
Classification of semigroups of linear

fractional maps in the unit ball

Filippo Bracci aManuel D. Contreras b,1Santiago Dı́az-Madrigal b,1

aDipartimento Di Matematica, Università di Roma “Tor Vergata”, Via della
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Due to the importance of one-dimensional linear fractional maps in itera-
tion and composition operator theory, linear fractional self-maps of Bn have
deserved a quite deep consideration, with the belief that they can play an im-
portant role also in similar problems in several variables. In [4] Bisi and the first
author provide a classification of linear fractional maps up to conjugation with
automorphisms of Bn and study cyclicity properties of their associated com-
position operators. In [23], Richman provides a simple criterion to say when a
linear fractional map has range in the unit ball, while in [12] Cowen, Crosby,
Horine, Ortiz Albino, Richman, Yeow and Zerbe discuss another classification
of linear fractional maps based on the “characteristic domain” introduced by
Cowen in [10] with the purpose of linearizing holomorphic self-maps of the
unit disc; in [15] Khatskevich, Reich and Shoikhet deal with linear fractional
solutions to functional equations in Hilbert spaces. Linear fractional maps are
also basic in [8], where the first named author and Gentili solve the so-called
Schröder equation for holomorphic self-maps of Bn with no fixed points.

On the other hand, instead of considering just one map and its iterates (a
“discrete semigroup”) one can consider a continuous semigroup of holomorphic
self-maps of Bn. In case n = 1, Berkson and Porta (see [3] and also [1], [9])
proved that these objects are “holomorphically linearizable” and they can
be considered essentially continuous semigroups of linear fractional maps. In
several complex variables, similar linearization properties are known only in
some special cases (see de Fabritiis [13]). Nonetheless, we believe that complete
understanding of semigroups of linear fractional self-maps of Bn can help in
dealing with the general case.

In this paper we deal with continuous semigroups of linear fractional maps
of the unit ball. We provide a complete classification of such analytic objects
up to conjugation with injective linear fractional maps (not necessarily with
range in the unit ball), essentially proving that semigroups of linear fractional
self-maps of Bn are linearizable. The classification is constructed by selecting
and normalizing suitable geometric invariants, in the spirit of [5] and [4], but
it should be noted that some of these linearization results are new also in the
case of a single linear fractional map. In particular we base our classification
on the presence or not of (common) fixed points in Bn. If there are common
fixed points—the elliptic case—the semigroup is essentially given by a matrix
semigroup of the type Z 7→ etMZ, with M being dissipative and asymptoti-
cally stable (see Theorem 3.2). In case the semigroup has no common fixed
points in Bn, then all the iterates share a common fixed point on ∂Bn, the
Denjoy-Wolff point. In this case, the semigroup is hyperbolic or parabolic ac-
cording to the value of the “boundary dilatation coefficient” (see Section 1
and the Appendix). For the hyperbolic and parabolic case we provide a gen-
eral form (Theorem 5.1 and Theorem 6.1) and several simpler forms according
to geometrical invariants the semigroup might have (see Sections 5 and 6).
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The plan of the paper is the following. In the first section we recall some
preliminary geometric results and fix notations. In the second section we deal
with fixed and invariant slices for linear fractional maps and relate these ge-
ometric objects to algebraic properties of linear fractional maps. In the third
section we examine the case of elliptic semigroups and prove the linearization
theorem. In section four we provide a basic “model” for a linear fractional
map with no fixed points in Bn, which will be the base of subsequent classi-
fications. In section five we give the classification of hyperbolic semigroups of
linear fractional maps and discuss their properties according to normal forms
that we obtain. In section six we deal with the parabolic case. Finally, in the
Appendix we give a short proof of the basic (and partially new) classification
in elliptic, hyperbolic and parabolic types in the setting of strongly convex
domains.

1 Preliminary results

Let 〈·, ·〉 be the standard Hermitian product in Cn, ‖ · ‖ the associated norm
and Bn := {Z ∈ Cn : ‖Z‖ < 1} the unit ball. As a matter of notation, we
usually write Z ∈ Cn as a column vector and use the decomposition Z =
(z, w) ∈ C× Cn−1.

In this section, we recall some general definitions and results about linear
fractional maps in the unit ball and semigroups with the aim of fixing notations
which will be used throughout the paper.

Following [11], we say that a map ϕ : Bn → Cn is a linear fractional map if
there exist a complex n × n matrix Γ ∈ Cn×n, two column vectors B and C
in Cn, and a complex number D ∈ C satisfying

(i) |D| > ‖C‖ ; (ii) DΓ 6= BC∗,

such that

ϕ(Z) =
ΓZ + B

〈Z, C〉+ D
, Z ∈ Bn. (1)

Condition (i) implies that 〈Z, C〉 + D 6= 0 for every z ∈ Bn and therefore,
ϕ is actually holomorphic in a neighborhood of the closed ball. In fact, ϕ ∈
Hol(rBn;Cn) for some r > 1. On the other hand, condition (ii) just says that
ϕ is not constant.

If the image ϕ(Bn) ⊂ Bn, then we say that ϕ is a linear fractional self-map of
Bn and write ϕ ∈ LFM(Bn,Bn).

If Ω ⊂ Cn is a domain and ψ : Ω → Ω is holomorphic, we call the couple
(Ω, ψ) an iteration couple. For instance, if ϕ ∈ LFM(Bn,Bn) then (Bn, ϕ) is
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an iteration couple.

Definition 1.1 Let (Ω, ψ) and (Ω′, ψ′) be two iteration couples. We say that
the two couples are conjugated if there exists a biholomorphic map σ : Ω → Ω′

such that ψ = σ−1 ◦ ψ′ ◦ σ. The map σ is called an intertwining map.

From a dynamical point of view two conjugated iteration couples are undis-
tinguishable. In the sequel we will often transfer a dynamical model from the
unit ball to the Siegel half-plane.

Recall that the unit ball Bn is biholomorphic to the Siegel half-plane Hn :=
{(z, w) ∈ C × Cn−1 : Re z > ‖w‖2} via the the generalized Cayley transform
σC defined as

σC(z, w) :=
(

1 + z

1− z
,

w

1− z

)
, (z, w) ∈ C× Cn−1.

Note that σC extends (setting “σC(e1) = ∞”) to a bi-continuous map from
Bn onto cl∞(Hn), the one-point compactification of the closure of Hn.

The iteration couple (Bn, ϕ) for ϕ ∈ LFM(Bn,Bn) is quite simple, but nonethe-
less it is often very useful to consider the conjugated iteration couple (Hn, ψ),
where Hn := {(z, w) ∈ C × Cn−1 : Re z > ‖w‖2} is the Siegel half-plane and
ψ = σC◦ϕ◦σ−1

C : Hn → Hn, with σC is the generalized Cayley transform. Those
holomorphic maps ψ appearing in this way will be called linear fractional self-
maps of Hn and the set of all of them will be denoted by LFM(Hn,Hn).

We mention some results about fixed points and linear fractional maps. The
first one is quite well-known (see, e.g., [4, Theorem 2.2]).

Theorem 1.2 Let ϕ ∈ LFM(Bn,Bn) with no fixed points in Bn. Then, there
exists a unique point τ ∈ ∂Bn such that ϕ(τ) = τ and 〈dϕτ (τ), τ〉 = α(ϕ) with
0 < α(ϕ) ≤ 1.

The point τ ∈ ∂Bn in Theorem 1.2 is called the Denjoy-Wolff point of ϕ and
α(ϕ) the boundary dilatation coefficient of ϕ. We list here some basic proper-
ties of Denjoy-Wolff points and boundary dilatation coefficients as needed for
our aim (see [20] and [5, Theorem 3.6, Proposition 4.2 and Theorem 5.1]):

Proposition 1.3 Let ϕ ∈ LFM(Bn,Bn) with no fixed points in Bn, let τ ∈
∂Bn be its Denjoy-Wolff point and α(ϕ) the boundary dilatation coefficient.
Then

(1) For all z ∈ Bn it follows that limm→∞ ϕm(z) = τ .
(2) If v ∈ Cn then 〈dϕτ (v), τ〉 = α(ϕ)〈v, τ〉.
(3) α(ϕ) is an eigenvalue of dϕτ .
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(4) If v ∈ Cn is an eigenvector for dϕτ such that 〈v, τ〉 6= 0 then dϕτ (v) =
α(ϕ)v.

Now we are ready to give a first definition which divides LFM(Bn,Bn) in three
big families.

Definition 1.4 Let ϕ ∈ LFM(Bn,Bn). If ϕ has some fixed point in Bn we call
it elliptic. If ϕ has no fixed points in Bn and α(ϕ) is the boundary dilatation
coefficient of ϕ at its Denjoy-Wolff point, we say that ϕ is hyperbolic if α(ϕ) <
1 while we say it is parabolic if α(ϕ) = 1.

According to [4, Theorems 3.1 and 3.2] a non-elliptic linear fractional map
has at most two fixed points on ∂Bn and a parabolic linear fractional map
has only one fixed point on ∂Bn (its Denjoy-Wolff point). A hyperbolic linear
fractional map might have one or two fixed points on ∂Bn.

The main contribution of this paper is to provide a “dynamical classification”
of semigroups of linear fractional self-maps of the ball.

To begin with, we recall that for a domain Ω ⊂ Cn a continuous (one-
parameter) semigroup in Hol(Ω, Ω) is a continuous homomorphism

[0, +∞) 3 t 7→ ϕt ∈ Hol(Ω; Ω)

from the additive semigroup of non-negative real numbers into the composition
semigroup of all holomorphic self-maps of Ω (with the compact-open topol-
ogy). The functions ϕt are sometimes called the iterates of the semigroup (ϕt).
Such a semigroup extends to a continuous group action of R on Ω whenever
it is possible to extend the semigroup continuously to R.

Three basic properties of a semigroup (ϕt) of holomorphic self-maps of a do-
main Ω ⊂ Cn, which we will tacitely use throughout the paper, are:

(1) for all t ≥ 0 the map z 7→ ϕt(z) is injective.
(2) for all z ∈ Ω, the map (0, 1) 3 t 7→ ϕt(z) ∈ Ω is analytic.
(3) If ϕt0 ∈ Aut(Ω) for some t0 > 0 then ϕt ∈ Aut(Ω) for all t ≥ 0.

For a proof of the previous assertions see, e.g., [1, Section 2.5.3].

We say that a continuous semigroup in Hol(Bn;Bn) is a semigroup of linear
fractional maps if ϕt ∈ LFM(Bn,Bn) for all t ≥ 0. Even in this case we can
talk about elliptic, hyperbolic and parabolic semigroups. For this we need to
exploit the following theorem.

Theorem 1.5 Let (ϕt) be a continuous semigroup in Hol(Bn,Bn). Then, ei-
ther all the iterates have a common fixed point in Bn or no ϕt (t > 0) has a
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fixed point in Bn and they share the same Denjoy-Wolff point τ ∈ ∂Bn. In this
case, there exists 0 < r ≤ 1 such that αt = rt, where αt := α(ϕt) denotes the
boundary dilatation coefficient of ϕt (for t > 0) at τ .

Such a theorem is due to M. Abate (see [1]) in case of strongly convex domains
except for the behavior of the boundary dilatation coefficient, while it is proved
for the unit ball by L. Aizenberg and D. Shoikhet in [2]. In the appendix we
give a complete short proof of such a result in the context of strongly convex
domains.

