FABIO GAVARINI

The global quantum duality principle:
a survey through examples

RENCONTRES MATHEMATIQUES DE GLANON

— 2002 —



RENCONTRES MATHEMATIQUES DE GLANON 2002
CONTRIBUTION ||

FABIO GAVARINI

Universitadegli Studi di Roma*“ Tor Vergata”
Dipartimento di Matematica
ViadellaRicerca Scientifica 1

[-00133 Roma

Italy

gavari ni @mat . uni roma2. it

The global quantum duality principle: a survey through examples



The global quantum duality principle:
a survey through examples

FABI1O GAVARINI
Universitadegli Studi di Roma*“ Tor Vergata’
Dipartimento di Matematica
ViadellaRicerca Scientifica 1
[-00133 Roma
[taly
gavarini @mat . unironma2.it

ABSTRACT

Let R be a 1-dimensional integral domain, let 7 € R\ {0} be prime, and let H.A
be the category of torsionless Hopf algebrasover R. Wecall H € HA a“ quantized
function algebra” (=QFA), resp. “ quantized restricted universal enveloping algebras’

(=QrUEA), at h if H / h H is the function algebra of a connected Poisson group,
resp. the (restricted, if R / h R has positive characteristic) universal enveloping algebra
of a(restricted) Lie bialgebra.

An “inner” Galois correspondence on H.A is established via the definition of two
endofunctors, ()Y and ( )’, of H.A such that: (a) theimageof ()Y, resp. of ()’, isthe
full subcategory of all QrUEAS, resp. QFAs, at #i; (b) if p := Char(R/hR) = 0,
the restrictions ()" ] Rt and ()’ OrUEAS yield equivalencesinverse to each other; (c) if
p = 0, starting from a QFA over a Poisson group G, resp. from a QrUEA over alLie
bialgebra g, the functor ( )V, resp. ( )/, givesa QrUEA, resp. aQFA, over thedual Lie
bialgebra, resp. adual Poisson group. In particular, (a) provides a machine to produce
quantum groups of both types (either QFAsor QrUEAS), (b) gives acharacterization of
them among objects of H.4, and (c) givesa“global” version of the so-called “quantum
duality principle’ (after Drinfeld's, cf. [Dr]).
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Thisresult appliesin particular to Hopf algebras of the form k[A] @ H where H is
aHopf algebraover the field k: thisyields quantum groups, hence “classical” geomet-
rical symmetries of Poisson type (Poisson groups or Lie bialgebras, via specialization)
associated to the “ generalized” symmetry encoded by H. Both our main result and the
above mentioned application are illustrated by means of several examples, which are
studied in some detail.

These notes draw a sketch of the theoretical construction leading to the “global
quantum duality principle’. Besides, the principle itself, and in particular the above
mentioned application, isillustrated by means of several examples: group algebras, the
standard quantization of the Kostant-Kirillov structure on any Lie algebra, the quantum
semisimple groups, the quantum Euclidean group and the quantum Heisenberg group.

I ntroduction

The most general notion of “symmetry” in mathematics is encoded in the definition of Hopf al-
gebra. Among Hopf algebras H over afield, the commutative and the cocommutative ones encode
“geometrical” symmetries, in that they correspond, under some technical conditions, to algebraic
groups and to (restricted, if the ground field has positive characteristic) Lie algebras respectively: in
the first case H is the algebra F'[G] of regular functions over an algebraic group GG, whereas in the
second case it is the (restricted) universal enveloping algebra U(g) (u(g) in the restricted case) of a
(restricted) Lie algebrag. A popular generalization of these two types of “geometrical symmetry” is
given by guantum groups:. roughly, these are Hopf algebras H depending on a parameter / such that
setting 2 = 0 the Hopf algebra one getsis either of the type F'[G] — hence H is a quantized function
algebra, in short QFA — or of the type U(g) or u(g) (according to the characteristic of the ground
field) — hence H is a quantized (restricted) universal enveloping algebra, in short QrUEA. When a
QFA exists whose specialization (i.e. its “value” a h = 0) is F'[G], the group G inherits from this
“guantization” a Poisson bracket, which makes it a Poisson (algebraic) group; similarly, if a QrUEA
exists whose specialization is U(g) or u(g), the (restricted) Lie algebra g inherits a Lie cobracket
which makes it a Lie bialgebra. Then by Poisson group theory one has Poisson groups G* dual to G
and aLiebialgebrag* dual to g, so other geometrical symmetries are related to theinitial ones.

The dependence of a Hopf algebra on 4 can be described as saying that it is defined over aring R
and h € R: sooneislead to dwell upon the category H.A of Hopf R—algebras (maybe with some
further conditions), and then raises three basic questions.

— (1) How can we produce quantum groups?
— (2) How can we characterize quantum groups (of either kind) within H A?
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— (3) What kind of relationship, if any, does exist between quantum groups over mutually dual
Poisson groups, or mutually dual Lie bialgebras?

A first answer to question (1) and (3) together is given, in characteristic zero, by the so-called
“quantum duality principle’, known in literature with at least two formulations. One claims that
guantum function algebras associated to dual Poisson groups can be taken to be dual — in the Hopf
sense — to each other; and similarly for quantum enveloping algebras (cf. [FRT1] and [Se]). The
second one, formulated by Drinfeld in local terms (i.e., using formal groups, rather than algebraic
groups, and complete topological Hopf algebras; cf. [Dr], §7, and see [Gad] for a proof), provides
a recipe to get, out of a QFA over G, a QrUEA over g*, and, conversely, to get a QFA over G*
out of a QrUEA over g. More precisely, Drinfeld defines two functors, inverse to each other, from
the category of quantized universal enveloping algebras (in his sense) to the category of quantum
formal series Hopf algebras (his analogue of QFAS) and viceversa, such that Uy(g) — F[[G*]] and
Fi[|G]] — Ux(g*) (in his notation, where the subscript 7 stands as a reminder for “quantized” and
the double square brackets stand for “formal series Hopf algebra’).

In this paper we present a global version of the quantum duality principle which gives a complete
answer to questions (1) through (3). The ideaisto push as far as possible Drinfeld’s original method
so to apply it to the category H.A of all Hopf algebras which are torsion-free modules over some
1-dimensional domain (in short, 1dD), say R, and to do it for each non-zero prime element 2 in R .

To be precise, we extend Drinfeld’s recipe so to define functors from H.A to itself. We show that
the image of these “generalized” Drinfeld's functors is contained in a category of quantum groups
— one gives QFAS, the other QrUEAs — so we answer question (1). Then, in the zero characteris-
tic case, we prove that when restricted to quantum groups these functors yield equivalences inverse
to each other. Moreover, we show that these equivalences exchange the types of quantum group
(switching QFA with QrUEA) and the underlying Poisson symmetries (interchanging G or g with
G* or g*), thus solving (3). Other details enter the picture to show that these functors endow H.A
with sort of a (inner) “Galois correspondence’, in which QFAs on one side and QrUEA s on the other
side are the subcategories (in H.A) of “fixed points’ for the composition of both Drinfeld’s func-
tors (in the suitable order): in particular, this answers question (2). It is worth stressing that, since
our “Drinfeld’s functors’ are defined for each non-trivial point (&) of Spec(R), for any such (k)
and for any H in H.A they yield two quantum groups, namely a QFA and a QrUEA, w.r.t. & itself.
Thus we have a method to get, out of any single H € ‘H.A, several quantum groups.

Therefore the “global” in the title is meant in several respects. geometrically, we consider global
objects (namely Poisson groups rather than Poisson formal groups, as in Drinfeld's approach); al-
gebraically we consider quantum groups over any 1dD R, so there may be several different “semi-
classical limits’ (=specialization) to consider, one for each non-trivial point in the spectrum of R
(whereas in Drinfeld’'s context R = k[[h]] so one can specialise only at & = 0); more generally,
our recipe applies to any Hopf algebra, i.e. not only to quantum groups; finally, most of our results

-3



RENCONTRES MATHEMATIQUES DE GLANON 2002 CONTRIBUTION Il

are characteristic-free, i.e. they hold not only in zero characteristic (as in Drinfeld’s case) but also in
positive characteristic. As a further outcome, this “global version” of the quantum duality principle
leads to formulate a * quantum duality principle for subgroups and homogeneous spaces’, see [CG].

A key, long-ranging application of our global quantum duality principle (GQDP) isthe following.
Take as R the polynomial ring R = k[h], wherek isafield: then for any Hopf algebra over k we
havethat H[] := R®y H isatorsion-free Hopf R—algebra, hence we can apply Drinfeld’s functors
to it. The outcome of this procedure is the crystal duality principle (CDP), whose statement strictly
resembles that of the GQDP: now Hopf k—algebras are looked at instead of torsionless Hopf R—
algebras, and quantum groups are replaced by Hopf algebras with canonical filtrations such that the
associated graded Hopf algebra is either commutative or cocommutetive. Correspondingly, we have
amethod to associateto H a Poisson group GG and aLie bialgebra ¢ such that G is an affine space (as
an algebraic variety) and ¢ isgraded (as aLie algebra); in both cases, the “ geometrical” Hopf algebra
can be attained — roughly — through a continuous 1-parameter deformation process. Thisresult can
also be formulated in purely classical — i.e. “non-quantum” — terms and proved by purely classical
means. However, the approach viathe GQDP also yields further possibilitiesto deform H into other
Hopf algebras of geometrical type, which isout of reach of any classical approach.

The purpose of these notes is to illustrate the global quantum duality principle in some detail
through some relevant examples, namely the application to the “Crystal Duality Principle” (§3) and
some quantum groups: the standard quantization of the Kostant-Kirillov structure on a Lie algebra
(§4), the guantum semisimple groups (§5), the three dimensional quantum Euclidean group (§6), the
guantum Heisenberg group. All details and technicalities which are skipped in the present paper can
be found in [Gab], together with another relevant example (see also [Gab] and [GaT7]).

These notes are the written version of the author’s contribution to the conference “ Rencontres
Mathématiques de Glanon”, 6th edition (1-5 july 2002) held in Glanon (France). The author’s
heartily thanks the organizers — especialy Gilles Halbout — for kindly inviting him. Il remercie
aussi tous les Glanonnets pour leur charmante hospitalité.
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The author thanks C. Gasbarri, A. Frabetti, L. Foissy, B. Di Blasio, A. D’ Andrea, |. Damiani,
N. Ciccoli, G. Carnovale, D. Fiorenza, E. Taft and P. Baumann for many helpful discussions.

§ 1 Notation and ter minology

1.1 Theclassical setting. Let k be afixed field of any characteristic. We call “algebraic group”
the maximal spectrum G associated to any commutative Hopf k—algebra H (in particular, we ded
with proaffine as well as affine algebraic groups); then H is called the algebra of regular function on
G, denoted with F'[G]. We say that G is connected if F'[G] has no non-trivial idempotents; this is

-4



FABIO GAVARINI The global quantum duality principle...

equivalent to the classical topological notion when dim(G) isfinite. If G isan agebraic group, we
denote by m, the defining ideal of the unit element ¢ € G (in fact m, is the augmentation ideal of
F[G]). The cotangent space of G at e is g* := m, / m.2, endowed with its weak topology, which
isnaturaly a Lie coalgebra. By g we mean the tangent space of GG @ ¢, realized as the topological
dua g := (gx)* of g*: thisisthe tangent Lie algebra of G. By U(g) we mean the universal
enveloping algebraof g: thisis aconnected cocommutative Hopf algebra, and there isa natural Hopf
pairing (see §1.2(a)) between F[G]| and U(g). If Char (k) = p > 0, then g isarestricted Lie
agebra, and u(g) := U(g)/({ a? — 2Pl |2 € g }) isthe restricted universal enveloping algebra of
g. Inthe sequel, in order to unify notation and terminology, when Char (k) = 0 we call any Lie
algebra g “restricted”, and its “restricted universal enveloping algebra” will be U(g), and we write
U(g) :=U(g) if Char (k) =0 and U(g) := u(g) if Char (k) > 0.

We shall also consider Hyp(G) := (FIG]°), = { [ € FIG]’| f(ms*) =0VYn 20}, iethe
connected component of the Hopf algebra F'[G]° dua to F[G]; thisis called the hyperalgebra of G.
By construction Hyp (G) is aconnected Hopf algebra, containing g = Lie(G) ; if Char (k) = 0 one
has Hyp(G) = U(g), whereasif Char (k) > 0 one has a sequence of Hopf algebra morphisms
Ul(g) u(g) Hyp(G) . In any case, there exists a natural perfect (= non-degenerate) Hopf
pairing between F'[G] and Hyp (G).

Now assume G is a Poisson group (for this and other notions hereafter see, e.g., [CP], but within
an algebraic geometry setting): then F'[G] is a Poisson Hopf algebra, and its Poisson bracket induces
on g~ aLie bracket which makes it into a Lie bialgebra;so U(g*) and U(g*) are co-Poisson Hopf
algebras too. On the other hand, g turnsinto a Lie bialgebra— maybe in topological sense, if G is
infinite dimensional — and U(g) and U(g) are (maybe topological) co-Poisson Hopf algebras. The
Hopf pairing above between F'[G] and U(g) then is compatible with these additional co-Poisson and
Poisson structures. Similarly, Hyp (G) is a co-Poisson Hopf algebra as well and the Hopf pairing be-
tween F'[G]| and Hyp(G) is compatible with the additional structures. Moreover, the perfect pairing
g x g° — k given by evaluation is compatible with the Lie bialgebra structure on either side (see
§1.2(b)): so g and g* are Lie bialgebras dual to each other. In the sequel, we denote by G* any con-
nected algebraic Poisson group with g as cotangent Lie bialgebra, and say it is (Poisson) dual to G .

For the Hopf operations in any Hopf algebra we shall use standard notation, asin [Ab].

Definition 1.2.
(8 Let H, K beHopf algebras (in any category). Apairing ( , ): H x K —— R (where R
is the ground ring) is a Hopf (algebra) pairing if (,y1 - y2) = (A(z), 11 ® 12) == >, (1), 1) -
(20),92)1 (@1 22,9) = (11 @22, A(Y)) 1= Ly (21,90) - (22,909) 1 (2,1) = (@), (Ly) =
e(y), (S(z),y) = (x,S(y)), foral =, z1,20 € H, y,y1,y» € K.
(b) Let g, h beLiebialgebras(in any category). A pairing ( ,
ground ring) is called a Lie bialgebra pairing it (z, [y1,ys]) =

) gxbh——k (wherekisthe
<5(:p),y1 ® y2> = Z[z} <x[1],y1> )
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<Qf[2},y2>, <[£C1,.l’2],y> = <$’1 & 33'2,5(3/)> = Z[y] <x17y[1}> : <372,3/[2]>, for all T, 01,22 € 9 and
Y, 1,92 € b, with 6(z) = 32, 2 @ 2 and 6(y) = 31,y @ Y2 -

1.3 The quantum setting. Let R be a 1-dimensional (integral) domain (=1dD), and let ' =
F(R) beits quotient field. Denote by M the category of torsion-free R—modules, and by H.A4 the
category of al Hopf algebrasin M. Let M be the category of F—vector spaces, and H.Ar be the
category of all Hopf algebrasin M. Forany M € M, set Mp := F(R)®r M . Scalar extension
givesafunctor M — Mg, M — Mp, which restrictsto afunctor HA — HAr.

Let & € R be anon-zero prime element (which will be fixed throughout), and k := R /(h) =
R/hR the corresponding quotient field. For any R—module M, we set Mﬁ}rpo:: M/hM =k®gr
M : thisis ak—module (via scalar restriction R — R/hR =: k), which we call the specialization
of Ma h = 0; we use aso notation M "~ N to mean that Mh’h;o ~ N. Moreover, set
M, = (/25 k"M (thisis the closure of {0} in the h—adic topology of M). In addition, for any
HEMA, let 1, =Ker(H > R—">k) andset 1= /%5 1"

Finally, given H in H. Ay, asubset H of H is called an R-integer form (or simply an R—form) of
Hif H isaHopf R—subalgebraof H (hence H € HA)and Hp := F(R)®p H = H.

Definition 1.4. (“Global quantum groups” [or “algebras’]) Let h € R\ {0} beaprime.

(&) We call quantized restricted universal enveloping algebra (at k) (in short, QrUEA) any U, €
‘H.A such that Uﬁ’rpo = uh/huh is (isomorphic to) the restricted universal enveloping algebralf(g)
of somerestricted Lie algebra g .

Wecall QridEA the full subcategory of H.A whose objects are all the QrUEASs (at £).

(b) Wecall quantized function algebra (at i) (in short, QFA) any F} € HA suchthat (F), =
I,>° (notation of §1.3) and Fj|,_ := Fy/hF), is (isomorphic to) the algebra of regular functions
F[G] of some connected algebraic group G.

Wecall QFA thefull subcategory of H.A whose objects are all the QFAs (at 7).

Remark 1.5. If U, isa QrUEA (at &, that isw.r.t. to i) then uﬁ}ko IS a co-Poisson Hopf
algebra, w.r.t. the Poisson cobracket ¢ defined as follows: if x € uhyh;o and ©' € Uy gives x = 1’
mod Ay, then 6(z) := (A~ (A(z’) — A%(2'))) mod K (Up®Uy) . SO L[h‘hzo = U(g) for some
Lie algebra g, and by [Dr], §3, the restriction of ) makes g into a Lie bialgebra (the isomorphism
U|,_, = U(g) being oneof co-Poisson Hopf algebras); inthis case wewrite 14, = Uy (g) . Similarly,
if F,isaQFA at h, then Fﬁ’rpo is a Poisson Hopf algebra, w.r.t. the Poisson bracket { , } defined
asfollows: if z, y € Fh‘hzo and 2/, y € Fy give x = 2’ mod hFy, y =y mod hFjy, then
{z,y} = (h"'(z'y/ —y'2’)) mod hF,.So Fy|,_, = F[G] for some connected Poisson algebraic
group G (the isomorphism being one of Poisson Hopf algebras): in this case we write F, = F3[G] .
Definition 1.6.

(@) Let R beany (integral) domain, and let £ be itsfield of fractions. Given two F—modules A,
B, and an F-bilinear pairing A x B — F', for any R—submodule A C A and B C B we set
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4 ={veB|(av)c R} and B = {ach|(eB)C R},
(b) Let RbealdD. Given H, K € HA, wesaythat H and K are dua to each other if there
exists a perfect Hopf pairing between them for which H = K* and K = H*®.

§ 2 Theglobal quantum duality principle

2.1 Drinfeld’sfunctors. (Cf.[Dr], §7) Let R, HAand h € R beasin§1.3. Forany H € HA,
let T = I, = Ker(H—e»Rﬂ»R/hR - k) - Ker(Hﬂ»H/hH_g»[@ (asin §1.3),
amaxima Hopf ideal of H (where € is the counit of H ] o and the two composed maps clearly
coincide): we define

Y =Y hrm =S ()" = U ()" (CHp).
n>0 n>0 n>0
If J=J,:=Ker(ey) thenI=J+h-1,, thus H' =5 A I => _,(h1J)" too.

Given any Hopf algebra H, for every n € N define A": H— H®" by A0 = e, Al :=id,,
and A" .= (A®@id5" ) o A" if n > 2. For any ordered subset ¥ = {iy,...,ix} C {1,...,n}
with i, < --- < i, definethemorphism j. : H®* — H®" by jo(a1 @ -®ay) == @ @b,
with b; == 1if i ¢ ¥ and b;, := a,, for 1 <m < k;thenset Ay := j, 0 A*, Ay := A", and
0s == D sves (—1)"*|E/‘AE/, dp := €. By the inclusion-exclusion principle, this definition admits
theinverseformula Ay = Zq,gz dy . We shall aso use the notation 6y := dg, 9, := dq1,2,....n) » @N
the useful formula §,, = (id, — €)*" o A”, foral n € N, .

Now consider any H € HA and i € R asin §1.3: we define

H = {acH|b(a) e"H*", VneN} (CH).

Theorem 2.2 (“The Global Quantum Duality Principle”)

() The assignment H — HY,resp. H — H', defines a functor ()": HA — HA,
rep. (): HA — HA, whoseimage liesin QrliUEA, resp. in QFA. In particular, when
Char (k) > 0 thealgebraic Poisson group G suchthat H /’h:O = F[G] iszero-dimensional of height
1. Moreover, for all H € HA wehave H C (HY)" and H D (H')’, hencealso HY = ((H")")"
and H' = ((H’)v)’.

(b) Let Char (k) =0. Thenfor any H € H.A one has

H=(H") < HecQFA and H=(H) < Hec QréA,
thus we have two induced equivalences, namely ()": QFA —— QrUEA, H — HY, and
(): QrUEA —— QFA, H+— H', whichareinverseto each other.
(¢) (“ Quantum Duality Principle”) Let Char (k) = 0. Then

= Fh[G]v/hFh[G]v = U(g®), Uplg) L Uh(g)'/hUh(g)' = F[G*]

Vv

FplG)Y

h=0
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(with G, g, g*, g* and G* asin §1.1, and Up(g) has the obvious meaning, cf. §1.5) where the choice
of the group G* (among all the connected Poisson algebraic groups with tangent Lie bialgebra g*)
depends on the choice of the QrUEA U (g). In other words, F1,[G]" isa QrUEA for the Lie bialgebra
g*,and Uy(g)’ isa QFA for the Poisson group G*.
(d) Let Char(k) =0. Let F, € QFA, Uy € QriUEA be dual to each other (with respect to
some pairing). Then £}, and U}, are dual to each other (w.r.t. the same pairing).
(e) Let Char (k) =0. Thenfor all H € HAp thefollowing are equivalent:
H has an R-integer form H s whichisa QFAat 7,
H has an R—-integer form H ) whichisa QrUEAat 7.

Remarks 2.3. After stating our main theorem, some comments are in order.

(&) The Globa Quantum Duality Principle as a “Galois correspondence” type theorem.

Let L C E beaGalois (not necessarily finite) field extension, and let G := Gal (E/L) beitsGalois
group. Let F bethe set of intermediate extensions (i.e. all fields £ suchthat L C F C F), let S
be the set of all subgroupsof G andlet S¢ bethe set of all subgroups of G which are closed w.r.t. the
Krull topology of G. Note that 7, S and S¢ can all be seen as lattices w.r.t. set-theoretical inclusion
— S¢ being asublattice of S — hence as categoriestoo. The celebrated Galois Theorem providestwo
maps, namely @ : ¥ —— S, F — Gal (E/F) :={y€ G| 7|, =idp },and ¥: § — F,
Hw— Ef:={eecFE|nle)=e VneH},suchtha

—1) @ and ¥ are contravariant functors (that is, they are order-reversing maps of lattices, i.e.
lattice antimorphisms); moreover, the image of @ liesin the subcategory S¢;

—2) for H € S onehas ¢(¥(H)) = H, the closure of H w.r.t. the Krull topology: thus
H C &(W(H)), and ¢ oV isaclosureoperator, sothat H € S¢ iff H = ¢(V(H));

—3) for F € F onehas ¥ (&(F)) = F;

—4) ¢ and ¥ restrict to antiequivalences @ : F — S¢ and ¥ : §¢ — F which areinverse to
each other.

Then one can see that Theorem 2.2 establishes a strikingly similar result, which in addition is
much more symmetric: H.A playsthe role of both 7 and S, whereas ()’ standsfor ¥ and ()" stands
for . QFA plays the role of the distinguished subcategory S¢, and symmetrically we have the
distinguished subcategory Qrit/EA. The composed operator (( )V)' = () o ()" playstherole of
a“closure operator”, and symmetrically (()')” = ()" o ()’ playstherole of a“taking-the-interior
operator”: in other words, QFAs may be thought of as “closed sets” and QrUEAS as “open sets’ in
‘HA. Yet note aso that now al involved functors are covariant.

(b) Dudlity between Drinfeld’s functors. Forany n € N let p,: J,°" — He» -, [
be the composition of the natural embedding of .J,*" into H®™ with the n—fold multiplication (in
H): then pu, isthe “Hopf dual” to &, . By construction we have HY = % p,(A7"J,%") and
H' = N,en0n (ATJ,2") 1 this shows that the two functors are built up as “dual” to each other
(see also part (d) of Theorem 2.2).
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(c0 Ambivalence QrUEA «— QFA inHAfr. Part (e) of Theorem 2.2 means that some Hopf
algebras over F'(R) might be thought of both as “quantum function algebras’ and as “quantum
enveloping algebras’: examplesare Ur and Fir for U € QridEA and F € QFA.

