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BAIRE CATEGORY AND THE WEAK BANG-BANG PROPERTY
FOR CONTINUOUS DIFFERENTIAL INCLUSIONS

F. S. DE BLASI AND G. PIANIGIANI

(Communicated by Yingfei Yi)

ABSTRACT. For continuous differential inclusions the classical bang-bang prop-
erty is known to fail, yet a weak form of it is established here, in the case
where the right hand side is a multifunction whose values are closed convex
and bounded sets with nonempty interior contained in a reflexive and separable
Banach space. Our approach is based on the Baire category method.

1. INTRODUCTION

The bang-bang property for differential inclusions has been studied by many
authors from different points of view. For recent contributions see, among oth-
ers, Papageorgiou [14], Tolstonogov [18], Donchev, Farkhi, Mordukhovich [10]. A
comprehensive account on differential inclusions and additional references can be
found in the monographs by Aubin and Cellina [I], Hu and Papageorgiou [12], Mor-
dukhovich [13], and Tolstonogov [17]. Usually in the investigation of the bang-bang
property a crucial role is played by the assumption that the differential inclusion
satisfies a globally Lipschitz condition. Recently, it has been shown that the bang-
bang property remains valid even under a locally Lipschitz condition [9], while it is
known to be false under the mere assumption of continuity in view of an example of
Plis [16]. The aim of the present paper is to show that, under appropriate assump-
tions, a somewhat weaker form of the bang-bang property is valid for continuous
differential inclusions (Theorem 1). Our method of approach is based on the Baire
category as developed in [6]-[9]. To apply it we need some technical results, among
which is a suitable infinite dimensional version of the classical Carathéodory theo-
rem concerning compact convex sets in R (Proposition 4). For further details on
the Baire method, see [4], [12], [15].

Let (M, p) be a metric space. The interior and the closure of a set X C M
are denoted by int X and X. For a € M and X ¢ M, X # (), we set d(a, X) =
infrex pla, X).

Throughout the paper E is a reflexive and separable real Banach space with
norm ||.|| and B(E) (resp. C(E)) is the space of all subsets of E which are closed
convex bounded with nonempty interior (resp. closed convex bounded nonempty).
The spaces B(E), C(E) are equipped with the Pompeiu-Hausdorff metric

h(X,Y) = max{sup d(z,Y), sup d(y, X)}.
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If X C E, then coX denotes the convex hull of X. If X C E is convex, then
ext X denotes the set of all extreme points of X. For X C E, X # (), we put
I X|| = sup{||z|| | x € X}. Moreover B ={z € E | ||z| < 1}.

As usual C(I,E), where I C R is a compact interval, denotes the space of all
continuous functions x : I — E with norm ||z||; = max{t € I | ||z(¢)|}.

Set I = [to,t1] , to < t1. A multifunction F : I x E — C(E) is said to satisfy
assumption (H) if :

(j) F is continuous on I x E |
(jj) F is bounded, i.e. |[|[F(t,x)|] < M for every (t,xz) € I x E, M a positive
constant.

For F satisfying (H) and a € E, consider the following Cauchy problems:

(Cra) i(t) € F(t,z(t)), x(to) = a,
(CintFa) z(t) € int F(t,z(t)), z(to)=a,
(Cext Foa) z(t) € ext F(t,z(t)), x(to) = a.

A function = : I — E is said to be a solution of the Cauchy problem (Cr,) (resp.
(Cint Fa)s (Cext Fq)) if « is Lipschitzian on I, with x(tg) = a, and satisfies (Crq)
(resp, (Cint F,a)7 (Cext F,a))7 tel ae.

For F satisfying (H) and a € E set:

Mpo={x:1— E|zis asolution of (Cr,)},
Mintrpo ={x: I — E|zis asolution of (Cintra)},
Mextra ={2x:1 — E|zis asolution of (Cextra)}-

The space Mg, is equipped with the metric induced by the norm of C(I, E),
i.e. the metric of uniform convergence.

It is evident that M ey rq and Min, o are contained in Mp,. Furthermore
M can be empty if E is infinite dimensional and F' is merely continuous.

Under the assumption that F': I x E — C(E) is continuous, locally Lipschitzian
in the z-variable and bounded, the set Mg, is nonempty and moreover the follow-
ing bang-bang property holds (see [9]):

M ext F.a = MF,au

where the closure is in C(I,E). Whenever F is only continuous, then the bang-bang
property is no longer valid and one has

Mcxt F,a - MF,aa
where the inclusion can be strict, in view of the Plis example [16].
The aim of this paper is to show that if ' : I x E — B(E) is continuous and
bounded, then M in o # 0 and the following weak form of the bang-bang property
holds:

(11) McxtF,a DMintF.,w

Remark 1. If F takes on values in C(E) and E is infinite dimensional, then one
can have M ext .o = My, = 0, by virtue of Godunov’s theorem [11].