Corollary 1.6 Let (ϕt) be a continuous semigroup in LFM(Bn,Bn). If for
some t0 > 0 the iterate ϕt0 is elliptic (respectively hyperbolic; respectively
parabolic), then for all t > 0 the iterates ϕt are elliptic (respectively hyperbolic;
respectively parabolic).

In particular we can safely give the following definition.

Definition 1.7 Let (ϕt) be a continuous semigroup in LFM(Bn,Bn). If ϕ1

has some fixed point in Bn we call (ϕt) elliptic. If ϕ1 has no fixed points in
Bn and τ ∈ ∂Bn is its Denjoy-Wolff point, we say that (ϕt) is hyperbolic
(respectively parabolic) if ϕ1 is hyperbolic (respectively parabolic) and we call
τ the Denjoy-Wolff point of (ϕt).

If (ϕt) is a semigroup of LFM(Bn,Bn) we say that a point z ∈ Bn is a fixed
point for the semigroup if ϕt(z) = z for all t ≥ 0.

2 Slices and complex geodesics

A slice S of Bn is a non-empty subset of Bn of the form S = Bn ∩ V, where
V is a one-dimensional affine subspace of Cn.

Slices can be nicely described by holomorphic functions. Namely, given a slice
S of Bn, there exists an injective proper map f ∈ Hol(D;Cn) from the unit
disc D to Bn such that f(D) = S. These maps are called complex geodesics
(associated to S) because they are isometries between the Poincaré metric on
D and the Bergmann metric on Bn (see, e.g., [1] for details). Given a slice S
and an associated complex geodesic f : D → Bn, any other complex geodesic
associated to S is given by f ◦ θ with θ ∈ Aut(D).

The prototype of a slice is S0 := Bn ∩ Ce1, where e1 = (1, 0, . . . , 0) and the
associated complex geodesic is f0(ζ) = (ζ, 0, . . . , 0). Since the group of auto-
morphisms Aut(Bn) sends slices onto slices and acts transitively on P(TBn)
(namely for any couple of points Z,W ∈ Bn and any couples of non zero direc-
tions v ∈ TZBn and v′ ∈ TWBn there exists Φ ∈ Aut(Bn) such that Φ(Z) = W
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and dΦZ(v) = λv′ for some λ ∈ C \ {0}), it follows that for any slice S in
Bn there exists an automorphism Φ ∈ Aut(Bn) such that S = Φ(S0) and a
complex geodesic associated to S is given by Φ ◦ f0 : D→ Bn.

Transferring, as we will often do, everything to Hn = {(z, w) : Re z > ‖w‖2}
via the Cayley transform σC , we see that a slice S ⊂ Bn such that e1 ∈ S
corresponds to a slice S ′ ⊂ Hn given by {(z, w) ∈ Hn : w = const}. The
“prototype” slice S0 corresponds now to the slice S ′0 := {(z, w) ∈ Hn : w = 0}
in Hn and the complex geodesic f0 : D → Bn to the complex geodesic f ′0 :
D→ Hn defined as f ′0(ζ) = ((1 + ζ)(1− ζ)−1, 0, . . . , 0).

In [11] it is proven that if S is a slice in Bn and ϕ ∈ LFM(Bn,Bn) then there
exists a slice S ′ in Bn such that ϕ(S) ⊆ S ′. In case f(S) ⊆ S, if f : D → Bn

is a complex geodesic associated to S, we can define

ϕf := f |−1
S ◦ ϕ ◦ f.

Such a map ϕf ∈ LFM(D,D) depends on f but, since any other complex
geodesic f ′ associated to S is given by f ′ = f ◦ θ for some θ ∈ Aut(D), it
follows that ϕf is conjugated to ϕf ′ . Therefore ϕf can be used to understand
properties of ϕ invariant by conjugation.

We say that a slice S of Bn passes through some point Z ∈ Bn if Z ∈ S.
Likewise, we say that v ∈ Cn \ {0} is a direction vector of S if

v ∈ VS := span{s− s′ : s, s′ ∈ S} = TZS for any Z ∈ S.

This one-dimensional vector space VS is called the direction subspace of S. It
is clear that S = (Z + VS) ∩ Bn for any Z ∈ S. We say that a slice S passes
through Z with direction v ∈ Cn \ {0}, if S = (Z + Cv) ∩ Bn.

Proposition 2.1 Let ϕ ∈ LFM(Bn,Bn) be non-elliptic with Denjoy-Wolff
point τ ∈ ∂Bn. Let S be a slice in Bn passing through τ with direction subspace
VS. Then, for every v ∈ VS\{0} it follows that 〈dϕτ (v), τ〉 6= 0. In other words,

Ŝ := (τ + dϕτ (VS)) ∩ Bn

is a well-defined slice in Bn. Moreover, ϕ(S) ⊆ Ŝ.

PROOF. Let α := α(τ) be the boundary dilatation coefficient of ϕ at τ . Let
v ∈ VS \ {0}. Since Cv ∩ Bn 6= ∅ then 〈v, τ〉 6= 0. By Proposition 1.3.(2) we
have

〈dϕτ (v), τ〉 = α〈v, τ〉 6= 0.

In particular, since VS = Cv, it follows that dϕτ (VS) is a one-dimensional
subspace of Cn and the previous computation implies that S ′ := (dϕτ (VS) +
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τ) ∩ Bn 6= ∅ and thus it is a slice in Bn.

We are left to show that ϕ(S) ⊆ S ′. We know that there exists a slice S̃ of Bn

such that ϕ(S) ⊆ S̃. Since ϕ(τ) = τ , it is enough to show that VS = VS̃. To
see this, let v ∈ VS̃ \ {0}. Up to change v with eiθv for some θ ∈ R, we can
assume that there exists ε > 0 such that τ + λv ∈ Bn, whenever 0 < λ < ε.
Then

1

λ
(ϕ(τ + λv)− ϕ(τ)) ∈ VS̃.

Letting λ goes to 0 we deduce that dϕτ (v) ∈ VS̃ and then VS = VS̃ as
wanted. 2

Remark 2.2 The proof of the above proposition can be adapted to certain
elliptic situations. Namely, if ϕ ∈ LFM(Bn,Bn) has a fixed point b ∈ Bn, S
is a slice in Bn passing through b with direction subspace VS and dϕb(VS) is
one-dimensional, then

ϕ(S) = (b + dϕb(VS)) ∩ Bn.

Proposition 2.3 Let ϕ ∈ LFM(Bn,Bn) be non-elliptic with Denjoy-Wolff
point τ ∈ ∂Bn and boundary dilatation coefficient α(ϕ). Let S be a slice in Bn

with direction subspace VS. The followings are equivalent:

(1) The slice S is invariant (as a set) for ϕ.
(2) The slice S passes through τ and dϕτ (VS) = VS.
(3) The slice S passes through τ and some—and hence any—v ∈ VS verifies

dϕτ (v) = α(ϕ)v.

PROOF. The equivalence of (1) and (2) follows directly from Proposition
2.1 as soon as we realize that all invariant slices must contain τ in their
closure. Indeed, if S ⊂ Bn were an invariant slice for ϕ not passing through
τ , then limm→∞ ϕm(Z) 6= τ for all Z ∈ S, contradicting Proposition 1.3.(1).
If (2) holds, then any v ∈ VS is an eigenvector of dϕτ and (3) follows from
Proposition 1.3.(4). Conversely, if (3) holds then VS is dϕτ -invariant and then
(2) holds. 2

A finite collection {S1, ..., Sp} of slices of Bn is said to be independent if the
family of the corresponding one-dimensional direction subspaces {VS1 , ..., VSp}
spans a p-dimensional subspace of Cn.

If ϕ ∈ LFM(Bn,Bn) we let ]inv(ϕ) to be the dimension of the space spanned by
the direction subspaces VS of all ϕ-invariant slices S ⊂ Bn. By Proposition 2.3
if ϕ has no fixed points in Bn the number ]inv(ϕ) coincides with the dimension
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of the inner space

A(ϕ) := span{v ∈ Cn : dϕτ (v) = α(ϕ)v, 〈v, τ〉 6= 0}

introduced in [5] (see also [4, Theorem 2.4]).

We examine now invariant slices for semigroups.

Theorem 2.4 Let (ϕt) be a continuous non-elliptic semigroup in LFM(Bn,Bn)
with τ ∈ ∂Bn as the common Denjoy-Wolff point. Let αt denote the boundary
dilatation coefficient of ϕt at τ and consider the inner space of ϕt

At := span {w ∈ Cn : d(ϕt)τw = αtw, 〈w, τ〉 6= 0, } .

Also let A := ∩t≥0At. Then

(1) If At0 = {0} for some t0 > 0 then At = {0} for all t > 0 and ϕt has no
invariant slices in Bn for all t > 0.

(2) If At0 6= {0} for some t0 > 0 then A 6= {0}.

Moreover, if p := dimA > 0 then (ϕt) has exactly p common independent
invariant slices in Bn.

PROOF. If At = {0} for all t > 0 then, by Propositions 2.1 and 2.3, no ϕt

has any invariant slice.

So, assume that At0 6= {0} for some t0 > 0 and let d = dimAt0 . Notice
that d ≤ n. First of all, At0 = ker(d(ϕt0)τ − αt0I) because clearly At0 ⊆
ker(d(ϕt0)τ − αt0I) and, conversely, if v ∈ ker(d(ϕt0)τ − αt0I) is such that
〈v, τ〉 = 0 then for any w ∈ At0 with 〈w, τ〉 6= 0 (and there must exist such a w
because At0 6= {0}) it follows that 〈v−w, τ〉 6= 0 and since v = w+(v−w) ∈ At0

then v ∈ At0 .

Now we claim that d(ϕt)τAt0 ⊆ At0 for every t ≥ 0. To see this, let w ∈ At0

and t ≥ 0. Since

d(ϕt0)τd(ϕt)τw = d(ϕt0 ◦ ϕt)τw = d(ϕt)τd(ϕt0)τw = αt0d(ϕt)τw,

then d(ϕt)τw ∈ ker(d(ϕt0)τ − αt0I) = At0 .

Now, let K := Bn ∩ (At0 + τ). Since At0 is d(ϕt)τ -invariant for all t ≥ 0 then
by Proposition 2.1 it follows that ϕt(K) ⊆ K for all t ≥ 0. The set K is
equivalent to a ball of dimension d by means of an affine map (to see this from
an algebraic point of view conjugate with rotations in such a way that τ = e1

and At0 is spanned by {e1, . . . , ed}, cfr [4, Lemma 4.1]). Let θ : K → Bd

be the affine transformation mapping K to the ball of dimension d in Cd.
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Then we have a well defined semigroup t 7−→ ηt := θ ◦ ϕt|K ◦ θ−1 of linear
fractional maps of Bd. It is clear that (ηt) is non-elliptic, its Denjoy-Wolff point
is x := θ(τ) ∈ ∂Bd and the boundary dilatation coefficient of ηt at x is still
αt. Moreover, by construction, d(ηt0)τ = αt0I.

The statement (2) of the theorem will follow as soon as we show that there
exists v ∈ Cd such that 〈v, x〉 6= 0 and d(ηv)tv = αtv for all t ≥ 0, because
then dθ−1

x (v) ∈ At for all t ≥ 0.