(d) Drinfeld’'s functors for algebras, coalgebras and bialgebras. The definition of either of Drin-
feld functors reguires only “half of” the notion of Hopf algebra. In fact, one can define ( )" for all
“augmented algebras’ (that is, roughly speaking, “algebras with a counit”) and ( )’ for all “coaug-
mented coalgebras’ (roughly, “coalgebras with a unit”), and in particular for bialgebras: this yields
again nice functors, and neat results extending the global quantum duality principle, cf. [Ga5], §53—4.

(e) Relaxing the assumptions. We chose to work over H.A for simplicity: in fact, this ensures
that the speciaization functor H — H]hzo yields Hopf algebras over a field, so that we can use
the more elementary geometric language of algebraic groups and Lie algebras in the easiest sense.
Nevertheless, what isreally necessary to let the machinework isto consider any (commutative, unital)
ring R, any h € R and then define Drinfeld’sfunctorsover Hopf R—algebras which are h—torsionless.
For instance, thisis— essentially — what is done in [KT], where the ground ring is R = k[[u, v]],
and the role of 7 is played by either « or v. In general, working in such a more general setting
amounts to consider, at the semiclassical level (i.e. after specialization), Poisson group schemes over
R/h R (i.e. over Spec(R/h R)) and Lie R /h R—bialgebras, where R/h R might not be afield.

Similar considerations— about R and 2 — hold w.r.t. remark (d) above.

§ 3 Application to trivial deformations: the Crystal Duality Principle

3.1 Drinfeld’sfunctorson trivial deformations. Let H.A, be the category of all Hopf algebras
over thefieldk. Foral n € N, let J" := (Ker(e: H —k))" and D, := Ker(6,41: H —
H®"), andset J := {J”}HGN, D = {D”}neN . Of course J is a decreasing filtration of H
(maybewith (), ., J" 2 {0} ), and D isan increasing filtration of i (maybewith (J,., D, & H),
by coassociativity of the d,,’s.

Let R :=k[h] bethe polynomial ring in the indeterminate /: then RisaPID (= principal idea
domain), hence a 1dD, and i isanon-zero primein R. Let H, := H[h] = R ®y H , the scalar ex-
tensionof H : thisisatorsion free Hopf algebra over R, hence one can apply Drinfeld's functorsto
Hj, ; inthis section we do that with respect to the prime 7 itself. We shall seethat the outcomeisquite
neat, and can be expressed purely in terms of Hopf algebrasin H. Ay : because of the special relation
between some features of H — namely, thefiltrations J and D — and some properties of Drinfeld’s
functors, we call thisresult “Crystal Duality Principle”, in that it is obtained through sort of a“crys-
tallization” process (bearing in mind, in a sense, Kashiwara's motivation for the terminology “crysta
bases’ in the context of quantum groups. see [CP], §14.1, and references therein). Indeed, this theo-
rem can also be proved aimost entirely by using only classical Hopf agebraic methods within H.A,,
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i.e. without resorting to deformations: thisis accomplished in [Ga6]. We first discuss the general sit-
uation (§53.2-5), second we look at the case of function algebras and enveloping algebras (§53.6-7),
then we state and prove the theorem of Crystal Duality Principle (§3.9). Eventually (§§3.11-12) we
dwell upon two other interesting applications: hyperalgebras, and group algebras and their dual.
Note that the same analysis and results (with only a few more details to take care of) still hold
if we take as R any 1dD and as / any prime element in R such that R/hR = k and R carries
a structure of k—algebra; for instance, one can take R = k[[h]] and i = h, or R = k[q,¢7']
and i = g — 1. Finally, in the sequel to be short we perform our analysis for Hopf algebras only:
however, as Drinfeld’ s functors are defined not only for Hopf algebras but for augmented al gebras and
coaugmented coal gebras too, we might do the same study for them as well. In particular, the Crystal
Duality Principle has a stronger version which concerns these more general objectstoo (cf. [Gab]).

Lemma 3.2
HY =>YR-h"J"=R-J+R-R'J' '+ +R-B"J"+--- (3.1)
n>0
HY =YY R-h"D,= R-Dy+R-h"'D;+---+R-h""D,+--- (3.2
n>0
Sketch of proof. (3.1) follows directly from definitions, while (3.2) isan easy exercise. OJ

3.3 Rees Hopf algebras and their specializations. Let M be a module over a commutative
unitary ring R, and let M := {M.},., = ( cM,C---CM;CMCMC--C

M, C ) be a bi-infinite filtration of M by submodules M. (= € Z). In particular, we consider
increasing filtrations (i.e., those with M, = {0} for z < 0) and decreasing filtrations (those with
M, = {0} foral z > 0) as specia cases of bi-infinite filtrations. First we define the associated
blowing module to be the R—submodule 5,,(M) of M [t, t*l] (where t is any indeterminate) given
by By (M) :== >, ., t°M,; thisisisomorphic to the first graded module? associated to M, namely
.., M.. Second, we define the associated Rees module to be the R[t]-submodule R}, (M) of
M [t, t*l] generated by B, (M); straightforward computations then give R—module isomorphisms
RY, (M) /(¢ = 1) Rl (M) = UM, Ry (M) SR (M) = Gy (M)

where Gy (M) := D, , M. / M, _, isthe second graded module' associated to M. In other words,
R (M) isan R[t]-module which specializesto | J,., M. for t = 1 and speciaizesto Gy (M) for
t =0, therefore the R—modules | J, ., M. and Gy (M) can be seen as 1-parameter (polynomial)
deformations of each other via the 1-parameter family of R—modules given by R}, (M). We can re-
peat this construction within the category of algebras, coalgebras, bialgebras or Hopf algebras over R
with afiltration in the proper sense: then we' Il end up with corresponding objects By, (M), RY, (M),
etc. of the like type (algebras, coalgebras, etc.). In particular we'll deal with Rees Hopf algebras.

h pick this terminology from Serge Lang's textbook “ Algebra” .
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3.4 Drinfeld’sfunctorson Hj, and filtrationson H. Lemma 3.2 setsalink between properties
of Hy/, resp. of H’, and properties of thefiltration D, resp. J, of H .

First, (3.1) together with H,' € HA impliesthat .J isaHopf algebrafiltration of / ; conversely,
if oneprovesthat J isaHopf algebrafiltrationof H (whichisstraightforward) then from (3.1) we get
aone-line proof that H;’ € H.A. Second, we can look at J as a bi-infinite filtration, reversing index
notation and extending trivially on positiveindices, J = ( cJrc---JPCJCJ'(=H)C
HC...-CHC ) ;  then the Rees Hopf algebraRZ(H) is defined (see §3.3). Now (3.1) give
Hy =R}(H), s0 Hhv/hHhV = RZ(H)/hRZ(H) ~ G,(H). Thus G,(H) iscocommutative
because Hj’ / h Hy' is, conversely, we get an easy proof of the cocommutativity of Hj’ / h Hy’'
oncewe provethat G,(H) iscocommutative, whichisstraightforward. Finally, G ;(H) isgenerated
by Q(H) = J/J2 whose elements are primitive, so afortiori G ;(H) isgenerated by its primitive
elements; then the latter holds for Hhv/hHhV aswell. Tosumup, as Hy,' € QriUEA we argue
that G;(H) = U(g) for some restricted Lie bialgebra g ; conversely, we can get H,' € QriEA
directly from the properties of thefiltration J of H. Moreover, since G ;(H) = U(g) isgraded, g as
arestricted Lie agebrais graded too.

On the other hand, it is easy to seethat (3.2) and H;' € HA imply that D isaHopf algebrafil-
tration of H; conversely, if oneshowsthat D isaHopf algebrafiltration of H (which can be done)
then (3.2) yields a direct proof that Hy € H.A. Second, we can look at D as a bi-infinite filtration,
extending it trivially on negative indices, namely D = ( C {0} C---{0} C ({0} =)Dy C
D;C---CD,C ) ; then the Rees Hopf algebraRﬁQ(H) Is defined (see §3.3). Now (3.2) gives
Hy' = Riy(H); butthen Hy! /hHy = Riy(H) /R (H) = Gp(H) . Thus Gp(H) is commu-
tative because Hj,' / h Hy' is, viceversa, we get an easy proof of the commutativity of H}' / h Hy'
oncewe provethat Gp(H) iscommutative (which can be donetoo). Finaly, Gp(H) isgraded with
1-dimensional degree O component (by construction) hence it has no non-trivial idempotents; so the
latter istrue for Hh’/hHh’ too. Note also that ]Hfo = {0} by construction (because H, is free over
R). Tosum up, since H;' € QFA weget Gp(H) = F[G] for some connected algebraic Poisson
group G'; conversely, we can argue that H,' € OF.A directly from the properties of thefiltration D .

In addition, since G'p(H) = F[G] isgraded, when Char (k) = 0 the (pro)affine variety G g of
closed points of G is a (pro)affine space?, that is G = AT = Kk? for someindex set Z, and so
F|G) =k[{},.;] isapolynomial algebra.

Finally, when p := Char (k) > 0 the group G has dimension 0 and height 1: indeed, we can
see this as a consequence of part of Theorem 2.2(a) via the identity H;,L/hH,g = Gp(H), or
conversely we can prove the relevant part of Theorem 2.2(a) viathisidentity by observing that G has
those properties (cf. [Gab], §5.4). At last, by general theory since G has dimension 0 and height 1

2Foritisacone— since H is graded — without vertex — since G (4, being agroup, is smooth.
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the function algebra F|G| = Gp(H) = H;, / h Hj, isatruncated polynomial algebra, namely of type
FIG] =k[{x} }/({xi”}iez) for someindex set 7 .

€L
3.5 Special fibers of H;' and H' and deformations. Given H € ‘H.A,, consider Hy: our
goal istostudy H' and Hj' .
Asfor H,’, the natural map from H to H := G,(H) = Hhv/hHhV = Hp’ sends J =

Mo J " to zero, by definition; also, letting H"Y := H/J°O (aHopf algebraquotient of H, for J isa

—H'=H= U(g-) for somegraded
h=0

restricted Lie bialgebrag_; aso, (HV),’ = (Hv)hv/(h— 1) (HY)) =Y ,50) = HY (see
§3.3). Thuswe can see (H"),” = R,(HY) asal-parameter family inside H.A; with regular fibers
(that is, they are isomorphic to each other as k—vector spaces; indeed, we switchfrom H to H Y just to
achieve thisregularity) which links HV and HY as (polynomial) deformations of each other, namely

Hopf algebrafiltration), we have H=H".Thus (HV),,Lv

= HY
h=1

U(g)=H" = (H"), o (H"),

h=0 (1Y),

Now look at ((HY),’)". By congruction, ((H"),)'

(Y|
0 then K_ = G* by Theorem 2.2(c). So ((H"),’)" can be thought of as a 1-parameter family inside
HA, , with regular fibers, linking H" and F'[G* | as (polynomial) deformations of each other, namely

1—h—0 Vy/
HY
h=1 ((Hv)h\/)/ (( )h )

= (HY), = HY, whereas
h=1 h=1

= F[K_] for some connected algebraic Poisson group K _ : in addition, if Char (k) =

HY = (1))

= FIE] (z F[G*] if Char (k) = o) ,

Therefore H" is both adeformation of an envel oping algebra and adeformation of afunction algebra,
viatwo different 1-parameter families (with regular fibers) in H.4, which match at thevalue 7 = 1,
corresponding to the common element H" . At aglance,

U(g-)

0—h—1 1—h—0

H\/
(HY) (HV),)

FIK_] (: F[G*] if Char (k) :o). (3.3)

Now consider H;'. We have Hj’

= Hh’/hHh’ = Gp(H) = H, and H = F|G,]

h=0
for some connected algebraic Poisson group G, . On the other hand, we have also Hj/'

h=1
Hﬁ’/(h —1)Hy' = 3,50 Dn =: H'; notethat the latter is a Hopf subalgebra of [, because D isa
Hopf algebra filtration; moreover we have H=H, by the very definitions. Therefore we can think
of Hy = RZ(H’) as a 1-parameter family inside H.Ay with regular fibers which links H and H' as
(polynomial) deformations of each other, namely

0—h—1

FIG.] = H=H,/
[G4] ml o

Consider dlso (Hj')": by construction (H;')'| = Hy = H', whereas (Hy/)" N
=1 =0
U(t,) for somerestricted Lie bialgebra €. : inaddition, if Char (k) =0 then £, = g by Theorem
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2.2(c). Thus (H')" can be seen as a 1-parameter family with regular fibers, inside H.Ax , which
links ¢4(¢, ) and H' as (polynomial) deformations of each other, namely

i (HY)Y| | =ue) (= Uley) if Char (k) = 0).

h=1 (Hh/)\/

H = (Hy)’

Therefore, H' is at the same time a deformation of a function algebra and a deformation of an en-
veloping algebra, viatwo different 1-parameter familiesinside H.A4y (with regular fibers) which match
at thevalue i = 1, corresponding (in both families) to H’. In short,

Ue,) (: U(g)) if Char (k) :o). (3.4)

0—h—1 1l—h—0

H’/
Hﬁ/ ( Hh, ) \%

FIG.]

Finaly, it isworth noticing that when H' = H = H" formulas (3.34) give

FIGL] 2 g ey (: U(g) if Char (k) :o)
Hy, (Hy)
|
H (3.5)
|
Ug) — "l gy 0 ik <:F[G*_] if Char (k)zO)
(HY), (H),Y)

which provides four different regular 1-parameter (polynomial) deformations from H to Hopf alge-
bras encoding geometrical objects of Poisson type, i.e. Lie bialgebras or Poisson algebraic groups.

3.6 The function algebra case. Let G be any algebraic group over the field k. Let R := k[A]
be asin §3.1, and set F[G] := (F[G]), = R & F[G]: thisistrivialy a QFA at &, because
Fy[G]/h F}[G] = F[G], inducing on G the trivial Poisson structure, so that its cotangent Lie bialge-
braissimply g* with trivial Lie bracket and Lie cobracket dual to the Lie bracket of g . In the sequel
weidentify F'[G] with 1® F[G] C Fj|G] .

We begin by computing F[G]” (w.r.t. ) and Fy[G]" -

o~

= F[G] = Gy(FIG)).

Let J := Jpie) = Ker (epie)) . let {jv},cs (€ J) beasystemof parametersof F[G],i.e. {y, := j,
mod J2}yes is a k-basis of Q(F[G]) = J/J2 — g*. Then J"/J**! isk-spanned by {;¢
mod J"! | e € N§, |e| =n} forall n, where Ny := {0 € N°|o(b) =0 foramostal be S}
(hereafter, monomials like the previous ones are ordered w.r.t. some fixed order of the index set S)
and |e| := ), ce(b). Thisimpliesthat

FIG)" = Yoens KIn] - h79j ¢ KR [71] T = ¥ cns klR] - ()@ K[R][A!] T
where J* = yJ" and j) := h7'j, foral s € S. We also get that ]7’[5] = G, (F[Q)) is
k-spanned by { j¢ mod J"*' |eeN§}, so ]7’[5] = G, (F|G]) isaquotientof S(g*).

Now we distinguish various cases. First assume G issmooth, i.e. k* ®, F[G] is reduced (where

k* is the algebraic closure of k), which is always tﬂa\case if Char (k) = 0. Then (by standard

—

results on algebraic groups) the above set spanning F[G] is ak-basis: thus Fh[G]V’ .= F[G] =

G, (F[G]) = S(g*) ask—dgebras. In addition, tracking the construction of the co-Poisson Hopf
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— —

structure onto F'[G] we see at once that F'[G] = S(g*) as co-Poisson Hopf algebras too, where the
Hopf structure on S(g*) isthe standard one and the co-Poisson structure is the one induced from the
Lie cobracket of g* (cf. [Gab] for details). Note also that S(g*) = U(g*) because g* is Abelian.

Another “extreme” caseiswhen G isafinite connected group scheme: then, assuming for simplic-
ity that k be perfect, we have F[G] = k[z1, . .. ,xn]/(x’fel, ~..,ar") forsome m, ey, ... e, € N,
Modifying a bit the analysis of the smooth case one gets

FIG) = ¥ e klR] - hlelze = 35 o k[R] - (2¥)°

(now J>* = {0}), and F[G]" L FIG] = G4(F[G]) = S(gx)/(fﬁ’el,...,ff”), where
Z; = x; mod J> € g*. Now, recdl that for any Lie algebra h there is hiPI~ = {xW =

" |xr € h,n € N } , the restricted Lie algebra generated by b inside U(h), with p—operation
given by zl?l .= zP; then one always has U(h) = u(f)[p]“’). In our case {97;{’81, Ce 5:56"}

generates a p—ideal Z of (g*)?I”, hence g% = g[p]“’/I is a restricted Lie agebra too, with k—

h=0

basis {ff”, L, E
u(gl) = S(gx)/({f{’el, . iﬁ"}) as co-Poisson Hopf algebras.

The general case is intermediate. Assume again for simplicity that k be perfect. Let F[[G]]
be the J—adic completion of H = F|[G]. By standard results on algebraic groups (cf. [DG])
there is a subset {z;},., of J suchthat {7, :=z; mod J? }Z.GI isabasisof g* = J/J? and
Fl[G)] = k[[{xi}iezﬂ/({x.”nm)}i%) (the algebra of truncated formal power series), for some

Io € T and (n(z:)),., € N™. Since G, (F[G]) = G, (F[[G]]), weaguethat G, (F[G]) =

k[{Z:}es] / ({zf”””}mo) . finally, since k[{Z:},.;] = S(g¥) weget

Gy (Fl@)) = S(gx>/<{fpn(z)}xeN(F[G]))

asalgebras, N (F[G]) being thenilradical of F[G] and p"(*) isthenilpotency order of = € N (F[G]) .

Finally, noting that ({W"(z)} ) isaco-Poisson Hopf ideal of S(g*), likeinthesmooth

zeN(F[G])
case we argue that the above isomorphism is one of co-Poisson Hopf algebras.

If k isnot perfect the same analysis applies, but modifying a bit the previous arguments.

Asfor F[G]" := F[G]/J>, one has (cf. [Ab], Lemma 4.6.4) F[G]" = F[G] whenever G is
finite dimensional and thereexistsno f € F[G] \ k whichis separable algebraic over k .

It is also interesting to consider (F3[G]Y)". If Char (k) = 0 Theorem 2.2(c) gives (F4G]Y)" =
F,|G]. If instead Char (k) = p > 0, then the situation might change dramatically. Indeed, if G
has dimension 0 and eight 1 then — i.e,, if F[G] = k[{xi}idﬂ/({xf |i € I}) asak-agebra—
the same analysis as in the zero characteristic case applies, with a few minor changes, whence one
getsagain (Fy[G]") = F,[G]. Otherwise, let y € J \ {0} be primitive and such that y» # 0 (for
instance, thisoccursfor G = G, ). Then y* isprimitive as well, hence 4,,(y*) = 0 foreach n > 1.

ap < eq,...,a, < en}. Then the previous analysis gives F5[G]"
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It followsthat 0 # 7 (y")? € (F3[G]")", whereas h (y")? ¢ F3[G], dueto our previous description
of F,[G]". Thus (F3[G]")" 2 Fu[G]", acounterexample to the first part of Theorem 2.2(c).

What for F[G]" and I/J’[xG/] ? Again, this depends on the group G under consideration. We provide
two simple examples, both “extreme’, in a sense, and opposite to each other.

Let G := G, = Spec(klz]), s0 F[G] = F[G,] = k[z] and F;[G,] := R ®x k[z] = R[z].
Thensince A(z) =2 ® 1+ 1®x and ¢(x) = 0 wefind F,[G,]" = R[hz] (likein §3.7 below:
indeed, thisisjust a specia instance, for F'[G,] = U(g) where g isthe 1-dimensiona Lie algebra).

Moreover, iterating one gets easily (F4[G,]) = R[h%x], ((FH[GQ]’)')/ = R[#*z], andingenera
<<(FH[GQ]’)'>/ y ) — R["z] = Rjz] = F[G,) forall neN.
—_———

Second, let G = G,, = Spec(k[=*1,271]), thatis FIG] = F[Gy] = k[=*!,27"] so that
iG] == Re k[z1!, 271 = R[z"!, 27| . Thensince A(z*!) := 2 @ 2*! and €(2*!) =1
wefind A" (2*1) = (2¥1)®" and §,(2*!) = (2*' —1)*" forall n € N. Itfollowseasily from that
Fi[G,.) = R-1, thetrivia possibility (see also §3.12 later on).

3.7 Theenveloping algebracase. Let g beany Liealgebraover thefield k, and U(g) itsuniversa
enveloping algebra with its standard Hopf structure. Assume Char (k) = 0, and let R = kA, as
in §3.1, and set Un(g) == R & U(g) = (U(g)),. Then Uy(g) is trivially a QrUEA at h, for
Uh(g)/h Ur(g) = U(g) , inducing on g the trivial Lie cobracket. Thus the dual Poisson group isjust
g* (thetopological dual of g w.r.t. the weak topology) w.r.t. addition, with g as cotangent Lie bialgebra
and function algebra F'[g*] = S(g): theHopf structureisthe standard one, and the Poisson structure
istheoneinduced by {z,y} := [z,y] foral z,y € g (it isthe Kostant-Kirillov structure on g*).

Similarly, if Char (k) = p > 0 and g isany restricted Lie algebraover k, let u(g) beitsrestricted
universal enveloping algebra, with its standard Hopf structure. Thenif R = k[i] the Hopf R—algebra
Un(g) == R @, u(g) = (u(g)), isaQrUEA at h, because ux(g)/hun(g) = u(g), inducing on
g the trivial Lie cobracket: then the dual Poisson group is again g*, with cotangent Lie bialgebra g
and function algebra F'[g*] = S(g) (the Poisson Hopf structure being as above). Recall also that
U(g) = u(gl™) (cf. §3.6).

First we compute u(g)” (w.r.t. the prime /) using (3.2), i.e. computing the filtration D .

By the PBW theorem, once an ordered basis B of g isfixed u(g) admits as basis the set of ordered
monomialsin the elements of B whose degree (w.r.t. each element of B) islessthan p; thisyields a
Hopf algebrafiltration of u(g) by thetotal degree, which we refer to as the standard filtration. Then a
straightforward cal culation shows that D coincides with the standard filtration. Thisand (3.2) imply
us(g)’ = (§) = (hg): heredfter §:= hg, andsimilarly 7 := hz foral = € g. Thentherelations
vy —yr = [r,y] ad 22 = 2Pl inu(g) yied 2§ — g7 = hm =0 mod Auy(g) and aso
2 = [l = 0 mod huy(g) ; therefore, from uy(g) = TR(g)/({ vy —yx — [z,y], 2P —
2P } T,Y,z € g}) we get
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e =@ = ulw) = 5@ [ ({25557 | 255 5}) -
= Tu(e)/({ry —ya. |2y, 2 € 0}) = Sl@)/({ | € 8}) = Flg)/({# | z € 6})

that is u(g) := Gp(u(g)) = un(g)’/hun(g) = F[g*/ {2#| 2z € g}) asPoisson Hopf algebras.
In particular, this means that u( ) is the function algebra of, and u,(g)’ is a QFA (at &) for, a non-

reduced algebraic Poisson group of dimension 0 and height 1, whose cotangent Lie bialgebrais g,
hencewhichisdual to g; thus, inasense, part (c) of Theorem 2.2 is till valid in this case too.

Remark: Notethat thislast result remindsthe classical formulation of the analogue of Lie’'s Third
Theorem in the context of group-schemes. Given a restricted Lie algebra g, there exists a group-
scheme G of dimension 0 and height 1 whose tangent Lie algebrais g (seee.g. [DG]). Here we have
just given sort of a“dual Poisson-theoretic version” of thisfact, in that our result sounds as follows:
Given arestricted Lie algebra g, there exists a Poisson group-scheme G of dimension 0 and height 1
whose cotangent Lie algebrais g.

