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ABSTRACT

Let R be a 1-dimensional integral domain, let � ∈ R \ {0} be prime, and let HA
be the category of torsionless Hopf algebras over R. We call H ∈ HA a “quantized

function algebra” (=QFA), resp. “quantized restricted universal enveloping algebras”

(=QrUEA), at � if H
/
� H is the function algebra of a connected Poisson group,

resp. the (restricted, if R
/
� R has positive characteristic) universal enveloping algebra

of a (restricted) Lie bialgebra.

An “inner” Galois correspondence on HA is established via the definition of two

endofunctors, ( )∨ and ( )′, of HA such that: (a) the image of ( )∨, resp. of ( )′, is the

full subcategory of all QrUEAs, resp. QFAs, at � ; (b) if p := Char
(
R
/
� R
)

= 0 ,

the restrictions ( )∨
∣∣
QFAs

and ( )′
∣∣
QrUEAs

yield equivalences inverse to each other; (c) if

p = 0 , starting from a QFA over a Poisson group G, resp. from a QrUEA over a Lie

bialgebra g, the functor ( )∨, resp. ( )′, gives a QrUEA, resp. a QFA, over the dual Lie

bialgebra, resp. a dual Poisson group. In particular, (a) provides a machine to produce

quantum groups of both types (either QFAs or QrUEAs), (b) gives a characterization of

them among objects of HA, and (c) gives a “global” version of the so-called “quantum

duality principle” (after Drinfeld’s, cf. [Dr]).
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This result applies in particular to Hopf algebras of the form k[�]⊗k H where H is

a Hopf algebra over the field k: this yields quantum groups, hence “classical” geomet-

rical symmetries of Poisson type (Poisson groups or Lie bialgebras, via specialization)

associated to the “generalized” symmetry encoded by H . Both our main result and the

above mentioned application are illustrated by means of several examples, which are

studied in some detail.

These notes draw a sketch of the theoretical construction leading to the “global

quantum duality principle”. Besides, the principle itself, and in particular the above

mentioned application, is illustrated by means of several examples: group algebras, the

standard quantization of the Kostant-Kirillov structure on any Lie algebra, the quantum

semisimple groups, the quantum Euclidean group and the quantum Heisenberg group.

Introduction

The most general notion of “symmetry” in mathematics is encoded in the definition of Hopf al-

gebra. Among Hopf algebras H over a field, the commutative and the cocommutative ones encode

“geometrical” symmetries, in that they correspond, under some technical conditions, to algebraic

groups and to (restricted, if the ground field has positive characteristic) Lie algebras respectively: in

the first case H is the algebra F [G] of regular functions over an algebraic group G, whereas in the

second case it is the (restricted) universal enveloping algebra U(g) (u(g) in the restricted case) of a

(restricted) Lie algebra g . A popular generalization of these two types of “geometrical symmetry” is

given by quantum groups: roughly, these are Hopf algebras H depending on a parameter � such that

setting � = 0 the Hopf algebra one gets is either of the type F [G] — hence H is a quantized function

algebra, in short QFA — or of the type U(g) or u(g) (according to the characteristic of the ground

field) — hence H is a quantized (restricted) universal enveloping algebra, in short QrUEA. When a

QFA exists whose specialization (i.e. its “value” at � = 0 ) is F [G], the group G inherits from this

“quantization” a Poisson bracket, which makes it a Poisson (algebraic) group; similarly, if a QrUEA

exists whose specialization is U(g) or u(g), the (restricted) Lie algebra g inherits a Lie cobracket

which makes it a Lie bialgebra. Then by Poisson group theory one has Poisson groups G∗ dual to G

and a Lie bialgebra g∗ dual to g , so other geometrical symmetries are related to the initial ones.

The dependence of a Hopf algebra on � can be described as saying that it is defined over a ring R

and � ∈ R : so one is lead to dwell upon the category HA of Hopf R–algebras (maybe with some

further conditions), and then raises three basic questions:

— (1) How can we produce quantum groups?

— (2) How can we characterize quantum groups (of either kind) within HA?
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— (3) What kind of relationship, if any, does exist between quantum groups over mutually dual

Poisson groups, or mutually dual Lie bialgebras?

A first answer to question (1) and (3) together is given, in characteristic zero, by the so-called

“quantum duality principle”, known in literature with at least two formulations. One claims that

quantum function algebras associated to dual Poisson groups can be taken to be dual — in the Hopf

sense — to each other; and similarly for quantum enveloping algebras (cf. [FRT1] and [Se]). The

second one, formulated by Drinfeld in local terms (i.e., using formal groups, rather than algebraic

groups, and complete topological Hopf algebras; cf. [Dr], §7, and see [Ga4] for a proof), provides

a recipe to get, out of a QFA over G, a QrUEA over g∗, and, conversely, to get a QFA over G∗

out of a QrUEA over g . More precisely, Drinfeld defines two functors, inverse to each other, from

the category of quantized universal enveloping algebras (in his sense) to the category of quantum

formal series Hopf algebras (his analogue of QFAs) and viceversa, such that U�(g) �→ F�[[G
∗]] and

F�[[G]] �→ U�(g
∗) (in his notation, where the subscript � stands as a reminder for “quantized” and

the double square brackets stand for “formal series Hopf algebra”).

In this paper we present a global version of the quantum duality principle which gives a complete

answer to questions (1) through (3). The idea is to push as far as possible Drinfeld’s original method

so to apply it to the category HA of all Hopf algebras which are torsion-free modules over some

1-dimensional domain (in short, 1dD), say R, and to do it for each non-zero prime element � in R .

To be precise, we extend Drinfeld’s recipe so to define functors from HA to itself. We show that

the image of these “generalized” Drinfeld’s functors is contained in a category of quantum groups

— one gives QFAs, the other QrUEAs — so we answer question (1). Then, in the zero characteris-

tic case, we prove that when restricted to quantum groups these functors yield equivalences inverse

to each other. Moreover, we show that these equivalences exchange the types of quantum group

(switching QFA with QrUEA) and the underlying Poisson symmetries (interchanging G or g with

G∗ or g∗), thus solving (3). Other details enter the picture to show that these functors endow HA
with sort of a (inner) “Galois correspondence”, in which QFAs on one side and QrUEAs on the other

side are the subcategories (in HA) of “fixed points” for the composition of both Drinfeld’s func-

tors (in the suitable order): in particular, this answers question (2). It is worth stressing that, since

our “Drinfeld’s functors” are defined for each non-trivial point (�) of Spec (R), for any such (�)

and for any H in HA they yield two quantum groups, namely a QFA and a QrUEA, w.r.t. � itself.

Thus we have a method to get, out of any single H ∈ HA , several quantum groups.

Therefore the “global” in the title is meant in several respects: geometrically, we consider global

objects (namely Poisson groups rather than Poisson formal groups, as in Drinfeld’s approach); al-

gebraically we consider quantum groups over any 1dD R, so there may be several different “semi-

classical limits” (=specialization) to consider, one for each non-trivial point in the spectrum of R

(whereas in Drinfeld’s context R = k[[�]] so one can specialise only at � = 0 ); more generally,

our recipe applies to any Hopf algebra, i.e. not only to quantum groups; finally, most of our results
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are characteristic-free, i.e. they hold not only in zero characteristic (as in Drinfeld’s case) but also in

positive characteristic. As a further outcome, this “global version” of the quantum duality principle

leads to formulate a “quantum duality principle for subgroups and homogeneous spaces”, see [CG].

A key, long-ranging application of our global quantum duality principle (GQDP) is the following.

Take as R the polynomial ring R = k[� ] , where k is a field: then for any Hopf algebra over k we

have that H [� ] := R⊗k H is a torsion-free Hopf R–algebra, hence we can apply Drinfeld’s functors

to it. The outcome of this procedure is the crystal duality principle (CDP), whose statement strictly

resembles that of the GQDP: now Hopf k–algebras are looked at instead of torsionless Hopf R–

algebras, and quantum groups are replaced by Hopf algebras with canonical filtrations such that the

associated graded Hopf algebra is either commutative or cocommutative. Correspondingly, we have

a method to associate to H a Poisson group G and a Lie bialgebra k such that G is an affine space (as

an algebraic variety) and k is graded (as a Lie algebra); in both cases, the “geometrical” Hopf algebra

can be attained — roughly — through a continuous 1-parameter deformation process. This result can

also be formulated in purely classical — i.e. “non-quantum” — terms and proved by purely classical

means. However, the approach via the GQDP also yields further possibilities to deform H into other

Hopf algebras of geometrical type, which is out of reach of any classical approach.

The purpose of these notes is to illustrate the global quantum duality principle in some detail

through some relevant examples, namely the application to the “Crystal Duality Principle” (§3) and

some quantum groups: the standard quantization of the Kostant-Kirillov structure on a Lie algebra

(§4), the quantum semisimple groups (§5), the three dimensional quantum Euclidean group (§6), the

quantum Heisenberg group. All details and technicalities which are skipped in the present paper can

be found in [Ga5], together with another relevant example (see also [Ga6] and [Ga7]).

These notes are the written version of the author’s contribution to the conference “Rencontres

Mathématiques de Glanon”, 6th edition (1–5 july 2002) held in Glanon (France). The author’s

heartily thanks the organizers — especially Gilles Halbout — for kindly inviting him. Il remercie

aussi tous les Glanonnets pour leur charmante hospitalité.
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§ 1 Notation and terminology

1.1 The classical setting. Let k be a fixed field of any characteristic. We call “algebraic group”

the maximal spectrum G associated to any commutative Hopf k–algebra H (in particular, we deal

with proaffine as well as affine algebraic groups); then H is called the algebra of regular function on

G, denoted with F [G]. We say that G is connected if F [G] has no non-trivial idempotents; this is
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equivalent to the classical topological notion when dim(G) is finite. If G is an algebraic group, we

denote by me the defining ideal of the unit element e ∈ G (in fact me is the augmentation ideal of

F [G] ). The cotangent space of G at e is g× := me

/
me

2 , endowed with its weak topology, which

is naturally a Lie coalgebra. By g we mean the tangent space of G at e, realized as the topological

dual g :=
(
g×)� of g× : this is the tangent Lie algebra of G. By U(g) we mean the universal

enveloping algebra of g: this is a connected cocommutative Hopf algebra, and there is a natural Hopf

pairing (see §1.2(a)) between F [G] and U(g). If Char (k) = p > 0 , then g is a restricted Lie

algebra, and u(g) := U(g)
/({

xp − x[p ]
∣∣x ∈ g

})
is the restricted universal enveloping algebra of

g . In the sequel, in order to unify notation and terminology, when Char (k) = 0 we call any Lie

algebra g “restricted”, and its “restricted universal enveloping algebra” will be U(g), and we write

U(g) := U(g) if Char (k) = 0 and U(g) := u(g) if Char (k) > 0 .

We shall also consider Hyp (G) :=
(
F [G]◦

)
ε

=
{

f ∈ F [G]◦
∣∣ f(me

n) = 0 ∀n � 0
}

, i.e. the

connected component of the Hopf algebra F [G]◦ dual to F [G]; this is called the hyperalgebra of G.

By construction Hyp (G) is a connected Hopf algebra, containing g = Lie(G) ; if Char (k) = 0 one

has Hyp (G) = U(g) , whereas if Char (k) > 0 one has a sequence of Hopf algebra morphisms

U(g) −−� u(g) ↪−−→Hyp (G) . In any case, there exists a natural perfect (= non-degenerate) Hopf

pairing between F [G] and Hyp (G).

Now assume G is a Poisson group (for this and other notions hereafter see, e.g., [CP], but within

an algebraic geometry setting): then F [G] is a Poisson Hopf algebra, and its Poisson bracket induces

on g× a Lie bracket which makes it into a Lie bialgebra;so U(g×) and U(g×) are co-Poisson Hopf

algebras too. On the other hand, g turns into a Lie bialgebra — maybe in topological sense, if G is

infinite dimensional — and U(g) and U(g) are (maybe topological) co-Poisson Hopf algebras. The

Hopf pairing above between F [G] and U(g) then is compatible with these additional co-Poisson and

Poisson structures. Similarly, Hyp (G) is a co-Poisson Hopf algebra as well and the Hopf pairing be-

tween F [G] and Hyp (G) is compatible with the additional structures. Moreover, the perfect pairing

g × g× −→ k given by evaluation is compatible with the Lie bialgebra structure on either side (see

§1.2(b)): so g and g× are Lie bialgebras dual to each other. In the sequel, we denote by G� any con-

nected algebraic Poisson group with g as cotangent Lie bialgebra, and say it is (Poisson) dual to G .

For the Hopf operations in any Hopf algebra we shall use standard notation, as in [Ab].

Definition 1.2.

(a) Let H , K be Hopf algebras (in any category). A pairing 〈 , 〉 : H × K −−→ R (where R

is the ground ring) is a Hopf (algebra) pairing if
〈
x, y1 · y2

〉
=
〈
∆(x), y1 ⊗ y2

〉
:=
∑

(x)

〈
x(1), y1

〉 ·〈
x(2), y2

〉
,
〈
x1 · x2, y

〉
=
〈
x1 ⊗ x2, ∆(y)

〉
:=
∑

(y)

〈
x1, y(1)

〉 · 〈x2, y(2)

〉
, 〈x, 1〉 = ε(x) , 〈1, y〉 =

ε(y) ,
〈
S(x), y

〉
=
〈
x, S(y)

〉
, for all x, x1, x2 ∈ H , y, y1, y2 ∈ K.

(b) Let g, h be Lie bialgebras (in any category). A pairing 〈 , 〉 : g× h −−→ k (where k is the

ground ring) is called a Lie bialgebra pairing if
〈
x, [y1, y2]

〉
=
〈
δ(x), y1 ⊗ y2

〉
:=
∑

[x]

〈
x[1], y1

〉 ·
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x[2], y2

〉
,
〈
[x1, x2], y

〉
=
〈
x1 ⊗ x2, δ(y)

〉
:=
∑

[y]

〈
x1, y[1]

〉 · 〈x2, y[2]

〉
, for all x, x1, x2 ∈ g and

y, y1, y2 ∈ h, with δ(x) =
∑

[x] x[1] ⊗ x[2] and δ(y) =
∑

[x] y[1] ⊗ y[2] .

1.3 The quantum setting. Let R be a 1-dimensional (integral) domain (=1dD), and let F =

F (R) be its quotient field. Denote by M the category of torsion-free R–modules, and by HA the

category of all Hopf algebras in M. Let MF be the category of F–vector spaces, and HAF be the

category of all Hopf algebras in MF . For any M ∈ M , set MF := F (R)⊗R M . Scalar extension

gives a functor M −→ MF , M �→ MF , which restricts to a functor HA −→ HAF .

Let � ∈ R be a non-zero prime element (which will be fixed throughout), and k := R
/
(�) =

R
/
� R the corresponding quotient field. For any R–module M , we set M�

∣∣∣
�=0

:= M
/
� M = k ⊗R

M : this is a k–module (via scalar restriction R → R
/
� R =: k ), which we call the specialization

of M at � = 0 ; we use also notation M
�→0−−−→N to mean that M�

∣∣∣
�=0

∼= N . Moreover, set

M∞ :=
⋂+∞

n=0 �nM (this is the closure of {0} in the �–adic topology of M). In addition, for any

H∈HA , let IH :=Ker
(
H

ε�R
��→0−−� k

)
and set IH

∞:=
⋂+∞

n=0 IH
n.

Finally, given H in HAF , a subset H of H is called an R–integer form (or simply an R–form) of

H if H is a Hopf R–subalgebra of H (hence H ∈ HA ) and HF := F (R) ⊗R H = H .

Definition 1.4. (“Global quantum groups” [or “algebras”]) Let � ∈ R \ {0} be a prime.

(a) We call quantized restricted universal enveloping algebra (at �) (in short, QrUEA ) any U� ∈
HA such that U�

∣∣
�=0

:= U�
/
�U� is (isomorphic to) the restricted universal enveloping algebra U(g)

of some restricted Lie algebra g .

We call QrUEA the full subcategory of HA whose objects are all the QrUEAs (at �).

(b) We call quantized function algebra (at �) (in short, QFA ) any F� ∈ HA such that (F�)∞ =

IF�

∞ (notation of §1.3) and F�

∣∣
�=0

:= F�
/
� F� is (isomorphic to) the algebra of regular functions

F [G] of some connected algebraic group G.

We call QFA the full subcategory of HA whose objects are all the QFAs (at �).

Remark 1.5. If U� is a QrUEA (at � , that is w.r.t. to � ) then U�

∣∣
�=0

is a co-Poisson Hopf

algebra, w.r.t. the Poisson cobracket δ defined as follows: if x ∈ U�

∣∣
�=0

and x′ ∈ U� gives x = x′

mod �U� , then δ(x) :=
(
�−1

(
∆(x′)−∆op(x′)

))
mod �

(U�⊗U�
)

. So U�

∣∣
�=0

∼= U(g) for some

Lie algebra g, and by [Dr], §3, the restriction of δ makes g into a Lie bialgebra (the isomorphism

U�

∣∣
�=0

∼= U(g) being one of co-Poisson Hopf algebras); in this case we write U� = U�(g) . Similarly,

if F� is a QFA at �, then F�

∣∣
�=0

is a Poisson Hopf algebra, w.r.t. the Poisson bracket { , } defined

as follows: if x, y ∈ F�

∣∣
�=0

and x′, y′ ∈ F� give x = x′ mod � F� , y = y′ mod � F� , then

{x, y} :=
(
�−1(x′ y′− y′ x′)

)
mod � F� . So F�

∣∣
�=0

∼= F [G] for some connected Poisson algebraic

group G (the isomorphism being one of Poisson Hopf algebras): in this case we write F� = F�[G] .

Definition 1.6.

(a) Let R be any (integral) domain, and let F be its field of fractions. Given two F–modules A,

B, and an F–bilinear pairing A × B −→ F , for any R–submodule A ⊆ A and B ⊆ B we set
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A• :=
{

b ∈ B
∣∣∣ 〈A, b

〉 ⊆ R
}

and B• :=
{

a ∈ A
∣∣∣ 〈a, B

〉 ⊆ R
}

.

(b) Let R be a 1dD. Given H , K ∈ HA , we say that H and K are dual to each other if there

exists a perfect Hopf pairing between them for which H = K • and K = H• .

§ 2 The global quantum duality principle

2.1 Drinfeld’s functors. (Cf. [Dr], §7) Let R, HA and � ∈ R be as in §1.3. For any H ∈ HA ,

let I = IH := Ker
(
H

ε−�R
��→0−−−� R

/
� R = k

)
= Ker

(
H

��→0−−−�H
/
� H

ε̄−� k
)

(as in §1.3),

a maximal Hopf ideal of H (where ε̄ is the counit of H
∣∣
�=0

, and the two composed maps clearly

coincide): we define

H∨ :=
∑
n≥0

�−nIn =
∑
n≥0

(
�−1I

)n
=

⋃
n≥0

(
�−1I

)n (⊆ HF

)
.

If J = JH := Ker (εH) then I = J + � · 1H , thus H∨ =
∑

n≥0 �−nJn =
∑

n≥0

(
�−1J

)n
too.

Given any Hopf algebra H , for every n ∈ N define ∆n : H −→ H⊗n by ∆0 := ε , ∆1 := idH ,

and ∆n :=
(
∆⊗ id⊗(n−2)

H

) ◦∆n−1 if n > 2. For any ordered subset Σ = {i1, . . . , ik} ⊆ {1, . . . , n}
with i1 < · · · < ik , define the morphism jΣ : H⊗k −→ H⊗n by jΣ(a1⊗· · ·⊗ak) := b1⊗· · ·⊗bn

with bi := 1 if i /∈ Σ and bim := am for 1 ≤ m ≤ k ; then set ∆Σ := jΣ ◦ ∆k , ∆∅ := ∆0 , and

δΣ :=
∑

Σ′⊂Σ (−1)n−|Σ′|∆Σ′ , δ∅ := ε . By the inclusion-exclusion principle, this definition admits

the inverse formula ∆Σ =
∑

Ψ⊆Σ δΨ . We shall also use the notation δ0 := δ∅ , δn := δ{1,2,...,n} , and

the useful formula δn = (idH − ε)⊗n ◦ ∆n , for all n ∈ N+ .

Now consider any H ∈ HA and � ∈ R as in §1.3: we define

H ′ :=
{

a ∈ H
∣∣ δn(a) ∈ �nH⊗n, ∀ n ∈ N

} (⊆ H
)
.

Theorem 2.2 (“The Global Quantum Duality Principle”)

(a) The assignment H �→ H∨ , resp. H �→ H ′ , defines a functor ( )∨ : HA −→ HA ,

resp. ( )′ : HA −→ HA , whose image lies in QrUEA, resp. in QFA. In particular, when

Char (k) > 0 the algebraic Poisson group G such that H ′∣∣
�=0

= F [G] is zero-dimensional of height

1. Moreover, for all H ∈ HA we have H ⊆ (
H∨)′ and H ⊇ (

H ′)∨, hence also H∨ =
((

H∨)′ )∨
and H ′ =

((
H ′)∨)′.

(b) Let Char (k) = 0 . Then for any H ∈ HA one has

H =
(
H∨)′ ⇐⇒ H ∈ QFA and H =

(
H ′)∨ ⇐⇒ H ∈ QrUEA ,

thus we have two induced equivalences, namely ( )∨ : QFA −−−→ QrUEA , H �→ H∨ , and

( )′ : QrUEA −−−→ QFA , H �→ H ′ , which are inverse to each other.

(c) (“Quantum Duality Principle”) Let Char (k) = 0 . Then

F�[G]∨
∣∣∣
�=0

:= F�[G]∨
/

� F�[G]∨ = U(g×) , U�(g)′
∣∣∣
�=0

:= U�(g)′
/

� U�(g)′ = F
[
G�
]
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(with G, g, g×, g� and G� as in §1.1, and U�(g) has the obvious meaning, cf. §1.5) where the choice

of the group G� (among all the connected Poisson algebraic groups with tangent Lie bialgebra g�)

depends on the choice of the QrUEA U�(g). In other words, F�[G]∨ is a QrUEA for the Lie bialgebra

g×, and U�(g)′ is a QFA for the Poisson group G�.

(d) Let Char (k) = 0 . Let F� ∈ QFA , U� ∈ QrUEA be dual to each other (with respect to

some pairing). Then F�
∨ and U�

′ are dual to each other (w.r.t. the same pairing).

(e) Let Char (k) = 0 . Then for all H ∈ HAF the following are equivalent:

H has an R–integer form H(f) which is a QFA at � ;

H has an R–integer form H(u) which is a QrUEA at � .

Remarks 2.3. After stating our main theorem, some comments are in order.

(a) The Global Quantum Duality Principle as a “Galois correspondence” type theorem.

Let L ⊆ E be a Galois (not necessarily finite) field extension, and let G := Gal
(
E/L

)
be its Galois

group. Let F be the set of intermediate extensions (i.e. all fields F such that L ⊆ F ⊆ E ), let S
be the set of all subgroups of G and let S c be the set of all subgroups of G which are closed w.r.t. the

Krull topology of G. Note that F , S and S c can all be seen as lattices w.r.t. set-theoretical inclusion

— Sc being a sublattice of S — hence as categories too. The celebrated Galois Theorem provides two

maps, namely Φ : F −−→ S , F �→ Gal
(
E/F

)
:=
{

γ ∈ G
∣∣ γ
∣∣
F

= idF

}
, and Ψ : S −−→ F ,

H �→ EH :=
{

e ∈ E
∣∣ η(e) = e ∀ η ∈ H

}
, such that:

— 1) Φ and Ψ are contravariant functors (that is, they are order-reversing maps of lattices, i.e.

lattice antimorphisms); moreover, the image of Φ lies in the subcategory S c ;

— 2) for H ∈ S one has Φ
(
Ψ (H)

)
= H , the closure of H w.r.t. the Krull topology: thus

H ⊆ Φ
(
Ψ (H)

)
, and Φ ◦ Ψ is a closure operator, so that H ∈ Sc iff H = Φ

(
Ψ (H)

)
;

— 3) for F ∈ F one has Ψ
(
Φ(F )

)
= F ;

— 4) Φ and Ψ restrict to antiequivalences Φ : F → S c and Ψ : Sc → F which are inverse to

each other.

Then one can see that Theorem 2.2 establishes a strikingly similar result, which in addition is

much more symmetric: HA plays the role of both F and S, whereas ( )′ stands for Ψ and ( )∨ stands

for Φ. QFA plays the role of the distinguished subcategory S c, and symmetrically we have the

distinguished subcategory QrUEA. The composed operator
(
( )∨

)′
= ( )′ ◦ ( )∨ plays the role of

a “closure operator”, and symmetrically
(
( )′
)∨

= ( )∨ ◦ ( )′ plays the role of a “taking-the-interior

operator”: in other words, QFAs may be thought of as “closed sets” and QrUEAs as “open sets” in

HA . Yet note also that now all involved functors are covariant.

(b) Duality between Drinfeld’s functors. For any n ∈ N let µn : JH
⊗n ↪−→ H⊗n mn−−→H

be the composition of the natural embedding of JH
⊗n into H⊗n with the n–fold multiplication (in

H ): then µn is the “Hopf dual” to δn . By construction we have H∨ =
∑

n∈N µn

(
�−nJH

⊗n
)

and

H ′ =
⋂

n∈N δn
−1
(
�+nJH

⊗n
)

: this shows that the two functors are built up as “dual” to each other

(see also part (d) of Theorem 2.2).
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(c) Ambivalence QrUEA ↔ QFA in HAF . Part (e) of Theorem 2.2 means that some Hopf

algebras over F (R) might be thought of both as “quantum function algebras” and as “quantum

enveloping algebras”: examples are UF and FF for U ∈ QrUEA and F ∈ QFA .

(d) Drinfeld’s functors for algebras, coalgebras and bialgebras. The definition of either of Drin-

feld functors requires only “half of” the notion of Hopf algebra. In fact, one can define ( )∨ for all

“augmented algebras” (that is, roughly speaking, “algebras with a counit”) and ( )′ for all “coaug-

mented coalgebras” (roughly, “coalgebras with a unit”), and in particular for bialgebras: this yields

again nice functors, and neat results extending the global quantum duality principle, cf. [Ga5], §§3–4.

(e) Relaxing the assumptions. We chose to work over HA for simplicity: in fact, this ensures

that the specialization functor H �→ H
∣∣
�=0

yields Hopf algebras over a field, so that we can use

the more elementary geometric language of algebraic groups and Lie algebras in the easiest sense.

Nevertheless, what is really necessary to let the machine work is to consider any (commutative, unital)

ring R, any � ∈ R and then define Drinfeld’s functors over Hopf R–algebras which are �–torsionless.

For instance, this is — essentially — what is done in [KT], where the ground ring is R = k[[u, v]] ,

and the role of � is played by either u or v . In general, working in such a more general setting

amounts to consider, at the semiclassical level (i.e. after specialization), Poisson group schemes over

R
/
� R (i.e. over Spec

(
R/� R

)
) and Lie R

/
� R–bialgebras, where R/� R might not be a field.

Similar considerations — about R and � — hold w.r.t. remark (d) above.

§ 3 Application to trivial deformations: the Crystal Duality Principle

3.1 Drinfeld’s functors on trivial deformations. Let HAk be the category of all Hopf algebras

over the field k. For all n ∈ N , let Jn :=
(
Ker (ε : H −→ k)

)n
and Dn := Ker

(
δn+1 : H −→

H⊗n
)

, and set J :=
{
Jn
}

n∈N
, D :=

{
Dn

}
n∈N

. Of course J is a decreasing filtration of H

(maybe with
⋂

n≥0 Jn � {0} ), and D is an increasing filtration of H (maybe with
⋃

n≥0 Dn � H ),

by coassociativity of the δn’s.

Let R := k[� ] be the polynomial ring in the indeterminate � : then R is a PID (= principal ideal

domain), hence a 1dD, and � is a non-zero prime in R . Let H� := H [�] = R ⊗k H , the scalar ex-

tension of H : this is a torsion free Hopf algebra over R, hence one can apply Drinfeld’s functors to

H� ; in this section we do that with respect to the prime � itself. We shall see that the outcome is quite

neat, and can be expressed purely in terms of Hopf algebras in HAk : because of the special relation

between some features of H — namely, the filtrations J and D — and some properties of Drinfeld’s

functors, we call this result “Crystal Duality Principle”, in that it is obtained through sort of a “crys-

tallization” process (bearing in mind, in a sense, Kashiwara’s motivation for the terminology “crystal

bases” in the context of quantum groups: see [CP], §14.1, and references therein). Indeed, this theo-

rem can also be proved almost entirely by using only classical Hopf algebraic methods within HAk,
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i.e. without resorting to deformations: this is accomplished in [Ga6]. We first discuss the general sit-

uation (§§3.2–5), second we look at the case of function algebras and enveloping algebras (§§3.6–7),

then we state and prove the theorem of Crystal Duality Principle (§3.9). Eventually (§§3.11–12) we

dwell upon two other interesting applications: hyperalgebras, and group algebras and their dual.

Note that the same analysis and results (with only a few more details to take care of) still hold

if we take as R any 1dD and as � any prime element in R such that R
/
� R = k and R carries

a structure of k–algebra; for instance, one can take R = k[[h]] and � = h , or R = k
[
q, q−1

]
and � = q − 1 . Finally, in the sequel to be short we perform our analysis for Hopf algebras only:

however, as Drinfeld’s functors are defined not only for Hopf algebras but for augmented algebras and

coaugmented coalgebras too, we might do the same study for them as well. In particular, the Crystal

Duality Principle has a stronger version which concerns these more general objects too (cf. [Ga6]).