To this aim, we examine the continuous application t 7−→ d(ηt)x. This is
clearly a continuous semigroup of matrices and therefore there exists a matrix
M ∈ Cd×d such that d(ηt)x = exp(tM). Write M = P−1JP with J a Jordan
blocks matrix. Then exp(tM) = P−1 exp(tJ)P . Since d(ηt0)τ = αt0I then
exp(t0J) = αt0I which means that J is diagonal, with diagonal entries aj,
j = 1, . . . , d. Since P is invertible, there exists j ∈ {1, . . . , d} such that the
vector v = P−1ej satisfies 〈v, x〉 6= 0. Now

d(ηt)x(v) = exp(tM)(P−1ej) = P−1 exp(tJ)ej = exp(taj)P
−1ej = exp(taj)v.

Therefore by Proposition 1.3.(4) it follows that exp(taj) = αt and we are done.

The last assertion follows easily from the very definition of A. 2

Remark 2.5 The argument in the proof of Theorem 2.4 shows that if t0 > 0
is such that At0 = A, then, for all t ≥ 0, At0 is ϕt-invariant, d(ϕt)τ -invariant
and the restriction of d(ϕt)τ (viewed as a linear map) to At0 is diagonalizable.

3 Classification of elliptic semigroups

In this section we deal with elliptic semigroups of linear fractional self-maps
of Bn. Hervé’s theorem (see, e.g., [1] or [24]) states that the fixed points set
of a holomorphic self-map of Bn is either empty or it is a slice of Bn (that
is the intersection of Bn with an affine complex space). Accordingly, if ϕ ∈
LFM(Bn,Bn) has a non-empty fixed points set in Bn then such a set is a p-
dimensional slice of Bn. Namely, it is the non-empty intersection between Bn

and a p-dimensional affine space of Cn with p ≥ 0. We classify an elliptic
semigroup according to the dimension of its common fixed points set and to
the action of the differentials on its tangent space.

As a matter of notation whenever ϕ ∈ Hol(Bn,Bn) and Z0 ∈ Bn is a fixed
point of ϕ, we define the unitary space of ϕ at the point Z0 as

LU(ϕ,Z0) :=
⊕

|λ|=1

ker(dϕZ0 − λI)n.
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In other words, LU(ϕ,Z0) is the (direct) sum of all generalized eigenspaces of
dϕZ0 associated to the different eigenvalues of modulus 1. The dimension of
LU(ϕ,Z0) is called the unitary index of ϕ at Z0 and it is usually denoted by
u(ϕ,Z0).

We begin with showing that the above index can be consistently defined in
the context of semigroups.

Lemma 3.1 Let (ϕt) be an elliptic semigroup of LFM(Bn,Bn). Then there
exists a non-negative integer p such that u(ϕt, Z0) = p, for every common
fixed point Z0 ∈ Bn of the semigroup and for every t > 0.

PROOF. Let us first suppose that (ϕt) has only one common fixed point
Z0 ∈ Bn. Up to conjugation, we may assume that Z0 = O. Therefore,

ϕt(Z) =
AtZ

〈Z, Ct〉+ 1
,

for some At ∈ Cn×n and Ct ∈ Cn. Now [0, +∞) 3 t 7→ d(ϕt)O = At ∈ Cn×n is
a continuous matrix semigroup, so there exists M ∈ Cn×n such that At = etM .
Note that by Schwarz’s Lemma ‖At‖ ≤ 1, for all t ≥ 0. This implies (see for
instance [21, p. 428]) that the real part of each eigenvalue of M is non-positive
and those eigenvalues of M whose real part is zero have the same algebraic
and geometric multiplicity. In particular, we can deduce that

M = P




λ1i
. . .

λpi

Jp+1(λp+1)
. . .

Jp+q(λp+q)




P−1

where 1 ≤ p+q ≤ n, P is an invertible matrix of order n, every λk (k = 1, ..., p)
is a real number and Jp+k(λp+k) denotes a Jordan block associated to λp+k ∈ C
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with Re (λp+k) < 0, for every k = 1, ..., q. Therefore

eMt = P




eλ1ti

. . .

eλpti

exp(Jp+1(λp+1)t)
. . .

exp(Jp+q(λp+q)t)




P−1.

Since all the diagonal entries of the upper triangular matrix exp(Jp+k(λp+k)t),
for k = 1, ..., q, are equal to eλp+kt then these blocks have eigenvalues with
modules strictly less than one; hence the dimension of the sum of generalized
eigenspaces of eMt associated to eigenvalues of modulus one is exactly p. In
other words, u(ϕt, O) = p, for all t ≥ 0.

Now, suppose that the semigroup (ϕt) has at least two common fixed points.
By Herve’s theorem any slice joining two different fixed points is fixed for all
ϕt’s and therefore there exists an affine s-dimensional slice of common fixed
points for (ϕt) for some s ≥ 1. A simple argument (see [4, proof of Theorems
3.1, 3.2]) allows us to assume that, up to conjugation, the common fixed points
set for (ϕt) is given by C{e1, . . . , es} ∩ Bn. Therefore for each t ≥ 0,

ϕt(z1, . . . , zs, z
(s)) =

(
z1, . . . , zs, Atz

(s)
)

where At is a matrix of order n−s and z(s) ∈ Cn−s. Then ϕ
(s)
t : (t, z(s)) 7→ Atz

(s)

is an elliptic semigroup of linear fractional maps in B(s) and, if p′ is the unitary
index of ϕ

(s)
t at O then clearly the unitary index of ϕt at (z1, . . . , zs, O) is p′+s

for all (z1, . . . , zs) ∈ Bs, concluding the proof. 2

We call u(ϕt) the unitary index of the semigroup (ϕt), which, thanks to Lemma
3.1, can be safely defined as u(ϕt) := u(ϕ1, Z0) for some Z0 ∈ Bn such that
ϕ1(Z0) = Z0.

By Theorem 1.5, if Fix(ϕt0) = {Z ∈ Bn : ϕt0(Z) = Z} is non-empty for
some t0 > 0 then Fix(ϕt) is a non-empty affine subset of Bn for all t ≥ 0 and
therefore the set F := ∩t≥0Fix(ϕt) is a non-empty p-dimensional slice of Bn

with p ≥ 0.

Before stating the next result we need to recall some concepts from matrix
theory. A matrix M ∈ Cn×n is said to be dissipative, whenever Re w∗Mw ≤ 0
for all w ∈ Cn; it is said to be asymptotically stable if all of its eigenvalues
have negative real part. Recall that the so called Phillips-Lumer’s theorem
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(see, e.g., [27, p. 250]) states that ‖etM‖ ≤ 1 for all t if and only if M is
dissipative; while M is asymptotically stable if and only if etM → O ∈ Cn as
t goes to +∞ (see, e.g., [21, Theorem 9.57]).

Theorem 3.2 Let (ϕt) be an elliptic semigroup of linear fractional self-maps
of Bn, let F := ∩t≥0Fix(ϕt) be the corresponding p-dimensional slice of common
fixed points of (ϕt) in Bn and let u(ϕt) be the unitary index of the semigroup.

(1) If p = 0 and u(ϕt) > 0 or if p ≥ 1 then (Bn, ϕt) is conjugated to (Bn, ψt)
with

ψt(z
′, z′′, z′′′) = (z′, eitΘz′′, etMz′′′)

where (z′, z′′, z′′′) ∈ Cp×Cq×Cn−p−q∩Bn, p+ q = u(ϕt), Θ is a diagonal
matrix of order q with real entries and M is a dissipative asymptotically
stable matrix of order n− p− q.

(2) If p = u(ϕt) = 0 then there exist a dissipative and asymptotically stable
matrix M and a complex ellipsoid Ω ⊂ Cn such that (Bn, ϕt) is conjugated
to (Ω, etM).

Conversely, any iteration couple as in (1) and (2) can be realized as an elliptic
semigroup of linear fractional self-maps of Bn.

PROOF. (1) First of all, we consider the case p = 0 and q := u(ϕt) > 0.
Then, F = {Z0} for some Z0 ∈ Bn. Up to conjugations with automorphisms
of the unit ball, we can clearly assume that Z0 = O. Therefore,

ϕt(Z) =
AtZ

〈Z,Ct〉+ 1

for some At ∈ Cn×n and Ct ∈ Cn. By hypothesis, the unitary space LU(ϕt, O)
is q-dimensional and therefore (see the proof of Lemma 3.1) there exists a
linear independent subset Γ1 := {u1, ..., uq} of Cn such that:

(i) For all t > 0, LU(ϕt, O) = L := span(Γ1).
(ii) For all t > 0 and for all k = 1, ..., q, it follows that d(ϕt)O(uk) = λkuk for

some λk ∈ C.

Let us consider the q-dimensional slice SL := L ∩ Bn. By Remark 2.2 and (ii)
it follows that for all t > 0, ϕt(SL ∩ Cuk) ⊆ SL ∩ Cuk for all k = 1, . . . , q
and by Schwarz’s lemma ϕt|SL∩Cuk

is an automorphism. Therefore ϕt maps SL

bijectively onto SL. Since SL is a ball of dimension q this means that ϕt|SL∩Cuk

is a semigroup of unitary matrices whose differentials at O are simultaneously
diagonalizable. Therefore we can find an orthonormal basis Γ2 := {w1, ..., wq}
of L such that d(ϕt)O(wk) = eitdkwk for k = 1, ..., q and t > 0. Up to rotations,
we can then assume that wj = ej, j = 1, . . . , q, that SL = spanC{e1, . . . , eq} ∩
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Bn and that

ϕt(Z) =
(U ′

tz
′ + A′

tz
′′, A′′

t z
′′)

〈z′′, c′′t 〉+ 1
,

where Z = (z′, z′′) ∈ Cq × Cn−q ∩ Bn, U ′
t is a diagonal unitary q × q matrix

with entries eitdk , dk ∈ R, k = 1, . . . , q, A′
t ∈ Cq×(n−q), A′′

t ∈ C(n−q)×(n−q) and
c′′t ∈ Cn−q with ‖c′′t ‖ < 1.

We claim that also A′
t = O and c′′t = O. To see this, we first notice that for all

x = (x′, O) ∈ SL ∩ ∂Bn we have

d(ϕt)x =




U ′
t A′

t − U ′
tx
′ · (c′′t )∗

O A′′
t


 .

As a consequence of Rudin’s version of the Julia-Wolff-Carathéodory theorem
(see [24] or [1]) it follows that 〈d(ϕt)x(v), ϕt(x)〉 = 0 for all v ∈ TCx ∂Bn. In
particular, if we take x = ±ej with j = 1, . . . , q and v = ek with k = q+1, . . . , n
and since ϕt(±ej) = ±eitdjej, it follows that 〈d(ϕt)±ej

(ek), ej〉 = 0, for all
j = 1, . . . , q and k = q + 1, . . . , n. In particular, A′

t − U ′
tx
′ · (c′′t )∗ = O for

x′ = ±(ej)
′, j = 1, . . . , q. Thus, A′

t = O and c′′t = O as wanted.

Since (d(ϕt)O) is a continuous matrix semigroup then A′′
t = etM for some

matrix M of order n− q. To conclude we just note that, by Schwarz’s Lemma,
‖etM‖ ≤ 1 for all t, so that, by Phillips-Lumer’s theorem, M is dissipative. In
particular, every eigenvalue of M has non-negative real part. By construction
all unitary eigenvalues of d(ϕt)O are contained in L and hence all eigenvalues
of M has strictly negative real part, as wanted.