Asabyproduct, since Uy(g) = ux (g™ wehaveaso Ux(g) = un(g?™)’, whence

Un(e) = un(g¥™) 2 5o L”1°°)/({zp}zeg ~) = F|(g" )}/({ P} )

Furthermore, uy(g) = (g) impliesthat I, y isgenerated (asanided) by A R - 1y, + Rg,
hence 7~'1,, , isgeneratedby R-1+ Rg, therefore

(uh( )) = Un>0( Iy, g)) = Unzo(R'1+R9)n = Un(g) -

This meansthat also part (b) of Theorem 2.2 is till valid, though now Char (k) > 0.

When Char (k) = 0 andwelook at U (g), thelike argument applies: D coincideswith the standard
filtration of U(g) provided by the total degree, viathe PBW theorem. Thisand (3.2) imply U(g)' =
(g) = (hg), sothat from the presentation Uj(g) = TR(g)/({ Ty —yr— 2,9 }xweg) we get
Un(e) = Tu@)/ ({75 - 55 - n-[e.ul}

) , Whence we get at once
z,ycg

Un(g) —""— Uls) = Tu(a)/ ({77~

ie Ulg) = Gp(U(g)) = Un(g)'/hUs(g) = Flg*] as Poisson Hopf agebras, as predicted
by Theorem 2.2(c). Moreover, Ux(g)' = (&) = T(g)/({ Fj—gi=h-[ry|#§ecq)) implies
that Iy, isgeneratedby h R- 1y, +R§: thus h~'Iy, v isgeneratedby R -1y, + Rg, SO
(Un(9))" = L>JO (W )" = U (R 1y, + Rg)" = Us(g), agreeing with Theorem 2.2(b).

n_

T|7,9€8}) = Sulg) = Flg’]

Qﬁz

What for the functor ()" ’?Thls heavlly depends on the g we start from!
First assume Char (k) = 0. Let gy :== g, g : [g I(k— 1] (k € N,), be the lower central
series of g. Pick subsets B, , By, ..., By, ... (€ g) such that B, mod g1y be ak—basis of
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9/ sy (foral ke Ny), pick dso ak-basis By, 0f g(oo) = (e, » andset 9(b) := k for
any b€ B, andeach k € N, U{occ}. Then B := (Uk€N+ Bk> U B, isak-basisof g; wefix a
total order on it. Applying the PBW theorem to this ordered basis of g we get that J" has basis the
set of ordered monomials { b{'b52---b¢* | s € Ny, b, € B, >»_, b, 9(b,) > n }. Then one finds
that Un(g)" isgeneratedby {770 | b € B, \ By} (asaunital R—algebra) and it isthe direct sum
Ung)” = (@Sem R (h2®0p,) . (ha(bs>bs)es) o (@SGNMTGB R b5 - -bgs)

breB\Boo 37:br€EBoo

From this it follows at once that Uﬁ(g)v/hUh(g)v >~ U (g/g(~)) Viaan isomorphism which
maps 7®b mod AUx(g)” t0 b mod gy € 8/8(0) C U (g/8(s)) foral b € B\ B, and
maps i ~"b mod hUy(g)" to 0 foral b€ B\ By, andal n € N,

Now assume Char (k) = p > 0. Then in addition to the previous considerations one has to take
into account the filtration of u(g) induced by both the lower central series of g and the pfiltration
of g,thatisg 2 glt) D gt D ... D g[ PI" O ..., where gl?!" isthe restricted Lie subalgebra
generated by {x[p] }x €g } and 2 — zP! isthe p—operationin g : these encode the Jfiltration of

u(g), henceof uy(g), So permitto describeuy(g)”.

In detail, for any restricted Liealgebra b, let b, := <U(mpk2n (b(m))[”k}> foral n € N, (where
(X) denotes the Lie subalgebra of h generated by X) and b = (e, bn: wecdl {bn},
the p—ower central series of by . Itisastrongly central series of b, i.e. a central series of h such that
[Bus ] < Busn foral m, n,and %! < g, foraln

Applying these toolsto g C u(g) the very definitions give g, C J" (for adl n € N) where
J := Ju(g) : more precisely, if B isan ordered basis of g then the (restricted) PBW theorem for u(g)
|mpI|&ethat Jm/ J"+ admits ask—basis the set of ordered monomialsof theform z§! {2 - - - z¢* such
that >°°_, e.0(x;,) = n where 0(x;,) € N isuniquely determined by the condition z;, € gow, ) \
go(z;,)+1 and each z;, isafixedliftin g of an element of afixed ordered basis of Ba(mik)/%(mikm .
Thisyields an explicit description of .J , hence of u(g)" and us(g)", like before: in particular

U /h Uh g/goo) .
Definition 3.8. We call pre-restricted universal enveloping algebra(=PrUEA) any H € H.A, which
is down-filtered by J (i.e, ),y /" = {0}), and PriUEA the full subcategory of H.Ajy of all

PrUEAs. We call pre-function algebra (=PFA) any H € H.A, which is up-filtered by D (i.e,
Unen Dn = H), and PFA thefull subcategory of H.Ay of all PFAs.

Theorem 3.9 (“The Crystal Duality Principle”)

(@ Hw— HY:=H/J>® and H — H' =], D, definefunctors ()": HA, — H.A; and
()': HA, — HA, respectively whose image are Pri/EA and PF.A respectively.

(b) Let H € HA,. Then H := Gy(H) = U(g) asgraded co-Poisson Hopf algebras, for some
restricted Lie bialgebra g which is graded as a Lie algebra. In particular, if Char (k) = 0 and
dim(H) € N then H =k-1 and g = {0}.
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Morein general, the same holdsif H = B isak-bialgebra.

() Let H € HA,. Then H := Gp(H) = F|G], as graded Poisson Hopf algebras, for some
connected algebraic Poisson group G whose variety of closed points form a (pro)affine space. If
Char (k) = 0 then F|G] = H isa polynomial algebra, i.e. F[G] = k[{z;},;] (for some set 7);
in particular, if dim(H) € N then H = k-1 and G = {1}. If p := Char (k) > 0 then G has
dimension O and height 1, and if k is perfect then F[G]| = H is a truncated polynomial algebra,
e FIG] = k[{w:}ies] / ({27}ez) (for someset 7).

Morein general, the same holdsif H = B isak-bialgebra.

(d) For every H € HA, there exist two 1-parameter families (HY),” = R4(HY) and
((HY),))" in H.A, giving deformations of H" with regular fibers

if Char (k) u(g) | (), (), F[K_]

and two 1-parameter families H, = R},(H') and (HY)" in HA, giving deformations

if Char (k) =0, U(G—)} 0 0—h—1 [V Leh—o {F[K]F[G*]
>0,

77 0—h—1

FlG,=H

Hyl (HA') u(ty) if Char (k) >0
of H' with regular fibers, where G, islike G in (c), K_ isa connected algebraic Poisson group, g
islikegin(b), &, isa (restricted, if Char (k) > 0) Lie bialgebra, g isthe cotangent Lie bialgebra
to G, and G* isa connected algebraic Poisson group with cotangent Lie bialgebra g -

(e) If H = F[G] isthe function algebra of an algebraic Poisson group G, then F[G] is a bi-
Poisson Hopf algebra (cf. [KT], §1), namely
U X _pn(z)

f’@ = S(gx)/<{§pn(z)}z@\/p[a]>

where Nr(q is the nilradical of F[G], p™®) is the order of nilpotency of z € Np|g and the bi-

H o L=h=o {U(MU(QI) if Char (k) =0

I

Poisson Hopf structure of S(gx)/({w’"(”)} v ) isthe quotient onefrom S(g*); in particular
TENF[G]

—

if thegroup G isreduced then F[G] = S(g*) 2 U(g*) .

(f) If Char (k) =0 and H = U(g) isthe universal enveloping algebra of some Lie bialgebra g,
then [7?’5) is a bi-Poisson Hopf algebra, namely [/]f;) = S(g) = F[g*] where the bi-Poisson Hopf
structure on S(g) isthe canonical one.

If Char (k) = p > 0 and H = u(g) is the restricted universal enveloping algebra of some
restricted Lie bialgebra g, then l@ Is a bi-Poisson Hopf algebra, namely we have l]@ =
S(g)/({xp\:c € g}) = F[G*] where the bi-Poisson Hopf structure on S(g)/({xi’\x € g})
is induced by the canonical one on S(g), and G* is a connected algebraic Poisson group of dimen-
sion 0 and height 1 whose cotangent Lie bialgebraisg.

(9) Let H, K € HA, andlet 7: HxK —— k beaHopf pairing. Then 7 induce a filtered Hopf

pairing ; : HY x K’ —— k, a graded Hopf pairing 7, : H x K —— k, both perfect on the
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right, and Hopf pairingsover k(1] (notation of §3.1) H,x K —— k[h] and Hp' x K, —— Kk[h],
the latter being perfect on theright. If in addition the pairing 7, : HY x K’ —— k is perfect, then
all other induced pairings are perfect aswell, and H;’ and K, are dual to each other.

The left-right symmetrical results hold too.

Proof. Everything followsfrom the previous analysis, but for (g), to befoundin [Ga5] or [Gag]. [

Remarks 3.10. (@) Though usually introduced in adifferent way, H' isan object pretty familiar
to Hopf algebraists: it is the connected component of H (see [Gab] for a proof); in particular, H
is a PFA iff it is connected. Nevertheless, the remarkable properties of H = Gp(H) in Theorem
3.9(c) seemsto have been unknown so far. Similarly, the “dual” construction of H" and the important
propertiesof H = G,(H) in Theorem 3.9(b) seem to be new.

(b) Theorem 3.9(f) reminds the classical formulation of the analogue of Lie's Third Theorem for
group-schemes, i.e.: Given a restricted Lie algebra g, there exists a group-scheme G of dimension 0
and height 1 whosetangent Liealgebrais g (seee.g. [DG]). Our result givesjust sort of a“dual Pois-
son-theoretic version” of thisfact, inthat it sounds asfollows: Given arestricted Lie algebra g, there
exists a Poisson group-scheme G of dimension 0 and height 1 whose cotangent Lie algebrais g.

(c) Part (d) of Theorem 3.9 is quite interesting for applications in physics. In fact, let H be
a Hopf algebra which describes the symmetries of some physically meaningful system, but has no
geometrical meaning, and assume also H' = H = H". Then Theorem 3.9(d) yields a recipe to
deform H to four Hopf algebras with geometrical content, which means having two Poisson groups
and two Lie bialgebras attached to H, hence a rich “Poisson geometrical symmetry” underlying the
physical system. AsR (the typical ground field) has zero characteristic, we have in fact two pairs of
mutually dual Poisson groups along with their tangent Lie bialgebras. A nice applicationisin [Ga7].

3.11. The hyperalgebra case. Let G be an algebraic group, which for ssimplicity we assume to
be finite-dimensional. Let Hyp(G) be the hyperalgebra of G (cf. §1.1), which is connected cocom-
mutative. Recall also the Hopf algebra morphism & : U(g) — Hyp(G); if Char (k) = 0 then
® is an isomorphism, so Hyp (G) identifiesto U(g); if Char (k) > 0 then & factors through u(g)
and the induced morphism ® : u(g) — Hyp(G) isinjective, so that u(g) identifies with a Hopf
subalgebra of Hyp(G). Now we study Hyp(G)', Hyp(G)", H}F(@), %(\G), the key tool being
the existence of a perfect (= non-degenerate) Hopf pairing between F'[G] and Hyp (G).

One can prove (see [Ga6]) that a Hopf k—algebra H is connected iff/{{/ = H'. AsHyp(G) is

connected, we have Hyp (G) = Hyp(G)" . Now, Theorem 3.9(c) gives Hyp(G) := Gp(Hyp(G)) =
F[I'] for some connected algebraic Poisson group I"; Theorem 3.9(e) yields

i = s@) /(7)) =u(r(s@) ({7} ) = u(@))

—

with (g*)p°o = Span({ 2" | egtne N}) C F[G], andnotingthat g* = g*. On the other
hand, exactly like for U(g) and u(g) respectively in case Char (k) = 0 and Char (k) > 0, the
filtration D of Hyp(G) isnothing but the natural filtration given by the order of differential operators:
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thisimpliesimmediately Hyp(G);' := (k[i] @ Hyp(G)) = ({ "z |z € g,n e N}), where
2™ denotes the n—th divided power of = € g (recal that Hyp(G) is generated as an algebra by all
the 2(™’s, some of which might be zero). It is then immediate to check that the graded Hopf pairing

—

between Hyp(G)h’/h Hyp(G)y' = Hyp(G) = F[I'] and F[G] from Theorem 3.9(f) is perfect.

From this one argues that the cotangent Lie bialgebra of I" isisomorphic to ( (g7)° w) "

As for Hyp(G)" and Hﬁ)(\G), the situation is much like for U(g) and u(g), in that it strongly
depends on the algebraic nature of G (cf. §3.7).

3.12 The CDP on group algebrasand their duals. In thissection, G isany abstract group. We
divide the subsequent material in several subsections.

Group-related algebras.  For any commutative unital ring A , by A[G] we mean the group agebra of
G over A; when G isfinite, we denote by A, (G) := A[G]" (thelinear dual of A[G]) the function
algebraof G over A . Our am isto apply the Crystal Duality Principle to k[G] and Ay (G) with their
standard Hopf algebra structure: hereafter k isafield and R := k[A] asin §5.1, with p := Char (k).
Recall that H := A[G] admits G itself as a distinguished basis, with Hopf algebra structure given
by v =967, 1y =1, Alg) = g®g, elg) =1, S(g) :=g7', fordl g,y € G.
Dually, H := A,(G) hasbasis {¢,|g € G} dua tothe basis G of A[G], with ¢,(v) = &,
for dl g, € G, its Hopf algebra structure is given by ¢, - ¢, = 65,04, 1, = decgog,
Alpg) = D ey Py @ @r, €(pg) = b416, S(pg) = g1, foradl g,y € G. In paticular,
RG] = R @ k[G] and Ag|[G] = R ®x Ax[G]. Our first result is
Theorem A: (k[G]), = R-1, k[G]' =k-1 and k[G] = k-1 = F[{+}].
Proof. The claim follows easily from the formula 6,,(g) = (¢ — 1)*", for g € G, n € N. O

R[G]", kK[G]", k[G] and the dimension subgroup problem.  In contrast with the triviality result in
Theorem A above, thingsare moreinteresting for R[G]" = (k[G]),” , k[G]" and k[G] . Note however
that since k[G] is cocommutative the induced Poisson cobracket on ﬂ@] istrivial, hence the Lie
cobracket of . := P(ﬂ@]) istrivial aswell.

—

Studying k[G]" and k[G] amountsto study thefiltration {.J"} _ ., withJ := Ker(e,,), which
isaclassical topic. Indeed, for neN let D, (G) :={ g€ G|(9—1) € J" }: thisisacharacteristic
subgroup of G, called the n'" dimension subgroup of G'. All these form a filtration inside G':
characterizing it in terms of G is the dimension subgroup problem, which (for group algebras over
fields) is completely solved (see[Pa], Ch. 11, §1, and [HB], and references therein); thisalso gives a
description of {J”}n€N+ . Thus we find ourselves within the domain of classical group theory: now

we use the results which solve the dimension subgroup problem to argue a description of k[G] ", k/[(?]

and R[G]", and later on we'll get from this a description of (R[G]v)' and its semiclassical limit too.
By construction, J has k—basis {n, | g € G\ {1,}}, where 5, := (g—1). Then k[G]" is

generated by {7, mod J*| g € G\ {1,}}, and k[G] by {7, | g€ G\ {1,}}: hereafter
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—_

T:=x mod J"! foral z € J*, thatisz istheelementin k|G| which correspondsto = € k[G].
Moreover, 5= 1+n,=1foral g€ G; dso, A(T,) =T Rg+1@ T =T @1+1x7,:
thus 7, isprimitive, so {7, | g€ G\ {1,}} generates ¢ := P(k[G]) :

The Jennings-Hall theorem. Thedescription of D,,(G) isgiven by the Jennings-Hall theorem, which
we now recall. The construction involved strongly depends on whether p := Char (k) iszero or not,
so we shall distinguish these two cases.

First assume p = 0. Let Gy := G, Gy = (G,Gp-1)) (k € Ny), form the lower central
series of G ; hereafter (X, Y) isthe commutator subgroup of G generated by the set of commutators
{(z,y) == 2ya~ly~' |z € X,y € Y}: thisisa strongly centra series in ¢, which means
a central series {Gy} wen, (= decreasing filtration of normal subgroups, each one centralizing the
previous one) of G such that (G,,,G,) < G,,1, foradl m,n. Then let \/% = {x edG ] ds €
N, :z2° € G(n)} for dl n € N, : these form a descending series of characteristic subgroups in
G, such that each composition factor Af) = /G /\/G(,m) is torsion-free Abelian. Therefore
Lo(G) := D,cn, Al isagraded Liering, with Lie bracket [g,/] := (g,() for all homogeneous
g, € Lo(G), withobviousnotation. It iseasy to seethat themap k ®z Lo(G) — t¢, §— 7y,
isan epimorphism of graded Lierings: thustheLiealgebra t. isaquotient of k®z Ly(G) ; infact,
the above is an isomorphism, see below. We use notation d(g) :=n foral g € \/Gn) \ \/Gnt) -

For each k£ € N, pickin A&) asubset B;, whichisaQ-basisof Q ®;, A&) . foreach b € B,
choose afixed b € /G suchthat its coset in A, be b, and denote by Bj, the set of all such
elementsb. Let B := [J,y, Br: wecal such aset t.f.l.c.s-net (="torsion-free-lower-central-
series-net”) on G. Clearly By, = (B N \/%> \ (B N \/m> for al k. By an ordered
t.f.l.c.s-net is meant at.f.l.c.s-net B which is totally ordered in such a way that: (i) if « € B,,,
be B,, m<n, then a<b; (ii)foreach k, every non-empty subset of B, has a greatest element.
Asamatter of fact, an ordered t.f.l.c.s.-net always exists.

Now assume instead p > 0. The situation is similar, but we must also consider the p—power
operation in the group G and in the restricted Lie algebra ¢ . Starting from the lower central series
{G(k)}k€N+, define Gy == [Tjpesn (G(k))”é for al n € N, (hereafter, for any group I” we denote
I'™ thesubgroup generated by {+*“ |y 1" }): thisgivesanother strongly central series {G[”]}n€N+
in G, withthe additional property that (G',))” < Gp4q) foral n, caled thep—lower central series
of G. Then L,(G) := ®nen, Gn)/Gnr1) isagraded restricted Lie algebraover Z, := Z/pZ,
with operations g+ ¢ := g - ¢, [3.¢] := (¢,¢), g :=gP, fordl g, ¢ € G (cf. [HB], Ch. VIII,
69). Like before, we consider themap k®y, L,(G) — £¢, g — 7y, whichnow isanepimorphism
of graded restricted Lie Z,—algebras, whose image spans € over k: therefore ¢, isa quotient of
k®z, L,(G); infact, theaboveisanisomorphism, see below. Finally, weintroduce also the notation
d(g) :=n foral g € G\ Gpgq -

For each k € N, choose aZ,—basis B, of the Z,—vector space G /G..1; foreach b € By,
fix b € Gy suchthat b = bGyqy, and let B, be the set of all such elements b. Let B :=
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UkeN+ By : suchaset will be called ap-/.c.s.-net (=" p-lower-central-series-net”; the terminology in
[HB] is“x-net”) on G. Of course By, = (BNGy) \ (BNGiy1)) foral k. By an ordered p-l.c.s.-net
we mean ap-l.c.s.-net B whichistotally ordered in suchaway that: (i) if a« € B,,, b€ B,,, m <n,
then a < b; (ii) for each £, every non-empty subset of B, has a greatest element (likefor p = 0).
Again, it isknown that p-l.c.s.-nets always do exist.

We can now describe each D,,(G), hence also each graded summand J" /J"+! of H@], in terms
of the lower central series or the p—ower central series of G, more precisely in terms of a fixed
ordered t.f.l.c.s.-net or p-l.c.s.-net. To unify notations, set G, := G, 0(g) := d(g) if p=0, and
Gy = Gy, 0(g) == d(g) if p>0, s&t G :=,cn,Gn, &t B := ey, Br bean ordered
t.f.l.c.s-net or p-l.c.s.-net according to whether p=0 or p>0, andset /(0) := 400 and ¢(p) :=p
for p > 0. Thekey result we need is

Jennings-Hall theorem (cf. [HB], [Pa] and references therein). Let p := Char (k) .

(@ Foral ge G, n, € J" < g €G, . Therefore D, (G) = G, forall n € N, .

(b) Forany n € N, , the set of ordered monomials

By o= {7 T | b€ B e €Ny e < lp), b F by, Dieidi=n

isak—basisof J"/J"", and B := {1} U|J, B, isak-basisof K[G].

(¢ {m | be B,} isak-basisof the n-th graded summand & N (J"/J"') of the graded
restricted Lie algebra ¢, and {m \ be B} iIsak—basisof ¢ .

(d) {7 |be B} isaminimal set of generators of the (restricted) Lie algebra € .

(e) Themap k®zL,(G) — tc, g+— T,, isanisomorphismof graded restricted Lie algebras.
Therefore k[G] = U(k ®z L,(G)) asHopf algebras.

() J> = Span({n,|g € G }), whence k[G]" = @yeq/e k-7 = k[G/Gu] . B

Recall that Az, z~!] (for any A) has A—basis {(z—1)"z"["/? | n € N}, where[q] istheinteger
part of ¢ € Q. Then from Jennings-Hall theorem and (5.2) we argue

Proposition B. Let x, := h =9y, , forall g € {G}\ {1}. Then

R[G]v _ (@bieB, 0<es<t(p) R- Xbell bl—[el/ﬂ . 'Xbe: br—[er/2}> @ R[h—l} L J® =

’I"EN7 bl ;;br

= (Buen,ocercrim Boxi b xg b7 @ (Lo BRIV ) 5

reN; by éébr

If J°°=J" for some neN (iff G..= G,,) we can drop thefactors b; /2, ... b1/ O

Poisson groups fromk[G].  The previous discussion attached to the abstract group G the (maybe
restricted) Lie algebra ¢, which, by Jennings-Hall theorem, is just the scalar extension of the Lie
ring Lcnark) associated to G via the central series of the G,,’s; in particular the functor G — ¢ is
one considered since long in group theory. Now, by Theorem 5.8(d) we know that (R[G]V)' isa
QFA, with (R[G]")’

h=0

=F [FG] for some connected Poisson group I . This defines a functor
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G — [ from abstract groups to connected Poisson groups, of dimension zero and height 1if p > 0;
in particular, this I'; isanew invariant for abstract groups.

The description of R[G]" in Proposition B above leads us to an explicit description of (R[G]")’,
henceof (R[G]")’ T = F[I'¢] andof I'; . Indeed direct inspection gives 4, (x,) = A" D@y @n,
0 ¢, = hix, = B9, € (R[G]Y) \ h (R[G]")’ foreach g € G'\ G, whilstfor v € G, we
have 7, € J> whichimplies 7, € (R[G]")" and even 7, € N,y B (R[G]")". Thus (R[G]")"is
generated by { ¢, | g € G\ {1}} U {n, |7 € G} . Moreover, g = 1+ 1#@-1y, € (R[G]")" for
every g € G\Go, and v =1+ (y—1) € 14+ J> C (R[G]") for v € G, . Thisand the previous
analysis along with Proposition B prove next result, which in turn is the basis for Theorem D below.

Proposition C.

(R[G]v)/ _ (@bieB, 0<es<t(p) R. wbell b;[el/Q] .. 'wbir b;[er/2}> EB R[h—l] e —

reN; by é""ﬁ)r

(@b B, 0<er<t(p) I -y by e/, T b, [er/2> D (ZwerR[hq] ‘777) :

T'EN bl; <b7‘
In particular, (R[G]")" = RG] if andonly if Gy = {1} = G . Ifin addition .J> = J" for
some neN (iff G, = G,,) then we can drop the factors b, V2 ... b 1/2 .