Lemma 3.2

H�
∨ =

∑
n≥0

R · �−nJn = R · J0 + R · �−1J1 + · · ·+ R · �−nJn + · · · (3.1)

H�
′ =

∑
n≥0

R · �+nDn = R · D0 + R · �+1 D1 + · · ·+ R · �+nDn + · · · (3.2)

Sketch of proof. (3.1) follows directly from definitions, while (3.2) is an easy exercise. �

3.3 Rees Hopf algebras and their specializations. Let M be a module over a commutative

unitary ring R, and let M := {Mz}z∈Z =
(
· · · ⊆ M−m ⊆ · · · ⊆ M−1 ⊆ M0 ⊆ M1 ⊆ · · · ⊆

Mn ⊆ · · ·
)

be a bi-infinite filtration of M by submodules Mz (z ∈ Z). In particular, we consider

increasing filtrations (i.e., those with Mz = {0} for z < 0 ) and decreasing filtrations (those with

Mz = {0} for all z > 0 ) as special cases of bi-infinite filtrations. First we define the associated

blowing module to be the R–submodule BM (M) of M
[
t, t−1

]
(where t is any indeterminate) given

by BM (M) :=
∑

z∈Z tzMz ; this is isomorphic to the first graded module 1 associated to M , namely⊕
z∈Z Mz . Second, we define the associated Rees module to be the R[t]–submodule Rt

M(M) of

M
[
t, t−1

]
generated by BM (M); straightforward computations then give R–module isomorphisms

Rt
M(M)

/
(t − 1)Rt

M(M) ∼= ⋃
z∈Z

Mz , Rt
M(M)

/
tRt

M(M) ∼= GM(M)

where GM(M) :=
⊕

z∈Z Mz

/
Mz−1 is the second graded module 1 associated to M . In other words,

Rt
M (M) is an R[t]–module which specializes to

⋃
z∈Z Mz for t = 1 and specializes to GM(M) for

t = 0 ; therefore the R–modules
⋃

z∈Z Mz and GM(M) can be seen as 1-parameter (polynomial)

deformations of each other via the 1-parameter family of R–modules given by Rt
M(M). We can re-

peat this construction within the category of algebras, coalgebras, bialgebras or Hopf algebras over R

with a filtration in the proper sense: then we’ll end up with corresponding objects BM(M), Rt
M(M),

etc. of the like type (algebras, coalgebras, etc.). In particular we’ll deal with Rees Hopf algebras.

1I pick this terminology from Serge Lang’s textbook “Algebra”.
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3.4 Drinfeld’s functors on H� and filtrations on H . Lemma 3.2 sets a link between properties

of H�
′, resp. of H�

∨, and properties of the filtration D , resp. J , of H .

First, (3.1) together with H�
∨ ∈ HA implies that J is a Hopf algebra filtration of H ; conversely,

if one proves that J is a Hopf algebra filtration of H (which is straightforward) then from (3.1) we get

a one-line proof that H�
∨ ∈ HA . Second, we can look at J as a bi-infinite filtration, reversing index

notation and extending trivially on positive indices, J =
(
· · · ⊆ Jn ⊆ · · ·J2 ⊆ J ⊆ J0

(
= H

) ⊆
H ⊆ · · · ⊆ H ⊆ · · ·

)
; then the Rees Hopf algebra R�

J(H) is defined (see §3.3). Now (3.1) give

H�
∨ = R�

J (H) , so H�
∨
/

� H�
∨ ∼= R�

J (H)
/

�R�
J(H) ∼= GJ(H) . Thus GJ(H) is cocommutative

because H�
∨
/

� H�
∨ is; conversely, we get an easy proof of the cocommutativity of H�

∨
/

� H�
∨

once we prove that GJ(H) is cocommutative, which is straightforward. Finally, GJ(H) is generated

by Q(H) = J
/
J 2 whose elements are primitive, so a fortiori GJ(H) is generated by its primitive

elements; then the latter holds for H�
∨
/

� H�
∨ as well. To sum up, as H�

∨ ∈ QrUEA we argue

that GJ(H) = U(g) for some restricted Lie bialgebra g ; conversely, we can get H�
∨ ∈ QrUEA

directly from the properties of the filtration J of H . Moreover, since GJ(H) = U(g) is graded, g as

a restricted Lie algebra is graded too.

On the other hand, it is easy to see that (3.2) and H�
′ ∈ HA imply that D is a Hopf algebra fil-

tration of H ; conversely, if one shows that D is a Hopf algebra filtration of H (which can be done)

then (3.2) yields a direct proof that H�
′ ∈ HA . Second, we can look at D as a bi-infinite filtration,

extending it trivially on negative indices, namely D =
(
· · · ⊆ {0} ⊆ · · · {0} ⊆ ({0} =

)
D0 ⊆

D1 ⊆ · · · ⊆ Dn ⊆ · · ·
)

; then the Rees Hopf algebra R�
D(H) is defined (see §3.3). Now (3.2) gives

H�
′ = R�

D(H) ; but then H�
′
/

� H�
′ ∼= R�

D(H)
/

�R�
D(H) ∼= GD(H) . Thus GD(H) is commu-

tative because H�
′
/

� H�
′ is; viceversa, we get an easy proof of the commutativity of H�

′
/

� H�
′

once we prove that GD(H) is commutative (which can be done too). Finally, GD(H) is graded with

1-dimensional degree 0 component (by construction) hence it has no non-trivial idempotents; so the

latter is true for H�
′
/

� H�
′ too. Note also that IH�

′
∞

= {0} by construction (because H� is free over

R ). To sum up, since H�
′ ∈ QFA we get GD(H) = F [G] for some connected algebraic Poisson

group G ; conversely, we can argue that H�
′ ∈ QFA directly from the properties of the filtration D .

In addition, since GD(H) = F [G] is graded, when Char (k) = 0 the (pro)affine variety G(cl) of

closed points of G is a (pro)affine space 2, that is G(cl)
∼= A×I

k = kI for some index set I , and so

F [G] = k
[{xi}i∈I

]
is a polynomial algebra.

Finally, when p := Char (k) > 0 the group G has dimension 0 and height 1: indeed, we can

see this as a consequence of part of Theorem 2.2(a) via the identity H ′
�

/
� H ′

� = GD(H) , or

conversely we can prove the relevant part of Theorem 2.2(a) via this identity by observing that G has

those properties (cf. [Ga5], §5.4). At last, by general theory since G has dimension 0 and height 1

2 For it is a cone — since H is graded — without vertex — since G(cl), being a group, is smooth.

II-11
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the function algebra F [G] = GD(H) = H ′
�

/
� H ′

� is a truncated polynomial algebra, namely of type

F [G] = k
[{xi}i∈I

]/({x p
i }i∈I

)
for some index set I .

3.5 Special fibers of H�
′ and H�

∨ and deformations. Given H ∈ HAk , consider H� : our

goal is to study H�
∨ and H�

′ .

As for H�
∨, the natural map from H to Ĥ := GJ(H) = H�

∨
/

� H�
∨ =: H�

∨
∣∣∣
�=0

sends J ∞ :=⋂
n≥0 J n to zero, by definition; also, letting H∨ := H

/
J ∞ (a Hopf algebra quotient of H , for J is a

Hopf algebra filtration), we have Ĥ = Ĥ∨ . Thus (H∨)�
∨
∣∣∣
�=0

= Ĥ∨ = Ĥ = U(g−) for some graded

restricted Lie bialgebra g− ; also, (H∨)�
∨
∣∣∣
�=1

:= (H∨)�
∨
/

(� − 1) (H∨)�
∨ =

∑
n≥0 J

n
= H∨ (see

§3.3). Thus we can see (H∨)�
∨ = R�

J(H∨) as a 1-parameter family inside HAk with regular fibers

(that is, they are isomorphic to each other as k–vector spaces; indeed, we switch from H to H∨ just to

achieve this regularity) which links Ĥ∨ and H∨ as (polynomial) deformations of each other, namely

U(g−) = Ĥ∨ = (H∨)�
∨
∣∣∣
�=0

0←�→ 1←−−−−−−−−→
(H∨)�

∨
(H∨)�

∨
∣∣∣
�=1

= H∨ .

Now look at
(
(H∨)�

∨)′ . By construction,
(
(H∨)�

∨)′∣∣∣
�=1

= (H∨)�
∨
∣∣∣
�=1

= H∨ , whereas(
(H∨)�

∨)′∣∣∣
�=1

= F [K−] for some connected algebraic Poisson group K− : in addition, if Char (k) =

0 then K− = G�
− by Theorem 2.2(c). So

(
(H∨)�

∨)′ can be thought of as a 1-parameter family inside

HAk , with regular fibers, linking H∨ and F [G�
−] as (polynomial) deformations of each other, namely

H∨ =
(
(H∨)�

∨)′∣∣∣
�=1

1←�→ 0←−−−−−−−−→
((H∨)�

∨)
′

(
(H∨)�

∨)′∣∣∣
�=0

= F [K−]
(

= F [G�
−] if Char (k) = 0

)
.

Therefore H∨ is both a deformation of an enveloping algebra and a deformation of a function algebra,

via two different 1-parameter families (with regular fibers) in HAk which match at the value � = 1 ,

corresponding to the common element H∨ . At a glance,

U(g−)
0←�→ 1←−−−−−−−−→
(H∨)�

∨
H∨ 1←�→ 0←−−−−−−−−→

((H∨)�
∨)

′
F [K−]

(
= F [G�

−] if Char (k) = 0
)

. (3.3)

Now consider H�
′. We have H�

′
∣∣∣
�=0

:= H�
′
/

� H�
′ = GD(H) =: H̃ , and H̃ = F [G+]

for some connected algebraic Poisson group G+ . On the other hand, we have also H�
′
∣∣∣
�=1

:=

H�
′
/

(� − 1) H�
′ =

∑
n≥0 Dn =: H ′ ; note that the latter is a Hopf subalgebra of H , because D is a

Hopf algebra filtration; moreover we have H̃ = H̃ ′ , by the very definitions. Therefore we can think

of H�
′ = R�

D(H ′) as a 1-parameter family inside HAk with regular fibers which links H̃ and H ′ as

(polynomial) deformations of each other, namely

F [G+] = H̃ = H�
′
∣∣∣
�=0

0←�→ 1←−−−−−−−−→
H�

′
H�

′
∣∣∣
�=1

= H ′ .

Consider also
(
H�

′)∨ : by construction
(
H�

′)∨∣∣∣
�=1

= H�
′
∣∣∣
�=1

= H ′ , whereas
(
H�

′)∨∣∣∣
�=0

=

U(k+) for some restricted Lie bialgebra k+ : in addition, if Char (k) = 0 then k+ = g×
+ by Theorem
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2.2(c). Thus
(
H�

′)∨ can be seen as a 1-parameter family with regular fibers, inside HAk , which

links U(k+) and H ′ as (polynomial) deformations of each other, namely

H ′ =
(
H�

′)∨∣∣∣
�=1

1←�→ 0←−−−−−−−−→
(H�

′)∨

(
H�

′)∨∣∣∣
�=0

= U(k+)
(

= U(g×
+ ) if Char (k) = 0

)
.

Therefore, H ′ is at the same time a deformation of a function algebra and a deformation of an en-

veloping algebra, via two different 1-parameter families insideHAk (with regular fibers) which match

at the value � = 1 , corresponding (in both families) to H ′ . In short,

F [G+]
0←�→ 1←−−−−−−−−→

H�
′

H ′ 1←�→ 0←−−−−−−−−→
(H�

′)∨
U(k+)

(
= U(g×

+ ) if Char (k) = 0
)

. (3.4)

Finally, it is worth noticing that when H ′ = H = H∨ formulas (3.3–4) give

F [G+]
0←�→ 1←−−−−−−−−→

H�
′

H ′ 1←�→ 0←−−−−−−−−→
(H�

′)∨
U(k+)

(
= U(g×

+ ) if Char (k) = 0
)

||
H (3.5)

||
U(g−)

0←�→ 1←−−−−−−−−→
(H∨)�

∨
H∨ 1←�→ 0←−−−−−−−−→

((H∨)�
∨)

′
F [K−]

(
= F [G�

−] if Char (k) = 0
)

which provides four different regular 1-parameter (polynomial) deformations from H to Hopf alge-

bras encoding geometrical objects of Poisson type, i.e. Lie bialgebras or Poisson algebraic groups.

3.6 The function algebra case. Let G be any algebraic group over the field k. Let R := k[�]

be as in §3.1, and set F�[G] :=
(
F [G]

)
�

= R ⊗k F [G] : this is trivially a QFA at � , because

F�[G]
/
� F�[G] = F [G] , inducing on G the trivial Poisson structure, so that its cotangent Lie bialge-

bra is simply g× with trivial Lie bracket and Lie cobracket dual to the Lie bracket of g . In the sequel

we identify F [G] with 1⊗F [G] ⊂ F�[G] .

We begin by computing F�[G]∨ (w.r.t. � ) and F�[G]∨
∣∣∣
�=0

= F̂ [G] = GJ

(
F [G]

)
.

Let J := JF [G] ≡ Ker
(
εF [G]

)
, let {jb}b∈S (⊆ J ) be a system of parameters of F [G], i.e. {yb := jb

mod J2}b∈S is a k–basis of Q
(
F [G]

)
= J

/
J2 = g× . Then Jn

/
Jn+1 is k–spanned by

{
j e

mod Jn+1
∣∣ e ∈ NS

f , |e| = n
}

for all n , where NS
f :=

{
σ ∈ NS ∣∣ σ(b) = 0 for almost all b ∈ S }

(hereafter, monomials like the previous ones are ordered w.r.t. some fixed order of the index set S )

and |e| :=
∑

b∈S e(b) . This implies that

F [G]∨ =
∑

e∈NS
f

k[� ] · �−|e|j e
⊕

k[� ]
[
�−1

]
J∞ =

∑
e∈NS

f
k[� ] · (j∨) e⊕ k[� ]

[
�−1

]
J∞

where J∞ :=
⋂

n∈N Jn and j∨s := �−1js for all s ∈ S . We also get that F̂ [G] = GJ

(
F [G]

)
is

k–spanned by
{

j e mod Jn+1
∣∣ e ∈ NS

f

}
, so F̂ [G] = GJ

(
F [G]

)
is a quotient of S(g×) .

Now we distinguish various cases. First assume G is smooth, i.e. ka ⊗k F [G] is reduced (where

ka is the algebraic closure of k), which is always the case if Char (k) = 0 . Then (by standard

results on algebraic groups) the above set spanning F̂ [G] is a k–basis: thus F�[G]∨
∣∣∣
�=0

= F̂ [G] =

GJ

(
F [G]

) ∼= S(g×) as k–algebras. In addition, tracking the construction of the co-Poisson Hopf
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structure onto F̂ [G] we see at once that F̂ [G] ∼= S(g×) as co-Poisson Hopf algebras too, where the

Hopf structure on S(g×) is the standard one and the co-Poisson structure is the one induced from the

Lie cobracket of g× (cf. [Ga5] for details). Note also that S(g×) = U(g×) because g× is Abelian.

Another “extreme” case is when G is a finite connected group scheme: then, assuming for simplic-

ity that k be perfect, we have F [G] = k[x1, . . . , xn]
/(

xpe1

1 , . . . , xpen

n

)
for some n, e1, . . . , en ∈ N .

Modifying a bit the analysis of the smooth case one gets

F [G]∨ =
∑

e∈Nn k[� ] · �−|e|x e =
∑

e∈Nn k[� ] · (x∨) e

(now J∞ = {0} ), and F�[G]∨
∣∣∣
�=0

= F̂ [G] = GJ

(
F [G]

) ∼= S(g×)
/(

x̄pe1

1 , . . . , x̄pen

n

)
, where

x̄i := xi mod J2 ∈ g× . Now, recall that for any Lie algebra h there is h[p ]∞ :=
{

x[p ]n :=

xpn
∣∣∣ x ∈ h , n ∈ N

}
, the restricted Lie algebra generated by h inside U(h), with p–operation

given by x[p ] := xp ; then one always has U(h) = u
(
h[p ]∞

)
. In our case

{
x̄ pe1

1 , . . . , x̄ pen

n

}
generates a p–ideal I of (g×)[p ]∞ , hence g×

res := g[p ]∞
/
I is a restricted Lie algebra too, with k–

basis
{
x̄ pa1

1 , . . . , x̄ pan

n

∣∣∣ a1 < e1, . . . , an < en

}
. Then the previous analysis gives F�[G]∨

∣∣∣
�=0

=

u (g×res) ≡ S(g×)
/({

x̄ pe1

1 , . . . , x̄ pen

n

})
as co-Poisson Hopf algebras.

The general case is intermediate. Assume again for simplicity that k be perfect. Let F [[G]]

be the J–adic completion of H = F [G] . By standard results on algebraic groups (cf. [DG])

there is a subset {xi}i∈I of J such that
{

xi := xi mod J2
}

i∈I is a basis of g× = J
/
J2 and

F [[G]] ∼= k
[[{xi}i∈I

]]/({
x pn(xi)

i

}
i∈I0

)
(the algebra of truncated formal power series), for some

I0 ⊂ I and
(
n(xi)

)
i∈I0

∈ N I0 . Since GJ

(
F [G]

)
= GJ

(
F [[G]]

)
, we argue that GJ

(
F [G]

) ∼=
k
[{xi}i∈I

]/({
x pn(xi)

i

}
i∈I0

)
; finally, since k

[{xi}i∈I
] ∼= S(g×) we get

GJ

(
F [G]

) ∼= S(g×)

/({
x pn(x)

}
x∈N (F [G])

)
as algebras, N (F [G]

)
being the nilradical of F [G] and pn(x) is the nilpotency order of x ∈ N (F [G]

)
.

Finally, noting that
({

x pn(x)
}

x∈N (F [G])

)
is a co-Poisson Hopf ideal of S(g×) , like in the smooth

case we argue that the above isomorphism is one of co-Poisson Hopf algebras.

If k is not perfect the same analysis applies, but modifying a bit the previous arguments.

As for F [G]∨ := F [G]
/
J∞ , one has (cf. [Ab], Lemma 4.6.4) F [G]∨ = F [G] whenever G is

finite dimensional and there exists no f ∈ F [G] \ k which is separable algebraic over k .

It is also interesting to consider
(
F�[G]∨

)′
. If Char (k) = 0 Theorem 2.2(c) gives

(
F�[G]∨

)′
=

F�[G] . If instead Char (k) = p > 0 , then the situation might change dramatically. Indeed, if G

has dimension 0 and eight 1 then — i.e., if F [G] = k
[{xi}i∈I

]]/({
xp

i

∣∣ i ∈ I}) as a k–algebra —

the same analysis as in the zero characteristic case applies, with a few minor changes, whence one

gets again
(
F�[G]∨

)′
= F�[G] . Otherwise, let y ∈ J \ {0} be primitive and such that yp �= 0 (for

instance, this occurs for G ∼= Ga ). Then yp is primitive as well, hence δn(yp) = 0 for each n > 1 .
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It follows that 0 �= � (y∨)p ∈ (F�[G]∨
)′

, whereas � (y∨)p �∈ F�[G] , due to our previous description

of F�[G]∨. Thus
(
F�[G]∨

)′ � F�[G]∨ , a counterexample to the first part of Theorem 2.2(c).

What for F [G]′ and F̃ [G] ? Again, this depends on the group G under consideration. We provide

two simple examples, both “extreme”, in a sense, and opposite to each other.

Let G := Ga = Spec
(
k[x]

)
, so F [G] = F [Ga] = k[x] and F�[Ga] := R ⊗k k[x] = R[x] .

Then since ∆(x) := x ⊗ 1 + 1 ⊗ x and ε(x) = 0 we find F�[Ga]
′ = R[�x] (like in §3.7 below:

indeed, this is just a special instance, for F [Ga] = U(g) where g is the 1-dimensional Lie algebra).

Moreover, iterating one gets easily
(
F�[Ga]

)′
= R

[
�2x

]
,
((

F�[Ga]
′)′)′ = R

[
�3x

]
, and in general(((

F�[Ga ]′
)′)′ · · ·)′︸ ︷︷ ︸

n

= R
[
�nx

] ∼= R[x] = F�[Ga] for all n ∈ N .

Second, let G := Gm = Spec
(

k
[
z+1, z−1

])
, that is F [G] = F [Gm] = k

[
z+1, z−1

]
so that

F�[Gm] := R ⊗k k
[
z+1, z−1

]
= R

[
z+1, z−1

]
. Then since ∆

(
z±1
)

:= z±1 ⊗ z±1 and ε
(
z±1
)

= 1

we find ∆n
(
z±1
)

=
(
z±1
)⊗n

and δn

(
z±1
)

=
(
z±1 − 1

)⊗n
for all n ∈ N . It follows easily from that

F�[Gm]′ = R · 1 , the trivial possibility (see also §3.12 later on).

3.7 The enveloping algebra case. Let g be any Lie algebra over the field k, and U(g) its universal

enveloping algebra with its standard Hopf structure. Assume Char (k) = 0 , and let R = k[�] , as

in §3.1, and set U�(g) := R ⊗k U(g) =
(
U(g)

)
�

. Then U�(g) is trivially a QrUEA at �, for

U�(g)
/
� U�(g) = U(g) , inducing on g the trivial Lie cobracket. Thus the dual Poisson group is just

g� (the topological dual of g w.r.t. the weak topology) w.r.t. addition, with g as cotangent Lie bialgebra

and function algebra F [g�] = S(g) : the Hopf structure is the standard one, and the Poisson structure

is the one induced by {x, y} := [x, y] for all x, y ∈ g (it is the Kostant-Kirillov structure on g� ).

Similarly, if Char (k) = p > 0 and g is any restricted Lie algebra over k, let u(g) be its restricted

universal enveloping algebra, with its standard Hopf structure. Then if R = k[�] the Hopf R–algebra

U�(g) := R ⊗k u(g) =
(
u(g)

)
�

is a QrUEA at �, because u�(g)
/
� u�(g) = u(g) , inducing on

g the trivial Lie cobracket: then the dual Poisson group is again g�, with cotangent Lie bialgebra g

and function algebra F [g�] = S(g) (the Poisson Hopf structure being as above). Recall also that

U(g) = u
(
g[p ]∞

)
(cf. §3.6).

First we compute u�(g)′ (w.r.t. the prime � ) using (3.2), i.e. computing the filtration D .

By the PBW theorem, once an ordered basis B of g is fixed u(g) admits as basis the set of ordered

monomials in the elements of B whose degree (w.r.t. each element of B) is less than p ; this yields a

Hopf algebra filtration of u(g) by the total degree, which we refer to as the standard filtration. Then a

straightforward calculation shows that D coincides with the standard filtration. This and (3.2) imply

u�(g)′ = 〈g̃〉 = 〈� g〉 : hereafter g̃ := � g , and similarly x̃ := � x for all x ∈ g . Then the relations

x y − y x = [x, y] and zp = z[p ] in u(g) yield x̃ ỹ − ỹ x̃ = � [̃x, y] ≡ 0 mod � u�(g)′ and also

z̃p = �p−1z̃[p ] ≡ 0 mod � u�(g)′ ; therefore, from u�(g) = TR(g)
/({

x y − y x − [x, y] , zp −
z[p ]

∣∣ x, y, z ∈ g
})

we get
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u�(g)′ = 〈g̃〉 �→0−−−−−→ ũ(g) = Tk(g̃)

/({
x̃ ỹ − ỹ x̃ , z̃p

∣∣∣ x̃, ỹ, z̃ ∈ g̃
})

=

= Tk(g)
/({

x y − y x , zp
∣∣ x, y, z ∈ g

})
= Sk(g)

/({
zp
∣∣ z ∈ g

})
= F [g�]

/({
zp
∣∣ z ∈ g

})
that is ũ(g) := GD

(
u(g)

)
= u�(g)′

/
� u�(g)′ ∼= F [g�]

/({
zp
∣∣ z ∈ g

})
as Poisson Hopf algebras.

In particular, this means that ũ(g) is the function algebra of, and u�(g)′ is a QFA (at � ) for, a non-

reduced algebraic Poisson group of dimension 0 and height 1, whose cotangent Lie bialgebra is g ,

hence which is dual to g ; thus, in a sense, part (c) of Theorem 2.2 is still valid in this case too.

Remark: Note that this last result reminds the classical formulation of the analogue of Lie’s Third

Theorem in the context of group-schemes: Given a restricted Lie algebra g, there exists a group-

scheme G of dimension 0 and height 1 whose tangent Lie algebra is g (see e.g. [DG]). Here we have

just given sort of a “dual Poisson-theoretic version” of this fact, in that our result sounds as follows:

Given a restricted Lie algebra g, there exists a Poisson group-scheme G of dimension 0 and height 1

whose cotangent Lie algebra is g .

As a byproduct, since U�(g) = u�
(
g[p ]∞

)
we have also U�(g)′ = u�

(
g[p ]∞

)′
, whence

U�(g)′ = u�
(
g[p ]∞)′ �→0−−−−→ Sk

(
g[p ]∞

)/({
zp
}

z∈g[p ]∞

)
= F

[(
g[p ]∞)�]/({ zp

}
z∈g[p ]∞

)
.

Furthermore, u�(g)′ = 〈g̃〉 implies that Iu�(g)′ is generated (as an ideal) by � R · 1u�(g) + R g̃ ,

hence �−1Iu�(g)′ is generated by R · 1 + R g , therefore(
u�(g)′

)∨
:=

⋃
n≥0

(
�−1Iu�(g)′

)n
=
⋃

n≥0

(
R · 1 + R g

)n
= u�(g) .

This means that also part (b) of Theorem 2.2 is still valid, though now Char (k) > 0 .

When Char (k) = 0 and we look at U(g), the like argument applies: D coincides with the standard

filtration of U(g) provided by the total degree, via the PBW theorem. This and (3.2) imply U(g) ′ =

〈g̃〉 = 〈� g〉 , so that from the presentation U�(g) = TR(g)
/({

x y − y x − [x, y]
}

x,y,z∈g

)
we get

U�(g)′= TR(g̃)
/({

x̃ ỹ − ỹ x̃ − � · [̃x, y]
}

x̃,ỹ∈g̃

)
, whence we get at once

U�(g)′ �→0−−−−−→ Ũ(g) ∼= Tk(g̃)
/({

x̃ ỹ − ỹ x̃
∣∣ x̃, ỹ ∈ g̃

}) ∼= Sk(g) = F [g�]

i.e. Ũ(g) := GD

(
U(g)

)
= U�(g)′

/
� U�(g)′ ∼= F [g�] as Poisson Hopf algebras, as predicted

by Theorem 2.2(c). Moreover, U�(g)′ = 〈g̃〉 = T (g̃)
/({

x̃ ỹ − ỹ x̃ = � · [̃x, y]
∣∣ x̃, ỹ ∈ g̃

})
implies

that IU�(g)′ is generated by � R · 1U�(g) +R g̃ : thus �−1IU�(g)′ is generated by R · 1U�(g) + R g , so(
U�(g)′

)∨
:=

⋃
n≥0

(
�−1IU�(g)′

)n
=
⋃

n≥0

(
R · 1U�(g) + R g

)n
= U�(g) , agreeing with Theorem 2.2(b).

What for the functor ( )∨ ? This heavily depends on the g we start from!

First assume Char (k) = 0 . Let g(1) := g , g(k) :=
[
g, g(k−1)

]
(k ∈ N+), be the lower central

series of g . Pick subsets B1 , B2 , . . . , Bk , . . . (⊆ g ) such that Bk mod g(k+1) be a k–basis of
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g(k)

/
g(k+1) (for all k ∈ N+ ), pick also a k–basis B∞ of g(∞) :=

⋂
k∈N+

, and set ∂(b) := k for

any b ∈ Bk and each k ∈ N+ ∪ {∞} . Then B :=
(⋃

k∈N+
Bk

)
∪ B∞ is a k–basis of g ; we fix a

total order on it. Applying the PBW theorem to this ordered basis of g we get that J n has basis the

set of ordered monomials
{

be1
1 be2

2 · · · bes
s

∣∣ s ∈ N+ , br ∈ B ,
∑s

r=1 br ∂(br) ≥ n
}

. Then one finds

that U�(g)∨ is generated by
{

�−1b
∣∣ b ∈ B1 \ B2

}
(as a unital R–algebra) and it is the direct sum

U�(g)∨ =

(
⊕s∈N+

br∈B\B∞
R
(
�−∂(b1)b1

)e1 · · · (�−∂(bs)bs

)es

)⊕(
⊕s∈N+, br∈B

∃ r̄ : br̄∈B∞
R
[
�−1

]
be1
1 · · · bes

s

)
From this it follows at once that U�(g)∨

/
� U�(g)∨ ∼= U

(
g
/
g(∞)

)
via an isomorphism which

maps �−∂(b)b mod � U�(g)∨ to b mod g(∞) ∈ g
/
g(∞) ⊂ U

(
g
/
g(∞)

)
for all b ∈ B \ B∞ and

maps �−nb mod � U�(g)∨ to 0 for all b ∈ B \ B∞ and all n ∈ N .

Now assume Char (k) = p > 0 . Then in addition to the previous considerations one has to take

into account the filtration of u(g) induced by both the lower central series of g and the p–filtration

of g , that is g ⊇ g[p ] ⊇ g[p ]2 ⊇ · · · ⊇ g[p ]n ⊇ · · · , where g[p ]n is the restricted Lie subalgebra

generated by
{

x[p ]n
∣∣ x ∈ g

}
and x �→ x[p] is the p –operation in g : these encode the J–filtration of

u(g) , hence of u�(g) , so permit to describe u�(g)∨.

In detail, for any restricted Lie algebra h, let hn :=
〈⋃

(m pk≥n (h(m))
[pk]
〉

for all n ∈ N+ (where

〈X〉 denotes the Lie subalgebra of h generated by X ) and h∞ :=
⋂

n∈N+
hn : we call

{
hn

}
n∈N+

the p–lower central series of h . It is a strongly central series of h, i.e. a central series of h such that

[hm, hn] ≤ hm+n for all m, n , and h
[p ]
n ≤ hn+1 for all n .

Applying these tools to g ⊆ u(g) the very definitions give gn ⊆ Jn (for all n ∈ N ) where

J := Ju(g) : more precisely, if B is an ordered basis of g then the (restricted) PBW theorem for u(g)

implies that Jn
/
Jn+1 admits as k–basis the set of ordered monomials of the form xe1

i1
xe2

i2
· · ·xes

is such

that
∑s

r=1 er∂(xir ) = n where ∂(xir) ∈ N is uniquely determined by the condition xir ∈ g∂(xir ) \
g∂(xir )+1 and each xik is a fixed lift in g of an element of a fixed ordered basis of g∂(xik

)

/
g∂(xik

)+1 .

This yields an explicit description of J , hence of u(g)∨ and u�(g)∨, like before: in particular

û�(g) := u�(g)∨
/

� u�(g)∨ ∼= u
(
g
/
g∞
)

.