Remark 2. The inclusion (1.1) can be strict, as is shown by an example presented
in Section 3.
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For any set J C I we denote by |J| and x,, respectively, the Lebesgue measure
and the characteristic function of J.

By a regular partition of the interval I = [to,t1] we mean a finite or denumerable
infinite family P = {I;} of pairwise disjoint nondegenerate intervals I; C I such
that, setting Ny = I \ |, I;, one has |[Ny| = 0.

Definition 1. A map u : I — E is said to be piecewise constant if u is given by

(1.2) u(t) = ZuiXIi (t) + uo(t) X, (1), tel,

where {I;} is a regular partition of I, {u;} C E is a bounded sequence, and ug(t) € E
for every t € No =1~ U, I;.

Definition 2. A solution z € Mp, is said to be regular if there exist a regular
partition P = {I;} of I and corresponding sequences {u;} C E and {o;} C (0, +00)
such that, denoting by u : I — E a piecewise constant map given by (1.2), one has:

t
() xz(t)=a +/ u(s)ds for each t €I,

to
(79) (t) + o;B =u; + 0;B C F(t,z(t)) for each t € intl; and I; € P.

MG, ={x:I—E|zis a regular solution of (Cint )},
and define
M =Mp,,

where the closure is in C(I,E). The space M is equipped with the metric induced
by the norm of C(I,E).

The Choquet function, which we now introduce, plays a crucial role in the proof
of our main result.

Denote by E* the topological dual of E. Let {l,,} , ||l.]| = 1, be a sequence
dense in the unit sphere of E*. Let F' satisfy assumption (H). Following Choquet
[5], Vol. IT, Ch. 6, we define ¢p : I x E x E — [0, +00] by

0o (In(v))? Pt
4,0(15 T ’U) — Zn:l 2n ’ vE ( ,LL'),
o —+00, veEN F(t,x).

Let A be the set of all continuous affine functions a : E — R. Let @ : I xEXE —
[—00, +00) be given by
Pr(t,z,v) =inf{a(v) | a € A and a(z) > pp(t,x, z) for every z € F(t,x)}.
We define dp : I x E X E — [—00, +00) by

dF(ta l‘,’U) = @F(taxa U) - @F(t,.’lf, U)'

In the next proposition we review some properties of dg, the Choquet function
associated to F' (see Choquet [0], Castaing and Valadier [2]).

Proposition 1. Let F: I x E — B(E) satisfy (H). Then:

(i) for each (t,x) € I x E and v € F(t,z) we have 0 < dp(t,z,v) < M?. Moreover
dp(t,z,v) =0 if and only if v € ext F(t, x);

(ii) for each (t,xz) € I x E, the function dp(t,z,.) is concave on E and strictly
concave on the set F(t,x);

(iil) dp is upper semicontinuous on I x E x E;
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(iv) for each © € Mg, the function t — dp(t,x(t),(t)) is nonnegative, bounded
and integrable on I;
(v) if {zn} C Mpq converges uniformly to x, then

limsup/dp(t,xn(t),x'n(t))dtg /dp(t,x(t),:b(t))dt.

n—oo I I

2. AUXILIARY RESULTS
In this section we prove some results which will be useful in what follows.

Proposition 2. Let F': I x E — B(E) satisfy (H). Let © € Mintpq and € > 0.
Then there exists a regular solution y : I — E of the Cauchy problem (Cing r.o) sSuch
that |ly — =|lr <e.

Proof. Let £ € My o and € > 0 be given. Set
J=A{t e (to,t1) | &(t) exists and @(t) € int F'(¢,z(t))}.
Let 7 € J be arbitrary. Hence for some o > 0 we have
(1) +30B C F(r,z(1)).

Since F' is continuous, there exists §, > 0, with [7,7 + ;] C (o, t1), such that
(2.1)

0<h<b, |t—7|<br tel, |z—a(r)]<d = w

+0B C F(t,z2).

For any ¢ with

: 57’ 3
O<5<m1n{M+1,m},
set I, 5 = 1,7 + 0] and define y, 5 : I, s — E by
) —
yra(t) = 2(7) + M(t -7), tels.

