1) we set

Zu(t) = � (u)(Yut);

where �� is de�ned by Eq. (5.1). Let f ∈ Hk and S0(f) : [0; 1]→ G be the solution
of

’′(t) =
r∑

i=1

Xi(’(t))f′
i(t);

’(0) = 0:

(5.3)

Remark 5.1. S0(f) is well de�ned: by Baldi (1986), Lemma 4:3; there exists a unique
solution of Eq. (5.3) up to time 1.

For i = 1; : : : ; r let us denote xi =
∑l

j=1 xij, where xij ∈ Vj, and let Xij be the left
invariant vector �eld associated to xij, j = 1; : : : ; l.
Set

C = {’ : [0; 1]→ G; ’ = S0(f); f ∈ Kk}:
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Theorem 5.2. Suppose that

x0 ∈ V1 ⊕ V2 and xi ∈ V1; i = 1; : : : ; k: (5.4)

Then {Zu}u∈(0; �u) is relatively compact and C is the limit set as u → 0+ a:s:

We shall make use of the following lemma, whose proof may be found in Baldi
(1986).

Lemma 5.3. Let x∈ g and X be the corresponding left invariant vector �eld. If x∈Vi

then for �¿ 0 and y ∈ G

�−iD�X (y) = X (D�y);

grad X (y) = �iD−1
� grad X (D�y) · D�:

Proof of Theorem 5.2. In order to apply Theorem 3.1, we have to prove that Assump-
tion (A) holds. Indeed we show that

�̃u(y) ≡ �̃(y);

lim
u→0+

b̃u(y) = 0

uniformly on compact sets.
By Lemma 5.3

�̃(� (u)y) =  (u)−1�−1
 (u)�̃(y)

and keeping in mind Eq. (2.5) �̃u(y) ≡ �̃(y). Again by Lemma 5.3

L̃� (u)z = X0� (u)(z) +
1
2

r∑
i=1

X 2
i � (u)(z)

= � (u)X0(z) +
1
2

r∑
i=1

� (u) grad Xi(z) · Xi(z)

from which we have

b̃u(y) = u� (u)X0(�
−1
 (u)y) +

u
2

r∑
i=1

� (u) grad Xi(�−1
 (u)y) · Xi(�−1

 (u)y)

= u (u)−1� (u)�
−1
 (u)X0(y) +

u
2

r∑
i=1

� (u) ·  (u)−1

·�−1
 (u) grad Xi(y) · � (u) ·  (u)−1 · �−1

 (u)Xi(y)

=
u

 (u)
[X01(y) + X02(y)= (u)] +

u
2 2(u)

r∑
i=1

grad Xi(y) · Xi(y)
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and limu→0+ b̃u(y)= 0 uniformly on compact sets. Thus, part (i) of Assumption (A)
holds. Also, (ii) holds for the smoothness of �̃u and b̃u and by Remark 5.1(iii) is
veri�ed.
Finally, note that C is actually the same set which appears in Theorem 3.1.

Remark. It is easy to see that if there exists i¿1 such that xi =∈ V1 then the divergence
of �̃u as u → 0+ will follow; again, if x0 =∈ V1 ⊕ V2 then limu→0+ b̃u =∞. Therefore,
condition (5.4) is actually equivalent to statement (i) of Assumption (A), and thus to
the whole Assumption (A). Therefore, Theorem 5.2 holds for any principal invariant
di�usions.

Remark. As well as in the case of iterated Ito integrals, also for invariant di�usions
of simply connected nilpotent Lie groups the limit set C coincides with the limit set of
iterated logarithm for large time (see Baldi, 1986, Theorem 4.1). However, we point
out that a di�erence arises in the two situations. Indeed, in the present framework the
ILLs both for small and large time might not hold simultaneously: while for our result
we must require Eq. (5.4), when u→ +∞ the statement depends only on the vector
�eld X0 since the constraint is x0 =∈ V1, if x0 6=0. On the other hand, the next example
shows a particular case in which the above hypothesis are all satis�ed (because x0 = 0
and xi ∈V1, i¿1).

Example. The principal invariant di�usion of the Heisenberg group.
Let g be the Lie algebra generated by {e1; e2; e3}, with
[e1; e2] = e3; [e1; e3] = [e2; e3] = 0:

Here l=2, V1 is spanned by {e1; e2} and V2 by {e3}. Let X1 and X2 be the left
invariant vector �elds associated to e1 and e2, respectively:

X1(y) =
@

@y1
− 1
2
y2

@
@y3

;

X2(y) =
@

@y2
+
1
2
y1

@
@y3

:

The principal invariant di�usion of the Heisenberg group is the di�usion process Y
whose generator is

L = 1
2(X

2
1 + X 2

2 );

i.e. Y is the solution of the SDE which starts from 0 with drift b̃ = 0 and di�usion
coe�cient

�̃(y) =


 1 0

0 1
− 1
2y2

1
2y1


 :

Then

Yt =
(
B1(t); B2(t); 12

∫ t

0
{B1(s) dB2(s)− B2(s) dB1(s)}

)
:
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In such a case Eq. (5.1) works in the following way:

��x =
(
x1

�
;
x2

�
;
x3

�2

)
;

so that for 0¡ u ¡ e−1 and t ∈ [0; 1]

Zu(t) =
(
B1(ut)
 (u)

;
B2(ut)
 (u)

;
1

2 (u)2

∫ ut

0
{B1(s) dB2(s)− B2(s) dB1(s)}

)
:

Theorem 5.2 states that {Zu}0¡u¡e−1 is relatively compact and its limit points as
u → 0+ are the trajectories ’ of the form

’t =
(
f1(t); f2(t); 12

∫ t

0
{f1(s)f′

2(s)− f2(s)f′
1(s)} ds

)
;

where f∈K2. By Corollary 3.8 also {Zu(1)}0¡u¡e−1 is relatively compact and the
limit set is the subset of R3 of the points (x1; x2; x3) such that

x1 = f1(1); x2 = f2(1); x3 =
1
2

∫ 1

0
{f′

1(s)f2(s)− f1(s)f′
2(s)} ds

as f varies in K2.
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