Definition 3.8. We call pre-restricted universal enveloping algebra (=PrUEA) any H ∈ HAk which

is down-filtered by J (i.e.,
⋂

n∈N Jn = {0} ), and P rUEA the full subcategory of HAk of all

PrUEAs. We call pre-function algebra (=PFA) any H ∈ HAk which is up-filtered by D (i.e.,⋃
n∈N Dn = H ), and PFA the full subcategory of HAk of all PFAs.

Theorem 3.9 (“The Crystal Duality Principle”)

(a) H �→ H∨ := H
/
J ∞

H
and H �→ H ′ :=

⋃
n∈N Dn define functors ( )∨ : HAk −→ HAk and

( )′ : HAk −→ HAk respectively whose image are P rUEA and PFA respectively.

(b) Let H ∈ HAk . Then Ĥ := GJ(H) ∼= U(g) as graded co-Poisson Hopf algebras, for some

restricted Lie bialgebra g which is graded as a Lie algebra. In particular, if Char (k) = 0 and

dim(H) ∈ N then Ĥ = k·1 and g = {0} .
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More in general, the same holds if H = B is a k–bialgebra.

(c) Let H ∈ HAk . Then H̃ := GD(H) ∼= F [G] , as graded Poisson Hopf algebras, for some

connected algebraic Poisson group G whose variety of closed points form a (pro)affine space. If

Char (k) = 0 then F [G] = H̃ is a polynomial algebra, i.e. F [G] = k
[{xi}i∈I

]
(for some set I);

in particular, if dim(H) ∈ N then H̃ = k · 1 and G = {1} . If p := Char (k) > 0 then G has

dimension 0 and height 1, and if k is perfect then F [G] = H̃ is a truncated polynomial algebra,

i.e. F [G] = k
[{xi}i∈I

]/({x p
i }i∈I

)
(for some set I).

More in general, the same holds if H = B is a k–bialgebra.

(d) For every H ∈ HAk , there exist two 1-parameter families (H∨)�
∨ = R�

J (H∨) and(
(H∨)�

∨)′ in HAk giving deformations of H∨ with regular fibers

if Char (k) = 0 , U(g−)

if Char (k) > 0 , u(g−)

}
= Ĥ

0←�→ 1←−−−−−−−→
(H∨)�

∨
H∨ 1←�→ 0←−−−−−−−→

((H∨)�
∨)

′

F [K−] = F [G�
−]

F [K−]

and two 1-parameter families H�
′ = R�

D(H ′) and (H�
′)∨ in HAk giving deformations

F [G+] = H̃
0←�→ 1←−−−−−−−→

H�
′

H ′ 1←�→ 0←−−−−−−−→
(H�

′)∨

U(k+) = U(g×
+ ) if Char (k) = 0

u(k+) if Char (k) > 0

of H ′ with regular fibers, where G+ is like G in (c), K− is a connected algebraic Poisson group, g−
is like g in (b), k+ is a (restricted, if Char (k) > 0 ) Lie bialgebra, g×

+ is the cotangent Lie bialgebra

to G+ and G�
− is a connected algebraic Poisson group with cotangent Lie bialgebra g− .

(e) If H = F [G] is the function algebra of an algebraic Poisson group G, then F̂ [G] is a bi-

Poisson Hopf algebra (cf. [KT], §1), namely

F̂ [G] ∼= S(g×)

/({
x pn(x)

}
x∈NF [G]

) ∼= U(g×)

/({
x pn(x)

}
x∈NF [G]

)
where NF [G] is the nilradical of F [G], pn(x) is the order of nilpotency of x ∈ NF [G] and the bi-

Poisson Hopf structure of S(g×)

/({
x pn(x)

}
x∈NF [G]

)
is the quotient one from S(g×) ; in particular

if the group G is reduced then F̂ [G] ∼= S(g×) ∼= U(g×) .

(f) If Char (k) = 0 and H = U(g) is the universal enveloping algebra of some Lie bialgebra g ,

then Ũ(g) is a bi-Poisson Hopf algebra, namely Ũ(g) ∼= S(g) = F [g�] where the bi-Poisson Hopf

structure on S(g) is the canonical one.

If Char (k) = p > 0 and H = u(g) is the restricted universal enveloping algebra of some

restricted Lie bialgebra g , then ũ(g) is a bi-Poisson Hopf algebra, namely we have ũ(g) ∼=
S(g)

/({
xp
∣∣ x ∈ g

})
= F [G�] where the bi-Poisson Hopf structure on S(g)

/({
xp
∣∣ x ∈ g

})
is induced by the canonical one on S(g), and G� is a connected algebraic Poisson group of dimen-

sion 0 and height 1 whose cotangent Lie bialgebra is g .

(g) Let H , K ∈ HAk and let π : H×K −−→ k be a Hopf pairing. Then π induce a filtered Hopf

pairing πf : H∨ × K ′ −−→ k , a graded Hopf pairing π
G

: Ĥ × K̃ −−→ k , both perfect on the
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right, and Hopf pairings over k[� ] (notation of §3.1) H�×K� −−→ k[� ] and H�
∨×K�

′ −−→ k[� ] ,

the latter being perfect on the right. If in addition the pairing πf : H∨ ×K ′ −−→ k is perfect, then

all other induced pairings are perfect as well, and H�
∨ and K�

′ are dual to each other.

The left-right symmetrical results hold too.

Proof. Everything follows from the previous analysis, but for (g), to be found in [Ga5] or [Ga6]. �

Remarks 3.10. (a) Though usually introduced in a different way, H ′ is an object pretty familiar

to Hopf algebraists: it is the connected component of H (see [Ga6] for a proof); in particular, H

is a PFA iff it is connected. Nevertheless, the remarkable properties of H̃ = GD(H) in Theorem

3.9(c) seems to have been unknown so far. Similarly, the “dual” construction of H∨ and the important

properties of Ĥ = GJ(H) in Theorem 3.9(b) seem to be new.

(b) Theorem 3.9(f) reminds the classical formulation of the analogue of Lie’s Third Theorem for

group-schemes, i.e.: Given a restricted Lie algebra g, there exists a group-scheme G of dimension 0

and height 1 whose tangent Lie algebra is g (see e.g. [DG]). Our result gives just sort of a “dual Pois-

son-theoretic version” of this fact, in that it sounds as follows: Given a restricted Lie algebra g , there

exists a Poisson group-scheme G of dimension 0 and height 1 whose cotangent Lie algebra is g .

(c) Part (d) of Theorem 3.9 is quite interesting for applications in physics. In fact, let H be

a Hopf algebra which describes the symmetries of some physically meaningful system, but has no

geometrical meaning, and assume also H ′ = H = H∨ . Then Theorem 3.9(d) yields a recipe to

deform H to four Hopf algebras with geometrical content, which means having two Poisson groups

and two Lie bialgebras attached to H , hence a rich “Poisson geometrical symmetry” underlying the

physical system. As R (the typical ground field) has zero characteristic, we have in fact two pairs of

mutually dual Poisson groups along with their tangent Lie bialgebras. A nice application is in [Ga7].

3.11. The hyperalgebra case. Let G be an algebraic group, which for simplicity we assume to

be finite-dimensional. Let Hyp (G) be the hyperalgebra of G (cf. §1.1), which is connected cocom-

mutative. Recall also the Hopf algebra morphism Φ : U(g) −→ Hyp (G) ; if Char (k) = 0 then

Φ is an isomorphism, so Hyp (G) identifies to U(g); if Char (k) > 0 then Φ factors through u(g)

and the induced morphism Φ : u(g) −→ Hyp (G) is injective, so that u(g) identifies with a Hopf

subalgebra of Hyp (G). Now we study Hyp (G)′, Hyp (G)∨, H̃yp (G), Ĥyp (G), the key tool being

the existence of a perfect (= non-degenerate) Hopf pairing between F [G] and Hyp (G).

One can prove (see [Ga6]) that a Hopf k–algebra H is connected iff H = H ′. As Hyp (G) is

connected, we have Hyp (G) = Hyp (G)′ . Now, Theorem 3.9(c) gives H̃yp (G) := GD

(
Hyp (G)

)
=

F [Γ ] for some connected algebraic Poisson group Γ ; Theorem 3.9(e) yields

F̂ [G] ∼= S(g∗)
/({

x pn(x)
}

x∈NF [G]

)
= u

(
P

(
S(g∗)

/({
x pn(x)

}
x∈NF [G]

)))
= u

((
g∗)p∞

)
with

(
g∗)p∞

:= Span
({

xpn
∣∣∣ x ∈ g∗ , n ∈ N

})
⊆ F̂ [G] , and noting that g× = g∗ . On the other

hand, exactly like for U(g) and u(g) respectively in case Char (k) = 0 and Char (k) > 0 , the

filtration D of Hyp (G) is nothing but the natural filtration given by the order of differential operators:
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this implies immediately Hyp (G)�
′ :=

(
k[� ] ⊗k Hyp (G)

)′
=
〈{

�nx(n)
∣∣ x ∈ g , n ∈ N

}〉
, where

x(n) denotes the n–th divided power of x ∈ g (recall that Hyp (G) is generated as an algebra by all

the x(n)’s, some of which might be zero). It is then immediate to check that the graded Hopf pairing

between Hyp (G)�
′
/

� Hyp (G)�
′ = H̃yp (G) = F [Γ ] and F̂ [G] from Theorem 3.9(f) is perfect.

From this one argues that the cotangent Lie bialgebra of Γ is isomorphic to
((

g∗)p∞)∗ .

As for Hyp (G)∨ and Ĥyp (G), the situation is much like for U(g) and u(g), in that it strongly

depends on the algebraic nature of G (cf. §3.7).

3.12 The CDP on group algebras and their duals. In this section, G is any abstract group. We

divide the subsequent material in several subsections.

Group-related algebras. For any commutative unital ring A , by A[G] we mean the group algebra of

G over A ; when G is finite, we denote by AA(G) := A[G]∗ (the linear dual of A[G] ) the function

algebra of G over A . Our aim is to apply the Crystal Duality Principle to k[G] and Ak(G) with their

standard Hopf algebra structure: hereafter k is a field and R := k[�] as in §5.1, with p := Char (k) .

Recall that H := A[G] admits G itself as a distinguished basis, with Hopf algebra structure given

by g ·
H

γ := g ·
G

γ , 1
H

:= 1
G

, ∆(g) := g ⊗ g , ε(g) := 1 , S(g) := g−1 , for all g, γ ∈ G .

Dually, H := AA(G) has basis
{
ϕg

∣∣ g ∈ G
}

dual to the basis G of A[G] , with ϕg(γ) := δg,γ

for all g, γ ∈ G ; its Hopf algebra structure is given by ϕg · ϕγ := δg,γϕg , 1
H

:=
∑

g∈G ϕg ,

∆(ϕg) :=
∑

γ·�=g ϕγ ⊗ ϕ� , ε(ϕg) := δg,1G
, S(ϕg) := ϕg−1 , for all g, γ ∈ G . In particular,

R[G] = R ⊗k k[G] and AR[G] = R ⊗k Ak[G] . Our first result is

Theorem A:
(
k[G]

)
�

′
= R · 1 , k[G]′ = k · 1 and k̃[G] = k · 1 = F

[{∗}] .

Proof. The claim follows easily from the formula δn(g) = (g − 1)⊗n , for g ∈ G , n ∈ N . �

R[G]∨, k[G]∨, k̂[G] and the dimension subgroup problem. In contrast with the triviality result in

Theorem A above, things are more interesting for R[G]∨=
(
k[G]

)
�

∨
, k[G]∨ and k̂[G] . Note however

that since k[G] is cocommutative the induced Poisson cobracket on k̂[G] is trivial, hence the Lie

cobracket of kG := P
(
k̂[G]

)
is trivial as well.

Studying k[G]∨ and k̂[G] amounts to study the filtration
{
Jn
}

n∈N
, with J := Ker (ε

k[G]
), which

is a classical topic. Indeed, for n∈N let Dn(G) :=
{

g ∈ G
∣∣ (g−1) ∈ Jn

}
: this is a characteristic

subgroup of G, called the nth dimension subgroup of G . All these form a filtration inside G :

characterizing it in terms of G is the dimension subgroup problem, which (for group algebras over

fields) is completely solved (see [Pa], Ch. 11, §1, and [HB], and references therein); this also gives a

description of
{
Jn
}

n∈N+
. Thus we find ourselves within the domain of classical group theory: now

we use the results which solve the dimension subgroup problem to argue a description of k[G]∨, k̂[G]

and R[G]∨, and later on we’ll get from this a description of
(
R[G]∨

)′
and its semiclassical limit too.

By construction, J has k–basis
{
ηg

∣∣ g ∈ G \ {1
G
}} , where ηg := (g−1) . Then k[G]∨ is

generated by
{

ηg mod J∞ ∣∣ g ∈ G \ {1
G
}} , and k̂[G] by

{
ηg

∣∣ g ∈ G \ {1
G
}} : hereafter
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x := x mod Jn+1 for all x ∈ Jn , that is x is the element in k̂[G] which corresponds to x ∈ k[G] .

Moreover, g = 1 + ηg = 1 for all g ∈ G ; also, ∆
(
ηg

)
= ηg ⊗ g + 1 ⊗ ηg = ηg ⊗ 1 + 1 ⊗ ηg :

thus ηg is primitive, so
{

ηg

∣∣ g∈G \ {1
G
}} generates kG := P

(
k̂[G]

)
.

The Jennings-Hall theorem. The description of Dn(G) is given by the Jennings-Hall theorem, which

we now recall. The construction involved strongly depends on whether p := Char (k) is zero or not,

so we shall distinguish these two cases.

First assume p = 0 . Let G(1) := G , G(k) := (G, G(k−1)) (k ∈ N+), form the lower central

series of G ; hereafter (X, Y ) is the commutator subgroup of G generated by the set of commutators{
(x, y) := x y x−1y−1

∣∣ x ∈ X, y ∈ Y
}

: this is a strongly central series in G, which means

a central series
{
Gk

}
k∈N+

( = decreasing filtration of normal subgroups, each one centralizing the

previous one) of G such that (Gm, Gn) ≤ Gm+n for all m , n . Then let
√

G(n) :=
{
x ∈ G

∣∣∃ s ∈
N+ : xs ∈ G(n)

}
for all n ∈ N+ : these form a descending series of characteristic subgroups in

G, such that each composition factor AG
(n) :=

√
G(n)

/√
G(n+1) is torsion-free Abelian. Therefore

L0(G) :=
⊕

n∈N+
AG

(n) is a graded Lie ring, with Lie bracket
[
g, 


]
:= (g, 
 ) for all homogeneous

g, 
 ∈ L0(G) , with obvious notation. It is easy to see that the map k ⊗Z L0(G) −→ kG , g �→ ηg ,

is an epimorphism of graded Lie rings: thus the Lie algebra kG is a quotient of k⊗Z L0(G) ; in fact,

the above is an isomorphism, see below. We use notation ∂(g) := n for all g ∈ √G(n) \√G(n+1) .

For each k ∈ N+ pick in AG
(k) a subset Bk which is a Q–basis of Q ⊗Z AG

(k) ; for each b ∈ Bk ,

choose a fixed b ∈ √
G(k) such that its coset in AG

(k) be b, and denote by Bk the set of all such

elements b . Let B :=
⋃

k∈N+
Bk : we call such a set t.f.l.c.s.-net ( = “torsion-free-lower-central-

series-net”) on G. Clearly Bk =
(
B ∩ √G(k)

)
\
(
B ∩ √G(k+1)

)
for all k . By an ordered

t.f.l.c.s.-net is meant a t.f.l.c.s.-net B which is totally ordered in such a way that: (i) if a ∈ Bm ,

b ∈ Bn , m < n , then a � b ; (ii) for each k, every non-empty subset of Bk has a greatest element.

As a matter of fact, an ordered t.f.l.c.s.-net always exists.

Now assume instead p > 0 . The situation is similar, but we must also consider the p–power

operation in the group G and in the restricted Lie algebra kG . Starting from the lower central series{
G(k)

}
k∈N+

, define G[n] :=
∏

kp�≥n (G(k))
p�

for all n ∈ N+ (hereafter, for any group Γ we denote

Γ pe
the subgroup generated by

{
γpe
∣∣ γ∈Γ

}
): this gives another strongly central series

{
G[n]

}
n∈N+

in G, with the additional property that (G[n])
p ≤ G[n+1] for all n , called the p–lower central series

of G . Then Lp(G) := ⊕n∈N+G[n]

/
G[n+1] is a graded restricted Lie algebra over Zp := Z

/
p Z ,

with operations g + 
 := g · 
 ,
[
g, 


]
:= (g, 
 ) , g [p ] := gp , for all g, 
 ∈ G (cf. [HB], Ch. VIII,

§9). Like before, we consider the map k⊗ZpLp(G) −→ kG , g �→ ηg , which now is an epimorphism

of graded restricted Lie Zp–algebras, whose image spans kG over k : therefore kG is a quotient of

k⊗Zp Lp(G) ; in fact, the above is an isomorphism, see below. Finally, we introduce also the notation

d(g) := n for all g ∈ G[n] \ G[n+1] .

For each k ∈ N+ choose a Zp–basis Bk of the Zp–vector space G[k]

/
G[k+1] ; for each b ∈ Bk ,

fix b ∈ G[k] such that b = bG[k+1] , and let Bk be the set of all such elements b . Let B :=
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RENCONTRES MATHÉMATIQUES DE GLANON 2002 CONTRIBUTION II⋃
k∈N+

Bk : such a set will be called a p-l.c.s.-net (= “p-lower-central-series-net”; the terminology in

[HB] is “κ-net”) on G. Of course Bk =
(
B∩G[k]

)\(B∩G[k+1]

)
for all k . By an ordered p-l.c.s.-net

we mean a p-l.c.s.-net B which is totally ordered in such a way that: (i) if a ∈ Bm , b ∈ Bn , m < n ,

then a � b ; (ii) for each k, every non-empty subset of Bk has a greatest element (like for p = 0 ).

Again, it is known that p-l.c.s.-nets always do exist.

We can now describe each Dn(G), hence also each graded summand Jn
/
Jn+1 of k̂[G], in terms

of the lower central series or the p–lower central series of G , more precisely in terms of a fixed

ordered t.f.l.c.s.-net or p-l.c.s.-net. To unify notations, set Gn := G(n) , θ(g) := ∂(g) if p=0 , and

Gn := G[n] , θ(g) := d(g) if p > 0 , set G∞ :=
⋂

n∈N+
Gn , let B :=

⋃
k∈N+

Bk be an ordered

t.f.l.c.s.-net or p-l.c.s.-net according to whether p=0 or p>0 , and set 
(0) := +∞ and 
(p) := p

for p > 0 . The key result we need is

Jennings-Hall theorem (cf. [HB], [Pa] and references therein). Let p := Char (k) .

(a) For all g ∈ G , ηg ∈ Jn ⇐⇒ g ∈Gn . Therefore Dn(G) = Gn for all n ∈ N+ .

(b) For any n ∈ N+ , the set of ordered monomials

Bn :=
{

ηb1
e1 · · · ηbr

er

∣∣∣ bi ∈ Bdi
, ei ∈ N+ , ei < 
(p) , b1 � · · · � br ,

∑r
i=1ei di = n

}
is a k–basis of Jn

/
Jn+1 , and B := {1} ∪⋃n∈N Bn is a k–basis of k̂[G] .

(c)
{

ηb

∣∣ b ∈ Bn

}
is a k–basis of the n–th graded summand kG ∩ (Jn

/
Jn+1

)
of the graded

restricted Lie algebra kG , and
{

ηb

∣∣ b ∈ B
}

is a k–basis of kG .

(d)
{

ηb

∣∣ b ∈ B1

}
is a minimal set of generators of the (restricted) Lie algebra kG .

(e) The map k⊗ZLp(G) −→ kG , g �→ ηg , is an isomorphism of graded restricted Lie algebras.

Therefore k̂[G] ∼= U(k ⊗Z Lp(G)
)

as Hopf algebras.

(f) J∞ = Span
({

ηg

∣∣ g ∈ G∞
})

, whence k[G]∨ ∼= ⊕
g∈G/G∞k · g ∼= k

[
G
/
G∞

]
. �

Recall that A
[
x, x−1

]
(for any A) has A–basis

{
(x−1)nx−[n/2]

∣∣n ∈ N
}

, where [q] is the integer

part of q ∈ Q . Then from Jennings-Hall theorem and (5.2) we argue

Proposition B. Let χg := �−θ(g)ηg , for all g ∈ {G} \ {1} . Then

R[G]∨ =
(⊕

bi∈B, 0<ei<�(p)
r∈N, b1�···�br

R · χ e1

b1
b
−[e1/2]
1 · · ·χ er

br
b−[er/2]
r

)⊕
R
[
�−1

] · J∞ =

=
(⊕

bi∈B, 0<ei<�(p)
r∈N, b1�···�br

R · χ e1
b1

b
−[e1/2]
1 · · ·χ er

br
b−[er/2]
r

)⊕(∑
γ∈G∞R

[
�−1

] · ηγ

)
;

If J∞=Jn for some n∈N (iff G∞= Gn) we can drop the factors b
−[e1/2]
1 , . . . , b

−[er/2]
r . �

Poisson groups from k[G]. The previous discussion attached to the abstract group G the (maybe

restricted) Lie algebra kG which, by Jennings-Hall theorem, is just the scalar extension of the Lie

ring LChar(k) associated to G via the central series of the Gn’s; in particular the functor G �→ kG is

one considered since long in group theory. Now, by Theorem 5.8(d) we know that
(
R[G]∨

)′
is a

QFA, with
(
R[G]∨

)′∣∣∣
�=0

= F
[
ΓG

]
for some connected Poisson group ΓG . This defines a functor
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G �→ ΓG from abstract groups to connected Poisson groups, of dimension zero and height 1 if p > 0 ;

in particular, this ΓG is a new invariant for abstract groups.

The description of R[G]∨ in Proposition B above leads us to an explicit description of
(
R[G]∨

)′
,

hence of
(
R[G]∨

)′∣∣∣
�=0

= F
[
ΓG

]
and of ΓG . Indeed direct inspection gives δn

(
χg

)
= �(n−1)θ(g)χ ⊗n

g ,

so ψg := � χg = �1−θ(g)ηg ∈ (R[G]∨
)′ \ �

(
R[G]∨

)′
for each g ∈ G \ G∞ , whilst for γ ∈ G∞ we

have ηγ ∈ J∞ which implies ηγ ∈ (R[G]∨
)′

and even ηγ ∈ ⋂n∈N �n
(
R[G]∨

)′
. Thus

(
R[G]∨

)′
is

generated by
{

ψg

∣∣ g ∈ G \ {1}} ∪ { ηγ

∣∣ γ ∈ G∞
}

. Moreover, g = 1 + �θ(g)−1ψg ∈ (R[G]∨
)′

for

every g ∈ G\G∞ , and γ = 1+(γ−1) ∈ 1+J∞ ⊆ (
R[G]∨

)′
for γ ∈ G∞ . This and the previous

analysis along with Proposition B prove next result, which in turn is the basis for Theorem D below.

Proposition C.(
R[G]∨

)′
=
(⊕

bi∈B, 0<ei<�(p)
r∈N, b1�···�br

R · ψ e1

b1
b
−[e1/2]
1 · · ·ψ er

br
b−[er/2]
r

)⊕
R
[
�−1

] · J∞ =

=
(⊕

bi∈B, 0<ei<�(p)
r∈N, b1�···�br

R · ψ e1
b1

b
−[e1/2]
1 · · ·ψ er

br
b−[er/2]
r

)⊕(∑
γ∈G∞R

[
�−1

] · ηγ

)
.

In particular,
(
R[G]∨

)′
= R[G] if and only if G2 = {1} = G∞ . If in addition J∞ = Jn for

some n∈N (iff G∞ = Gn) then we can drop the factors b
−[e1/2]
1 , . . . , b

−[er/2]
r . �

Theorem D. Let xg := ψg mod �
(
R[G]∨

)′
, zg := g mod �

(
R[G]∨

)′
for all g �= 1 , and

B1 :=
{

b ∈B
∣∣ θ(b) = 1

}
, B> :=

{
b ∈B

∣∣ θ(b) > 1
}

.

(a) If p = 0 , then F
[
ΓG

]
=
(
R[G]∨

)′∣∣∣
�=0

is a polynomial/Laurent polynomial algebra, namely

F
[
ΓG

]
= k

[{xb}b∈B>
∪ {zb

±1
}

b∈B1

]
, the xb’s being primitive and the zb’s being group-like. In

particular ΓG
∼= (

G×B>
a

)×(G×B1
m

)
as algebraic groups, i.e. ΓG is a (pro)affine space times a torus.

(b) If p > 0 , then F
[
ΓG

]
=
(
R[G]∨

)′∣∣∣
�=0

is a truncated polynomial/Laurent polynomial

algebra, namely F
[
ΓG

]
= k

[{xb}b∈B>
∪ {zb

±1
}

b∈B1

]/({x p
b }b∈B> ∪ {z p

b − 1}) , the xb’s being

primitive and the zb’s being group-like. In particular ΓG
∼= (

αp
×B>

)× (µp
×B1
)

as algebraic groups

of dimension zero and height 1.

(c) The Poisson group ΓG has cotangent Lie bialgebra kG , that is coLie (ΓG) = kG .

Proof. (a) The very definitions give ∂(g 
 ) ≥ ∂(g) + ∂(
 ) for all g, 
 ∈ G , so that [ψg, ψ�

]
=

�1−∂(g)−∂(�)+∂((g,�)) ψ(g,�) g 
 ∈ � · (R[G]∨
)′

, which proves (directly) that
(
R[G]∨

)′∣∣∣
�=0

is com-

mutative! Moreover, the relation 1 = g−1 g = g−1
(
1 + �∂(g)−1ψg

)
(for any g ∈ G ) yields

zg−1 = zg
−1 iff ∂(g) = 1 and zg−1 = 1 iff ∂(g) > 1 . Noting also that J∞ ≡ 0 mod �

(
R[G]∨

)′
and

g = 1 + �∂(g)−1ψg ≡ 1 mod �
(
R[G]∨

)′
for g ∈ G \G∞ , and also γ = 1 + (γ − 1) ∈ 1 +J∞ ≡ 1

mod �
(
R[G]∨

)′
for γ ∈ G∞ , Proposition C gives

F
[
ΓG

]
=
(
R[G]∨

)′∣∣∣
�=0

=
(⊕

bi∈B>, ei∈N+

r∈N, b1�···�br

k · x e1
b1

· · ·x er
br

)⊕(⊕
bi∈B1, ai∈Z

s∈N, b1�···�bs

k · z a1
b1

· · · z as
bs

)
so F

[
ΓG

]
is a polynomial-Laurent polynomial algebra as claimed. Similarly ∆(zg) = zg ⊗ zg for all

g ∈ G and ∆(xg) = xg ⊗ 1 + 1⊗ xg iff ∂(g) > 1 ; so the zb’s are group-like and the xb’s primitive.
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RENCONTRES MATHÉMATIQUES DE GLANON 2002 CONTRIBUTION II

(b) The definition of d implies d(g 
 ) ≥ d(g) + d(
 ) (g, 
 ∈ G), whence we get [ψg, ψ�] =

�1−d(g)−d(�)+d((g,�)) ψ(g,�) g 
 ∈ � · (R[G]∨
)′

, proving that
(
R[G]∨

)′∣∣∣
�=0

is commutative. In addi-

tion d(gp) ≥ p d(g) , so ψ p
g = � p (1−d(g)) η p

g = � p−1+d(gp)−p d(g) ψgp ∈ � · (R[G]∨
)′

, whence(
ψ p

g

∣∣
�=0

)p
= 0 inside

(
R[G]∨

)′∣∣∣
�=0

= F
[
ΓG

]
, which proves that ΓG has dimension 0 and height

1. Finally bp = (1 + ψb)
p = 1 + ψb

p ≡ 1 mod �
(
R[G]∨

)′
for all b ∈ B1 , so b−1 ≡ bp−1

mod �
(
R[G]∨

)′
. Thus letting xg := ψg mod �

(
R[G]∨

)′
(for g �=1) we get

F
[
ΓG

]
=
(
R[G]∨

)′∣∣∣
�=0

=
(⊕

bi∈B>, 0<ei<p
r∈N, b1�···�br

k · x e1
b1

· · ·x er
br

)⊕(⊕
bi∈B1, 0<ei<p
s∈N, b1�···�bs

k · z e1
b1

· · · z es
bs

)
just like for (a) and also taking care that zb = xb + 1 and z p

b = 1 for b ∈ B1 . Therefore(
R[G]∨

)′∣∣∣
�=0

is a truncated polynomial/Laurent polynomial algebra as claimed. The properties of

the xb’s and the zb’s w.r.t. the Hopf structure are then proved like for (a) again.

(c) The augmentation ideal me of
(
R[G]∨

)′∣∣∣
�=0

= F
[
ΓG

]
is generated by {xb}b∈B ; then

�−1 [ψg, ψ�

]
= � θ((g,�))−θ(g)−θ(�) ψ(g,�)

(
1+� θ(g)−1ψg

) (
1+� θ(�)−1ψ�

)
by the previous computation,

whence at � = 0 one has
{
xg , x�

} ≡ x(g,�) mod m 2
e if θ

(
(g, 
 )

)
= θ(g)+θ(
 ) , and

{
xg , x�

} ≡
0 mod m 2

e if θ
(
(g, 
 )

)
> θ(g)+θ(
 ) . This means that the cotangent Lie bialgebra me

/
m 2

e of ΓG

is isomorphic to kG , as claimed. �

Remarks: (a) Theorem D claims that the connected Poisson group K�
G := ΓG is dual to kG in the

sense of §1.1. Since R[G]∨
∣∣∣
�=0

= U(kG) and
(
R[G]∨

)′∣∣∣
�=0

= F
[
K�

G

]
, this gives a close analogue,

in positive characteristic, of the second half of Theorem 2.2(c).

(b) Theorem D provides functorial recipes to attach to each abstract group G and each field k
a connected Abelian algebraic Poisson group over k, namely G �→ ΓG , explicitly described as

algebraic group and such that coLie (K�
G) = kG . Every such ΓG (for given k) is then an invariant of

G , a new one to the author’s knowledge. Indeed, it is perfectly equivalent to the well-known invariant

kG (over the same k), because clearly G1
∼= G2 implies kG1

∼= kG2 , whereas kG1
∼= kG2 implies

that G1 and G2 are isomorphic as algebraic groups — by Theorem D(a–b) — and bear isomorphic

Poisson structures — by part (c) of Theorem D — whence G1
∼= G2 as algebraic Poisson groups.