TheoremD. Let z, := 1, mod h (R[G]v)/, 2y '= g mod h (R[G]v)/ forall ¢ # 1, and
By:={beB|O(b) =1}, B. :={beB|0(b) > 1}.

(@ Ifp=0, then F[I] = (R[G]V)"h_ is a polynomial/L aurent polynomial algebra, namely
FIc] = k[{zp}yep, U {Zbﬂ}beBJ , the z,’s being primitive and the z,’s being group-like. In
particular I = (GGXB>) X (GgBl) asalgebraicgroups, i.e. I'; isa (pro)affine space times a torus.

() If p >0, then F[Iy] = (R[G]") _ is atruncated polynomial/L aurent polynomial

algebra, namely F[Iu] = k[{zy},cp. U {z*'}, , ] / ({28 }rep. U {zf — 1}), the z,’s being
primitive and the z,’s being group-like. In particular I'; = (a,*P>) x (p,*P') asalgebraic groups
of dimension zero and height 1.

(c) The Poisson group I has cotangent Lie bialgebra ¢ , that is coLie(/¢) = & .
Proof. (a) The very definitionsgive d(g¢) > 9(g) + 0(¢) forall g,¢ € G, sothat [y, ] =
p1=00)=00+2((0.0) gl € - (R[G]V)’, which proves (directly) that (R[G]V)"h;o is com-
mutative! Moreover, the relation 1 = g7 'g = ¢7' (1 + h99"1y,) (for any g € G) yields
21 =z, L iff 9(g) =1 and 2,1 = 1iff d(g) > 1. Notingasothat > = 0 mod & (R[G]")" and
g=1+n9"1, =1 mod h(R[G] ) for g€ G\ Gy, andaso y=1+(y—1) e l+J* =1
mod h (R[G]")" for v € G, Proposition C gives
o (@b €B-, eZ€N+k fEb : xzﬁ) @ (@b B, aiez K- Zbl Zlf)

reN, b1'< '<b seN, b1'< '<b5

FIs] = (RIG))

SO F[FG} isapolynomial-Laurent polynomial algebraas claimed. Similarly A(z,) = z, ® z, for al
geGand A(x,) =2,01+1®uz, iff 0(g) > 1; sothez,’saregroup-like and the z;,’s primitive.

[1-23



RENCONTRES MATHEMATIQUES DE GLANON 2002 CONTRIBUTION Il

(b) The definition of d implies d(g¢) > d(g) + d(¢) (9,¢ € G), whencewe get [¢,, ] =
Rpl=d9)=dO+d(90) g g0 € h- (R[G]"), proving that (R[G]V)"rpo is commutative. In addi-
tion d(g?) > p d(g), O P = R P (1=d(9)) np = pp—1+d(gP)—pd(g) Vg € N (R[G]V)', whence
(¢011y)" = 0 inside (RIG]")
1 Findly = (1+%,)" = 1+¢f =1 mod h(R[G]Y) foral b € B;, sob! = bt
mod h (R[G]")". Thusletting z, := 1, mod & (R[G]")" (for g#1) we get

o F[I'z], which provesthat I'; has dimension 0 and height
=0

Flrg] = (RGYY

o <@ S SR xb) @ <€BS§?Z}§E§§ o 'Zbe;>
just like for (a) and also taking care that z, = z, +1 and 2z = 1 for b € B;. Therefore
(RIG]Y)’ is a truncated polynomial/Laurent polynomial algebra as claimed. The properties of
the z,’s and the z,’sw.r.t. the Hopf structure are then proved like for (a) again.

(c) The augmentation ideal m, of (R[G]")’ = F[I] is generated by {a},.5; then
AL [y, ] = RO@D)I=0@)=60) 4 (1+h9<g>*1¢)g_) (1+h%O~1y, ) by the previous computation,
whenceat i =0 onehas {z,, 2} = x5 mod mZif 0((g,0)) =0(g)+0(¢),and {z,,z,} =
0 mod m? if 6((g,¢)) > 0(g)+0(¢) . Thismeansthat the cotangent Lie bialgebra me/mf of I';
isisomorphicto ¢, asclaimed. U

Remarks. (a) Theorem D claims that the connected Poisson group K¢, := I is dud to € in the
sense of §1.1. Since R[G]V’rpoz U(ts) and (R[G]Y) e F[K(], thisgivesa closeanalogue,
in positive characteristic, of the second half of Theorem 2.2(c).

(b) Theorem D provides functorial recipes to attach to each abstract group G and each field k
a connected Abelian algebraic Poisson group over k, namely G — [, , explicitly described as
algebraic group and such that coLie(K() = ts . Every such I'; (for givenk) is then an invariant of
G, anew oneto the author’s knowledge. Indeed, it is perfectly equivalent to the well-known invariant
t. (over the same k), because clearly G; = G, implies ¢5, = €;,, whereas t;, = €, implies
that G; and G, are isomorphic as algebraic groups — by Theorem D(a—b) — and bear isomorphic
Poisson structures — by part (c) of Theorem D — whence G = (G5 as agebraic Poisson groups.

The case of Ax(G). Let'snow dwell upon H := Ax(G), for afinite group G .

Let A be acommutative unital ring, and k, R := k[h] be asbefore. Since A, (G) := A[G]", we
have A[G] = AA(G)", sothereisaperfect Hopf pairing A, (G) x A[G] — A. Our first result is
TheoremE. Ar(G)' = R-1® R[] J = (Ar(G)")’, A(G)" =k-1, A(G) = Ap(G)”
k-1=4(0) and (Az(G)") _=ki1= F[{}] .

Proof. By construction J := Ker(e, ,,) hask-basis {gog}gec\{lc} U{¢16— Ly, > andsince
0, = @2 fordl gand (1. —1)° = —(¢1,—1) wehave J = J*, s0 A,(G)" = k-1 and
A(G) = k-1. Similarly, Az(G)" is generated by {ﬁ_lgpg}geG\{lG} U {n Y (p1e =Ly}
moreover, J = J* implies h*J C Agr(G)" for al n, whence Ax(G)" = R1 @ R[h']J.

h=0
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Then Ju, v = R[h7']J € hAR(G), whichimplies (Ar(G)")" = Ar(G)": in particular,
(AR(G)V)')TP — Ap(G)Y| =k -1, asclamed. O
=0 0

h=
Poisson groups from Ay (G). Now welook a Az(G)', Ax(G)" and m . By construction Ap(G)
and R[G] are in perfect Hopf pairing, and are free R—modules of finite rank. In this case, using a
genera result about the relation between Drinfeld's functors and Hopf pairings (namely, Proposition
4.4in[Gab]) onefinds Ax(G) = (R[G]")" = (R[G]")": thus AR(G)" isthe dual Hopf algebra
to R[G]'. Then from Proposition B we can argue an explicit description of Az(G)’, whence also
of (Ar(G)")’. Now, in proving Theorem 3.9(g) one also shows that A (G)' = (chfg])L; therefore
there is a perfect filtered Hopf pairing k[G]" x Ay (G) — k and a perfect graded Hopf pairing
A,(G) x K[G] — k. Thus A,(G)'= (k[G]")" asfiltered Hopf algebrasand 4, (G) = (K[G]) as
graded Hopf algebras. If p = 0 then J = J*>°, aseach g € G hasfinite order and ¢" = 1 implies
g€ Gu: thenklG]' = k-1=K[G], 0A4(G) =k-1 = A(G). If p > 0 instead, this
analysis gives m = (ﬂ@])* = (u(ts))" = F[K¢], where K isa connected Poisson group
of dimension O, height 1 and tangent Lie bialgebra ¢, . Thus

Theorem F.

(&) Thereisasecond functorial recipeto attach to each finite abstract group a connected algebraic
Poisson group of dimension zero and height 1 over any field k with Char (k) > 0, namely G +—
Kg := Spec <m> This K is Poisson dual to I'; of Theorem D in the sense of §1.1, in that
Lie(K¢g) = t; = coLie(ly) .

(b) 1f p = Char (k) > 0, then (Ap(G))"| = u(ez) = () /({ar v e s}) -

Proof. Claim (a) is the outcome of the discussion above. Part (b) instead requires an explicit de-
scription of (Az(G))’. Since AR(G) = (R[G]")", from Proposition B we get Ax(G) =

<EB bieB, 0<e;<p I Piif:ff&) where each pzi:::::b: is defined by
reN, by 3 Zb,

S

<PZL’:§: ’ Xﬁall ﬁ17[51/2} T XﬂES 557[55/2} > = 6T7S H::l 5biﬂ¢6€¢,€i

(foral b;,8; € B and 0 < ¢;,&; < p). Now, using notation of §1.3, K, C K’ forany K € HA,
whence K’ = w*l(F') where m: K —» K /K, =: K isthecanonical projection. So let K :=
R[G]", H := Ag(G)"; Proposition B gives K., = R[h~'] - J> and provides at once a description
of K; from this and the previous description of H one sees also that in the present case K ., is
exactly theright kernel of the natural pairing H x K — R, whichis perfect ontheleft, so that the
induced pairing H x K — R isperfect. By construction its specialization at 7 = 0 isthe natural
pairing F'[Kq] x u(tg) — k, which is perfect too. Then one applies Proposition 4.4(c) of [Ga5]
(with K playing therdle of K therein), whichyields K '= (HY)* = ((AR(G)’)V>' . By construction
K'= (R[G]V)’/(R[h—l} -J>), and Proposition C describesthe latter as K ' = (@ b ocey B

), where 1, := 1, mod R[h7!] - J> forall i; since % = <(AR(G)/)V>° and

€1

Ebl ..

Er

Uy,
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1/}g = h+1Xg’ thlsylelds (AR(G)/)V = (@ biEB, 0<e; <p R-h™ > eid(bi)pz """ z:) = (? ,)*, whence

reN, b1 g6 7
we get (AR(G>/)V o . (K/’hzo)* - ((R[G]v)/‘hzo> = F[FG}* = u(ts) =
S(%g)/({xp |z €tl}) asclaimed, the latter identity being trivial (for £/ isAbelian). O

~ (K'Y

Remarks. (a) This K isanother invariant for G, but again equivalent to ¢ .
(b) Theorem F(b) is a positive characteristic analogue for F;|G] = Ag(G)' of the first half of
Theorem 2.2(c).

Examples

(1) Finite Abelian p —groups. Let p be aprime number and G := Zye1 X Zpea X -+ X Lyer
(k,e1,...,ex € N), with e > ey > --- > ¢,. Letk beafield with Char (k) = p > 0, and
R :=k[h| asabove, sothat k[G], = R[G].

First, ¢, is Abelian, because G is. Let g; be a generator of Z,.; (for all <), identified with its
imagein G . Since G is Abelian we have G|,; = G?" (for al n), and an ordered p-I.c.s-netis B :=

U,en, Br with B, := {gl”r, g g]p} where j, isuniquely defined by ¢;, > 7, ;41 < 7.

Then t; has k-basis {7 = } , and minimal set of generators (as a restricted Lie
9i 1<i<k; 0<s;<e;

agebra) {7, Ty, .-, Ty, } . for the p—operation of € is (77~ )P = 71,51, and the order of

nilpotency of each 7),; isexactly p*, i.e. the order of ¢, . In addition J> = {0} s k[G]Y = K[G].
The outcomeis k[G]" = k[G] and
0<s<e;

KC) = u(to) = U(EG)/({(%?S )"~ Mgrtt }m‘s;@ U {(T)p}lgzgc)

whence k[G] = K[z, . ..,xk]/<{ "

Asfor k[G],, foral r < e; wehave d(¢/") = p" and s0 x - = h " (¢! —1) and ¢, =
R (g7 —1); since Gio = {1} (or, equivalently, J> = {0}) and everything is Abelian, from
the general theory we conlude that both k[G],” and <k[G] N ) are truncated-polynomial algebras, in
the XS and inthe V'S respectively, namely

KGR = KO { e ik ocece) = KA1 [0n, o / ({w|[1=i<k})
(k[G]’;/>/ = k] [{ wgf’s }1§i§k; 0§s<ei:| k[h] [{ Z@S}gz‘gk; 0§s<ei:| /({ Zid [ 1<i<k })

via the isomorphisms given by W — yips and W — 25 (foral i, s). When e; > 1 this
implies (k[G],)’ 2 k[G], , that isa counterexample to Theorem 2.2(b). Setting @ = P
mod h (k[G]))" (foral 1<i<k, 0<s<e)wehave

1<i<k })

FlKe) = (oL, = k[T Y] = e [{wndi2sd] /({ts

(via ng_ps — w; s ) asak—algebra The Poisson bracket trivial, and the w; ;'s are primitivefor s > 1
and A(wi,l) :wi71®1+1®wi,1+wi,1®wi71 for al 1 <i<k. If instead e =---=¢,=1,

1§z’§k}>, via 77— x!” (forall i, s).

1%
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then (k[G];)' =k[G],; thisisan analogue of Theorem 2.2(b), though now Char (k) > 0, inthat
k[G], isaQFA, with k[G]h’rpo: k[G] = F[G] where G isthe group of characters of G . But then
F[G] =KG] = k[G]ﬁ’rpo: (k[G1,) T F[K] (by our general analysis) so G can be realized
as afinite, connected, Poisson group-scheme of dimension 0 and height 1 dual to ¢ , namely K.

Finally, a direct easy calculation shows that — letting x; = h¥) (¢, — ¢1) € A(G);, and
U= 07 (o, — 1) € (A(G)), (fordl g € G\ {1}) —wehaveaso

/ " 0<s<e;| ~u 0<s<e; 0<s<e;
4@y = 0] ({0 Yo | = k(Y Es / vz
/ % 0<s<e;| ~u 0<s<e; 0<s<e;
(Ak(G)h)v = k[h] [{ (& g’ 1<i§k } = k[h] [{Zi78}1<i<<k- ]/<{Zzps — Zis 1<i<<k )
via the isomorphisms given by x* o — Y; s and w*ps — Z,; s, fromwhich one also gets the analo-
= Ak(G) F[Kg] andof (Ax(G);)" T u(ey) .

(2) A non-Abelian p—group. Let p be aprime number, k be afield with Char (k) = p > 0,
and R := k[h| asabove, sothat k|G|, = R[G].

Let G := Z, X Z,2, thatisthe group with generators v, 7 and relations v? = 1, 7 =1,
vt = 7P Inthiscase, Gy = --- = Gpp) = {1,7}, Gy = {1}, s0 we can take
B; = {v,7} and B, = {77} to form an ordered p-l.c.s-net B := B; U B, W.r.t. the ordering
v =7 =277, Notingasothat J> = {0} (for G|,) = {1}), we have

kG, = @lpeco kN X XEXS = @lpeco kIR (v = 1)" (7 = 1) (7 = 1)°
as k[h]-modules, since d(v) = 1 = d(r) and d(77)) = p, with A(x,) = x,® 14+ 1® xy +
hd9) x, ® x, foral g € B. Asadirect consequence we have also

gous descriptions of Ay (G), -
=0

—_

abc ok XXX ¢ = k(G o = k(G| = abc ok T T T

The two relations v» = 1 and 7° = 1 within G yield trivial relations inside k[G] and k[G], ;
instead, therelation v 7v~! = 71*7 turnsinto [n,,n,] = n»-7v, whichgives [x,, x,] = A"~ x7» -
v ink[G],’. Therefore [X,,Xr| = 62X SinCe (X7, Xor] = 0 = [X», Xor) (because
vyl = (7197)" = 774 = Py and {%,, X7, Xov } isak-basisof &g = £,(G), we conclude
that the latter has trivial or non-trivial Lie bracket according to whether p # 2 or p = 2. In
addition, we have therelations x? =0, x5 =0 and x? = x,»: thesegiveanaogousrelationsin
k[G],’ o which define the p—operation of £, namely x, P! =0, =Pl =0, =Pl = v .

To sum up, we have a complete presentation for R[G]" by generators and relations, that is

k(G = k[h]<'017’027'03>/< vivy = vavr — P20 (14 hwy) (14 hoy) )
V1 U3

p p p
—v3v1, UV, Uy —V3, V3, VU3 — U3V

via x, — v1, X+ — U2, X — v3. Similarly (as aconsequence) we have the presentation

N Y1Y2 — Y2 Y1 — Op2 Vs, Yy — s
0 = k<y17y27y3>/< P 2 )

Yiys—Ysyi, Y, Y3, YaYs — Y3l
viax, — Y1, Xr & Y2, X — Y3, With p—operation as above and the y,’s being primitive.

kG = K(G),|
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Remark: if p # 2 exactly the sameresult holdsfor G = Z, x Z,2, i.e. ?przﬂ = Eszzp2 :
this shows that the restricted Lie bialgebra t; may be not enough to recover the group G .

Asfor (k[G],’), itisgenerated by ¢, = v — 1, ¢, = 7 — 1, 1h» = K" 2(7? — 1), with
relations ) = 0, ¢F = W, ¥F =0, Y0 =ty = WP W (1 +97) (1 + 1),
Uy tbrr — Yy = 0, 80d 9, e — Yo ¢, = 0. Inparticular (k[G],’)" 2 k[G],,, and

KOWY % W ) [0 T

ul,  upug —uguyg — AP ug (14 ug) (1+uy), ug
viay, — uy, ¥ — ug, Y — ug. Letting z; = ¢”’h;0+1’ 29 1= @Z)T’rpo%—l and z3 := pr},,FO
thisgives (k[G],")’ e k[zl,Zg,i'g]/(zlp—]_,ZQp—l,fL‘g) as ak—algebra, with the z;'s group-like,
x5 primitive (cf. Theorem D (b)), and Poisson bracket givenby {z1, 20} = 6,221 2023, {22, 23} =0
and {z1,23} = 0. Thus (k[G],”)’ T F[I'c]) with I'; = p, x p, x v, asalgebraic groups, with
Poisson structure such that coLie(/s) = ¢ .

Since G, = {1} the genera theory ensures that A, (G) = Ax(G). We leave to the inter-
ested reader the task of computing the filtration D of Ax(G), and cgn\se;quently describe Ag(G)',

—_——

(Ar(G)')", Ay(G) and the connected Poisson group K¢ := Spec (Au(@)) .

(3) AnAbédianinfinitegroup. Let G = Z" (written multiplicatively withgenerators eq, . . ., e, ),
then k[G] = k[Z"] = k[er", ..., ef!] (thering of Laurent polynomials). Thisisthe function algebra

of the algebraic group G,," — the n—dimensional torus on k — which is exactly the character group
of Z", thuswe get back to the function algebra case.

§ 4 First example: the Kostant-Kirillov structure

4.1 Classical and quantum setting. Let g and g* beasin §3.7, consider g asalLie bialgebrawith
trivial Lie cobracket and look at g* asits dual Poisson group, whose Poisson structure then is exactly
the Kostant-Kirillov one. Take asgroundring R := k[v| (aPID, hence a1dD): we shall consider the
primes h=v and h = v — 1, andwe'll find quantum groups at either of them for both g and g* .

To begin with, we assume Char (k) = 0, and postpone to §4.4 the case Char (k) > 0.

Let g, := g[v] = k[v| ® g, endow it with the unique k[v]-inear Lie bracket [, | given by
[z,y], =v[z,y] fordl z,y € g, and define

H := Uy (g0) :Tk[u](gu)/({:v~y—yw—l/[x,y] |z, yeg})

the universal enveloping algebra of the Lie k[v]—-algebra g, , endowed with its natural structure of
Hopf algebra. Then H isafreek[v|—algebra, sothat H € HA and Hp := k(v) @y H € HAp (See
§1.3); itsspecializetionsat v =1 andat v = 0 are H/(y—l)H = U(g), asa co-PoissonHopf

algebra, and H/I/H = S(g) = F[g*], asaPoissonHopf agebra. In a more suggesting way,
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v—1

we can also express this with notation like H ——1-U(g), H -~ F|g*]. So H isa QrUEA at
h:=(v—1) andaQFA a h := v; sowe'll consider Drinfeld’sfunctorsfor H at (v—1) and at (v) .

4.2 Drinfeld’sfunctorsat (v). Let ()™ : HA — HA and ()@ : HA — HA bethe
Drinfeld’s functors at (v) ( € Spec(k[v]) ) . By definitions J := Ker (e : H — klv]) isnothing
but the 2-sided ideal of H := U(g,) generated by g, itself; thus H ", which by definition is the
unital k[v|-subalgebra of H generated by J¥) := =1, isjust the unital k[v|-subalgebraof Hp
generated by g,"» := ! g, . Now consider thek[v]-moduleisomorphism ()" : g, — g, V) =
v—lg, givenby z +— 2V :=v71z € g,'» foral z € g, ; consider on g, := k[v|®, g thenatural Lie
algebrastructure (with trivial Lie cobracket), given by scalar extension from g, and push it over g,
via ()™ , sothat g, isisomorphicto g™ (i.e. g, carrying the natural Lie bialgebra structure) as
alLiebialgebra Consider zV, y" € g,”» (with z, y € g,): then HY» > (zVy" —y¥a") =
V_Q(xy — yx) =v 2y, =viviz,y = v tzy = [z,y]" =: [xv,yv} € g, . Therefore
we can conclude at oncethat H"» = U(g,") = U (gi™) .

L, =UER) / vU(g)*) = U (gf‘t/ V92m> =U(g), thatis
HVw =01 (g), thusagreeing with the second half of Theorem 2.2(c).

Second, look a (HV®))'™. Since HY» = U(g,"»), and d,(n) = 0 foral 5 € U(g,"») such

that J(n) < n (cf. Lemma4.2(d) in[Gab)), it iseasy to see that

As afirst consequence, (H V(»))}

(HO0) = (g0 = (v07'a,) = Ula,) = H

(heresfter (S) is the subalgebra generated by S), so (HY®)™ = H, which agrees with Theo-
rem 2.2(b). Finally, proceeding asin §3.7 we seethat H'®» = U(vg,), whence (H'®)

v=0

(U(Vg,,))’ _O% S(gw) = Flg5_p) where gq,, resp. g;_o,, issimply g, resp. g*, endowed with
the trivial Lie bracket, resp. cobracket, so that (H’w)‘ >~ S(ga) = F|g}_a) hestrivial Poisson
v=0

bracket. Iterating this procedure one finds that all further images ( (( H)’<v>)’<v> .. ) “ of the
functor ()" applied many timesto H are pairwise isomorphic; thus in particular they all have the

same specidization at (v), namely <(.-.((H)’<»>)’<v>...)“”’> > S(gw) = F g5 a) -

v=0

4.3Drinfeld’sfunctorsat (v—1). Now we consider thenon-zero prime (v—1) (€ Spec(k[v]) ) ;
let ()" : HA— HA and ()Y : HA — HA bethe corresponding Drinfeld's functors.
Set g,/¢-0 = (v—1)g,, let : g, — g/ := (v—1)g, bethek[v]-moduleisomorphism given
by z— 2 :=(v—-1)z € g/ foral z € g,, and push over viait the Lie bialgebra structure of
g, to anisomorphic Lie bialgebrastructureon g,/ -, whose Lie bracket will be denoted by [, |, .
Notice then that we have Lie bialgebraisomorphisms g = g, /(v —1) g, = g/ /(v —1) g/ .
Since H := U(g,) itiseasy to see by direct computation that

Hen = ((v=1)g,) = U(g)e) (4.1)
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where g,/-v isseen asaLiek|[v]-subalgebraof g,. Now, if 2/, ¢y’ € g,/o-v (with z,y € g, ), then
2y -y = - 1)2(xy — yx) = (v — 1)2 [z,9], = (v —1)[z,y],) = (v-1) [x',y'}* . (4.2)

This and (4.1) show at once that (H'c-1) oo S(gy’ww/(u - 1) gy’<H>> as Hopf al-
gebras, and also as Poisson algebras: indeed, the latter holds because the Poisson bracket { , }
of S(gy’wn/(y - 1) gy’<H>) inherited from H't-v (by specialization) is uniquely determined
by its restriction to g, /(v — 1) g,/»», and on the latter space we have {, } = [, ],
mod (v — 1) g,/ (by (4.2)). Finaly, since g,/«-v /(v — 1)g,/¢-1 = g as Lie algebras we
have (H't-v) ‘(V_l)o = S(g) = F|g*] asPoisson Hopf algebras, or, in short, H'wn =1 Flg4],
as prescribed by the “first half” of Theorem 2.2(c).