Claim 1. yr5 : I;s — E is a regular solution of the following boundary value
problem:

(Br.s) y(t) = int F(t,y(t),  y(r) =2(7), y(r+0)=ux(r+9).
Evidently y(7) = z(7) and y(7 + ) = (7 + §). Moreover for ¢t € I, 5 we have

(2.2 Iyes(t) () = BTHO =2 oy o5

because ||z(T + ) —z(7)|| < Mdand t —7 < 6 < 0;/(M + 1). From (2.1) (with
h =), in view of (2.2) it follows that

(T +0) — x(1)

y"',(;(t) +UB = 5

+0B C F(t,yrs(t)), te(r,7+9),
and hence Claim 1 holds.

Now the family
F={l;s,7€J,0<0<6;}

of closed intervals I, 5 covers J in the sense of Vitali. Hence there exists a finite or
denumerable infinite family Fy = {ITM],} C F of pairwise disjoint closed intervals
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I, 5, € F such that J ~\ Uj I+, 5, has measure zero. As I \ J has measure zero it
follows that No =1~ | I ITJ.V(;J. has measure zero. Evidently

(2.3) I= UIW;J. U No,

J
and thus Fy is a regular partition of I. Now define u : I - Eand y : I — E as
follows:

u(t) = s, (00X, (8, tEL
J

t

y(t) :a+/ u(s)ds, tel.
to

Claim 2. y : I — E is a regular solution of the Cauchy problem (C'iy r,q) satisfying

ly —zl[; <e.

Since the functions y,, 5, and z agree at 7; and 7; + J;, the end points of I, 5.,
then in view of the definition of y it is easy to show that y(t) = y,, 5, (t) for each
t € I, 5, and I 5, € Fo. By virtue of Claim 1 and (2.3) it follows that y is a
regular solution of the Cauchy problem (C'int o). Furthermore for any I, 5, € Fo
and all t € I, 5, we have

ly(#) = @O < [ly(t) = y(7y)[l + [2(75) — x()]| < 2M ;.
Asd; <e/(2M+1) , in view of (2.3) it follows that ||y —x||; < e. Therefore Claim 2
holds. This completes the proof. O

Proposition 3. Let F : I x E — B(E) satisfy (H). Then M is a nonempty
complete metric space (under the induced metric of C(I,E)) and M C Mp,.

Proof. Since the multifunction int F' admits locally Lipschitzian selections, we have
Mint ra # 0 and thus M%_ # 0, by virtue of Proposition 2. Hence M # 0.
Evidently M is complete for C(I, ) is so. As F is a continuous and bounded
multifunction with closed convex values contained in E, a reflexive Banach space,
the uniform limit of solutions is also a solution, and hence M C Mpg,. O

Proposition 4. Let F : I x E — B(E) satisfy (H). Let (t,z) € I x E and let
u € int F(t,xz) and @ > 0 be given. Then for some n € N there exist points
a; € int F(t,x) , with dp(t,x,a;) < a, i =1,...,n, and numbers \; > 0, with
A1+ + Ay =1, such that

Z )\Z—ai = Uu.

i=1

Proof. Fix 6 > 0 so that u + 6B C F(t,x). For some p € N there exist points
e; € ext F(t,x) and numbers p; > 0 with pq + -+ + g, = 1, such that, setting
¢ = p1e1 + -+ ppep, one has

0<fle—ul <2
C—Uu — .
2

By Proposition 1, dp(t,z,e;) =0, i = 1,...,p, and thus sufficiently close to each
e; there exists a point a; € int F(¢,x) such that

(2.4) dp(t,x,ai) < &

5 i=1,...,p and O0<r=la—ul<

5 )
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where a = piaq + - -+ + ppa,. By virtue of Proposition 1 and (2.4) there exists an
¢ > 0 such that each ball B; = a; +eB, i = 1,...,p, is contained in F(¢,z) and
moreover,

(2.5) dp(t,z,v) < a foreveryve B;,i=1,...,p.
It is evident that

P
(2.6) > niBi = Bc(a), where B.(a) =a+¢B.

i=1
Let b € int F'(t,z) be such that u = “TH’ As above, for some ¢ € N there exist
points a; € int F(t,z), with dp(t,z,a}) < o, i = 1,...,¢q, and numbers v; > 0,
with v1 +--- + v, = 1, such that setting

q
(2.7) b = Z v;al
i=1

one has [|b'—b|| < 5. Asu+ 5B C co{b, B:(a)} and h(co{b, B-(a)},co{l/, B:(a)}) <

|b' = b|| < %, it follows that u+ 5B C co{V/, B:(a)} + B , which implies v+ B C
co{b', B:(a)}. Hence there exist d € B.(a) and ¢ € [0, 1] so that

(2.8) w=t + (1—t)d.
As d € B.(a), by virtue of (2.6) and (2.5) there exist points d; € B;, with dp (¢, z,d})
<a,i=1,...,p, such that

p
(2.9) d=">"pd;.
i=1

From (2.8), in view of (2.7) and (2.9), it follows that

q P
u= tzyiag +(1 —t)Zuid;.
i=1 i=1
This completes the proof. O

3. THE WEAK BANG-BANG PROPERTY

In this section we shall prove the weak bang-bang property. To this end, for
F:1xE — B(E) satisfying (H) and a > 0, we set

No={zeM: /Idp(t,x(t),fc(t))dt < alll}.