The case of Ak(G) . Let’s now dwell upon H := Ak(G) , for a finite group G .

Let A be a commutative unital ring, and k, R := k[�] be as before. Since AA(G) := A[G]∗ , we

have A[G] = AA(G)∗ , so there is a perfect Hopf pairing AA(G) × A[G] −→ A . Our first result is

Theorem E. AR(G)∨ = R · 1 ⊕ R
[
�−1

]
J =

(
AR(G)∨

)′
, Ak(G)∨ = k·1 , Âk(G) = AR(G)∨

∣∣∣
�=0

=

k · 1 = U(0) and
(
AR(G)∨

)′∣∣∣
�=0

= k · 1 = F
[{∗}] .

Proof. By construction J := Ker (ε
Ak(G )

) has k–basis
{
ϕg

}
g∈G\{1

G
} ∪

{
ϕ1G

− 1
Ak(G )

}
, and since

ϕg = ϕg
2 for all g and (ϕ1G

−1)2 = −(ϕ1G
−1) we have J = J∞ , so Ak(G)∨ = k ·1 and

Âk(G) = k · 1 . Similarly, AR(G)∨ is generated by
{
�−1ϕg

}
g∈G\{1

G
} ∪ {�−1(ϕ1G

−1
AR(G )

)
}

;

moreover, J = J∞ implies �nJ ⊆ AR(G)∨ for all n , whence AR(G)∨ = R 1 ⊕ R[�−1]J .
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Then JAR(G)∨ = R
[
�−1

]
J ⊆ � AR(G) , which implies

(
AR(G)∨

)′
= AR(G)∨ : in particular,(

AR(G)∨
)′∣∣∣

�=0
= AR(G)∨

∣∣∣
�=0

= k · 1 , as claimed. �

Poisson groups from Ak(G) . Now we look at AR(G)′, Ak(G)′ and Ãk(G) . By construction AR(G)

and R[G] are in perfect Hopf pairing, and are free R–modules of finite rank. In this case, using a

general result about the relation between Drinfeld’s functors and Hopf pairings (namely, Proposition

4.4 in [Ga5]) one finds AR(G)′ =
(
R[G]∨

)•
=
(
R[G]∨

)∗
: thus AR(G)′ is the dual Hopf algebra

to R[G]∨. Then from Proposition B we can argue an explicit description of AR(G)′, whence also

of
(
AR(G)′

)∨
. Now, in proving Theorem 3.9(g) one also shows that Ak(G)′ =

(
J ∞

k[G]

)⊥
; therefore

there is a perfect filtered Hopf pairing k[G]∨ × Ak(G)′ −→ k and a perfect graded Hopf pairing

Ãk(G) × k̂[G]−→ k . Thus Ak(G)′∼= (k[G]∨
)∗

as filtered Hopf algebras and Ãk(G) ∼= (
k̂[G]

)∗
as

graded Hopf algebras. If p = 0 then J = J∞, as each g ∈ G has finite order and gn = 1 implies

g ∈ G∞ : then k[G]∨ = k · 1 = k̂[G] , so Ak(G)′ = k · 1 = Ãk(G) . If p > 0 instead, this

analysis gives Ãk(G) =
(
k̂[G]

)∗
=
(
u(kG)

)∗
= F [KG] , where KG is a connected Poisson group

of dimension 0, height 1 and tangent Lie bialgebra kG . Thus

Theorem F.

(a) There is a second functorial recipe to attach to each finite abstract group a connected algebraic

Poisson group of dimension zero and height 1 over any field k with Char (k) > 0 , namely G �→
KG := Spec

(
Ãk(G)

)
. This KG is Poisson dual to ΓG of Theorem D in the sense of §1.1, in that

Lie (KG) = kG = coLie (ΓG) .

(b) If p := Char (k) > 0 , then
(
AR(G)′

)∨∣∣∣
�=0

= u
(
k×
G

)
= S

(
k×
G

)/({
xp
∣∣ x ∈ k×

G

})
.

Proof. Claim (a) is the outcome of the discussion above. Part (b) instead requires an explicit de-

scription of
(
AR(G)′

)∨
. Since AR(G)′ ∼= (

R[G]∨
)∗

, from Proposition B we get AR(G)′ =(⊕
bi∈B, 0<ei<p
r∈N, b1�···�br

R · ρe1,...,er

b1,...,br

)
where each ρe1,...,er

b1,...,br
is defined by〈

ρe1,...,er

b1,...,br
, χ ε1

β1
β

−[ε1/2]
1 · · ·χ εs

βs
β

−[εs/2]
s

〉
= δr,s

∏r
i=1 δbi,βi

δei,εi

(for all bi, βj ∈ B and 0 < ei, εj < p ). Now, using notation of §1.3, K∞ ⊆ K ′ for any K ∈ HA ,

whence K ′ = π−1
(
K

′ )
where π : K −� K

/
K∞ =: K is the canonical projection. So let K :=

R[G]∨ , H := AR(G)′ ; Proposition B gives K∞ = R
[
�−1

] · J∞ and provides at once a description

of K ; from this and the previous description of H one sees also that in the present case K∞ is

exactly the right kernel of the natural pairing H ×K −→ R , which is perfect on the left, so that the

induced pairing H × K −→ R is perfect. By construction its specialization at � = 0 is the natural

pairing F [KG] × u(kG) −→ k , which is perfect too. Then one applies Proposition 4.4(c) of [Ga5]

(with K playing the rôle of K therein), which yields K
′
=
(
H∨)• =

((
AR(G)′

)∨)•
. By construction

K
′
=
(
R[G]∨

)′/(
R
[
�−1

]·J∞) , and Proposition C describes the latter as K
′
=
(⊕

bi∈B, 0<ei<p
r∈N, b1�···�br

R·

ψ
e1

b1
· · ·ψ er

br

)
, where ψbi

:= ψbi
mod R

[
�−1

] · J∞ for all i ; since K
′
=
((

AR(G)′
)∨)•

and
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ψg = �+1χg , this yields
(
AR(G)′

)∨
=
(⊕

bi∈B, 0<ei<p
r∈N, b1�···�br

R ·�−P
i eid(bi)ρe1,...,er

b1,...,br

) ∼= (
K

′)∗
, whence

we get
(
AR(G)′

)∨∣∣∣
�=0

∼= (
K

′)∗∣∣∣
�=0

=
(
K ′∣∣

�=0

)∗
=
((

R[G]∨
)′∣∣

�=0

)∗ ∼= F
[
ΓG

]∗
= u

(
k×
G

)
=

S
(
k×
G

)/({
xp
∣∣ x ∈ k×

G

})
as claimed, the latter identity being trivial (for k ×

G is Abelian). �

Remarks: (a) This KG is another invariant for G, but again equivalent to kG .

(b) Theorem F (b) is a positive characteristic analogue for F�[G] = AR(G)′ of the first half of

Theorem 2.2(c).

Examples:

(1) Finite Abelian p –groups. Let p be a prime number and G := Zpe1 × Zpe2 × · · · × Zpek

(k, e1, . . . , ek ∈ N ), with e1 ≥ e2 ≥ · · · ≥ ek . Let k be a field with Char (k) = p > 0 , and

R := k[�] as above, so that k[G]� = R[G] .

First, kG is Abelian, because G is. Let gi be a generator of Zpei (for all i ), identified with its

image in G . Since G is Abelian we have G[n] = Gpn
(for all n ), and an ordered p-l.c.s.-net is B :=⋃

r∈N+
Br with Br :=

{
g pr

1 , g pr

2 , . . . , g pr

jr

}
where jr is uniquely defined by ejr > r , ejr+1 ≤ r .

Then kG has k–basis
{

η
gpsi

i

}
1≤i≤k; 0≤si<ei

, and minimal set of generators (as a restricted Lie

algebra)
{

ηg1 , ηg2 , . . . , ηgk

}
, for the p–operation of kG is

(
η

gps

i

)[p]
= η

gps+1

i

, and the order of

nilpotency of each ηgi
is exactly pei , i.e. the order of gi . In addition J∞ = {0} so k[G]∨ = k[G] .

The outcome is k[G]∨= k[G] and

k̂[G] = u(kG) = U(kG)

/({(
η

gps

i

)p − η
gps+1

i

}0≤s<ei

1≤i≤k

⋃ {(
η

gpei−1

i

)p
}

1≤i≤k

)
whence k̂[G] ∼= k[x1, . . . , xk]

/({
xpei

i

∣∣∣ 1 ≤ i ≤ k
})

, via η
gps

i
�→ x ps

i (for all i, s ).

As for k[G]∨� , for all r < ei we have d
(
gpr

i

)
= pr and so χ

gpr

i
= �−pr(

gpr

i −1
)

and ψ
gpr

i
=

�1−pr(
gpr

i −1
)

; since G[∞] = {1} (or, equivalently, J∞ = {0} ) and everything is Abelian, from

the general theory we conlude that both k[G] ∨� and
(
k[G]∨�

)′
are truncated-polynomial algebras, in

the χ
gpr

i
’s and in the ψ

gpr

i
’s respectively, namely

k[G]�
∨ = k[�]

[{
χ

gps

i

}
1≤i≤k ; 0≤s<ei

] ∼= k[�]
[
y1, . . . , yk

]/({
ypei

i

∣∣∣ 1 ≤ i ≤ k
})

(
k[G]∨�

)′
= k[�]

[{
ψ

gps

i

}
1≤i≤k ; 0≤s<ei

] ∼= k[�]
[{

zi,s

}
1≤i≤k ; 0≤s<ei

]/({
zi,s

p
∣∣∣ 1 ≤ i ≤ k

})
via the isomorphisms given by χ

gps

i
�→ y ps

i and ψ
gps

i
�→ zi,s (for all i, s ). When e1 > 1 this

implies
(
k[G]∨�

)′ � k[G]� , that is a counterexample to Theorem 2.2(b). Setting ψ
gps

i
:= ψ

gps

i

mod �
(
k[G]∨�

)′
(for all 1 ≤ i ≤ k , 0 ≤ s < ei ) we have

F
[
K�

G

]
=
(
k[G]∨�

)′∣∣∣
�=0

= k
[{

ψ
gps

i

}0≤s<ei

1≤i≤k

] ∼= k
[{

wi,s

}0≤s<ei

1≤i≤k

]/({
wp

i,s

∣∣∣ 1≤ i≤k
})

(via ψ
gps

i
�→ wi,s ) as a k–algebra. The Poisson bracket trivial, and the wi,s’s are primitive for s > 1

and ∆(wi,1) = wi,1 ⊗ 1 + 1 ⊗ wi,1 + wi,1 ⊗ wi,1 for all 1 ≤ i ≤ k . If instead e1 = · · · = ek = 1 ,
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then
(
k[G]∨�

)′
= k[G]� ; this is an analogue of Theorem 2.2(b), though now Char (k) > 0 , in that

k[G]� is a QFA, with k[G]�

∣∣∣
�=0

= k[G] = F
[
Ĝ
]

where Ĝ is the group of characters of G . But then

F
[
Ĝ
]

= k[G] = k[G]�

∣∣∣
�=0

=
(
k[G]∨�

)′∣∣∣
�=0

= F
[
K�

G

]
(by our general analysis) so Ĝ can be realized

as a finite, connected, Poisson group-scheme of dimension 0 and height 1 dual to kG , namely K�
G .

Finally, a direct easy calculation shows that — letting χ∗
g := � d(g) (ϕg − ϕ1) ∈ Ak(G)′� and

ψ∗
g := � d(g)−1 (ϕg − ϕ1) ∈

(
Ak(G)′

)∨
�

(for all g ∈ G \ {1} ) — we have also

Ak(G) ′� = k[�]
[{

χ∗
gps

i

}0≤s<ei

1≤i≤k

] ∼= k[�]
[{

Yi,j

}0≤s<ei

1≤i≤k

]/({
Y p

i,j

}0≤s<ei

1≤i≤k

)
(
Ak(G) ′

�

)∨
= k[�]

[{
ψ∗

gps

i

}0≤s<ei

1≤i≤k

] ∼= k[�]
[{

Zi,s

}0≤s<ei

1≤i≤k

]/({
Z p

i,s − Zi,s

}0≤s<ei

1≤i≤k

)
via the isomorphisms given by χ∗

gps

i

�→ Yi,s and ψ∗
gps

i

�→ Zi,s , from which one also gets the analo-

gous descriptions of Ak(G) ′
�

∣∣∣
�=0

= Ãk(G) = F [KG] and of
(
Ak(G) ′

�

)∨∣∣∣
�=0

= u(k×G) .

(2) A non-Abelian p –group. Let p be a prime number, k be a field with Char (k) = p > 0 ,

and R := k[�] as above, so that k[G]� = R[G] .

Let G := Zp 	 Zp 2 , that is the group with generators ν, τ and relations νp = 1 , τ p2
= 1 ,

ν τ ν−1 = τ 1+p . In this case, G[2] = · · · = G[p ] =
{
1, τp

}
, G[p+1] = {1} , so we can take

B1 = {ν , τ } and Bp =
{
τp
}

to form an ordered p-l.c.s.-net B := B1 ∪ Bp w.r.t. the ordering

ν � τ � τ p . Noting also that J∞ = {0} (for G[∞] = {1} ), we have

k[G]�
∨ =

⊕p−1
a,b,c=0 k[�] · χ a

ν χ b
τ χ c

τp =
⊕p−1

a,b,c=0 k[�] �−a−b−c p · (ν − 1)a (τ − 1)b (τ p − 1
)c

as k[�]–modules, since d(ν) = 1 = d(τ) and d
(
τp
)
) = p , with ∆(χg) = χg ⊗ 1 + 1 ⊗ χg +

�d(g) χg ⊗ χg for all g ∈ B . As a direct consequence we have also⊕p−1
a,b,c=0 k · χν

a χτ
b χτp

c = k[G]�
∨
∣∣∣
�=0

∼= k̂[G] =
⊕p−1

a,b,c=0 k · ην
a ητ

b ητp
c .

The two relations νp = 1 and τ p2
= 1 within G yield trivial relations inside k[G] and k[G]� ;

instead, the relation ν τ ν−1 = τ 1+p turns into [ην , ητ ] = ητp ·τ ν , which gives [χν , χτ ] = �p−2 χτp ·
τ ν in k[G]�

∨. Therefore [ χν , χτ ] = δp,2 χτp . Since [ χτ , χτp ] = 0 = [ χν , χτp ] (because

ν τp ν−1 =
(
τ 1+p

)p
= τp+p2

= τ p ) and {χν , χτ , χτp } is a k–basis of kG = Lp(G) , we conclude

that the latter has trivial or non-trivial Lie bracket according to whether p �= 2 or p = 2 . In

addition, we have the relations χ p
ν = 0 , χ p

τp = 0 and χ p
τ = χτp : these give analogous relations in

k[G]�
∨
∣∣∣
�=0

, which define the p–operation of kG , namely χν
[p ] = 0 , χτp

[p ] = 0 , χτ
[p ] = χτp .

To sum up, we have a complete presentation for R[G]∨ by generators and relations, that is

k[G]�
∨ ∼= k[�]

〈
v1, v2, v3

〉/( v1 v2 − v2 v1 − �p−2 v3 (1 + � v2) (1 + � v1)

v1 v3 − v3 v1 , v p
1 , v p

2 − v3 , v p
3 , v2 v3 − v3 v2

)
via χν �→ v1 , χτ �→ v2 , χτp �→ v3 . Similarly (as a consequence) we have the presentation

k̂[G] = k[G]�
∨
∣∣∣
�=0

∼= k
〈
y1, y2, y3

〉/( y1 y2 − y2 y1 − δp,2 y3 , y p
2 − y3

y1 y3 − y3 y1 , y p
1 , y p

3 , y2 y3 − y3 y2

)
via χν �→ y1 , χτ �→ y2 , χτp �→ y3 , with p–operation as above and the yi’s being primitive.
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Remark: if p �= 2 exactly the same result holds for G = Zp × Zp2 , i.e. kZp�Zp2
= kZp×Zp2

:

this shows that the restricted Lie bialgebra kG may be not enough to recover the group G .

As for
(
k[G]�

∨)′, it is generated by ψν = ν − 1, ψτ = τ − 1, ψτp = �1−p
(
τp − 1

)
, with

relations ψ p
ν = 0 , ψ p

τ = �p−1ψτp , ψ p
τp = 0 , ψν ψτ − ψτ ψν = � p−1ψτp (1 + ψτ ) (1 + ψν) ,

ψτ ψτp − ψτp ψτ = 0 , and ψν ψτp − ψτp ψν = 0 . In particular
(
k[G]�

∨)′ � k[G]� , and(
k[G]�

∨)′ ∼= k[�]
〈
u1, u2, u3

〉/( u1 u3 − u3 u1 , u p
2 − �1−p u3 , u2 u3 − u3 u2

u p
1 , u1 u2 − u2 u1 − � p−1 u3 (1 + u2) (1 + u1) , u p

3

)
via ψν �→ u1 , ψτ �→ u2 , ψτp �→ u3 . Letting z1 := ψν

∣∣
�=0

+1 , z2 := ψτ

∣∣
�=0

+1 and x3 := ψτp

∣∣
�=0

this gives
(
k[G]�

∨)′∣∣∣
�=0

= k
[
z1, z2, x3

]/(
z p
1 −1, z p

2 −1, x p
3

)
as a k–algebra, with the zi’s group-like,

x3 primitive (cf. Theorem D (b)), and Poisson bracket given by
{
z1, z2

}
= δp,2 z1 z2 x3 ,

{
z2, x3

}
= 0

and
{
z1, x3

}
= 0 . Thus

(
k[G]�

∨)′∣∣∣
�=0

= F [ΓG] with ΓG
∼= µp ×µp ×αp as algebraic groups, with

Poisson structure such that coLie (ΓG) ∼= kG .

Since G∞ = {1} the general theory ensures that Ak(G)′ = Ak(G) . We leave to the inter-

ested reader the task of computing the filtration D of Ak(G), and consequently describe AR(G)′ ,(
AR(G)′

)∨
, Ãk(G) and the connected Poisson group KG := Spec

(
Ãk(G)

)
.

(3) An Abelian infinite group. Let G = Zn (written multiplicatively with generators e1, . . . , en ),

then k[G] = k[Zn] = k
[
e±1
1 , . . . , e±1

n

]
(the ring of Laurent polynomials). This is the function algebra

of the algebraic group Gm
n — the n–dimensional torus on k — which is exactly the character group

of Zn , thus we get back to the function algebra case.

§ 4 First example: the Kostant-Kirillov structure

4.1 Classical and quantum setting. Let g and g� be as in §3.7, consider g as a Lie bialgebra with

trivial Lie cobracket and look at g� as its dual Poisson group, whose Poisson structure then is exactly

the Kostant-Kirillov one. Take as ground ring R := k[ν] (a PID, hence a 1dD): we shall consider the

primes � = ν and � = ν − 1 , and we’ll find quantum groups at either of them for both g and g� .

To begin with, we assume Char (k) = 0 , and postpone to §4.4 the case Char (k) > 0 .

Let gν := g[ν] = k[ν] ⊗k g , endow it with the unique k[ν]–linear Lie bracket [ , ]ν given by

[x, y]ν := ν [x, y] for all x, y ∈ g , and define

H := Uk[ν](gν) = Tk[ν](gν)
/({

x · y − y · x − ν [x, y]
∣∣ x, y ∈ g

})
the universal enveloping algebra of the Lie k[ν]–algebra gν , endowed with its natural structure of

Hopf algebra. Then H is a free k[ν]–algebra, so that H ∈ HA and HF := k(ν)⊗k[ν]H ∈ HAF (see

§1.3); its specializations at ν = 1 and at ν = 0 are H
/

(ν−1) H = U(g) , as a co-Poisson Hopf

algebra, and H
/

ν H = S(g) = F [g�] , as a Poisson Hopf algebra. In a more suggesting way,
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we can also express this with notation like H
ν→1−−−→U(g) , H

ν→0−−−→F [g�] . So H is a QrUEA at

� := (ν−1) and a QFA at � := ν ; so we’ll consider Drinfeld’s functors for H at (ν−1) and at (ν) .

4.2 Drinfeld’s functors at (ν). Let ( )∨(ν) : HA −→ HA and ( )′(ν) : HA −→ HA be the

Drinfeld’s functors at (ν)
( ∈ Spec

(
k[ν]

) )
. By definitions J := Ker

(
ε : H −→ k[ν]

)
is nothing

but the 2-sided ideal of H := U(gν) generated by gν itself; thus H∨(ν) , which by definition is the

unital k[ν]–subalgebra of HF generated by J∨(ν) := ν−1J , is just the unital k[ν]–subalgebra of HF

generated by gν
∨(ν) := ν−1 gν . Now consider the k[ν]–module isomorphism ( )∨(ν) : gν

∼=−→ gν
∨(ν) :=

ν−1 gν given by z �→ z∨ := ν−1z ∈ gν
∨(ν) for all z ∈ gν ; consider on gν := k[ν]⊗k g the natural Lie

algebra structure (with trivial Lie cobracket), given by scalar extension from g , and push it over gν
∨(ν)

via ( )∨(ν) , so that gν
∨(ν) is isomorphic to gnat

ν (i.e. gν carrying the natural Lie bialgebra structure) as

a Lie bialgebra. Consider x∨, y∨ ∈ gν
∨(ν) (with x, y ∈ gν ): then H∨(ν) � (

x∨ y∨ − y∨ x∨) =

ν−2
(
x y − y x

)
= ν−2 [x, y]ν = ν−2 ν [x, y] = ν−1 [x, y] = [x, y]∨ =:

[
x∨, y∨] ∈ gν

∨(ν) . Therefore

we can conclude at once that H∨(ν) = U
(
gν

∨(ν)
) ∼= U

(
gnat

ν

)
.

As a first consequence,
(
H∨(ν)

)∣∣∣
ν=0

∼= U
(
gnat

ν

)/
ν U

(
gnat

ν

)
= U

(
gnat

ν

/
ν gnat

ν

)
= U(g) , that is

H∨(ν)
ν→0−−−→U(g) , thus agreeing with the second half of Theorem 2.2(c).

Second, look at
(
H∨(ν)

)′(ν) . Since H∨(ν) = U
(
gν

∨(ν)
)

, and δn(η) = 0 for all η ∈ U
(
gν

∨(ν)
)

such

that ∂(η) < n (cf. Lemma 4.2(d) in [Ga5]), it is easy to see that

(
H∨(ν)

)′(ν) =
〈
ν gν

∨(ν)
〉

=
〈
ν ν−1gν

〉
= U(gν) = H

(hereafter 〈S 〉 is the subalgebra generated by S ), so
(
H∨(ν)

)′(ν) = H , which agrees with Theo-

rem 2.2(b). Finally, proceeding as in §3.7 we see that H ′(ν) = U(ν gν) , whence
(
H ′(ν)

)∣∣∣
ν=0

=(
U(ν gν)

)∣∣∣
ν=0

∼= S(gab) = F
[
g�

δ−ab

]
where gab , resp. g�

δ−ab , is simply g , resp. g� , endowed with

the trivial Lie bracket, resp. cobracket, so that
(
H ′(ν)

)∣∣∣
ν=0

∼= S(gab) = F
[
g�

δ−ab

]
has trivial Poisson

bracket. Iterating this procedure one finds that all further images
(
· · · ((H)′(ν)

)′(ν) · · ·
)′(ν)

of the

functor ( )′(ν) applied many times to H are pairwise isomorphic; thus in particular they all have the

same specialization at (ν), namely

((
· · · ((H)′(ν)

)′(ν) · · ·
)′(ν)

)∣∣∣∣
ν=0

∼= S(gab) = F
[
g�

δ−ab

]
.

4.3 Drinfeld’s functors at (ν−1). Now we consider the non-zero prime (ν−1)
(∈ Spec

(
k[ν]

) )
;

let ( )∨(ν−1) : HA −→ HA and ( )′(ν−1) : HA −→ HA be the corresponding Drinfeld’s functors.

Set gν
′(ν−1) := (ν−1) gν , let : gν

∼=−→ gν
′(ν−1) := (ν−1) gν be the k[ν]–module isomorphism given

by z �→ z′ := (ν − 1) z ∈ gν
′(ν−1) for all z ∈ gν , and push over via it the Lie bialgebra structure of

gν to an isomorphic Lie bialgebra structure on gν
′(ν−1) , whose Lie bracket will be denoted by [ , ]∗ .

Notice then that we have Lie bialgebra isomorphisms g ∼= gν

/
(ν−1) gν

∼= gν
′(ν−1)

/
(ν−1) gν

′(ν−1) .

Since H := U(gν) it is easy to see by direct computation that

H ′(ν−1) =
〈
(ν − 1) gν

〉
= U

(
gν

′(ν−1)
)

(4.1)
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where gν
′(ν−1) is seen as a Lie k[ν]–subalgebra of gν . Now, if x′, y′ ∈ gν

′(ν−1) (with x, y ∈ gν ), then

x′ y′ − y′ x′ = (ν − 1)2(x y − y x
)

= (ν − 1)2 [x, y]ν = (ν − 1) [x, y]ν
′ = (ν − 1)

[
x′, y′]

∗ . (4.2)

This and (4.1) show at once that
(
H ′(ν−1)

)∣∣∣
(ν−1)=0

= S
(
gν

′(ν−1)
/
(ν − 1) gν

′(ν−1)

)
as Hopf al-

gebras, and also as Poisson algebras: indeed, the latter holds because the Poisson bracket { , }
of S

(
gν

′(ν−1)
/
(ν − 1) gν

′(ν−1)

)
inherited from H ′(ν−1) (by specialization) is uniquely determined

by its restriction to gν
′(ν−1)

/
(ν − 1) gν

′(ν−1) , and on the latter space we have { , } = [ , ]∗
mod (ν − 1) gν

′(ν−1) (by (4.2)). Finally, since gν
′(ν−1)

/
(ν − 1) gν

′(ν−1) ∼= g as Lie algebras we

have
(
H ′(ν−1)

)∣∣∣
(ν−1)=0

= S(g) = F [g�] as Poisson Hopf algebras, or, in short, H ′(ν−1)
ν→1−−−→F [g�] ,

as prescribed by the “first half” of Theorem 2.2(c).

Second, look at
(
H ′(ν−1)

)∨(ν−1) . Since H ′(ν−1) = U
(
gν

′(ν−1)
)

, the kernel Ker
(
ε : H ′(ν−1) −→

k[ν]
)

=: J ′(ν−1) is just the 2-sided ideal of H ′(ν−1) = U
(
gν

′(ν−1)
)

generated by gν
′(ν−1) . There-

fore
(
H ′(ν−1)

)∨(ν−1) , generated by
(
J ′(ν−1)

)∨(ν−1) := (ν − 1)−1J ′(ν−1) as a unital k[ν]–subalgebra

of
(
H ′(ν−1)

)
F

= HF , is just the unital k[ν]–subalgebra of HF generated by (ν − 1)−1
gν

′(ν−1) =

(ν − 1)−1(ν − 1) gν = gν , that is
(
H ′(ν−1)

)∨(ν−1) = U(gν) = H , confirming Theorem 2.2(b).

Finally, for H∨(ν−1) one has essentially the same feature as in §3.7, and the analysis therein can be

repeated; the final result then will depend on the nature of g , in particular on its lower central series.

4.4 The case of positive characteristic. Let us consider now a field k such that Char (k) = p >

0 . Starting from g and R := k[ν] as in §4.1, define gν like therein, and consider H := Uk[ν](gν) =

UR(gν) . Then we have H
/

(ν−1) H = U(g) = u
(
g[p ]∞

)
as a co-Poisson Hopf algebra and

H
/

ν H = S(g) = F [g�] as a Poisson Hopf algebra; therefore H is a QrUEA at � := (ν−1) (for

u
(
g[p ]∞

)
) and is a QFA at � := ν (for F [g�] ). Now we go and study Drinfeld’s functors for H at

(ν−1) and at (ν).

Exactly the same procedure as before shows again that H∨(ν) = U
(
gν

∨(ν)
)

, from which it follows

that
(
H∨(ν)

)∣∣∣
ν=0

∼= U(g) , i.e. in short H∨(ν)
ν→0−−−→U(g) , which is a result quite “parallel” to

the second half of Theorem 2.2(c). Changes occur when looking at
(
H∨(ν)

)′(ν) : since H∨(ν) =

U
(
gν

∨(ν)
)

= u
((

gν
∨(ν)
)[p ]∞

)
we have δn(η) = 0 for all η ∈ u

((
gν

∨(ν)
)[p ]∞

)
such that ∂(η) < n

w.r.t. the standard filtration of u
((

gν
∨(ν)
)[p ]∞

)
(cf. the proof of Lemma 4.2(d) in [Ga5], which clearly

adapts to the present situation): this implies

(
H∨(ν)

)′(ν) =
〈
ν · (gν

∨(ν)
)[p ]∞

〉 (
⊂ u

(
ν · (gν

∨(ν)
)[p ]∞

) )
which is strictly bigger than H , because we have

〈
ν · (gν

∨(ν)
)[p ]∞

〉
=
〈 ∑

n≥0

ν · (gν
∨(ν)
)[p ]n

〉
=

=
〈
gν + ν1−p

{
xp
∣∣x ∈ gν

}
+ ν1−p2

{
xp2
∣∣∣ x ∈ gν

}
+ · · ·

〉
� U(gν) = H .
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Finally, proceeding as above it is easy to see that H ′(ν) =
〈
ν P

(
U(gν)

)〉
=
〈
ν g[p ]∞

〉
whence,

letting g̃ := ν g and x̃ := ν x for all x ∈ g , we have

H ′(ν) = TR(g̃)

/({
x̃ ỹ − ỹ x̃ − ν2 [̃x, y] , z̃p − νp−1z̃[p ]

∣∣∣ x, y, z ∈ g
})

so that H ′(ν)
ν→0−−−−→ Tk(g̃)

/({
x̃ ỹ − ỹ x̃ , z̃p

∣∣∣ x̃, ỹ, z̃ ∈ g̃
})

= Sk(gab)
/({

zp
∣∣ z ∈ g

})
=

= F [g�
δ−ab]

/({
zp
∣∣ z ∈ g

})
, that is H ′(ν)

∣∣∣
ν=0

∼= F [g�
δ−ab]

/({
zp
∣∣ z ∈ g

})
as Poisson Hopf

algebras, where gab and g�
δ−ab are as above. Therefore H ′(ν) is a QFA (at � = ν ) for a non-reduced,

zero-dimensional algebraic Poisson group of height 1, whose cotangent Lie bialgebra is the vector

space g with trivial Lie bialgebra structure: this again yields somehow an analogue of part (c) of The-

orem 2.2 for the present case. If we iterate, we find that all further images
(
· · · ((H)′(ν)

)′(ν) · · ·
)′(ν)

of the functor ( )′(ν) applied to H are pairwise isomorphic, so that(
· · · ((H)′(ν)

)′(ν) · · ·
)′(ν)

∣∣∣∣
ν=0

∼= S(gab)
/({

zp
∣∣ z ∈ g

})
= F

[
g�

δ−ab

]/({
zp
∣∣ z ∈ g

})
.