Second, look at (H’(vfw)v‘”‘“. Since H'e-» = U(g,/~-v), thekernel Ker(e: H'v-v —
klv]) =: J'w-v isjust the 2-sided ideal of H'«-n = U(g/o-») generated by g,/o-» . There-
fore (H'e-v)"™, generated by (J'¢-)"™) = (v —1)""J'»-» asaunita k[v]-subalgebra
of (H'w-v), = Hp, isjust the unital k[v]-subalgebra of Hp generated by (v —1)"'g/v-n =
v—1)"'v—1)g, =g, thais (H'«)" =U(g,) = H, confirming Theorem 2.2(b),

Finaly, for H"~-» one has essentially the same feature asin §3.7, and the analysis therein can be
repeated; the final result then will depend on the nature of g, in particular on itslower central series.

4.4 The case of positive characteristic. Let usconsider now afield k such that Char (k) = p >
0. Starting from g and R := k[v| asin §4.1, define g, like therein, and consider H := Uy, (g,) =
Ur(g,). Then we have H/(u— VH = Ug) = u(g[P]w) as a co-Poisson Hopf algebra and
H/VH — S(g) = Flg*] asa PoissonHopf algebra; therefore H isaQrUEA a /i := (v—1) (for
u<g[p}°°> yandisaQFA a h := v (for F[g*]). Now we go and study Drinfeld's functors for H at
(v—1)and at (v).
Exactly the same procedure as before shows againthat /) = U(g,"*)), fromwhichit follows
that (HVM)‘ ~ UU(g), i.einshort HY» =2, [/(g), which is a result quite “parallel” to
v=0
the second half of Theorem 2.2(c). Changes occur when looking at (HY»)"®: since HY» =
U(g,'») = u((g,,W)[p]oo) we have d,(n) = 0 foral n € u((g,,W)[p]oo) such that d(n) < n
w.r.t. the standard filtration of u <(gyv<v> ) > Po) (cf. the proof of Lemma4.2(d) in[Gab], which clearly
adapts to the present situation): thisimplies

(Hv(y))/(m _ <1/- (gyv(y))[p}“’> ( c u<1/- (gyv(y))[p]“’> )

which is strictly bigger than H, because we have <y . (gyv<v>)[p}oo>

I
/\
<
—~
e
<
S
SN—
=
3
\/
|

= <gy +vir{ar|zeg )+ Vl’p2{xp2

xegy}+---> 2 Ulg,)=H.

11-30



FABIO GAVARINI The global quantum duality principle...

Finally, proceeding as above it is easy to seethat H'») = <VP(U(g,,))> = <ug[P]°°> whence,
letting g :=vg and 2 := vz fordl = € g, we have
ruca))

' = TR(@)/({ - =1 oy, -0
sothat H'w —~"— Tk@/({f@—w, & \ 74,7 € g}) = Skmab)/({zp! z€g}) =
= Flg:_ ab]/({ #|zeg}), thais H® = Flgs_ ab]/({ | z € g}) asPoisson Hopf
algebras, where g, and g;_, are as above. Therefore H'® isa QFA (at h = v) for a non-reduced,
zero-dimensional algebraic Poisson group of height 1, whose cotangent Lie bialgebra is the vector
space g with trivial Lie bialgebra structure: thisagain yields somehow an analogue of part (c) of The-
orem 2.2 for the present case. If we iterate, we find that all further images ( - ((H)' @)@ ) "

of the functor ( )’ applied to H are pairwise isomorphic, so that

(- ey )= stea) /(] = €0)) = Flaiul /(]2 €8))

v=0
Now for Drinfeld’sfunctorsat (v—1). Upto minor changes, with the same procedure and notations
asin §4.3 we get analogous results. First of all, aresult analogous to (4.1) holds, namely H't-v =

(=1)-P(U@))) = (-1 ()" ) = <((gy)[’”°°)'<””> . which yields
H'e=) = Ty (<<gu>[“°°)“””) /({ Py —ya — (=1 [y, @) = 1) (@)
s ))

(Vil):O%S /({xp‘xeg})—F /{xp’ng}) as Poisson
Hopf algebras: in anutshell, H'w-v ”_*%p[g*]/ {aP |z €g}).

and consequently H't-v

()

lterating, one finds again that all ( - ((H) @) ) are pairwise isomorphic, so

<~~((H)’<~1>)’<<”1>~.>/<“) ~ S(gu /({zp] eq)) = [QE_ab]/({Zp! ceg))

(v—1)=0

Further on, one has (H'w-n)""") = <(V - 1) (gu)[p]wy(H) = (-1 (w-1Da) =

= (g,) = Ur(g,) = H, which perfectly agrees with Theorem 2.2(b). Finally, for "=~ one has
again the same feature asin §3.7: one has to apply the analysis therein, however the pfiltration in
this case is “harmless’, since it is “encoded” in the standard filtration of U(g). In any case the final
result will depend on the lower central seriesof g.

Second, we assume in addition that g be a restricted Lie algebra and consider H := Uyp,(g,) =
Ur(g,) . Inthiscase we have H/(y— 1) H = u(g) asaco-Poisson Hopf algebra, and H/VH =

S(g)/({ #lzegl}) = F[g*]/({ 27| z € g }) asaPoisson Hopf algebra, which means that H
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isaQrUEA at h := (v—1) (foru(g)) andisaQFA at h := v (for F[g*]/({ 2| z€g})). Then
we go and study Drinfeld’'s functorsfor H at (v — 1) and at (v) .

Asfor HY» | it depends again on the p—operation of g, in short because the /-filtration of u,(g)
depends on the pfiltration of g . Inthepreviouscase—i.e.when g = h!™ for someLiealgebrah —
the solution was plain, because the pfiltration of g is“encoded” in the standard filtration of U (h); but
the general case will be more complicated, and in consequence also the situation for (H VM)"”), since
HY» will be different according to the nature of g . Instead, proceeding exactly like before one finds
H'w = <1/ P(u(gy))> = (vg),whence, letting g := vg and & := vz foral z € g, wehave

ry.2€8))

£9.5€8}) = Selow)/({+] 2 € 0}) =

= F[ggfab]/({ #|zeg}), thatis H'® LO% F[ggfab]/({ 2| z€g}) asPoissonHopf alge-
bras (using notation as before). Thus H'» isaQFA (at h = v) for anon-reduced, zero-dimensional
algebraic Poisson group of height 1, whose cotangent Lie bialgebrais g with thetrivial Lie bialgebra
structure: so again we get an analogue of part of Theorem 2.2(c). Moreover, iterating again one finds

—1

that all (...((H)Ww)’w*l) ...)l(” ) are pairwise isomorphic, so

o — Tk[u}(é)/<{§:yﬁ—g;ﬁ—u2m, 1)

(. .. ((H)'@_l))'((u_l)' ) ‘)’@-1)

As for Drinfeld’s functors at (v — 1), the situation is more similar to the previous case of H =
Unr(gy) . First H'e-» = <(V -1)- P(U(gy))> =((v=1)g,) = (g4 V), hence

> Slaa) [({"| 2€0}) = Flai-wl /({="] 2€0}) -

(v—1)=0

Hon = Ty (g;w))/({ dy —y'd— (-1 [y, @) - (- 1)?—1(x[p])’}x7y€gy>

thus again H'¢-v

oo ™ Si@) /({2 | v € 9}) = Flel/({a* | = € g}) asPois
son Hopf algebras, that is H't-» ”—A>F[g*]/({ xP ‘ T Eg }) . Iteration then shows that all
<. . ((H)/@))/(H) . .>/<”) are pairwise isomorphic, so that again

S S(gab)/({zp\ z€g}) = F[gﬁ_ab]/({zp’ 2€98}) -

(v—1)=0

<. .. ((H)/(ufl)),((u—l)‘ ) ‘>’(u71>

Further, we have (H'¢-)"“"V = ((v —1)g,) “™" = (g,) = ur(g,) = H, which agreesat
all with Theorem 2.2(b). Finally, H"~-v again has the same feature asin §3.7: in particular, the out-
come strongly depends on the properties of both the lower central series and of the pfiltration of g.

4.5 The hyperalgebra case. Let k be again afield with Char (k) = p > 0. Likein §3.11, let
G be an algebraic group (finite-dimensional, for simplicity), and let Hyp(G) := (F[G]°), = {¢ €
FIG)"|¢(m2) =0,V n>>0} bethehyperalgebraassociated to G (see §1.1).
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Foreach v € k, let g, := (g,[,],) betheLieagebragivenby g endowed with the rescaled
Liebracket [, |, :== v[, |, . By general theory, the algebraic group G is uniquely determined by
a neighborhood of the identity together with the formal group law uniquely determined by | , | .
Similarly, a neighborhood of the identity of G together with [ , ] uniquely determines a new con-
nected algebraic group G, , whose hyperalgebra Hyp (G,,) is an algebraic deformation of Hyp(G) ;
moreover, GG, is birationally equivalent to GG, and for v # 0 they are also isomorphic as algebraic
groups, viaan isomorphisminduced by g = g, , = — v~'z (however, thismay not be the case when
v = 0). Notethat Hyp(G)) is clearly commutative, because G is Abelian: indeed, we have

Hyp(Go) = Sk <9(p)oo>/<{ x?f }meg(P>°°> = F[(g(p)ooy} /({ y’ }yeg<p)°°>

where g~ := Span ({ z®") ’ rcg,neN }) . hereasusual (™ denotes the n—th divided power
of x € g (recal that Hyp(G), hence also Hyp (G,), is generated as an algebra by all the z(™)’s, some
of which might be zero). So Hyp(Gy) = F[I'] where I" isaconnected algebraic group of dimension
zero and height 1: moreover, I is a Poisson group, with cotangent Lie bialgebra g and Poisson
bracket induced by the Lie bracket of g .

Now think at v as a parameter in R := k[v]| (asin §4.1), and set H := k[v] ®x Hyp(G,). Then
we find a situation much similar to that of §4.1, which we shall shortly describe.

Namely, H isafreek[v]|-algebra, thus H € HA and Hp := k(v) @) H € HAp (see§1.3); its
Specializationat v =1 is H/(u—l)H = Hyp(G,) = Hyp(G), andat v =0 is H/VH =
Hyp(Go) = F[I'] (asa Poisson Hopf algebra), or H 2 Hyp(G) and H =2 F[I],i.e. H
isa“quantum hyperalgebra’ at 4 := (r—1) andaQFA at h := v . Now we study Drinfeld’sfunctors
for Hat h=(v—1) andath =v.

First, a straightforward analysis like in §4.2 yields H"» = k[v] ®, Hyp(G) (induced by g =
g,, « — v'z) whence in particular (H'®) ‘V_O ~ Hyp(G), thatis HY) = Hyp(G).
Second, one can also see (essentially, mutatis mutandis, like in §4.2) that (H'»)'™ = H, whence
GO H’VZO — Hyp(G,) = F|I follows.

At h = (v — 1), we can see by direct computation that H'¢-» = <(g(1’>°°)"”*“> where
(g(p>°°)’<vf1> .= Span <{ (v —1)P" ") ‘x cg,neN }) . Indeed the structure of H'*- depends
only on the coproduct of H, inwhich v plays no role; therefore we can do the same analysisasin the

trivial deformation case (see §3.11): thefiltration D of Hyp(G,,) isjust the natural filtration given by
the order (of divided powers), and this yields the previous description of H'~-v . At v = 1 wefind

H'e [y = 1) H'e-0 2 5, () / ({2"},equ ) = Hyp(Go) = FII]
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as Poisson Hopf algebras: in short, H'-v isaQFA, a h = v —1, for the Poisson group I". Similarly
H'o) — <(g(p>°°)’<”)> with (g®™ )" := Span ({ P ") ‘:E €g,neN }) ; therefore

1o fre = 5(687) /({2 ) egn) = Flral

where ga, is ssmply g with trivialized Lie bracket and Iy, is the same algebraic group as I" but
with trivial Poisson bracket: this comes essentially like in §4.2, roughly because {vz vy} :=
(Vﬁl[yx,yy])}yzo = (1/*1 . 1/3[:E,y]g)‘ = (1/ ‘v [x,y]g)‘yio =0 (fordl z,y € g).

FlnaIIy, we have (H/(V_l))\/(u—l) — <{ (V_l)pnflx(p") ‘ZL‘ €g,ne N }> g H and (Hl(y))\/(u) =
<{ A ’x €g,neN }> G H, by direct computation. For H"-1 we have the same fea-
turesasin §3.7: the analysistherein can be repeated, with the final upshot depending on the nature of
G (or of g, essentidly, in particular on its p—ower central series).

§ 5 Second example: SL,, SL, and the semisimple case

5.1 Theclassical setting. Letk beany field of characteristic p > 0. Let G := SLy(k) = SLs;
its tangent Lie algebra g = sl, is generated by f, h, e (the Chevalley generators) with relations
[h,e] = 2e, [h, f] = =2f, [e, f] = h. Theformulas 6(f) = h® f — f®h, 6(h) =0, d(e) =
h® e —e® h, define a Lie cobracket on g which makes it into a Lie bialgebra, corresponding to
a structure of Poisson group on GG. These formulas give also a presentation of the co-Poisson Hopf
agebral(g) (with the standard Hopf structure). If p > 0, the p—operationinsl, isgivenby el =0,
flPl =0, WPl = h.

On the other hand, F'[\S L, isthe unital associative commutative k—algebra with generators «, b, c,
d and therelation ad — be = 1, and Poisson Hopf structure given by

Ala)=a®a+b@c, A(b)=a®b+b®d, Alc)=c®a+d®c, Ad)=c®@b+d®d
e(a) =1, €b) =0, €c)=0, e(d)=1, S(a)=d, SOb)=-b, S(c)=—c, S{d)=a
{a,b} =ba, {a,c} =ca, {bc}=0, {d,b}=-bd, {d,c}=—-cd, {a,d}=2bc.

Thedual Liebialgebra g* = sl," istheLiealgebrawith generators f, h, e, andrelations |h, e] = e,
h,f] =f, [e,f] = 0, with Lie cobracket givenby §(f) =2(f@h—-—h®f), é(h) =exf-fxe
é(e) =2(h®e—e®h) (wechooseasgenerators f := f*, h:=h*, e:=¢*, where {f*,h*,e*} is
the basis of sly" which isthe dua of the basis { f, h, e} of sl,). Thisagain yields also a presentation
of U (sly). If p > 0, the p—operationin sl,* isgivenby e) = 0, Pl = 0, h?! = h. Thesimply
connected algebraic Poisson group whose tangent Lie bialgebrais sl,* can be realized as the group of
pairs of matrices (the left subscript s meaning “simply connected™)

S L)

l’,yEkf,ZEk\{O}} < SLQXSLQ.
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This group has centre Z := {(I,1),(—I,—1)}, so thereis only one other (Poisson) group sharing
the same Lie (bi)agebra, namely the quotient ,SL," := SSLQ*/Z (the adjoint of ,SLy", asthe
left subscript « means). Therefore F° [SSLQ*} Is the unital associative commutative k—algebra with
generators z, z*!, y, with Poisson Hopf structure given by

Aw) =@z +20x, A(RM) =0, Al =ye: +:8y
e(r) =0, e(zil) =1, €(y) =0, S(x) = —z, S(zil) =z S(y)=—y
{z,y} = (* —277) /2, {zil,x} = +g2*t, {zil,y} = Tty

(Remark: with respect to this presentation, we have f = 9,| , h=20.| , e=9,| , whereeisthe
identity element of ,SL,"). Moreover, F'[,SL,*| can be identified with the Poisson Hopf subalgebra
of F [SSLQ*} spanned by products of an even number of generators— i.e. monomials of even degree:
thisis generated, as a unital subalgebra, by zz, %%, and 2 y.

In general, we shall consider g = g” asemisimple Lie algebra, endowed with the Lie cobracket
— depending on the parameter = — given in [Gal], §1.3; in the following we shall also retain from
[loc. cit.] al the notation we need: in particular, we denote by @, resp. P, the root lattice, resp. the
weight lattice, of g, and by r therank of g.

5.2 The®* QrUEASs U,(g). We turn now to quantum groups, starting with the s, case. Let R be
any 1dD, 7 € R\ {0} aprimesuchthat ?/h R =k; moreover, letting ¢ := i+1 we assumethat ¢
beinvertiblein R, i.e. thereexists ' = (h+1)"" € R. For instance, one can pick R := k[q, ¢!
for anindeterminate g and % := ¢ — 1, then F(R) = k(q) .

Let U,(g) = U,(sly) bethe associative unital F'( R)—algebrawith (Chevalley-like) generators F,
K*!, B, and relations
K- Kt

KK '=1=K'K, K*"F=¢?FK* T
q—q

., K¥'E = ¢*?EK*', EF —FFE =

ThisisaHopf agebra, with Hopf structure given by
AF)=FeK'+1®F, AK*)=K"@K*, AE)=E®1+KQE
(F)=0, e(K*) =1, e(E) =0, S(F)=-FK, S(K*') = K™, S(E)=-K"'E.

K-1 K- K1
Then let U,(g) bethe R—subalgebraof U,(g) generated by F', H := 1 I'= ——¢r,

q— qa—4q
K#*', E. From the definition of U,(g) one gets a presentation of U,(g) as the associative unital

algebrawith generators F, H, I', K*!, E and relations
KK '=1=K'K, KYH=HK*, 6 K¥Ir=rK*, HI'=TH
(g—-1)H=K-1, (¢q—¢" ) [=K-K', Hl+K"'Y)=(Q1+q¢"[, EF-FE=T

3In §55-7 we should use notation Uqs-1(g) and F,_1[G], after Remark 1.5 (for & = ¢ — 1); instead, we write U, (g)
and F,[G] to be consistent with the standard notation in use for these quantum algebras.
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K*F =¢PFK*, HF =q¢?FH-(¢+1)F, TF=q?F—(q+q¢")F
K*E=g¢”EK*, HE=q"EH+(q+1)E, TE=q”El+(¢+q¢")E
and with a Hopf structure given by the same formulas as abovefor ', K*!, and £/ plus

A= K+K'ol, )
AH)=Ho1+K®H, €H)

=0, S(I')=-T

-0, S(H)=-K'H.

Notealsothat K =1+ (¢—1)H and K ' =K — (¢—¢ ) =1+ (q—1)H - (¢— ¢ ) I,
hence U,(g) isgenerated evenby F, H, I" and E aone. Further, notice also that

U,(g) = free F(R)-moduleover { F*K*E4 ’ a,d e N,z € Z} (5.1)
U,(g) = R-spanof {F”H”FCEd a, b,c,deN} inside U, (g) (5.2)

which implies that F'(R) ®x U,(g) = U,(g). Moreover, definitions imply at once that U,(g) is
torsion-free, and also that it is a Hopf R—subalgebraof U,(g) . Therefore U,(g) € HA, andin fact
U,(g) iseven aQrUEA, whose semiclassical limitis U(g) = U(sly), withthe generators F, K*!,
H, I', E respectively mappingto f, 1, h, h,e € U(sly).

It is also possible to define a “simply connected” version of U,(g) and U,(g), obtained from the
previous ones— called “ adjoint” — asfollows. For U,(g), one adds asquare root of K+, call it L*!,
as new generator; for U, (g) one adds the new generators L*! and also D := L—_ll . Then the same

analysis as before shows that U, (g) is another quantization (containing the * adcjloi nt” one) of U(g) .
In the general case of semisimple g, let U,(g) be the Lusztig-like quantum group — over R —
associated to g = g7 asin[Gal], namely U,(g) := U;",(g) with respect to the notation in [loc. cit.],
where M is any intermediate lattice such that Q < M < P (thisisjust a matter of choice, of the
type mentioned in the statement of Theorem 2.2(c)): thisis a Hopf algebra over F'(R), generated

by elements F;, M;, E; for i = 1,...,r =: rank(g). Thenlet U,(g) be the unital R—subalgebra
M; —1 K;— K;*

of U,(g) generated by the elements F;, H; := 171 = ———7", M*, E;, wherethe
q— q9—4q

K; = M,, aresuitableproduct of M;’s, defined asin [Gal], §2.2 (whence K;, K; ' € U,(g)). From

[Gal], §62.5, 3.3, we have that U, (g) isthe free F'( R)—module with basis the set of monomials

{ e fiwe 1 e

acdt 1=1 aedt

Jar€a €N, 2, € Z, VaE@*,i:l,,,,,n}
while U, (g) isthe R—spaninside U,(g) of the set of monomials

acdt = Jj=1

=1 acdt+

fasti,cj eq €N ‘v’aE@*,i,jzl,...,n}

(hereafter, ®* isthe set of positiverootsof g, each E, , resp. F,, , isaroot vector attachedto o € &,
resp.to —a € (—®*), and the products of factors indexed by ®* are ordered with respect to a fixed
convex order of &, see[Gal]), whence (asfor n = 2) U,(g) isafree R—-module. In this case again
U,(g) isaQrUEA, with semiclassical limit U(g) .
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5.3 Computation of U,(g) and specialization U,(g) ——— F[G*]. We begin with the sim-
plest case g = sl, . Fromthedefinition of U,(g) = U,(sl,) wehave §,(E) = (id — ¢)™" (A™(E)) =

(id — e)®" (il KV E® 1®("3)) =(¢g—1)"'H®""V @ F from which 4,((¢ — 1)E) €

(g—1)"Uy(g) \ (¢ —1)""'U,(g) (for al n € N), whence (¢ — 1)E € U,(g)’, whereas E ¢
U,(g)'. Similarly, (¢ — 1)F € Uy(g)', whilst F ¢ U,(g)". Asfor generators H, I', K*', we have
AM(H) = Y0 K20 @ H @100, An(KH) = (K™, aM) = S Ko Ve le
(K*1)®(" o) hencefor 8, = (id—¢)®" o A" we have §,(H) = (¢ —1)*'- H®", §*"(K~') =
(g—1)"- (-K*lH)®"’ S(K) = (¢g—1)"- H®, §"(I') = (¢ — 1)n71 . Xn: (_1)nsz®(3,1) 2

s=1
re(HE)®" fordl n e N,sothat (g — 1)H, (¢ — )T, K*' € Uy(g)' \ (¢ — 1)U, ()’
Therefore U, (g)" contains the subalgebra U’ generated by (¢ — 1)F, K, K, (¢ — 1)H, (¢ — 1),
(¢ — 1)E . On the other hand, using (5.2) athorough — but straightforward — computation along the
same lines as above shows that any element in U, (g)" does necessarily liein U’ (details are l€ft to the
reader: everything follows from definitions and the formulas above for A™). Thus U,(g)’ is nothing
but the subalgebra of U, (g) generatedby F:= (¢ — 1)F, K, K-, H :== (¢ — 1)H, I := (¢ — )T,
E := (¢ — 1)E; notice also that the generator H is unnecessary, for H = K — 1. Then U,(g)’ can
be presented as the unital associative R—algebrawith generators £, I', K*!, E and relations

KK'=1=K'K, K¥I'=IK*, 1+¢)'=K-K ', EF —-FE=(q— 1)
K- K~ 1 _ (1+q 1)]“!7 KilF:q$2F’1Ki1’ KilE:qizEKil
I'F=q2FI—(q— 1)(q+q_1)F, I'E =qEl+ (¢ - 1)(q+q_1)E

with Hopf structure given by

AF)=FK'+1®F, e(F) =0, S(F)=-FK

AN)=TI®K+K'®TI, e(I') =0, S(I)=-rI
A(K:I:I) — K:I:l ®Ki1, €(}(:I:l) — 17 S(Kzl:l) — K:Fl
AE)=E®1+K®FE, e(B) =0, S(E)=-K'E.