Suppose now that p ≥ 1. Up to conjugation with automorphisms, we can
assume that F = Bn∩spanC{e1, . . . , ep}. A direct computation (or see [4, proof
of Theorem 3.2]) shows then that ϕt(Z) = (z′, Atz

′′) for (z′, z′′) ∈ Cp × Cn−p

and some (n − p) × (n − p) matrix At with ‖At‖ ≤ 1. Since (t, z′′) 7→ Atz
′′

is an elliptic semigroup of linear fractional self-maps of Bn−p with only one
common fixed point at O, the result follows arguing as before.

(2) First of all, up to conjugation with automorphisms of Bn we can assume
that Z0 = O. Therefore

ϕt(Z) =
AtZ

〈Z,Ct〉+ 1

for some At ∈ Cn×n and Ct ∈ Cn. Since ϕt+s = ϕt ◦ ϕs we have

〈Z, Ct+s〉 − 〈esNZ, Ct〉 − 〈Z, Cs〉 ≡ 0 (2)

and At = etN for some matrix N of order n. We claim that N is invertible for
otherwise there would be a non-zero vector w ∈ Cn such that Nw = O and
thus, for all t > 0, etNw = w, implying that u(ϕt) ≥ 1, against our hypothesis.
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Deriving (2) with respect to s and setting s = 0, we obtain 〈Z, d
dt

Ct〉 −
〈NZ, Ct〉−〈Z, V0〉 ≡ 0, where V0 = d

dt
Ct|t=0. Taking into account that C0 = O,

we have thus the following system of differential equations





d
dt

Ct = N∗Ct + V0,

C0 = O.

Since N is invertible, the solution of the above differential system is given by
Ct = (etN∗ − I)V where V ∈ Cn is such that N∗V = V0. Since ϕt(Bn) ⊆ Bn it
follows that ‖(etN∗−I)V ‖ < 1. Since the unitary index of the semigroup is zero,
Cartan-Carathéodory’s theorem (see, e.g. [1]) implies that etN = d(ϕt)O → O
as t goes to +∞. Hence, etN∗ → O as t → ∞ and then δ := ‖V ‖ ≤ 1.
Therefore there exists a unitary matrix U such that U∗V = δe1. Conjugating
ϕt with the automorphism Z 7→ UZ, we obtain the semigroup

ϕ̂t(Z) =
etMZ

δ〈Z, (etM∗ − I)e1〉+ 1
, Z ∈ Bn

where M = U∗NU . As in part (1), a joint application of Schwarz’s Lemma
and Phillips-Lumer theorem shows that M is dissipative and asymptotically
stable, since u(ϕ̂t) = u(ϕt) = 0.

Let us now define

σ(Z) :=
Z

−δz1 + 1
, Z = (z1, z

′) ∈ C× Cn−1 ∩ Bn. (3)

The linear fractional map σ is clearly holomorphic and injective in Bn, since
δ ≤ 1. A direct computation shows that

σ ◦ ϕ̂t(Z) = etMσ(Z)

for all t ≥ 0 and Z ∈ Bn. Thus, setting Ω := σ(Bn) we have the result.

Finally, from the very construction it follows that every iteration couple as
in (1) and (2) can be realized as an elliptic semigroup of linear fractional
self-maps of Bn. 2

From the previous proof we can better specify the shape of the complex ellip-
soid in part (2):

Corollary 3.3 Let (ϕt) be an elliptic semigroup of linear fractional self-maps
of Bn. Suppose that ∩t≥0Fix(ϕt) = {Z0} and u(ϕt) = 0.

• If (ϕt) extends analytically beyond the unit ball, i.e., if there exists ρ > 1
such that all the iterates of the semigroup are well-defined on ρBn, then there
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exist r ≥ 1 and a dissipative and asymptotically stable matrix M ∈ Cn×n

such that (Bn, ϕt) is conjugated to the iteration couple (∆1, e
tM), where ∆1

is the complex ellipsoid given by

∆1 =
{
(z, w) ∈ C× Cn−1 :

1

r2
|z −

√
r2 − 1|2 + ‖w‖2 < r2

}
.

• If the semigroup is not analytic beyond the unit ball then there exists a
dissipative and asymptotically stable matrix M ∈ Cn×n such that (Bn, ϕt) is
conjugated to the iteration couple (∆2, e

tM), where

∆2 =
{
(z, w) ∈ C× Cn−1 : Re (2z) > ‖w‖2 − 1

}
.

PROOF. By Theorem 3.2 the couple (Bn, ϕt) is conjugated to (Ω, etM), where
Ω = σ(Bn) and σ is defined in (3). Therefore

Ω = σ(Bn) = { Z
−δz1+1

: Z = (z1, z
′) ∈ C× Cn−1 ∩ Bn}

= {W = (w1, w
′) ∈ C× Cn−1 : |1 + δw1|2 > ‖W‖2}.

If δ < 1, we see that every iterate ϕt is holomorphic either on the ball (centered
at the origin) of radius 1

δ
> 1 if δ 6= 0 or in the whole Cn if δ = 0. In both

cases, the semigroup extends analytical beyond the unit ball. Then, if we set
r = (1− δ2)−1/2, we find that Ω = ∆1.

If δ = 1, from the proof of Theorem 3.2 it follows that all the iterates of
the semigroup have the same singularity at the boundary. In this case, direct
computations show that Ω = ∆2. 2

Remark 3.4 In [11] Cowen and MacCluer prove that if ϕ ∈ LFM(Bn,Bn)
fixes O and the spectrum of dϕO does not contain eigenvalues of modulus 1
then there exists an injective linear fractional map σ : Bn → Cn such that
σ ◦ ϕ = dϕO ◦ σ. Their argument (which is indeed a simplified version—and
the inspiration—of the proof of (2) above) allows only to state that if dϕO

contains eigenvalues of modulus 1 then such an intertwining map σ is defined
only on a neighborhood of O (not in all Bn). In the proof of Theorem 3.2,
which clearly works also for just one elliptic linear fractional map, we showed
that actually one can always obtain an intertwining mapping σ defined in all
of Bn, regardless the presence of eigenvalues of modulus 1.

4 Non-elliptic linear fractional maps

Our first result is somewhat technical and it says that, in the non-elliptic case,
we can always obtained a simpler iteration couple transferring the correspond-
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ing linear fractional map from Bn to Hn. We also show how this model can be
used to detect simply independent invariant slices.

Recall that if H ∈ Cn×n is a hermitian matrix, by the spectral theorem,
there exists a unitary n × n matrix U and a diagonal matrix D such that
H = U∗DU . If D has entries d1, . . . , dn ∈ R on the principal diagonal, let D+

be the diagonal matrix whose entry of position (j, j) is 0 if dj = 0 or d−1
j if

dj 6= 0. Then the pseudo-inverse (or generalized inverse) H+ of H is defined
as H+ := U∗D+U (see, e.g., [21]).

Lemma 4.1 Let ϕ ∈ LFM(Bn,Bn) be non-elliptic with Denjoy-Wolff point
τ ∈ ∂Bn and boundary dilatation coefficient α = α(ϕ). Then, the iteration
couple (Bn, ϕ) is conjugated to the iteration couple (Hn, ϕ̃) where

ϕ̃(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d), (z, w) ∈ Hn, (4)

with c ∈ C, b, d ∈ Cn−1, A ∈ C(n−1)×(n−1) satisfying

(i) Q := αI − A∗A is a hermitian positive semi-definite matrix,

(ii) αRe (c) − ‖d‖2 ≥
〈
Q+(A∗d− 1

2
αb), A∗d− 1

2
αb

〉
where Q+ is the pseudo-

inverse of Q,
(iii) A∗d− 1

2
αb belongs to the space spanned by the columns of Q.

PROOF. Up to conjugation with a rotation we can suppose that τ = e1. By
Proposition 1.3.(2) it follows that

dϕe1 =




α 0

d A


 (5)

for some d ∈ Cn−1 and A ∈ C(n−1)×(n−1). Conjugating ϕ with the Cayley
transform σ : Bn → Hn which maps e1 to O, namely σ(z, w) := (1− z, w)(1 +
z)−1 for (z, w) ∈ C× Cn−1, we obtain ϕ′ := σ ◦ ϕ ◦ σ−1 ∈ LFM(Hn,Hn) such
that O is its Denjoy-Wolff point and α is boundary dilatation coefficient at O.
Moreover, since TCO∂Hn = TCe1

∂Bn and, taking into account the form of ϕ (see
(1)) and (5), a straightforward computation gives us

ϕ′(z, w) =
(αz, Aw + zd)

cz + 〈w, b〉+ 1
, Re z > ‖w‖2,

for some c ∈ C, b ∈ C(n−1). Now let

G : Hn −→ Hn, G(z, w) :=
(

1

z
,
w

z

)
.

Then G ∈ Aut(Hn) and G ◦ σ = σC , the generalized Cayley transform.
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Let ϕ̃ := G ◦ ϕ′ ◦G−1. A direct computation shows that

ϕ̃(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d) , Re z > ‖w‖2.

We prove now that conditions (i), (ii) and (iii) hold.

The matrix Q is obviously hermitian. So, in order to prove (i), let w ∈ Cn−1

with ‖w‖ = 1. Since (r2, rw) ∈ ∂Hn for all r > 0, then ϕ̃(r2, rw) ∈ Hn

for every r > 0. Writing ϕ̃(Z) = (ϕz(Z), ϕw(Z)) ∈ C × Cn−1, we have thus
Re ϕ̃z(r

2, rw) ≥ ‖ϕ̃w(r2, rw)‖2, namely

α +
1

r
Re 〈w,αb〉+

1

r2
αRe c ≥

∥∥∥∥Aw +
1

r
d

∥∥∥∥
2

.

Letting r tend to infinite, we see that α ≥ ‖Aw‖2. Since w was arbitrary, we
get α ≥ ‖A‖2 . It follows immediately that all the (necessarily real) eigenvalues
of Q are non-negative and therefore Q is semi-definite positive.

As for the other two conditions, since ϕ̃(Hn) ⊆ Hn and ϕ̃ is continuous on Hn,
we have that ϕ̃(∂Hn) ⊂ Hn. If we parameterize ∂Hn as

R× Cn−1 3 (r, w) 7→ (‖w‖2 + ir, w) ∈ ∂Hn,

then for every w ∈ Cn−1 it holds

α ‖w‖2 + αRe 〈w, b〉+ αRe c ≥ ‖Aw + d‖2 .

Denoting Q := αI −A∗A, γ1 := −1
2
(αb− 2A∗d) and γ2 = 1

2
(αRe c−‖d‖2), the

above inequality is equivalent to

F (w) :=
1

2
w∗Qw − Re 〈w, γ1〉+ γ2 ≥ 0. (6)

Notice that γ2 ∈ R and, since Q is hermitian, also w∗Qw ∈ R. Thus, we have
a function F : Cn−1 → R such that F (w) ≥ 0, for every w ∈ Cn−1. We claim
that F ≥ 0 if and only if

F (Q+γ1) ≥ 0 and γ1 ∈ spanC{Qe1, . . . , Qen−1}.
Since Q+QQ+ = Q+, we see that F (Q+γ1) = γ2 − 1

2
γ∗1Q

+γ1 and thus (ii) and
(iii) follow.

Thus we are left to prove the claim. The matrix Q is a hermitian positive
semi-definite matrix with, say, rank k ≤ n− 1.