Now for Drinfeld’s functors at (ν−1). Up to minor changes, with the same procedure and notations

as in §4.3 we get analogous results. First of all, a result analogous to (4.1) holds, namely H ′(ν−1) =〈
(ν − 1) · P (U(gν)

)〉
=
〈
(ν − 1) (gν)

[p ]∞
〉

=

〈(
(gν)

[p ]∞
)′(ν−1)

〉
, which yields

H ′(ν−1) = TR

((
(gν)

[p ]∞
)′(ν−1)

)/({
x′ y′ − y′ x′ − (ν − 1)

[
x′, y′]∗ , (x′)p − (ν − 1)p−1(x[p ]

)′ ∣∣∣
∣∣∣ x, y ∈ (gν)

[p ]∞
})

and consequently H ′(ν−1)

∣∣∣
(ν−1)=0

∼= Sk(g)
/({

xp
∣∣ x ∈ g

})
= F [g�]

/({
xp
∣∣ x ∈ g

})
as Poisson

Hopf algebras: in a nutshell, H ′(ν−1)
ν→1−−−→F [g�]

/({
xp
∣∣ x ∈ g

})
.

Iterating, one finds again that all
(
· · · ((H)′(ν)

)′(ν−1) · · ·
)′(ν)

are pairwise isomorphic, so(
· · · ((H)′(ν−1)

)′((ν−1) · · ·
)′(ν−1)

∣∣∣∣
(ν−1)=0

∼= S(gab)
/({

zp
∣∣ z∈g

})
= F

[
g�

δ−ab

]/({
zp
∣∣ z∈g

})
.

Further on, one has
(
H ′(ν−1)

)∨(ν−1) =
〈
(ν − 1) (gν)

[p ]∞
〉∨(ν−1)

=
〈
(ν − 1)−1 · (ν − 1) gν

〉
=

=
〈
gν

〉
= UR(gν) =: H , which perfectly agrees with Theorem 2.2(b). Finally, for H∨(ν−1) one has

again the same feature as in §3.7: one has to apply the analysis therein, however the p–filtration in

this case is “harmless”, since it is “encoded” in the standard filtration of U(g). In any case the final

result will depend on the lower central series of g .

Second, we assume in addition that g be a restricted Lie algebra and consider H := uk[ν](gν) =

uR(gν) . In this case we have H
/

(ν − 1) H = u(g) as a co-Poisson Hopf algebra, and H
/

ν H =

S(g)
/({

zp
∣∣ z ∈ g

})
= F [g�]

/({
zp
∣∣ z ∈ g

})
as a Poisson Hopf algebra, which means that H
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is a QrUEA at � := (ν−1) (for u(g) ) and is a QFA at � := ν (for F [g�]
/({

zp
∣∣ z ∈ g

})
). Then

we go and study Drinfeld’s functors for H at (ν − 1) and at (ν) .

As for H∨(ν) , it depends again on the p–operation of g , in short because the I–filtration of uν(g)

depends on the p–filtration of g . In the previous case — i.e. when g = h[p ]∞ for some Lie algebra h —

the solution was plain, because the p–filtration of g is “encoded” in the standard filtration of U(h); but

the general case will be more complicated, and in consequence also the situation for
(
H∨(ν)

)′(ν) , since

H∨(ν) will be different according to the nature of g . Instead, proceeding exactly like before one finds

H ′(ν) =
〈
ν P

(
u(gν)

)〉
=
〈
ν g
〉

, whence, letting g̃ := ν g and x̃ := ν x for all x ∈ g , we have

H ′(ν) = Tk[ν](g̃)

/({
x̃ ỹ − ỹ x̃ − ν2 [̃x, y] , z̃p − νp−1z̃[p ]

∣∣∣ x, y, z ∈ g
})

so that H ′(ν)
ν→0−−−−→ Tk(g̃)

/({
x̃ ỹ − ỹ x̃ , z̃p

∣∣∣ x̃, ỹ, z̃ ∈ g̃
})

= Sk(gab)
/({

zp
∣∣ z ∈ g

})
=

= F [g�
δ−ab]

/({
zp
∣∣ z ∈ g

})
, that is H ′(ν)

∣∣∣
ν=0

∼= F [g�
δ−ab]

/({
zp
∣∣ z ∈ g

})
as Poisson Hopf alge-

bras (using notation as before). Thus H ′(ν) is a QFA (at � = ν ) for a non-reduced, zero-dimensional

algebraic Poisson group of height 1, whose cotangent Lie bialgebra is g with the trivial Lie bialgebra

structure: so again we get an analogue of part of Theorem 2.2(c). Moreover, iterating again one finds

that all
(
· · · ((H)′(ν)

)′(ν−1) · · ·
)′(ν−1)

are pairwise isomorphic, so

(
· · · ((H)′(ν−1)

)′((ν−1) · · ·
)′(ν−1)

∣∣∣∣
(ν−1)=0

∼= S(gab)
/({

zp
∣∣ z∈g

})
= F

[
g�

δ−ab

]/({
zp
∣∣ z∈g

})
.

As for Drinfeld’s functors at (ν − 1), the situation is more similar to the previous case of H =

UR(gν) . First H ′(ν−1) =
〈
(ν − 1) · P (u(gν)

)〉
=
〈
(ν − 1) gν

〉
=:
〈
gν

′(ν−1)
〉

, hence

H ′(ν−1) = TR

(
gν

′(ν−1)

)/({
x′ y′ − y′ x′ − (ν − 1)

[
x′, y′]∗ , (x′)p − (ν − 1)p−1(x[p ]

)′}
x,y∈gν

)
thus again H ′(ν−1)

∣∣∣
(ν−1)=0

∼= Sk(g)
/({

xp
∣∣ x ∈ g

})
= F [g�]

/({
xp

∣∣ x ∈ g
})

as Pois-

son Hopf algebras, that is H ′(ν−1)
ν→1−−−→F [g�]

/({
xp
∣∣ x ∈ g

})
. Iteration then shows that all(

· · · ((H)′(ν)
)′(ν−1) · · ·

)′(ν)

are pairwise isomorphic, so that again(
· · · ((H)′(ν−1)

)′((ν−1) · · ·
)′(ν−1)

∣∣∣∣
(ν−1)=0

∼= S(gab)
/({

zp
∣∣ z∈g

})
= F

[
g�

δ−ab

]/({
zp
∣∣ z∈g

})
.

Further, we have
(
H ′(ν−1)

)∨(ν−1) =
〈
(ν − 1) gν

〉∨(ν−1) =
〈
gν

〉
= uR(gν) =: H , which agrees at

all with Theorem 2.2(b). Finally, H∨(ν−1) again has the same feature as in §3.7: in particular, the out-

come strongly depends on the properties of both the lower central series and of the p–filtration of g .

4.5 The hyperalgebra case. Let k be again a field with Char (k) = p > 0 . Like in §3.11, let

G be an algebraic group (finite-dimensional, for simplicity), and let Hyp (G) :=
(
F [G]◦

)
ε

=
{

φ ∈
F [G]◦

∣∣φ(me
n) = 0 , ∀ n � 0

}
be the hyperalgebra associated to G (see §1.1).
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For each ν ∈ k , let gν :=
(
g , [ , ]ν

)
be the Lie algebra given by g endowed with the rescaled

Lie bracket [ , ]ν := ν [ , ]g . By general theory, the algebraic group G is uniquely determined by

a neighborhood of the identity together with the formal group law uniquely determined by [ , ]g .

Similarly, a neighborhood of the identity of G together with [ , ]ν uniquely determines a new con-

nected algebraic group Gν , whose hyperalgebra Hyp (Gν) is an algebraic deformation of Hyp (G) ;

moreover, Gν is birationally equivalent to G, and for ν �= 0 they are also isomorphic as algebraic

groups, via an isomorphism induced by g ∼= gν , x �→ ν−1x (however, this may not be the case when

ν = 0 ). Note that Hyp (G0) is clearly commutative, because G0 is Abelian: indeed, we have

Hyp (G0) = Sk

(
g(p)∞

)/({
xp
}

x∈g(p)∞

)
= F

[(
g(p)∞

)�]/({
yp
}

y∈g(p)∞

)

where g(p)∞ := Span
({

x(pn)
∣∣∣ x ∈ g , n ∈ N

})
; here as usual x(n) denotes the n–th divided power

of x ∈ g (recall that Hyp (G), hence also Hyp (Gν), is generated as an algebra by all the x(n)’s, some

of which might be zero). So Hyp (G0) = F [Γ ] where Γ is a connected algebraic group of dimension

zero and height 1: moreover, Γ is a Poisson group, with cotangent Lie bialgebra g(p)∞ and Poisson

bracket induced by the Lie bracket of g .

Now think at ν as a parameter in R := k[ν] (as in §4.1), and set H := k[ν] ⊗k Hyp (Gν) . Then

we find a situation much similar to that of §4.1, which we shall shortly describe.

Namely, H is a free k[ν]–algebra, thus H ∈ HA and HF := k(ν)⊗k[ν] H ∈ HAF (see §1.3); its

specialization at ν = 1 is H
/

(ν−1) H = Hyp (G1) = Hyp (G) , and at ν = 0 is H
/

ν H =

Hyp (G0) = F [Γ ] (as a Poisson Hopf algebra), or H
ν→1−−−→Hyp (G) and H

ν→0−−−→F [Γ ] , i.e. H

is a “quantum hyperalgebra” at � := (ν−1) and a QFA at � := ν . Now we study Drinfeld’s functors

for H at � = (ν−1) and at � = ν .

First, a straightforward analysis like in §4.2 yields H∨(ν) ∼= k[ν] ⊗k Hyp (G) (induced by g ∼=
gν , x �→ ν−1x ) whence in particular

(
H∨(ν)

)∣∣∣
ν=0

∼= Hyp (G) , that is H∨(ν)
ν→0−−−→Hyp (G) .

Second, one can also see (essentially, mutatis mutandis, like in §4.2) that
(
H∨(ν)

)′(ν) = H , whence(
H∨(ν)

)′(ν)

∣∣∣
ν=0

= H
∣∣∣
ν=0

= Hyp (G0) = F [Γ ] follows.

At � = (ν − 1) , we can see by direct computation that H ′(ν−1) =
〈(

g(p)∞
)′(ν−1)

〉
where(

g(p)∞
)′(ν−1) := Span

({
(ν − 1)pn

x(pn)
∣∣∣ x ∈ g , n ∈ N

})
. Indeed the structure of H ′(ν−1) depends

only on the coproduct of H , in which ν plays no role; therefore we can do the same analysis as in the

trivial deformation case (see §3.11): the filtration D of Hyp (Gν) is just the natural filtration given by

the order (of divided powers), and this yields the previous description of H ′(ν−1) . At ν = 1 we find

H ′(ν−1)

/
(ν − 1) H ′(ν−1) ∼= Sk

(
g(p)∞

)/({
xp
}

x∈g(p)∞

)
= Hyp (G0) = F [Γ ]
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as Poisson Hopf algebras: in short, H ′(ν−1) is a QFA, at � = ν−1 , for the Poisson group Γ . Similarly

H ′(ν) =
〈(

g(p)∞
)′(ν)

〉
with

(
g(p)∞

)′(ν) := Span
({

νpn
x(pn)

∣∣∣ x ∈g , n ∈ N
})

; therefore

H ′(ν)

/
ν H ′(ν) ∼= Sk

(
g

(p)∞
ab

)/({
xp
}

x∈g(p)∞

)
= F

[
Γab

]
where gab is simply g with trivialized Lie bracket and Γab is the same algebraic group as Γ but

with trivial Poisson bracket: this comes essentially like in §4.2, roughly because
{
ν x , ν y

}
:=(

ν−1[ν x , ν y ]
)∣∣∣

ν=0
=
(
ν−1 · ν3[x, y]g

)∣∣∣
ν=0

=
(
ν · ν [x, y]g

)∣∣∣
ν=0

= 0 (for all x, y ∈ g ).

Finally, we have
(
H ′(ν−1)

)∨(ν−1) =
〈{

(ν−1)pn−1 x(pn)
∣∣∣ x ∈ g , n ∈ N

}〉

 H and

(
H ′(ν)

)∨(ν) =〈{
νpn−1 x(pn)

∣∣∣ x ∈ g , n ∈ N
}〉


 H , by direct computation. For H∨(ν−1) we have the same fea-

tures as in §3.7: the analysis therein can be repeated, with the final upshot depending on the nature of

G (or of g , essentially, in particular on its p–lower central series).

§ 5 Second example: SL2 , SLn and the semisimple case

5.1 The classical setting. Let k be any field of characteristic p ≥ 0 . Let G := SL2(k) ≡ SL2 ;

its tangent Lie algebra g = sl2 is generated by f , h, e (the Chevalley generators) with relations

[h, e] = 2 e, [h, f ] = −2f , [e, f ] = h . The formulas δ(f) = h ⊗ f − f ⊗ h , δ(h) = 0 , δ(e) =

h ⊗ e − e ⊗ h , define a Lie cobracket on g which makes it into a Lie bialgebra, corresponding to

a structure of Poisson group on G. These formulas give also a presentation of the co-Poisson Hopf

algebra U(g) (with the standard Hopf structure). If p > 0 , the p–operation in sl2 is given by e[p ] = 0 ,

f [p ] = 0 , h[p ] = h .

On the other hand, F [SL2] is the unital associative commutative k–algebra with generators a, b, c,

d and the relation ad − bc = 1 , and Poisson Hopf structure given by

∆(a) = a ⊗ a + b ⊗ c , ∆(b) = a ⊗ b + b ⊗ d , ∆(c) = c ⊗ a + d ⊗ c , ∆(d) = c ⊗ b + d ⊗ d

ε(a) = 1 , ε(b) = 0 , ε(c) = 0 , ε(d) = 1 , S(a) = d , S(b) = −b , S(c) = −c , S(d) = a

{a, b} = b a , {a, c} = c a , {b, c} = 0 , {d, b} = −b d , {d, c} = −c d , {a, d} = 2 b c .

The dual Lie bialgebra g∗ = sl2
∗ is the Lie algebra with generators f, h, e , and relations [h, e] = e,

[h, f ] = f, [e, f ] = 0 , with Lie cobracket given by δ(f ) = 2(f ⊗ h − h ⊗ f ), δ(h) = e ⊗ f − f ⊗ e,

δ(e) = 2(h⊗ e− e⊗ h) (we choose as generators f := f ∗ , h := h∗ , e := e∗ , where
{
f ∗, h∗, e∗

}
is

the basis of sl2
∗ which is the dual of the basis {f, h, e} of sl2 ). This again yields also a presentation

of U (sl2
∗) . If p > 0 , the p–operation in sl2

∗ is given by e[p ] = 0 , f [p ] = 0 , h[p ] = h . The simply

connected algebraic Poisson group whose tangent Lie bialgebra is sl2
∗ can be realized as the group of

pairs of matrices (the left subscript s meaning “simply connected”)

sSL2
∗ =

{((
z−1 0

y z

)
,

(
z x

0 z−1

)) ∣∣∣∣∣x, y ∈ k, z ∈ k \ {0}
}

≤ SL2 × SL2 .
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This group has centre Z :=
{
(I, I), (−I,−I)

}
, so there is only one other (Poisson) group sharing

the same Lie (bi)algebra, namely the quotient aSL2
∗ := sSL2

∗
/

Z (the adjoint of sSL2
∗ , as the

left subscript a means). Therefore F
[
sSL2

∗] is the unital associative commutative k–algebra with

generators x, z±1, y, with Poisson Hopf structure given by

∆(x) = x ⊗ z−1 + z ⊗ x , ∆
(
z±1
)

= z±1 ⊗ z±1 , ∆(y) = y ⊗ z−1 + z ⊗ y

ε(x) = 0 , ε
(
z±1
)

= 1 , ε(y) = 0 , S(x) = −x , S
(
z±1
)

= z∓1 , S(y) = −y

{x, y} =
(
z2 − z−2

)/
2 ,

{
z±1, x

}
= ±x z±1 ,

{
z±1, y

}
= ∓ z±1y

(Remark: with respect to this presentation, we have f = ∂y

∣∣
e
, h = z ∂z

∣∣
e
, e = ∂x

∣∣
e
, where e is the

identity element of sSL2
∗ ). Moreover, F

[
aSL2

∗] can be identified with the Poisson Hopf subalgebra

of F
[
sSL2

∗] spanned by products of an even number of generators — i.e. monomials of even degree:

this is generated, as a unital subalgebra, by xz , z±2 , and z−1y .

In general, we shall consider g = gτ a semisimple Lie algebra, endowed with the Lie cobracket

— depending on the parameter τ — given in [Ga1], §1.3; in the following we shall also retain from

[loc. cit.] all the notation we need: in particular, we denote by Q, resp. P , the root lattice, resp. the

weight lattice, of g , and by r the rank of g .

5.2 The3 QrUEAs Uq(g) . We turn now to quantum groups, starting with the sl2 case. Let R be

any 1dD, � ∈ R\{0} a prime such that R
/
� R = k ; moreover, letting q := �+1 we assume that q

be invertible in R, i.e. there exists q−1 = (� + 1)−1 ∈ R . For instance, one can pick R := k[q, q−1]

for an indeterminate q and � := q − 1 , then F (R) = k(q) .

Let Uq(g) = Uq(sl2) be the associative unital F (R)–algebra with (Chevalley-like) generators F ,

K±1, E, and relations

KK−1 = 1 = K−1K , K±1F = q∓2FK±1 , K±1E = q±2EK±1 , EF − FE =
K − K−1

q − q−1
.

This is a Hopf algebra, with Hopf structure given by

∆(F ) = F ⊗ K−1 + 1 ⊗ F , ∆
(
K±1

)
= K±1 ⊗ K±1 , ∆(E) = E ⊗ 1 + K ⊗ E

ε(F ) = 0 , ε
(
K±1

)
= 1 , ε(E) = 0 , S(F ) = −FK, S

(
K±1

)
= K∓1, S(E) = −K−1E .

Then let Uq(g) be the R–subalgebra of Uq(g) generated by F , H :=
K − 1

q − 1
, Γ :=

K − K−1

q − q−1
,

K±1 , E . From the definition of Uq(g) one gets a presentation of Uq(g) as the associative unital

algebra with generators F , H , Γ , K±1, E and relations

KK−1 = 1 = K−1K , K±1H = HK±1 , K±1Γ = ΓK±1 , HΓ = ΓH

(q − 1)H = K − 1 ,
(
q − q−1

)
Γ = K −K−1 , H

(
1 + K−1

)
=
(
1 + q−1

)
Γ , EF − FE = Γ

3In §§5–7 we should use notation Uq−1(g) and Fq−1[G] , after Remark 1.5 (for � = q − 1 ); instead, we write Uq(g)

and Fq[G] to be consistent with the standard notation in use for these quantum algebras.
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K±1F = q∓2FK±1 , HF = q−2FH − (q + 1)F , ΓF = q−2FΓ − (q + q−1
)
F

K±1E = q±2EK±1 , HE = q+2EH + (q + 1)E , ΓE = q+2EΓ +
(
q + q−1

)
E

and with a Hopf structure given by the same formulas as above for F , K±1, and E plus

∆(Γ ) = Γ ⊗ K + K−1 ⊗ Γ , ε(Γ ) = 0 , S(Γ ) = −Γ

∆(H) = H ⊗ 1 + K ⊗ H , ε(H) = 0 , S(H) = −K−1H .

Note also that K = 1 + (q − 1)H and K−1 = K − (q − q−1
)
Γ = 1 + (q − 1)H − (q − q−1

)
Γ ,

hence Uq(g) is generated even by F , H , Γ and E alone. Further, notice also that

Uq(g) = free F (R)–module over
{

F aKzEd
∣∣∣ a, d ∈ N, z ∈ Z

}
(5.1)

Uq(g) = R–span of
{

F aHbΓ cEd
∣∣∣ a, b, c, d ∈ N

}
inside Uq(g) (5.2)

which implies that F (R) ⊗R Uq(g) = Uq(g) . Moreover, definitions imply at once that Uq(g) is

torsion-free, and also that it is a Hopf R–subalgebra of Uq(g) . Therefore Uq(g) ∈ HA , and in fact

Uq(g) is even a QrUEA, whose semiclassical limit is U(g) = U(sl2) , with the generators F , K±1,

H , Γ , E respectively mapping to f , 1, h, h, e ∈ U(sl2) .

It is also possible to define a “simply connected” version of Uq(g) and Uq(g), obtained from the

previous ones — called “adjoint” — as follows. For Uq(g), one adds a square root of K±1, call it L±1,

as new generator; for Uq(g) one adds the new generators L±1 and also D :=
L − 1

q − 1
. Then the same

analysis as before shows that Uq(g) is another quantization (containing the “adjoint” one) of U(g) .

In the general case of semisimple g , let Uq(g) be the Lusztig-like quantum group — over R —

associated to g = gτ as in [Ga1], namely Uq(g) := UM
q,ϕ(g) with respect to the notation in [loc. cit.],

where M is any intermediate lattice such that Q ≤ M ≤ P (this is just a matter of choice, of the

type mentioned in the statement of Theorem 2.2(c)): this is a Hopf algebra over F (R), generated

by elements Fi , Mi, Ei for i = 1, . . . , r =: rank (g) . Then let Uq(g) be the unital R–subalgebra

of Uq(g) generated by the elements Fi , Hi :=
Mi − 1

q − 1
, Γi :=

Ki − K−1
i

q − q−1
, M±1

i , Ei , where the

Ki = Mαi
are suitable product of Mj’s, defined as in [Ga1], §2.2 (whence Ki , K−1

i ∈ Uq(g) ). From

[Ga1], §§2.5, 3.3, we have that Uq(g) is the free F (R)–module with basis the set of monomials{ ∏
α∈Φ+

F fα
α ·

n∏
i=1

Kzi
i · ∏

α∈Φ+

Eeα
α

∣∣∣∣ fα, eα ∈ N , zi ∈ Z , ∀ α ∈ Φ+, i = 1, . . . , n

}
while Uq(g) is the R–span inside Uq(g) of the set of monomials{ ∏

α∈Φ+

F fα
α ·

n∏
i=1

H ti
i ·

n∏
j=1

Γ
cj

j · ∏
α∈Φ+

Eeα
α

∣∣∣∣ fα, ti, cj, eα ∈ N ∀ α ∈ Φ+, i, j = 1, . . . , n

}
(hereafter, Φ+ is the set of positive roots of g , each Eα , resp. Fα , is a root vector attached to α ∈ Φ+,

resp. to −α ∈ (−Φ+), and the products of factors indexed by Φ+ are ordered with respect to a fixed

convex order of Φ+, see [Ga1]), whence (as for n = 2 ) Uq(g) is a free R–module. In this case again

Uq(g) is a QrUEA, with semiclassical limit U(g) .
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5.3 Computation of Uq(g)′ and specialization Uq(g)′
q→1−−−→F [G�] . We begin with the sim-

plest case g = sl2 . From the definition of Uq(g) = Uq(sl2) we have δn(E) = (id − ε)⊗n(∆n(E)
)

=

(id − ε)⊗n

(
n∑

s=1

K⊗(s−1) ⊗ E ⊗ 1⊗(n−s)

)
= (q − 1)n−1H⊗(n−1) ⊗ E from which δn

(
(q − 1)E

) ∈
(q − 1)nUq(g) \ (q − 1)n+1Uq(g) (for all n ∈ N ), whence (q − 1)E ∈ Uq(g)′, whereas E /∈
Uq(g)′. Similarly, (q − 1)F ∈ Uq(g)′, whilst F /∈ Uq(g)′. As for generators H , Γ , K±1, we have

∆n(H) =
∑n

s=1 K⊗(s−1) ⊗ H ⊗ 1⊗(n−s), ∆n
(
K±1

)
=
(
K±1

)⊗n
, ∆n(Γ ) =

∑n
s=1 K⊗(s−1) ⊗ Γ ⊗(

K−1
)⊗(n−s)

, hence for δn = (id − ε)⊗n ◦ ∆n we have δn(H) = (q − 1)n−1 · H⊗n , δn
(
K−1

)
=

(q − 1)n · (−K−1H)
⊗n , δn(K) = (q − 1)n · H⊗n , δn(Γ ) = (q − 1)n−1 ·

n∑
s=1

(−1)n−sH⊗(s−1) ⊗
Γ ⊗ (

HK−1
)⊗(n−s)

for all n ∈ N , so that (q − 1)H , (q − 1)Γ , K±1 ∈ Uq(g)′ \ (q − 1)Uq(g)′ .

Therefore Uq(g)′ contains the subalgebra U ′ generated by (q − 1)F , K, K−1, (q − 1)H , (q − 1)Γ ,

(q− 1)E . On the other hand, using (5.2) a thorough — but straightforward — computation along the

same lines as above shows that any element in Uq(g)′ does necessarily lie in U ′ (details are left to the

reader: everything follows from definitions and the formulas above for ∆n ). Thus Uq(g)′ is nothing

but the subalgebra of Uq(g) generated by Ḟ := (q − 1)F , K, K−1, Ḣ := (q − 1)H , Γ̇ := (q − 1)Γ ,

Ė := (q − 1)E ; notice also that the generator Ḣ is unnecessary, for Ḣ = K − 1 . Then Uq(g)′ can

be presented as the unital associative R–algebra with generators Ḟ , Γ̇ , K±1, Ė and relations

KK−1 = 1 = K−1K, K±1Γ̇ = Γ̇K±1,
(
1 + q−1

)
Γ̇ = K − K−1, ĖḞ − Ḟ Ė = (q − 1)Γ̇

K − K−1 =
(
1 + q−1

)
Γ̇ , K±1Ḟ = q∓2ḞK±1 , K±1Ė = q±2ĖK±1

Γ̇ Ḟ = q−2Ḟ Γ̇ − (q − 1)
(
q + q−1

)
Ḟ , Γ̇ Ė = q+2ĖΓ̇ + (q − 1)

(
q + q−1

)
Ė

with Hopf structure given by

∆
(
Ḟ
)

= Ḟ ⊗ K−1 + 1 ⊗ Ḟ , ε
(
Ḟ
)

= 0 , S
(
Ḟ
)

= −ḞK

∆
(
Γ̇
)

= Γ̇ ⊗ K + K−1 ⊗ Γ̇ , ε
(
Γ̇
)

= 0 , S
(
Γ̇
)

= −Γ̇

∆
(
K±1

)
= K±1 ⊗ K±1 , ε

(
K±1

)
= 1 , S

(
K±1

)
= K∓1

∆
(
Ė
)

= Ė ⊗ 1 + K ⊗ Ė , ε
(
Ė
)

= 0 , S
(
Ė
)

= −K−1Ė .

When q → 1 , a direct computation shows that this gives a presentation of F
[
aSL2

∗], and the

Poisson structure that F
[
aSL2

∗] inherits from this quantization process is exactly the one coming

from the Poisson structure on aSL2
∗ : in fact, there is a Poisson Hopf algebra isomorphism

Uq(g)′
/

(q − 1) Uq(g)′
∼=−−−→F

[
aSL2

∗] (
⊆ F

[
sSL2

∗] )
given by: Ė mod (q − 1) �→ x z , K±1 mod (q − 1) �→ z±2 , Ḣ mod (q − 1) �→ z2 − 1 ,

Γ̇ mod (q − 1) �→ (
z2 − z−2

)/
2 , Ḟ mod (q − 1) �→ z−1y . In other words, Uq(g)′ specializes

to F
[
aSL2

∗] as a Poisson Hopf algebra. Note that this was predicted by Theorem 2.2(c) when

Char (k) = 0 , but our analysis now proves it also for Char (k) > 0 .

Note that we got the adjoint Poisson group dual of G = SL2 , that is aSL2
∗ ; a different choice

of the initial QrUEA leads us to the simply connected one, i.e. sSL2
∗. Indeed, if we start from the
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“simply connected” version of Uq(g) (see §5.2) the same analysis shows that Uq(g)′ is like above but

for containing also the new generators L±1, and similarly when specializing q at 1: thus we get the

function algebra of a Poisson group which is a double covering of aSL2
∗, namely sSL2

∗. So changing

the QrUEA quantizing g we get two different QFAs, one for each of the two connected Poisson

algebraic groups dual of SL2, i.e. with tangent Lie bialgebra sl2
∗ ; this shows the dependence of G�

(here denoted G∗ since g× = g∗ ) in Theorem 2.2(c) on the choice of the QrUEA Uq(g) , for fixed g .

With a bit more careful study, exploiting the analysis in [Ga1], one can treat the general case too:

we sketch briefly our arguments — restricting to the simply laced case, to simplify the exposition —

leaving to the reader the straightforward task of filling in details.

So now let g = gτ be a semisimple Lie algebra, as in §5.1, and let Uq(g) be the QrUEA introduced

in §5.2: our aim again is to compute the QFA Uq(g)′ .

The same computations as for g = sl(2) show that δn(Hi) = (q − 1)n−1 · H⊗n
i and δn(Γi) =

(q − 1)n−1 ·∑n
s=1 (−1)n−sH

⊗(s−1)
i ⊗ Γi ⊗

(
HiK

−1
i

)⊗(n−s)
, which gives

Ḣi := (q − 1)Hi ∈ Uq(g)′ \ (q − 1) Uq(g)′ and Γ̇i := (q − 1) Γi ∈ Uq(g)′ \ (q − 1) Uq(g)′ .