When ¢ — 1, adirect computation shows that this gives a presentation of F'[,SL,], and the
Poisson structure that F [QSLQ*] inherits from this quantization process is exactly the one coming
from the Poisson structureon ,SL,": infact, there is a Poisson Hopf algebraisomorphism

Uy(o) /(= 1) Uy(0) —=— F[uSLs] (€ F[SSL;} )

gvenby: E mod (¢ —1) — zz, K*' mod (¢ — 1) — 2z*2, H mod (¢ — 1) — 22 — 1,
I mod (q—1) — (22— 2z~ )/2, F mod (g—1) — 2z 1y. In other words, U,(g)" specializes
F[.SLy*| as a Poisson Hopf algebra. Note that this was predicted by Theorem 2.2(c) when
Char (k) = 0, but our analysis now provesit also for Char (k) > 0.
Note that we got the adjoint Poisson group dual of G = SL,, that is,SL,"; adifferent choice
of the initial QrUEA leads us to the simply connected one, i.e. ,SLy". Indeed, if we start from the
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“simply connected” version of U, (g) (see §5.2) the same analysis shows that U, (g)’ is like above but
for containing also the new generators L**, and similarly when specializing ¢ at 1: thus we get the
function algebra of a Poisson group which isadouble covering of ,S Ly, namely .S Ly". So changing
the QrUEA quantizing g we get two different QFAS, one for each of the two connected Poisson
algebraic groups dual of SL,, i.e. with tangent Lie bialgebra sl," ; this shows the dependence of G*
(here denoted G* since g* = g*) in Theorem 2.2(c) on the choice of the QrUEA U, (g) , for fixed g..

With a bit more careful study, exploiting the analysisin [Gal], one can treat the general case too:
we sketch briefly our arguments — restricting to the ssimply laced case, to simplify the exposition —
leaving to the reader the straightforward task of filling in details.

Sonow let g = g” beasemisimpleLiealgebra, asin§5.1, andlet U,(g) bethe QrUEA introduced
in §5.2: our aim again isto compute the QFA U, (g)’ .

The same computations as for g = sl(2) show that §,,(H;) = (¢ — 1)"' - H®" and 6"(I};) =
(q— 1)t (=) HP Y @ I (HK;)®" ), which gives

Hi:=(q—1H; € Uy9)' \ (¢ — 1) Uy(g) and I}:=(q—1)1; € Uy(g)'\ (¢ = 1) Uy(g)"-

Asfor root vectors, let E, := (¢—1)E, and F, := (¢—1)F, foral v € &* : usingthe sametype
of arguments as in [Gal]* §5.16, we can provethat E,, ¢ U,(g)' but F, € U,(g) \ (¢ — 1) U,(g)".
In fact, let U, (b, ) and U,(b_) be quantum Borel subalgebras, and L7~ , U, , Ul , U their
R—subalgebras defined in [Gal], §2: then both U, (b ) and U,(b_) are Hopf subalgebras of U,(g) .
In addition, letting M’ be the lattice between @ and P dual of M (in the sense of [Gal], §1.1, there
exists an F'(R)—-valued perfect Hopf pairing between U,(b.) and U,(bs) — one built up on M

and the other on M’ — such that 40, = (.), i = (L), Uy, = (wye), and

M= ( g{’2>.. Now, (¢ — ¢ ') E. € UY, = <Ll3;{’§>., hence — since 4(/_ is an algebra —
wehave A((q— g ) E) € (Wi ewys) = (W) @ (W) = U o U, . Therefore
by definition of ¢/}, and by the PBW theorem for it and for ﬂg{’g (cf. [Gal], §2.5) we have that
A((q . q_l)Ea> isan R-linear combination like A((q _ q_l)Ea> =32 AV ® A inwhich
the A/)’s are monomialsin the M;’sand in the E.’s, where E,, := (¢ — ¢"')E, fordl v € &
iterating, we find that N((q - q*l)Ea> isan R-linear combination

A((g=a)E) = L, AV 0 AP @0 AN (5.3)
inwhich the AY s are again monomialsin the M;’sand inthe E.’s. Now, we distinguish two cases:
either A doescontainsome £, (€ (¢—q¢~") U,(g)) , thus e(AS”) =AY € (¢—1) U,(g) whence
(id—e) <A§j)> —0; or AY) doesnot containany ., and isonly amonomial inthe M,'s, say AY) =

[T, M s then (id— ) (A7) =TT, M =1 =TT, ((a = D) Hi+1)™ — 1€ (4= 1) Uslg)
In addition, for some " Q—grading reasons’ (asin [Gal], §3.16), in each one of the summandsin (5.3)

“In [Gal] one assumes Char (k) = 0: however, thisis not necesary for the present analysis.

11-38



FABIO GAVARINI The global quantum duality principle...

the sum of all the y's such that the (rescaled) root vectors E., occur in any of the factors ALY, A,
..., A must be equal to a: therefore, in each of these summands at least one factor E ., does occur.
The conclusion isthat &,(E,) € (1+ ¢ ") (g — 1) Uy(g)® (the factor (1 + ¢~') being there
becauise at least one rescaled root vector £, occurs in each summand of &,(E,) , thus providing a
coefficient (¢ — ¢~') theterm (1 +¢') isfactored out of), whence &(E,) € (¢ — 1) U,(g)*".
More precisely, we haveaso 6,(E.) ¢ (¢— 1)1 U,(g)®, forwecan easily check that A’(E,) is
thesumof M, @M, ®---QM,®E, plus other summandswhich are R—linearly independent of this
first term: but then 6, (E,) isthesumof (¢ — 1) 'H,® H,®- - -® H, ® E, (where H, := Mol
is equal to an R-inear combination of products of A/;’s and H,’s) plus other summands which are
R-linearly independent of the first one, and since H, ® H, @ -~ ® Hy ® E, & (¢ — 1) U,(g)®
we can conclude as claimed. Therefore 6,(E,) € (¢ — 1)* Uy(9)* \ (¢ — 1)1 U,(9)*", whence
weget E, :=(q—1)E, € Uy(g) \ (¢—1)U,(g) Vaec®. Anentrely similar analysisyields
dso £, = (g — 1)F, € Uy(g) \ (¢ — 1) Uy(a) ¥ a € &*.

Summing up, we have found that U,(g)" contains the subalgebra U’ generated by F,, H;, I,
E, foradl a € ®* andal i =1,...,n. Ontheother hand, using (5.2) a thorough — but straight-
forward — computation along the same lines as above shows that any element in U,,(g)’ must liein U’
(details are left to the reader). Thusfinaly U,(g)’ = U’, so we have a concrete description of U, (g)’.

Now compare U’ = U,(g)" with the algebra Uy (g) in[Gal], §3.4 (for ¢ = 0), the latter being
just the R—subalgebra of U, (g) generated by the set { F,, M;, B, |a € ®,i =1,...,n}. First
of all, by definition, we have U (g) C U’ = U,(g)'; moreover, F, = 1F,, E, = 1E,,
Ii=1(K, - K;') mod (q- LU} (g) foral «,i. Then

(V@) = Vo) /la=DU,(e) = U(9)/(a— DU (e) = F[G})]

where G7, is the Poisson group dual of G = G™ with centre Z(G?%,) = M /Q and fundamental
group m(G%,) = P / M , and the isomorphism (of Poisson Hopf algebras) on the right is given by
[Gal], Theorem 7.4 (see also references therein for the original statement and proof). In other words,
U,(g)" specializesto F'[G?,] asa Poisson Hopf algebra, as prescribed by Theorem 2.2. By the way,
notice that in the present case the dependence of the dual group G* = G, onthechoice of theinitia
QrUEA (for fixed g) — mentioned in the last part of the statement of Theorem 2.2(c) — is evident.

By the way, the previous discussion applies aswell to the case of g an untwisted affine Kac-Moody
algebra, just replacing quotations from [Gal] — referring to results about finite Kac-Moody algebras
— with similar quotations from [Ga3] — referring to untwisted affine Kac-Moody algebras.

5.4 The identity (U,(s)')” = U,(g). In this section we check the part of Theorem 2.2(b)
claiming that, when p = 0, onehas H € QrUEA — (H')' = H for H = U,(g) asabove. In
addition, our proof now will work for p > 0 aswell. Of course, we start once again from g = sl, .

Since €(F) = ¢(H) = ¢(I') = ¢(E) = 0, theideal J := Ker(e: U,(g) — R) isgenerated
by F, H, I, and E. Thisimplies that .J is the R—span of {F‘PH”F'VE’? ’ (o, k,7,m) € N*\
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{(0,0,0, O)}} . Therefore (Uy(g)')" == 3,15 ((q - 1)‘1J>n isgenerated, asaunital R-subalgebra
of U,(g), by theelements (¢ — 1) 'F = F, (¢4—1)"'"H=H, (¢—1)"'I'=1, (¢—1)'E =
E, henceit coincideswith U,(g), g.e.d. A similar analysis works in the “adjoint” case as well, and
also for the general semisimple or affine Kac-Moody case.

5.5 The quantum hyperalgebra Hyp (g). Let G be a semisimple (affine) algebraic group,
with Lie algebra g, and let U, (g) be the quantum group considered in the previous sections. Lusztig
introduced (cf. [Lul-2]) a “quantum hyperalgebra’, i.e. a Hopf subalgebra of U,(g) over Z[q, ¢ ']
whose specializationat ¢ = 1 isexactly the Kostant’s Z—integer form Uz(g) of U(g) from which one
gets the hyperalgebra Hyp (g) over any field k of characteristic p > 0 by scalar extension, namely
Hyp(g) = k®zUz(g) . Infact, to be precise one needs a suitable enlargement of the algebra given by
Lusztig, which isprovided in [DL], §3.4, and denoted by "(g). Now we study Drinfeld’sfunctors (at
h=q—1)on Hyp,(g) := R®zpq1 I'(g) (With R likein §5.2), taking as samplethecase g = sl .

Let g = sl,. Let Hyp?(g) be the unital Z[q, ¢~*]—subalgebra of U,(g) (say the one of “adjoint
type” defined like above but over Z[q, ¢~*]) generated the “quantum divided powers’

K:c n gt K — 1
F .—F/[n]q! , ( : )'_Hl—qS—1 . E .—E/[n]q!

(forall ne N, c2)andby K=", where [n],! == [T, s, and [s], = (¢~ ¢~) /(¢ — ")

s=1

for al n, s € N. Then (cf. [DL]) thisis aHopf subalgebra of U,(g), and Hypf(g)} X ~ Uz(g);
therefore Hyp,(g) == R ®zjq-1 HypZ(g) (for any R likein §5.2, with k := R/AR and p :=
Char (k) ) specializesat ¢ = 1 to the k—hyperalgebra Hyp (g). Moreover, among al the (Krjc)’sit is
enough to take only those with ¢ = 0. From now on we assume p > 0.

Using formulas for the iterated coproduct in [DL], Corollary 3.3 (which uses the opposite coprod-
uct than ours, but this doesn’t matter), and exploiting the PBW-like theorem for Hyp  (g) (see [DL]
again) we see by direct inspection that Hyp q(g)’ isthe unital R—subalgebraof Hyp (g) generated by
K~! and the “rescaled quantum divided powers’ (¢ — 1)"F®™, (¢—1)" (*°) and (¢ —1)"E™
! n, we argue that Hypq(g)” , is generated by

q:

foral n € N. Since [n] =nl =0iff p

the corresponding specializations of (¢ —1)” F®), (¢ —1)" (K?O) and (¢ —1)" E®) for all

p5

s €N in particular this shows that the spectrum of Hyp q(g)” has dimension 0 and height 1, and
1

its cotangent Lie algebra J/J2 — where J isthe augmentation ideal of Hypq(g)” — has basis
q=1
{a=17"F®), (q=1)" (%), (a=1)" E®) mod (¢~1) Hyp, (), mod J* | s € N}. Fur-
thermore, (Hyp,(g)')” is generated by the elements (¢ — 1) ' F), (g — 1" (i()) , Kt
and (q—1)" 'E®) foral s € N: in particular we have that (Hypq(g)’)v C Hyp,(g), and
(Hyp,(a))"]|

abasis of the restricted Lie bialgebra £ such that (Hypq(g)’)v

is generated by the cosets modulo (¢ — 1) of the previous elements, which do form

= u(¥).

g=1
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We performed the previous study using the “adjoint” version of U,(g) as starting point: instead,
we can use as well its “simply connected” version, thus obtaining a “simply connected version of
Hyp,(g)” which is defined like before but for using L*! instead of K*'; up to these changes, the
analysis and its outcome will be exactly the same. Note that all quantum objects involved — namely,
Hyp ,(a), Hyp,(g)" and (Hypq(g)’)v — will strictly contain the corresponding “adjoint” quantum
objects; on the other hand, the semiclassical limit isthe samein the case of Hyp ,(g) (giving Hyp(g),
in both cases) and in the case of (Hypq(g)’)v (giving u(t), in both cases), whereas the semiclassical
limit of Hyp q(g)’ in the “simply connected” case is a (countable) covering of the “adjoint” one.

The genera case of semisimple or affine Kac-Moody g can be dealt with similarly, with analogous
outcome. Indeed, Hyp? (g) is defined asthe unital Z [¢, ¢~ | -subal gebraof U, (g) (defined like before
but over 7 [q, q*l}) generated by K ! and the “quantum divided powers’ (in the above sense) Fi(”) ,
(%5e), B foradl neN, ceZ and i = 1,...,rank(g) (notation of §5.2, but now each divided
power relativeto ¢ is built upon ¢;, see[Gal]). Then (cf. [DL]) thisisaHopf subalgebraof U,(g) with
Hypqz(g)’ = Uz(g), S0 Hyp,(g) := R @441 Hyp: (g) (for any R like before) specializes at
g = 1 tothek-hyperalgebra Hyp(g); and among the (*#“)’sit is enough to take those with ¢ = 0.

Again a PBW-like theorem holds for Hyp (g) (see [DL]), where powers of root vectors are re-
placed by quantum divided powers like F{™, (%5¢) . k5" and EJ”, for @l positive roots
a of g (each divided power being relative to ¢,, see [Gal]) both in the finite and in the affine
case. Using this and the same type of arguments as in §5.3 — i.e. the perfect graded Hopf pair-
ing between quantum Borel subalgebras — we see by direct inspection that Hypq(g)’ is the uni-
tal R—subalgebra of Hyp (g) generated by the K; s and the “rescaled quantum divided powers’

(ga — 1)"ES, (g — 1" (¥5°) and (gu — 1)"EYY fordl n € N. Since [],!| =mnl=0

n q:l

iff p|n, one argues like before that Hyp q(g)’ is generated by the corresponding specializa-
1

q=

tions of (gu — VP EP), (gi — 1) (KO) and (q. — 1" E®” fordl s € N and al positive

ps

roots . Again, this shows that the spectrum of Hyp q(g)’
9=

has (dimension O and) height 1,
1

and its cotangent Lie algebra J / J? (where J isthe augmentation ideal of Hyp q(g)’

) has basis
q=1

P s

over, (Hyp,(a)))" isgeneratedby (¢, — 1" ' F¥", (¢, — 1)" (Ii)O) K 'and (g, — 1)P 1 EPY

{(qa—l)psFép”, (qi_l)pS(Ki;O) , (¢a—1)"" E®) mod (¢—1)Hyp,(g)' mod .J? )s S N}. More-

forals,i anda: inparticular (Hyp,(g)")" & Hyp,(g), and (Hypq(g)’)v‘ is generated by
=1
the cosets modulo (¢ — 1) of the previous elements, which in fact do form abasis?)f therestricted Lie
bialgebra ¢ such that (Hypq(g)')v‘ — u(e) .
q=1

5.6 The QFA F,[G]. Inthisand the following sections we passto look at Theorem 2.2 the other
way round: namely, we start from QFAs and produce QrUEASs.

We beginwith G = SL,,, with the standard Poisson structure, for which an especialy explicit de-
scription of the QFA isavailable. Namely, let F,[SL,] bethe unital associative R—algebra generated
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by {pi;li,7=1,...,n} withrelations

PijPik = 4 PikPij PikPhk = G PhkPik Vj<k,i<h
PPk = PikPil » pikpit — PPk = (@ — a7) pupjk Vi<j, k<l
dety(piy) = pes, (0" P1o)P20)  Protn) = 1.

ThisisaHopf algebra, with comultiplication, counit and antipode given by

Alpyg) =S r1pie @ prj ., €lpis) =65, Slpy) = ()" detq<(phk)2§;>

forall 7,5 =1,...,n.Let F,[SL,] := F(R) ®g F,[SL,] . The set of ordered monomials

M = { Hpgw‘ [Ton TLonm | Ne € N Vst min {Nyy,...,N,n} =0 } (5.4)
>] h=k I<m
isan R—basisof F,[SL,| andan F'(R)-basisof IF,[SL,]| (cf. [Ga2], Theorem 7.4, suitably adapted to
F,[SL,]). Moreover, F,[SL,] isaQFA (at h = q— 1), with F,[SL,| -~ F[SL,] .

5.7 Computation of F,[G]" and specialization F,[G]’ e, U(g*). Inthissectionwecom-

pute F,[G]" and itssemiclassical limit (= specialization at ¢ = 1). Note that

Nij m
M = { [1p7 T1 (one — 1) TT oy

i>j h=k I<m

Ng e N Vs, t; min{NLl,...,Nn,n} :O}

is an R—-basis of F,[SL,| and an F(R)-basis of F,[SL,]; then, from the definition of the counit,
it follows that M’ \ {1} isan R—basis of Ker(e : F,[SL,] — R). Now, by definition I :=

q’—)l

Ker (Fq[SLn] " SR k) , whence I = Ker(e) + (¢ — 1) - F,[SL,]; therefore (M’ \

{1})u{(g—1)-1} isan R-basisof I, hence (¢ — 1) 'I hasR-basis (¢ — 1)~ (M"\{1})U{1}.
The outcome isthat F,[SL,]" := 3, . ((q - 1)—11)" is just the unital R-subalgebra of F,[SL,)]
Pij — Oij
q—1
agebra, and that F, [SLn]Vq;l> U(sl,") as predicted by Theorem 2.2. Details can be found in

[GaZ], §§ 2, 4, looking at the algebra fq [SL,| considered therein, up to the following changes. The

6i~pij_5ij .
jj (i,j =1,...,n)

instead of our r;; 's(they coincideiff ¢ = j) and also generators p;; = 1+ (¢q—1)r; (i =1,...,n);
then the presentation in §2.8 of [loc. cit.] must be changed accordingly; computing the specialization
then goes exactly the same, and gives the same result — specialized generators are rescaled, though,
compared with the standard ones givenin [loc. cit.], §1.

We sketch the case of n = 2 (see dso [FG)).

Using notation a:= py 1, b:=p12, C:= pay, d:= pao, Wwehavetherelations

generetted by { Tij =

ihwj=1,....n } Then one can directly show that thisis a Hopf

algebra which is considered in [loc. cit] has generators (1+¢ ")

ab=g¢ba, ac=qca, bd=¢db, cd=gqgdc,
bc=ch, ad—da= (¢—q¢ ')bc, ad—gbc=1
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holding in F,[S L] and in F,[S Lo}, with

Ala) =a®a+b®c, Alb)=a®b+b®d, A(c)=c®a+d®c, A(d)=ceb+dxd
c@=1,eb)=0,ec)=0, ed) =1, S@=d, Sb)=—-¢'b, S(c)=—¢"'c, S(d) =a.

a—1 b C
1 ) E = T2 = F = 91 = and H_ :=
q_

Then the elements H, = r{; = —,
; q _ 1 ? q _ 1
d—1 :
rap = —— generate F,[SL,)" . Moreover, these generators have relations
q—

H E=qEH.+E, HUF=qFH,+F, EH. =qH E+E, FH =qH F+F,
EF=FFE, HH —HH =(q—q")EF, H.+H, =(q—1)(¢EF —H,H")

and Hopf operations given by

AH)=H,®@1+1@H,+(q—1)(H, @H.+ E®F), eHy)=0, S(Hy)=H-
AE)=E®1+10E+(¢—1)(H®E+E®H_), €E)=0
AF)=F®14+41®F+(q-1)(F®H, +H - ®F), €F)=0, S{F)=—¢"F
AH)=H - ®@1+1@H_+(q—1)(H-@H_-+F®E), €eH_)

—1

from which one easily checks that F,[SL,]" ——— U(sly") as co-Poisson Hopf algebras, for a co-
Poisson Hopf algebraisomorphism

Fy[SLa)" /(g = 1) FylSLs]” —— U(sl5")

exists, givenby: Hy mod (¢ —1) — £h, £ mod (¢ —1) — e, F mod (¢ — 1) — f; thatis,
F,[SLy)" specializesto U(sly") asa co-Poisson Hopf algebra, g.e.d.

Finally, the general case of any semisimple group G = G™, with the Poisson structure induced
from the Lie bialgebrastructureof g = g™, can betreated in adifferent way. Following [Gal], §55-6,
IF,[G] can be embedded into a (topological) Hopf algebra U,(g*) = U}’ (g*) , so that the image of
the integer form F7[G] liesinto a suitable (topological) integer form 44,7 (g*) of U,(g*). Now, the
analysis givenin [loc. cit.], when carefully read, showsthat F,[G]" = F,[G] N1 (g*)" ; moreover,
the latter (intersection) algebra “amost” coincides — it isits closure in a suitable topology — with
the integer form F,[G] considered in [loc. cit.]: in particular, they have the same specidlization at
¢ = 1. Sincein addition F,[G] does speciaizeto U(g*), the sameistruefor F,[G]", g.ed.

The last point to stressisthat, once more, the whole analysisaboveisvalidfor p := Char (k) > 0,
i.e.asofor p > 0, whichwasnot granted by Theorem 2.2.

5.8 The identity (Fq[G]V>/ = F,[G]. In this section we verify the validity of that part of

Theorem 2.2(b) claimingthat H € QFA — (HV)' = H for H = F,|G] asabove; moreover we
show that this holdsfor p > 0 too. We beginwith G = SL,, .
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From A(py;) = kz Pik @ prj, weget AV(py) = 37 piky @ Prike @ 0 ® Pry_yg, DY
=1
repeated iteration, whence a simple computation yields

n

5N(Tij) = . kz (q - 1)71 : (((] - 1) T4 kq ® (q - 1) Tkq,ka K (q - 1) Tkalvj) v ivj
Tyens N-1=1
so that
on((q— D) € (q— DV FSLL]"\ (¢ = D)V F,[SL,] Vi,j. (5.5)

Now consider M’ := { 1057 T1 (pue — D™ H oo | Net € NV s, ¢ min; {N;;} = 0}

1>7 h=k

sincethisisan R—basisof F,[SL,]|, we haveaso that

{ HTU”HrhthT.Nlm st eN Vs,t, mln{Nll,...,Nnm} :O}

1>]

isan R-basisof F,[SL,]". Thisand (5. 5) aboveimplythat (F,[SL,]")" isthe unital R-subalgebra
of F,[SL,] generated by the set { (¢ ..,n};since (¢ —1)ry = pij — &;;, the
latter algebra does coincide with £, [SLn] , 8S expected.

For the general case of any semisimple group G = G7, the result can be obtained again by
looking at the immersions F,[G] C U,(g*) and F;[G] € U, (g*), and at the identity F,G]Y =
Fo[G] N U (g*)" (cf. §5.6). If we go and compute <L{;{p(g*)v>, (noting that (u;:{p(g*))v isa
QrUEA), we have to apply the like methods asfor U, (g)’, thusfinding asimilar result; this and the
identity F,[G]" = F,(G] N4y, (¢7)" evenallyyield (F,[G)") = F,[G].

Is is worth pointing out once more that the previous analysis is valid for p := Char (k) > 0,
i.e.asofor p > 0, sotheoutcomeisstronger than what ensured by Theorem 2.2.

Remark: Formula(5.4) gives an explicit R—basis M of F|,[SL,]. By direct computation one sees
that 6, (1) € F,[SLy]*" \ (¢ — 1) F,[SLy]*" foral p € M\ {1} and n € N, whence F,[SL,]' =
R-1,whichimplies (F,[SL,)'), = F(R)-1 G F,[SL,] andaso (F,[SLy)') = R-1 G F,[SL,].
Thisyields a counterexample to part of Theorem 2.2(b).