Proposition 5. N, is dense in M.

Proof. Tt suffices to show that given x € M%Va and € > 0 there exists y € N, such
that ||y — z||; <e.

By hypothesis x is a regular solution of (Cins r,q) and thus, with the notation of
Definition 2, for some piecewise constant map u : I — E, given by (1.2), we have:

m(t)za—l—/tu(s)ds, tel,

to

I(t) +o0,B=u;+0;BC F(t,l‘(t)), teintl;, I, € P.
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Consider an interval I; € P with end points «; < §; and let 7 € (o, 5;) be arbitrary.
Evidently

ui + 0B C F(r,2(1)),
and thus by Proposition 4, for some n € N there exist points e, € int F(7,z(7)),

with dp (7, 2(7),2(7)) < @, k= 1,...,n, and corresponding numbers Ay > 0, with
A1+ -+ A, =1, such that

(3.1) U; = Z AL€E.
k=1

Clearly for some ~, > 0,
(3.2) U (ex +9-B) € F(r,2(r)).
k=1

Since F' is continuous and satisfies (3.2) there exists pg, with
(3.3) 0 < po <min{e, 7 — a;, B; — T},
such that
n ’Y
(34) telr—po,m+pl, ly—z()<po = |[Jlex+ TTB) C F(t,y).
k=1

Furthermore as dp is upper semicontinuous at (7, z(7), ex) and dp (1, 2(7),ex) <
there exists a p, with 0 < p < min{po,y,/2}, such that for k =1,...,n we have

B5) telr—pr+pl, lly—a@)l<p, lv-el<p = dr(tyv) <o
Let §, satisfy

p

(3.6) O<6T<4Mle

and, for 0 < 0 < d,, set
Is=[r—0,7+94]

Let {Jf str_, be a partition of I, 5 into n pairwise disjoint nondegenerate subin-
tervals Jf’ s of length

(3.7) |JEsl=Mellesl L k=1,...,n.

Now define u,s : I — E and y, s : I 5 — E as follows:

n

(3.8) Urs(t) = ekX,i (1), t € Ig,
k=1 '
t
(3.9) Yro(t) = x(1 —9) —|—/ urs(s)ds, t €l ;.
T—6
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We have
() iro®)+ LB € Pltysl®), te | int 2
k=1
(77) Yro(T£6) = z(r £ 9),
(434) 1y=5(t) =) <€, t € L5,
(Jv) dp(t,yrs(t),grs(t)) <a, te 0 int Jf’(g.
k=1

(j) Let t € int Jf75, where 1 < k < n. Clearly
(3.10) te[r—p,m+p
since |t — 7| < 0 < dr < p by (3.6). Moreover,

o) = 2@ = o7 =)+ [ wrs(ohis—a— [ uts)is]

T—é t()

= /:6 Urs(s)ds — /:5 u(s)ds||

< /k (lurs(s)[| + lu(s)|)ds < 4M,,

JT,5

for |Jf75| < |I;s] = 26 < 2, and u,s and u are bounded by M. Since 6, <
p/(4M + 1) by (3.6), it follows that

(3.11) lyr.s(t) — ()l < p.
From (3.4), in view of (3.10) and (3.11), as p < pg and ¥ 5(t) = ek, one has

rs(t) + B C F(t,yrs(t))

t

and thus (j) holds.
(jj) From (3.9), in view of (3.8), (3.7) and (3.1) we have:

T+ 1

Yro(T +0) = x(17 — ) + O exx,. (9)ds
T k=1 e

=a(r—0)+ Y _exlJF | =a(r = 0)+ Y nexl|Lrs]
k=1 k=1

T+6

=z(t—90)+uwl|lr 5| =x(r—0)+ /75 u(s)ds = (1 +9).