As for root vectors, let Ėγ := (q−1)Eγ and Ḟγ := (q−1)Fγ for all γ ∈ Φ+ : using the same type

of arguments as in [Ga1]4 §5.16, we can prove that Eα �∈ Uq(g)′ but Ėα ∈ Uq(g)′ \ (q − 1) Uq(g)′ .

In fact, let Uq(b+) and Uq(b−) be quantum Borel subalgebras, and UM
ϕ,≥ , UM

ϕ,≥ , UM
ϕ,≤ , UM

ϕ,≤ their

R–subalgebras defined in [Ga1], §2: then both Uq(b+) and Uq(b−) are Hopf subalgebras of Uq(g) .

In addition, letting M ′ be the lattice between Q and P dual of M (in the sense of [Ga1], §1.1, there

exists an F (R)–valued perfect Hopf pairing between Uq(b±) and Uq(b∓) — one built up on M

and the other on M ′ — such that UM
ϕ,≥ =

(
UM′

ϕ,≤
)•

, UM
ϕ,≤ =

(
UM′

ϕ,≥
)•

, UM
ϕ,≥ =

(
UM′

ϕ,≤
)•

, and

UM
ϕ,≤ =

(
UM′

ϕ,≥
)•

. Now,
(
q − q−1

)
Eα ∈ UM

ϕ,≥ =
(
UM′

ϕ,≤
)•

, hence — since UM′
ϕ,≤ is an algebra —

we have ∆
((

q − q−1
)
Eα

)
∈
(
UM′

ϕ,≤ ⊗ UM′
ϕ,≤
)•

=
(
UM′

ϕ,≤
)•

⊗
(
UM′

ϕ,≤
)•

= UM
ϕ,≥ ⊗ UM

ϕ,≥ . Therefore,

by definition of UM
ϕ,≥ and by the PBW theorem for it and for UM′

ϕ,≤ (cf. [Ga1], §2.5) we have that

∆
((

q − q−1
)
Eα

)
is an R–linear combination like ∆

((
q − q−1

)
Eα

)
=
∑

r A
(1)
r ⊗ A

(2)
r in which

the A
(j)
r ’s are monomials in the Mj’s and in the Eγ’s, where Eγ :=

(
q − q−1

)
Eγ for all γ ∈ Φ+ :

iterating, we find that ∆�
((

q − q−1
)
Eα

)
is an R–linear combination

∆�
((

q − q−1
)
Eα

)
=
∑

r A(1)
r ⊗ A(2)

r ⊗ · · · ⊗ A(�)
r (5.3)

in which the A
(j)
r ’s are again monomials in the Mj’s and in the Eγ’s. Now, we distinguish two cases:

either A
(j)
r does contain some Eγ (∈ (q−q−1

)
Uq(g)

)
, thus ε

(
A

(j)
r

)
= A

(j)
r ∈ (q−1) Uq(g) whence

(id− ε)
(
A

(j)
r

)
= 0 ; or A

(j)
r does not contain any Eγ and is only a monomial in the Mt’s, say A

(j)
r =∏n

t=1 Mmt
t : then (id− ε)

(
A

(j)
r

)
=
∏n

t=1 Mmt
t − 1 =

∏n
t=1

(
(q − 1) Ht + 1

)mt − 1 ∈ (q − 1) Uq(g) .

In addition, for some “Q–grading reasons” (as in [Ga1], §3.16), in each one of the summands in (5.3)

4In [Ga1] one assumes Char (k) = 0 : however, this is not necesary for the present analysis.

II-38



FABIO GAVARINI The global quantum duality principle...

the sum of all the γ’s such that the (rescaled) root vectors Eγ occur in any of the factors A
(1)
r , A

(2)
r ,

. . . , A
(n)
r must be equal to α: therefore, in each of these summands at least one factor Eγ does occur.

The conclusion is that δ�

(
Eα

) ∈ (
1 + q−1

)
(q − 1)� Uq(g)⊗� (the factor

(
1 + q−1

)
being there

because at least one rescaled root vector Eγ occurs in each summand of δ�

(
Eα

)
, thus providing a

coefficient
(
q − q−1

)
the term

(
1 + q−1

)
is factored out of), whence δ�

(
Ėα

) ∈ (q − 1)� Uq(g)⊗� .

More precisely, we have also δ�

(
Ėα

) �∈ (q−1)�+1 Uq(g)⊗� , for we can easily check that ∆�
(
Ėα

)
is

the sum of Mα⊗Mα⊗· · ·⊗Mα⊗Ėα plus other summands which are R–linearly independent of this

first term: but then δ�

(
Ėα

)
is the sum of (q − 1)�−1Hα⊗Hα⊗· · ·⊗Hα ⊗ Ėα (where Hα := Mα−1

q−1

is equal to an R–linear combination of products of Mj’s and Ht’s) plus other summands which are

R–linearly independent of the first one, and since Hα ⊗ Hα ⊗ · · · ⊗ Hα ⊗ Ėα �∈ (q − 1)2 Uq(g)⊗�

we can conclude as claimed. Therefore δ�

(
Ėα

) ∈ (q − 1)� Uq(g)⊗� \ (q − 1)�+1 Uq(g)⊗� , whence

we get Ėα := (q − 1)Eα ∈ Uq(g)′ \ (q − 1) Uq(g)′ ∀ α ∈ Φ+ . An entirely similar analysis yields

also Ḟα := (q − 1)Fα ∈ Uq(g)′ \ (q − 1) Uq(g)′ ∀ α ∈ Φ+ .

Summing up, we have found that Uq(g)′ contains the subalgebra U ′ generated by Ḟα , Ḣi , Γ̇i ,

Ėα for all α ∈ Φ+ and all i = 1, . . . , n . On the other hand, using (5.2) a thorough — but straight-

forward — computation along the same lines as above shows that any element in Uq(g)′ must lie in U ′

(details are left to the reader). Thus finally Uq(g)′ = U ′ , so we have a concrete description of Uq(g)′.

Now compare U ′ = Uq(g)′ with the algebra UM
ϕ (g) in [Ga1], §3.4 (for ϕ = 0 ), the latter being

just the R–subalgebra of Uq(g) generated by the set
{

Fα, Mi, Eα

∣∣α ∈ Φ+, i = 1, . . . , n
}

. First

of all, by definition, we have UM
ϕ (g) ⊆ U ′ = Uq(g)′ ; moreover, Ḟα ≡ 1

2
Fα , Ėα ≡ 1

2
Eα ,

Γ̇i ≡ 1
2

(
Ki − K−1

i

)
mod (q − 1)UM

ϕ (g) for all α, i . Then(
Uq(g)′

)
1

:= Uq(g)′
/

(q − 1) Uq(g)′ = UM

ϕ (g)
/

(q − 1)UM

ϕ (g) ∼= F
[
G∗

M

]
where G∗

M is the Poisson group dual of G = Gτ with centre Z(G∗
M) ∼= M

/
Q and fundamental

group π1(G
∗
M

) ∼= P
/
M , and the isomorphism (of Poisson Hopf algebras) on the right is given by

[Ga1], Theorem 7.4 (see also references therein for the original statement and proof). In other words,

Uq(g)′ specializes to F
[
G∗

M

]
as a Poisson Hopf algebra, as prescribed by Theorem 2.2. By the way,

notice that in the present case the dependence of the dual group G� = G∗
M

on the choice of the initial

QrUEA (for fixed g) — mentioned in the last part of the statement of Theorem 2.2(c) — is evident.

By the way, the previous discussion applies as well to the case of g an untwisted affine Kac-Moody

algebra, just replacing quotations from [Ga1] — referring to results about finite Kac-Moody algebras

— with similar quotations from [Ga3] — referring to untwisted affine Kac-Moody algebras.

5.4 The identity
(
Uq(g)′

)∨
= Uq(g) . In this section we check the part of Theorem 2.2(b)

claiming that, when p = 0 , one has H ∈ QrUEA =⇒ (
H ′)∨ = H for H = Uq(g) as above. In

addition, our proof now will work for p > 0 as well. Of course, we start once again from g = sl2 .

Since ε
(
Ḟ
)

= ε
(
Ḣ
)

= ε
(
Γ̇
)

= ε
(
Ė
)

= 0 , the ideal J := Ker
(
ε : Uq(g)′−−→ R

)
is generated

by Ḟ , Ḣ, Γ̇ , and Ė . This implies that J is the R–span of
{

Ḟ ϕḢκΓ̇ γĖη
∣∣∣ (ϕ, κ, γ, η) ∈ N4 \

II-39
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{(0, 0, 0, 0)}
}

. Therefore
(
Uq(g)′

)∨
:=
∑

n≥0

(
(q − 1)−1J

)n

is generated, as a unital R-subalgebra

of Uq(g) , by the elements (q − 1)−1Ḟ = F , (q − 1)−1Ḣ = H , (q − 1)−1Γ̇ = Γ , (q − 1)−1Ė =

E , hence it coincides with Uq(g) , q.e.d. A similar analysis works in the “adjoint” case as well, and

also for the general semisimple or affine Kac-Moody case.

5.5 The quantum hyperalgebra Hyp q(g). Let G be a semisimple (affine) algebraic group,

with Lie algebra g , and let Uq(g) be the quantum group considered in the previous sections. Lusztig

introduced (cf. [Lu1-2]) a “quantum hyperalgebra”, i.e. a Hopf subalgebra of Uq(g) over Z
[
q, q−1

]
whose specialization at q = 1 is exactly the Kostant’s Z–integer form UZ(g) of U(g) from which one

gets the hyperalgebra Hyp (g) over any field k of characteristic p > 0 by scalar extension, namely

Hyp (g) = k⊗Z UZ(g) . In fact, to be precise one needs a suitable enlargement of the algebra given by

Lusztig, which is provided in [DL], §3.4, and denoted by Γ (g). Now we study Drinfeld’s functors (at

� = q−1 ) on Hyp q(g) := R⊗Z[q,q−1] Γ (g) (with R like in §5.2), taking as sample the case g = sl2 .

Let g = sl2 . Let Hyp Z
q (g) be the unital Z

[
q, q−1

]
–subalgebra of Uq(g) (say the one of “adjoint

type” defined like above but over Z
[
q, q−1

]
) generated the “quantum divided powers”

F (n) := F n
/

[n]q! ,

(
K ; c

n

)
:=

n∏
s=1

qc+1−sK − 1

qs − 1
, E(n) := En

/
[n]q!

(for all n ∈ N , c ∈ Z ) and by K−1 , where [n]q! :=
∏n

s=1 [s]q and [s]q =
(
qs − q−s

)/(
q − q−1

)
for all n, s ∈ N . Then (cf. [DL]) this is a Hopf subalgebra of Uq(g), and Hyp Z

q (g)
∣∣∣
q=1

∼= UZ(g) ;

therefore Hyp q(g) := R ⊗Z[q,q−1] Hyp Z
q (g) (for any R like in §5.2, with k := R

/
� R and p :=

Char (k) ) specializes at q = 1 to the k–hyperalgebra Hyp (g). Moreover, among all the
(

K; c
n

)
’s it is

enough to take only those with c = 0 . From now on we assume p > 0 .

Using formulas for the iterated coproduct in [DL], Corollary 3.3 (which uses the opposite coprod-

uct than ours, but this doesn’t matter), and exploiting the PBW-like theorem for Hyp q(g) (see [DL]

again) we see by direct inspection that Hyp q(g)′ is the unital R–subalgebra of Hyp q(g) generated by

K−1 and the “rescaled quantum divided powers” (q − 1)nF (n) , (q − 1)n (K; 0
n

)
and (q − 1)nE(n)

for all n ∈ N . Since [n]q!
∣∣∣
q=1

= n! = 0 iff p
∣∣∣n , we argue that Hyp q(g)′

∣∣∣
q=1

is generated by

the corresponding specializations of (q − 1)ps

F (ps) , (q − 1)ps
(

K; 0
ps

)
and (q − 1)ps

E(ps) for all

s∈N : in particular this shows that the spectrum of Hyp q(g)′
∣∣∣
q=1

has dimension 0 and height 1, and

its cotangent Lie algebra J
/

J 2 — where J is the augmentation ideal of Hyp q(g)′
∣∣∣
q=1

— has basis{
(q−1)ps

F (ps), (q−1)ps
(

K; 0
ps

)
, (q−1)ps

E(ps) mod (q−1) Hyp q(g)′ , mod J 2
∣∣∣ s ∈ N

}
. Fur-

thermore,
(
Hyp q(g)′

)∨
is generated by the elements (q − 1)ps−1F (ps) , (q − 1)ps−1

(
K; 0
ps

)
, K−1

and (q − 1)ps−1E(ps) for all s ∈ N : in particular we have that
(
Hyp q(g)′

)∨ � Hyp q(g) , and(
Hyp q(g)′

)∨∣∣∣
q=1

is generated by the cosets modulo (q − 1) of the previous elements, which do form

a basis of the restricted Lie bialgebra k such that
(
Hyp q(g)′

)∨∣∣∣
q=1

= u(k) .
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We performed the previous study using the “adjoint” version of Uq(g) as starting point: instead,

we can use as well its “simply connected” version, thus obtaining a “simply connected version of

Hyp q(g)” which is defined like before but for using L±1 instead of K±1; up to these changes, the

analysis and its outcome will be exactly the same. Note that all quantum objects involved — namely,

Hyp q(g), Hyp q(g)′ and
(
Hyp q(g)′

)∨
— will strictly contain the corresponding “adjoint” quantum

objects; on the other hand, the semiclassical limit is the same in the case of Hyp q(g) (giving Hyp (g),

in both cases) and in the case of
(
Hyp q(g)′

)∨
(giving u(k), in both cases), whereas the semiclassical

limit of Hyp q(g)′ in the “simply connected” case is a (countable) covering of the “adjoint” one.

The general case of semisimple or affine Kac-Moody g can be dealt with similarly, with analogous

outcome. Indeed, Hyp Z
q (g) is defined as the unital Z

[
q, q−1

]
–subalgebra of Uq(g) (defined like before

but over Z
[
q, q−1

]
) generated by K−1

i and the “quantum divided powers” (in the above sense) F
(n)
i ,(

Ki; c
n

)
, E

(n)
i for all n ∈ N , c ∈ Z and i = 1, . . . , rank (g) (notation of §5.2, but now each divided

power relative to i is built upon qi, see [Ga1]). Then (cf. [DL]) this is a Hopf subalgebra of Uq(g) with

Hyp Z
q (g)

∣∣∣
q=1

∼= UZ(g) , so Hyp q(g) := R ⊗Z[q,q−1] Hyp Z
q (g) (for any R like before) specializes at

q = 1 to the k–hyperalgebra Hyp (g); and among the
(

Ki; c
n

)
’s it is enough to take those with c = 0 .

Again a PBW-like theorem holds for Hyp q(g) (see [DL]), where powers of root vectors are re-

placed by quantum divided powers like F
(n)
α ,

(
Ki; c

n

) · K
−Ent(n/2)
i and E

(n)
α , for all positive roots

α of g (each divided power being relative to qα, see [Ga1]) both in the finite and in the affine

case. Using this and the same type of arguments as in §5.3 — i.e. the perfect graded Hopf pair-

ing between quantum Borel subalgebras — we see by direct inspection that Hyp q(g)′ is the uni-

tal R–subalgebra of Hyp q(g) generated by the K−1
i ’s and the “rescaled quantum divided powers”

(qα − 1)nF
(n)
α , (qi − 1)n (Ki; 0

n

)
and (qα − 1)nE

(n)
α for all n ∈ N . Since [n]qα

!
∣∣∣
q=1

= n! = 0

iff p
∣∣∣n , one argues like before that Hyp q(g)′

∣∣∣
q=1

is generated by the corresponding specializa-

tions of (qα − 1)ps

F
(ps)
α , (qi − 1)ps

(
Ki; 0
ps

)
and (qα − 1)ps

E
(ps)
α for all s ∈ N and all positive

roots α . Again, this shows that the spectrum of Hyp q(g)′
∣∣∣
q=1

has (dimension 0 and) height 1,

and its cotangent Lie algebra J
/

J 2 (where J is the augmentation ideal of Hyp q(g)′
∣∣∣
q=1

) has basis{
(qα−1)ps

F
(ps)
α , (qi−1)ps

(
Ki; 0
ps

)
, (qα−1)ps

E(ps) mod (q−1)Hyp q(g)′ mod J 2
∣∣∣ s ∈ N

}
. More-

over,
(
Hyp q(g)′

)∨
is generated by (qα − 1)ps−1F

(ps)
α , (qi − 1)ps−1

(
Ki; 0
ps

)
, K−1

i and (qα − 1)ps−1E
(ps)
α

for all s , i and α : in particular
(
Hyp q(g)′

)∨ � Hyp q(g) , and
(
Hyp q(g)′

)∨∣∣∣
q=1

is generated by

the cosets modulo (q− 1) of the previous elements, which in fact do form a basis of the restricted Lie

bialgebra k such that
(
Hyp q(g)′

)∨∣∣∣
q=1

= u(k) .

5.6 The QFA Fq[G] . In this and the following sections we pass to look at Theorem 2.2 the other

way round: namely, we start from QFAs and produce QrUEAs.

We begin with G = SLn , with the standard Poisson structure, for which an especially explicit de-

scription of the QFA is available. Namely, let Fq[SLn] be the unital associative R–algebra generated
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by { ρij | i, j = 1, . . . , n } with relations

ρijρik = q ρikρij , ρikρhk = q ρhkρik ∀ j < k, i < h

ρilρjk = ρjkρil , ρikρjl − ρjlρik = (q − q−1) ρilρjk ∀ i < j, k < l

detq(ρij) :=
∑

σ∈Sn
(−q)l(σ)ρ1,σ(1)ρ2,σ(2) · · · ρn,σ(n) = 1 .

This is a Hopf algebra, with comultiplication, counit and antipode given by

∆(ρij) =
∑n

k=1ρik ⊗ ρkj , ε(ρij) = δij , S(ρij) = (−q)i−j detq

(
(ρhk)

k �=i
h �=j

)
for all i, j = 1, . . . , n . Let Fq[SLn] := F (R) ⊗R Fq[SLn] . The set of ordered monomials

M :=

{ ∏
i>j

ρ
Nij

ij

∏
h=k

ρNhk
hk

∏
l<m

ρNlm
lm

∣∣∣∣ Nst ∈ N ∀ s, t ; min
{
N1,1, . . . , Nn,n

}
= 0

}
(5.4)

is an R–basis of Fq[SLn] and an F (R)–basis of Fq[SLn] (cf. [Ga2], Theorem 7.4, suitably adapted to

Fq[SLn] ). Moreover, Fq[SLn] is a QFA (at � = q − 1 ), with Fq[SLn]
q→1−−−→F [SLn] .

5.7 Computation of Fq[G]∨ and specialization Fq[G]∨
q→1−−−→U(g×) . In this section we com-

pute Fq[G]∨ and its semiclassical limit (= specialization at q = 1 ). Note that

M ′ :=

{ ∏
i>j

ρ
Nij

ij

∏
h=k

(ρhk − 1)Nhk
∏
l<m

ρNlm
lm

∣∣∣∣ Nst ∈ N ∀ s, t ; min
{
N1,1, . . . , Nn,n

}
= 0

}
is an R–basis of Fq[SLn] and an F (R)–basis of Fq[SLn]; then, from the definition of the counit,

it follows that M ′ \ {1} is an R–basis of Ker
(
ε : Fq[SLn] −→ R

)
. Now, by definition I :=

Ker
(

Fq[SLn]
ε−−−�R

q �→1−−−�k
)

, whence I = Ker (ε) + (q − 1) · Fq[SLn] ; therefore
(
M ′ \

{1})∪{(q−1) ·1} is an R–basis of I , hence (q − 1)−1I has R–basis (q − 1)−1 ·(M ′ \{1})∪{1} .

The outcome is that Fq[SLn]∨ :=
∑

n≥0

(
(q − 1)−1I

)n

is just the unital R–subalgebra of Fq[SLn]

generated by

{
rij :=

ρij − δij

q − 1

∣∣∣∣ i, j = 1, . . . , n

}
. Then one can directly show that this is a Hopf

algebra, and that Fq[SLn]∨
q→1−−−→U(sln

∗) as predicted by Theorem 2.2. Details can be found in

[Ga2], §§ 2, 4, looking at the algebra F̃q[SLn] considered therein, up to the following changes. The

algebra which is considered in [loc. cit.] has generators
(
1 + q−1

)δij ρij − δij

q − q−1
( i, j = 1, . . . , n )

instead of our rij ’s (they coincide iff i = j ) and also generators ρii = 1+(q−1) rii ( i = 1, . . . , n );

then the presentation in §2.8 of [loc. cit.] must be changed accordingly; computing the specialization

then goes exactly the same, and gives the same result — specialized generators are rescaled, though,

compared with the standard ones given in [loc. cit.], §1.

We sketch the case of n = 2 (see also [FG]).

Using notation a := ρ1,1 , b := ρ1,2 , c := ρ2,1 , d := ρ2,2 , we have the relations

a b = q b a , a c = q c a , b d = q d b , c d = q d c ,

b c = c b , a d − d a =
(
q − q−1

)
b c , a d − q b c = 1
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holding in Fq[SL2] and in Fq[SL2], with

∆(a) = a ⊗ a + b ⊗ c , ∆(b) = a ⊗ b + b ⊗ d , ∆(c) = c ⊗ a + d ⊗ c , ∆(d) = c ⊗ b + d ⊗ d

ε(a) = 1 , ε(b) = 0 , ε(c) = 0 , ε(d) = 1 , S(a) = d , S(b) = −q−1b , S(c) = −q+1c , S(d) = a .

Then the elements H+ := r1,1 =
a − 1

q − 1
, E := r1,2 =

b
q − 1

, F := r2,1 =
c

q − 1
and H− :=

r2,2 =
d − 1

q − 1
generate Fq[SL2]

∨ . Moreover, these generators have relations

H+E = q EH+ + E , H+F = q FH+ + F , EH− = q H−E + E , FH− = q H−F + F ,

EF = FE , H+H− − H−H+ =
(
q − q−1

)
EF , H− + H+ = (q − 1)

(
q EF − H+H−

)
and Hopf operations given by

∆(H+) = H+ ⊗ 1 + 1 ⊗ H+ + (q − 1)
(
H+ ⊗ H+ + E ⊗ F

)
, ε(H+) = 0 , S(H+) = H−

∆(E) = E ⊗ 1 + 1 ⊗ E + (q − 1)
(
H+ ⊗ E + E ⊗ H−

)
, ε(E) = 0 , S(E) = −q−1E

∆(F ) = F ⊗ 1 + 1 ⊗ F + (q − 1)
(
F ⊗ H+ + H− ⊗ F

)
, ε(F ) = 0 , S(F ) = −q+1F

∆(H−) = H− ⊗ 1 + 1 ⊗ H− + (q − 1)
(
H− ⊗ H− + F ⊗ E

)
, ε(H−) = 0 , S(H−) = H+

from which one easily checks that Fq[SL2]
∨ q→1−−−→U(sl2

∗) as co-Poisson Hopf algebras, for a co-

Poisson Hopf algebra isomorphism

Fq[SL2]
∨
/

(q − 1) Fq[SL2]
∨ ∼=−−−→ U(sl2

∗)

exists, given by: H± mod (q − 1) �→ ±h , E mod (q − 1) �→ e , F mod (q − 1) �→ f ; that is,

Fq[SL2]
∨ specializes to U(sl2

∗) as a co-Poisson Hopf algebra, q.e.d.

Finally, the general case of any semisimple group G = Gτ , with the Poisson structure induced

from the Lie bialgebra structure of g = gτ , can be treated in a different way. Following [Ga1], §§5–6,

Fq[G] can be embedded into a (topological) Hopf algebra Uq(g
∗) = UM

q,ϕ(g∗) , so that the image of

the integer form Fq[G] lies into a suitable (topological) integer form UM
q,ϕ(g∗) of Uq(g

∗) . Now, the

analysis given in [loc. cit.], when carefully read, shows that Fq[G]∨ = Fq[G] ∩ UM
q,ϕ(g∗)∨ ; moreover,

the latter (intersection) algebra “almost” coincides — it is its closure in a suitable topology — with

the integer form Fq[G] considered in [loc. cit.]: in particular, they have the same specialization at

q = 1 . Since in addition Fq[G] does specialize to U(g∗), the same is true for Fq[G]∨, q.e.d.

The last point to stress is that, once more, the whole analysis above is valid for p := Char (k) ≥ 0 ,

i.e. also for p > 0 , which was not granted by Theorem 2.2.

5.8 The identity
(
Fq[G]∨

)′
= Fq[G] . In this section we verify the validity of that part of

Theorem 2.2(b) claiming that H ∈ QFA =⇒ (
H∨)′ = H for H = Fq[G] as above; moreover we

show that this holds for p > 0 too. We begin with G = SLn .
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RENCONTRES MATHÉMATIQUES DE GLANON 2002 CONTRIBUTION II

From ∆(ρij) =
n∑

k=1

ρi,k ⊗ ρk,j , we get ∆N (ρij) =
n∑

k1,...,kN−1=1

ρi,k1 ⊗ ρk1,k2 ⊗ · · · ⊗ ρkN−1,j , by

repeated iteration, whence a simple computation yields

δN (rij) =
n∑

k1,...,kN−1=1

(q − 1)−1 · ((q − 1) ri,k1 ⊗ (q − 1) rk1,k2 ⊗ · · · ⊗ (q − 1) rkN−1,j

) ∀ i, j

so that

δN

(
(q − 1)rij

) ∈ (q − 1)NFq[SLn]∨ \ (q − 1)N+1Fq[SLn]∨ ∀ i, j . (5.5)

Now consider M ′ :=

{ ∏
i>j

ρ
Nij

ij

∏
h=k

(ρhk − 1)Nhk
∏
l<m

ρNlm
lm

∣∣∣∣Nst ∈ N ∀ s, t ; mini

{
Ni,i

}
= 0

}
:

since this is an R–basis of Fq[SLn] , we have also that

M ′′ :=

{ ∏
i>j

r
Nij

ij

∏
h=k

rNhk
hk

∏
l<m

rNlm
lm

∣∣∣∣ Nst ∈ N ∀ s, t ; min
{

N1,1, . . . , Nn,n

}
= 0

}

is an R–basis of Fq[SLn]∨. This and (5.5) above imply that
(
Fq[SLn]∨

)′
is the unital R–subalgebra

of Fq[SLn] generated by the set
{

(q − 1)rij

∣∣ i, j = 1, . . . , n
}

; since (q − 1) rij = ρij − δij , the

latter algebra does coincide with Fq[SLn] , as expected.

For the general case of any semisimple group G = Gτ , the result can be obtained again by

looking at the immersions Fq[G] ⊆ Uq(g
∗) and Fq[G] ⊆ UM

q,ϕ(g∗) , and at the identity Fq[G]∨ =

Fq[G] ∩ UM
q,ϕ(g∗)∨ (cf. §5.6). If we go and compute

(
UM

q,ϕ(g∗)∨
)′

(noting that
(UM

q,ϕ(g∗)
)∨

is a

QrUEA), we have to apply the like methods as for Uq(g)′ , thus finding a similar result; this and the

identity Fq[G]∨ = Fq[G] ∩ UM
q,ϕ(g∗)∨ eventually yield

(
Fq[G]∨

)′
= Fq[G] .

Is is worth pointing out once more that the previous analysis is valid for p := Char (k) ≥ 0 ,

i.e. also for p > 0 , so the outcome is stronger than what ensured by Theorem 2.2.

Remark: Formula (5.4) gives an explicit R–basis M of Fq[SL2]. By direct computation one sees

that δn(µ) ∈ Fq[SL2]
⊗n \ (q − 1) Fq[SL2]

⊗n for all µ ∈ M \ {1} and n ∈ N , whence Fq[SL2]
′ =

R ·1 , which implies
(
Fq[SL2]

′)
F

= F (R) ·1 � Fq[SL2] and also
(
Fq[SL2]

′)∨ = R ·1 � Fq[SL2] .

This yields a counterexample to part of Theorem 2.2(b).

5.9 Drinfeld’s functors and L–operators in Uq(g) for classical g . Let now k have zero charac-

teristic, and let g be a finite dimensional semisimple Lie algebra over k whose simple Lie subalgebra

are all of classical type. It is known from [FRT2] that in this case UP
q (g) (where the subscript P

means that we are taking a “simply-connected” quantum group) admits an alternative presentation, in

which the generators are the so-called L–operators, denoted l
(ε)
i,j with ε = ±1 and i, j ranging in a

suitable set of indices (see [FRT2], §2). Now, if we consider instead the subalgebra of UP
q (g) , call it

H , generated by the L–operators over R , we get at once from the very description of the relations

between the l
(ε)
i,j ’s given in [FRT2] that H is a Hopf R–subalgebra of UP

q (g) , and more precisely it is

a QFA for the connected simply-connected dual Poisson group G� .
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When computing H∨, it is generated by the elements (q − 1)−1l
(ε)
i,j ; even more, the elements

(q − 1)−1l
(+)
i,i+1 and (q − 1)−1l

(−)
i+1,i are enough to generate. Now, Theorem 12 in [FRT2] shows that

these latter generators are simply multiples of the Chevalley generators of U P
q (g) (in the sense of

Jimbo, Drinfeld, etc.), by a coefficient of type ±qs
(
1 + q−1

)
for some s ∈ Z : this proves directly

that H∨ is a QrUEA associated to g , that is the dual Lie bialgebra of G�, as prescribed by Theorem

2.2. Conversely, if we start from UP
q (g) , again Theorem 12 of [FRT2] shows that the

(
q − q−1

)−1
l
(ε)
i,j ’s

are quantum root vectors in UP
q (g) . Then when computing UP

q (g)
′
we can shorten a lot the analysis in

§5.3, because the explicit expression of the coproduct on the L–operators given in [FRT2] — roughly,

∆ is given on them by a standard “matrix coproduct” — tells us directly that all the
(
1 + q−1

)−1
l
(ε)
i,j ’s

do belong to UP
q (g)

′, and again by a PBW argument we conclude that UP
q (g)

′ is generated by these

rescaled L–operators, i.e. the
(
1 + q−1

)−1
l
(ε)
i,j .

Therefore, we can say in short that shifting from H to H∨ or from UP
q (g) to UP

q (g)
′ essentially

amounts — up to rescaling by irrelevant factors (in that they do not vanish at q = 1 ) — to switching

from the presentation of UP
q (g) via L–operators (after [FRT2]) to the presentation of Serre-Chevalley

type (after Drinfeld and Jimbo), and conversely. See also [Ga8] for the cases g = gln and g = sln .