By the spectral decomposition theorem, there exists an unitary matrix U of
order n− 1 such that Q = UΣU∗, where Σ is a diagonal matrix whose entries
are

σ1 ≥ σ2 ≥ · · · ≥ σk > σk+1 = · · · = σn−1 = 0.
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Let
F̂ (w) := F (Uw), w = (w1, ..., wn−1) ∈ Cn−1.

Clearly F ≥ 0 if and only if F̂ ≥ 0. Let

ν = (ν1, . . . , νn−1) := U∗γ1, δ := γ2 − 1

2

k∑

j=1

|νj|2
σj

.

Thus

F̂ (w) =
1

2

k∑

j=1

∣∣∣∣∣
√

σjwj − νj√
σj

∣∣∣∣∣
2

+ δ −
n−1∑

j=k+1

Re (wjνj).

Clearly, if F̂ ≥ 0 then νk+1 = . . . = νn−1 = 0, namely, γ1 ∈ spanC{Qe1, . . . , Qen−1}.
Under this condition, F̂ assumes its minimum value at the point x = ( ν1

σ1
, . . . , νk

σk
, 0, . . . , 0).

And thus it is non negative if and only if F̂ (x) ≥ 0, namely F (Q+γ1) ≥ 0. 2

Notice that the intertwining map between the two iteration couples (Bn, ϕ)
and (Hn, ϕ̃) in Lemma 4.1 is simply given by a rotation followed by the Cayley
transform σC . Also, notice that setting w = 0 in (6) we obtain

αRe c− ‖d‖2 ≥ 0,

which implies Re c ≥ 0 because α > 0.

As a corollary of the proof of Lemma 4.1 we have the following result.

Proposition 4.2 Let ϕ ∈ LFM(Hn,Hn) be non-elliptic with Denjoy-Wolff
point ∞ and boundary dilatation coefficient α = α(ϕ). Then

ϕ(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d), (z, w) ∈ Hn, (7)

where c ∈ C, b, d ∈ Cn−1, A ∈ C(n−1)×(n−1) satisfy (i), (ii) and (iii) in
Lemma 4.1.

Conversely, for any α, A, b, c, d as before that satisfy (i), (ii) and (iii) in
Lemma 4.1 the linear fractional map ϕ defined by (7) is in LFM(Hn,Hn).

PROOF. One direction follows from the proof of Lemma 4.1. Conversely,
note that if α, A, b, c, d satisfy (i), (ii) and (iii) then (6) is satisfied and then
the linear fractional map ϕ defined by (7) is such that ϕ(Hn) ⊆ Hn. 2

The argument in the proof of Lemma 4.1 also allows us to detect automor-
phisms of Hn with Denjoy-Wolff point at ∞ among linear fractional self-maps
of Hn. In some sense, this extends [11, Theorem 2.90].
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Proposition 4.3 Let ϕ ∈ LFM(Hn,Hn) be without fixed points in Hn, with
Denjoy-Wolff point ∞ and boundary dilatation coefficient α := α(ϕ). Then
ϕ ∈ Aut(Hn) if and only if it is the composition of a rotation in the last
(n− 1)-coordinates and a generalized α-Heisenberg translation. That is,

ϕ(z, w) = φα(z, Uw), (z, w) ∈ Hn,

where U ∈ C(n−1)×(n−1) is a unitary matrix and

φα(z, w) :=
1

α
(z + 2

1√
α
〈w, d〉+ c,

√
αw + d), (z, w) ∈ Hn (8)

with Re c = ‖d‖2.

PROOF. According to Proposition 4.2 the map ϕ has the form

ϕ(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d), Re z > ‖w‖2.

By Alexander’s theorem (see, e.g., [24], or [4, Theorem 2.3]) ϕ ∈ Aut(Hn) if
and only if ϕ(∂Hn) ⊆ ∂Hn. From this the statement follows easily. 2

As we promised, we apply the above result to estimate ]inv(ϕ), the dimension
of the space spanned by the direction subspaces VS of all ϕ-invariant slices
S ⊂ Bn (see Section 2).

Proposition 4.4 Let ϕ ∈ LFM(Bn,Bn) be non-elliptic with Denjoy-Wolff
point τ ∈ ∂Bn and boundary dilatation coefficient α = α(ϕ). Let (Hn, ϕ̃) with

ϕ̃(z, w) =
1

α
(z + 〈w, b〉+ c, Aw + d), (z, w) ∈ Hn

be the iteration couple prescribed in Lemma 4.1, conjugated to the iteration
couple (Bn, ϕ). Then:

(1) The boundary dilatation coefficient α is not an eigenvalue of A if and
only if ]inv(ϕ) = 1.

(2) If α is an eigenvalue of A, then either ]inv(ϕ) = 0 or ]inv(ϕ) = 1 +
dim ker(αI − A).

Moreover, if ]inv(ϕ) ≥ 1 then we can assume that d = 0 and Aej = αej for
j = 1, . . . , ]inv(ϕ)− 1.

PROOF. Since ϕ and ϕ̃ are conjugated, then ]inv(ϕ) = ]inv(ϕ̃). Moreover,
by Proposition 2.3 all invariant slices S ′ ∈ Hn for ϕ̃ are of the form {(z, w) ∈
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C×Cn−1 : w = const}. Hence, to determine ]inv(ϕ̃), we just need to solve the
linear system

(A− αI)w = d.

Now, assertion (1) follows from the fact that this system has a unique solution
if and only if the matrix (A− αI) is invertible.

Otherwise, if (A−αI) is not invertible then the system has either no solutions
or the set of all solutions contains 1+dim Ker(αI−A) independent solutions,
which proves (2).

Now, assume ]inv(ϕ̃) ≥ 1 and let S ′ = {(z, w) ∈ Hn : w = w0} be an invariant
slice. We can use a parabolic automorphism Φ of the form (8) (with boundary
dilatation coefficient 1) to map w = O to w0. Then Φ−1 ◦ ϕ̃ ◦ Φ has the slice
S ′0 := {(z, w) ∈ Hn : w = 0} as invariant and therefore the w-component of
Φ−1 ◦ ϕ̃ ◦ Φ is of the form Aw/α (there is no d term). Up to this conjugation
we can then assume that ϕ̃ is a linear fractional map with d = 0. Now, if
we conjugate ϕ̃ with a rotation (z, w) 7→ (z, Uw) with U unitary, we see that
the w-component of ϕ̃ becomes U∗AUw/α. It is clear (cfr. [4, Lemma 4.1])
that we can choose U in such a way that the eigenvectors of A related to the
eigenvalue α are e1, . . . , el with l = dim Ker(αI − A), ending the proof. 2

5 Classification of hyperbolic semigroups of linear fractional maps

We begin with the following result which completely classifies hyperbolic semi-
groups of linear fractional maps.

Theorem 5.1 Let (ϕt) be a hyperbolic continuous semigroup in LFM(Bn,Bn).
Then, the iteration couple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t))
where

ϕ̃t(z, w) = eλt(z + (1− e−λt)c, etMw + e−λt
(∫ t

0
e(λI+M)sds

)
d), (z, w) ∈ Hn

with λ > 0, c ≥ 0 d ∈ Cn−1, M ∈ C(n−1)×(n−1) and such that

(i) Qt := e−λtI − exp (tM∗) exp (tM) is a positive semi-definite hermitian ma-
trix for every t ≥ 0,

(ii) e−λt(1 − e−λt)c − ‖dt‖2 ≥
〈
Q+

t exp (tM∗dt), exp (tM∗)dt

〉
, for every t ≥ 0,

where Q+
t is the pseudo-inverse of Qt and dt = e−λt

(∫ t
0 e(λI+M)sds

)
d,

(iii) exp (M∗t)dt belongs to the space spanned by the columns of Qt, for every
t ≥ 0.
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Moreover, given λ, c, d, M as above, there exists a hyperbolic semigroup (ϕt) of
linear fractional self-maps of Bn such that (Bn, (ϕt)) is conjugated to (Hn, (ϕ̃t)).

PROOF. According to Theorem 1.5, the boundary dilatation coefficient α(ϕt)
at the common Denjoy-Wolff point of the semigroup is e−λt, for some λ > 0.
By conjugating ϕt via the Cayley transform στ : Bn → Hn which maps τ to
∞ (see Lemma 4.1), the semigroup (Bn, (ϕt)) is conjugated to the semigroup
(Hn, (ϕ1

t )) with

ϕ1
t (z, w) = eλt(z + 〈w, bt〉+ ct, Atw + dt), (z, w) ∈ Hn, (9)

where ct ∈ C, bt, dt ∈ Cn−1 and At ∈ C(n−1)×(n−1) satisfy (i), (ii) and (iii) in
Lemma 4.1. In particular (i) implies ‖At‖ ≤

√
e−λt < 1, for all t > 0.

Applying the algebraic semigroup conditions, we come up with the following
four equations for the above coefficients:





1) ct+s = e−λsct + cs + 〈ds, bt〉
2) dt+s = Atds + e−λsdt

3) At+s = AtAs

4) bt+s = bs + A∗
sbt

t, s ≥ 0. (10)

Moreover, since ϕ1
0 is the identity on Hn, we obtain c0 = 0, b0 = O, d0 = O

and A0 = I. In what follows, recall that t 7→ ϕ1
t is real analytic and therefore

we can freely differentiate ct, bt, dt and At with respect to t.

From equation 3) we see that there exists a matrix M ∈ C(n−1)×(n−1) such
that At = exp(tM).

Next, we look at equation 4). Differentiating with respect to s and setting
s = 0, we obtain the following system of linear differential equations





d

dt
bt = M∗bt + v,

b0 = O,

for some vector v ∈ Cn−1. Since ‖At‖ < 1, then M∗ is invertible. Therefore,
we have bt = (exp (tM∗)− I)b for some vector b ∈ Cn−1 such that M∗b = −v.

Now, consider the following Heisenberg translation

η(z, w) = (z + 2 〈w, k2〉+ k1, w + k2), (z, w) ∈ Hn
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with (k1, k2) ∈ ∂Hn, namely Re k1 = ‖k2‖2. By Proposition 4.3 it follows that
η ∈ Aut(Hn). Let

ϕ2
t = η−1 ◦ ϕ1

t ◦ η.

Straightforward computations show that

ϕ2
t (z, w) = eλt(z + 〈w, bt + 2k2 − 2A∗

t k2〉+ c̃t, Atw + d̃t), (z, w) ∈ Hn

for some c̃t ∈ C and d̃t ∈ Cn−1 still satisfying the same algebraic semigroup
conditions of ct and dt.

We focus our attention to the linear system

(A∗
t − I)k2 =

1

2
bt. (11)

Substituting the expressions of At and bt as found before, we see that such a
system is solved for k2 = 1

2
b. Therefore, if we choose (k1, k2) = (‖1

2
b‖2, 1

2
b), we

have
ϕ2

t (z, w) = eλt(z + c̃t, e
tMw + d̃t), (z, w) ∈ Hn,

with 



1) c̃t+s = e−λsc̃t + c̃s, c̃0 = 0,

2) d̃t+s = etM d̃s + e−λsd̃t, d̃0 = 0.

Arguing as before, passing from algebraic equations to differential equations,
we obtain





c̃t = (1− e−λt)c, for some c ∈ C
d̃t = e−λt

(∫ t
0 e(λI+M)sds

)
d, for some d ∈ Cn−1.