Clearly y,.s(T — 6) = x(7 — §), and thus (jj) holds.
(jij) For any t € I s we have:

|Mﬁwﬂmm=mv—®+/'uw@w—a—/u@wu

T—6 to

1 [ wnstods— [ wdsl < [ (s + ) < 4015

t
T—0 I

t

From the latter, (jjj) follows at once since § < d, < p/(4M + 1) by (3.6), and
p < po <e by (3.3).
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(jv) Let t € int JF 5 be arbitrary, where 1 <k <n . From (3.5), in view of (3.10)
and (3.11), as §rs(t) = ex € F(t,yrs(t)), one has dp(t,y-s(t),¥-s(t)) < a, and
thus (jv) holds.

It is evident that the family

F={lLs|re(Jntl, 0<d5<d}
i
of closed intervals I s C I covers the set |J; int I; in the sense of Vitali. Hence
there is a finite or denumerable infinite family Fo = {I,,5,} C F of pairwise
disjoint closed intervals I 5, such that
(3.12) I=(JI,.5,) U No,
J

where Ny = I Uj Iij(;j has measure zero. Now definev:I —Eandy: I — E as
follows:
L), tel,

T30%

U(t) = Z 'U"rj,éj (t)XI

y(t)—a+/tv(s)ds, tel.

to
Since by (jj) yr,;.5; (75 £ ;) = x(7; £ J;), it is easy to see that for each I, 5, € Fo
we have
(3.13) y(t) = yr,.5,(t) forevery tel, s,

In view of (3.13), (3.12) and (j) it follows that y : I — E is a regular solution
of the Cauchy problem (Cinpa); hence y € M, p, and so a fortiori y € M.
Furthermore, by virtue of (3.13), (3.12) and (jv),

/ dp(t,y(t), 9()dt < all|

I

and hence y € N, . Finally from (3.13), (3.12) and (jjj) it follows that ||y —z||; < e.
This completes the proof. O

Proposition 6. N, is open in M.

Proof. Let {z,} C M ~ N, be a sequence which converges uniformly to x € M.
Then, by Proposition 1,

/Idp(t,x(t), ()t > limsup/dp(t,xn(t),a':n(t))dt > alll.

n—oo JJ
Thus x € M ~ N, completing the proof. O

We are now ready to prove the following weak form of the bang-bang property.

Theorem 1. Let F : I x E — B(E) satisfy assumption (H). Then Minpq # 0
and

(314) ﬂextF,a D) Mint F.,a-
Proof. Under our assumptions, M iy p, 7 0. To prove (3.14) set

neN
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By virtue of Propositions 5 and 6 each Nl/n is open and dense in M, which is a
complete metric space, by Proposition 3. Consequently M* is dense in M.
Let € M*. Then for every n € N,

/ dp(t 2 (t), i(8)dt < (1/n)]1],

I

and thus, by Proposition 1, dp(t,y(t),y(t)) = 0, t € I a.e., which implies that
T € M ext F,o- Therefore M oyt 7o O M* and hence,

Hext F.a 2 M.

Since, by Proposition 2, M = ﬂ%’a D Mint Fa, it follows that M ext Fa O
Mint Fq. This completes the proof. O

The following example shows that in (3.14) the inclusion can be strict.
Example 3.1. Set f(y) = /|yl if |y <1 and f(y) = 1if |y| > 1. For F : R? —
B(R?) given by

F(x,y) = {(u,v) €ER* |ue[0,1], v € [f(y),2]}, (x,y)€R?,
consider the following Cauchy problems:

(Cins F0) (@(), 9(t)) € int F(z(t),y(t), (2(0),5(0)) = (0,0),
(Cext F0) (@(1),5(t)) € ext F(x(t),y(t), (2(0),4(0)) = (0,0).
Put I =[0,1/2]. Clearly

ext F(z,y) = {(0,f(y)), (0,2), (1, f(y), (1,2)}

and thus (0,0) € ext F(0,0), which shows that (zo(t),yo(t)) = (0,0) , t € I, is a
solution of (Clext r0). Let (z(t),y(t)) , t € I, be an arbitrary solution of (C'in o).
As 2(0) = y(0) = 0 and z(t) and y(t) satisfy

(3.15) @(t) € (0,1), y(t) € (f(y(1)),2),

it follows that z(t) and y(t) are strictly positive for every t € (0,1/2]. Clearly
y(t) € (Vy(t),2) for t € T ae. since, by (3.15), y(t) < 1 for every t € I. Let
0 < & < 1/4. Then for t € [¢,1/2] a.e. we have §(t) > /y(t), and hence /y(t) >
Vy(e) + 55, t € [e,1/2], from which letting e — 0 one has

t2
ty>—, tel.
y(t) 2 o, te
Consequently
1
d((xo(')ayO(')),MintF,O) > g;

as (x(t),y(t)), t € I, is an arbitrary solution of (Cint o). This shows that the
inclusion M ext 7,0 DO Mint F o is strict.
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