5.10 The cases Uq(gln) , Fq[GLn] and Fq[Mn] . In [Ga2], §3.2, a certain algebra Uq(gln) is con-

sidered as a quantization of gln ; due to their strict relationship, from the analysis for sln one argues a

description of Uq(gln)′ and its specialization at q = 1 , and also verifies that
(
Uq(gln)′

)∨
= Uq(gln) .

Similarly, we can consider the unital associative R–algebra Fq[Mn] with generators ρij (i, j =

1, . . . , n ) and relations ρijρik = q ρikρij , ρikρhk = q ρhkρik (for all j < k , i < h ), ρilρjk = ρjkρil ,

ρikρjl − ρjlρik = (q − q−1) ρilρjk (for all i < j , k < l ) — i.e. like for SLn , but for skipping

the last relation. This is the celebrated standard quantization of F [Mn], the function algebra of the

variety Mn of (n × n)–matrices over k : it is a k–bialgebra, whose structure is given by formulas

∆(ρij) =
∑n

k=1 ρik ⊗ ρkj , ε(ρij) = δij (for all i, j = 1, . . . , n ) again, but it is not a Hopf algebra.

The quantum determinant detq(ρij) :=
∑

σ∈Sn
(−q)l(σ)ρ1,σ(1) ρ2,σ(2) · · ·ρn,σ(n) is central in Fq[Mn],

so by standard theory we can extend Fq[Mn] by adding a formal inverse to detq(ρij) , thus getting

a larger algebra Fq[GLn] := Fq[Mn]
[
detq(ρij)

−1] : this is now a Hopf algebra, with antipode

S(ρij) = (−q)i−j detq

(
(ρhk)

k �=i
h �=j

)
(for all i, j = 1, . . . , n ), the well-known standard quantization of

F [GLn], due to Manin (see [Ma]).

Applying Drinfeld’s functor ( )∨ w.r.t. � := (q − 1) at Fq[GLn] we can repeat step by step the

analysis made for Fq[SLn]: then Fq[GLn]∨ is generated by the rij’s and (q − 1)−1(detq(ρij) − 1
)

,

the sole real difference being the lack of the relation detq(ρij) = 1 , which implies one relation less

among the rij’s inside Fq[GLn]∨, hence also one relation less among their cosets modulo (q−1). The

outcome is pretty similar, in particular Fq[GLn]∨
∣∣∣
q=1

= U(gln
∗) (cf. [Ga2], §6.2). Even more, we

can do the same with Fq[Mn] : things are even easier, because we have only the rij’s alone which

generate Fq[Mn]∨, with no relation coming from the relation detq(ρij) = 1 ; nevertheless at q = 1

the relations among the cosets of the rij’s are exactly the same as in the case of Fq[GLn]∨
∣∣∣
q=1

, whence
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we get Fq[Mn]∨
∣∣∣
q=1

= U(gln
∗) . In particular, Fq[Mn]∨

∣∣∣
q=1

is a Hopf algebra, although both Fq[Mn]

and Fq[Mn]∨ are only bialgebras, not Hopf algebras: this gives a non-trivial explicit example of how

Theorem 2.2 may be improved. The general result in this sense is Theorem 4.9 in [Ga5].

Finally, an analysis of the relationship between Drinfeld functors and L–operators about UP
q (gln)

can be done again, exactly like in §7.9, leading to entirely similar results.

§ 6 Third example: the three-dimensional Euclidean group E2

6.1 The classical setting. Let k be any field of characteristic p ≥ 0 . Let G := E2(k) ≡ E2 ,

the three-dimensional Euclidean group; its tangent Lie algebra g = e2 is generated by f , h , e with

relations [h, e] = 2e , [h, f ] = −2f , [e, f ] = 0 . The formulas δ(f) = h ⊗ f − f ⊗ h , δ(h) = 0 ,

δ(e) = h ⊗ e − e ⊗ h , make e2 into a Lie bialgebra, hence E2 into a Poisson group. These also give

a presentation of the co-Poisson Hopf algebra U(e2) (with standard Hopf structure). If p > 0 , we

consider on e2 the p–operation given by e[p ] = 0 , f [p ] = 0 , h[p ] = h .

On the other hand, the function algebra F [E2] is the unital associative commutative k–algebra with

generators b, a±1, c, with Poisson Hopf algebra structure given by

∆(b) = b ⊗ a−1 + a ⊗ b , ∆
(
a±1
)

= a±1 ⊗ a±1 , ∆(c) = c ⊗ a + a−1 ⊗ c

ε(b) = 0 , ε
(
a±1
)

= 1 , ε(c) = 0 , S(b) = −b , S
(
a±1
)

= a∓1 , S(c) = −c{
a±1, b

}
= ± a±1b ,

{
a±1, c

}
= ± a±1c , {b, c} = 0

We can realize E2 as E2 =
{
(b, a, c)

∣∣ b , c ∈ k , a ∈ k \ {0}} , with group operation

(b1, a1, c1) · (b2, a2, c2) =
(
b1a

−1
2 + a1b2 , a1a2 , c1a2 + a−1

1 c2

)
;

in particular the centre of E2 is simply Z :=
{
(0, 1, 0), (0,−1, 0)

}
, so there is only one other con-

nected Poisson group having e2 as Lie bialgebra, namely the adjoint group aE2 := E2

/
Z (the left

subscript a stands for “adjoint”). Then F [aE2] coincides with the Poisson Hopf subalgebra of F [aE2]

spanned by products of an even number of generators, i.e. monomials of even degree: as a unital

subalgebra, this is generated by b a , a±2 , and a−1c .

The dual Lie bialgebra g∗ = e2
∗ is the Lie algebra with generators f, h, e , and relations [h, e] =

2e , [h, f ] = 2f , [e, f ] = 0 , with Lie cobracket given by δ(f ) = f ⊗ h − h ⊗ f, δ(h) = 0 ,

δ(e) = h ⊗ e − e ⊗ h (we choose as generators f := f ∗ , h := 2h∗ , e := e∗ , where
{
f ∗, h∗, e∗

}
is the basis of e2

∗ which is dual to the basis {f, h, e} of e2 ). If p > 0 , the p–operation of e2
∗ reads

e[p ] = 0 , f [p ] = 0 , h[p ] = h . This again gives a presentation of U (e2
∗) too. The simply connected

algebraic Poisson group with tangent Lie bialgebra e2
∗ can be realized as the group of pairs of matrices

sE2
� ≡ sE2

∗ :=

{((
z−1 0

y z

)
,

(
z x

0 z−1

)) ∣∣∣∣∣ x, y ∈ k, z ∈ k \ {0}
}

;
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this group has centre Z :=
{
(I, I), (−I,−I)

}
, so there is only one other (Poisson) group with Lie

(bi)algebra e2
∗ , namely the adjoint group aE2

∗ := sE2
∗
/

Z .

Therefore F
[
sE2

∗] is the unital associative commutative k–algebra with generators x, z±1, y, with

Poisson Hopf structure given by

∆(x) = x ⊗ z−1 + z ⊗ x , ∆
(
z±1
)

= z±1 ⊗ z±1 , ∆(y) = y ⊗ z−1 + z ⊗ y

ε(x) = 0 , ε
(
z±1
)

= 1 , ε(y) = 0 , S(x) = −x , S
(
z±1
)

= z∓1 , S(y) = −y

{x, y} = 0 ,
{
z±1, x

}
= ± z±1x ,

{
z±1, y

}
= ∓ z±1y

(Remark: with respect to this presentation, we have f = ∂y

∣∣
e
, h = z ∂z

∣∣
e
, e = ∂x

∣∣
e
, where e is the

identity element of sE2
∗ ). Moreover, F

[
aE2

∗] can be identified with the Poisson Hopf subalgebra of

F
[
sE2

∗] spanned by products of an even number of generators, i.e. monomials of even degree: this is

generated, as a unital subalgebra, by x z , z±2 and z−1y .

6.2 The QrUEAs Us
q (e2) and Ua

q (e2) . We turn now to quantizations: the situation is much

similar to the case of sl2 , so we follow the same pattern; nevertheless, now we stress a bit more the

occurrence of different groups sharing the same tangent Lie bialgebra.

Let R be a 1dD, and let � ∈ R \ {0} and q := � + 1 ∈ R be like in §5.2.

Let Uq(g) = Us
q(e2) (where the superscript s stands for “simply connected”) be the associative

unital F (R)–algebra with generators F , L±1, E, and relations

LL−1 = 1 = L−1L , L±1F = q∓1FL±1 , L±1E = q±1EL±1 , EF = FE .

This is a Hopf algebra, with Hopf structure given by

∆(F ) = F ⊗ L−2 + 1 ⊗ F , ∆
(
L±1

)
= L±1 ⊗ L±1 , ∆(E) = E ⊗ 1 + L2 ⊗ E

ε(F ) = 0 , ε
(
L±1

)
= 1 , ε(E) = 0 , S(F ) = −FL2 , S

(
L±1

)
= L∓1 , S(E) = −L−2E .

Then let U s
q (e2) be the R–subalgebra of Us

q(e2) generated by F , D± :=
L±1 − 1

q − 1
, E . From the

definition of Us
q(e2) one gets a presentation of U s

q (e2) as the associative unital algebra with generators

F , D± , E and relations

D+E = qED+ + E , FD+ = qD+F + F , ED− = qD−E + E , D−F = qFD− + F

EF = FE , D+D− = D−D+ , D+ + D− + (q − 1)D+D− = 0

with a Hopf structure given by

∆(E) = E ⊗ 1 + 1 ⊗ E + 2(q − 1)D+ ⊗ E + (q − 1)2 · D2
+ ⊗ E

∆(D±) = D± ⊗ 1 + 1 ⊗ D± + (q − 1) · D± ⊗ D±

∆(F ) = F ⊗ 1 + 1 ⊗ F + 2(q − 1)F ⊗ D− + (q − 1)2 · F ⊗ D2
−
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ε(E) = 0 , S(E) = −E − 2(q − 1)D−E − (q − 1)2D2
−E

ε(D±) = 0 , S(D±) = D∓
ε(F ) = 0 , S(F ) = −F − 2(q − 1)FD+ − (q − 1)2FD2

+ .

The “adjoint version” of Us
q(e2) is the unital subalgebra Ua

q(e2) generated by F , K±1 := L±2 , E ,

which is clearly a Hopf subalgebra. It also has an R–integer form U a
q (e2) , the unital R–subalgebra

generated by F , H± :=
K±1 − 1

q − 1
, E : this has relations

EF = FE , H+E = q2EH+ + (q + 1)E , FH+ = q2H+F + (q + 1)F , H+H− = H−H+

EH− = q2H−E + (q + 1)E , H−F = q2FH− + (q + 1)F , H+ + H− + (q − 1)H+H− = 0

and it is a Hopf subalgebra, with Hopf operations given by

∆(E) = E ⊗ 1 + 1 ⊗ E + (q − 1) · H+ ⊗ E , ε(E) = 0 , S(E) = −E − (q − 1)H−E

∆(H±) = H± ⊗ 1 + 1 ⊗ H± + (q − 1) · H± ⊗ H± , ε(H±) = 0 , S(H±) = H∓

∆(F ) = F ⊗ 1 + 1 ⊗ F + (q − 1) · F ⊗ H− , ε(F ) = 0 , S(F ) = −F − (q − 1)FH+ .

It is easy to check that U s
q (e2) is a QrUEA, whose semiclassical limit is U(e2) : in fact, map-

ping the generators F mod (q − 1), D± mod (q − 1), E mod (q − 1) respectively to f , ±h
/
2 ,

e ∈ U(e2) gives an isomorphism U s
q (e2)

/
(q − 1) Us

q (e2)
∼=−→U(e2) of co-Poisson Hopf algebras.

Similarly, Ua
q (e2) is a QrUEA too, with semiclassical limit U(e2) again: here a co-Poisson Hopf

algebra isomorphism U a
q (e2)

/
(q − 1) Ua

q (e2) ∼= U(e2) is given mapping F mod (q − 1) , H±
mod (q−1) , E mod (q−1) respectively to f , ±h , e ∈ U(e2) .

6.3 Computation of Uq(e2)
′ and specialization Uq(e2)

′ q→1−−−→F
[
E2

�
]

. This section is devoted

to compute U s
q (e2)

′ and Ua
q (e2)

′ , and their specialization at q = 1 : everything goes on as in §5.3, so

we can be more sketchy. From definitions we have, for any n ∈ N , ∆n(E) =
∑n

s=1 K⊗(s−1) ⊗ E ⊗
1⊗(n−s), so δn(E) = (K − 1)⊗(n−1) ⊗ E = (q − 1)n−1 · H⊗(n−1)

+ ⊗ E , whence δn

(
(q − 1)E

) ∈
(q − 1)n Ua

q (e2) \ (q − 1)n+1 Ua
q (e2) thus (q − 1)E ∈ Ua

q (e2)
′ , whereas E /∈ Ua

q (e2)
′ . Similarly, we

have (q − 1)F , (q − 1)H± ∈ Ua
q (e2)

′ \ (q − 1) Ua
q (e2)

′ . Therefore Ua
q (e2) contains the subalgebra

U ′ generated by Ḟ := (q − 1)F , Ḣ± := (q − 1)H± , Ė := (q − 1)E . On the other hand, Ua
q (e2)

′ is

clearly the R–span of the set
{

F aHb
+Hc

−Ed
∣∣∣ a, b, c, d ∈ N

}
: to be precise, the set{

F aHb
+K−[b/2]Ed

∣∣∣ a, b, d ∈ N
}

=
{

F aHb
+

(
1 + (q − 1)H−

)[b/2]
Ed
∣∣∣ a, b, d ∈ N

}
is an R–basis of Ua

q (e2)
′; therefore, a straightforward computation shows that any element in U a

q (e2)
′

does necessarily lie in U ′ , thus Ua
q (e2)

′ coincides with U ′ . Moreover, since Ḣ± = K±1 − 1 , the

unital algebra Ua
q (e2)

′ is generated by Ḟ , K±1 and Ė as well.

The previous analysis — mutatis mutandis — ensures also that U s
q (e2)

′ coincides with the unital

R–subalgebra U ′′ of Us
q(e2) generated by Ḟ := (q − 1)F , Ḋ± := (q − 1)D± , Ė := (q − 1)E ; in
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particular, U s
q (e2)

′ ⊃ Ua
q (e2)

′ . Moreover, as Ḋ± = L±1 − 1 , the unital algebra U s
q (e2)

′ is generated

by Ḟ , L±1 and Ė as well. Thus U s
q (e2)

′ is the unital associative R–algebra with generators F := LḞ ,

L±1 := L±1 , E := ĖL−1 and relations

LL−1 = 1 = L−1L , E F = F E , L±1F = q∓1FL±1 , L±1E = q±1EL±1

with Hopf structure given by

∆(F) = F ⊗ L−1 + L ⊗F , ∆
(L±1

)
= L±1 ⊗L±1 , ∆(E) = E ⊗ L−1 + L ⊗ E

ε(F) = 0 , ε
(L±1

)
= 1 , ε(E) = 0 , S(F) = −F , S

(L±1
)

= L∓1 , S(E) = −E .

As q → 1 , this yields a presentation of the function algebra F
[
sE2

∗], and the Poisson bracket

that F
[
sE2

∗] earns from this quantization process coincides with the one coming from the Poisson

structure on sE2
∗ : namely, there is a Poisson Hopf algebra isomorphism

Us
q (e2)

′
/

(q − 1) Us
q (e2)

′ ∼=−−−→F
[
sE2

∗]
given by E mod (q − 1) �→ x , L±1 mod (q − 1) �→ z±1 , F mod (q − 1) �→ y . That is, U s

q (e2)
′

specializes to F
[
sE2

∗] as a Poisson Hopf algebra, as predicted by Theorem 2.2.

In the “adjoint case”, from the definition of U ′ and from Ua
q (e2)

′ = U ′ we find that Ua
q (e2)

′ is the

unital associative R–algebra with generators Ḟ , K±1, Ė and relations

KK−1 = 1 = K−1K , ĖḞ = Ḟ Ė , K±1Ḟ = q∓2ḞK±1 , K±1Ė = q±2ĖK±1

with Hopf structure given by

∆
(
Ḟ
)

= Ḟ ⊗ K−1 + 1 ⊗ Ḟ , ∆
(
K±1

)
= K±1 ⊗ K±1 , ∆

(
Ė
)

= Ė ⊗ 1 + K ⊗ Ė

ε
(
Ḟ
)

= 0 , ε
(
K±1

)
= 1 , ε

(
Ė
)

= 0 , S
(
Ḟ
)

= −ḞK , S
(
K±1

)
= K∓1 , S

(
Ė
)

= −K−1Ė .

The outcome is that there is a Poisson Hopf algebra isomorphism

Ua
q (e2)

′
/

(q − 1) Ua
q (e2)

′ ∼=−−−→F
[
aE2

∗] (
⊂ F

[
sE2

∗])
given by Ė mod (q − 1) �→ x z , K±1 mod (q − 1) �→ z±2 , Ḟ mod (q − 1) �→ z−1y , which

means Ua
q (e2)

′ specializes to F
[
aE2

∗] as a Poisson Hopf algebra, according to Theorem 2.2.

To finish with, note that all this analysis (and its outcome) is entirely characteristic-free.

6.4 The identity
(
Uq(e2)

′)∨ = Uq(e2) . This section goal is to check the part of Theorem 2.2(b)

claiming that H ∈ QrUEA =⇒ (
H ′)∨ = H both for H = U s

q (e2) and H = Ua
q (e2) . In addition,

our analysis work for all p := Char (k) , thus giving a stronger result than Theorem 2.2(b).

First, U s
q (e2)

′ is clearly a free R–module, with basis
{
FaLdE c

∣∣∣ a, c ∈ N, d ∈ Z
}

, hence

B :=
{
Fa(L±1 − 1)

bE c
∣∣∣ a, b, c ∈ N

}
, is an R–basis as well. Second, since ε(F) = ε

(L±1 −
1
)

= ε(E) = 0 , the ideal J := Ker
(
ε : Us

q (e2)
′ −→ R

)
is the span of B \ {1}. Therefore
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(
Us

q (e2)
′)∨ =

∑
n≥0

(
(q − 1)−1J

)n

is generated by (q − 1)−1F = LF , (q − 1)−1(L − 1) = D+ ,

(q − 1)−1(L−1−1
)

= D− , (q − 1)−1E = EL−1 , hence by F , D± , E , so it coincides with U s
q (e2) .

The situation is entirely similar for the adjoint case: one simply has to change F , L±1 , E respec-

tively with Ḟ , K±1 , Ė , and D± with H± , then everything goes through as above.

6.5 The quantum hyperalgebra Hyp q(e2). Like for semisimple groups, we can define “quantum

hyperalgebras” for e2 mimicking what done in §5.5. Namely, we can first define a Hopf Z
[
q, q−1

]
–

subalgebra of Us
q(e2) whose specialization at q = 1 is the Kostant-like Z–integer form UZ(e2) of

U(e2) (generated by divided powers, and giving the hyperalgebra Hyp (e2) over any field k by scalar

extension, namely Hyp (e2) = k ⊗Z UZ(e2) ), and then take its scalar extension over R .

To be precise, let Hyp s,Z
q (e2) be the unital Z

[
q, q−1

]
–subalgebra of Us

q(e2) (defined like above but

over Z
[
q, q−1

]
) generated by the “quantum divided powers”

F (n) := F n
/

[n]q! ,

(
L ; c

n

)
:=

n∏
r=1

qc+1−rL − 1

qr − 1
, E(n) := En

/
[n]q!

(for all n ∈ N and c ∈ Z , with notation of §5.5) and by L−1 . Comparing with the case of

sl2 one easily sees that this is a Hopf subalgebra of Us
q(e2), and Hyp s,Z

q (e2)
∣∣∣
q=1

∼= UZ(e2) ; thus

Hyp s
q(e2) := R ⊗Z[q,q−1] Hyp s,Z

q (e2) (for any R like in §6.2, with k := R
/
� R and p := Char (k) )

specializes at q = 1 to the k–hyperalgebra Hyp (e2). In addition, among all the
(

L ; c
n

)
’s it is enough

to take only those with c = 0 . From now on we assume p > 0 .

Again a strict comparison with the sl2 case shows us that Hyp s
q(e2)

′ is the unital R–subalgebra of

Hyp s
q(e2) generated by L−1 and the “rescaled quantum divided powers” (q−1)nF (n) , (q−1)n(L ; 0

n

)
and (q−1)nE(n) for all n ∈ N . It follows that Hyp s

q(e2)
′
∣∣∣
q=1

is generated by the corresponding

specializations of (q − 1)pr

F (pr) , (q − 1)pr
(

L ; 0
pr

)
and (q − 1)pr

E(pr) for all r ∈ N : this proves

that the spectrum of Hyp s
q(e2)

′
∣∣∣
q=1

has dimension 0 and height 1, and its cotangent Lie algebra has

basis
{

(q−1)pr

F (pr), (q−1)pr
(

L ; 0
pr

)
, (q−1)pr

E(pr) mod (q−1) Hyp s
q(g)′ mod J 2

∣∣∣ r ∈ N
}

(where J is the augmentation ideal of Hyp s
q(e2)

′
∣∣∣
q=1

, so that J
/

J 2 is the aforementioned cotangent

Lie bialgebra). Moreover,
(
Hyp s

q(e2)
′)∨ is generated by (q − 1)pr−1F (pr) , (q − 1)pr−1

(
L ; 0
pr

)
, L−1

and (q − 1)pr−1E(pr) (for all r ∈ N ): in particular
(
Hyp s

q(e2)
′)∨ � Hyp s

q(e2) , and finally(
Hyp s

q(e2)
′)∨∣∣∣

q=1
is generated by the cosets modulo (q − 1) of the elements above, which in fact

form a basis of the restricted Lie bialgebra k such that
(
Hyp s

q(e2)
′)∨∣∣∣

q=1
= u(k) .

All this analysis was made starting from Us
q(e2) , which gave “simply connected quantum objects”.

If we start instead from Ua
q(e2) , we get “adjoint quantum objects” following the same pattern but for

replacing everywhere L±1 by K±1 : apart from these changes, the analysis and its outcome will be

exactly the same. Like for sl2 (cf. §5.5), all the adjoint quantum objects — i.e. Hyp a
q(e2) , Hyp a

q(e2)
′
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and
(
Hyp a

q(e2)
′)∨ — will be strictly contained in the corresponding simply connected quantum ob-

jects; nevertheless, the semiclassical limits will be the same in the case of Hyp q(e2) (always yielding

Hyp (e2) ) and in the case of
(
Hyp q(e2)

′)∨ (giving u(k), in both cases), while the semiclassical limit

of Hyp q(e2)
′ in the simply connected case will be a (countable) covering of that in the adjoint case.

6.6 The QFAs Fq[E2] and Fq[aE2] . In this and the following sections we look at Theorem 2.2

starting from QFAs, to get QrUEAs out of them.

We begin by introducing a QFA for the Euclidean groups E2 and aE2 . Let Fq[E2] be the unital

associative R–algebra with generators a±1, b, c and relations

a b = q b a , a c = q c a , b c = c b

endowed with the Hopf algebra structure given by

∆
(
a±1
)

= a±1 ⊗ a±1 , ∆(b) = b ⊗ a−1 + a ⊗ b , ∆(c) = c ⊗ a + a−1 ⊗ c

ε
(
a±1
)

= 1 , ε(b) = 0 , ε(c) = 0 , S
(
a±1
)

= a∓1 , S(b) = −q−1 b , S(c) = −q+1 c .

Define Fq[aE2] as the R–submodule of Fq[E2] spanned by the products of an even number of gen-

erators, i.e. monomials of even degree in a±1 , b , c : this is a unital subalgebra of Fq[E2] , generated by

β := b a , α±1 := a±2 , and γ := a−1c . Let also Fq[E2] :=
(
Fq[E2]

)
F

and Fq[aE2] :=
(
Fq[aE2]

)
F

,

having the same presentation than Fq[E2] and Fq[aE2] but over F (R) . By construction Fq[E2] and

Fq[aE2] are QFAs (at � = q − 1 ), with semiclassical limit F [E2] and F [aE2] respectively.

6.7 Computation of Fq[E2]
∨ and Fq[aE2]

∨ and specializations Fq[E2]
∨ q→1−−−→U(g×) and

Fq[aE2]
∨ q→1−−−→U(g×) . In this section we go and compute Fq[G]∨ and its semiclassical limit (i.e. its

specialization at q = 1 ), both for G = E2 and G = aE2 .

First, Fq[E2] is free over R , with basis
{

bbaacc
∣∣∣ a ∈ Z, b, c ∈ N

}
, and so also the set Bs :={

bb(a±1 − 1)
acc
∣∣∣ a, b, c ∈ N

}
is an R–basis. Second, as ε(b) = ε

(
a±1 − 1

)
= ε(c) = 0 , the ideal

J := Ker
(
ε : Fq[E2] −−→ R

)
is the span of Bs\{1} . Then Fq[E2]

∨ =
∑

n≥0

(
(q−1)−1J

)n

is the

unital R–algebra with generators D± :=
a±1 − 1

q − 1
, E :=

b
q − 1

, and F :=
c

q − 1
and relations

D+E = qED+ + E , D+F = qFD+ + F , ED− = qD−E + E , FD− = qD−F + F

EF = FE , D+D− = D−D+ , D+ + D− + (q − 1)D+D− = 0

with a Hopf structure given by

∆(E) = E ⊗ 1 + 1 ⊗ E + (q − 1)
(
E ⊗ D− + D+ ⊗ E

)
, ε(E) = 0 , S(E) = −q−1E

∆(D±) = D± ⊗ 1 + 1 ⊗ D± + (q − 1) · D± ⊗ D± , ε(D±) = 0 , S(D±) = D∓
∆(F ) = F ⊗ 1 + 1 ⊗ F + (q − 1)

(
F ⊗ D+ + D− ⊗ F

)
, ε(F ) = 0 , S(F ) = −q+1F .

This implies that Fq[E2]
∨ q→1−−−→U(e2

∗) as co-Poisson Hopf algebras, for an isomorphism

Fq[E2]
∨
/

(q − 1) Fq[E2]
∨ ∼=−−−→ U(e2

∗)
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of co-Poisson Hopf algebra exists, given by D± mod (q − 1) �→ ± h
/
2 , E mod (q − 1) �→ e ,

and F mod (q−1) �→ f ; so Fq[E2]
∨ does specialize to U(e2

∗) as a co-Poisson Hopf algebra, q.e.d.

Similarly, if we consider Fq[aE2] the same analysis works again. In fact, Fq[aE2] is free over R,

with basis Ba :=
{

βb(α±1 − 1)
a
γc
∣∣∣ a, b, c ∈ N

}
; then as above J := Ker

(
ε : Fq[aE2] → R

)
is

the span of Ba \ {1} . Fq[aE2]
∨ =

∑
n≥0

(
(q−1)−1J

)n

is nothing but the unital R–algebra (inside

Fq[aE2] ) with generators H± :=
α±1 − 1

q − 1
, E ′ :=

β

q − 1
, and F ′ :=

γ

q − 1
and relations

E ′F ′=q−2F ′E ′, H+E ′=q2E ′H+ + (q + 1)E ′, H+F ′=q2F ′H+ + (q + 1)F ′, H+H−=H−H+

E ′H− = q2H−E ′ + (q + 1)E ′, F ′H− = q2H−F ′ + (q + 1)F ′, H+ + H− + (q − 1)H+H− = 0

with a Hopf structure given by

∆(E ′) = E ′ ⊗ 1 + 1 ⊗ E ′ + (q − 1) · H+ ⊗ E ′ , ε(E ′) = 0 , S(E ′) = −E ′ − (q − 1)H−E ′

∆(H±) = H± ⊗ 1 + 1 ⊗ H± + (q − 1) · H± ⊗ H± , ε(H±) = 0 , S(H±) = H∓

∆(F ′) = F ′ ⊗ 1 + 1 ⊗ F ′ + (q − 1) · H− ⊗ F ′ , ε(F ′) = 0 , S(F ′) = −F ′ − (q − 1)H+F ′ .

This implies that Fq[aE2]
∨ q→1−−−→U(e2

∗) as co-Poisson Hopf algebras, for an isomorphism

Fq[aE2]
∨
/

(q − 1) Fq[aE2]
∨ ∼=−−−→U(e2

∗)

of co-Poisson Hopf algebras is given by H± mod (q − 1) �→ ±h , E ′ mod (q − 1) �→ e , and F ′

mod (q − 1) �→ f ; so Fq[aE2]
∨ too specializes to U(e2

∗) as a co-Poisson Hopf algebra, as expected.

We finish noting that, once more, this analysis (and its outcome) is characteristic-free.

6.8 The identities
(
Fq[E2]

∨)′ = Fq[E2] and
(
Fq[aE2]

∨)′ = Fq[aE2] . In this section we verify

for the QFAs H = Fq[E2] and H = Fq[aE2] the validity of the part of Theorem 2.2(b) claiming that

H ∈ QFA =⇒ (
H∨)′ = H . Once more, our arguments will prove this result for Char (k) ≥ 0 ,

thus going beyond what forecasted by Theorem 2.2.