We prove now that we can conjugate once more in order to take c ∈ R. Assume
that c = c1 + ic2 with c1, c2 ∈ R. Let ν(z, w) = (z − ic2, w) for (z, w) ∈ Hn.
Then, ν is an automorphism of Hn. A straightforward computation shows that

ν−1 ◦ ϕ2
t ◦ ν(z, w) = eλt(z + (1− e−λt)c1, e

tMw + e−λt
(∫ t

0
e(λI+M)sds

)
d).

The remaining assertions follow now applying Lemma 4.1. 2

Remark 5.2 Condition (i) in the above Theorem 5.1 means (in the terminol-
ogy of dynamical systems) that the matrix M is λ

2
-uniformly dissipative. That

is, (i) is equivalent to

(i′) Rew∗Mw ≤ −λ

2
‖w‖2 , for all w ∈ Cn−1.

Indeed, Qt is positive semi-definite for all t ≥ 0 if and only if
∥∥∥e(λI+M+M∗)t

∥∥∥ ≤
1, for all t ≥ 0, which, by Phillips-Lumer’s theorem (see, e.g., [27, p. 250]), it
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is equivalent to Rew∗(λI + M + M∗)w ≤ 0, for all w ∈ Cn−1, which in turns
is equivalent to (i′).

A quite interesting consequence of this classification is the link between the
conjugation of hyperbolic semigroups in LFM(Bn,Bn) and the classical open
question of the classification of automorphisms in Cn, provided by the next
corollary whose proof is straightforward from Theorem 5.1.

Corollary 5.3 Let (ϕt) a continuous hyperbolic semigroup in LFM(Bn,Bn).
Then, there exist a biholomorphic map σ from Bn onto Hn and a continuous
group (φt) in Aut(Cn,Cn) such that, for every t ≥ 0, the restriction of φt to
Hn is exactly σ ◦ ϕt ◦ σ−1.

As one might suspect, the existence of invariant slices also allows to simplify
the model given in Theorem 5.1. We recall that by Theorem 2.4 and assuming
that (ϕt) is a semigroup of non-elliptic linear fractional self-maps of Bn (or of
Hn), if ϕt0 has some invariant slices for some t0 > 0 then (ϕt) has at least one
common invariant slice.

Before examining the case of existence of invariant slices, we comment some
examples.

Example 5.4 Let

ϕt(z, w) = (eλtz + (eλt − 1)c, w + t),

for (z, w) ∈ H2, where λ > 0 and c ≥ λ2. According to Theorem 5.1 the
semigroup (ϕt) is a hyperbolic semigroup of LFM(H2,H2) and clearly there
are no invariant slices for t > 0. Moreover, each hyperbolic semigroup of
LFM(H2,H2) with no invariant slice can be conjugated to a semigroup as above
for a certain c ≥ 0.

Example 5.5 Let λ > 0 and let

ϕt(z, w) = (eλtz, e2πik1tw1, . . . , e
2πikn−1twn−1),

for (z, w1, ...wn−1) ∈ Hn, with kp = 2−p, p = 1, ..., n − 1. Notice that ϕt is a
hyperbolic semigroup of LFM(Hn,Hn) with only one common invariant slice
{(z, w) ∈ Bn : w = 0}. However, as t varies in (0,∞) the dimension of the
inner space At varies between 1 and n (all values are attained) and thus there
exist iterates ϕt which have up to n independent invariant slices.

The two previous examples are somewhat degenerate as the following remark
explains.

Remark 5.6 Let (Bn, (ϕt)) be a hyperbolic semigroup of LFM(Bn,Bn) with
common Denjoy-Wolff point τ ∈ ∂Bn. Let (Hn, (ϕ̃t)) be the conjugated semi-

24



group of LFM(Hn,Hn) given by Theorem 5.1. Then, to study the number of
common independent invariant slices (in Hn), we write down the family of
equations

(et(λI+M) − I)w = (
∫ t

0
e(λI+M)sds)d, t ≥ 0.

Let us see that (Bn, (ϕt)) has a unique invariant slice if and only if λI + M is
invertible. Firstly, the invertibility of this matrix implies that

∫ t
0 e(λI+M)sds =

(et(λI+M) − I)(λI + M)−1. Moreover, since et(λI+M) tends to I as t goes to 0,
there must be some t > 0 such that et(λI+M) is invertible. Therefore, the only
possible common solution to the above family of equations is w = (λI+M)−1d,
hence (Bn, (ϕt)) has a unique invariant slice. On the other hand, if there exists
a unique invariant slice and (λI +M) were not invertible, taking any non-zero
vector w in the kernel of (λI +M) it would follow that (e(λI+M)t−I)w = O for
all t ≥ 0, namely e−λt would be an eigenvalue of etM for all t, contradicting
Proposition 4.4.

The condition that λM+I is invertible can be easily translated into an algebraic
condition for (ϕt) as follows. A direct computation shows that the eigenvalues
of d(ϕt)τ are exactly e−tλ and e−tλ1 , . . . , e−tλm, the eigenvalues of etM , with
Re λj > 0 since ‖etM‖2 ≤ e−λt < 1. Therefore, λM + I is invertible if and
only if the algebraic multiplicity of the boundary dilatation coefficient e−tλ as
eigenvalue of d(ϕt)τ is 1 for some (and hence any) t > 0.

In case of existence of a common invariant slice for (ϕt) we can choose a
different conjugation.

Proposition 5.7 Let (ϕt) be a hyperbolic continuous semigroup in LFM(Bn,Bn).
Assume that ϕt has an invariant slice, for some t > 0. Then, the iteration cou-
ple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = eλt(z + (1− e−λt)c + 〈w, (eM∗t − I)b〉, eMtw), (z, w) ∈ Hn

with λ > 0, c ∈ C, b ∈ Cn−1 and M ∈ C(n−1)×(n−1) a λ
2
-uniformly dissipative

matrix.

PROOF. By Theorem 5.1 the semigroup (Bn, (ϕt)) is conjugated to (Hn, (ϕ1
t ))

where

ϕ1
t (z, w) = eλt(z + (1− e−λt)c, eMtw + dt)

with dt, c and M satisfying certain restrictions. By Theorem 2.4 there exists
a common invariant slice, say {(z, w) ∈ Hn : w = w0}. Consider the linear
fractional map

η(z, w) = (z − 2〈w, w0〉+ ‖w0‖2, w − w0), (z, w) ∈ Hn.
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Then η ∈ Aut(Hn) and η sends the slice {(z, w) ∈ Hn : w = w0} onto the slice
{(z, w) ∈ Hn : w = O}. Thus ϕ2

t := η−1 ◦ ϕ1
t ◦ η is of the form

ϕ2
t (z, w) = eλt(z + ct + 〈w, bt〉, etMw),

with ct, bt satisfying (10). Thus bt = (etM∗ − I)b and ct = (1− e−λt)c. Finally,
Lemma 4.1 and Remark 5.2 give the desired estimate. 2

Notice that the compatibility condition in Proposition 5.7 is not enough to
guarantee that the semigroup (ϕt) mapsHn intoHn. Indeed, conditions (ii), (iii)
in Lemma 4.1 must also be satisfied.

Remark 5.8 If the semigroup (ϕt) given at the above proposition has p + 1
(p ≥ 1) common independent invariant slices, it is possible to simplify a little
more the model, taking into account the final assertions given at Proposition
4.4. Indeed, up to a suitable rotation, the matrix eMt in (ϕ̃t), can be replaced
by the block matrix 


e−λtIp Bt

O Dt




where Dt = eNt for some N ∈ Cq×q and Bt = B
∫ t
0 eNsds for some B ∈ Cp×q.

In case ϕ ∈ LFM(Bn,Bn) has exactly two fixed points on ∂Bn, the situation
is much simpler.

Theorem 5.9 Let (ϕt) be a semigroup in LFM(Bn,Bn). If for some t0 > 0
the iterate ϕt0 has exactly two (distinct) fixed points then (ϕt) is a hyperbolic
semigroup with two common fixed points.

Moreover, the iteration couple (Bn, (ϕt)) is conjugated to the iteration couple
(Hn, (ϕ̃t)) where

ϕ̃t(z, w) = eλt(z, eMtw), (z, w) ∈ Hn

with λ > 0 and M ∈ C(n−1)×(n−1) a λ
2
-uniformly dissipative matrix.

Conversely, for all λ,M as above, there exists a hyperbolic semigroup (ϕt)
of LFM(Bn,Bn) with two common fixed points such that the iteration couple
(Bn, (ϕt)) is conjugated to (Hn, (ϕ̃t)).

PROOF. By [4, Theorem 3.2] the map ϕt0 is necessarily hyperbolic and both
fixed points belong to ∂Bn. Thus, all ϕt must be hyperbolic by Theorem 1.5.
According to Theorem 5.1 the iteration couple (Bn, ϕ) is conjugated to the
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iteration couple (Hn, ϕ̃) with

ϕ̃(z, w) = eλt(z + ct, e
tMw + dt), (z, w) ∈ Hn

satisfying (i), (ii) and (iii).

Since ϕt0 has another boundary fixed point different from its Denjoy-Wolff
point, so does ϕ̃t0 . Let (ẑ, ŵ) ∈ ∂Hn be such a fixed point. Hence, Re ẑ = ‖ŵ‖2

and

ẑ + ct0 = e−λt0 ẑ, et0M ŵ + dt0 = e−λt0ŵ.

Since ct0 = (1− e−λt0)c, the first equation implies ẑ = −c but since c ≥ 0 then
ẑ = c = 0. Imposing the condition ϕ̃t(O) ∈ Hn we find dt ≡ O as wanted.
Finally, Theorem 5.1 and Remark 5.2 give the remaining assertions. 2

As a corollary we have the following characterization of groups of hyperbolic
automorphisms of Bn.

Corollary 5.10 Let (ϕt) be a hyperbolic group in Aut(Bn). Then, the iteration
couple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = eλt(z, e−
λ
2
teitΘw), (z, w) ∈ Hn,

with λ > 0 and Θ a diagonal (n− 1)× (n− 1) matrix with real entries.

PROOF. Combining Theorem 5.9 and Proposition 4.3 we see that the iter-
ation couple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ1

t )) where

ϕ1
t (z, w) = eλt(z,

√
e−λtUtw), (z, w) ∈ Hn.

for some unitary matrix Ut = etH ∈ C(n−1)×(n−1). Thus H + H∗ = O. By
the spectral theorem there exists another unitary matrix V of order n − 1
such that V ∗HV = iΘ, with Θ a diagonal real matrix of order n − 1. Thus,
the statement follows as soon as we conjugate ϕ1

t with the map η ∈ Aut(Hn)
defined as η(z, w) = (z, V w). 2

In our last result of this section we provide a simple model in case the differ-
ential at the common Wolff point of an iterate of a hyperbolic semigroup of
linear fractional maps (ϕt) is normal:

Proposition 5.11 Let (ϕt) be a hyperbolic semigroup in LFM(Bn;Bn) and
let τ ∈ ∂Bn be the common Wolff point. If d(ϕt)τ acts normally on TCτ ∂Bn for
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some (and hence any) t > 0 then, the iteration couple (Bn, (ϕt)) is conjugated
to the iteration couple (Hn, (ϕ̃t)) with

ϕ̃t(Z) = (eλtz1 + (eλt − 1)c, z′ + td′, et∆z′′ + (e∆t − I)d′′, e
λ
2
teiΘtz′′′),

where Z = (z1, z
′, z′′, z′′′) ∈ C× Cp × Cq × Cr ∩Hn, c ≥ 0, d′ ∈ Cp, d′′ ∈ Cq,

∆ is a diagonal invertible matrix of order q all of whose entries have real part
strictly less than λ

2
, Θ is a diagonal matrix of order r with real entries and

p + q + r = n− 1 (p, q, r ≥ 0).