5.9 Drinfeld’s functorsand L—operatorsin U,(g) for classical g. Let now k have zero charac-
teristic, and let g be afinite dimensional semisimple Lie agebra over k whose simple Lie subalgebra
are al of classical type. It is known from [FRT2] that in this case U}'(g) (where the subscript P
means that we are taking a“simply-connected” quantum group) admits an alternative presentation, in
which the generators are the so-called L—operators, denoted l ) with ¢ = £1 and 4, jrangingina
suitable set of indices (see [FRT2], §2). Now, if we consider msiead the subalgebra of Uf( ), cal it
H , generated by the L—operators over R, we get at once from the very description of the relations
between the lgfj) 'sgivenin [FRT2] that H isa Hopf R—subalgebra of Ug’ (g) , and more precisely itis
a QFA for the connected simply-connected dual Poisson group G* .
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When computing H", it is generated by the elements (¢ — 1)*1l§fj) ; even more, the elements

(q—1)7"1H), and (¢ — 1)1\, are enough to generate. Now, Theorem 12 in [FRT2] shows that
these latter generators are simply multiples of the Chevalley generators of U (g) (in the sense of
Jmbo, Drinfeld, etc.), by a coefficient of type j:qs(l + qfl) for some s € Z: thisprovesdirectly
that H" isa QrUEA associated to g, that isthe dual Lie bialgebra of G*, as prescribed by Theorem
2.2. Conversely, if westart from U’ (g) , again Theorem 12 of [FRT2] showsthatthe (¢ — ¢ *) 71[53)’5
are quantum root vectorsin U(f (g) . Then when computing U, f (g)' we can shorten alot theanalysisin
§5.3, because the explicit expression of the coproduct on the L—operators given in [FRT2] — roughly,
A isgiven on them by a standard “matrix coproduct” — tells us directly that all the (1 + q*l)_llz(fj)’s
do belong to U (g)’, and again by a PBW argument we conclude that U (g)" is generated by these
rescaled L—operators, i.e. the (1 + q71)71l§3) .

Therefore, we can say in short that shifting from H to H" or from U/ (g) to Uf(g)’ essentially
amounts — up to rescaling by irrelevant factors (in that they do not vanish at ¢ = 1) — to switching
from the presentation of Ufj (g) via L—operators (after [FRT2]) to the presentation of Serre-Chevalley
type (after Drinfeld and Jimbo), and conversely. See also [Ga8] for thecases g = gl,, and g = sl,, .

5.10 The cases U,(gl,,) , F,|GL,] and F,[M,]. In[Ga2], §3.2, acertain agebra U,(gl,) is con-
sidered asaquantization of gl,,; dueto their strict relationship, from the analysisfor sl,, oneargues a
description of U, (gl,,)’ and its specialization at ¢ = 1, and also verifiesthat (U,(gl,)")’ = U,(gl,) -

Similarly, we can consider the unital associative R—algebra F,[M,] with generators p;; (i, j =
1,...,n)andrelations p;;jpi = q pixpij» PixPrk = q prepir (foral j <k, i <h), paupjr = pjrpu
pikpj — pipi = (@ —q ) pups (fordl i < j, k < 1) —i.e likefor SL,, but for skipping
the last relation. This is the celebrated standard quantization of F'[M,,], the function algebra of the
variety M,, of (n x n)-matrices over k: it is ak-biagebra, whose structure is given by formulas
Apij) = S0y pir @ prj» €(pij) = &; (fFordl 4,5 =1,...,n) again, but it is not a Hopf algebra
The quantum determinant dety(pi;) == 3", cs. (—=0)"” pro(1) Poo(2) *** Prony IS CENtral in F,[M,],
so by standard theory we can extend F,[M,,] by adding aformal inverseto det,(p;;), thusgetting
a larger algebra F,[GL,] := Fy[M,][det,(p;)"']: thisis now a Hopf algebra, with antipode
S(pi) = (—q)" detq((phk)fj;;) (forall i, =1,....n), thewell-known standard quantization of
F[GL,], dueto Manin (see [Ma)).

Applying Drinfeld’s functor ( )Y w.rt. i := (¢ — 1) a F,[GL,] we can repeat step by step the
analysis made for F,[SL,]: then F,[GL,]" isgenerated by ther;;’'sand (¢ — 1)~ (det,(pi;) — 1),
the sole real difference being the lack of the relation det,(p;;) = 1, which impliesone relation less
among ther;;’sinside F,[G'L,,]", hence also one relation less among their cosets modulo (¢ — 1). The
outcome is pretty similar, in particular F,[GL,]" = U(gl,) (cf. [Ga2], §6.2). Even more, we

can do the same with F,[M,]: things are even easier, because we have only the r;;’s alone which
generate F,[M,,]", with no relation coming from the relation det,(p;;) = 1; neverthelessat ¢ = 1

the rel ations among the cosets of the r;;’sare exactly the same asinthe case of F,[GL,]"| , whence
q=1
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we get F,[M,]" = Ulgl,”) . In particular, F,[M,]" . is a Hopf algebra, although both F,[M,,)
and F,[M,,] ¥ are only bialgebras, not Hopf algebras: thig gives a non-trivial explicit example of how
Theorem 2.2 may be improved. The general result in this senseis Theorem 4.9 in [Ga5)].

Finally, an analysis of the relationship between Drinfeld functors and L—operators about Ug’ (gl,,)

can be done again, exactly likein §7.9, leading to entirely similar results.

§ 6 Third example: thethree-dimensional Euclidean group E»

6.1 The classical setting. Let k be any field of characteristic p > 0. Let G := Esy(k) = E»,
the three-dimensional Euclidean group; itstangent Lie algebra g = ¢, isgenerated by f, i, e with
relations [h,e] = 2e, [h, f] = =2f, e, f] = 0. Theformulas §(f) =h® f — f®@h, 6(h) =0,
d(e) = h®e—e® h,makee, into alLie bialgebra, hence E, into a Poisson group. These also give
a presentation of the co-Poisson Hopf algebra U (es) (with standard Hopf structure). If p > 0, we
consider on ¢, the p—operation givenby el?! =0, fPl =0, alPl = p.

On the other hand, the function algebra F'| E5| isthe unital associative commutative k—al gebrawith
generators b, a*!, ¢, with Poisson Hopf algebra structure given by

Ab)=b@a'+a®b, A(ail):aﬂ@ail, Alc)=c®a+a'®c
e() =0, e(a™)=1, €(c)=0, Sb)=-b, S(a*')=a¥", S(c)=—c
{ail,b} = +at'h, {ail,c} = +a*le, {b,c} =0

We can redlize F as B> = {(b,a,c) |b,c € k,a € k\ {0}}, withgroup operation
(b1, a1, ¢1) - (b2, a2,c2) = (51%_1 +aiby, aray, cras + GIICQ) ;

in particular the centre of E5 issimply Z = {(0, 1,0), (0, —1,0)} , SO there is only one other con-
nected Poisson group having e, as Lie bialgebra, namely the adjoint group ,F> := Es / Z (the left
subscript a standsfor “adjoint”). Then F'[, E5] coincides with the Poisson Hopf subalgebraof F'[, Fs|
spanned by products of an even number of generators, i.e. monomials of even degree: as a unita
subalgebra, thisis generated by ba, a™?,and a'c.

The dud Lie bialgebra g* = ¢,* isthe Lie agebrawith generators f, h, e, and relations [h, e =
2e, [h,f] = 2f, [e,f] = 0, with Lie cobracket givenby 6(f) = feh—-h&f, §jh) = 0,
6(e) = h®e— e® h (wechoose as generators f := f*, h:= 2h*, e:= ¢*, where {f*,h*,e*}
isthe basis of ¢5* which isdual to the basis { f, h, e} of ¢5). If p > 0, the p—operation of ¢,* reads
el =0, fPl = 0, hP! = h. Thisagain gives a presentation of U (e,*) too. The simply connected
algebraic Poisson group with tangent Lie bialgebrae,* can berealized asthe group of pairs of matrices

== {(( )6 2)
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this group has centre Z := {(I,1),(—1,—1)}, so there is only one other (Poisson) group with Lie
(bi)algebra e;* , namely the adjoint group , E5* = . Es" / Z.

Therefore F' [SEQ*} isthe unital associative commutative k—algebrawith generators z, z*!, y, with
Poisson Hopf structure given by

Aw)=z®2 ' +202,  AET) =707, Al =yes +28y
e(x) =0, e(z7") =1, €(y) =0, S(x)=—x, S(E) ==, Sy =y
{z.y} =0, {52} = £252, ) = 57y

(Remark: with respect to this presentation, we have f = 9,| , h=20.| , e=9,|_, whereeisthe
identity element of ,E,"). Moreover, F'[,E>*] can beidentified with the Poisson Hopf subalgebra of
F [SEQ*} spanned by products of an even number of generators, i.e. monomials of even degree: thisis
generated, as a unital subalgebra, by =z, 22 and 2~ !y.

6.2 The QrUEAs U;(ez) and Ug(ez). We turn now to quantizations: the situation is much
similar to the case of sl,, so we follow the same pattern; nevertheless, now we stress a bit more the
occurrence of different groups sharing the same tangent Lie bialgebra.

Let RbealdD,andlet 2 € R\ {0} and ¢ := h+ 1 € R belikein §5.2.

Let U,(g) = U;(e2) (where the superscript s stands for “simply connected”) be the associative
unital F'(R)—-algebrawith generators F, L', E, and relations

LL'=1=L"'L, [FFr=¢"'FL*, [HE=¢"'FL*, EF=FF.
ThisisaHopf algebra, with Hopf structure given by

AF)=FoL?+10F, A =LeLl*, AFE)=Ex1+L*0FE
(F)=0, e(I*) =1, ¢(B)=0, S(F)=-FL*, S(L*")=L%, S(E)=-L*F.

+1

L
Then let U;(e;) bethe R—subalgebra of U;(e;) generated by F', Dy := — 1 E . From the
q E—
definition of U7 (e2) one gets a presentation of U (e,) as the associative unital algebrawith generators

F, Dy, E andrelations

D.E=q¢ED,+E, FD,=qD.F+F, ED =qD_ E+E, D.F=qFD_+F
EF =FE, D.D_=D_D, , Dy+D_+(¢g—1)D,D_=0

with a Hopf structure given by

AE)=E®1+10F+2(q-1)D;®E+(¢q—1)°-D>®FE
AF)=F®R14+10F+2(q—1)F®@D_+(¢—1)?* - F® D>
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e(E)=0, S(E)=—-E—2(q—1)D_E— (¢—1)’D*E
e(D1) =0, S(Ds) = D=
e«(F)=0, S(F)=~F —2(q—1)FDy — (¢ —1)°FD? .

The“adjoint version” of U; (e,) isthe unital subalgebraU¢ (e;) generated by F', K*' .= L*? | F,

which is clearly a Hopf subalgebra. It also has an R-integer form U (e2) , the unital R-subalgebra
K* -1 . :
generated by F', Hy = 1 E': thishasrelations
EF=FE, HLE=¢EH,  +(¢+1)E, FH, =¢*H,F+ (¢+1)F, HLH_ =H_H,

EH =¢HE+(@+1)E, HF=¢FH +(q+1)F, H, +H_ +(q—-1)H;H =0
and it isaHopf subalgebra, with Hopf operations given by

AE)=E®@1+1®E+(q—1)-H.®E, ¢E) =0, SE)=-E-(¢q—1)H_E
A(Hi):Hi@)l—l—l@Hi—i—(q—l)Hi®Hi, €<Hi)207 S(Hi):H¢
AF)=F®14+19F+(@-1)-FH_., €F)=0, SF)=-F-(¢—1)FH,.

It is easy to check that U;(e;) is a QrUEA, whose semiclassical limit is Ufez) : in fact, map-
ping the generators F mod (¢—1), Dy mod (¢—1), E mod (¢ — 1) respectivelyto f, +h/2,
e € Ule,) gives an isomorphism U;(eg)/(q — 1) Us(es) — U(ez) of co-Poisson Hopf agebras,
Similarly, Uf(e2) is a QrUEA too, with semiclassical limit U(e;) again: here a co-Poisson Hopf
algebra isomorphism Ug(eQ)/(q— 1) Ug(ea) = Uleo) is given mapping F' mod (¢ —1), Hx
mod (¢—1), E mod (¢g—1) respectivelyto f, +h, e € U(es).

6.3 Computation of U,(e,)’ and specialization U, (e,)’ ——— F[E5]. Thissectionis devoted

to compute U;(eQ)’ and U;(eg)/ , and their specializationat ¢ = 1: everything goeson asin §5.3, so
we can be more sketchy. From definitionswe have, forany n € N, A"(E) =>"_  K®¢t Ve E®
190=9) 50 §,(E) = (K - 1)*" Vo E=(qg-1)"" H" Vo E, whence 4,((¢ —1)E) €
(¢ —1)"Ul(e2) \ (¢ — 1)"" U(e,) thus (q—1)E € U(e)', whereas E ¢ U2 (e;)". Similarly, we
have (¢ — 1)F, (¢ — 1)H: € Ug(e2)"\ (¢ — 1) Ug(e2)". Therefore U2 (es) contains the subalgebra
U’ generated by F':= (¢ — 1)F, Hy = (¢ — 1)H., E = (¢ — 1)E. Ontheother hand, U¢(e,)" is
clearly the R—span of the set {F“HiHiEd a,b,c,d € N } . to be precise, the set

{FmHﬁK;WmEﬂaimjeN} - {FW#M1+(q—1ﬂ1)W”Ed

m&deN}

isan R—basis of U¢(e;)"; therefore, a straightforward computation shows that any element in U (e5)’
does necessarily liein U’ thus U¢(e,)" coincides with U’. Moreover, since Hy = K*' —1, the
unital algebra U¢ (e,)" isgenerated by F', K*! and £ aswell.

The previous analysis — mutatis mutandis — ensures also that U ;(eQ)’ coincides with the unital
R-subalgebra U” of U; (e2) generated by F:=(q—1F, Dy :=(q—1)Ds, FE:=(¢g—1)E;in
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particular, Ug(e2)’ D Ul(es)'. Moreover, as Dy = L*! — 1, the unital algebra U (e,)' is generated
by F, L*! and E aswell. Thus U; (e2)" isthe unital associative R—algebrawith generators F := LI,
£ .= [*' £:= EL™! andrelations

LL'=1=L7L, EF=FE, [PF=g'FL, [HE=q"ect
with Hopf structure given by

AF)=FQL'"+LF, AL =°L@L, AE)=E0L'+L®E
e(F)=0, e(ﬁil):l, e(&)=0, S(F)=-F, S(Eil):ﬁFl, S(E&)=-¢€.
As ¢ — 1, this yields a presentation of the function algebra F'[,E5"], and the Poisson bracket

that F [SEQ*} earns from this quantization process coincides with the one coming from the Poisson
structure on ,E5" : namely, there is a Poisson Hopf algebraisomorphism

Ui(e2) [(a = 1) Usle2) —— F[Ey]
givenby & mod (¢—1)— z, £L*' mod (¢—1) — z*', F mod (¢—1) — y. Thatis, U;(ey)’
specializesto F'[,E»*| asa Poisson Hopf algebra, as predicted by Theorem 2.2.
In the “adjoint case”, from the definition of U’ and from U¢(e;)’ = U’ wefind that Ug(e,)" isthe
unital associative R—algebrawith generators F, K*!, F and relations
KK '=1=K'K, EF=FFE, K"F=¢PFK*, K6 K"E=®EK*
with Hopf structure given by
AF)=FeK'+1@F, AK*)=K*o@K*, A[E)=Ee0l+KgFL
e(F)=0,e(K*)=1,¢E)=0, S(F)=-FK,S(K*)=K%, K S(E)=-K"'E.
The outcomeis that there is a Poisson Hopf algebraisomorphism
U (&) / (q— 1) UMes) —=— F[,E5] ( c F[SEQ*])

gvenby E mod (¢ —1) — zz, K*' mod (¢ —1) — z¥2, F' mod (¢ — 1) — z~'y, which
means U (ez)" specializesto F'[,E5"| asaPoisson Hopf algebra, according to Theorem 2.2.
To finish with, note that all thisanalysis (and its outcome) is entirely characteristic-free.

6.4 Theidentity (U,(es)')’ = U,(e2). Thissection god isto check the part of Theorem 2.2(b)
clamingthat H € QrilEA = (H’)V = H bothfor H = U;(e;) and H = U (e2) . In addition,
our analysiswork for al p := Char (k) , thus giving a stronger result than Theorem 2.2(b).

First, Us(es)' is clearly a free R—module, with basis {f“ﬁd(‘:c a,c € N,d € Z}, hence
B = {J’-‘“(ﬁil —1)%€¢ | a,b,c € N}, is an R-basis as well. Second, since ¢(F) = e(L£*' —
1) = €(&) = 0, theidea J := Ker(e: Us(er) — R) is the span of B \ {1}. Therefore
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(U3(e2))" = X0 ((a—1)7"7) " isgenerated by (¢ —1)"'F = LF, (¢—1) (£~ 1) = D.,
(g—1)"'(£'=1)=D_, (¢—1)"'€ = EL™' , henceby F', D, E,soitcoincideswith U; e.) .

The situationis entirely similar for the adjoint case: one simply hasto change F, £*!, £ respec-
tively with ', K*', E,and D, with H, , then everything goes through as above.

6.5 The quantum hyperalgebra Hyp, (e;). Likefor semisimplegroups, we can define * quantum
hyperalgebras’ for e; mimicking what done in §5.5. Namely, we can first define a Hopf Z [q, q*l]—
subalgebra of U (e2) Whose specidization at ¢ = 1 is the Kostant-like Z—integer form Uy (e,) of
U (e2) (generated by divided powers, and giving the hyperalgebra Hyp (e) over any field k by scalar
extension, namely Hyp(es) = k ®z Uz(ez)), and then takeits scalar extension over R.

To be precise, let Hyp$”(e,) bethe unital Z[q, ¢~'|—subalgebra of U (e,) (defined like above but
over Z[q, ¢~ ']) generated by the “quantum divided powers’

L;c gt — 1
F .—F/[n]q!, < . ).— J:ll pro E .—E/[n]q!

(for dl n € N and ¢ € Z, with notation of §5.5) and by L=!. Comparing with the case of
sl, one easily sees that this is a Hopf subalgebra of U (e,), and Hypr’Z(eg) » = Uyz(ey); thus
Hyp:(e2) == R Qpjqq-1) HypS"(e2) (for any R likein §6.2, with k := R/hfg and p := Char (k))
specidizesat g = 1 to the k—hyperalgebra Hyp ¢»). In addition, among all the (*:¢)’sit is enough
to take only those with ¢ = 0. From now on we assume p > 0.

Again astrict comparison with the sl, case shows us that Hyp;(eQ)’ isthe unital R—subalgebra of
Hyp: (e2) generated by L~! and the “rescaled quantum divided powers’ (q—1)"F™, (¢—1)"(*?)
and (¢q—1)"E™ forall n € N. It followsthat Hyp:(e;)’

is generated by the corresponding

specializations of (¢ — 1" F®), (g —1)" <Lp°> and (¢ — 1" E@) foral r € N: thisproves
that the spectrum of Hyp; (e,)’

has dimension 0 and height 1, and its cotangent Lie algebra has
q=1

basis ¢ (¢—1)" F®), (q—1)" (“*), (¢=1)" E®) mod (¢—1) Hyp}(g)' mod J?
q

p'r

’I’GN}

(where .J isthe augmentation ideal of Hyp;(eQ)’ ,Sothat J / J? isthe aforementioned cotangent
1

q:
Lie bialgebra). Moreover, (Hyp3(e,)')” isgenerated by (¢ — 1) 'F), (g — 1" (Lpo) , L1
and (¢q—1)" 'E@) (for al r € N): in particular (Hyp;(eQ)’)v C Hyp:(e;), and finally
(Hyp;(eg)')v’ is generated by the cosets modulo (¢ — 1) of the elements above, which in fact

form abasis of the restricted Lie bialgebra ¢ such that (Hypf](eg)’)V’ = u(e) .

All thisanalysis was made starting from U; (¢2) , which gave s mSFy connected quantum objects’.
If we start instead from U7 (e,) , we get “adjoint quantum objects” following the same pattern but for
replacing everywhere L*! by K*!: apart from these changes, the analysis and its outcome will be
exactly the same. Likefor s, (cf. §5.5), al the adjoint quantum objects —i.e. Hyp (e2) Hypg(eg)’
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and (Hypg(ez)’)v — will be strictly contained in the corresponding simply connected quantum ob-
jects; nevertheless, the semiclassical limitswill be the samein the case of Hyp (e2) (alwaysyielding
Hyp(e;)) and in the case of (Hypq(eQ)’)v (giving u(®), in both cases), while the semiclassical limit
of Hyp q(ez)' in the smply connected case will be a (countable) covering of that in the adjoint case.

6.6 The QFAs F,[E,] and F,[,E-]. Inthisand the following sectionswe look at Theorem 2.2
starting from QFAS, to get QrUEAS out of them.

We begin by introducing a QFA for the Euclidean groups E, and ,E, . Let F,[E;] be the unital
associative R—algebrawith generators a*!, b, ¢ and relations

ab=g¢gba, ac=gqca, bc=cb
endowed with the Hopf algebra structure given by
Al@')=a"'wa", Ab)=boa'+avb, Ac)=cwa+a'®c
(@) =1, e)=0, e)=0, S(a') =a", Sh)=-¢'b, S(c)=—¢"

Define F,|,E,] asthe R—submodule of F,[FE5] spanned by the products of an even number of gen-
erators, i.e. monomialsof evendegreeina®! , b, c: thisisaunital subalgebraof F,[E,], generated by
3:=ba, a*' :=a",and v :=a 'c. Letaso F [E] := (F[Ey]) , and FylBo] := (FylEo])
having the same presentation than F,[F,] and F,[,E,] but over F(R). By construction F,[E,| and
F,[.E,] are QFAs(at i = ¢ — 1), with semiclassical limit F[E,] and F[, Es] respectively.

6.7 Computation of F,[E,]" and F,[,E,)" and specializations F,[E,]'““" U(g*) and
Fila EQ]VL U(g*). Inthissectionwegoand compute F,[G]" anditssemiclassical limit (i.e. its
specidizationat ¢ = 1), bothfor G = F, and G = ,FE,.

First, F,[Es] is free over R, with basis {b”a‘bcC ‘ a € Z,b,c € N} , and so aso the set B, :=

{b”(ail —1)%|a,b,ce N} isan R—basis. Second, as e(b) = e(a*! — 1) = ¢(c) = 0, theideal

J = Ker (e . Fy[Ey)] — R) isthespanof B,\{1}. Then F,[E,]" = > om0 ((q—l)_lj>n isthe
. . atl—1 b c .
unital R—algebrawith generators D, := 1 E = 1 and F := —7 and relations
q— q— q—
D,E=qED,+E, D,F=qFD.,+F, ED_=qD_E+E, FD_=¢qD_F+F

EF =FF, D,D_=D_D,, D,+D_+(q—1)DyD_=0
with a Hopf structure given by
AE)=E®14+1QE+(¢—1)(E®D_+D,®FE), e€E)=0, S(E)=-¢'E

A(Di) Di®1+1®Di+(q_1)Di®Dia €<Di)207 S(Di):D¢
AF)=F®1419F+(¢-1)(F®D,+D_®F), €F)=0, S(F)=—q"F.

Thisimpliesthat F,[E,]" -, U (ey") asco-Poisson Hopf algebras, for an isomorphism

FlE]" [(a=1) FlB] —— Ules)
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of co-Poisson Hopf algebra exists, givenby Dy mod (¢ — 1) — +h/2, E mod (¢ — 1) — e,
and F' mod (¢—1) — f; s0 F,[E,]" doesspecidizeto U(ey*) asa co-Poisson Hopf algebra, g.e.d.
Similarly, if we consider F,|,E-] the same analysis works again. In fact, F,[,E,] is free over R,
with basis B, := {ﬁb(aﬂ —1)%¢ ‘ a,b,c € N } ; then as above J := Ker <e : FylaEs) — R) is
thespan of B, \ {1}. F,[.Ex]" =35, <(q—1)*1j>n is nothing but the unital R—algebra (inside
+1
-1 .
F,[oE>]) with generators H := a , B = —— b Jand F':= —L— and relations
q—1 q—1 q—1
E'F =¢?FE, H.E'=¢F'H, + (¢q+ )E, H.F'=¢*F'H, + (¢+ )F, HLH_=H_H.