Formulas ∆n(E) =
∑

r+s+1=n

a⊗r ⊗ E ⊗ (a−1
)⊗s

, ∆n(D±) =
∑

r+s+1=n

(
a±1
)⊗r ⊗ D± ⊗ 1⊗s and

∆n(F ) =
∑

r+s+1=n

(
a−1
)⊗r ⊗ E ⊗ a⊗s are found by induction. These identities imply the following

δn(E) =
∑

r+s+1=n

(a − 1)⊗r ⊗ E ⊗ (a−1 − 1
)⊗s

= (q − 1)n−1 ∑
r+s+1=n

D+
⊗r ⊗ E ⊗ D−⊗s

δn(D±) =
(
a±1 − 1

)⊗(n−1) ⊗ D± = (q − 1)n−1D±⊗n

δn(F ) =
∑

r+s+1=n

(
a−1 − 1

)⊗r ⊗ E ⊗ (a − 1)⊗s = (q − 1)n−1 ∑
r+s+1=n

D−⊗r ⊗ E ⊗ D+
⊗s

which give Ė := (q − 1)E, Ḋ± := (q − 1)D±, Ḟ := (q − 1)F ∈ (Fq[E2]
∨)′ \ (q − 1) · (Fq[E2]

∨)′ .
So
(
Fq[E2]

∨)′ contains the unital R–subalgebra A′ generated (inside Fq[E2] ) by Ė , Ḋ± and Ḟ ; but

Ė = b , Ḋ± = a±1 − 1 , and Ḟ = c , thus A′ is just Fq[E2] . Since Fq[E2]
∨ is the R–span of{

EeD
d+

+ D
d−
− F f

∣∣∣ e, d+, d−, f ∈ N
}

, one easily sees — using the previous formulas for ∆n — that

in fact
(
Fq[E2]

∨)′ = A′ = Fq[E2] , q.e.d.
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When dealing with the adjoint case, the previous arguments go through again: in fact,
(
Fq[aE2]

∨)′
turns out to coincide with the unital R–subalgebra A′′ generated (inside Fq[aE2] ) by Ė ′ := (q −
1)E ′ = β , Ḣ± := (q − 1)H± = α±1 − 1 , and Ḟ ′ := (q − 1)F ′ = γ ; but this is also generated by β ,

α±1 and γ , thus it coincides with Fq[aE2] , q.e.d.

§ 7 Fourth example: the Heisenberg group Hn

7.1 The classical setting. Let k be any field of characteristic p ≥ 0 . Let G := Hn(k) =

Hn , the (2 n + 1)–dimensional Heisenberg group; its tangent Lie algebra g = hn is generated by

{ fi, h, ei | i = 1, . . . , n } with relations [ei, fj] = δijh , [ei, ej ] = [fi, fj ] = [h, ei] = [h, fj ] = 0

(∀ i, j = 1, . . . n ). The formulas δ(fi) = h ⊗ fi − fi ⊗ h , δ(h) = 0 , δ(ei) = h ⊗ ei − ei ⊗ h

(∀ i = 1, . . . n ) make hn into a Lie bialgebra, which provides Hn with a structure of Poisson group;

these same formulas give also a presentation of the co-Poisson Hopf algebra U(hn) (with the standard

Hopf structure). When p > 0 we consider on hn the p–operation uniquely defined by e
[p ]
i = 0 ,

f
[p ]

i = 0 , h[p ] = h (for all i = 1, . . . , n ), which makes it into a restricted Lie bialgebra. The group

Hn is usually realized as the group of all square matrices
(
aij

)
i,j=1,...,n+2;

such that aii = 1 ∀ i and

aij = 0 ∀ i, j such that either i > j or 1 �= i < j or i < j �= n + 2 ; it can also be realized as Hn =

kn×k×kn with group operation given by
(
a′, c′, b′

) ·(a′′, c′′, b′′
)

=
(
a′+a′′, c′+c′′+a′∗b′′, b′+b′′

)
,

where we use vector notation v = (v1, . . . , vn) ∈ kn and a′ ∗ b′′ :=
∑n

i=1 a′
ib

′′
i is the standard scalar

product in kn ; in particular the identity of Hn is e = (0, 0, 0) and the inverse of a generic element is

given by
(
a, c, b

)−1
=
(−a ,−c + a ∗ b ,−b

)
. Therefore F [Hn] is the unital associative commutative

k–algebra with generators a1 , . . . , an , c , b1 , . . . , bn , and with Poisson Hopf structure given by

∆(ai) = ai ⊗ 1 + 1 ⊗ ai , ∆(c) = c ⊗ 1 + 1 ⊗ c +
∑n

�=1a� ⊗ b� , ∆(bi) = bi ⊗ 1 + 1 ⊗ bi

ε(ai) = 0 , ε(c) = 0 , ε(bi) = 0 , S(ai) = −ai , S(c) = −c +
∑n

�=1a�b� , S(bi) = −bi

{ai, aj} = 0 , {ai, bj} = 0 , {bi, bj} = 0 , {c , ai} = ai , {c , bi} = bi

for all i, j = 1, . . . , n . (Remark: with respect to this presentation, we have fi = ∂bi

∣∣
e
, h = ∂c

∣∣
e
,

ei = ∂ai

∣∣
e
, where e is the identity element of Hn ). The dual Lie bialgebra g∗ = hn

∗ is the Lie algebra

with generators fi , h , ei , and relations [h, ei] = ei , [h, fi] = fi , [ei, ej ] = [ei, fj ] = [fi, fj ] = 0 , with

Lie cobracket given by δ(fi) = 0 , δ(h) =
∑n

j=1(ej ⊗ fj − fj ⊗ ej) , δ(ei) = 0 for all i = 1, . . . , n

(we take fi := f ∗
i , h := h∗ , ei := e∗i , where

{
f ∗

i , h∗, e∗i | i = 1, . . . , n
}

is the basis of hn
∗

which is the dual of the basis { fi, h, ei | i = 1, . . . , n } of hn ). This again gives a presentation of

U(hn
∗) too. If p > 0 then hn

∗ is a restricted Lie bialgebra with respect to the p–operation given

by e [p ]
i = 0 , f [p ]

i = 0 , h[p ] = h (for all i = 1, . . . , n ). The simply connected algebraic Poisson

group with tangent Lie bialgebra hn
∗ can be realized (with k� := k \ {0} ) as sHn

∗ = kn × k� × kn ,

with group operation
(
α̇, γ̇, β̇

) · (α̌, γ̌, β̌
)

=
(
γ̌α̇ + γ̇−1α̌, γ̇γ̌, γ̌β̇ + γ̇−1β̌

)
; so the identity of

sHn
∗ is e = (0, 1, 0) and the inverse is given by

(
α, γ, β

)−1
=
(−α, γ−1,−β

)
. Its centre is
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Z
(

sHn
∗) =

{
(0, 1, 0), (0,−1, 0)

}
=: Z , so there is only one other (Poisson) group with tangent Lie

bialgebra hn
∗ , that is the adjoint group aHn

∗ := sHn
∗
/

Z .

It is clear that F
[
sHn

∗] is the unital associative commutative k–algebra with generators α1 , . . . ,

αn , γ±1 , β1 , . . . , βn , and with Poisson Hopf algebra structure given by

∆(αi) = αi ⊗ γ + γ−1 ⊗ αi , ∆
(
γ±1

)
= γ±1 ⊗ γ±1 , ∆(βi) = βi ⊗ γ + γ−1 ⊗ βi

ε(αi) = 0 , ε
(
γ±1

)
= 1 , ε(βi) = 0 , S(αi) = −αi , S

(
γ±1

)
= γ∓1 , S(βi) = −βi

{αi, αj} = {αi, βj} = {βi, βj} = {αi, γ} = {βi, γ} = 0 , {αi, βj} = δij

(
γ2 − γ−2

)/
2

for all i, j = 1, . . . , n (Remark: with respect to this presentation, we have fi = ∂βi

∣∣
e
, h = 1

2
γ ∂γ

∣∣
e
,

ei = ∂αi

∣∣
e
, where e is the identity element of sHn

∗ ), and F
[
aHn

∗] can be identified — as in the case of

the Euclidean group — with the Poisson Hopf subalgebra of F
[
aHn

∗] which is spanned by products

of an even number of generators: this is generated by αi γ , γ±2 , and γ−1 βi ( i = 1, . . . , n ).

7.2 The QrUEAs Us
q (hn) and Ua

q (hn) . We switch now to quantizations. Once again, let R be a

1dD and let � ∈ R \ {0} and assume q := 1 + � ∈ R be invertible, like in §5.2.

Let Uq(g) = Us
q(hn) be the unital associative F (R)–algebra with generators Fi , L±1 , Ei (for

i = 1, . . . , n ) and relations

LL−1 = 1 = L−1L , L±1F = FL±1 , L±1E = EL±1 , EiFj − FjEi = δij
L2 − L−2

q − q−1

for all i, j = 1, . . . , n ; we give it a structure of Hopf algebra, by setting (∀ i, j = 1, . . . , n )

∆(Ei) = Ei ⊗ 1 + L2 ⊗ Ei , ∆
(
L±1

)
= L±1 ⊗ L±1 , ∆(Fi) = Fi ⊗ L−2 + 1 ⊗ Fi

ε(Ei) = 0 , ε
(
L±1

)
= 1 , ε(Fi) = 0 , S(Ei) = −L−2Ei , S

(
L±1

)
= L∓1 , S(Fi) = −FiL

2

Note then that
{ ∏n

i=1 F ai
i ·Lz ·∏n

i=1 Edi
i

∣∣∣ z ∈ Z, ai, di ∈ N, ∀ i
}

is an F (R)–basis of Us
q(hn) .

Now, let U s
q (hn) be the unital R–subalgebra of Us

q(hn) generated by the elements F1 , . . . , Fn ,

D :=
L − 1

q − 1
, Γ :=

L − L−2

q − q−1
, E1 , . . . , En . Then U s

q (hn) can be presented as the associative unital

algebra with generators F1 , . . . , Fn , L±1 , D , Γ , E1 , . . . , En and relations

DX = XD , L±1X = XL±1 , ΓX = XΓ , EiFj − FjEi = δijΓ

L = 1 + (q − 1)D , L2 − L−2 =
(
q − q−1

)
Γ , D(L + 1)

(
1 + L−2

)
=
(
1 + q−1

)
Γ

for all X ∈ {Fi, L
±1, D, Γ, Ei

}
i=1,...,n

and i, j = 1, . . . , n ; furthermore, U s
q (hn) is a Hopf subalge-

bra (over R), with

∆(Γ ) = Γ ⊗ L2 + L−2 ⊗ Γ , ε(Γ ) = 0 , S(Γ ) = −Γ

∆(D) = D ⊗ 1 + L ⊗ D , ε(D) = 0 , S(D) = −L−1D .

Moreover, from relations L = 1 + (q − 1)D and L−1 = L3 − (q − q−1
)
LΓ it follows that

Us
q (hn) = R–span of

{
n∏

i=1

F ai
i ·DbΓ c ·

n∏
i=1

Edi
i

∣∣∣∣ ai, b, c, di ∈ N, ∀ i = 1, . . . , n

}
(7.1)
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The “adjoint version” of Us
q(hn) is the subalgebra Ua

q(hn) generated by Fi, K±1 := L±2, Ei (i =

1, . . . , n), which is a Hopf subalgebra too. It also has an R–integer form U a
q (hn) , the R–subalgebra

generated by F1 , . . . , Fn , K±1 , H :=
K − 1

q − 1
, Γ :=

K − K−1

q − q−1
, E1 , . . . , En : this has relations

HX = XH , K±1X = XK±1 , ΓX = XΓ , EiFj − FjEi = δijΓ

K = 1 + (q − 1)H , K − K−1 =
(
q − q−1

)
Γ , H

(
1 + K−1

)
=
(
1 + q−1

)
Γ

for all X ∈ {Fi, K
±1, H, Γ, Ei

}
i=1,...,n

and i, j = 1, . . . , n , and Hopf operations given by

∆(Ei) = Ei ⊗ 1 + K ⊗ Ei , ε(Ei) = 0 , S(Ei) = −K−1Ei

∆
(
K±1

)
= K±1 ⊗ K±1 , ε

(
K±1

)
= 1 , S

(
K±1

)
= K∓1

∆(H) = H ⊗ 1 + K ⊗ H , ε(H) = 0 , S(H) = −K−1H

∆(Γ ) = Γ ⊗ K−1 + K ⊗ Γ , ε(Γ ) = 0 , S(Γ ) = −Γ

∆(Fi) = Fi ⊗ K−1 + 1 ⊗ Fi , ε(Fi) = 0 , S(Fi) = −FiK
+1

for all i = 1, . . . , n . One can easily check that U s
q (hn) is a QrUEA, with U(hn) as semiclassical

limit: in fact, mapping the generators Fi mod (q − 1) , L±1 mod (q − 1) , D mod (q − 1) , Γ

mod (q − 1) , Ei mod (q − 1) respectively to fi , 1 , h
/
2 , h , ei ∈ U(hn) yields a co-Poisson Hopf

algebra isomorphism between U s
q (hn)

/
(q − 1) Us

q (hn) and U(hn) . Similarly, Ua
q (hn) is a QrUEA

too, again with limit U(hn) , for a co-Poisson Hopf algebra isomorphism between U a
q (hn)

/
(q −

1) Ua
q (hn) and U(hn) is given by mapping the generators Fi mod (q − 1) , K±1 mod (q − 1) , H

mod (q − 1) , Γ mod (q − 1) , Ei mod (q − 1) respectively to fi , 1 , h , h , ei ∈ U(hn) .

7.3 Computation of Uq(hn)′ and specialization Uq(hn)′
q→1−−−→F

[
Hn

�
]

. Here we compute

Us
q (hn)′ and Ua

q (hn)′ , and their semiclassical limits, along the pattern of §5.3.

Definitions give, for any n ∈ N , ∆n(Ei) =
∑n

s=1 (L2)
⊗(s−1) ⊗ Ei ⊗ 1⊗(n−s), hence δn(Ei) =

(q − 1)n−1 · D⊗(n−1) ⊗ Ei so δn

(
(q − 1)E

) ∈ (q − 1)n Us
q (hn) \ (q − 1)n+1 Us

q (hn) whence

Ėi := (q − 1) Ei ∈ Us
q (hn)′, whereas Ei /∈ Us

q (hn)′; similarly, we have Ḟi := (q − 1) Fi, L±1,

Ḋ := (q − 1) D = L − 1, Γ̇ := (q − 1) Γ ∈ Us
q (hn)′ \ (q − 1) Us

q (hn)′, for all i = 1, . . . , n . Thus

Us
q (hn)′ contains the subalgebra U ′ generated by Ḟi , L±1 , Ḋ , Γ̇ , Ėi ; we argue that U s

q (hn)′ = U ′ :

this is easily seen — like for SL2 and for E2 — using the formulas above along with (7.1). Therefore

Us
q (hn)′ is the unital R–algebra with generators Ḟ1 , . . . , Ḟn , L±1 , Ḋ , Γ̇ , Ė1 , . . . , Ėn and relations

ḊẊ = ẊḊ , L±1Ẋ = ẊL±1 , Γ̇ Ẋ = ẊΓ̇ , ĖiḞj − ḞjĖi = δij(q − 1)Γ̇

L = 1 + Ḋ , L2 − L−2 =
(
1 + q−1

)
Γ̇ , Ḋ(L + 1)

(
1 + L−2

)
=
(
1 + q−1

)
Γ̇

for all Ẋ ∈ {Ḟi, L
±1, Ḋ, Γ̇ , Ėi

}
i=1,...,n

and i, j = 1, . . . , n , with Hopf structure given by

∆
(
Ėi

)
= Ėi ⊗ 1 + L2 ⊗ Ėi , ε

(
Ėi

)
= 0 , S

(
Ėi

)
= −L−2Ėi ∀ i = 1, . . . , n

∆
(
L±1

)
= L±1 ⊗ L±1 , ε

(
L±1

)
= 1 , S

(
L±1

)
= L∓1

∆
(
Γ̇
)

= Γ̇ ⊗ L2 + L−2 ⊗ Γ̇ , ε
(
Γ̇
)

= 0 , S
(
Γ̇
)

= −Γ
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∆
(
Ḋ
)

= Ḋ ⊗ 1 + L ⊗ Ḋ , ε
(
Ḋ
)

= 0 , S
(
Ḋ
)

= −L−1Ḋ

∆
(
Ḟi

)
= Ḟi ⊗ L−2 + 1 ⊗ Ḟi , ε

(
Fi

)
= 0 , S

(
Ḟi

)
= −ḞiL

2 ∀ i = 1, . . . , n .

A similar analysis shows that U a
q (hn)′ is the unital R–subalgebra U ′′ of Ua

q (hn) generated by Ḟi ,

K±1 , Ḣ := (q− 1) H , Γ̇ , Ėi (i = 1, . . . , n ); in particular, Ua
q (hn)′ ⊂ Us

q (hn)′ . Thus Ua
q (hn)′ is the

unital associative R–algebra with generators Ḟ1 , . . . , Ḟn , Ḣ , K±1 , Γ̇ , Ė1 , . . . , Ėn and relations

ḢẊ = ẊḢ , K±1Ẋ = ẊK±1 , Γ̇ Ẋ = ẊΓ̇ , ĖiḞj − ḞjĖi = δij(q − 1)Γ̇

K = 1 + Ḣ , K − K−1 =
(
1 + q−1

)
Γ̇ , Ḣ

(
1 + K−1

)
=
(
1 + q−1

)
Γ̇

for all Ẋ ∈ {Ḟi, K
±1, K̇, Γ̇ , Ėi

}
i=1,...,n

and i, j = 1, . . . , n , with Hopf structure given by

∆
(
Ėi

)
= Ėi ⊗ 1 + K ⊗ Ėi , ε

(
Ėi

)
= 0 , S

(
Ėi

)
= −K−1Ėi ∀ i = 1, . . . , n

∆
(
K±1

)
= K±1 ⊗ K±1 , ε

(
K±1

)
= 1 , S

(
K±1

)
= K∓1

∆
(
Γ̇
)

= Γ̇ ⊗ K + K−1 ⊗ Γ̇ , ε
(
Γ̇
)

= 0 , S
(
Γ̇
)

= −Γ

∆
(
Ḣ
)

= Ḣ ⊗ 1 + K ⊗ Ḣ , ε
(
Ḣ
)

= 0 , S
(
Ḣ
)

= −K−1Ḣ

∆
(
Ḟi

)
= Ḟi ⊗ K−1 + 1 ⊗ Ḟi , ε

(
Fi

)
= 0 , S

(
Ḟi

)
= −ḞiK ∀ i = 1, . . . , n .

As q → 1 , the presentation above provides an isomorphism of Poisson Hopf algebras

Us
q (hn)′

/
(q − 1) Us

q (hn)′
∼=−−−→ F

[
sHn

∗]
given by Ėi mod (q − 1) �→ αi γ

+1 , L±1 mod (q − 1) �→ γ±1 , Ḋ mod (q − 1) �→ γ − 1 , Γ̇

mod (q − 1) �→ (
γ2 − γ−2

)/
2 , Ḟi mod (q − 1) �→ γ−1βi . In other words, the semiclassical limit

of Us
q (hn)′ is F

[
sHn

∗] , as predicted by Theorem 2.2(c) for p = 0 . Similarly, when considering the

“adjoint case”, we find a Poisson Hopf algebra isomorphism

Ua
q (hn)′

/
(q − 1) Ua

q (hn)′
∼=−−−→ F

[
aHn

∗] (
⊂ F

[
sHn

∗])
given by Ėi mod (q − 1) �→ αi γ

+1 , K±1 mod (q − 1) �→ γ±2 , Ḣ mod (q − 1) �→ γ2 − 1 , Γ̇

mod (q−1) �→ (
γ2−γ−2

)/
2 , Ḟi mod (q−1) �→ γ−1βi . That is to say, U a

q (hn)′ has semiclassical

limit F
[
aHn

∗] , as predicted by Theorem 2.2(c) for p = 0 .

We stress the fact that this analysis is characteristic-free, so we get in fact that its outcome does

hold for p > 0 as well, thus “improving” Theorem 2.2(c) (like in §§5–6).

7.4 The identity
(
Uq(hn)′

)∨
= Uq(hn) . In this section we verify the part of Theorem 2.2(b)

claiming, for p = 0 , that H ∈ QrUEA =⇒ (
H ′)∨ = H , both for H = U s

q (hn) and for H =

Ua
q (hn) . In addition, the same arguments will prove such a result for p > 0 too.

To begin with, using (7.1) and the fact that Ḟi, Ḋ, Γ̇ , Ėi ∈ Ker
(
ε : Us

q (hn)′ −� R
)

we get

that J := Ker (ε) is the R–span of M \ {1} , where M is the set in the right-hand-side of (7.1).

Since
(
Us

q (hn)′
)∨

:=
∑

n≥0

(
(q−1)−1J

)n

, we have that
(
Us

q (hn)′
)∨

is generated — as a unital R–

subalgebra of Us
q(hn) — by (q − 1)−1Ḟi = Fi , (q − 1)−1Ḋ = D , (q − 1)−1Γ̇ = Γ , (q − 1)−1Ėi =
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Ei (i = 1, . . . , n), so it coincides with U s
q (hn), q.e.d. In the adjoint case the procedure is similar: one

changes L±1, resp. Ḋ, with K±1, resp. Ḣ, and everything works as before.

7.5 The quantum hyperalgebra Hyp q(hn). Like in §§5.5 and 6.5, we can define “quantum

hyperalgebras” associated to hn . Namely, first we define a Hopf subalgebra of Us
q(hn) over Z

[
q, q−1

]
whose specialization at q = 1 is the natural Kostant-like Z–integer form UZ(hn) of U(hn) (generated

by divided powers, and giving the hyperalgebra Hyp (hn) over any field k by scalar extension), and

then take its scalar extension over R .

To be precise, let Hyp s,Z
q (hn) be the unital Z

[
q, q−1

]
–subalgebra of Us

q(hn) (defined like above but

over Z
[
q, q−1

]
) generated by the “quantum divided powers”

F
(m)
i := F m

i

/
[m]q! ,

(
L ; c

m

)
:=

n∏
r=1

qc+1−rL − 1

qr − 1
, E

(m)
i := Em

i

/
[m]q!

(for all m ∈ N , c ∈ Z and i = 1, . . . , n , with notation of §5.5) and by L−1 . Comparing with

the case of sl2 — noting that for each i the quadruple (Fi, L, L−1, Ei) generates a copy of Us
q(sl2)

— we see at once that this is a Hopf subalgebra of Us
q(hn) , and Hyp s,Z

q (hn)
∣∣∣
q=1

∼= UZ(hn) ; thus

Hyp s
q(hn) := R ⊗Z[q,q−1] Hyp s,Z

q (hn) (for any R like in §6.2, with k := R
/
� R and p := Char (k) )

specializes at q = 1 to the k–hyperalgebra Hyp (hn) . Moreover, among all the
(

L ; c
n

)
’s it is enough

to take only those with c = 0 . From now on we assume p > 0 .

Pushing forward the close comparison with the case of sl2 we also see that Hyp s
q(hn)′ is the

unital R–subalgebra of Hyp s
q(hn) generated by L−1 and the “rescaled quantum divided powers”

(q−1)mF
(m)
i , (q−1)m(L ; 0

m

)
and (q−1)mE

(m)
i , for all m ∈ N and i = 1, . . . , n . It follows that

Hyp s
q(hn)′

∣∣∣
q=1

is generated by the specializations at q = 1 of (q − 1)pr

F
(pr)
i , (q − 1)pr

(
L ; 0
pr

)
and (q − 1)pr

E
(pr)
i , for all r ∈ N , i = 1, . . . , n : this proves directly that the spectrum of

Hyp s
q(hn)′

∣∣∣
q=1

has dimension 0 and height 1, and its cotangent Lie algebra J
/

J 2 (where J is

the augmentation ideal of Hyp s
q(hn)′

∣∣∣
q=1

) has basis
{

(q−1)pr

F
(pr)
i , (q−1)pr

(
L ; 0
pr

)
, (q−1)pr

E
(pr)
i

mod (q−1) Hyp s
q(g)′ mod J 2

∣∣∣ r ∈ N , i = 1, . . . , n
}

. Finally,
(
Hyp s

q(hn)′
)∨

is generated by

(q − 1)pr−1F
(pr)
i , (q − 1)pr−1

(
L ; 0
pr

)
, L−1 and (q − 1)pr−1E

(pr)
i (for all r and i ): in particular(

Hyp s
q(hn)′

)∨�Hyp s
q(hn) , and

(
Hyp s

q(hn)′
)∨∣∣∣

q=1
is generated by the cosets modulo (q−1) of these

elements, which form a basis of the restricted Lie bialgebra k such that
(
Hyp s

q(hn)′
)∨∣∣∣

q=1
= u(k) .

The previous analysis stems from Us
q(hn), and so gives “simply connected quantum objects”. In-

stead we can start from Ua
q(hn) , thus getting “adjoint quantum objects”, moving along the same

pattern but for replacing L±1 by K±1 throughout: apart from this, the analysis and its outcome are

exactly the same. Like for sl2 (cf. §5.5), all the adjoint quantum objects — i.e. Hyp a
q(hn), Hyp a

q(hn)′

and
(
Hyp a

q(hn)′
)∨

— will be strictly contained in the corresponding simply connected quantum ob-

jects. However, the semiclassical limits will be the same in the case of Hyp q(g) (giving Hyp (hn) in
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both cases) and in the case of
(
Hyp q(g)′

)∨
(always yielding u(k)), whereas the semiclassical limit of

Hyp q(g)′ in the simply connected case will be a (countable) covering of the limit in the adjoint case.

7.6 The QFA Fq[Hn] . Now we look at Theorem 2.2 the other way round, i.e. from QFAs to

QrUEAs. We begin by introducing a QFA for the Heisenberg group.

Let Fq[Hn] be the unital associative R–algebra with generators a1 , . . . , an , c , b1 , . . . , bn , and

relations (for all i, j = 1, . . . , n )

aiaj = ajai , aibj = bjai , bibj = bjbi , c ai = ai c + (q − 1) ai , c bj = bj c + (q − 1) bj

with a Hopf algebra structure given by (for all i, j = 1, . . . , n )

∆(ai) = ai ⊗ 1 + 1 ⊗ ai , ∆(c) = c ⊗ 1 + 1 ⊗ c +
n∑

j=1

a� ⊗ b� , ∆(bi) = bi ⊗ 1 + 1 ⊗ bi

ε(ai) = 0 , ε(c) = 0 , ε(bi) = 0 , S(ai) = −ai , S(c) = −c +
n∑

j=1

a� b� , S(bi) = −bi

and let also Fq[Hn] be the F (R)–algebra obtained from Fq[Hn] by scalar extension. Then B :={∏n
i=1 aai

i · cc · ∏n
j=1 bbj

j

∣∣∣ ai, c, bj ∈ N ∀ i, j
}

is an R–basis of Fq[Hn] , hence an F (R)–basis of

Fq[Hn] . Moreover, Fq[Hn] is a QFA (at � = q−1) with semiclassical limit F [Hn] .

7.7 Computation of Fq[Hn]∨ and specialization Fq[Hn]∨
q→1−−−→U(hn

×) . This section is de-

voted to compute Fq[Hn]∨ and its semiclassical limit (at q = 1 ).

Definitions imply that B \ {1} is an R–basis of J := Ker
(
ε : Fq[Hn] −−� R

)
. Therefore

Fq[Hn]∨ =
∑

n≥0

(
(q − 1)−1J

)n

is just the unital R–algebra (subalgebra of Fq[Hn]) with generators

Ei :=
ai

q − 1
, H :=

c
q − 1

, and Fi :=
bi

q − 1
( i = 1, . . . , n ) and relations (for all i, j = 1, . . . , n )

EiEj = EjEi , EiFj = FjEi , FiFj = FjFi , HEi = EiH + Ei , HFj = FjH + Fj

with Hopf algebra structure given by (for all i, j = 1, . . . , n )

∆(Ei) = Ei ⊗ 1+1⊗Ei , ∆(H) = H ⊗ 1+1⊗H +(q− 1)
n∑

j=1

Ej ⊗Fj , ∆(Fi) = Fi ⊗ 1+1⊗Fi

ε(Ei) = ε(H) = ε(Fi) = 0 , S(Ei) =−Ei , S(H) =−H + (q − 1)
n∑

j=1

EjFj , S(Fi) =−Fi .

At q = 1 this implies that Fq[Hn]∨
q→1−−−→ U(hn

�) = U(hn
∗) as co-Poisson Hopf algebras, for a

co-Poisson Hopf algebra isomorphism

Fq[Hn]∨
/

(q − 1) Fq[Hn]∨
∼=−−−→ U(hn

∗)

exists, given by Ei mod (q − 1) �→ ei , H mod (q − 1) �→ h , Fi mod (q − 1) �→ fi , for all

i, j = 1, . . . , n . Thus Fq[Hn]∨ specializes to U(hn
∗) as a co-Poisson Hopf algebra, q.e.d.
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7.8 The identity
(
Fq[Hn]∨

)′
= Fq[Hn] . Finally, we check the validity of the part of Theorem

2.2(b) claiming, when p = 0 , that H ∈ QFA =⇒ (
H∨)′ = H for the QFA H = Fq[Hn] . Once

more the proof works for all p ≥ 0 , so we do improve Theorem 2.2(b).

First of all, from definitions induction gives, for all m ∈ N ,

∆m(Ei) =
∑

r+s=m−1

1⊗r ⊗ Ei ⊗ 1⊗s , ∆m(Fi) =
∑

r+s=m−1

1⊗r ⊗ Fi ⊗ 1⊗s ∀ i = 1, . . . , n

∆m(H) =
∑

r+s=m−1

1⊗r ⊗ H ⊗ 1⊗s +
m∑

i=1

m∑
j,k=1
j<k

1⊗(j−1) ⊗ Ei ⊗ 1⊗(k−j−1) ⊗ Fi ⊗ 1⊗(m−k)

so that δm(Ei) = δ�(H) = δm(Fi) = 0 for all m > 1, 
 > 2 and i = 1, . . . , n ; moreover, for

Ėi := (q − 1)Ei = ai , Ḣ := (q − 1)H = c , Ḟi := (q − 1)Fi = bi (i = 1, . . . , n) one has

δ1

(
Ėi

)
= (q − 1)Ei , δ1

(
Ḣ
)
= (q − 1)H, δ1

(
Ḟi

)
= (q − 1)Fi ∈ (q − 1) Fq[Hn]∨ \ (q − 1)2Fq[Hn]∨

δ2

(
Ḣ
)

= (q − 1)2∑n
i=1 Ei ⊗ Fi ∈ (q − 1)2(Fq[Hn]∨

)⊗2 \ (q − 1)3
(
Fq[Hn]∨

)⊗2
.

The outcome is that Ėi = ai , Ḣ = c , Ḟi = bi ∈
(
Fq[Hn]∨

)′
, so the latter algebra contains the

one generated by these elements, that is Fq[Hn] . Even more, Fq[Hn]∨ is clearly the R–span of the set

B∨ :=
{ ∏n

i=1 Eai
i ·Hc ·∏n

j=1 F
bj

j

∣∣∣ ai, c, bj ∈ N ∀ i, j
}

, so from this and the previous formulas for

∆n one gets that
(
Fq[Hn]∨

)′
= Fq[Hn] , q.e.d.
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