PROOF. Up to conjugation we can assume that (ϕt) is given as in Theorem
5.1. Then the action of the differential of (ϕt) on the complex tangent space
at the common Wolff point is represented by etM , and it is normal at t > 0
if and only if M is normal. The result follows then from an application of
the spectral theorem bearing in mind conditions (i) and (iii) appearing in
Theorem 5.1. 2

6 The parabolic case

In this section we examine parabolic semigroups of linear fractional maps.

Theorem 6.1 Let (ϕt) be a parabolic semigroup in LFM(Bn,Bn). Then, the
iteration couple (Bn, (ϕt)) is conjugated to the iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = (z + 〈w, bt〉+ ct, e
Mtw + dt), (z, w) ∈ Hn

and

ct := ct +
∫ t

0

〈
eMsd, b

〉
(t− s)ds, dt :=

(∫ t

0
eMsds

)
d, bt :=

(∫ t

0
eM∗sds

)
b,

with c ∈ C, b, d ∈ Cn−1, M ∈ C(n−1)×(n−1) and such that

(i) Qt := I − eM∗teMt is a positive semidefinite hermitian matrix, for every
t ≥ 0,

(ii) Re(ct)−‖dt‖2 ≥
〈
Q+

t (eM∗tdt − 1
2
bt), (e

M∗tdt − 1
2
bt)

〉
, for every t ≥ 0, where

Q+
t is the pseudo-inverse of Qt,

(iii) eM∗tdt − 1
2
bt belongs to the space spanned by the columns of Qt, for every

t ≥ 0.

Moreover, given c, b, d and M as above, there exists a parabolic semigroup (ϕt)
of linear fractional self-maps of Bn such that the iteration couple (Bn, (ϕt)) is
conjugated to (Hn, (ϕ̃t)).
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PROOF. According to Theorem 1.5, the boundary dilatation coefficient α(ϕt)
at the common Denjoy-Wolff point of the semigroup is exactly 1. Then, by
conjugating ϕt via the Cayley transform στ : Bn → Hn which maps τ to
∞ (see Lemma 4.1), the semigroup (Bn, (ϕt)) is conjugated to the semigroup
(Hn, (ϕ1

t )) with

ϕ1
t (z, w) = (z + 〈w, bt〉+ ct, Atw + dt), (z, w) ∈ Hn, (12)

where ct ∈ C, bt, dt ∈ Cn−1 and At ∈ C(n−1)×(n−1) satisfy (i), (ii) and (iii) in
Lemma 4.1.

Applying the algebraic semigroup conditions, we come up with the following
four equations for the above coefficients:





1) ct+s = ct + cs + 〈ds, bt〉
2) dt+s = Atds + dt

3) At+s = AtAs

4) bt+s = bs + A∗
sbt

t, s ≥ 0. (13)

Moreover, we have that c0 = 0, b0 = O, d0 = O, and A0 = I.

As in the hyperbolic case, from equation 3) we deduce that there exists a
matrix M ∈ C(n−1)×(n−1) such that At = exp(tM). We point out that M is
not necessarily invertible now.

Next, arguing as in the hyperbolic case, we solve 2) and 4) to get





bt =
(∫ t

0 eM∗sds
)
b,

dt =
(∫ t

0 eMsds
)
d,

for some vectors b, d ∈ Cn−1.

Finally, to compute ct we differentiate with respect to t and setting t = 0, we
obtain that 




d
ds

cs = v + 〈ds,
d
dt

bt|t=0〉
c0 = 0,

for some v ∈ Cn−1. Therefore

〈ds,
d

dt
bt|t=0〉 = 〈

(∫ s

0
eM∗tdt

)
d, b〉.

Integrating with respect to s and applying Fubini’s theorem, we obtain the
wanted expression for ct. The remaining assertions follow by Lemma 4.1. 2
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Remark 6.2 Condition (i) in the above theorem means exactly that the ma-
trix M is dissipative. Indeed, Qt is positive semidefinite for all t ≥ 0 if and
only if

∥∥∥eMt
∥∥∥ ≤ 1, for all t ≥ 0 and the claim follows from Phillips-Lumer’s

theorem.

In a similar way as in the hyperbolic case, Theorem 6.1 implies that the
classification of parabolic semigroups in LFM(Bn,Bn) can be seen as a part of
the classification problem of parabolic groups of automorphisms of Cn.

Once more, the existence of common invariant slices simplifies the model.

Example 6.3 Let

ϕt(z, w) = (z + 2tw + ct + t2, w + t),

where (z, w) ∈ H2 and Re c = 0. Then, (ϕt) is a parabolic semigroup with no
invariant slices. In fact, it is possible to show that each parabolic semigroup
of LFM(H2,H2) with no invariant slices can be conjugated to a semigroup as
above for some c ∈ C with Re c ≥ 0. Moreover, one—and hence any—of the
iterates ϕt (t > 0) is an automorphism if and only if Re c = 0.

Remark 6.4 Let (Bn, (ϕt)) be a parabolic semigroup of LFM(Bn,Bn) with
common Denjoy-Wolff point τ ∈ ∂Bn and let (Hn, (ϕ̃t)) be the conjugated
semigroup of LFM(Hn,Hn) given by Theorem 6.1. Following the lines of Re-
mark 5.6, we find that (Bn, (ϕt)) has a unique invariant slice if and only if M
is invertible.

Arguing as in Theorem 5.7 we obtain:

Theorem 6.5 Let (ϕt) be a parabolic semigroup in LFM(Bn,Bn) with, at
least, one common invariant slice. Then, the iteration couple (Bn, (ϕt)) is con-
jugated to the iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = (z + 〈
(∫ t

0
eMsds

)
w, b〉+ ct, eMtw) (z, w) ∈ Hn

with c ∈ C, b ∈ Cn−1 and M is a dissipative matrix of order (n− 1).

It is worth pointing out that the matrix M in the above theorem might be
non-invertible, so that in general it is not possible to remove the integral
symbol. Similar to the hyperbolic case if the semigroup has p > 1 common
independent invariant slices, it is possible to simplify a little more the model,
following the ideas given in Remark 5.8. We leave details for the general case
to the interested reader and concentrate on the case of a unique common
invariant slice, where the situation resembles the hyperbolic case:

Proposition 6.6 Let (ϕt) be a parabolic semigroup in LFM(Bn,Bn) with a
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unique common invariant slice. Then, the iteration couple (Bn, (ϕt)) is conju-
gated to the iteration couple (Hn, (ϕ̂t)) where

ϕ̂t(z, w) = (z + ct, eMtw + (eMt − I)d), (z, w) ∈ Hn

with c ∈ C, d ∈ Cn−1 and M is a dissipative matrix of order n− 1.

PROOF. First we apply Theorem 6.1 in order to conjugate the semigroup
(ϕt) to the semigroup

ϕ̂t(z, w) = (z + 〈w, bt〉+ ct, e
Mtw + dt)

with bt dt, ct and M satisfying the corresponding restrictions. In particular,
we have that

bt :=
(∫ t

0
eM∗sds

)
b,

for some b ∈ Cn−1.

Arguing as in the proof of Theorem 5.1 we come up with equations similar to
(11), namely

(eM∗t − I)k2 =
1

2

(∫ t

0
eM∗sds

)
b.

Since M is invertible by Remark 6.4, we can solve these equations setting
k2 := 1

2
(M∗)−1b.

Therefore, if we consider the Heisenberg translation

η(z, w) = (z + 2 〈w, k2〉+ k1, w + k2), (z, w) ∈ Hn

with (k1, k2) ∈ ∂Hn and k2 := 1
2
(M∗)−1b and conjugate the semigroup (ϕ̂t)

with η, then the new semigroup is given by

ϕ2
t = (z + c2

t , e
Mtw + d2

t ), (z, w) ∈ Hn,

for some c2
t , d

2
t satisfying (13). The remaining assertions follow from Theorem

6.1. 2

We end up this section with a classification of parabolic groups of automor-
phisms of Bn which naturally follows from our procedure (see also [5] and
[14]):

Theorem 6.7 Let (ϕt) be a parabolic group in Aut(Bn).

(i) If the group has no invariant slice, then it can be conjugated to an iteration
couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w) = (z + 2t 〈w, d〉+ ct + t2, eitΘw + td), (z, w) ∈ Hn,
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with Re c = 0, d is a vector of Cn−1 of norm one and Θ is a diagonal matrix
of order n− 1 with real entries.

(ii) If the group has p + 1 common independent invariant slices (p ≥ 0), then it
can be conjugated to an iteration couple (Hn, (ϕ̃t)) where

ϕ̃t(z, w
′, w′′) = (z + ct, w′, eitΘw′′), (z, w′, w′′) ∈ C× Cp × Cn−1−p ∩Hn,

with Re c = 0 and Θ is a diagonal matrix of order n−1−p with real entries.

PROOF. According to Theorem 6.1, we see that the iteration couple (Bn, (ϕt))
is conjugated to the iteration couple (Hn, (ϕ1

t )) where

ϕ1
t (z, w) = (z + 〈w, bt〉+ ct, e

Mt + dt) (z, w) ∈ Hn,

for some ct, bt = (
∫ t
0 eM∗sds)b, dt = (

∫ t
0 eMsds)d (b, d ∈ Cn−1) and M satisfying

the restrictions mentioned in that theorem. Since each iterate of the semigroup
is an automorphism then ϕt(∂Bn) = ∂Bn and therefore for every t ≥ 0:





1) eMt is unitary;

2) Re (ct) = ‖dt‖2;

3) bt = 2eM∗tdt.

By condition 1) and Stone’s theorem, we see that eMt = eitH for some Hermi-
tian matrix H of order n − 1. This, together with condition 3), implies that,
for all t,

eiHt
(∫ t

0
e−iHsds

)
b =

(∫ t

0
eiHsds

)
b = 2

(∫ t

0
eiHsds

)
d,

and, therefore, b = 2d. Moreover, by the spectral theorem there exists a unitary
matrix V of order n− 1 such that V ∗HV = Θ, with Θ a real diagonal matrix
of order n− 1. Without lose of generality, we may assume that

Θ =




O O

O Λ




with Λ a diagonal matrix of order n − 1 − q with non-zero elements in the
diagonal (0 ≤ q ≤ n − 1). Now, conjugating (Hn, (ϕ1

t )) by (z, w) 7→ (z, V w)
we obtain a conjugated iteration couple (Hn, (ϕ2

t )) given by

ϕ2
t (z, w) = (z + 2〈(

∫ t

0
eiΘsds)w, d〉+ ct, e

iΘtw + (
∫ t

0
eiΘsds)d), (z, w) ∈ Hn,
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for some ct and d (maybe different from above). Note that

∫ t

0
eiΘsds =




tIq O

O (eiΛt − I)(−iΛ−1)


 .

Hence

ϕ2
t (z, w) = (z+2t〈w′, d′〉+2〈(eiΛt−I)w′′,−d′′〉+ct, w

′+td′, eiΛtw′′+(eiΛt−I)d′′)

with (z, w) = (z, w′, w′′) ∈ C× Cq × Cn−1−q ∩Hn and (d′, d′′) ∈ Cq × Cn−1−q.