FH =¢HFE +((q+1)E,FH_=¢H F +(q+1)F, H, +H +(qg—-1)H,H =0

with a Hopf structure given by
AE)=FE®1+1®E +(q—-1)-H. ®FE', €FE)=0, SE)=-FE —(q—-1)H_F
AHy)=Hy®1+1®Hy+(q—1)-H @ Hy, €Hy)=0, S(Hy)=H:
AFY=F ®1+1F +(¢q—1)-H-®F', €F)=0, SF)=-F —(¢q—-1)HF".
Thisimpliesthat F,[,Es]" S i N U(ey") as co-Poisson Hopf algebras, for an isomorphism
FlaBl” /(g =1) FlaBs] —— U(e)

of co-Poisson Hopf algebrasisgivenby H. mod (¢ —1) — £h, E' mod (¢ —1) — e, and F’
mod (¢ — 1) +— f;s0 F,[,E,]" too specidizesto U(e,*) asaco-Poisson Hopf algebra, as expected.
We finish noting that, once more, this analysis (and its outcome) is characteristic-free.

6.8 Theidentities (F,[Es]") = F,[E,] and (F,[,E5]") = Fy[.E2]. In this section we verify
for the QFAs H = F,[E,] and H = F,[,E»] the validity of the part of Theorem 2.2(b) claiming that
He QFA = (H V)' = H . Once more, our arguments will prove thisresult for Char (k) > 0,
thus going beyond what forecasted by Theorem 2.2.

Formulas A*(E)= Y @ @B (@)™, ADy) = Y (@) ©Ds®1® ad

r+s+l=n r4+s+1=n
AMF)= Y (a!)” @ E®a® arefound by induction. These identitiesimply the following
r+s+1=n
WE) = ¥ @ )TereE@ -1)"=@-1)"" ¥ D" @EeD®
r4+s+1=n ) r+s+1=n
5n(Di) — (azl:l ) (n— )® Di — (q o 1)n—1Di®n
WF) = ¥ (@'-1)"eEe@-1)"=(g-1)"" X DTeEeD*
r+st+l=n r+s+1l=n

whichgive £ := (¢ —1)E, Dy = (¢—1)Dx, F = (¢—1)F € (F,[E5]") \ (¢ —1)- (F,[E]")".
So (F,[E,]")" contains the unital R-subalgebra A’ generated (inside F,[E,]) by £, D+ and F'; but
E=b, Dy =a' -1, and F = c, thus A’ isjust F,[E,]. Since F,[E,]" is the R—span of
{ E°DY e,dy,d_,feN } , One easily sees — using the previous formulas for A™ — that
infact (F, [Eg] V= A = F,[E), qed.
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When dealing with the adjoint case, the previous arguments go through again: in fact, (Fq [aEQ]V)'
turns out to coincide with the unital R—subalgebra A” generated (inside F,[,E,]) by E' = (¢ —
VE' =8, Hy == (¢q—1)Hy = a*' —1,and F' := (¢ — 1)F’ = ~; but thisis also generated by /3,
a*tand vy, thusit coincideswith F,[,E»], g.ed.

§ 7 Fourth example: the Heisenberg group H,,

7.1 The classical setting.  Let k be any field of characteristic p > 0. Let G := H,(k) =
H, , the (2n 4 1)—dimensional Heisenberg group; its tangent Lie algebra g = §,, is generated by
{fi,hei|li =1,...,n} withrelations [e;, ;] = ;. [ei,e;] = [fi, ;] = [h,ei] = [h, fj] =0
(Vi,j = 1,...n). Theformulas 6(f;) = h® fi — fi®@h, 6(h) =0, d(e;) = h®e; —e; @h
(Vi =1,...n) makeb, into aLie bialgebra, which provides H,, with a structure of Poisson group;
these same formulas give al so a presentation of the co-Poisson Hopf algebra U (h,,) (with the standard
Hopf structure). When p > 0 we consider on b,, the p—operation uniquely defined by el.[” I'=o,
fPl=0, nlP) = b (forall i =1,...,n), which makesit into arestricted Lie bialgebra. The group
H,, is usually realized as the group of all square matrices (aij)ivjzl ..... nia, SUChthat a;; = 1Vi and
a;; =0Vi,j suchthateither i > j or 1 #i<jori<j#n+2;itcanasoberedizedas H, =
k™ x k x k" with group operationgivenby (a’,c,t')- (a”, ", b") = (d'+a”, ¢ +"+a' V", b/ +1b")
where we use vector notation v = (vy,...,v,) € k" and o' * b" := 3" | a/b! isthe standard scalar
product in £™; in particular theidentity of H,, is e = (0,0,0) and the inverse of ageneric element is
givenby (a,c, @)*1 = (—a,—c+ax*b,~b) . Therefore F[H,] isthe unital associative commutative
k—algebrawith generators a4, ..., a,,c, by, ..., b,, and with Poisson Hopf structure given by

Alg))=a;®14+1®a;, Alc)=c®14+1Qc+>, @by, Al)=b1+1®;
€(a;)) =0, e(c)=0, €(b;)=0, S(a;) = —a;, S(c)=—c+> ) jabe, S(b;)=—b;

{ai,a;} =0, Hap,bj} =0, {b,b;} =0, A{c,a;i}=a;, {c,b}=0"0

=10,
e; = 0y;|,, Wheree istheidentity element of 4, ). Thedual Liebialgebra g* = b," istheLiealgebra
with generators f;, h, e, and relations [h,e] = &, [h,f;] =1;, [e,¢;] = [e,f;] = [f;,f;] = 0, with
Lie cobracket given by 4(f;) =0, d(h) = >>7_ (e, @f; —f,®e;), é(e) =0 foral i =1,...,n
(wetake f; := f7, h:= h*, & := ¢, where { f/,h*,¢f|i = 1,...,n} isthe basis of b,
which is the dual of the basis { f;,h,e;|i = 1,...,n} of b,,). Thisagain gives a presentation of
U(h,") too. If p > 0 then b,” isarestricted Lie bialgebra with respect to the p—operation given
by e” =0, £l =0, Wl = h (forall i = 1,...,n). The simply connected algebraic Poisson
group with tangent Lie bialgebra b, can berealized (with k* .=k \ {0} ) as (H," = k" x k* x k",
with group operation (d&,%,8) - (&%,8) = (& + 97'& 47,98 + 4713); so the identity of
JH,"is e = (0,1,0) and the inverse is given by (Q,*y,g)_l = (—a,7',—p). ltscentreis

foral i,7 =1,...,n. (Remark: with respect to this presentation, we have f; = 0, |,
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Z(sH,") = {(0,1,0),(0,-1,0)} =: Z, so thereis only one other (Poisson) group with tangent Lie
bialgebra b, , that isthe adjoint group H," :=  H,* / Z.

It is clear that F[SHn*] is the unital associative commutative k—algebra with generators a4, ...,
an, ¥, B, ..., Bn, and with Poisson Hopf algebra structure given by

Al) =, @7+7 ' ®a;, AN =7"@+, AB)=8o7+7'®5

(i) =0, ec(*) =1, e(B) =0,  S(w)=-a;, S(+*) =47, S(B) =4

{ai, 05} ={ai, B} ={B:, B} = {ei, v} ={Bi,7} =0, {8} =6 (72 - 7_2)/2
foral i,5 =1,...,n (Remark: with respect to this presentation, we have f; = 95|, h= %787}6,
& = 0a, |, Wherecistheidentity element of ,H," ), and F' [, H,,*] can beidentified — asin the case of

the Euclidean group — with the Poisson Hopf subalgebra of F' [aHn*} which is spanned by products
of an even number of generators. thisisgenerated by o; v, v*2,and v ' 3; (i=1,...,n).

7.2The QrUEAs U;(h,) and U¢(h,). Weswitch now to quantizations. Once again, let i be a
1dD andlet h € R\ {0} andassume ¢ := 1+ h € R beinvertible, likein §5.2.
Let Uy(g) = U:(h,) bethe unital associative F'(R)—algebra with generators F;, =", E; (for
1=1,...,n)andrelations
L? - 72
q—q!
fordl i,7 =1,...,n;wegiveit astructure of Hopf algebra, by setting (Vi,5 =1,...,n)

LL7'=1=L1"'L, [FF=FL*, L[¥E=FL*, EF,-FE=34;

AE)=E®1+L*®E, AL™)=L"oL*, AF)=FEL*+10F
e(E;)=0, e(L*)=1, €F)=0, S(E)=-L°E, S(L*") =L, S(F)=-FL

Notethenthat { [T, F-L*-[T., B ’ 2 €7 a,d €N, Vi} isan F(R)-basisof Uy(h,)
Now, let U7(h,,) be the unital R—subalgebra of U;(h,,) generated by the elements £, ..., F),,
L—1 L— L2
D:=———7—1:== —
q—1 q—q _
algebrawith generators Fy, ..., F,,L*',D,I",E,, ..., E, andrelations

Ey, ..., E,. ThenU;(h,) can be presented as the associative unital

DX =XD , LHX = XL*, I'X =XrI, E,F; — FE; = §;I
L=1+(q-1)D, L*-L7?=(q—-¢ "', DL+1)(1+L7?)=Q1+q¢ ")l
foral X e {F,,L*',D,IE;} _,
bra (over R), with

A =T®L*+L2eT, e(I) =
AD)=D&1+L®D, e(D) =

and i,j = 1,...,n; furthermore, U; (b,,) is aHopf subalge-

S(I') =—-I
: S(D)=—-L"'D.

Moreover, fromrelations L =1+ (¢ —1)D and L' = L?* — (¢ — ¢~*) LI" it follows that

Us(h,) = R-spanof {Hﬂai.Dbrc.HE;li ai,b,c,dieN,Vizl,...,n} (7.1)
=1 =1
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The “adjoint version” of Us(h,,) isthe subalgebra Ug(h,,) generated by F;, K=' := L*2, E; (i =
1,...,n), whichisaHopf subalgebratoo. It also has an R-integer form U¢(h,,) , the R—subalgebra

K—-1 K—K! . .
generated by I, ..., F,, K*', H := . = ———, F,..., E,: thishasrelaions
q— q—q
HX = XH, KX = XK+, rx=Xr, E,F; — FE; = 5T

K=1+(q-1)H, K-K'=(¢—-q¢ "), Hl+K")=0Q+q¢ "I

forall X e {F,, K*' H,I''E;}, , andi,j=1,...,n,andHopf operations given by

AE)=E®1+K®E;, e(E;) =0, S(E;) = —K'E;
A(Kil) = Kt @ K| G(Kil) =1, S(K:tl) _ K7
AH)=H®1+K®H, e(H)=0, S(H)y=—-K'H
A= K'+KeI, e«r')=0, S(r)y=-r
AF)=FoK'+1aF,, e(F) =0, S(F) = —FK*

foral i =1,...,n. Onecan easily check that U;(h,) isa QrUEA, with U(h,,) assemiclassical
limit: in fact, mapping the generators F; mod (¢ — 1), L*! mod (¢ — 1), D mod (¢ — 1), I’
mod (¢ —1), E; mod (¢ — 1) respectivelyto f;, 1, h/2 ,h,e; € U(h,) yields a co-Poisson Hopf
algebra isomorphism between U;(bn)/(q —1)U;(b,) and U(h,) . Similarly, U (h,) isaQrUEA

too, again with limit U(h,,), for a co-Poisson Hopf algebra isomorphism between U;(bn)/(q —
1) Ug(h,) and U(h,) isgiven by mapping the generators F; mod (¢—1), K*' mod (¢—1), H
mod (¢ —1), I" mod (¢ —1), E; mod (¢ — 1) respectivelyto f;,1,h,h,e; € U(h,).

7.3 Computation of U,(h,)" and specialization U,(h,,)’ Ll>F[Hn*} . Here we compute

Us(h,) and U2 (h,)", and their semiclassical limits, along the pattern of §5.3.

Definitions give, forany n € N, A™(E;) = >, (L2)®(S_1) ® E; @ 1=, hence 6,(E;) =
(g—1)"" - D V@ E so 6,((g—1)E) € (g—1)"Us(h,) \ (¢ —1)"" U(h,) whence
E; = (g — 1) E; € Ui(h,)', whereas E; ¢ U:(h,)’; similarly, we have F; := (¢ — 1) F;, L*,
Di=(q-1)D=L-1,1:=(q—1)I €Ush,) \(¢g—1)Uh,) foral i =1,...,n. Thus
Us(b,) containsthe subalgebra U’ generated by F;, L*', D, I', E;; wearguethat U:(h,) = U':
thisiseasily seen — likefor S L, and for F, — using the formulas above along with (7.1). Therefore
Uz (h,) isthe unital R-algebrawith generators 7y, ..., F,, L*', D, I', By, ..., E, andrelations

DX =XD, LHX = XL* I'X=XI", B — FE; = 6i5(q — 1)
L=1+D, L[*-L?=(1+q¢ "', DL+1)(1+L?)=(1+qg "I
foral X € {FZ-,Lﬂ,D,F, E@'}i:1 and i,5 =1,...,n,with Hopf structure given by

A(Lil) — Lil ®Li1 ; €(Lil) =1 , S(Lil) — L$1
AN =T®L*+L7*x, ¢€I)=0, S(I')y=-T
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A(D)=D®l+L®D, €D)=0, S(D)=-L7'D
AF)Y=FE@L?+10F, F)=0, S(£)=-FL Vi=1,...,n.

A similar analysis shows that Ug(bn)’ isthe unital R—subalgebraU” of U (h,,) generated by Ey,
K*', H:=(q—1)H, I',E; (i=1,...,n);inparticular, U%(h,)’ C Us(h,)". ThusU2(h,)" isthe
unital associative R—algebrawith generators £, ..., F,, H, K*', I, F,, ..., E, andrelations

HX = XH, KX = XK+, I'X=XI, L F; — FyE; = 6;;(q — )T
K=1+H, K-K'=(1+¢", HA+K")=(1+q¢")I

.....

AE)=E®l+K®FE, ¢B)=0, S(E)=-K"'E Vi=1,....n
A(K:tl) = K*l g K* G(Kil) =1, S(K:tl) _ KT
AMN=TeK+K'el', €I)=0, S(I')=-r
AH)=H®l+K®H, H)=0, S(H)=-K'H
AF)=FEeK'+10F, €F)=0, S(F)=-FK Vi=1,...,n.

As g — 1, the presentation above provides an isomorphism of Poisson Hopf algebras
Us(b)' /(a = D) U3 (6) —— F[H,]

givenby E; mod (¢ —1) — a7, L* mod (¢ —1)+—~*, D mod (¢g—1)—~y—1, I
mod (¢ —1) — (v* — 7*2)/2 , F; mod (q—1) — ~47'4; . In other words, the semiclassical limit
of Us(h,) is F[.H,"], aspredicted by Theorem 2.2(c) for p = 0. Similarly, when considering the
“adjoint case”, we find a Poisson Hopf algebraisomorphism

Ubn) /g = DUz —— FLH] (< PLH)

givenby E; mod (g —1) — a;4™', K*' mod (¢ —1) — 4, H mod (q—1) —~%2—1, I’
mod (g—1) (72—7—2)/2 , F; mod (g—1) — 714, . Thatistosay, U¢(h,)’ hassemiclassica
limit F'[,H,"], aspredicted by Theorem 2.2(c) for p = 0.

We stress the fact that this analysis is characteristic-free, so we get in fact that its outcome does
hold for p > 0 aswaell, thus“improving” Theorem 2.2(c) (likein §55-6).

7.4 The identity (Uq(l‘)n)’)v = U,(h,). Inthis section we verify the part of Theorem 2.2(b)
claiming, for p = 0, that H € QrUEA = (H')" = H, bothfor H = U:(h,) and for H =
Ug(bx) - In addition, the same arguments will prove such aresult for p > 0 too.

To begin with, using (7.1) and the fact that F;, D, I, E; € Ker<e: Us(h,) — R) we get
that J := Ker(e) isthe R—span of M \ {1}, where M is the set in the right-hand-side of (7.1).
since (U3 (h.)')" = Y20 ((q—l)*ljy , we have that (U (h,,)')" is generated — as a unital R—
subalgebraof Uy(h,) —by (¢—1)"'Fi=F, (¢—1)"'D=D,(¢q=1)"'['=T,(g—1)"'E; =
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E; (i=1,...,n),so0itcoincideswith U?(h,), g.e.d. In the adjoint case the procedure is similar: one
changes L*!, resp. D, with K+, resp. H, and everything works as before.

7.5 The quantum hyperalgebra Hyp, (h,). Likein §85.5 and 6.5, we can define “quantum
hyperalgebras’ associated to b,, . Namely, first we define a Hopf subalgebra of U (b.,) over Z[q, ¢ ']
whose specializationat ¢ = 1 isthe natural Kostant-like Z-integer form Uz(b,,) of U(b,,) (generated
by divided powers, and giving the hyperalgebra Hyp (h,,) over any field k by scalar extension), and
then take its scalar extension over R.

To be precise, let Hyp;”(b,,) bethe unital Z [q, ¢~ |-subalgebraof Us(h,,) (defined like above but
over Z[q, ¢~ ']) generated by the “quantum divided powers’

F = B m]) (Lﬂ;c) -

(foradl m € N, c € Z and i = 1,...,n, with notation of §5.5) and by L—!. Comparing with
the case of sl, — noting that for each i the quadruple (F;, L, L™, E;) generates a copy of Us(sl,)
— we see at once that this is a Hopf subalgebra of U;(h,.), and Hyp:*(b,) - = Uy(h,); thus
Hyp:(h,) := R ®gzjq4-1) Hyp " (bn) (for any R likein §6.2, with k := R/h R and p := Char (k))
specializesat ¢ = 1 to the k—hyperalgebra Hyp(,,) . Moreover, among al the (L;C)’sit is enough
to take only those with ¢ = 0. From now on we assume p > 0.

Pushing forward the close comparison with the case of sl, we also see that Hyp;(bn)’ is the
unital R—subalgebra of Hyp;(h,) generated by L1 and the “rescaled quantum divided powers’
(q—=1)"E™, (g=1)"(%°) and (¢—1)"E™ ,foral m € N and i = 1,...,n. It follows that
Hyp: (b.,)’ - is generated by the specializationsat ¢ = 1 of (q— 1) F*), (¢—1)" <I;0>
and (q— 1" E?) foral r € N, i = 1,...,n: this proves directly that the spectrum of
Hypfl(hn)’ _ has dimension O and height 1, and its cotangent Lie algebra J/J2 (where J is

the augmentation ideal of Hyp(h,)'| ) hasbasis { (¢-1)" F, (¢=1)" (5), (4= 1) E®”
q=1

mod (¢—1) Hyp:(g)" mod J* ’ reN,i = 1,...,n}. Finally, (Hyp;(bn)’)v is generated by

(q— 1P EP) (-1 (L;O) LV and (g—1)? 'EP) (for dl r and i): in particular

7

qc+1er -1

e ET=E )

ﬁ
I 3
N

(Hypg(bn)’)v C Hyp: (b,),and (Hyp:(hy) ) ’qﬂ is generated by the cosets modulo (¢ — 1) of these

elements, which form a basis of the restricted Lie bialgebra ¢ such that (Hyp;’j(l‘)n)’)v = u(e) .
The previous analysis stems from U; (h,,), and so gives “simply connected quanturglfobj ects’. In-
stead we can start from U7 (bh,,) , thus getting “adjoint quantum objects’, moving along the same
pattern but for replacing L*' by K*! throughout: apart from this, the analysis and its outcome are
exactly the same. Likefor sl (cf. §5.5), al the adjoint quantum objects —i.e. Hyp{ (h..), Hypg(hn)’
and (Hypg(bn)’)v — will be gtrictly contained in the corresponding simply connected quantum ob-
jects. However, the semiclassical limits will be the same in the case of Hyp (g) (giving Hyp(b.,) in
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both cases) and in the case of (Hypq(g)’)v (awaysyielding u(t)), whereas the semiclassical limit of
Hyp q(g)’ in the smply connected case will be a (countable) covering of the limit in the adjoint case.

7.6 The QFA F,[H,]. Now we look at Theorem 2.2 the other way round, i.e. from QFAs to
QrUEAs. We begin by introducing a QFA for the Heisenberg group.

Let F,[H,] be the unital associative R—algebra with generators &, ..., a,,c, by, ..., b,, and
relations (for al i,5 =1,...,n)

aa, =aa, ab,=ba, bb,=bb, ca=ac+(¢g—1)a, cb;j=bjc+(¢g—1)b;
with aHopf algebra structure givenby (foral 7,7 =1,...,n)

Ald)=a@l+1loa, Al)=cel+lectyacb, Ab)=bel+lcb

Jj=1

e(@)=0, ec)=0, eb)=0, Sa)=-a, S(c)=—-c+ > ab,, Sb;)=—b;
j=1
and let also F,[H,] bethe F'(R)—agebra obtained from F,[H,| by scalar extension. Then B :=
{ IT, & - c - [T, b ’ ai,c,b; € N Vi, j } is an R-basis of F,[H,], hence an F(R)-basis of
F,[H,]. Moreover, F,[H,] isaQFA (at h = ¢—1) with semiclassical limit F'[H,,] .

7.7 Computation of F,[H,]" and specialization F,[H,]" ——U(h,*). Thissection is de-
voted to compute F,[H,,]” and its semiclassical limit (at ¢ = 1).
Definitions imply that B \ {1} isan R-basisof J := Ker (e : Fy[H, — R) . Therefore

F,[H,)" = > om0 ((q - 1)_1J>n isjust the unital R—algebra (subalgebraof F,[H,,]) with generators

Ei::i,H::L,andFi:: b
q—1 q—1 q—1

(¢=1,...,n)andrelations(foral ¢, =1,...,n)

with Hopf algebra structure givenby (foral i, =1,...,n)

AE)=E®1+1QFE;, Auﬂ:;H®1+1®Hﬁwq—nz¥Q®F% AF)=FQ1+1QF,
]:

(B) = e(H) = e(F) =0, S(E) ==E;, S(H)=—H+(q= VY. BF;. S(F) ==F.

At ¢ = 1 thisimpliesthat F,[H,]" =t U(h,") = U(h,") asco-Poisson Hopf algebras, for a
co-Poisson Hopf algebraisomorphism

Fq[Hn]v/(q —1) Fq[Hn]v — U(ba')

exists, givenby F; mod (¢—1) — €, H mod (¢ —1) — h, F;, mod (¢ —1) — f;, forall
i,j=1,...,n.Thus F,[H,]" specidizesto U(h,") asa co-Poisson Hopf algebra, g.e.d.
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7.8 Theidentity (F,[H,]")" = F,[H,]. Finaly, we check the validity of the part of Theorem
2.2(b) claiming, when p = 0, that H € QFA = (H") = H fortheQFA H = F,[H,]. Once
more the proof worksfor @l p > 0, sowe doimprove Theorem 2.2(b).

First of all, from definitionsinduction gives, for all m € N,

A™E)= Y 1@ FE®1%, A™F)= Y 19 QF®1% Vi=1,...,n

r+s=m—1 r+s=m—1

Am(H) — Z 1®r QR H® 1®5 + Z Z 1®(j_1) ® Ez ® 1®(k—j—1) ® E ® 1®(m—k)
r4+s=m-—1 i=1j,k=1
Jj<k
so that 0,,(F;) = 0y(H) = 0,n(F;) =0 foradl m > 1,¢ > 2 and i = 1,...,n; moreover, for
Ei:=@-1)E=a,H:=(@-1)H=c,F,:=(¢q—1)F,=b; (i=1,...,n)onehas

0i(E) = (¢—1VE;, 6:1(H)= (¢ — DH, 6:(F)= (¢ — DF € (¢ — 1) Fy[H.]"\ (¢ = 1)*F,[H,]"
0(H) = (¢— 1 S B @ Fr € (¢ = V)’ (F )T\ (a = 1) (B[ Ha] )™
Theoutcomeisthat £; = g, H = ¢, F, = b; € (Fq[Hn]v)’, so the latter algebra contains the
one generated by these elements, that is F,[H,,] . Even more, F,[H,,]" isclearly the R-span of the set
BY := { [T, B - He T F;’j a;,c,b; e NVi, j } , so from this and the previous formulas for
A" onegetsthat (F,[H,]") = F,[H,], g.ed.
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