Conjugating now with the Heisenberg transformation

η2(z, w
′, w′′) = (z + 2 〈w′′, k2〉+ k1, w

′, w′′ + k2)

where (z, w′, w′′) ∈ C×Cq×Cn−1−q∩Hn with (k1, O, k2) ∈ ∂Hn and k2 := −d′′,
k1 = ‖k2‖2, we obtain a new iteration couple (Hn, (ϕ3

t )) where

ϕ3
t (z, w

′, w′′) = (z + 2t〈w′, d′〉+ ct, w
′ + td′, eiΛtw′′)

for some ct (again, maybe different from above) satisfying equations (13).
Thus, arguing as in Theorem 6.1 we obtain that

ct = ct + ‖d′‖2t2.

for some c ∈ C with Re c = 0. By Proposition 4.4 the semigroup has no
common invariant slices if and only if d′ 6= O. If d′ = 0, again by Proposition
4.4, it follows that p ≤ q and we are done.

If d′ 6= O, we conjugate once more with

η3(z, w) = (‖d′‖2z, ‖d′‖w) (z, w) ∈ Hn.

The new iterates are given by

ϕ4
t (z, w

′, w′′) = (z + 2t〈w′, d′〉+ ct + t2, w′ + td′, eiΛtw′′)

where c ∈ C with Re c = 0 and d′ has norm one, as wanted. 2

A Appendix

The aim of this appendix is to give a short proof of Theorem 1.5. Actually
we will prove a more general (and partially new) result for semigroups of
holomorphic self-maps in strongly convex domains.
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Let D ⊂ Cn be a strongly convex domain with C3 boundary. Let f ∈
Hol(D, D) be a holomorphic self-map of D and denote

Fix(f) := {z ∈ D : f(z) = z}.

Recall (see, e.g., [1]) that either Fix(f) 6= ∅ or there exists a unique point
τ(f) ∈ ∂D such that the sequence of iterates {fk} converges uniformly on
compacta to the constant function D 3 z 7→ τ(f). Such a point τ(f) is called
the Denjoy-Wolff point of f .

Moreover, fix z0 ∈ D, assume f ∈ Hol(D,D) has no fixed points in D and let
τ(f) be its Wolff point. If kD is the Kobayashi distance in D (see, e.g., [16]
for its definition and properties), we define the boundary dilatation coefficient
α(f) of f at τ(f) to be

1

2
log α(f) := lim inf

w→τ(f)
[kD(z0, w)− kD(z0, f(w))].

Note that if D = D the unit disc in C, then by the Julia-Wolff-Carathéodory
theorem α(f) = f ′(τ(f)), the multiplier of f at τ(f). Likewise, if D = Bn

the number α(f) coincides with the usual boundary dilatation coefficient (for
instance, when f ∈ LFM(Bn,Bn), the number α(f) coincides with the number
bearing the same name in Theorem 1.2).

Theorem A.1 Let D ⊂ Cn be a bounded strongly convex domain with C3

boundary. Let (Ft) be a continuous one-parameter semigroup of holomorphic
self-maps of D. Then

• either
⋂

t≥0 Fix(Ft) 6= ∅,
• or Fix(Ft) = ∅ for all t > 0, there exists a unique τ ∈ ∂D such that τ is the

Denjoy-Wolff point of Ft for all t > 0 and there exists 0 < r ≤ 1 such that
α(Ft) = rt.

This theorem has been proved for the unit ball by Aizenberg and Shoikhet
in [2]. In [1], Abate gave a proof of this result without dealing with the bound-
ary dilatation coefficient α(Ft).

It is worth noticing that the corresponding statement for a (discrete) family
of commuting mappings is false (see [6]).

In order to prove Theorem A.1, we need the following lemma:

Lemma A.2 Let A be an indices set and ϕν∈A ∈ Hol(D,D) a family of
commuting holomorphic self-maps of D. If

⋂
ν∈A Fix(ϕν) = ∅ then there exist

m ∈ N and s1, . . . , sm ∈ A such that
⋂m

j=1 Fix(ϕsj
) = ∅.
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PROOF. Recall that by [25] the set Fix(ϕν) is a holomorphic retract of D and
in particular it is an open connected submanifold of D. Let dν := dim Fix(ϕν)
(here we agree to set dν = −1 if Fix(ϕν) = ∅). We set d0 = min dν . If d0 < 0
then there exists ν0 such that Fix(ϕν0) = ∅ and the result is proved. Assume
that d0 ≥ 0. Actually d0 > 0 because if d0 = 0 then Fix(ϕν0) is a single point
and since it is clearly invariant for all ϕν (recall the family commutes) then it
follows that Fix(ϕν0) is fixed for all ϕν against our hypothesis.

Thus d0 > 0. Let ϕν0 be such that dν0 = d0. Now consider the sets A1
ν :=

Fix(ϕν)∩ Fix(ϕν0) varying ν ∈ A. Every A1
ν is an open connected submanifold

of D since A1
ν := πν ◦ πν0(D) where πj : D → Fix(ϕj) is the holomorphic

retraction. Let d1 := min dim A1
ν . Then d1 < d0. Indeed if d1 = d0 then

Fix(ϕν0) would be contained in Fix(ϕν) for all ν ∈ A, against the hypothesis.
If d1 < 0 we are done. Otherwise it is easy to see that d1 > 0. Let A1

ν1
be such

that dν1 = d1. This set is invariant for all ϕν . Define A2
ν := A1

ν1
∩Fix(ϕν). Again

A2
ν is an open connected submanifold of D. Let d2 := min dim A2

ν . Arguing as
before one finds that d2 < d1. Continuing in this way we can find a strictly
decreasing sequence and thus after (at most) n− 1 steps we are done. 2

PROOF OF THEOREM A.1 Assume that Fix(Ft0) 6= ∅ for some t0 > 0.
Let C := {t ∈ (0,∞) : Fix(Ft) 6= ∅}. Let

D :=
⋂

t∈C
Fix(Ft).

If D = ∅, by Lemma A.2 we can find s0, . . . , sm ∈ C such that
⋂m

j=1 Fix(Fsj
) =

∅. Without loss of generality we can suppose that M :=
⋂m−1

j=1 Fix(Fsj
) 6= ∅.

By [25] there exists a holomorphic retraction πM : D → M such that M =
πM(D) (the holomorphic retraction πM is the composition of the holomorphic
retractions of Fix(Fsj

), j = 1, . . . , m− 1). Now we can consider f := Fsm ◦πM .
We have f(D) = Fsm(πM(D)) = Fsm(M) ⊂ M and fk = F k

sm
◦ πM . But then

Fix(f) = ∅ and by Abate’s theory [1] fk(z) → ∂D for k → ∞ and z ∈ D.
This contradicts the fact that {F k

sm
(z)} stays bounded in D for all z ∈ D since

Fix(Fsm) 6= ∅. Therefore D 6= ∅ and it is clearly an open connected submanifold
of D, since it is actually given as the intersection of finitely many holomorphic
retracts of D and therefore a holomorphic retract of D, D = πD(D).

We want to show that C = (0,∞). Assume that this is not the case. It is easy
to see that D is invariant for Ft for all t. Thus we can consider the continuous
one parameter semigroup φt of holomorphic self-maps of D defined by

φt := Ft|D.

Notice that φt(z) ≡ z for all t ∈ C. Let t0 > 0 be such t0 ∈ C. Therefore for
all t ≥ 0

φt+t0 = φt ◦ φt0 = φt.
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In particular φk
t = φtk = φtk mod (0,t0). Assume t 6∈ C ∪ {0}. Then F k

t (z) =
φk(z) → ∂D for k → ∞ and z ∈ D. Let kν be a subsequence such that
tkν → t1 mod [0, t0]. Then φkν

t (z) → φt1(z) 6∈ ∂D, against φkν
t (z) → ∂D.

Thus C = (0,∞) and we are done.

Assume now that Fix(Ft0) = ∅ for some t0 > 0. Let τ := τ(Ft0) ∈ ∂D be
the Wolff point of Ft0 . Clearly τ(Fnt0) = τ(F n

t0
) = τ for all n ∈ N and thus

τ(Fqt0) = τ for all q ∈ Q+. Since we already proved that Fix(Ft) = ∅ for all
t > 0, by Joseph-Kwack Theorem (see [17] and also [7, Theorem 3.10.(2)]) it
follows that τ(Ft) = τ for all t > 0.

Now we are left to show that if Fix(Ft) = ∅ for all t > 0 then there exists
0 < r ≤ 1 such that α(Ft) = rt. Let α(t) := α(Ft). If we prove that

(1) α : [0,∞) → (0, 1] is measurable
(2) α(0) = 1,
(3) α(t + s) = α(t)α(s) for all t, s ≥ 0,

then the result will follow from standard arguments. The first property follows
from the fact that α : Hol(D, D) → (0, 1] is lower semicontinuous (where
Hol(D, D) is endowed with the compact-open topology), see [7]. The second
property is obvious. As for the third one, one needs to use a Julia-Wolff-
Carathéodory-type theorem for strongly convex domains, due to Abate [1].
For the reader’s convenience, we recall here how it works.

Let z0 ∈ D. By Lempert’s work (see [18] and [1]) given any point z ∈ D there
exists a unique complex geodesic ϕ : D → D, i.e., a holomorphic isometry
between kD and kD, such that ϕ extends smoothly past the boundary, ϕ(0) =
z0 and ϕ(t) = z, with t ∈ (0, 1) if z ∈ D and t = 1 if z ∈ ∂D. Moreover for any
such a complex geodesic there exists a holomorphic retraction p : D → ϕ(D),
i.e. p is a holomorphic self-map of D such that p ◦ p = p and p(z) = z for any
z ∈ ϕ(D). We call such a p the Lempert projection associated to ϕ. Furthermore
we let p̃ := ϕ−1 ◦ p and call it the left inverse of ϕ, for p̃ ◦ϕ = IdD. The triple
(ϕ, p, p̃) is the so-called Lempert projection device.

Let (ϕ, p, p̃) be the Lempert projection device associated to the complex
geodesic such that ϕ(1) = τ . Consider the following function T : D → C,

Tt(z) :=
1− p̃ ◦ Ft(z)

1− p̃(z)
.

By Abate’s theorem (see Theorem 2.7.14 in [1]) it follows that if γ : [0, 1) → D
is a continuous curve such that limu→1 γ(u) = τ , limu→1 kD(γ(u), p(γ(u))) = 0,
and p(γ(u)) tends to τ non-tangentially (a curve with such properties is said
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to be τ -special and restricted), then

lim
u→1

Tt(γ(u)) = α(t).

By Proposition 3.4 in [6] it follows that [0, 1) 3 u 7→ Ft(ϕ(u)) is τ -special and
restricted. Then we have

Tt+s(ϕ(u)) =
1− p̃ ◦ Ft(Fs(ϕ(u)))

1− p̃(Fs(ϕ(u)))
· 1− p̃ ◦ Fs(ϕ(u))

1− p̃(ϕ(u))
,

and taking the limit as u → 1 it follows that α(t + s) = α(t)α(s) concluding
the proof. 2
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[26] J.-P. Vigué, Point fixes d’une limite d’applications holomorphes, Bull. Sci. Math.
(2) 110 (1986), 411–424.

[27] K. Yosida, Functional Analysis, Springer-Verlag, Berlin, 1980.

38


